TWI819643B - 電路保護元件 - Google Patents

電路保護元件 Download PDF

Info

Publication number
TWI819643B
TWI819643B TW111120994A TW111120994A TWI819643B TW I819643 B TWI819643 B TW I819643B TW 111120994 A TW111120994 A TW 111120994A TW 111120994 A TW111120994 A TW 111120994A TW I819643 B TWI819643 B TW I819643B
Authority
TW
Taiwan
Prior art keywords
conductive
layer
material layer
trench
disposed
Prior art date
Application number
TW111120994A
Other languages
English (en)
Other versions
TW202349815A (zh
Inventor
沙益安
吳千慧
Original Assignee
聚鼎科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聚鼎科技股份有限公司 filed Critical 聚鼎科技股份有限公司
Priority to TW111120994A priority Critical patent/TWI819643B/zh
Priority to CN202210819944.6A priority patent/CN117238596A/zh
Priority to US18/079,652 priority patent/US20230396060A1/en
Application granted granted Critical
Publication of TWI819643B publication Critical patent/TWI819643B/zh
Publication of TW202349815A publication Critical patent/TW202349815A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/026Current limitation using PTC resistors, i.e. resistors with a large positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/042Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage comprising means to limit the absorbed power or indicate damaged over-voltage protection device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06573Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
    • H01C17/06586Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/041Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient formed as one or more layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/049Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of organic or organo-metal substances

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)
  • Amplifiers (AREA)
  • Air Bags (AREA)

Abstract

一種電路保護元件,包含熱敏電阻元件、介電材料層、第一絕緣層、第一電極及第二電極。熱敏電阻元件具有第一導電層、第二導電層及疊設於其間的正溫度係數材料層。第一導電層具有二個導電區塊。二個導電區塊設置於正溫度係數材料層之表面會在正溫度係數材料層中形成溝槽。介電材料層設置於溝槽中。第一絕緣層設置於第一導電層上並覆蓋介電材料層。第一電極及第二電極設置於第一絕緣層且分別電連接此二個導電區塊。

Description

電路保護元件
本發明係關於一種電路保護元件,更具體而言,關於一種導電層間具有介電材料的電路保護元件。
習知具有正溫度係數(Positive Temperature Coefficient;PTC)特性之導電複合材料之電阻對於特定溫度之變化相當敏銳,可作為電流感測元件的材料,且目前已被廣泛應用於電路保護元件中。具體而言,PTC導電複合材料在正常溫度下之電阻可維持極低值,使電路或電池得以正常運作。但是,當電路或電池發生過電流(over-current)或過高溫(overtemperature)的現象時,其電阻值會瞬間提高至一高電阻狀態(至少10 4Ω以上),即所謂之觸發(trip),而將過量之電流反向抵銷,以達到保護電池或電路元件之目的。
然而,在電子元件微型化的趨勢下,電路保護元件中的各部件尺寸也跟著縮小。相對於尺寸縮小,各部件在電性及結構特性上所受到的影響則跟著隨之放大。例如,為了電連接兩個外部電極,習知電路保護元件中可設計成其內部具有至少二個電氣隔離的導電區塊來電連接該兩個外部電極。在大尺寸的設計下,此至少二個電氣隔離的導電區塊已間隔一定的距離,故無需考量絕緣性的問題。據此,間隔距離不會再刻意進行調整,而於導電區塊間亦未填充介電材料。然而,隨著尺寸元件做的更小,導電區塊間的距離逐漸拉近。在無填充任何介電材料且距離又拉近的情況下,操作電壓過大時會產生電弧(arcing)效應,使得電路保護元件燒毀。
有鑑於此,習知的電路保護元件亟需改良以解決上述關於電弧效應的問題,從而提升其耐電壓特性。
本發明除了調整至少二個導電區塊間電氣隔離的距離外,更於其間所形成的溝槽填入介電材料。如此,導電區塊之間的絕緣性可獲得有效的改善。由於絕緣性的改善,可避免電流在兩個導電區塊間產生氣體放電(即電弧)的問題,故相應地減少電路保護元件燒毀的情形。換句話說,相較於習知技術,本發明可提升電路保護元件的耐電壓特性,採用較大的操作電壓而不會燒毀。
本發明之一實施態樣為一種電路保護元件,包含熱敏電阻元件、介電材料層、第一絕緣層、第一電極及第二電極。熱敏電阻元件具有正溫度係數材料層、第一導電層以及第二導電層。正溫度係數材料層具有第一表面及與第一表面相對的第二表面。第一導電層設置於第一表面,其中第一導電層具有第一導電區塊、第二導電區塊及溝槽,溝槽使得第一導電區塊與第二導電區塊間隔距離 且電氣隔離。第二導電層設置於第二表面。介電材料層設置於溝槽中。第一絕緣層設置於第一導電層上並覆蓋介電材料層。第一電極及第二電極設置於第一絕緣層且分別電連接第一導電區塊及第二導電區塊。
在一實施例中,熱敏電阻元件更包含第一導通件、左端部及與左端部相對的右端部。左端部具有第一缺口,依序自第一導電層、正溫度係數材料層延伸至第二導電層,且第一導通件設置於第一缺口中。
在一實施例中,介電材料層沿第一方向延伸且介於第一電極與第二電極之間,而第一方向平行於第一電極及第二電極。
在一實施例中,溝槽具有底面及側壁,底面於第一表面延伸且垂直連接側壁。
在一實施例中,溝槽具有底面及側壁,底面於第一表面延伸且非垂直連接側壁。
在一實施例中,介電材料層直接接觸側壁沿著第一方向延伸且完全覆蓋側壁及底面,並使溝槽為介電材料層所填滿。
在一實施例中,介電材料層直接接觸側壁沿著第一方向延伸且未完全覆蓋底面,並使溝槽留有間隙。
在一實施例中,介電材料層直接接觸側壁沿著第一方向延伸且完全覆蓋側壁及底面,並使溝槽留有間隙。
在一實施例中,更包含第一絕緣件完全覆蓋於第一導通件上。
在一實施例中,熱敏電阻元件更包含第二導通件,而左端部具有第二缺口依序自第一導電層、正溫度係數材料層延伸至第二導電層,且第二導通件置於第二缺口中。
在一實施例中,更包含第二絕緣件完全覆蓋於第二導通件上。
在一實施例中,左端部具有第一轉角及第二轉角分別設置於左端部的兩端,且第一缺口位於第一轉角而第二缺口位於第二轉角。
在一實施例中,更包含第二絕緣層設置於第二導電層上。
在一實施例中,第一導電層具有長邊平行於距離,以長邊的長度為100%計時,距離為長邊長度之7%至46%。
在一實施例中,前述距離為0.08 mm至0.5 mm。
在一實施例中,介電材料層的介電強度大於第一絕緣層的介電強度。
在一實施例中,介電材料層選自由環氧樹脂、聚酯樹脂、聚醯胺樹脂、酚醛樹脂、玻璃纖維或無機填料改性環氧樹脂、玻璃纖維或無機填料改性酚醛樹脂、聚胺樹脂、聚氰酸酯樹脂、馬來醯亞胺樹脂、聚烯烴樹脂、二亞苯基醚樹脂、矽高分子、壓克力樹脂、光敏樹脂、無機膠及其任意組合所組的群組。
在一實施例中,介電材料層為無機填料改性環氧樹脂,而第一絕緣層為環氧樹脂。
讓本發明之上述和其他技術內容、特徵和優點能更明顯易懂,下文特舉出相關實施例,並配合所附圖式,作詳細說明如下。
請參照圖1及圖2。圖1最上方顯示本發明第一實施態樣之電路保護元件100的剖視圖,圖中下方顯示各層體的上視圖。為更清楚說明,下方的第一絕緣層31更標示AA虛線,顯示各層體組裝起來後沿AA虛線的位置可得電路保護元件100的剖視圖。此外,圖1另顯示上視圖視角之第一方向O1及第二方向O2。第一方向O1平行於電路保護元件100的寬(短邊),而第二方向O2平行於電路保護元件100的長(長邊)。第一方向O1與第二方向O2垂直。圖2為圖1的立體分解示意圖(即立體爆炸圖),但未繪示導通件16及絕緣件33。此實施態樣中,電路保護元件100包含熱敏電阻元件10、介電材料層21、第一絕緣層31、第一電極14a、第二電極14b及其他部件。
熱敏電阻元件10具有正溫度係數材料層11、第一導電層12以及第二導電層13。正溫度係數材料層11具有第一表面S1及第二表面S2。第一表面S1與第二表面S2分別位於正溫度係數材料層11相對的兩面。第一導電層12設置於正溫度係數材料層11的第一表面S1。並且,第一導電層12具有第一導電區塊12a、第二導電區塊12b及溝槽T。溝槽T使得第一導電區塊12a與第二導電區塊12b間隔一段距離D(如圖3a至5c,將於下文詳述)並使第一導電區塊12a與第二導電區塊12b電氣隔離。第二導電層13設置於正溫度係數材料層11的第二表面S2。如此,正溫度係數材料層11、第一導電層12以及第二導電層13形成電路保護元件100中熱敏電阻元件10的基本態樣。在一實施例中,正溫度係數材料層11可為高分子聚合物正溫度係數(Polymeric Positive Temperature Coefficient,PPTC)材料,由高分子聚合物及均勻散佈於高分子聚合物中的導電填料所組成。高分子聚合物材料可為聚乙烯、聚丙烯、含氟聚合物或其組合之混合物或共聚物。導電填料可為碳黑、金屬粒子、金屬碳化物、金屬硼化物、金屬氮化物或其組合。需說明的是,熱敏電阻元件10可視需求調整為其他對溫度敏感的電阻元件,例如負溫度係數元件。又或者是,熱敏電阻元件10可再增設其他元件或改變材料組成以調整其對溫度變化的反應,不以此為限。
請繼續參照圖3a及圖3b,顯示圖1中第一導電層12之上視圖並例示不同的設計。圖3a中,第一導電層12具有長邊L及短邊W,且分割為第一導電區塊12a及第二導電區塊12b。長邊L之長度乘以短邊W之長度可得第一導電層12的上視面積。而第一導電區塊12a及第二導電區塊12b皆大致呈現矩形的形狀。第一導電區塊12a與第二導電區塊12b彼此相隔距離D,使得第一導電區塊12a與第二導電區塊12b電氣隔離。第一導電區塊12a與第二導電區塊12b的彼此互相面對的側邊大致上平行,意即沿短邊W的方向量測第一導電區塊12a與第二導電區塊12b之間的距離D皆可獲得相同的數值。因為距離D的設置,第一導電層12置於正溫度係數材料層11之第一表面S1時會形成如圖1所示的溝槽T。
圖3b具有相同於圖3a之長邊L、短邊W及距離D,在此不多做贊述。圖3a與圖3b差異在於,圖3b中的第一導電區塊12a及第二導電區塊12b具有不同的形狀,以致使得溝槽T大致呈現梯形的形狀。也就是說,圖3b之第一導電層12置於正溫度係數材料層11之第一表面S1時所形成的溝槽T相對於短邊W斜向延伸,而非平行於短邊W。將圖3a與圖3b進行比較,在此兩結構設計的第一導電層12之上視面積相同且距離D相等的情況下,圖3a之第一導電層12的電阻值會小於圖3b之第一導電層12的電阻值。此因圖3b中的距離D係採斜向設計,圖3b的溝槽T比圖3a的溝槽T具有更大的上視面積。換句話說,圖3b中的第一導電區塊12a及第二導電區塊12b的上視面積會相對減少。更詳細而言,可參照電阻公式R = ρ×L/A。R為電阻值,ρ係指室溫下之體積電阻率,L為厚度,而A為面積。由此公式可知,在體積電阻率及厚度為定值的情形下,電阻值與面積成反比。意即,導體截面積越大,其所能通過的電流越多,電阻值自然相對小。基此,相較於圖3b的電路保護元件,圖3a的電路保護元件可以承受更大的電流。應理解的是,第一導電區塊12a及第二導電區塊12b的形狀可視需求進行調整。舉例來說,距離D的設計(亦即溝槽T的形狀)可呈現S型、ㄑ型、C型、鋸齒型、半圓型、半橢圓型或其他可間隔第一導電區塊12a及第二導電區塊12b的形狀設計。
接著參照圖4a至圖4b。圖4a為圖1電路保護元件100之剖視圖的局部放大圖。圖4b及圖4c為圖1電路保護元件100之剖視圖的局部放大變化圖。本發明不僅調整第一導電區塊12a與第二導電區塊12b的距離D,更將介電材料層21設置於溝槽T中 。在圖4a中,溝槽T具有底面22及側壁23 ,底面22於第一表面S1延伸且垂直連接側壁23。如同前述所提,第一導電層12置於正溫度係數材料層11之第一表面S1上可形成溝槽T。故溝槽T係由第一導電區塊12a、第二導電區塊12b及正溫度係數材料層11所共同圍起的空間。溝槽T的底面22實質上與正溫度係數材料層11之第一表面S1共平面。溝槽T的側壁23實質上是由第一導電區塊12a的側壁及第二導電區塊12b的側壁所形成。並且,溝槽T的底面22垂直連接側壁23,兩者共同沿著如圖1所示的第一方向O1延伸。當介電材料層21填入溝槽T時,介電材料層21直接接觸側壁23且同樣沿著第一方向O1延伸。此外,溝槽T的底面22完全為介電材料層21所覆蓋,並使溝槽T為介電材料層21所填滿。如此,介電材料層21填入溝槽T中的所有空間並呈現與溝槽T完全相同的形狀。
繼續參照圖4a,第一導電區塊12a與第二導電區塊12b之間大致上皆呈現均等的距離D。意即,第一導電區塊12a上之側壁23平行於第二導電區塊12b上之側壁23。另外,若以第一導電層12之長邊L的長度為100%計時,距離D為長邊L長度之7%至46%。若距離D所抓的比率(以下稱為距離比率)低於7%,會使第一導電區塊12a與第二導電區塊12b間的距離過近,導致第一導電區塊12a與第二導電區塊12b間發生電擊穿的現象,即電弧效應的產生。而在距離比率低於7%的情形下,即使溝槽T中有填入介電材料層21,介電材料層21仍舊無法提供足夠的絕緣性防止電弧效應的產生。若距離比率高於46%,會造成第一導電區塊12a與第二導電區塊12b所佔面積過小,不僅在結構設計上難以對應到後續所穿設的第一導孔15a及第二導孔15b,亦使得電阻值過高,造成保護元件的可承受電流降低。舉例來說,在長邊L長度為1.1 mm而短邊W長度為 0.61 mm的情況下,距離D可為0.08 mm至0.5 mm。在一實施例中,前述距離比率可為7.27%至45.45%、9.09%至45.45%、13.64%至45.45%、18.18%至45.45%、22.73%至45.45%、31.82%至45.45%,或36.36%至45.45%。在一實施例中,前述距離比率較佳為31.81%至45.45%。在一實施例中,前述距離比率更較佳為36.36%至45.45%。在一實施例中,距離D可為0.08 mm至0.5 mm、0.1 mm至0.5 mm、0.15 mm至0.5 mm、0.2 mm至0.5 mm、0.25 mm至0.5 mm、0.3 mm至0.5 mm、0.35 mm至0.5 mm,或0.4 mm至0.5 mm。在一實施例中,距離D較佳為0.35 mm至0.5 mm。在一實施例中,距離D更佳為0.4 mm至0.5 mm。
此外,在一些情形中,介電材料層21可選擇性填入溝槽T中。也就是說,介電材料層21可填滿整個溝槽T,也可以不填滿整個溝槽T。請繼續參照下文。
圖4b中,第一導電區塊12a、第二導電區塊12b、距離D及溝槽T皆與圖4a相同,在此不多做贊述。圖4b與圖4a的差異在於,圖4b的介電材料層21並未完全填滿溝槽T的空間,並留有間隙24。在電路保護元件100中,電弧來自於第一導電區塊12a與第二導電區塊12b間的氣體(如空氣)放電現象。更具體而言,第一導電區塊12a上的側壁23與第二導電區塊12b的側壁23之間電壓差過大時,電流將從兩邊側壁23擊穿空氣而產生帶有高能的電弧,造成電路保護元件100燒毀。故在此結構中,介電材料層21主要覆蓋於引發電弧效應的重點區域,即溝槽T兩邊的側壁23。換句話說,介電材料層21完全覆蓋於溝槽T的側壁23上並沿第一方向O1延伸。而溝槽T的底面22僅部分為介電材料層21所覆蓋,並裸露出部分正溫度係數材料層11之第一表面S1於間隙24中。相較於圖4a,圖4b的設計僅將第一導電區塊12a與第二導電區塊12b的側露部分封上介電材料層21,故能減少製程中介電材料層21的使用量。
圖4c中,第一導電區塊12a、第二導電區塊12b、距離D及溝槽T皆與圖4b相同,在此不多做贊述。圖4c與圖4b的差異在於,圖4c進一步完全覆蓋溝槽T的底面22,但同時留有間隙24。如同前述所提,兩個導體(即第一導電區塊12a及第二導電區塊12b)終端之間的電壓差可能會引發電弧效應,故需在兩者間增設介電材料層21以提高絕緣性。此外,由於正溫度係數材料層11具有導電填料,在電路保護元件100未觸發(trip)的狀態下,正溫度係數材料層11亦為電的良導體。若底面22未以介電材料層21覆蓋,正溫度係數材料層11的電特性會受環境影響。又或者是,介電材料層21與底面22的密封性不佳時,電流亦可能透過介電材料層21與底面22的交界面擊穿至間隙24中。據此,在圖4c中,介電材料層21可進一步封住溝槽T的底面22,完全將正溫度係數材料層11於溝槽T中的裸露部分封住。相較於圖4b,圖4c將溝槽T的周圍完全覆蓋介電材料層21並保有間隙24,在提升絕緣性的同時亦減少製程中介電材料層21的使用量。
此外,溝槽T的寬度設計也可因應製程需求而有所調整。
請參照圖5a至圖5c,第一導電區塊12a與第二導電區塊12b之間呈現下寬上窄的溝槽T。意即,溝槽T中的第一導電區塊12a上之側壁23非平行於溝槽T中的第二導電區塊12b上之側壁23。在圖5a至圖5c中,溝槽T具有底面22及與側壁23 ,底面22於第一表面S1且非垂直連接側壁23。溝槽T由下而上漸縮,在開口處(即與第一絕緣層31交界之處)呈現第一距離D1,而在底面22呈現第二距離D2。第一距離D1及第二距離D2的數值皆落於前述圖4a所討論的範圍中,但第一距離D1需大於第二距離D2。也就是說,第一距離D1及第二距離D2的距離比率皆為7%至46%。舉例來說,若第二距離D2的距離比率設定為7%時,第一距離D1的距離比率需大於7%。如此,於圖5a至圖5c之剖視圖中,溝槽T會呈現下寬上窄的結構設計。當第一導電層12設置於正溫度係數材料層11之第一表面S1時,溝槽T會呈現較寬的開口,有利於電路保護元件100在製造過程期間將介電材料層21填入至溝槽T內。
如前所述,圖5a至5c與圖4a至4c,主要差異在於溝槽T的側壁23。圖5a至5c具有寬度漸縮(由第一距離D1至第二距離D2)的溝槽T,而圖4a至4c具有寬度均等(距離D)的溝槽T。但介電材料層21的覆蓋方式,圖5a至5c分別與圖4a至4c相同。對應於圖4a,圖5a的溝槽T被介電材料層21所完全填滿。也就是說,介電材料層21填入溝槽T中的所有空間並呈現與溝槽T完全相同的形狀。對應於圖4b,圖5b的溝槽T僅側壁23完全為介電材料層21所覆蓋,並裸露出部分底面22且留有間隙24。也就是說,介電材料層21直接接觸側壁23並沿著第一方向O1延伸,且未完全覆蓋底面22,並使溝槽T中留有間隙24。對應於圖4c,圖5c的溝槽T的側壁23及底面22完全為介電材料層21所覆蓋,但仍留有間隙24。也就是說,介電材料層21直接接觸側壁23並沿著第一方向O1延伸,且完全覆蓋底面22,並使溝槽T中留有間隙24。據此,圖5a、圖5b及圖5c的介電材料層21的覆蓋方式可分別對應圖4a、圖4b及圖4c。圖5a、圖5b及圖5c除了分別具有圖4a、圖4b及圖4c的優點外,更有利於介電材料層21的填入,故額外具有製程便利性之功效。在一實施例中,介電材料層21的材料可為環氧樹脂、聚酯樹脂、聚醯胺樹脂、酚醛樹脂、玻璃纖維或無機填料改性環氧樹脂、玻璃纖維或無機填料改性酚醛樹脂、聚胺樹脂、聚氰酸酯樹脂、馬來醯亞胺樹脂、聚烯烴樹脂、二亞苯基醚樹脂、矽高分子、壓克力樹脂、光敏樹脂、無機膠或其組合。
請回頭參照圖1,為了降低環境對電路保護元件100的影響,內電極層(如第一導電層12及第二導電層13)常會覆蓋絕緣材料,並藉由絕緣材料上穿設的導電孔連接至外部電極。前述絕緣材料即為第一絕緣層31及第二絕緣層32,可由經固化後的熱固性預浸材料(Prepreg)所組成。第一絕緣層31設置於第一導電層12上並覆蓋介電材料層21。第二絕緣層32設置於第二導電層13上。第一導電層12及介電材料層21與第一絕緣層31的交界面實質上共平面。為了與外部電極電連接,第一絕緣層31上穿設第一導孔15a及第二導孔15b。第一導孔15a及第二導孔15b可為電鍍通孔(plating through hole,PTH)或其他電導通製程所形成的導電孔。在一實施例中,第一導孔15a及第二導孔15b可為填充實心金屬的導電通孔,或是具有中空結構之金屬的導電通孔。應注意到,圖1所繪示的第一導孔15a雖為二個,但在此僅做例示之用。本發明之第一導孔15a不限於二個,亦可為單個、三個、超過三個或採用其他的設計。所謂其他的設計,例如:第一導孔15a穿設的面積可自圖1所繪示的位置向左延伸至第一絕緣層31的邊緣。第一絕緣層31的材料可與介電材料層21的材料相同或不同。在某些情況下,為了加強第一導電區塊12a與第二導電區塊12b之間的絕緣性,可選擇介電強度較大的材料來製作介電材料層21。故於一實施例中,介電材料層21的介電強度大於第一絕緣層31的介電強度。舉例而言,環氧樹脂與氧化鋁(或其他功能性氧化物)的微米或奈米顆粒混合時會形成環氧樹脂複合材料,可有效提升介電強度。在一實施例中,第一絕緣層31的材料可選用環氧樹脂,而介電材料層21可選用前述的環氧樹脂複合材料,以進一步避免電弧效應的產生。
繼續參照圖1及圖2,第一電極14a及第二電極14b可設置於第一絕緣層31上並分別透過第一導孔15a及第二導孔15b電連接第一導電區塊12a及第二導電區塊12b。在圖2中,最下方的虛線框體係用於例示第一電極14a及第二電極14b於第一絕緣層31下方的設置位置。另可注意到的是,介電材料層21沿第一方向O1延伸且介於第一電極14a與第二電極14b之間。第一方向O1實質上平行於第一電極14a及該第二電極14b。第二方向O2與第一方向O1垂直,而大致上與第一導電層12的長邊L平行(可搭配圖3a及圖3b)。據此,介電材料層21沿第一方向O1垂直於第一導電層12的長邊L進行延伸,並從第一導電層12的一側貫穿至另一側。
在圖1所例示的第一實施態樣中,熱敏電阻元件10更包含導通件16、左端部41及與左端部41相對的右端部42。左端部41具有缺口43,依序自第一導電層12、正溫度係數材料層11延伸至第二導電層13,且導通件16設置於缺口43中。更詳細而言,熱敏電阻元件10具有相對的兩端,即左端部41及右端部42,並且僅於左端部41設有缺口43。缺口43大致上位於左端部41的中央。藉由缺口43,導通件16可覆於其上並使第一導電區塊12a與第二導電層13電性連接。圖1及圖2中導通件16大致上為半圓形的導電通孔。而在一些實施例中,導通件16亦可為半橢圓形的導電通孔或全面形(full face)導通。如此,第一電極14a透過第一導孔15a連接第一導電區塊12a、導通件16及第二導電層13,形成電氣導通。第二電極14b透過第二導孔15b連接第二導電區塊12b,形成電氣導通。
此外,為更進一步降低環境(例如水、氧氣、有機溶劑、溫度或其他類似的因素)影響,電路保護元件100還包含絕緣件 33。絕緣件33對應缺口43的位置,且完全覆蓋於導通件16上。絕緣件33所用的材料可與第一絕緣層31及第二絕緣層32相同或不相同。導通件16的形狀為半圓形柱體時,其中央凹陷處可容易地填入絕緣件33。此外,第一絕緣層31及第二絕緣層32皆覆蓋至缺口43,亦有助於由下方及上方夾住絕緣件33,穩固絕緣件33的結構。更詳細而言,導通件16填入缺口43後,可與下方的第一絕緣層31及上方的第二絕緣層32共同形成一凹陷的空間,用於容設絕緣件33。此外,第一絕緣層31大致上與第一導電層12等長,故第一絕緣層31覆蓋於第一導電層12時會蓋過缺口43。由上視圖來看,缺口43具有半圓形的邊界,第一絕緣層31會沿第二方向O2延伸且至少超出缺口43之半圓形邊界的中央。蓋過缺口43的情況於第二絕緣層32亦同。利用第一絕緣層31、第二絕緣層32及絕緣件33封裝於熱敏電阻元件10的外部,可有效阻隔各種環境因子的影響。同時,在溝槽T中更調整適當的距離D並填入介電材料層21,增加絕緣性並解決關於電弧效應的問題,進一步提升電路保護元件100的耐電壓特性。此外,除了圖1的第一實施態樣外,本發明可應用於各種不同結構的電路保護元件,詳如下文。
請參照圖6,顯示本發明第二實施態樣之電路保護元件200的剖視圖及各層體的上視圖。各層體組裝起來後沿AA虛線的位置可得電路保護元件200的剖視圖。圖6中,熱敏電阻元件10、正溫度係數材料層11、第一導電層12、第一導電區塊12a、第二導電區塊12b、第二導電層13、第一電極14a、第二電極14b、第一導孔15a、第二導孔15b、介電材料層21、溝槽T、第一絕緣層31、第二絕緣層32、缺口43於層體上的位置、導通件16、材料的選擇及距離比率皆與圖1相同,在此不多做贊述。圖6與圖1的差異在於,圖6中缺口43的延伸方式不同。圖6中,缺口43進一步延伸至第一絕緣層31及第二絕緣層32的左端部41。相對應地,導通件16可進一步延伸至第一絕緣層31及第二絕緣層32的左端部41,但缺少如圖1的絕緣件33。由於導通件16服貼於缺口43進行延伸,故仍保有向內凹陷的結構。後續對電路保護元件200進行焊接時,導通件16可作為焊料的爬錫管道,有助於增進電連接的效果及加強焊接強度。
請參照圖7,顯示本發明第三實施態樣之電路保護元件300的剖視圖及各層體的上視圖。各層體組裝起來後沿AA虛線的位置可得電路保護元件300的剖視圖。圖7中,熱敏電阻元件10、正溫度係數材料層11、第一導電層12、第一導電區塊12a、第二導電區塊12b、第二導電層13、第一電極14a、第二電極14b、第一導孔15a、第二導孔15b、介電材料層21、第一絕緣層31、第二絕緣層32、缺口43的延伸方式、導通件16、溝槽T、材料的選擇及距離比率皆與圖6相同,在此不多做贊述。圖7與圖6的差異在於,圖7中缺口43位於各層體(即第一絕緣層31、第一導電層12、正溫度係數材料層11、第二導電層13、第二絕緣層32)的角落。更詳細而言,圖7中,電路保護元件300的缺口43僅設置於左端部41,且是位於左端部41的第一轉角C1上。需注意的是,缺口43不限於第一轉角C1所示的角落,也可以是相對於第一轉角C1的另一端角落。如此,電路保護元件300可視製程需求調整缺口43的位置,具有製程上的選擇自由度。
請參照圖8,顯示本發明第四實施態樣之電路保護元件400的剖視圖及各層體的上視圖。各層體組裝起來後沿AA虛線的位置可得電路保護元件400的剖視圖。圖8中,熱敏電阻元件10、正溫度係數材料層11、第一導電層12、第一導電區塊12a、第二導電區塊12b、第二導電層13、第一電極14a、第二電極14b、第一導孔15a、第二導孔15b、介電材料層21、溝槽T、第一絕緣層31、第二絕緣層32、缺口43的延伸方式、導通件16、絕緣件33、材料的選擇及距離比率皆與圖1相同,在此不多做贊述。圖8與圖1的差異在於,圖8中缺口43位於第一導電層12、正溫度係數材料層11及第二導電層13的角落。更詳細而言,圖8中,電路保護元件400的缺口43僅設置於左端部41,且是位於左端部41的第一轉角C1上。需注意的是,缺口43不限於第一轉角C1所示的角落,也可以是相對於第一轉角C1的另一端角落。如此,在缺口43處,電路保護元件400不僅可透過絕緣件33提升絕緣性,更可視製程需求調整缺口43的位置而具有製程上的選擇自由度。
請參照圖9,顯示本發明第五實施態樣之電路保護元件500的剖視圖及各層體的上視圖。各層體組裝起來後沿AA虛線的位置可得電路保護元件500的剖視圖。圖9中,熱敏電阻元件10、正溫度係數材料層11、第一導電層12、第一導電區塊12a、第二導電區塊12b、第二導電層13、第一電極14a、第二電極14b、第一導孔15a、第二導孔15b、介電材料層21、溝槽T、第一絕緣層31、第二絕緣層32、缺口的延伸方式、導通件、材料的選擇及距離比率皆與圖7相同,在此不多做贊述。圖9與圖7的差異在於,缺口的數量。圖9中,電路保護元件500於左端部41具有兩個轉折的角落,分別為第一轉角C1及第二轉角C2。第一轉角C1及第二轉角C2位於左端部41的相對兩端。第一缺口43a位於第一轉角C1,而第二缺口43b位於第二轉角C2。據此,第一導通件16a可設置於第一缺口43a,而第二導通件16b則設置於第二缺口43b。相較於圖7,圖9在左端部41具有對稱的結構設計,如第一轉角C1相對於第二轉角C2、第一缺口43a相對於第二缺口43b、第一導通件16a相對於第二導通件16b。此種對稱的結構設計可增加電路保護元件的結構強度。例如,電路保護元件500受熱時於左端部41的膨脹程度較為均勻,在高溫較不易有破裂或其他結構受損的情形。
請參照圖10,顯示本發明第六實施態樣之電路保護元件600的剖視圖及各層體的上視圖。圖10中,熱敏電阻元件10、正溫度係數材料層11、第一導電層12、第一導電區塊12a、第二導電區塊12b、第二導電層13、第一電極14a、第二電極14b、第一導孔15a、第二導孔15b、介電材料層21、溝槽T、第一絕緣層31、第二絕緣層32、第一導通件16a、第二導通件16b、材料的選擇及距離比率皆與圖7相同,在此不多做贊述。圖10與圖9的差異在於,缺口的延伸方式。圖10中,電路保護元件600的左端部41具有兩個轉折的角落,分別為第一轉角C1及第二轉角C2。第一轉角C1及第二轉角C2位於左端部41的相對兩端。第一缺口43a位於第一轉角C1,而第二缺口43b位於第二轉角C2。然而,第一缺口43a是依序自第一導電層12、正溫度係數材料層11延伸至第二導電層13,故於第一絕緣層31及第二絕緣層32未有缺口的設置。第二缺口43b的結構與第一缺口43a的結構相同。據此,第一導通件16a可設置於第一缺口43a,而第二導通件16b則設置於第二缺口43b。第一導通件16a與下方的第一絕緣層31及上方的第二絕緣層32共同定義出凹陷的空間,故有利於容設第一絕緣件33a。第二導通件16b亦與下方的第一絕緣層31及上方的第二絕緣層32共同定義出凹陷的空間,故有利於容設第二絕緣件33b。電路保護元件600不僅有對稱的缺口設計,且缺口的延伸結構更限定在熱敏電阻元件10,故可進一步封裝第一絕緣件33a及第二絕緣件33b以加強絕緣性並抵禦環境因子的影響。
為驗證本發明之實施方式,下文特舉出相關實施例並彙整於表一及表二中。
表一
實施態樣 (aspect) 組別 可耐受電壓 (V)
6 8 9 12 16 20 24 30 33 36
C1 O O O O O O O X X X
E1 O O O O O O O O O X
C2 O O O O O O X X X X
E2 O O O O O O O X X X
C3 O O O O X X X X X X
E3 O O O O O X X X X X
C4 O O O O O X X X X X
E4 O O O O O O X X X X
C5 O O O O O O X X X X
E5 O O O O O O O O O X
C6 O O O O O O O X X X
E6 O O O O O O O O O X
如表一所示,實施態樣一至六的結構可分別對應至圖1、圖6至圖10的電路保護元件。每個實施態樣中各有一組比較例及一組實施例。比較例C1-C6與實施例E1-E6僅差在電路保護元件是否具有介電材料層21。比較例C1-C6無介電材料層21,而實施例E1-E6有介電材料層21。舉例來說,實施例E1即是採用圖1中的電路保護元件100,比較例C1則是採用無介電材料層21(即溝槽T中未填入任何材料)的電路保護元件100。藉由上述的實驗設計,對各種實施態樣進行耐電壓測試,測試的電壓範圍為6V至36V。所謂耐電壓測試,即是以選定的電壓施加10秒後,關閉60秒為一個循環,如此反覆100個循環,觀察電路保護元件是否會燒毀。表一中顯示的“O”代表電路保護元件通過耐電壓測試而無燒毀,表一中的“X”代表電路保護元件未通過耐電壓測試而燒毀。
另外,本試驗是選擇尺寸型號為0402的SMD電路保護元件來進行測試。一般而言,型號0402的長度為約0.85 mm至約1.15 mm,寬度為約0.35 mm至約0.65 mm。用於本次驗證的0402長為1.1 mm而寬為0.61 mm。
在實施態樣一至六當中,所有的實施例E1至E6皆優於比較例C1至C6。例如,實施例E1至E6皆有填入介電材料層21,可承受電壓範圍為6V至33V。相對地,比較例C1至C6皆無填入介電材料層21,可承受電壓範圍為6V至24V。換句話說,只要在溝槽T當中填入介電材料層21,即可有效改善耐電壓特性。此外,實施例E1、實施例E5及實施例E6具有最佳的表現,可將耐電壓值拉升至33V。實施例E1係對應圖1的電路保護元件100,而實施例E6則對應圖10的電路保護元件600。實施例E1及實施例E6皆具有對稱設計的缺口,且在導通件外部封裝絕緣材料(絕緣件33、第一絕緣件33a及第二絕緣件33b),可有效防止高溫及其他環境因子對結構所造成的影響。實施例E5雖未於導通件(第一導通件16a及第二導通件16b)外側封裝絕緣材料,但由於其對稱的缺口設計,有效提升結構強度。
此外,為了進一步提高各實施態樣的可耐受電壓,本發明更調整溝槽T的寬度(即距離D、第一距離D1及第二距離D2),並選用表一中的實施例E1進行驗證。
表二
距離 (mm) 距離比率 (%) 可耐受電壓 (V)
6 8 9 12 16 20 24 30 33 36 48 60
0.05 4.55% X X X X X X X X X X X X
0.08 7.27% O X X X X X X X X X X X
0.10 9.09% O O X X X X X X X X X X
0.15 13.64% O O O X X X X X X X X X
0.20 18.18% O O O O X X X X X X X X
0.25 22.73% O O O O O O X X X X X X
0.30 27.27% O O O O O O O O X X X X
0.35 31.82% O O O O O O O O O X X X
0.40 36.36% O O O O O O O O O O X X
0.50 45.45% O O O O O O O O O O X X
0.60 54.55% X X X X X X X X X X X X
如上表二所示,欄位中的距離,即可對應圖3a至圖5c所示的距離D、第一距離D1及第二距離D2。距離比率,即距離D(或第一距離D1或第二距離D2)相對於長邊L的比率。舉例來說,距離為0.05 mm時,距離比率即為0.05除以1.1,為約4.55%。此外,在表一中所採用的溝槽T距離D皆為0.35 mm,表二以此數值進行下調及上調,界定出0.05 mm至0.6 mm的測試範圍。
由表二可知,當距離低於0.08 mm時,連6V的電壓都無法承受。第一導電區塊12a與第二導電區塊12b距離過近時,即使有介電材料層21作為絕緣的介質,仍舊無法提供有效的絕緣強度。再者,距離過近亦會使得溝槽T寬度過窄,難以填入介電材料層21。當距離高於0.5 mm時,相對造成第一導電區塊12a與第二導電區塊12b所佔面積過小,不僅在結構設計上難以對應到第一導孔15a及第二導孔15b,亦使得電阻值過高。
另外,以型號0402的電流保護元件100而言,溝槽T的距離D大致上都設定在0.35 mm左右。本試驗發現其上調至0.4 mm至0.5 mm時再填入介電材料層21,可有效提升耐電壓值至36V。但是,不同型號具有不同的尺寸(長邊乘以短邊),故本發明更將溝槽T的距離D以百分比的方式呈現,換算為距離比率。此等距離比率在其他型號上可獲得相同的趨勢。
更詳細而言,表一及表二係以型號0402的電路保護元件進行耐電壓驗證。實際應用上,本發明亦可應用於其他型號(例如0603、0805、1206或1210等等)亦可獲得相同的趨勢。型號0603的長度約1.4 mm至約1.8 mm,寬度約0.6 mm至約1 mm。型號0805的長度約2 mm至約2.2 mm,寬度約1.2 mm至約1.5 mm。型號1206的長度約3 mm至約3.4 mm,寬度約1.5 mm至約1.8 mm。型號1210的長度約3 mm至約3.43 mm,寬度約2.35 mm至約2.8 mm。至於距離比率的較佳範圍,前文在圖1時亦有討論並列舉,在此不多做贊述。
發明之技術內容及技術特點已揭示如上,然而本領域具有通常知識之技術人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。 因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為以下之申請專利範圍所涵蓋。
100、200、300、400、500、600:電路保護元件
10:熱敏電阻元件
11:正溫度係數材料層
12:第一導電層
12a:第一導電區塊
12b:第二導電區塊
13:第二導電層
14a:第一電極
14b:第二電極
15a:第一導孔
15b:第二導孔
16:導通件
16a:第一導通件
16b:第二導通件
21:介電材料層
22:底面
23:側壁
24:間隙
31:第一絕緣層
32:第二絕緣層
33:絕緣件
33a:第一絕緣件
33b:第二絕緣件
41:左端部
42:右端部
43:缺口
43a:第一缺口
43b:第二缺口
C1:第一轉角
C2:第二轉角
D:距離
D1:第一距離
D2:第二距離
L:長邊
O1:第一方向
O2:第二方向
S1:第一表面
S2:第二表面
T:溝槽
W:短邊
圖1顯示本發明第一實施態樣之電路保護元件的剖視圖及各層體上視圖; 圖2顯示圖1之電路保護元件的立體分解示意圖; 圖3a顯示圖1之第一導電層之一實施例; 圖3b顯示圖1之第一導電層之另一實施例; 圖4a至圖4c顯示圖1之電路保護元件的剖視圖的局部放大圖及變化圖; 圖5a至圖5c顯示圖1之電路保護元件的剖視圖的局部變化圖; 圖6顯示本發明第二實施態樣之電路保護元件的剖視圖及各層體上視圖; 圖7顯示本發明第三實施態樣之電路保護元件的剖視圖及各層體上視圖; 圖8顯示本發明第四實施態樣之電路保護元件的剖視圖及各層體上視圖; 圖9顯示本發明第五實施態樣之電路保護元件的剖視圖及各層體上視圖;以及 圖10顯示本發明第六實施態樣之電路保護元件的剖視圖及各層體上視圖。
100:電路保護元件
10:熱敏電阻元件
11:正溫度係數材料層
12:第一導電層
12a:第一導電區塊
12b:第二導電區塊
13:第二導電層
14a:第一電極
14b:第二電極
15a:第一導孔
15b:第二導孔
16:導通件
21:介電材料層
31:第一絕緣層
32:第二絕緣層
33:絕緣件
41:左端部
42:右端部
43:缺口
O1:第一方向
O2:第二方向
S1:第一表面
S2:第二表面
T:溝槽

Claims (14)

  1. 一種電路保護元件,包含:一熱敏電阻元件,具有一正溫度係數材料層、一第一導電層、一第二導電層、一第一導通件、一左端部及與該左端部相對的一右端部,其中:該正溫度係數材料層具有一第一表面及與該第一表面相對的一第二表面;該第一導電層設置於該第一表面,其中該第一導電層具有一第一導電區塊、一第二導電區塊及一溝槽,該溝槽使得該第一導電區塊與該第二導電區塊間隔一距離且電氣隔離;以及該第二導電層設置於該第二表面,其中該左端部具有一第一缺口,依序自該第一導電層、該正溫度係數材料層延伸至該第二導電層,且該第一導通件設置於該第一缺口中;一介電材料層,設置於該溝槽中;一第一絕緣層,設置於該第一導電層上並覆蓋該介電材料層;以及一第一電極及一第二電極,設置於該第一絕緣層且分別電連接該第一導電區塊及該第二導電區塊,其中:該介電材料層沿一第一方向延伸且介於該第一電極與第二電極之間,而該第一方向平行於該第一電極及該第二電極;該溝槽具有一底面及一側壁,該底面於該第一表面延伸且垂直連接該側壁;以及該介電材料層直接接觸該側壁沿著該第一方向延伸且未完全覆蓋該底面,並使該溝槽留有一間隙。
  2. 根據請求項1之電路保護元件,更包含一第一絕緣件,完全覆蓋於該第一導通件上。
  3. 根據請求項2之電路保護元件,其中該熱敏電阻元件更包含一第二導通件,而該左端部具有一第二缺口依序自該第一導電層、該正溫度係數材料層延伸至該第二導電層,且該第二導通件設置於該第二缺口中。
  4. 根據請求項3之電路保護元件,更包含一第二絕緣件,完全覆蓋於該第二導通件上。
  5. 根據請求項4之電路保護元件,其中該左端部具有一第一轉角及一第二轉角分別設置於該左端部的兩端,且該第一缺口位於該第一轉角而該第二缺口位於該第二轉角。
  6. 根據請求項5之電路保護元件,更包含一第二絕緣層,設置於該第二導電層上。
  7. 根據請求項1之電路保護元件,其中該第一導電層具有一長邊平行於該距離,以該長邊的長度為100%計時,該距離為該長邊長度之7%至46%。
  8. 根據請求項1之電路保護元件,其中該距離為0.08mm至0.5mm。
  9. 根據請求項1之電路保護元件,其中該介電材料層的介電強度大於該第一絕緣層的介電強度。
  10. 根據請求項9之電路保護元件,其中該介電材料層選自由環氧樹脂、聚酯樹脂、聚醯胺樹脂、酚醛樹脂、玻璃纖維或無機填料改性環氧樹脂、玻璃纖維或無機填料改性酚醛樹脂、聚胺樹脂、聚氰酸酯樹脂、馬來醯亞胺樹脂、聚烯烴樹脂、二亞苯基醚樹脂、矽高分子、壓克力樹脂、光敏樹脂、無機膠及其任意組合所組的群組。
  11. 根據請求項10之電路保護元件,其中該介電材料層為無機填料改性環氧樹脂,而該第一絕緣層為環氧樹脂。
  12. 一種電路保護元件,包含:一熱敏電阻元件,具有一正溫度係數材料層、一第一導電層、一第二導電層、一第一導通件、一左端部及與該左端部相對的一右端部,其中:該正溫度係數材料層具有一第一表面及與該第一表面相對的一第二表面;該第一導電層設置於該第一表面,其中該第一導電層具有一第一導電區塊、一第二導電區塊及一溝槽,該溝槽使得該第一導電區塊與該第二導電區塊間隔一距離且電氣隔離;以及該第二導電層設置於該第二表面,其中該左端部具有一第一缺口,依序自該第一導電層、該正溫度係數材料層延伸至該第二導電層,且該第一導通件設置於該第一缺口中;一介電材料層,設置於該溝槽中;一第一絕緣層,設置於該第一導電層上並覆蓋該介電材料層;以及一第一電極及一第二電極,設置於該第一絕緣層且分別電連接該第一導電區塊及該第二導電區塊,其中:該介電材料層沿一第一方向延伸且介於該第一電極與第二電極之間,而該第一方向平行於該第一電極及該第二電極;該溝槽具有一底面及一側壁,該底面於該第一表面延伸且垂直連接該側壁;以及 該介電材料層直接接觸該側壁沿著該第一方向延伸且完全覆蓋該側壁及該底面,並使該溝槽留有一間隙。
  13. 一種電路保護元件,包含:一熱敏電阻元件,具有一正溫度係數材料層、一第一導電層、一第二導電層、一第一導通件、一左端部及與該左端部相對的一右端部,其中:該正溫度係數材料層具有一第一表面及與該第一表面相對的一第二表面;該第一導電層設置於該第一表面,其中該第一導電層具有一第一導電區塊、一第二導電區塊及一溝槽,該溝槽使得該第一導電區塊與該第二導電區塊間隔一距離且電氣隔離;以及該第二導電層設置於該第二表面,其中該左端部具有一第一缺口,依序自該第一導電層、該正溫度係數材料層延伸至該第二導電層,且該第一導通件設置於該第一缺口中;一介電材料層,設置於該溝槽中;一第一絕緣層,設置於該第一導電層上並覆蓋該介電材料層;以及一第一電極及一第二電極,設置於該第一絕緣層且分別電連接該第一導電區塊及該第二導電區塊,其中:該介電材料層沿一第一方向延伸且介於該第一電極與第二電極之間,而該第一方向平行於該第一電極及該第二電極;該溝槽具有一底面及一側壁,該底面於該第一表面延伸且非垂直連接該側壁;以及 該介電材料層直接接觸該側壁沿著該第一方向延伸且未完全覆蓋該底面,並使該溝槽留有一間隙。
  14. 一種電路保護元件,包含:一熱敏電阻元件,具有一正溫度係數材料層、一第一導電層、一第二導電層、一第一導通件、一左端部及與該左端部相對的一右端部,其中:該正溫度係數材料層具有一第一表面及與該第一表面相對的一第二表面;該第一導電層設置於該第一表面,其中該第一導電層具有一第一導電區塊、一第二導電區塊及一溝槽,該溝槽使得該第一導電區塊與該第二導電區塊間隔一距離且電氣隔離;以及該第二導電層設置於該第二表面,其中該左端部具有一第一缺口,依序自該第一導電層、該正溫度係數材料層延伸至該第二導電層,且該第一導通件設置於該第一缺口中;一介電材料層,設置於該溝槽中;一第一絕緣層,設置於該第一導電層上並覆蓋該介電材料層;以及一第一電極及一第二電極,設置於該第一絕緣層且分別電連接該第一導電區塊及該第二導電區塊,其中:該介電材料層沿一第一方向延伸且介於該第一電極與第二電極之間,而該第一方向平行於該第一電極及該第二電極;該溝槽具有一底面及一側壁,該底面於該第一表面延伸且非垂直連接該側壁;以及 該介電材料層直接接觸該側壁沿著該第一方向延伸且完全覆蓋該側壁及該底面,並使該溝槽留有一間隙。
TW111120994A 2022-06-07 2022-06-07 電路保護元件 TWI819643B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW111120994A TWI819643B (zh) 2022-06-07 2022-06-07 電路保護元件
CN202210819944.6A CN117238596A (zh) 2022-06-07 2022-07-12 电路保护元件
US18/079,652 US20230396060A1 (en) 2022-06-07 2022-12-12 Circuit protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111120994A TWI819643B (zh) 2022-06-07 2022-06-07 電路保護元件

Publications (2)

Publication Number Publication Date
TWI819643B true TWI819643B (zh) 2023-10-21
TW202349815A TW202349815A (zh) 2023-12-16

Family

ID=88976226

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111120994A TWI819643B (zh) 2022-06-07 2022-06-07 電路保護元件

Country Status (3)

Country Link
US (1) US20230396060A1 (zh)
CN (1) CN117238596A (zh)
TW (1) TWI819643B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227368A1 (en) * 2002-06-06 2003-12-11 Protectronics Technology Corporation Surface mountable laminated thermistor device
CN1625788A (zh) * 2001-12-12 2005-06-08 泰科电子有限公司 电子器件及其制造方法
TW202032584A (zh) * 2019-02-22 2020-09-01 聚鼎科技股份有限公司 過電流保護元件
CN111640548A (zh) * 2020-06-17 2020-09-08 上海维安电子有限公司 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625788A (zh) * 2001-12-12 2005-06-08 泰科电子有限公司 电子器件及其制造方法
US20030227368A1 (en) * 2002-06-06 2003-12-11 Protectronics Technology Corporation Surface mountable laminated thermistor device
TW202032584A (zh) * 2019-02-22 2020-09-01 聚鼎科技股份有限公司 過電流保護元件
CN111640548A (zh) * 2020-06-17 2020-09-08 上海维安电子有限公司 一种小型封装尺寸的表面贴装高分子ptc过电流保护元件

Also Published As

Publication number Publication date
US20230396060A1 (en) 2023-12-07
TW202349815A (zh) 2023-12-16
CN117238596A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
TWI469465B (zh) 一種可表面安裝之電路保護裝置及其製造方法和具有可表面安裝之電路保護裝置之電路
US7031141B2 (en) Solid electrolytic capacitor and electric circuit
KR101368901B1 (ko) 퓨즈 소자
US8883331B2 (en) Protective circuit module and rechargeable battery including the same
CN101765891B (zh) 电阻器
TWI485739B (zh) Protection elements and non-retroactive protection devices
GB2557695A (en) Mounting structure for shunt resistor and method for manufacturing mounting structure for shunt resistor
US20030001716A1 (en) Fusible link
JP2002093546A (ja) 表面実装型静電気放電装置及びその製造方法
TWI819643B (zh) 電路保護元件
US20020125982A1 (en) Surface mount electrical device with multiple ptc elements
CN1755865B (zh) 对称结构的过压过流保护器
TWI486988B (zh) 過電流保護元件及其電路板結構
WO2009089799A1 (fr) Nouvelle résistance tensio-dépendante avec structure de protection surchauffée
JP5349758B2 (ja) 金属板抵抗器
TWI581274B (zh) 表面黏著型過電流保護元件
KR100505475B1 (ko) 전극이 동일한 면에 위치한 피티씨 서미스터 및 그 제조방법
JP5525354B2 (ja) 温度ヒューズ
TW498584B (en) Surge absorber and manufacturing method thereof
TW202114118A (zh) 反熔絲結構
CN215868840U (zh) 表面贴装低电阻聚合物正温度系数元器件
CN106898581B (zh) 一种功率器件
JP2002252152A (ja) 電子部品
US20240071656A1 (en) Circuit protection device
TW202345483A (zh) 過電流保護元件