WO2021253822A1 - 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件 - Google Patents

一种小型封装尺寸的表面贴装高分子ptc过电流保护元件 Download PDF

Info

Publication number
WO2021253822A1
WO2021253822A1 PCT/CN2021/072157 CN2021072157W WO2021253822A1 WO 2021253822 A1 WO2021253822 A1 WO 2021253822A1 CN 2021072157 W CN2021072157 W CN 2021072157W WO 2021253822 A1 WO2021253822 A1 WO 2021253822A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
electrode
ptc
area
overcurrent protection
Prior art date
Application number
PCT/CN2021/072157
Other languages
English (en)
French (fr)
Inventor
方勇
夏坤
吴国臣
周阳
侯晓旭
张伟
Original Assignee
上海维安电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海维安电子有限公司 filed Critical 上海维安电子有限公司
Priority to US18/010,542 priority Critical patent/US20230245802A1/en
Publication of WO2021253822A1 publication Critical patent/WO2021253822A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/021Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/028Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/13Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material current responsive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/026Current limitation using PTC resistors, i.e. resistors with a large positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Definitions

  • the invention relates to a surface-mounted polymer PTC (positive temperature coefficient) overcurrent protection element with a small package size.
  • Overcurrent protection components are used in electronic circuits to protect electronic circuits from malfunctions or even burnout due to overheating or overcurrent.
  • the core component of the overcurrent protection element is a chip formed by a core material of a polymer conductive composite material and conductive electrodes covering both sides of the core material.
  • the chip is in a low-resistance state at room temperature, and the electronic circuit is in a path state; when the temperature rises or the circuit has a large current failure, its resistance jumps to more than thousands of times to achieve the effect of reducing the current in the circuit and protect the circuit effect.
  • the resistance of the PTC chip returns to normal. To achieve repeated use, it is a self-recovery fuse (PTC).
  • PTC self-recovery fuse
  • the purpose of the present invention is to provide a surface-mounted polymer PTC overcurrent protection element with a small package size, which has a miniaturized overcurrent protection element that can be mass-produced, and improves the effective area and current capacity of the PTC while being miniaturized.
  • Another object of the present invention is to provide a method for preparing the small package size surface mount polymer PTC overcurrent protection element.
  • a small package size surface mount polymer PTC overcurrent protection component including a PTC chip, an insulating layer, a terminal electrode, and at least one conductive element, wherein the first conductive element of the PTC chip
  • the electrode is designed to divide the gap to form the first and second conductive regions.
  • the conductive member is arranged at the edge or at least one corner of the first conductive region side of the PTC chip to conduct the first conductive region and the second conductive electrode on the PTC chip. And it is not in contact with the terminal electrode, and the main part of the segmentation gap is parallel to the longitudinal direction of the first terminal electrode and the second terminal electrode.
  • the present invention is different from the through hole design at both ends of the conventional patch PTC.
  • a conductive element is provided at one end edge or at least one corner of the PTC chip to connect the conductive electrodes on both sides of the PTC core material.
  • a conductive electrode is designed with a split gap, so that the miniaturized over-current protection component can meet the current PCB process and realize the requirements of mass production. It is convenient to design the over-current protection component resistance scheme, and reduce the adjustment of the PTC core material formula.
  • the present invention provides a surface mount polymer PTC overcurrent protection component with a small package size, which includes a PTC chip, an insulating layer, a terminal electrode and at least one conductive element, wherein:
  • the PTC chip is composed of a PTC core material, a first conductive electrode covering the first surface of the PTC core material, and a second conductive electrode covering the second surface of the PTC core material, wherein the first conductive electrode is formed by a gap Divided into a first conductive area and a second conductive area;
  • At least one conductive element is located on the edge of the PTC chip, and is used to conduct the first conductive area and the second conductive electrode of the first conductive electrode on the PTC chip, and does not contact the terminal electrode;
  • the insulating layer is placed between the first conductive electrode and the first and second terminal electrode layers for electrical isolation, and the first and second conductive holes pass through the insulating layer and are respectively connected to the first conductive electrode The first conductive area and the second conductive area are electrically connected;
  • the main part of the segmentation gap is parallel to the longitudinal direction of the first terminal electrode and the second terminal electrode;
  • the terminal electrode includes a first terminal electrode and a second terminal electrode, wherein the first terminal electrode is located at one end of the surface of the insulating layer and is electrically connected to the first conductive area through the first conductive hole for use as a bonding pad; the second terminal electrode, It is located at the opposite end of the insulating layer surface and is electrically connected to the second conductive area through the second conductive hole to serve as a pad.
  • the first terminal electrode is located at one end of the surface of the insulating layer and is electrically connected to the first conductive area through the first conductive hole for use as a bonding pad
  • the second terminal electrode It is located at the opposite end of the insulating layer surface and is electrically connected to the second conductive area through the second conductive hole to serve as a pad.
  • the area of the first conductive region and the second conductive region are adjusted and set by the relative position of the partition gap on the first conductive electrode, and the PTC core material is determined by the area of the second conductive region Effective area.
  • the partition gap is filled with the resin material of the insulating layer.
  • the division gap is rectangular, triangular, arc-shaped, elliptical, polygonal, and combinations thereof.
  • the four corners, one end, two ends or four ends of the PTC chip are provided with insulation reinforcements to increase the component strength.
  • the PTC overcurrent protection component is a single soldering surface surface mount component.
  • an insulating layer, a metal foil layer or any combination of the two are added to the outermost layer of the non-welded surface of the component to enhance the strength of the component.
  • the present invention also provides a method for manufacturing a surface-mounted polymer PTC overcurrent protection element with a small package size, which includes the following steps:
  • Step one, PTC chip preparation the conductive polymer composite base component polymer and conductive filler are mixed in a high-speed mixer, and then the mixture is kneaded at a temperature of 100 to 200 °C, and then molded or extruded A composite base layer with an area of 100-5000cm 2 and a thickness of 0.1-3.0mm is made by the method; then the first and second conductive electrodes are composited on the first and second surfaces of the base layer of the above-mentioned material on a hot press using a hot pressing method , The composite sheet is made, and then the composite sheet is cross-linked by ⁇ -ray (Co 60 ) or electron beam irradiation with a dose of 2-100 Mrad, and the rectangular PTC chip 1 is obtained by cutting;
  • Step 2 Prepare a segmentation gap on the first conductive electrode by etching and cutting and fill it with an insulating material to form the first and second conductive regions.
  • the area of the first conductive region is larger than that of the second conductive region, according to the resistance value of the PTC chip Request to be determined;
  • Step 3 Etching grooves and plating metal conductive parts at the edges or corners of the first conductive area of the PTC chip, so that the first conductive area of the first conductive electrode is connected to the second conductive electrode;
  • Step 4 Cover the first conductive electrode with an insulating layer
  • Step 5 Set longitudinally parallel first and second terminal electrodes, and make the main part of the separation gap parallel to the terminal electrodes, and form the first and second conductive holes for the first and second terminal electrodes by drilling and electroplating to make the first terminal
  • the electrode is electrically connected to the first conductive area through the first conductive hole to be used as a pad; and the electrode is electrically connected to the second conductive area through the second conductive hole to be used as a pad.
  • the resistance of the overcurrent protection element can be designed and adjusted by designing and adjusting the relative position of the segmentation gap on the first conductive electrode, making it more designable;
  • the component of the present invention is a single-soldering surface mount type.
  • the features of this single-soldered surface mount component are: the outermost layer of the non-soldering surface of the component can be added with an insulating layer, a metal foil layer or any combination of the two. To enhance component strength;
  • the circuit design of the present invention is particularly suitable for the manufacturing process of ultra-small PTC patches.
  • Figure 1 The three-dimensional schematic diagram of the surface-mounted polymer PTC over-current protection element with a small package size in Example 1;
  • FIG. 1 The exploded schematic diagram of Example 1;
  • Figure 3 The three-dimensional schematic diagram of the surface-mounted polymer PTC overcurrent protection component of the small package size of the embodiment 2;
  • Figure 4 The three-dimensional schematic diagram of the surface-mounted polymer PTC over-current protection element with a small package size in Example 3;
  • Figure 5 The bottom view of the second conductive electrode of the surface-mounted polymer PTC overcurrent protection element with a small package size in Example 3;
  • Figure 6 The bottom view of the second conductive electrode of the surface-mounted polymer PTC overcurrent protection element with a small package size in Example 4;
  • FIG. 7 Example 5, a structure diagram of the first conductive electrode of a surface-mounted polymer PTC overcurrent protection component with a small package size;
  • the base layer component of the conductive polymer composite material, the polymer and the conductive filler, are mixed in a high-speed mixer, and then the mixture is mixed at a temperature of 100-200°C, and then molded or extruded to form an area of 100- 5000cm 2 , a PTC core material 10 with a thickness of 0.1 ⁇ 3.0mm; then the first and second conductive electrodes 21, 22 are compounded on the first and second surfaces of the above-mentioned PTC core material 10 on a hot press using a hot pressing method, A composite sheet is made, and then the composite sheet is cross-linked by ⁇ -ray (Co 60 ) or electron beam irradiation with a dose of 2-100 Mrad to obtain a PTC chip.
  • ⁇ -ray Co 60
  • electron beam irradiation with a dose of 2-100 Mrad
  • FIG. 1 A surface mount polymer PTC overcurrent protection element with a small package size is shown in Figure 1, and Figure 2 is an exploded view of the overcurrent protection element shown in Figure 1, including:
  • the first and second surfaces of the PTC core material 10 are covered with first and second conductive electrodes 21, 22 to form a PTC chip.
  • the rectangular segmentation gap 70 divides the first conductive electrode into a first conductive area 211 and a second conductive area 212 that are not electrically connected; at the same time,
  • a conductive component 60 is provided on the side surface of the PTC chip, and the conductive component 60 is electrically connected to the first conductive area 211 and the second conductive electrode 22 of the first conductive electrode 21 covered by the first and second surfaces of the PTC chip;
  • the surface of the first conductive electrode 21 is covered with an insulating layer 30, so that the first terminal electrode 41 and the second terminal electrode 42 are electrically isolated from the first conductive area 211 and the second conductive area 212 on the first conductive electrode 21, respectively ;
  • the first conductive hole 51 and the second conductive hole 52 pass through the first and second terminal electrodes 41 and 42 and the insulating layer 30, and are in electrical communication with the first conductive region 211 and the second conductive region 212, respectively.
  • the upper surface of the insulating layer 30 is covered with the first and second terminal electrodes 41 and 42 as bonding pads, instead of directly using the first conductive region 211 and the second conductive region 212 as bonding pads.
  • the bonding strength of the first conductive electrode 21 and the PTC core material 10 becomes weak, or even separate.
  • This example was prepared according to the following steps:
  • Step one, PTC chip preparation the conductive polymer composite base component polymer and conductive filler are mixed in a high-speed mixer, and then the mixture is kneaded at a temperature of 100 to 200 °C, and then molded or extruded A composite base layer with an area of 100-5000cm 2 and a thickness of 0.1-3.0mm is made by the method; then the first and second conductive electrodes 21 and 22 are compounded on the first PTC core material 10 on the hot press by hot pressing. 1.
  • the second surface is made into a composite material sheet, and then the composite sheet is cross-linked by ⁇ -ray (Co 60 ) or electron beam irradiation with a dose of 2-100 Mrad, and cut to obtain a rectangular PTC chip;
  • Step 2 Prepare a linear groove-shaped segmentation gap 70 on the first conductive electrode 21 by etching and cutting to form the first and second conductive regions 211, 212.
  • the area of the first conductive region is larger than that of the second conductive region. Can be determined according to PTC chip resistance requirements;
  • Step 3 Perform etching and slotting on one end of the first conductive area 211 of the PTC chip, and plate a metal layer to form a semi-cylindrical hole-shaped conductive member 60, the opening of which is outward to make the first conductive area 211 and the second conductive member 60 conductive. Electrode 22 is electrically connected;
  • Step 4 Cover the insulating layer 30 on the first conductive electrode 21, and fill the segmentation gap 70;
  • Step 5 Set the first and second terminal electrodes 41, 42 that are parallel in the longitudinal direction, and make the split gap 70 parallel to the first and second terminal electrodes 41, 42 without contacting the guide member 60.
  • 41, 42 are drilled and electroplated to form the first and second conductive holes 51, 52, so that the first terminal electrode 41 is electrically connected to the first conductive area 211 through the first conductive hole 51 and used as a pad; the second terminal electrode 42 passes through The second conductive hole 52 is electrically connected to the second conductive region 212 and used as a pad.
  • FIG. 3 The three-dimensional structure of the surface mount polymer PTC overcurrent protection component of the small package size of this embodiment is shown in Figure 3, which is similar to Embodiment 1.
  • the surface of the second conductive electrode on the PTC chip is covered with a reinforcing layer 90.
  • the conductive member 60 that electrically connects the first and second conductive electrodes 21, 22 is The structural reinforcement column is injected into the interior to reinforce the insulator 80, so that the structural rigidity and strength of the over-current protection element are improved.
  • the specific structure is as follows:
  • the first and second surfaces of the PTC core material 10 are covered with first and second conductive electrodes 21, 22 to form a PTC chip.
  • the rectangular segmentation gap 70 divides the first conductive electrode into a first conductive area 211 and a second conductive area 212 that are not electrically connected; at the same time,
  • a conductive component 60 is provided on the side surface of the PTC chip.
  • the conductive component 60 is electrically connected to the first conductive area 211 and the second conductive electrode 22 in the first conductive electrode 21 covered by the first and second surfaces of the PTC chip.
  • the structural reinforcement column is a reinforced insulator 80;
  • the surface of the first conductive electrode 21 is covered with an insulating layer 30, so that the first terminal electrode 41 and the second terminal electrode 42 are electrically isolated from the first conductive area 211 and the second conductive area 212 on the first conductive electrode 21, respectively ;
  • the first conductive hole 51 and the second conductive hole 52 pass through the first and second terminal electrodes 41, 42 and the insulating layer 30, and are in electrical communication with the first conductive region 211 and the second conductive region 212, respectively, so that the first terminal electrode 41
  • the first conductive hole 51 is electrically connected to the first conductive area 211 to be used as a pad
  • the second terminal electrode 42 is electrically connected to the second conductive area 212 through the second conductive hole 52 to be used as a pad
  • the outer surface of the second conductive electrode 22 on the non-welded surface is covered with a reinforcing layer 90, which can be an insulating layer, a metal foil layer or any combination of the two on the outermost layer of the non-welded surface of the component to enhance the strength of the component.
  • a reinforcing layer 90 which can be an insulating layer, a metal foil layer or any combination of the two on the outermost layer of the non-welded surface of the component to enhance the strength of the component.
  • FIG. 4 The three-dimensional structure of the surface mount polymer PTC overcurrent protection element of the small package size of the embodiment is shown in FIG. 4, and FIG.
  • the structural design is basically the same.
  • the conductive component 60' is transferred from the center of one end of the PTC chip to an edge of the PTC chip.
  • the four corners of the PTC chip All corner holes are prepared, and at the same time, reinforced insulating parts are injected into the four corner holes.
  • FIG. 1 The bottom view schematic diagram of the second conductive electrode of the surface mount polymer PTC overcurrent protection element of the small package size of this embodiment is shown in FIG.
  • the structure design is similar to that of the third embodiment.
  • the first conductive part 61 and the second conductive part 62 are respectively arranged on the two corners of the first conductive area of the PTC chip.
  • the design of dual conductive parts can improve the stability of conductive parts.
  • one of the conductive parts is defective, there is still another conductive part that can make the first conductive area 211 of the first conductive electrode 21 and the second conductive electrode 22 form an electrical connection.
  • the first conductive electrode of the surface mount polymer PTC overcurrent protection element of the small package size of this embodiment is shown in FIG.
  • the segmentation gap 70' on the electrode 21' is graphically designed, which is different from the linear groove-shaped segmentation gap shown in Embodiment 1.
  • the segmentation gap 70' of this embodiment adopts a graphic design combining a circular arc groove and a linear groove as the main part.
  • the relative position and pattern of the split gap 70' in this embodiment determine the effective area of the first conductive region 211' and the second conductive region 212';
  • the effective area part of the conductive area 212' determines the functional and effective part of the PTC overcurrent protection element, which greatly improves the product performance design space. Without relying on the formulation adjustment of PTC materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Thermistors And Varistors (AREA)

Abstract

一种小型封装尺寸的表面贴装高分子PTC过电流保护元件,包括PTC芯片、绝缘层(30)、端电极(41,42),至少一导电件(60),其中,在第一导电电极(21)设计分割间隙,形成第一、二导电区(211,212),导电件(60)设置在PTC芯片的第一导电区(211)侧的边缘处或至少一角,用于导通PTC芯片上的第一导电区(211)和第二导电电极(22),且不与端电极(41,42)接触,第一导电电极(21)的分割间隙(70)包含的主要部分与第一端电极(41)和第二端电极(42)的纵向平行。还提供了该保护元件的制备方法。使得小型化过电流保护元件可满足目前PCB工艺,实现量产的要求。便于设计过电流保护元件电阻的方案,减少对PTC芯材配方的调整。

Description

一种小型封装尺寸的表面贴装高分子PTC过电流保护元件 技术领域
本发明涉及一种小型封装尺寸的表面贴装高分子PTC(positive temperature coefficient)过电流保护元件。
背景技术
过电流保护元件应用于电子线路中,保护电子线路因过热或过流而出现故障甚至烧毁的不良现象。过电流保护元件核心部件是高分子导电复合材料的芯材与覆于芯材两侧的导电电极形成的芯片。芯片在室温下处于低阻状态,电子线路呈通路状态;当温度升高或电路出现故障大电流时,其电阻跃迁至数千倍以上,来达到降低电路中电流的效果,起到保护电路的作用。当温度恢复或故障电流排除后,PTC芯片的电阻恢复正常。以此达到重复使用的,故此为自恢复保险丝(PTC)。
目前电子产品日趋功能化,薄型化,电子线路也愈发复杂,过电流保护元件的应用趋向于小型化发展,更小更薄。常规的1206、0805等封装尺寸,技术上已经相当成熟,并已经广泛应用。而0402、乃至0201,甚至01005类封装要求也渐渐出现相应的市场需求。此种小型化产品对于PCB加工的制程能力、电路设计都将是一个巨大的技术挑战。
发明内容
本发明目的在于提供一种小型封装尺寸的表面贴装高分子PTC过电流保护元件,具有可量产的小型化过电流保护元件,在小型化的同时,提升PTC的有效面积和通流能力。
本发明的再一目的在于:提供所述小型封装尺寸的表面贴装高分子PTC过电流保护元件的制备方法。
本发明目的通过下述方案实现:一种小型封装尺寸的表面贴装高分子PTC过电流保护元件,包括PTC芯片、绝缘层、端电极,至少一导电件,其中,在PTC芯片的第一导电电极设计分割间隙,形成第一、二导电区,导电件设置在PTC芯片的第一导电区侧的边缘处或至少一角,用于导通PTC芯片上的第一导电区和第二导电电极,且不与端电极接触,分割间隙包含的主要部分与第一端电极和第二端电极的纵向平行。
本发明有别于常规的贴片PTC的两端通孔设计,通过特殊设计,在PTC芯片的一端边缘处或至少一个棱角设置导电件,连接PTC芯材两侧的导电电极,同时,在第一导电电极设计分割间隙,使得小型化过电流保护元件可满足目前PCB工艺,实现量产的要求。便于设计过电流保护元件电阻的方案,减少对PTC芯材配方的调整。
具体的,本发明提供一种小型封装尺寸的表面贴装高分子PTC过电流保护元件,包括PTC芯片、绝缘层、端电极和至少一导电件,其中,
1)所述的PTC芯片由PTC芯材、覆于PTC芯材第一表面的第一导电电极和覆于PTC芯材第二表面的第二导电电极组成,其中,第一导电电极由一间隙分割成第一导电区和第二导电区;
2)至少一导电件位于PTC芯片的边缘,用于导通PTC芯片上的第一导电电极的第一导电区和第二导电电极,且不与端电极接触;
3)所述的绝缘层置于第一导电电极与第一、第二端电极层之间,用于电气隔离,并且第一、第二导电孔穿过该绝缘层,分别与第一导电电极的第一导电区和第二导电区电气连接;
4)分割间隙包含的主要部分与第一端电极和第二端电极的纵向平行;
5)所述的端电极包括第一、二端电极,其中,第一端电极,位于绝缘层表面一端,通过第一导电孔与第一导电区电气相连作为焊盘使用;第二端电极,位于绝缘层表面相对的另一端,通过第二导电孔与第二导电区电气相连作为焊盘使用。以防第一导电电极与PTC芯材的结合强度变弱,乃至分离的情况出现。
在上述方案的基础上,所述的第一导电区和第二导电区的面积通过分割间隙在第一导电电极上的相对位置进行调整和设定,通过第二导电区的面积决定PTC芯材的有效区域。
在上述方案的基础上,所述的分割间隙采用所述绝缘层树脂材料填满。
进一步的,所述的分割间隙为长方形、三角形、圆弧形、椭圆形、多边形及其组合形状。
在上述方案的基础上,所述的PTC芯片的四棱角、一端边、两端边或四端边设置绝缘增强件,以增加元件强度。
在上述方案的基础上,该PTC过电流保护元件为单焊接面表面贴装元件。
进一步的,元件非焊接面最外层增加绝缘层、金属箔层或两种中的任意组合层,以增强元件强度。
本发明还提供了一种小型封装尺寸的表面贴装高分子PTC过电流保护元件的制造方法,包括如下步骤:
步骤一,PTC芯片制备:将导电高分子复合材料基层组分高分子聚合物、导电填料在高速混合机内混合,然后将混合物在100~200℃温度下混炼,然后用模压或挤出的方法制成面积为100~5000cm 2,厚0.1~3.0mm的复合材料基层;再用热压的方法在热压机上把第一、第二导电电极复合于上述材料基层的第一、第二表面,制成复合材料片材,然后再将此复合片材用γ射线(Co 60)或电子束 辐照交联,剂量为2~100Mrad,裁切得到矩形PTC芯片1;
步骤二,在第一导电电极上通过蚀刻、切削方式制备出分割间隙并用绝缘材料填充,形成第一、二导电区,第一导电区的面积大于第二导电区的面积,根据PTC芯片阻值要求确定;
步骤三,在PTC芯片的第一导电区的端边或棱角处刻蚀开槽、镀金属导电件,使第一导电电极的第一导电区与第二导电电极导通;
步骤四,在第一导电电极上覆绝缘层;
步骤五,设纵向平行的第一、二端电极,并使分割间隙的主要部分与端电极平行,对第一、二端电极通过钻孔、电镀形成第一、二导电孔,使第一端电极通过第一导电孔与第一导电区电气相连作为焊盘使用;通过第二导电孔与第二导电区电气相连作为焊盘使用。
本发明具有以下特点:
1.在PTC芯片的一端边缘处或一角设置导电件,连接PTC芯材两侧的导电电极,同时在第一导电电极设计分割间隙,使得该设计在PCB加工工艺中可实现批量生产;
2.通过设计调整分割间隙在第一导电电极的相对位置即可对过电流保护原件的电阻进行设计调整,使得其可设计性更高;
3.本发明元件为单焊接面表面贴装类型,这种单焊接面表面贴装元件的特点有:元件非焊接面最外层可以增加绝缘层、金属箔层或两种中的任意组合层来增强元件强度;
4.本发明的电路设计尤其适合超小型PTC贴片制造工艺。
附图说明
图1:实施例1小型封装尺寸的表面贴装高分子PTC过电流保护元件立体结构示意图;
图2:实施例1的爆炸示意图;
图3:实施例2小型封装尺寸的表面贴装高分子PTC过电流保护元件立体结构示意图;
图4:实施例3小型封装尺寸的表面贴装高分子PTC过电流保护元件立体结构示意图;
图5:实施例3小型封装尺寸的表面贴装高分子PTC过电流保护元件第二导电电极仰视图;
图6:实施例4小型封装尺寸的表面贴装高分子PTC过电流保护元件第二导电电极仰视图;
图7:实施例5小型封装尺寸的表面贴装高分子PTC过电流保护元件第一导电电极结构图;
标号说明
10——PTC芯材;
21、22——第一导电电极、第二导电电极;
211、212——第一导电电极的第一、二导电区;
30——绝缘层;
41、42——第一、二端电极;
51、52——第一、二导电孔;
60、60’——导电部件;61、62——第一、二导电部件;
70——分割间隙;
80——绝缘增强件;
90——增强层;
图7中:
21’——第一导电电极;
211’、212’——第一导电电极的第一、二导电区;
70’——分割间隙。
具体实施方式
材料准备:
将导电高分子复合材料基层组分高分子聚合物、导电填料在高速混合机内混合,然后将混合物在100~200℃温度下混炼,然后用模压或挤出的方法制成面积为100~5000cm 2,厚0.1~3.0mm的PTC芯材10;再用热压的方法在热压机上把第一、第二导电电极21、22复合于上述PTC芯材10的第一、第二表面,制成复合材料片材,然后再将此复合片材用γ射线(Co 60)或电子束辐照交联,剂量为2~100Mrad,得到PTC芯片。
实施例1
一种小型封装尺寸的表面贴装高分子PTC过电流保护元件如图1所示所示,图2为图1所示的过电流保护元件的爆炸图,包括:
PTC芯材10第一、第二表面覆有第一、第二导电电极21、22构成PTC芯片,在第一导电电极21上通过蚀刻、切削等方式制备出与端电极41、42纵向平行的长方形的分割间隙70,将第一导电电极分成没有电气连接的第一导电区211和第二导电区212;同时,
在PTC芯片的端侧面设置导电部件60,导电部件60电气连接PTC芯片第一、 第二表面覆盖的第一导电电极21中的第一导电区211和第二导电电极22;
在第一导电电极21表面覆有绝缘层30,使第一端电极41和第二端电极42分别与第一导电电极21上的第一导电区211和第二导电区212之间形成电气隔离;
第一导电孔51和第二导电孔52穿过第一、第二端电极41、42和绝缘层30,分别与第一导电区211和第二导电区212电气连通。
本实施例中,通过绝缘层30的上表面覆第一、第二端电极41和42作焊盘,而不直接以第一导电区211和第二导电区212作为焊盘,是为克服以第一、第二导电区211和212作为焊盘在回流焊焊接时,第一导电电极21与PTC芯材10的结合强度变弱,乃至分离。
本实施例按以下步骤制备:
步骤一,PTC芯片制备:将导电高分子复合材料基层组分高分子聚合物、导电填料在高速混合机内混合,然后将混合物在100~200℃温度下混炼,然后用模压或挤出的方法制成面积为100~5000cm 2,厚0.1~3.0mm的复合材料基层;再用热压的方法在热压机上把第一、第二导电电极21、22复合于上述PTC芯材10的第一、第二表面,制成复合材料片材,然后再将此复合片材用γ射线(Co 60)或电子束辐照交联,剂量为2~100Mrad,裁切得到矩形PTC芯片;
步骤二,在第一导电电极21上通过蚀刻、切削方式制备出直线槽形的分割间隙70,形成第一、二导电区211、212,第一导电区的面积大于第二导电区的面积,可根据PTC芯片阻值要求确定;
步骤三,在PTC芯片的第一导电区211的一个端边进行刻蚀开槽、镀金属层形成半圆柱孔形的导电件60,其开口向外,使第一导电区211与第二导电电极22电气导通;
步骤四,在第一导电电极21上覆绝缘层30,并填满分割间隙70;
步骤五,设纵向平行的第一、二端电极41、42,并使分割间隙70与第一、二端电极41、42平行,且不与导件件60接触,对第一、二端电极41、42通过钻孔、电镀形成第一、二导电孔51、52,使第一端电极41通过第一导电孔51与第一导电区211电气相连作为焊盘使用;第二端电极42通过第二导电孔52与第二导电区212电气相连作为焊盘使用。
实施例2
本实施例的小型封装尺寸的表面贴装高分子PTC过电流保护元件的立体结构如图3所示,与实施例1相近,在实施例一的基础上,为了便于增强表面贴装元件的结构性强度,在PTC芯片上的第二导电电极的表面覆有增强层90,同时, 为了表面贴装过电流保护元件的结构刚性,在电气连接第一、二导电电极21、22的导电件60内部注入结构增强柱,为增强绝缘件80,使得过电流保护元件的结构刚性和强度得到改善,具体结构为:
PTC芯材10第一、第二表面覆有第一、第二导电电极21、22构成PTC芯片,在第一导电电极21上通过蚀刻、切削等方式制备出与端电极41、42纵向平行的长方形的分割间隙70,将第一导电电极分成没有电气连接的第一导电区211和第二导电区212;同时,
在PTC芯片的端侧面设置导电部件60,导电部件60电气连接PTC芯片第一、第二表面覆盖的第一导电电极21中的第一导电区211和第二导电电极22,导电件60内部注入结构增强柱,为增强绝缘件80;
在第一导电电极21表面覆有绝缘层30,使第一端电极41和第二端电极42分别与第一导电电极21上的第一导电区211和第二导电区212之间形成电气隔离;
第一导电孔51和第二导电孔52穿过第一、第二端电极41、42和绝缘层30,分别与第一导电区211和第二导电区212电气连通,使第一端电极41通过第一导电孔51与第一导电区电气211相连作为焊盘使用;第二端电极42通过第二导电孔52与第二导电区212电气相连作为焊盘使用;
在非焊接面的第二导电电极22的外表面覆有增强层90,可以是在元件非焊接面最外层增加绝缘层、金属箔层或两种中的任意组合层,以增强元件强度。
本实施例在具有了实施例1的优点外,结构得以增强。
实施例3
实施例的小型封装尺寸的表面贴装高分子PTC过电流保护元件的立体结构如图4所示,图5是图4所示结构示意图中的第二导电电极22仰视示意图,与实施例1的结构设计基本同,在实施例1结构基础上,将导电部件60’由PTC芯片的一端边中心位置转移到PTC芯片该端边的一棱角处,参照实施例2所示,将PTC芯片四角处均制备出角孔,同时在四个角孔内均注入增强绝缘件。
实施例4
本实施例的小型封装尺寸的表面贴装高分子PTC过电流保护元件第二导电电极仰视示意图如图6所示,第二导电电极22外形与实施例3结构中第二导电电极22的仰视示意图相近,其结构设计同实施例3,在实施例3的基础上,在PTC芯片第一导电区的两棱角上分别设置第一导电部件61和第二导电部件62。
双导电部件设计可以提高导电部件的稳定性。当其中一个导电部件产生不良时,仍有另一导电部件可使得第一导电电极21的第一导电区211和第二导电电 极22形成电气连接。
实施例5
本实施例的小型封装尺寸的表面贴装高分子PTC过电流保护元件的的第一导电电极如图7所示,是另一改善示意图,在实施例1至4的基础上,对第一导电电极21’上的分割间隙70’进行图形设计,与实施例1所示的直线槽形的分割间隙不同,本实施例分割间隙70’采用圆弧形槽和主要部分为直线槽结合的图形设计,使分割间隙70’的主要部分仍与端电极纵向平行,本实施例分割间隙70’的相对位置和图形决定了第一导电区211’和第二导电区212’的有效面积;而第二导电区212’的有效面积部分决定了PTC过电流保护元件的功能性有效部分,使得产品性能设计空间大幅提高。而不需依赖PTC材料的配方调整。
本发明的内容和特点已揭示如上,然而前面叙述的本发明仅仅简要地或只涉及本发明的特定部分,本发明的保护范围应不限于实施例揭示的内容,而应该包括各种不背离本发明的替换和修饰。

Claims (12)

  1. 一种小型封装尺寸的表面贴装高分子PTC过电流保护元件,包括PTC芯片、绝缘层、端电极,至少一导电件,其特征在于,在PTC芯片的第一导电电极设计分割间隙,形成第一、二导电区,导电件设置在PTC芯片的第一导电区侧的边缘处或至少一角,用于导通PTC芯片上的第一导电区和第二导电电极,且不与端电极接触,第一导电电极的分割间隙包含的主要部分与第一端电极和第二端电极的纵向平行。
  2. 根据权利要求1所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件,其特征在于:包括PTC芯片、绝缘层、端电极和至少一导电件,其中,
    1)所述的PTC芯片由PTC芯材、覆于PTC芯材第一表面的第一导电电极和覆于PTC芯材第二表面的第二导电电极组成,其中,第一导电电极由一间隙分割成第一导电区和第二导电区;
    2)至少一导电件位于PTC芯片的边缘,用于导通PTC芯片上的第一导电电极的第一导电区和第二导电电极,且不与端电极接触;
    3)所述的绝缘层置于第一导电电极与第一、第二端电极层之间,用于电气隔离,并且第一、第二导电孔穿过该绝缘层,分别与第一导电电极的第一导电区和第二导电区电气连接;
    4)分割间隙包含的主要部分与第一端电极和第二端电极的纵向平行;
    5)所述的端电极包括第一、二端电极,其中,第一端电极,位于绝缘层表面一端,通过第一导电孔与第一导电区电气相连作为焊盘使用;第二端电极,位于绝缘层表面相对的另一端,通过第二导电孔与第二导电区电气相连作为焊盘使用。
  3. 根据权利要求1或2所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件,其特征在于,所述的第一导电区和第二导电区的面积通过分割间隙在第一导电电极上的相对位置进行调整和设定,通过第二导电区的面积决定PTC芯材的有效区域。
  4. 根据权利要求3所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件,其特征在于,所述的分割间隙采用所述绝缘层树脂材料填满。
  5. 根据权利要求4所述的PTC过电流保护元件,其特征在于,所述的分割间隙为长方形、三角形、圆弧形、椭圆形、多边形及其组合形状。
  6. 根据权利要求1所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件,其特征在于,所述的PTC芯片的四棱角或一端边或两端边或四端边设置绝缘增强件。
  7. 根据权利要求6所述的小型封装尺寸的表面贴装高分子PTC过电流保护元 件,其特征在于,所述的绝缘增强件设在导电件处。
  8. 根据权利要求1或2所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件,其特征在于,该PTC过电流保护元件为单焊接面表面贴装元件。
  9. 根据权利要求8所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件,其特征在于,元件非焊接面最外层增加绝缘层、金属箔层或两种中的任意组合层,以增强元件强度。
  10. 一种根据权利要求1至9任一项所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件的制备方法,其特征在于,包括下述步骤:
    步骤一,PTC芯片制备:将导电高分子复合材料基层组分高分子聚合物、导电填料在高速混合机内混合,然后将混合物在100~200℃温度下混炼,然后用模压或挤出的方法制成面积为100~5000cm 2,厚0.1~3.0mm的复合材料基层;再用热压的方法在热压机上把第一、第二导电电极复合于上述材料基层的第一、第二表面,制成复合材料片材,然后再将此复合片材用γ射线(Co 60)或电子束辐照交联,剂量为2~100Mrad,裁切得到矩形PTC芯片;
    步骤二,在第一导电电极上通过蚀刻、切削方式制备出分割间隙并用绝缘材料填充,形成第一、二导电区,第一导电区的面积大于第二导电区的面积,根据PTC芯片阻值要求确定;
    步骤三,在PTC芯片的第一导电区的端边或棱角处刻蚀开槽、镀金属导电件,使第一导电电极的第一导电区与第二导电电极导通;
    步骤四,在第一导电电极上覆绝缘层;
    步骤五,设纵向平行的第一、二端电极,并使分割间隙的主要部分与端电极平行,对第一、二端电极通过钻孔、电镀形成第一、二导电孔,使第一端电极通过第一导电孔与第一导电区电气相连作为焊盘使用;通过第二导电孔与第二导电区电气相连作为焊盘使用。
  11. 根据权利要求10所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件的制备方法,其特征在于,步骤二中,分割间隙为与端电极平行的直线槽;或者为弧线槽,且一端与端电极平行。
  12. 根据权利要求10所述的小型封装尺寸的表面贴装高分子PTC过电流保护元件的制备方法,其特征在于,步骤三中,所述的导电件设在PTC芯片的一端边,或一个棱角处、或二个棱角处。
PCT/CN2021/072157 2020-06-17 2021-01-15 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件 WO2021253822A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/010,542 US20230245802A1 (en) 2020-06-17 2021-01-15 Surface-mounted polymer pct overcurrent protection element having small package size

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010553726.3 2020-06-17
CN202010553726.3A CN111640548A (zh) 2020-06-17 2020-06-17 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件

Publications (1)

Publication Number Publication Date
WO2021253822A1 true WO2021253822A1 (zh) 2021-12-23

Family

ID=72330706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072157 WO2021253822A1 (zh) 2020-06-17 2021-01-15 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件

Country Status (3)

Country Link
US (1) US20230245802A1 (zh)
CN (1) CN111640548A (zh)
WO (1) WO2021253822A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640548A (zh) * 2020-06-17 2020-09-08 上海维安电子有限公司 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件
TWI819643B (zh) * 2022-06-07 2023-10-21 聚鼎科技股份有限公司 電路保護元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060093628A (ko) * 2005-02-22 2006-08-25 엘에스전선 주식회사 바리스터 일체형 ptc 소자
CN102426888A (zh) * 2012-01-09 2012-04-25 上海长园维安电子线路保护有限公司 一种新型表面贴装ptc热敏电阻及其制作方法
CN205069252U (zh) * 2015-09-10 2016-03-02 上海长园维安电子线路保护有限公司 薄型表面贴装大电流ptc元件
CN107665758A (zh) * 2016-07-29 2018-02-06 聚鼎科技股份有限公司 表面粘着型过电流保护元件
CN110853849A (zh) * 2019-12-11 2020-02-28 上海维安电子有限公司 一种过电流保护元件
CN111640548A (zh) * 2020-06-17 2020-09-08 上海维安电子有限公司 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011632B1 (ko) * 2008-07-31 2011-01-31 이기철 초박형 2차 전지에 실장되는 폴리머 피티씨 써미스터 소자및 그 제조방법
TW201621929A (zh) * 2014-12-05 2016-06-16 聚鼎科技股份有限公司 過電流保護元件及其保護電路板
CN207199390U (zh) * 2017-08-31 2018-04-06 上海长园维安电子线路保护有限公司 一种表面贴装ptc过电流保护元件
TWI676187B (zh) * 2019-02-22 2019-11-01 聚鼎科技股份有限公司 過電流保護元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060093628A (ko) * 2005-02-22 2006-08-25 엘에스전선 주식회사 바리스터 일체형 ptc 소자
CN102426888A (zh) * 2012-01-09 2012-04-25 上海长园维安电子线路保护有限公司 一种新型表面贴装ptc热敏电阻及其制作方法
CN205069252U (zh) * 2015-09-10 2016-03-02 上海长园维安电子线路保护有限公司 薄型表面贴装大电流ptc元件
CN107665758A (zh) * 2016-07-29 2018-02-06 聚鼎科技股份有限公司 表面粘着型过电流保护元件
CN110853849A (zh) * 2019-12-11 2020-02-28 上海维安电子有限公司 一种过电流保护元件
CN111640548A (zh) * 2020-06-17 2020-09-08 上海维安电子有限公司 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件

Also Published As

Publication number Publication date
US20230245802A1 (en) 2023-08-03
CN111640548A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2021253822A1 (zh) 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件
US20130037911A1 (en) Chip-component structure and method of producing same
US7355835B2 (en) Stacked capacitor and method of fabricating the same
JP2976049B2 (ja) 積層電子部品
US8368502B2 (en) Surface-mount current fuse
US20060152329A1 (en) Conductive polymer device and method of manufacturing same
EP1236210A2 (en) Improved conductive polymer device and method of manufacturing same
WO1999045551A2 (en) Multilayer conductive polymer device and method of manufacturing same
EP0232868A2 (en) Fused solid electrolytic capacitor
US7835139B2 (en) Solid electrolytic capacitor
WO2011079549A1 (zh) 表面贴装型过电流保护元件
US8310817B2 (en) Solid electrolytic capacitor having plural terminals connected to canopy and production method thereof
US10448510B2 (en) Multilayer substrate and electronic device
JPH0265116A (ja) フユーズを内蔵した固体電解コンデンサとその製法
JP3628222B2 (ja) Ptc素子の製造方法
CN210805371U (zh) 一种过电流保护元件
US11211204B2 (en) Solid electrolytic capacitor and method for manufacturing same
US20060055501A1 (en) Conductive polymer device and method of manufacturing same
JP2645559B2 (ja) 積層型固体電解コンデンサとその製造方法
CN110853849A (zh) 一种过电流保护元件
CN220272234U (zh) 基础复合单元、单层带状pptc热敏电阻、多层带状pptc热敏电阻
US20230380058A1 (en) Wiring circuit board
CN114999754B (zh) 一种热敏电阻的制作方法及热敏电阻
WO2024139788A1 (zh) 一种表面贴装过流保护元件
US11756717B2 (en) Coil component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825207

Country of ref document: EP

Kind code of ref document: A1