WO2021253249A1 - 电器设备的电机控制器、电器设备的电机装置和电器设备 - Google Patents

电器设备的电机控制器、电器设备的电机装置和电器设备 Download PDF

Info

Publication number
WO2021253249A1
WO2021253249A1 PCT/CN2020/096436 CN2020096436W WO2021253249A1 WO 2021253249 A1 WO2021253249 A1 WO 2021253249A1 CN 2020096436 W CN2020096436 W CN 2020096436W WO 2021253249 A1 WO2021253249 A1 WO 2021253249A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
motor
drive motor
electrical equipment
switching element
Prior art date
Application number
PCT/CN2020/096436
Other languages
English (en)
French (fr)
Inventor
赵小安
葛森
龚黎明
秦向南
Original Assignee
美的威灵电机技术(上海)有限公司
淮安威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的威灵电机技术(上海)有限公司, 淮安威灵电机制造有限公司 filed Critical 美的威灵电机技术(上海)有限公司
Priority to PCT/CN2020/096436 priority Critical patent/WO2021253249A1/zh
Priority to CN202080003523.5A priority patent/CN114097174B/zh
Priority to CN202110285920.2A priority patent/CN113054808B/zh
Publication of WO2021253249A1 publication Critical patent/WO2021253249A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another

Definitions

  • This application relates to the technical field of electrical equipment, and in particular to a motor controller of electrical equipment, a motor device of electrical equipment, and electrical equipment.
  • electrical equipment such as washing machines includes structures such as motor devices and reactors.
  • the motor device is installed in a position to drive the roller to rotate.
  • Reactor is usually installed in other places and connected to the circuit of electrical equipment through wires. Since the motor device and the reactor need to be installed separately, they occupy more space and cause the structure of electrical equipment to be complicated; and more components are installed, which makes the production line of electrical equipment less efficient and requires more processes, resulting in higher assembly costs. .
  • an object of the present application is to provide a motor controller for electrical equipment.
  • Another object of the present application is to provide another motor controller for electrical equipment.
  • Another object of the present application is to provide a motor device including the above-mentioned motor controller.
  • Another object of the present application is to provide an electrical appliance including the above-mentioned motor device.
  • the technical solution of the first aspect of the present application provides a motor controller for electrical equipment.
  • the electrical equipment includes a first drive motor and a second drive motor.
  • the operating power of the first drive motor is greater than that of the second drive motor.
  • the operating power of the driving motor wherein the motor controller includes: a first control circuit electrically connected to the first driving motor and the second driving motor, for controlling the first driving motor and the second driving motor Two driving motors are running; and a second control circuit, the second control circuit is electrically connected with the winding of the second drive motor, and is used to control the winding of the second drive motor to act as a reactor.
  • the motor controller of electrical equipment provided by the technical solution of the first aspect of the present application includes a first control circuit and a second control circuit, and the first control circuit is electrically connected to the first driving motor and the second driving motor , So that the motor controller of the first drive motor has three control functions, one of which controls the operation of the first drive motor, the other controls the operation of the second drive motor, and the other function controls the winding of the second drive motor to act as a reactor .
  • the second control circuit can be used directly to make the winding of the second drive motor act as a reactor, thereby eliminating the need for additional reactors, simplifying the structure of electrical equipment and saving the entire machine.
  • the internal use of space can improve the integration of electrical equipment, reduce installation procedures, improve production efficiency, and effectively reduce the system material cost of electrical equipment.
  • this solution integrates the control circuit of the first drive motor and the control circuit of the second drive motor together, and there is no need to provide an additional controller for the second drive motor, thereby improving the integration of electrical equipment; it is also beneficial to the first
  • the driving motor and the second driving motor share certain hardware structures (such as a shared rectifier circuit), which can reduce the number of components of the electrical equipment and simplify the circuit layout of the electrical equipment.
  • the motor controller also adds a second control circuit, so that the winding of the second drive motor can act as a reactor, thereby eliminating the need for additional reactors for electrical equipment, further reducing the number of components and simplifying the structure of the whole machine.
  • the internal space of the whole machine is saved, which not only helps to reduce the cost, but also helps to simplify the installation process and improve the production efficiency.
  • the motor controller includes a power circuit, the power circuit is used to connect to an external power source; the second control circuit is used to enable the winding of the second drive motor to selectively connect to the power circuit.
  • the first driving motor When the electrical equipment is running the main function, the first driving motor is running. At this time, the power of the motor controller is larger, and generally requires an incoming line reactor; and when the electrical equipment is running the secondary function, the second driving motor is running, at this time the controller The power is small, and generally no line reactor is needed. Therefore, by adding a second control circuit to the motor controller, and using the second control circuit to selectively connect the windings of the second drive motor to the power supply circuit, the windings of the second drive motor can be used to achieve the equivalent of the incoming line reactor.
  • the first control circuit is electrically connected to the power supply circuit;
  • the second control circuit is electrically connected to the power supply circuit,
  • the second control circuit includes a component switching circuit, and the component switching circuit includes a connection line and The switching element on the connecting line, the connecting line connects the winding of the second drive motor to the power circuit in series, and the switching element is used to control the on-off of the connecting line according to the state of the electrical equipment, so that the second The windings of the driving motor are selectively connected in series to the power circuit.
  • the motor controller is connected to the external power supply through the power circuit to ensure the normal power supply of the motor controller.
  • the power supply circuit, the first control circuit, and the second control circuit are integrated on the motor controller, so the first control circuit and the second control circuit are closer to the power supply circuit, which facilitates wiring design, simplifies the circuit structure, and improves the motor controller The degree of integration of the circuit board.
  • the power supply circuit supplies power to the first control circuit to ensure that the first control circuit can control the normal operation of the first drive motor and the second drive motor.
  • the second control circuit realizes the control function through the component switching circuit, and specifically controls the winding of the second driving motor to be selectively connected in series to the power circuit by controlling the switching element to close or open.
  • the first control circuit includes: a first inverter circuit, the first inverter circuit is electrically connected to the first drive motor; and a second inverter circuit, the second inverter circuit is connected to the first drive motor The two driving motors are electrically connected, and the second inverter circuit is connected in parallel with the first inverter circuit.
  • the first control circuit includes a first inverter circuit and a second inverter circuit, and the first inverter circuit and the second inverter circuit are connected in parallel, which facilitates the sharing of the rectifier circuit, and there is no need to provide an additional rectifier circuit for the second drive motor.
  • the integration of the motor controller is improved, and the product cost is reduced.
  • the first inverter circuit can adjust the voltage to a voltage suitable for the operation of the first drive motor
  • the second inverter circuit can adjust the voltage to a voltage suitable for the operation of the second drive motor, thereby ensuring the operation of the first drive motor and the second drive motor. normal operation.
  • the first control circuit may also include other circuit structures for controlling the operation of the first driving motor and the second driving motor.
  • the power supply circuit includes: a main rectifier circuit for connecting the external power supply; and a filter circuit connected to the main rectifier circuit and the first control circuit; wherein the main rectifier circuit and the filter circuit A DC bus is connected between the circuits, and the component switching circuit is connected to the DC bus so that the winding of the second drive motor is connected in series to the DC bus.
  • This solution can connect the windings of the second drive motor in series to the rectified DC bus of the rectifier circuit, so that the windings of the second drive motor can also be connected in series to the rectified DC bus, so that the windings of the second drive motor are connected to the AC power supply in series In the incoming line, so that the winding of the second drive motor acts as an incoming line reactor.
  • it is convenient for technicians to make reasonable design according to the specific shape, size, layout of the circuit board and other structures of electrical equipment to optimize the structure and performance of the circuit board.
  • the power supply circuit includes a rectifier main circuit and a filter circuit.
  • the main rectifier circuit can convert AC power into DC power, so that AC power can be used to power the motor controller, which is convenient for electrical equipment to work with common municipal AC power and improves the universality of electrical equipment.
  • the filter circuit filters out ripples in the rectified output voltage, so as to ensure that the voltage supplied to the first control circuit is more stable, and it is convenient for the first control circuit to provide the required electric energy according to the operation requirements of the first drive motor and the second drive motor to meet the requirements of the first drive motor and the second drive motor. The operation requirements of the first drive motor and the second drive motor.
  • the DC bus is located between the main rectifier circuit and the filter circuit, so the component switching circuit can be connected between the main rectifier circuit and the filter circuit to prevent the winding of the second drive motor from being connected to the filter circuit and the subsequent first control circuit. Operation affects.
  • the DC bus includes a DC positive bus; the switching element is connected to the DC positive bus, and is used to control the DC positive bus to conduct with the winding of the second drive motor or directly conduct with the filter circuit; Or the DC bus includes a DC negative bus; the switching element is connected to the DC negative bus and used to control the DC negative bus to conduct with the winding of the second drive motor or directly conduct with the filter circuit.
  • the second inverter circuit and the first inverter circuit share the rectifier circuit, and there is no need to additionally provide a rectifier circuit for the second drive motor, thereby improving the integration level of the motor controller and reducing the product cost.
  • a switching element and a connecting line are specifically used to realize the selective series connection of the windings of the second driving motor into the power supply circuit, which is beneficial to reduce the cost.
  • the component switching circuit can be connected to the DC positive bus.
  • the switching element controls the DC positive bus to conduct with the windings of the second drive motor, and then rectifies the middle of the main circuit, the DC positive bus, the connecting line, and the windings of the second drive motor.
  • the characteristic point, the winding of the second drive motor, and the freewheeling diode of the upper tube of the H bridge of the second inverter circuit are turned on in sequence, and then connected to the first inverter circuit, that is, the winding of the second drive motor is connected DC positive bus.
  • the switching element controls the direct DC bus to directly connect with the filter circuit, then the winding of the second drive motor is disconnected from the power circuit, and the winding of the second drive motor switches back to the second In the normal circuit of the driving motor, the normal operation of the second driving motor and the components driven by it is ensured.
  • the component switching circuit can also be connected to the negative DC bus.
  • the switching element controls the DC negative bus and the winding of the second drive motor to conduct, then the filter circuit, the down tube freewheeling diode of the H bridge on the second inverter circuit, The windings of the second drive motor, the neutral point of the windings of the second drive motor, the connection line, and the main rectifier circuit are turned on sequentially, that is, the winding of the second drive motor is connected to the DC negative bus.
  • the switching element controls the direct connection between the negative DC bus and the filter circuit, then the winding of the second drive motor is disconnected from the power circuit, and the winding of the second drive motor switches back to the second In the normal circuit of the driving motor, the normal operation of the second driving motor and the components driven by it is ensured.
  • the component switching circuit is specifically used to: when the electrical equipment is in a state corresponding to the operation of the first driving motor, the switching element controls the connecting line to be in a conducting state, so that the second driving The windings of the motor are connected in series to the power circuit; when the electrical equipment is in a state corresponding to the operation of the second drive motor, the switching element controls the connection line to be in a disconnected state, so that the windings of the second drive motor are connected to the power supply.
  • the circuit is broken.
  • the controller power is low and no line reactor is required, while the electrical equipment runs the function corresponding to the first drive motor
  • the controller power is high, the incoming line reactor is needed. Therefore, when the entire electrical equipment is in the state corresponding to the operation of the first drive motor, that is, when the second drive motor does not need to run, the switching element controls the connection line to be in a conductive state, and the windings of the second drive motor can be connected to the power supply in series.
  • the circuit functions as a reactor.
  • the switching element controls the connection line to be in a disconnected state, and the winding of the second drive motor can be switched back to the normal circuit , To ensure the normal operation of the second drive motor and the components driven by it.
  • the technical solution of the second aspect of the present application provides a motor controller for electrical equipment, the electrical equipment includes a first drive motor and a second drive motor, the operating power of the first drive motor is greater than the operating power of the second drive motor ,
  • the motor controller includes: a first control circuit electrically connected with the first drive motor for controlling the operation of the first drive motor; and a second control circuit, the second control circuit and the first drive motor The windings of the two drive motors are electrically connected, and the windings used to control the second drive motor act as reactors.
  • the motor controller of electrical equipment provided by the technical solution of the second aspect of the present application includes a first control circuit and a second control circuit, so that the motor controller of the first drive motor has two control functions, one of which controls the first drive When the motor is running, another control function controls the winding of the second drive motor to act as a reactor.
  • the second control circuit can be used directly to make the winding of the second drive motor act as a reactor, thereby eliminating the need for additional reactors, simplifying the structure of electrical equipment and saving the entire machine.
  • the internal use of space can improve the integration of electrical equipment, reduce installation procedures, improve production efficiency, and effectively reduce the system material cost of electrical equipment.
  • the motor controller in the above technical solution provided by this application may also have the following additional technical features:
  • the circuit board includes a power circuit, the power circuit is used to connect an external power source; the second control circuit is used to enable the winding of the second drive motor to selectively connect to the power circuit.
  • the first driving motor When the electrical equipment is running the main function, the first driving motor is running. At this time, the power of the motor controller is larger, and generally requires an incoming line reactor; and when the electrical equipment is running the secondary function, the second driving motor is running, at this time the controller The power is small, and generally no line reactor is needed. Therefore, add a second control circuit to the motor controller of the first drive motor, and use the second control circuit to selectively connect the windings of the second drive motor to the power circuit, which can be equivalently realized by using the windings of the second drive motor The function of the incoming line reactor.
  • This is equivalent to integrating the function of the incoming line reactor into the motor controller of the first drive motor, thereby eliminating the need for an additional incoming line reactor, which can effectively improve the integration of electrical equipment, increase production efficiency, and reduce materials Cost, improve the utilization rate of the internal space of electrical equipment, and bring convenience for optimizing the internal wiring design and structural design of electrical equipment.
  • the first control circuit is electrically connected to the power supply circuit;
  • the second control circuit is electrically connected to the power supply circuit,
  • the second control circuit includes a component switching circuit, and the component switching circuit includes an electrical connection portion and a device.
  • a switching component on the electrical connection part, the electrical connection part connects the winding of the second drive motor in series to the power circuit, and the switching component is used to control the on-off of the electrical connection part according to the state of the electrical equipment to The winding of the second driving motor is selectively connected in series to the power circuit.
  • the motor controller is connected to the external power supply through the power circuit to ensure the normal power supply of the motor controller.
  • the power supply circuit, the first control circuit and the second control circuit are integrated on the motor controller, so the first control circuit, the second control circuit and the power supply circuit are relatively close, which facilitates wiring design, simplifies the circuit structure, and improves the circuit board Degree of integration.
  • the power supply circuit supplies power to the first control circuit to ensure that the first control circuit can control the normal operation of the first drive motor.
  • the second control circuit realizes the control function through the component switching circuit, and specifically controls the winding of the second driving motor to be selectively connected to the power circuit in series by controlling the switching component to close or open.
  • the winding of the second drive motor is connected in series to the power circuit through the electrical connection part; when the switching component disconnects the electrical connection part, the winding of the second drive motor is disconnected from the power circuit.
  • the scheme is cleverly conceived, has low cost, and is easy to promote.
  • the component switching circuit is specifically used for: when the electrical equipment is in a state corresponding to the operation of the first driving motor, the switching component controls the electrical connection part to be in a conductive state, so that the second driving motor When the electrical equipment is in a state corresponding to the operation of the second drive motor, the switching component controls the electrical connection part to be in a disconnected state, so that the winding of the second drive motor is connected to the power supply circuit in series. The circuit is broken.
  • the controller power is low and no line reactor is needed, while the electrical equipment runs the first drive
  • the high power of the controller requires a line reactor. Therefore, when the entire electrical equipment is in the state corresponding to the operation of the first drive motor, that is, when the second drive motor does not need to run, the switching component controls the electrical connection part to be in a conductive state, and the windings of the second drive motor can be connected in series.
  • the power circuit functions as a reactor.
  • the switching component controls the electrical connection part to be in a disconnected state, and the winding of the second drive motor can be switched back to the normal state.
  • the normal operation of the second driving motor and the components driven by it is ensured.
  • the power circuit includes: an AC power access circuit, the AC power access circuit includes an AC power positive terminal and an AC power negative terminal; and a rectifier circuit, the rectifier circuit connects the AC power access circuit and the AC power First control circuit.
  • the power circuit includes an AC power access circuit and a rectifier circuit.
  • the positive terminal of the AC power source of the AC power access circuit is connected to the positive terminal of the AC power source, and the negative terminal of the AC power source is connected to the negative terminal of the AC power source, so that the AC power can be used to power the motor controller, which is convenient for electrical equipment to work with common municipal AC power sources.
  • the rectifier circuit can convert alternating current into direct current, so that the first control circuit can provide the required electrical energy according to the operating requirements of the first drive motor, and meet the operating requirements of the first drive motor.
  • the component switching circuit is connected between the positive terminal of the AC power source and the rectifier circuit, so that the winding of the second drive motor is connected in series between the positive terminal of the AC power source and the rectifier circuit.
  • the winding of the second drive motor can be directly connected to the AC power input line, so that the winding of the second drive motor can function as an input line reactor.
  • This scheme has a simple structure and is convenient for wiring design.
  • the electrical connection portion includes a first connection line and a second connection line
  • the switching assembly includes: a first switching element connected in series between the positive terminal of the AC power source and the rectifier circuit for controlling the AC
  • the positive terminal of the power supply is connected to the rectifier circuit, and the two ends of the first switching element are respectively connected to one end of the first connection line and one end of the second connection line;
  • the second switching element is connected to the first The other end of the connection line is used to control the one-phase winding of the second drive motor to be connected to the first connection line or to the second inverter circuit of the second drive motor;
  • the third switching element is connected to The other end of the second connection line is used to control the other phase winding of the second drive motor to be connected to the second connection line or to be connected to the second inverter circuit of the second drive motor.
  • This solution specifically uses three switching elements and two connection lines to realize the selective series connection of the windings of the second driving motor into the power supply circuit. Specifically, when the whole machine is in a state corresponding to the operation of the first drive motor, the first switching element disconnects the direct communication between the positive terminal of the AC power supply and the rectifier circuit, and the second switching element controls the one-phase winding of the second drive motor and The first connection line is turned on, and the third switching element controls the other phase winding of the second drive motor to be connected to the second connection line, then the positive terminal of the AC power supply, the first connection line, the one-phase winding of the second drive motor, and the first The winding of the other phase of the second drive motor and the second connection line are sequentially turned on, and then connected to the rectifier circuit, that is, the winding of the second drive motor is connected in series between the positive terminal of the AC power source and the rectifier circuit.
  • the first switching element controls the direct communication between the positive terminal of the AC power supply and the rectifier circuit
  • the second switching element controls the one-phase winding of the second drive motor and the second drive
  • the second inverter circuit of the motor is turned on
  • the third switching element controls the other phase winding of the second drive motor to conduct with the second inverter circuit of the second drive motor, and the winding of the second drive motor is disconnected from the power circuit.
  • the winding of the second drive motor is switched back to the normal circuit of the second drive motor to ensure the normal operation of the second drive motor and the components driven by it.
  • the component switching circuit is connected to the DC bus rectified by the rectifier circuit, so that the winding of the second drive motor is connected in series to the DC bus.
  • This solution can connect the windings of the second drive motor in series to the rectified DC bus of the rectifier circuit, so that the windings of the second drive motor can also be connected in series to the rectified DC bus, and the windings of the second drive motor are connected to AC in series.
  • the power supply enters the line, so that the winding of the second drive motor acts as an incoming line reactor.
  • the rectifier circuit includes: a rectifier main circuit connected to the AC power access circuit; and a filter circuit connected to the rectifier main circuit and the first control circuit, and the DC bus Connected between the main rectifier circuit and the filter circuit.
  • the rectifier circuit includes a rectifier main circuit and a filter circuit.
  • the rectifier main circuit converts alternating current into direct current.
  • the filter circuit filters out ripples in the rectified output voltage, thereby ensuring that the voltage supplied to the first control circuit is more stable.
  • the DC bus is located between the rectifier circuit and the filter circuit, and the component switching circuit can be connected between the rectifier main circuit and the filter circuit to prevent the operation of the filter circuit and the subsequent first control circuit after the winding of the second drive motor is connected in series. Make an impact.
  • the DC bus includes a DC positive bus; wherein, the component switching circuit is connected to the DC positive bus, so that the winding of the second drive motor is connected to the DC positive bus in series.
  • This solution directly connects the component switching circuit to the DC positive bus, so that the windings of the second drive motor can also be connected in series to the rectified DC positive bus, so as to realize the equivalent of the windings of the second drive motor to realize the function of the wire-in electronic controller .
  • the electrical connection part includes a third connection line and a fourth connection line
  • the switching assembly includes: a fourth switching element connected to the DC positive bus for controlling the connection between the DC positive bus and the filter circuit. And the two ends of the fourth switching element are respectively connected to one end of the third connection line and one end of the fourth connection line; the fifth switching element is connected to the other end of the third connection line for Control the one-phase winding of the second drive motor to be conducted with the third connection line or conduct with the second inverter circuit of the second drive motor; and a sixth switching element connected to the other end of the fourth connection line , Used to control the other phase winding of the second drive motor to be connected to the fourth connection line or to be connected to the second inverter circuit of the second drive motor.
  • This solution specifically uses three switching elements and two connection lines to realize the selective series connection of the windings of the second driving motor into the power supply circuit. Specifically, when the whole machine is in a state corresponding to the operation of the first drive motor, the fourth switching element disconnects the direct communication between the DC positive bus and the filter circuit, and the fifth switching element controls the one-phase winding and the first drive motor of the second drive motor.
  • connection lines are turned on, and the sixth switching element controls the other phase winding of the second drive motor to be connected to the fourth connection line, then the positive terminal of the AC power supply, the rectifier main circuit, the DC positive bus, the third connection line, and the second drive
  • the one-phase winding of the motor, the other-phase winding of the second drive motor, and the fourth connection line are turned on in sequence, and then the filter circuit is connected, that is, the winding of the second drive motor is connected to the DC positive bus.
  • the fourth switching element When the whole machine is in a state corresponding to the operation of the second drive motor, the fourth switching element conducts direct communication between the positive DC bus and the filter circuit, and the fifth switching element controls the one-phase winding of the second drive motor and the second drive motor
  • the second inverter circuit of the second drive motor is turned on, and the sixth switching element controls the other phase winding of the second drive motor to conduct the second inverter circuit of the second drive motor, and the winding of the second drive motor is disconnected from the power circuit ,
  • the winding of the second drive motor is switched back to the normal circuit of the second drive motor to ensure the normal operation of the second drive motor and the components driven by it.
  • the motor controller further includes a second inverter circuit electrically connected to the winding of the second drive motor;
  • the first control circuit includes a first inverter circuit, and the second inverter circuit is electrically connected to the winding of the second drive motor.
  • the inverter circuit is connected in parallel with the first inverter circuit;
  • the rectifier circuit is also connected with the second inverter circuit;
  • the switching assembly includes a seventh switching element, and the seventh switching element is connected to the DC positive bus for controlling the The DC positive bus is connected to the winding of the second driving motor or directly connected to the filter circuit.
  • the second inverter circuit and the first inverter circuit share the rectifier circuit, and there is no need to provide an additional rectifier circuit for the second drive motor, thereby improving the integration level of the motor controller and reducing the product cost.
  • a switching element and a connecting line are specifically used to realize the selective series connection of the windings of the second driving motor into the power supply circuit, which is beneficial to reduce the cost.
  • the seventh switching element controls the DC positive bus to conduct with the windings of the second drive motor, and the positive terminal of the AC power supply, the rectifier main circuit, the DC positive bus, and the connection
  • the circuit, the neutral point of the winding of the second drive motor, the winding of the second drive motor, and the freewheeling diode of the upper tube of the H bridge of the second inverter circuit are turned on in sequence, and then connected to the first inverter circuit, that is: In order to connect the windings of the second drive motor to the DC positive bus.
  • the seventh switching element controls the direct DC bus to be directly connected to the filter circuit, then the winding of the second drive motor is disconnected from the power circuit, and the winding of the second drive motor is switched back In the normal circuit of the second driving motor, the normal operation of the second driving motor and the components driven by it is ensured.
  • the DC bus includes a DC negative bus; wherein, the component switching circuit is connected to the DC negative bus, so that the winding of the second drive motor is connected to the DC negative bus in series.
  • This solution directly connects the component switching circuit to the DC negative bus, so that the windings of the second drive motor can also be connected in series to the rectified DC negative bus. Since the DC negative bus and the DC positive bus belong to the same loop, the second The winding of the drive motor is equivalent to realize the function of the incoming line electronic controller.
  • the electrical connection portion includes a fifth connection line and a sixth connection line
  • the switching assembly includes: an eighth switching element connected to the DC negative bus for controlling the connection between the DC negative bus and the filter circuit
  • the eighth switching element is connected to one end of the fifth connection line and one end of the sixth connection line.
  • the ninth switching element is connected to the other end of the fifth connection line for Controlling the one-phase winding of the second drive motor to be conducted with the fifth connection line or conducted with the second inverter circuit of the second drive motor; and a tenth switching element connected to the other end of the sixth connection line , Used to control the other phase winding of the second drive motor to be connected to the sixth connection line or to be connected to the second inverter circuit of the second drive motor.
  • This solution specifically uses three switching elements and two connection lines to realize the selective series connection of the windings of the second driving motor into the power supply circuit. Specifically, when the whole machine is in a state corresponding to the operation of the first drive motor, the eighth switching element disconnects the direct communication between the negative DC bus and the filter circuit, and the ninth switching element controls the one-phase winding and the first drive motor of the second drive motor.
  • the fifth connection line is turned on, and the tenth switching element controls the other phase winding of the second drive motor to be connected to the sixth connection line, then the filter circuit, the fifth connection line, the one-phase winding of the second drive motor, and the second drive motor
  • the other phase winding, the sixth connection line, the rectifier main circuit, and the negative terminal of the AC power supply are turned on sequentially, that is, the winding of the second drive motor is connected to the DC negative bus.
  • the eighth switching element When the whole machine is in a state corresponding to the operation of the second drive motor, the eighth switching element conducts direct communication between the negative DC bus and the filter circuit, and the ninth switching element controls the one-phase winding of the second drive motor and the second drive motor
  • the second inverter circuit of the second drive motor is turned on, and the tenth switching element controls the other phase winding of the second drive motor to conduct the second inverter circuit of the second drive motor, and the winding of the second drive motor is disconnected from the power circuit ,
  • the winding of the second drive motor is switched back to the normal circuit of the second drive motor to ensure the normal operation of the second drive motor and the components driven by it.
  • the motor controller further includes a second inverter circuit electrically connected to the winding of the second drive motor;
  • the first control circuit includes a first inverter circuit, and the second inverter circuit is electrically connected to the winding of the second drive motor.
  • the inverter circuit is connected in parallel with the first inverter circuit;
  • the rectifier circuit is also connected with the second inverter circuit;
  • the switching assembly includes an eleventh switching element, and the eleventh switching element is connected to the DC negative bus for The direct current negative bus is controlled to be conducted with the winding of the second driving motor or directly conducted with the filter circuit.
  • the second inverter circuit and the first inverter circuit share the rectifier circuit, and there is no need to provide an additional rectifier circuit for the second drive motor, thereby improving the integration level of the motor controller and reducing the product cost.
  • a switching element and a connecting line are specifically used to realize the selective series connection of the windings of the second driving motor into the power supply circuit, which is beneficial to reduce the cost.
  • the eleventh switching element controls the DC negative bus and the windings of the second drive motor to conduct, and the filter circuit and the H bridge on the second inverter circuit
  • the freewheeling diode of the down tube, the winding of the second drive motor, the neutral point of the winding of the second drive motor, the connection line, the main rectifier circuit, and the negative terminal of the AC power supply are turned on sequentially, that is: the realization of the second drive motor
  • the winding is connected to the DC negative bus.
  • the eleventh switching element controls the direct DC negative bus to be directly connected to the filter circuit, and the winding of the second drive motor is disconnected from the power circuit, and the winding of the second drive motor is switched off. Return to the normal circuit of the second drive motor to ensure the normal operation of the second drive motor and the components driven by it.
  • the switching assembly includes at least one switching element, and the type of the switching element includes at least one of a switching element and a relay.
  • the switching component mainly realizes the on-off between the power circuit, the electrical connection part, and the winding of the second drive motor by opening and closing. Therefore, common switching elements, relays, etc. can all meet this requirement.
  • the technical solution of the third aspect of the present application provides a motor device of electrical equipment, including: the motor controller of the electrical device as in any one of the technical solutions of the first aspect and the technical solution of the second aspect; and a first drive motor,
  • the first driving motor is electrically connected with the first control circuit of the motor controller.
  • the motor device of the electrical equipment provided by the technical solution of the third aspect of the present application includes the motor controller of the electrical equipment of any one of the technical solutions of the first aspect and the technical solution of the second aspect, and therefore has any of the above technical solutions. All the beneficial effects of, I will not repeat them here.
  • the first driving motor includes a housing, the housing includes a back end cover, and the motor controller is fixed on the back end cover.
  • Fixing the motor controller on the rear cover of the first drive motor not only facilitates the wiring of the circuit board and the first drive motor, but also facilitates the protection of the motor controller, preventing the motor controller from friction and other conditions that will control the motor The device causes interference.
  • the technical solution of the fourth aspect of the present application provides an electrical device, including: the motor device of the electrical device according to any one of the technical solutions of the third aspect; and a second drive motor, the winding of the second drive motor and the motor
  • the second control circuit of the device is electrically connected.
  • the electrical equipment provided by the technical solution of the fourth aspect of the present application includes the motor device of any one of the technical solutions of the third aspect, and therefore has all the beneficial effects of any of the above technical solutions, and will not be repeated here.
  • the electrical equipment includes a main control board, and the main control board is electrically connected to the power circuit of the motor device.
  • This solution uses the main control board of the electrical equipment to supply power to the motor controller, that is, the main control board acts as the external power supply of the motor controller, and there is no need to configure an additional power supply for the motor controller, which is beneficial to simplify the wiring structure of the electrical equipment.
  • the main control board communicates with the motor controller of the motor device through a communication device, and sends instructions to the motor controller through the communication device, and receives information fed back from the motor controller.
  • This solution uses the main control board to supply power to the motor controller and the first drive motor, and issues motor operation instructions through communication, and receives information such as motor speed and temperature feedback from the motor controller. At the same time, it controls the second control circuit according to the status of the whole machine.
  • the switching components are controlled.
  • the communication device can be, but is not limited to, a cable assembly.
  • the second drive motor includes a two-phase motor; or the second drive motor includes a three-phase motor.
  • the second driving motor adopts a two-phase motor or a three-phase motor, both of which can satisfy the operation of the fan, and can also satisfy the function of the reactor, and has a simple structure and low cost.
  • the electrical equipment includes a drum washing machine, the first drive motor of the motor device includes a drum motor, and the second drive motor includes a fan motor; or the electrical equipment includes an air conditioner, and the first drive motor of the motor device
  • the driving motor includes a compressor motor, the second driving motor includes a fan motor; or the electrical equipment includes a water heater, the first driving motor of the motor device includes a compressor motor, and the second driving motor includes a fan motor; or the electrical equipment includes In the refrigerator, the first driving motor of the motor device includes a compressor motor, and the second driving motor includes a fan motor.
  • the electrical equipment is not limited to drum washing machines, air conditioners, water heaters, and refrigerators, and may also be other electrical equipment with dual motors or more motors.
  • Fig. 1 is a hardware block diagram of an electrical device according to an embodiment of the present application
  • FIG. 2 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 3 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 4 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a motor controller according to an embodiment of the present application.
  • Fig. 6 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 7 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 8 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • Fig. 9 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 10 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 11 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 12 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • Figure 13 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • Figure 14 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 15 is a hardware block diagram of an electrical device according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a motor controller according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a motor device according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a motor device according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of an electrical device according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of an electrical device according to an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a drum washing machine according to some embodiments of the present application.
  • Fig. 22 is a schematic structural diagram of a motor device according to some embodiments of the present application.
  • 300 drum washing machine; 302: cabinet; 304: discharge port; 306: door; 308: outer cylinder; 310: drum motor; 312: rotating shaft; 314: drum; 318: through hole; 319: lifting rib; 320: Water supply valve; 324: water injection box; 326: water injection port; 328: drain pipe; 330: drain valve; 334: main air duct; 336: front air duct; 338: fan housing; 340: suction port; 342: Exhaust port; 344: fan motor; 346: fan rotating shaft; 348: fan; 350: rear air duct.
  • the following describes the motor controller of the electrical equipment, the electrical equipment of the electrical equipment, and the electrical equipment according to some embodiments of the present application with reference to FIGS. 1 to 22.
  • the embodiment of the first aspect of the present application provides a motor controller 1 for electrical equipment.
  • the electrical equipment includes a first drive motor 2 and a second drive motor 3.
  • the operating power of the first drive motor 2 is greater than the operating power of the second drive motor 3.
  • the first driving motor 2 and the second driving motor 3 run at a staggered time. In other words, the first drive motor 2 and the second drive motor 3 do not operate at the same time.
  • the motor controller 1 includes: a first control circuit 102 and a second control circuit 104.
  • the first control circuit 102 is electrically connected to the first drive motor 2 and the second drive motor 3, and is used to control the operation of the first drive motor 2 and the second drive motor 3.
  • the second control circuit 104 is electrically connected to the windings (32a, 32b, 32c) of the second drive motor 3, and is used to control the windings (32a, 32b, 32c) of the second drive motor 3 to act as a reactor.
  • the motor controller 1 of the electrical equipment provided by the embodiment of the first aspect of the present application includes a first control circuit 102 and a second control circuit 104, and the first control circuit 102 is both electrically connected to the first driving motor 2 and The two drive motors 3 are electrically connected, so that the motor controller 1 of the first drive motor 2 has three control functions, one of which controls the operation of the first drive motor 2, the other controls the operation of the second drive motor 3, and another function
  • the windings (32a, 32b, 32c) controlling the second drive motor 3 act as a reactor.
  • the second control circuit 104 can be directly used to make the windings (32a, 32b, 32c) of the second drive motor 3 act as a reactor, thereby eliminating the need for an additional reactor, which simplifies
  • the structure of the electrical equipment saves the utilization space inside the whole machine, can improve the integration of electrical equipment, reduce installation procedures, improve production efficiency, and effectively reduce the system material cost of electrical equipment.
  • this solution integrates the control circuit of the first drive motor 2 and the control circuit of the second drive motor 3 together, and there is no need to provide an additional controller for the second drive motor 3, thereby improving the integration of electrical equipment; It is beneficial for the first drive motor 2 and the second drive motor 3 to share certain hardware structures (such as a shared rectifier circuit), which can reduce the number of components of the electrical equipment and simplify the circuit layout of the electrical equipment.
  • the motor controller 1 is also equipped with a second control circuit 104, so that the windings (32a, 32b, 32c) of the second drive motor 3 can act as a reactor, thereby eliminating the need for additional reactors for electrical equipment and further reducing
  • the number of parts is reduced, the structure of the whole machine is simplified, and the internal space of the whole machine is saved, which not only helps to reduce the cost, but also helps to simplify the installation process and improve the production efficiency.
  • the number of phases of the windings of the second drive motor 3 is not limited to the three-phase or two-phase in the drawings, and may also be one-phase or four-phase or more phases. Further, the specific number of phases acting as reactors in the winding access circuit of the second drive motor 3 is also not limited. For example, for three-phase windings, only two-phase winding access circuits act as reactors, or all two-phase windings access circuits act as reactors. Reactor can be used. As long as the second drive motor 3 has a winding access circuit acting as an inductor, it can act as a reactor.
  • the motor controller 1 includes a power supply circuit 108, as shown in FIG. 1.
  • the power supply circuit 108 is used to connect an external power supply.
  • the second control circuit 104 is used for enabling the windings (32a, 32b, 32c) of the second driving motor 3 to be selectively connected to the power circuit 108.
  • the first drive motor 2 runs.
  • the power of the motor controller 1 is relatively large, and generally requires an incoming line reactor; when the electrical equipment runs the secondary function, the second drive motor 3 runs.
  • the incoming line reactor is generally not required. Therefore, a second control circuit 104 is added to the motor controller 1, and the second control circuit 104 is used to selectively connect the windings (32a, 32b, 32c) of the second drive motor 3 to the power supply circuit 108, so that the second control circuit 104 can be used.
  • the windings (32a, 32b, 32c) of the driving motor 3 equivalently realize the function of the incoming line reactor.
  • the windings (32a, 32b, 32c) of the second driving motor 3 can also be connected to the power circuit 108 all the time, that is, the power circuit 108 is not selectively connected.
  • the windings (32a, 32b, 32c) of the second drive motor 3 act as the incoming line reactor; when the first drive motor 2 is running and the second drive motor 3 is running
  • the windings (32a, 32b, 32c) of the second driving motor 3 not only participate in the normal circuit of the second driving motor 3 to ensure the normal operation of the second driving motor 3, but also connected to the power supply circuit 108 , Acts as an incoming line reactor; when the first drive motor 2 is not running and the second drive motor 3 is running, the windings (32a, 32b, 32c) of the second drive motor 3 only participate in the normal circuit of the second drive motor 3. Ensure the normal operation of the second drive motor 3.
  • the first control circuit 102 is electrically connected to the power supply circuit 108.
  • the second control circuit 104 is electrically connected to the power supply circuit 108, and the second control circuit 104 includes a component switching circuit 1042.
  • the component switching circuit 1042 includes a connection line 1070 and a switching element 1050 provided on the connection line 1070.
  • connection line 1070 connects the windings (32a, 32b, 32c) of the second driving motor 3 in series to the power circuit 108.
  • the switch 1050 is used to control the on-off of the connection line 1070 according to the state of the electrical equipment, so that the windings (32a, 32b, 32c) of the second driving motor 3 are selectively connected in series to the power circuit 108.
  • the motor controller 1 is connected to an external power source through the power circuit 108 to ensure the normal power supply of the motor controller 1.
  • the power supply circuit 108, the first control circuit 102, and the second control circuit 104 are integrated on the motor controller 1.
  • the first control circuit 102 and the second control circuit 104 are relatively close to the power supply circuit 108, which facilitates wiring design and simplifies
  • the circuit structure improves the integration level of the circuit board 10 of the motor controller 1.
  • the power circuit 108 supplies power to the first control circuit 102 to ensure that the first control circuit 102 can control the first drive motor 2 and the second drive motor 3 to operate normally.
  • the second control circuit 104 implements the control function through the component switching circuit 1042, and specifically controls the windings (32a, 32b, 32c) of the second driving motor 3 to be selectively connected to the power circuit 108 in series by controlling the switching element 1050 to close or open.
  • the switching element 1050 When the switching element 1050 is connected to the connecting line 1070, the windings (32a, 32b, 32c) of the second driving motor 3 are connected to the power supply circuit 108 in series through the connecting line 1070. When the switching element 1050 disconnects the connection line 1070, the windings (32a, 32b, 32c) of the second driving motor 3 are disconnected from the power circuit 108.
  • the scheme is cleverly conceived, has low cost, and is easy to promote.
  • the component switching circuit 1042 is specifically used to: when the electrical equipment is in a state corresponding to the operation of the first driving motor 2, the switching element 1050 controls the connection line 1070 to be in a conductive state, so that the windings (32a, 32b of the second driving motor 3) , 32c) Connect the power supply circuit 108 in series.
  • the switch 1050 controls the connection line 1070 to be in a disconnected state, so that the windings (32a, 32b, 32c) of the second drive motor 3 are disconnected from the power supply circuit 108 .
  • the controller power is low and no line reactor is needed, while the electrical equipment runs the first drive motor 2
  • the high power of the controller requires an incoming line reactor. Therefore, when the entire electrical equipment is in a state corresponding to the operation of the first drive motor 2, that is, when the second drive motor 3 does not need to run, the switching element 1050 controls the connection line 1070 to be in a conductive state, and the second drive motor 3 can be turned on.
  • the windings (32a, 32b, 32c) are connected in series to the power supply circuit 108 and act as a reactor.
  • the switching element 1050 controls the connection line 1070 to be in a disconnected state, and the windings of the second drive motor 3 ( 32a, 32b, 32c) Switch back to the normal circuit to ensure the normal operation of the second drive motor 3 and the components it drives.
  • the switching element 1050 may have only one closed state, such as a single-pole single-throw switch, which only controls the on-off of one line.
  • the switching element 1050 can also have multiple closed states, such as a single-pole double-throw switch. By selecting a specific closed state, the selective on-off of multiple lines can be realized.
  • the operating mode of the electrical equipment 200 and the switching of the operating mode are generally written into a computer program, and the processor executes the computer program to control each hardware component to perform corresponding actions. Therefore, in this solution, the timing of the specific action of the switching element 1050 can also be written into the computer program of the electrical device 200 to keep consistent with the state of the whole machine to realize automatic switching.
  • the switching element 1050 when the electrical equipment 200 wants to run the corresponding mode of the first drive motor 2, the switching element 1050 will act in advance for a set time (such as 3 seconds, 5 seconds, etc.) to turn on the connection line 1070 to enable the second drive
  • the windings (32a, 32b, 32c) of the motor 3 are connected in series to the power circuit 108 to ensure that the subsequent first drive motor 2 can operate normally.
  • the switching member 1050 acts in advance for a set time (such as 3 seconds, 5 seconds, etc.), disconnecting the connection line 1070, and enabling the second driving motor
  • the windings (32a, 32b, 32c) of 3 are disconnected from the power circuit 108 to ensure that the subsequent second driving motor 3 can operate normally.
  • the first control circuit 102 includes: a first inverter circuit 1026 and a second inverter circuit 4.
  • the first inverter circuit 1026 is electrically connected to the first drive motor 2.
  • the second inverter circuit 4 is electrically connected to the second driving motor 3, and the second inverter circuit 4 is connected in parallel with the first inverter circuit 1026.
  • the first control circuit 102 includes a first inverter circuit 1026 and a second inverter circuit 4, and the first inverter circuit 1026 and the second inverter circuit 4 are connected in parallel, which is convenient for sharing the rectifier circuit, so there is no need for the second drive motor 3.
  • the rectifier circuit is additionally provided, thus improving the integration degree of the motor controller 1 and reducing the product cost.
  • the first inverter circuit 1026 can adjust the voltage to a voltage suitable for the operation of the first drive motor 2, and the second inverter circuit 4 can adjust the voltage to a voltage suitable for the operation of the second drive motor 3, thereby ensuring that the first drive motor 2 and Normal operation of the second drive motor 3.
  • first control circuit 102 may also include other circuit structures for controlling the operation of the first driving motor 2 and the second driving motor 3.
  • the power supply circuit 108 includes: a rectifier main circuit 1088 and a filter circuit 1024.
  • the main rectifier circuit 1088 is used to connect an external power source.
  • the filter circuit 1024 is connected to the main rectifier circuit 1088 and the first control circuit 102.
  • a DC bus 1094 is connected between the rectifier main circuit 1088 and the filter circuit 1024, and the component switching circuit 1042 is connected to the DC bus 1094, so that the windings (32a, 32b, 32c) of the second drive motor 3 are connected in series to the DC bus 1094. superior.
  • This solution can connect the windings (32a, 32b, 32c) of the second drive motor 3 in series to the rectified DC bus 1094 of the rectifier circuit, so that the windings (32a, 32b, 32c) of the second drive motor 3 can also be connected in series to the rectifier.
  • the windings (32a, 32b, 32c) of the second drive motor 3 are serially connected to the AC power supply line, so that the windings (32a, 32b, 32c) of the second drive motor 3 act as the line reactance The function of the device. In this way, it is convenient for technicians to perform reasonable design according to the specific shape, size, layout and other structures of the electrical equipment of the circuit board 10 to optimize the structure and performance of the circuit board 10.
  • the power supply circuit 108 includes a rectifier main circuit 1088 and a filter circuit 1024.
  • the main rectifier circuit 1088 can convert AC power to DC power, so that the AC power supply can be used to supply power to the motor controller 1, which facilitates the operation of electrical equipment using common municipal AC power and improves the universality of electrical equipment.
  • the filter circuit 1024 filters out ripples in the rectified output voltage, so as to ensure that the voltage supplied to the first control circuit 102 is more stable, which is convenient for the first control circuit 102 to provide what is needed according to the operating requirements of the first drive motor 2 and the second drive motor 3. The electric energy meets the operating requirements of the first drive motor 2 and the second drive motor 3.
  • the DC bus 1094 is located between the main rectifier circuit 1088 and the filter circuit 1024, so the component switching circuit 1042 can be connected between the main rectifier circuit 1088 and the filter circuit 1024 to prevent the windings (32a, 32b, 32c of the second drive motor 3) )
  • the serial connection will affect the operation of the filter circuit 1024 and the subsequent first control circuit 102.
  • the DC bus 1094 includes a DC positive bus 1090.
  • the switching element 1050 is connected to the DC positive bus 1090 to control the DC positive bus 1090 to conduct with the windings (32a, 32b, 32c) of the second driving motor 3 or directly conduct with the filter circuit 1024.
  • the second inverter circuit 4 and the first inverter circuit 1026 share a rectifier circuit, and there is no need to additionally provide a rectifier circuit for the second drive motor 3, thereby improving the integration level of the motor controller 1 and reducing the product cost.
  • a switching element 1050 and a connection line 1070 are specifically used to realize the selective series connection of the windings (32a, 32b, 32c) of the second driving motor 3 into the power supply circuit 108, which is beneficial to reduce the cost.
  • the component switching circuit 1042 may be connected to the DC positive bus 1090.
  • IGBTs 42 of the second inverter circuit 4 are turned off (IGBT, Insulated Gate Bipolar Transistor, which can be understood as a switching element), and switch
  • the component 1050 controls the DC positive bus 1090 and the windings (32a, 32b, 32c) of the second drive motor 3 to conduct, then the main rectifier circuit 1088, the DC positive bus 1090, the connection line 1070, and the windings (32a, 32a, 32a, The neutral point of 32b, 32c), the windings (32a, 32b, 32c) of the second drive motor 3, and the upper tube freewheeling diode 44 of the H bridge of the second inverter circuit 4 conduct sequentially, and then connect to the first inverter.
  • IGBT Insulated Gate Bipolar Transistor
  • the variable circuit 1026 that is, realizes that the windings (32a, 32b, 32c) of the second drive motor 3 are connected to the DC positive bus 1090.
  • the switching element 1050 controls the DC positive bus 1090 to directly communicate with the filter circuit 1024, and the windings (32a, 32b, 32c) of the second drive motor 3 and the power supply circuit 108
  • the windings (32a, 32b, 32c) of the second driving motor 3 are switched back to the normal circuit of the second driving motor 3 to ensure the normal operation of the second driving motor 3 and the components driven by it.
  • the second driving motor 3 is a three-phase motor including three sets of windings (32a, 32b, 32c).
  • the second inverter circuit 4 is formed by three-phase bridge connection of 6 IGBTs 42 (switching elements), and a freewheeling diode is connected between the collector and emitter of each IGBT 42, namely: three upper tubes on the upper arm side
  • the output terminals of each phase of the second inverter circuit 4 are connected to the windings of each phase of the second drive motor 3.
  • the structure of the first inverter circuit 1026 and the connection manner with the winding of the first drive motor 2 are the same as this, and will not be repeated here.
  • the switching element 1050 is a single-pole double-throw switch, the static contact is connected to the DC positive bus 1090, the two moving contacts are respectively connected to the filter circuit 1024 and one end of the connection line 1070, and the other end of the connection line 1070 is connected to the winding of the second drive motor 3 ( 32a, 32b, 32c).
  • the positive and negative poles of the second inverter circuit 4 are respectively connected to the positive and negative poles filtered by the filter circuit 1024.
  • the switching element 1050 When the whole machine is in a state corresponding to the operation of the first driving motor 2, the switching element 1050 is closed to the movable contact of the connection connection line 1070.
  • the switching element 1050 When the whole machine is in a state corresponding to the operation of the second driving motor 3, the switching element 1050 is closed to the movable contact of the filter circuit 1024.
  • the DC bus 1094 includes a DC negative bus 1092.
  • the switching element 1050 is connected to the DC negative bus 1092 for controlling the DC negative bus 1092 to conduct with the windings (32a, 32b, 32c) of the second driving motor 3 or directly conduct with the filter circuit 1024.
  • the component switching circuit 1042 can also be connected to the DC negative bus 1092.
  • the switching element 1050 controls the DC negative bus 1092 and the windings (32a, 32b, 32c of the second drive motor 3).
  • the switching element 1050 controls the DC negative bus 1092 to directly communicate with the filter circuit 1024, and the windings (32a, 32b, 32c) of the second drive motor 3 are disconnected from the power circuit. On, the windings (32a, 32b, 32c) of the second driving motor 3 are switched back to the normal circuit of the second driving motor 3 to ensure the normal operation of the second driving motor 3 and the components driven by it.
  • the second driving motor 3 is a three-phase motor including three sets of windings (32a, 32b, 32c).
  • the second inverter circuit is formed by connecting 6 IGBTs 42 (switching elements) in three phases.
  • a freewheeling diode is connected between the collector and emitter of each IGBT 42, that is: the three upper tubes on the upper bridge arm side.
  • Each phase output terminal of the second inverter circuit 4 is connected to each phase winding of the second drive motor.
  • the switching element 1050 is a single-pole double-throw switch.
  • the static contact is connected to the DC negative bus 1092.
  • the two moving contacts are respectively connected to the filter circuit 1024 and one end of the connection line 1070.
  • the other end of the connection line 1070 is connected to the winding of the second drive motor 3 ( 32a, 32b, 32c).
  • the positive and negative poles of the second inverter circuit 4 are respectively connected to the positive and negative poles filtered by the filter circuit 1024.
  • the switching element 1050 When the whole machine is in a state corresponding to the operation of the first driving motor 2, the switching element 1050 is closed to the movable contact of the connection connection line 1070.
  • the switching element 1050 When the whole machine is in a state corresponding to the operation of the second driving motor 3, the switching element 1050 is closed to the movable contact of the filter circuit 1024.
  • the second driving motor 3 is a two-phase motor and includes two sets of windings (32a, 32b).
  • the second inverter circuit 4 is constituted by two-phase bridging of four IGBTs 42 (switching elements), and a freewheeling diode is connected between the collector and emitter of each IGBT 42, namely: two upper tubes on the upper arm side The freewheeling diode 44 and the two lower tube freewheeling diodes 46 on the lower bridge arm side.
  • the output terminals of each phase of the second inverter circuit 4 are connected to the windings of each phase of the second drive motor 3.
  • the working principle is basically the same as that of the first embodiment, and will not be repeated here.
  • the second driving motor 3 is a two-phase motor and includes two sets of windings (32a, 32b).
  • the second inverter circuit 4 is constituted by two-phase bridging of four IGBTs 42 (switching elements), and a freewheeling diode is connected between the collector and emitter of each IGBT 42, namely: two upper tubes on the upper arm side The freewheeling diode 44 and the two lower tube freewheeling diodes 46 on the lower bridge arm side.
  • Each phase output terminal of the second inverter circuit 4 is connected to each phase winding (32a, 32b) of the second drive motor 3.
  • the embodiment of the second aspect of the present application provides a motor controller 1 of an electrical device 200.
  • the electrical device 200 includes a first drive motor 2 and a second drive motor 3.
  • the operating power of the first drive motor 2 is greater than the operating power of the second drive motor 3.
  • the first drive motor 2 and the second drive motor 3 run at a staggered time. In other words, the first drive motor 2 and the second drive motor 3 do not operate at the same time.
  • the motor controller 1 includes: a first control circuit 102 and a second control circuit 104, as shown in FIG. 16.
  • the first control circuit 102 is electrically connected to the first driving motor 2 for controlling the operation of the first driving motor 2.
  • the second control circuit 104 is electrically connected to the windings (32a, 32b, 32c) of the second drive motor 3, and is used to control the windings (32a, 32b, 32c) of the second drive motor 3 to act as a reactor.
  • the motor controller 1 of the electrical equipment 200 provided by the embodiment of the second aspect of the present application includes a first control circuit 102 and a second control circuit 104, so that the motor controller 1 of the first driving motor 2 has two control functions, where One function controls the operation of the first drive motor 2, and the other control function controls the windings (32a, 32b, 32c) of the second drive motor 3 to act as a reactor.
  • the second control circuit 104 can be directly used to make the windings (32a, 32b, 32c) of the second drive motor 3 act as a reactor, thereby eliminating the need for an additional reactor, which simplifies
  • the structure of the electrical equipment 200 saves the utilization space inside the whole machine, can improve the integration of the electrical equipment 200, reduce installation procedures, improve production efficiency, and effectively reduce the system material cost of the electrical equipment 200.
  • control circuit used to control the operation of the second drive motor 3 can be separately arranged on the circuit board of other controllers, or can be partially integrated on the circuit board 10 of the motor controller 1, or can be fully integrated on the motor controller. ⁇ 1’s circuit board 10.
  • the electrical equipment 200 equipped with the first drive motor 2 and the second drive motor 3 it generally has multiple functions at the same time.
  • the first drive motor 2 drives the operation of large components and realizes the main functions; the second drive motor 3 Drive small parts to run to achieve secondary functions. Therefore, the first drive motor 2 and the second drive motor 3 generally do not operate at the same time.
  • the motor controller 1 has a higher power and requires a reactor; when the electrical device 200 runs the secondary function, the second drive motor 3 runs.
  • the power of the controller is small and generally does not require a reactor.
  • a second control circuit 104 is added to the motor controller 1 of the first drive motor 2, and through the second control circuit 104, the windings (32a, 32b, 32c) of the second drive motor 3 can be used to equivalently realize the reactor Features.
  • This is equivalent to integrating the function of the reactor in the motor controller 1 of the first drive motor 2, thereby eliminating the need for additional reactors, which can effectively improve the integration of electrical equipment 200, increase production efficiency, and reduce material costs , Improve the utilization rate of the internal space of the electrical equipment 200, and bring convenience for optimizing the internal wiring design and structural design of the electrical equipment 200.
  • a washing machine with a drum motor and a fan motor, it generally has both washing and drying functions.
  • the drum motor drives the drum to run to achieve washing and dehydration functions, which are the main functions;
  • the fan motor drives the fan to run to achieve drying Function is a secondary function.
  • the drum motor drives the drum to run; when the washing machine is in a drying state, the fan motor drives the fan to run. Therefore, the drum motor and the fan motor generally do not run at the same time. Therefore, the windings (32a, 32b, 32c) of the fan motor can be used to implement the reactor equivalently.
  • the motor controller 1 includes a power supply circuit 108 (as shown in FIG. 6), and the power supply circuit 108 is used to connect an external power supply.
  • the second control circuit 104 is used for enabling the windings (32a, 32b, 32c) of the second driving motor 3 to be selectively connected to the power circuit 108.
  • the first drive motor 2 runs.
  • the motor controller 1 has a higher power and generally requires a line reactor; when the electrical device 200 runs the secondary function, the second drive motor 3 runs At this time, the power of the controller is small, and generally no line reactor is needed. Therefore, a second control circuit 104 is added to the motor controller 1 of the first drive motor 2, and the windings (32a, 32b, 32c) of the second drive motor 3 are selectively connected to the power supply circuit 108 by using the second control circuit 104 , The windings (32a, 32b, 32c) of the second drive motor 3 can be used to equivalently realize the function of the incoming line reactor.
  • the first control circuit 102 is electrically connected to the power supply circuit 108.
  • the second control circuit 104 is electrically connected to the power supply circuit 108.
  • the second control circuit 104 includes a component switching circuit 1042.
  • the component switching circuit 1042 includes an electrical connection portion 1046 and a switching component 1044 provided on the electrical connection portion 1046, as shown in FIG. 7.
  • the electrical connection part 1046 connects the windings (32a, 32b, 32c) of the second driving motor 3 in series to the power supply circuit 108.
  • the switching component 1044 is used to control the on-off of the electrical connection portion 1046 according to the state of the electrical equipment 200, so that the windings (32a, 32b, 32c) of the second driving motor 3 are selectively connected in series to the power circuit 108.
  • the circuit board 10 of the motor controller 1 is connected to an external power source through a power supply circuit 108 to ensure the normal power supply of the circuit board 10.
  • the power supply circuit 108, the first control circuit 102, and the second control circuit 104 are integrated on the circuit board 10.
  • the first control circuit 102, the second control circuit 104 and the power supply circuit 108 are relatively close, which facilitates wiring design and simplifies the wiring
  • the structure improves the integration level of the circuit board 10.
  • the power supply circuit 108 supplies power to the first control circuit 102 to ensure that the first control circuit 102 can control the normal operation of the first driving motor 2.
  • the second control circuit 104 implements the control function through the component switching circuit 1042, and specifically controls the windings (32a, 32b, 32c) of the second driving motor 3 to be selectively connected to the power circuit 108 in series by controlling the switching component 1044 to turn on or off.
  • the switching component 1044 When the switching component 1044 is connected to the electrical connection portion 1046, the windings (32a, 32b, 32c) of the second driving motor 3 are connected in series to the power circuit 108 through the electrical connection portion 1046. When the switching component 1044 disconnects the electrical connection portion 1046, the windings (32a, 32b, 32c) of the second driving motor 3 are disconnected from the power circuit 108.
  • the scheme is cleverly conceived, has low cost, and is easy to promote.
  • the component switching circuit 1042 is specifically used to: when the electrical equipment 200 is in a state corresponding to the operation of the first driving motor 2, the switching component 1044 controls the electrical connection portion 1046 to be in a conductive state, so that the windings (32a of the second driving motor 3) , 32b, 32c) Connect the power supply circuit 108 in series.
  • the switching component 1044 controls the electrical connection portion 1046 to be in a disconnected state, so that the windings (32a, 32b, 32c) of the second drive motor 3 and the power supply circuit 108 disconnect.
  • the controller power is low and no line reactor is needed.
  • the high power of the controller requires a line reactor. Therefore, when the electrical equipment 200 is in a state corresponding to the operation of the first drive motor 2, that is, when the second drive motor 3 does not need to run, the switching component 1044 controls the electrical connection portion 1046 to be in a conductive state, and the second drive The windings (32a, 32b, 32c) of the motor 3 are serially connected to the power supply circuit 108 to function as a reactor.
  • the switching component 1044 controls the electrical connection portion 1046 to be in a disconnected state, and the windings of the second drive motor 3 (32a, 32b, 32c) Switch back to the normal circuit to ensure the normal operation of the second drive motor 3 and the components it drives.
  • the operating mode of the electrical equipment 200 and the switching of the operating mode are generally written into a computer program, and the processor executes the computer program to control each hardware component to perform corresponding actions. Therefore, in this solution, the timing of the specific actions of the switching component 1044 can also be written into the computer program of the electrical device 200 to keep consistent with the state of the whole machine to realize automatic switching.
  • the switching component 1044 when the electrical equipment 200 wants to run the corresponding mode of the first drive motor 2, the switching component 1044 will act in advance for a set time (such as 3 seconds, 5 seconds, etc.) to turn on the electrical connection part 1046 to make the second
  • the windings (32a, 32b, 32c) of the driving motor 3 are connected in series to the power circuit 108 to ensure that the subsequent first driving motor 2 can operate normally.
  • the switching component 1044 When the electrical equipment 200 is to be switched to the mode corresponding to the operation of the second driving motor 3, the switching component 1044 operates in advance for a set time (such as 3 seconds, 5 seconds, etc.) to disconnect the electrical connection part 1046 to enable the second drive
  • the windings (32a, 32b, 32c) of the motor 3 are disconnected from the power circuit 108 to ensure that the subsequent second driving motor 3 can operate normally.
  • the power supply circuit 108 includes an AC power supply access circuit 1082 and a rectifier circuit 1096, as shown in FIG. 6.
  • the AC power access circuit 1082 includes a positive terminal 1084 of the AC power source and a negative terminal 1086 of the AC power source.
  • the rectifier circuit 1096 connects the AC power access circuit 1082 and the first control circuit 102.
  • the power supply circuit 108 includes an AC power supply access circuit 1082 and a rectifier circuit 1096.
  • the positive terminal 1084 of the AC power supply of the AC power supply access circuit 1082 is connected to the positive terminal of the AC power supply, and the negative terminal 1086 of the AC power supply is connected to the negative terminal of the AC power supply.
  • the AC power supply can be used to power the motor controller 1, which is convenient for the electrical equipment 200 to use common municipalities.
  • the work of power sources such as alternating current improves the universality of the electrical equipment 200.
  • the rectifier circuit 1096 can convert alternating current into direct current, so that the first control circuit 102 can provide the required electric energy according to the operation demand of the first driving motor 2 to meet the operation demand of the first driving motor 2.
  • the component switching circuit 1042 is connected between the positive terminal 1084 of the AC power source and the rectifier circuit 1096 so that the windings (32a, 32b, 32c) of the second driving motor 3 are connected in series between the positive terminal 1084 of the AC power source and the rectifier circuit 1096.
  • This solution can directly connect the windings (32a, 32b, 32c) of the second drive motor 3 into the AC power supply line, so that the windings (32a, 32b, 32c) of the second drive motor 3 function as the line reactor .
  • This scheme has a simple structure and is convenient for wiring design.
  • the switching assembly 1044 includes at least one switching element 1050, and the type of the switching element 1050 includes at least one of a switching element and a relay.
  • the switching component 1044 mainly realizes the on-off between the power circuit 108, the electrical connection portion 1046, and the windings (32a, 32b, 32c) of the second drive motor 3 by opening and closing. Therefore, common switching elements, relays, etc. can all meet this requirement.
  • the switching element 1050 may have only one closed state, such as a single-pole single-throw switch, which only controls the on-off of one line.
  • the switch 1050 may also have multiple closed states, such as a single-pole double-throw switch, and the selective on-off of multiple lines can be realized by selecting a specific closed state.
  • switching element 1050 with multiple closed states can also be equivalently replaced by multiple switching elements 1050 with only one closed state.
  • two single-pole single-throw switches can be used to equivalently replace one single-pole double-throw switch.
  • the electrical connection portion 1046 includes a first connection line 1071 and a second connection line 1072.
  • the switching assembly 1044 includes: a first switching element 1051, a second switching element 1052, and a third switching element 1053.
  • the first switching element 1051 is connected in series between the positive terminal 1084 of the AC power source and the rectifier circuit 1096 for controlling the on-off between the positive terminal 1084 of the AC power source and the rectifier circuit 1096, and the two ends of the first switching element 1051 are respectively connected to the first One end of the line 1071 and one end of the second connection line 1072 are connected.
  • the second switching element 1052 is connected to the other end of the first connection line 1071, and is used to control the conduction between the one-phase winding 32a of the second drive motor 3 and the first connection line 1071 or the second inverter circuit of the second drive motor 3 4 is turned on.
  • the third switching element 1053 is connected to the other end of the second connection line 1072, and is used to control the conduction between the other phase winding 32b of the second drive motor 3 and the second connection line 1072 or the second inverter of the second drive motor 3 Circuit 4 is turned on.
  • three switching elements and two connecting lines 1070 are specifically used to realize the selective serial connection of the windings (32a, 32b) of the second driving motor 3 into the power supply circuit 108.
  • the first switch 1051 disconnects the direct communication between the positive terminal 1084 of the AC power source and the rectifier circuit 1096
  • the second switch 1052 controls the second drive motor
  • the one-phase winding 32a of 3 is connected to the first connection line 1071
  • the third switching element 1053 controls the other phase winding 32b of the second drive motor 3 to be connected to the second connection line 1072, then the positive terminal of the AC power source 1084, the first The connection line 1071, the one-phase winding 32a of the second drive motor 3, the other phase winding 32b of the second drive motor 3, and the second connection line 1072 are sequentially turned on, and then connected to the rectifier circuit 1096, that is, the second The windings (32a, 32b) of the driving motor 3 are connected in series between the positive terminal 1084 of the AC power source and the rectifier circuit 1096.
  • the first switching element 1051 conducts direct communication between the positive terminal 1084 of the AC power supply and the rectifier circuit 1096, and the second switching element 1052 controls one of the second driving motor 3
  • the phase winding 32a is conducted with the second inverter circuit 4 of the second drive motor 3
  • the third switching element 1053 controls the other phase winding 32b of the second drive motor 3 to conduct with the second inverter circuit 4 of the second drive motor 3 Is connected, the windings (32a, 32b) of the second drive motor 3 are disconnected from the power circuit 108, and the windings (32a, 32b) of the second drive motor 3 are switched back to the normal circuit of the second drive motor 3 to ensure the second The normal operation of the drive motor 3 and the components it drives.
  • the first switching element 1051 is a single-pole single-throw switch
  • the second switching element 1052 and the third switching element 1053 are single-pole double-throw switches.
  • the second driving motor 3 is a three-phase motor and includes three sets of windings (32a, 32b, 32c).
  • the static contact of the second switching element 1052 is connected to the one-phase winding 32a of the second drive motor 3, and the two moving contacts are respectively connected to the first connection line 1071 and the second inverter circuit 4.
  • the static contact of the third switching element 1053 is connected to the other phase winding 32b of the second drive motor 3, and the two moving contacts are respectively connected to the second connection line 1072 and the second inverter circuit 4.
  • the first switching element 1051 When the whole machine is in a state corresponding to the operation of the first drive motor 2, the first switching element 1051 is disconnected, the second switching element 1052 is closed to the moving contact of the first connection line 1071, and the third switching element 1053 is closed to the connection Second, connect the moving contact of the circuit 1072.
  • the first switching element 1051 When the whole machine is in a state corresponding to the operation of the second drive motor 3, the first switching element 1051 is closed, the second switching element 1052 is closed to the movable contact of the second inverter circuit 4, and the third switching element 1053 is closed to the Two moving contacts of the inverter circuit 4.
  • connection between the second inverter circuit 4 and the windings (32a, 32b, 32c) of the second drive motor 3 belongs to the prior art, and will not be described in detail here.
  • the difference from the fifth embodiment is that the component switching circuit 1042 is connected to the DC bus 1094 rectified by the rectifier circuit 1096, so that the windings (32a, 32b, 32c) of the second drive motor 3 are connected in series with the DC bus 1096. On bus 1094.
  • This solution can connect the windings (32a, 32b, 32c) of the second drive motor 3 in series on the rectified DC bus 1094 of the rectifier circuit 1096, so that the windings (32a, 32b, 32c) of the second drive motor 3 can also be connected in series.
  • the windings (32a, 32b, 32c) of the second drive motor 3 are also serially connected to the AC power supply line, so that the windings (32a, 32b, 32c) of the second drive motor 3 serve as input wires.
  • the function of the line reactor In this way, it is convenient for technicians to perform reasonable design according to the specific shape, size, layout of the circuit board 10 and other structures of the electrical equipment 200 to optimize the structure and performance of the circuit board 10.
  • the rectifier circuit 1096 includes: a rectifier main circuit 1088 and a filter circuit 1024, as shown in FIG. 6.
  • the main rectifier circuit 1088 is connected to the AC power access circuit 1082.
  • the filter circuit 1024 is connected to the main rectifier circuit 1088 and the first control circuit 102.
  • the DC bus 1094 is connected between the main rectifier circuit 1088 and the filter circuit 1024.
  • the rectifier circuit 1096 includes a rectifier main circuit 1088 and a filter circuit 1024.
  • the rectifier main circuit 1088 converts alternating current to direct current.
  • the filter circuit 1024 filters out ripples in the rectified output voltage, thereby ensuring that the voltage supplied to the first control circuit 102 is more stable.
  • the DC bus 1094 is located between the rectifier circuit 1096 and the filter circuit 1024, and the component switching circuit 1042 can be connected between the rectifier main circuit 1088 and the filter circuit 1024 to prevent the windings (32a, 32b, 32c) of the second driving motor 3
  • the serial connection affects the operation of the filter circuit 1024 and the subsequent first control circuit 102.
  • the DC bus 1094 includes a DC positive bus 1090.
  • the component switching circuit 1042 is connected to the DC positive bus 1090, so that the windings (32a, 32b, 32c) of the second driving motor 3 are connected to the DC positive bus 1090 in series.
  • the component switching circuit 1042 is directly connected to the DC positive bus 1090, so that the windings (32a, 32b, 32c) of the second drive motor 3 can also be connected in series to the rectified DC positive bus 1090, thereby realizing the second drive motor 3.
  • the electrical connection portion 1046 includes a third connection line 1073 and a fourth connection line 1074.
  • the switching assembly 1044 includes: a fourth switching element 1054, a fifth switching element 1055, and a sixth switching element 1056.
  • the fourth switching element 1054 is connected to the DC positive bus 1090 for controlling the on-off between the DC positive bus 1090 and the filter circuit 1024, and the two ends of the fourth switching element 1054 are respectively connected to one end of the third connection line 1073 and the fourth Connect one end of the line 1074.
  • the fifth switching element 1055 is connected to the other end of the third connection line 1073 and is used to control the conduction between the one-phase winding 32a of the second drive motor 3 and the third connection line 1073 or to the second inverter circuit of the second drive motor 3 4 is turned on.
  • the sixth switching element 1056 is connected to the other end of the fourth connection line 1074, and is used to control the conduction between the other phase winding 32b of the second drive motor 3 and the fourth connection line 1074 or the second inverter of the second drive motor 3 Circuit 4 is turned on.
  • three switching elements and two connecting lines 1070 are specifically used to realize the selective serial connection of the windings (32a, 32b) of the second driving motor 3 into the power supply circuit 108.
  • the fourth switching element 1054 disconnects the direct communication between the DC positive bus 1090 and the filter circuit 1024, and the fifth switching element 1055 controls the second driving motor 3.
  • the one-phase winding 32a of the second drive motor 3 is connected to the third connection line 1073, and the sixth switching element 1056 controls the other phase winding 32b of the second drive motor 3 to be connected to the fourth connection line 1074. 1088.
  • the positive DC bus 1090, the third connection line 1073, the one-phase winding 32a of the second drive motor 3, the other phase winding 32b of the second drive motor 3, and the fourth connection line 1074 are turned on in sequence, and then connected to the filter circuit 1024, that is, the winding (32a, 32b) of the second drive motor 3 is connected to the DC positive bus 1090.
  • the fourth switching element 1054 conducts direct communication between the DC positive bus 1090 and the filter circuit 1024, and the fifth switching element 1055 controls one phase of the second driving motor 3
  • the winding 32a is connected to the second inverter circuit 4 of the second drive motor 3
  • the sixth switching element 1056 controls the other phase winding 32b of the second drive motor 3 to be connected to the second inverter circuit 4 of the second drive motor 3
  • the windings (32a, 32b) of the second drive motor 3 are disconnected from the power circuit 108, and the windings (32a, 32b) of the second drive motor 3 are switched back to the normal circuit of the second drive motor 3 to ensure the second drive The normal operation of the motor 3 and the components it drives.
  • the fourth switching element 1054 is a single-pole single-throw switch
  • the fifth switching element 1055 and the sixth switching element 1056 are single-pole double-throw switches.
  • the second driving motor 3 is a three-phase motor and includes three sets of windings (32a, 32b, 32c).
  • the static contact of the fifth switching element 1055 is connected to the one-phase winding 32a of the second drive motor 3, and the two moving contacts are respectively connected to the third connection line 1073 and the second inverter circuit 4.
  • the static contact of the sixth switching element 1056 is connected to the other phase winding 32b of the second drive motor 3, and the two moving contacts are respectively connected to the fourth connection line 1074 and the second inverter circuit 4.
  • the fourth switching element 1054 When the whole machine is in a state corresponding to the operation of the first drive motor 2, the fourth switching element 1054 is disconnected, the fifth switching element 1055 is closed to the movable contact of the third connection line 1073, and the sixth switching element 1056 is closed to the connection Four moving contacts of the connection line 1074.
  • the fourth switching element 1054 When the whole machine is in a state corresponding to the operation of the second drive motor 3, the fourth switching element 1054 is closed, the fifth switching element 1055 is closed to the moving contact of the second inverter circuit 4, and the sixth switching element 1056 is closed to the Two moving contacts of the inverter circuit 4.
  • the difference from the sixth embodiment is that the motor controller 1 further includes a second inverter circuit 4, and the second inverter circuit 4 is electrically connected to the windings (32a, 32b, 32c) of the second driving motor 3. .
  • the first control circuit 102 includes a first inverter circuit 1026, and the second inverter circuit 4 is connected in parallel with the first inverter circuit 1026.
  • the rectifier circuit 1096 is also connected to the second inverter circuit 4.
  • the first control circuit 102 may also include a driving circuit or other circuits.
  • the second inverter circuit 4 and the first inverter circuit 1026 share the rectifier circuit 1096, so there is no need to provide an additional rectifier circuit 1096 for the second drive motor 3, thus improving the integration of the motor controller 1 and reducing the product cost.
  • the switching assembly 1044 includes a seventh switching element 1057.
  • the seventh switching element 1057 is connected to the DC positive bus 1090 to control the DC positive bus 1090 to conduct with the windings (32a, 32b, 32c) of the second drive motor 3 or directly conduct with the filter circuit 1024.
  • a switching element and a connecting line 1070 are specifically used to realize the selective serial connection of the windings (32a, 32b, 32c) of the second driving motor 3 into the power supply circuit 108, which is beneficial to reduce the cost.
  • the IGBTs 42 of the second inverter circuit 4 are all disconnected, and the seventh switching element 1057 controls the DC positive bus 1090 and the windings of the second drive motor 3 ( 32a, 32b, 32c) are turned on, the AC power positive terminal 1084, the rectifier main circuit 1088, the DC positive bus 1090, the connecting line 1070, the neutral point of the windings (32a, 32b, 32c) of the second drive motor 3, the first The windings (32a, 32b, 32c) of the second drive motor 3 and the upper tube freewheeling diode 44 of the H bridge of the second inverter circuit 4 are turned on in sequence, and then connected to the first inverter circuit
  • the seventh switching element 1057 controls the direct DC positive bus 1090 to directly communicate with the filter circuit 1024, and the windings (32a, 32b, 32c) of the second drive motor 3 and the power supply circuit 108 is disconnected, and the windings (32a, 32b, 32c) of the second driving motor 3 are switched back to the normal circuit of the second driving motor 3 to ensure the normal operation of the second driving motor 3 and the components driven by it.
  • the second driving motor 3 is a three-phase motor including three sets of windings (32a, 32b, 32c).
  • the structure and connection mode of the second drive inverter circuit 4 are the same as those of the first embodiment in the first aspect, and will not be repeated here.
  • the electrical connection part 1046 includes a connection line 1070.
  • the seventh switching element 1057 is a single-pole double-throw switch, the static contact is connected to the DC positive bus 1090, the two moving contacts are respectively connected to the first control circuit 102 and one end of the connection line 1070, and the other end of the connection line 1070 is connected to the second drive motor 3 windings (32a, 32b, 32c).
  • the positive and negative poles of the second inverter circuit 4 are respectively connected to the positive and negative poles filtered by the filter circuit 1024.
  • the seventh switching element 1057 is closed to the movable contact of the filter circuit 1024.
  • the difference from the sixth embodiment is that the DC bus 1094 includes a DC negative bus 1092.
  • the component switching circuit 1042 is connected to the DC negative bus 1092, so that the windings (32a, 32b, 32c) of the second driving motor 3 are connected to the DC negative bus 1092 in series.
  • This solution directly connects the component switching circuit 1042 to the DC negative bus 1092, so that the windings (32a, 32b, 32c) of the second drive motor 3 can also be connected in series to the rectified DC negative bus 1092.
  • the positive bus 1090 belongs to a loop, so the windings (32a, 32b, 32c) of the second drive motor 3 can be equivalently realized as the wire-in electronic controller.
  • the electrical connection portion 1046 includes a fifth connection line 1075 and a sixth connection line 1076.
  • the switching assembly 1044 includes: an eighth switching element 1058, a ninth switching element 1059, and a tenth switching element 1060.
  • the eighth switching element 1058 is connected to the DC negative bus 1092 for controlling the on-off between the DC negative bus 1092 and the filter circuit 1024, and the two ends of the eighth switching element 1058 are respectively connected to one end of the fifth connecting line 1075 and the sixth Connect one end of line 1076.
  • the ninth switching element 1059 is connected to the other end of the fifth connection line 1075, and is used to control the conduction between the one-phase winding 32a of the second driving motor 3 and the fifth connection line 1075 or to the second inverter circuit of the second driving motor 3 4 is turned on.
  • the tenth switching element 1060 is connected to the other end of the sixth connection line 1076, and is used to control the conduction between the other phase winding 32b of the second drive motor 3 and the sixth connection line 1076 or the second inverter of the second drive motor 3 Circuit 4 is turned on.
  • three switching elements and two connecting lines 1070 are specifically used to realize the selective serial connection of the windings (32a, 32b) of the second driving motor 3 into the power supply circuit 108. Specifically, when the whole machine is in a state corresponding to the operation of the first driving motor 2, the eighth switching element 1058 disconnects the direct communication between the negative DC bus 1092 and the filter circuit 1024, and the ninth switching element 1059 controls the second driving motor 3.
  • the one-phase winding 32a of the second drive motor 3 is connected to the fifth connection line 1075, and the tenth switching element 1060 controls the other phase winding 32b of the second drive motor 3 to be connected to the sixth connection line 1076, then the filter circuit 1024 and the fifth connection line 1075 ,
  • the one-phase winding 32a of the second drive motor 3, the other phase winding 32b of the second drive motor 3, the sixth connection line 1076, the rectifier main circuit 1088, and the negative terminal 1086 of the AC power supply are turned on sequentially, that is:
  • the windings (32a, 32b) of the second driving motor 3 are connected to the DC negative bus 1092.
  • the eighth switching element 1058 conducts the direct communication between the negative DC bus 1092 and the filter circuit 1024, and the ninth switching element 1059 controls one phase of the second driving motor 3
  • the winding 32a is connected to the second inverter circuit 4 of the second drive motor 3
  • the tenth switching element 1060 controls the other phase winding 32b of the second drive motor 3 to be connected to the second inverter circuit 4 of the second drive motor 3
  • the windings (32a, 32b) of the second drive motor 3 are disconnected from the power circuit 108, and the windings (32a, 32b) of the second drive motor 3 are switched back to the normal circuit of the second drive motor 3 to ensure the second drive The normal operation of the motor 3 and the components it drives.
  • the eighth switching element 1058 is a single-pole single-throw switch
  • the ninth switching element 1059 and the tenth switching element 1060 are single-pole double-throw switches.
  • the second driving motor 3 is a three-phase motor and includes three sets of windings (32a, 32b, 32c).
  • the static contact of the ninth switching element 1059 is connected to the one-phase winding 32a of the second drive motor 3, and the two moving contacts are respectively connected to the fifth connection line 1075 and the second inverter circuit 4.
  • the static contact of the tenth switching element 1060 is connected to the other phase winding 32b of the second drive motor 3, and the two moving contacts are respectively connected to the sixth connection line 1076 and the second inverter circuit 4.
  • the eighth switching element 1058 When the whole machine is in a state corresponding to the operation of the first drive motor 2, the eighth switching element 1058 is disconnected, the ninth switching element 1059 is closed to the movable contact of the fifth connection line 1075, and the tenth switching element 1060 is closed to the connection Six moving contacts of the connection line 1076.
  • the eighth switching element 1058 When the whole machine is in a state corresponding to the operation of the second drive motor 3, the eighth switching element 1058 is closed, the ninth switching element 1059 is closed to the moving contact of the second inverter circuit 4, and the tenth switching element 1060 is closed to the Two moving contacts of the inverter circuit 4.
  • the motor controller 1 further includes a second inverter circuit 4, and the second inverter circuit 4 is electrically connected to the windings (32a, 32b, 32c) of the second driving motor 3.
  • the first control circuit 102 includes a first inverter circuit 1026, and the second inverter circuit 4 is connected in parallel with the first inverter circuit 1026.
  • the rectifier circuit 1096 is also connected to the second inverter circuit 4.
  • the second inverter circuit 4 and the first inverter circuit 1026 share the rectifier circuit 1096, so there is no need to provide an additional rectifier circuit 1096 for the second drive motor 3, thus improving the integration of the motor controller 1 and reducing the product cost.
  • the switching assembly 1044 includes an eleventh switching element 1061.
  • the eleventh switching element 1061 is connected to a DC negative bus 1092 for controlling the DC negative bus 1092 and the windings (32a, 32b, 32c) of the second drive motor 3 to conduct or directly Conducted with the filter circuit 1024.
  • a switching element and a connecting line 1070 are specifically used to realize the selective series connection of the windings (32a, 32b, 32c) of the second driving motor 3 into the power supply circuit 108, which has a simple structure and low cost. Specifically, when the whole machine is in a state corresponding to the operation of the first drive motor 2, the IGBTs 42 of the second inverter circuit 4 are all disconnected, and the eleventh switching element 1061 controls the DC negative bus 1092 and the windings of the second drive motor 3.
  • the eleventh switching element 1061 controls the DC negative bus 1092 to directly communicate with the filter circuit 1024, and the windings (32a, 32b, 32c) of the second drive motor 3 and the power supply
  • the circuits 108 are disconnected, and the windings (32a, 32b, 32c) of the second driving motor 3 are switched back to the normal circuit of the second driving motor 3 to ensure the normal operation of the second driving motor 3 and the components driven by it.
  • the second driving motor 3 is a three-phase motor including three sets of windings (32a, 32b, 32c).
  • the structure and connection mode of the second inverter circuit 4 are the same as those in the second embodiment of the first aspect, and will not be repeated here.
  • the electrical connection part 1046 includes a connection line 1070.
  • the eleventh switching element 1061 is a single-pole double-throw switch, the static contact is connected to the negative DC bus 1092, the two moving contacts are respectively connected to the filter circuit 1024 and one end of the connection line 1070, and the other end of the connection line 1070 is connected to the second drive motor 3.
  • the positive and negative poles of the second inverter circuit 4 are respectively connected to the positive and negative poles filtered by the filter circuit 1024.
  • the eleventh switch 1061 is closed to the movable contact of the connection connection line 1070.
  • the eleventh switch 1061 is closed to the movable contact connected to the filter circuit 1024.
  • the difference from the fifth embodiment is that the second driving motor 3 is a two-phase motor and includes two sets of windings (32a, 32b). Its working principle is basically the same as that of the fifth embodiment, and will not be repeated here.
  • the difference from the sixth embodiment is that the second driving motor 3 is a two-phase motor and includes two sets of windings (32a, 32b). Its working principle is basically the same as that of the sixth embodiment, and will not be repeated here.
  • the difference from the seventh embodiment is that the second driving motor 3 is a two-phase motor and includes two sets of windings (32a, 32b).
  • the structure and connection mode of the second inverter circuit 4 are the same as those in the third embodiment of the first aspect, and will not be repeated here. Its working principle is basically the same as that of the seventh embodiment, and will not be repeated here.
  • the difference from the eighth embodiment is that the second driving motor 3 is a two-phase motor and includes two sets of windings (32a, 32b). Its working principle is basically the same as that of the eighth embodiment, and will not be repeated here.
  • the difference from the ninth embodiment is that the second driving motor 3 is a two-phase motor, including two sets of windings (32a, 32b).
  • the structure and connection mode of the second inverter circuit 4 are the same as those of the fourth embodiment in the embodiment of the first aspect, and will not be repeated here. Its working principle is basically the same as that of the ninth embodiment, and will not be repeated here.
  • the motor device 100 of the electrical equipment 200 provided by the embodiment of the third aspect of the present application includes: The motor controller 1 and the first drive motor 2.
  • the first driving motor 2 is electrically connected to the first control circuit 102 of the motor controller 1.
  • the motor device 100 of the electrical equipment 200 provided by the embodiment of the third aspect of the present application includes the motor controller 1 of the electrical equipment 200 of any one of the embodiments of the first aspect and the embodiment of the second aspect, and therefore has any of the foregoing All the beneficial effects of the embodiments will not be repeated here.
  • the first control circuit 102 is also electrically connected to the second drive motor 3.
  • the first driving motor 2 includes a housing 220, as shown in FIG. 22.
  • the housing 220 includes a rear cover 204, and the motor controller 1 is fixed on the rear cover 204.
  • Fixing the motor controller 1 on the rear cover 204 of the first drive motor 2 not only facilitates the wiring of the circuit board 10 and the first drive motor 2, but also facilitates the protection of the motor controller 1 to prevent the roller and the motor controller 1 Friction and other conditions cause interference to the motor controller 1.
  • the electrical equipment 200 provided by the embodiment of the fourth aspect of the present application includes: the motor device 100 and the second drive motor 3 according to any one of the embodiments of the third aspect, and the second drive motor
  • the windings (32a, 32b, 32c) of 3 are electrically connected to the second control circuit 104 of the motor device 100.
  • the electrical equipment 200 provided by the embodiment of the fourth aspect of the present application includes the motor device 100 of any one of the embodiments of the third aspect, and therefore has all the beneficial effects of any of the foregoing embodiments, and will not be repeated here.
  • the electrical equipment 200 includes a main control board 202, as shown in FIG. 20.
  • the main control board 202 is electrically connected to the power circuit 108 of the motor device 100.
  • This solution uses the main control board 202 of the electrical equipment 200 to supply power to the motor controller 1, that is, the main control board 202 serves as the external power supply of the motor controller 1, and there is no need to configure an additional power supply for the motor controller 1, which is beneficial to simplify the electrical equipment 200. Wiring structure.
  • the main control board 202 communicates with the motor controller 1 of the motor device 100 through a communication device (such as a cable device), and sends instructions to the motor controller 1 through the communication device, and receives feedback from the motor controller 1 information.
  • a communication device such as a cable device
  • This solution uses the main control board 202 to supply power to the motor controller 1 and the first drive motor 2, and sends the motor operation instructions through communication, and receives the motor speed, temperature and other information fed back by the motor controller 1, and at the same time, according to the status of the whole machine
  • the switching component 1044 of the second control circuit 104 performs control.
  • the communication device can be, but is not limited to, a cable assembly.
  • the second drive motor 3 includes a two-phase motor.
  • the second driving motor 3 includes a three-phase motor.
  • the second driving motor 3 adopts a two-phase motor or a three-phase motor, both of which can satisfy the operation of the fan, and can also satisfy the function of a reactor, and has a simple structure and low cost.
  • the electrical equipment 200 includes a drum washing machine
  • the first driving motor 2 of the motor device 100 includes a drum motor
  • the second driving motor 3 includes a fan motor
  • the first inverter circuit 1026 includes a drum motor inverter circuit
  • the second inverter circuit 4 includes a fan inverter circuit.
  • the electrical equipment 200 includes an air conditioner
  • the first driving motor 2 of the motor device 100 includes a compressor motor
  • the second driving motor 3 includes a fan motor
  • the electrical equipment 200 includes a water heater
  • the first driving motor 2 of the motor device 100 includes a compressor motor
  • the second driving motor 3 includes a fan motor.
  • the electrical appliance 200 includes a refrigerator
  • the first driving motor 2 of the motor device 100 includes a compressor motor
  • the second driving motor 3 includes a fan motor.
  • the electrical equipment 200 is not limited to drum washing machines, air conditioners, water heaters, and refrigerators, and may also be other electrical equipment 200 with dual motors or more motors.
  • drum washing machine is taken as an example to introduce some specific embodiments.
  • the integrated drum washing machine 300 for washing and drying includes a cabinet 302, a main control board 202, a motor device 100, a fan motor 344, a fan 348, a drum 314 and other components.
  • the front end of the drum 314 is open and communicates with the laundry inlet 304 of the washing machine, and is used to take and place items such as laundry.
  • the drum 314 is sleeved in the outer tube 308, and the outer tube 308 and the drum 314 are placed in the box body 302.
  • the front end of the box body 302 is provided with a door 306 for opening or closing the clothes inlet 304.
  • the drum 314 is provided with a through hole 318 and communicates with the inner space of the outer cylinder 308 through the through hole 318.
  • the inner wall of the drum 314 is also generally provided with lifting ribs 319, which are used to drive the clothes to rise, so that the clothes fall under the action of gravity after they rise to achieve agitation.
  • a water supply valve 320 is fixed inside the box 302, the water supply valve 320 has an inlet and an outlet, and the inlet of the water supply valve 320 is connected to a tap of a water pipe.
  • the water supply valve 320 uses a water supply valve motor as a driving source, and opens or closes the outlet of the water supply valve 320 according to the rotation amount of the water supply valve motor.
  • the outlet of the water supply valve 320 is connected to the water injection box 324.
  • tap water is injected into the water injection box 324 through the water supply valve 320.
  • the water injection box 324 has a cylindrical water injection port 326 that is inserted into the outer tube 308 to inject water into the outer tube 308.
  • the outer cylinder 308 is connected to the upper end of the drain pipe 328 at the lowest position, and the drain valve 330 is provided on the drain pipe 328.
  • the drain valve 330 uses the drain valve motor as a driving source, and opens or closes the drain valve 330 according to the rotation amount of the drain valve motor.
  • the drain valve 330 is closed, the water injected into the outer cylinder 308 from the water injection port 326 is stored in the outer cylinder 308.
  • the drain valve 330 is opened, the water in the outer cylinder 308 is drained through the drain pipe 328.
  • the drum washing machine 300 is provided with an air duct, and a fan 348 is provided in the air duct, and the fan 348 is used to drive the air flow in the air duct.
  • the two ends of the air duct are respectively communicated with the front and rear ends of the drum 314, so that the airflow forms a circulation.
  • a condenser or a heater can also be arranged in the air duct, so as to quickly take away the humid air in the drum 314, so as to realize the drying function.
  • the fan motor 344 is connected to the fan 348 for driving the fan 348 to rotate.
  • the air duct includes a front air duct 336, a main air duct 334, and a rear air duct 350 that are connected in sequence.
  • the main air duct 334 is located below the outer cylinder 308; the front air duct 336 is located in front of the outer cylinder 308 and communicates with the inner space of the outer cylinder 308 through the front end of the outer cylinder 308; the rear air duct 350 is located behind the outer cylinder 308 and passes through the rear end of the outer cylinder 308 The part communicates with the inner space of the outer cylinder 308.
  • a fan housing 338 is fixed at the rear end of the main air duct 334.
  • the fan housing 338 has an air inlet 340 and an air outlet 342.
  • the air inlet 340 is connected to the internal space of the main air duct 334, and the air outlet 342 It is connected to the lower end of the rear air duct 350.
  • a fan 348 is fixed in the fan housing 338, and a fan motor 344 is fixed outside the fan housing 338.
  • the fan motor 344 is connected to the fan 348 through a fan rotating shaft 346 to drive the fan 348 to rotate.
  • the motor device 100 includes a drum motor 310 and a motor controller 1.
  • the drum motor 310 is located behind the outer drum 308 and is directly connected to the drum 314 through the rotating shaft 312.
  • the drum 314 is located below the outer cylinder 308 and is connected to the drum 314 through a transmission device such as a pulley.
  • the drum motor 310 is used to drive the drum 314 to rotate, and the rotation of the drum 314 drives the laundry and other items inside to rotate, fall, rub, etc., so as to realize washing and dehydration functions.
  • the motor controller 1 is arranged on the rear cover 204 of the drum motor 310, and the motor controller 1 and the drum motor 310 are electrically connected.
  • the motor controller 1 includes a first control circuit 102 and a second control circuit 104.
  • the first control circuit 102 is used to implement a first control function
  • the second control circuit 104 is used to implement a second control function.
  • the first control function controls the operation of the drum motor 310
  • the second control function is used to equivalently realize the function of the incoming line reactor.
  • the circuit board 10 includes the first control circuit 102 and the second control circuit 104 described above. Among them, the first control function controls the operation of the driving motor of the drum 314; the second control function controls the switching assembly 1044 according to the state of the whole machine.
  • the second control circuit 104 includes a switching component 1044 and a control module. According to the operating status of the whole machine, the second control function determines whether the windings (32a, 32b, 32c) of the fan motor 344 are connected to the AC power input terminal or the rectified DC bus terminal (that is, the rectified DC bus terminal) by controlling the switching component 1044. On the DC bus 1094).
  • the second control function controls the switching component 1044 to switch the fan
  • the windings (32a, 32b, 32c) of 348 are serially connected to the AC power input terminal or the rectified DC bus 1094 to act as a reactor; when the whole machine is in the drying state, that is, when the (drying) fan 348 needs to run,
  • the second control function controls the switching component 1044 to switch the windings (32a, 32b, 32c) of the fan 348 back to the circuit of the normal fan 348 in advance, and the AC or DC incoming line is connected to the corresponding circuit through a direct connection.
  • the fan motor 344 may be a three-phase motor or a two-phase motor.
  • the windings (32a, 32b, 32c) of the fan motor 344 are serially connected to the rectified DC bus end, they can be serially connected to the DC positive bus 1090 or the DC negative bus 1092.
  • the hardware connection methods are divided into two respectively: one is the direct connection of the windings (32a, 32b, 32c), and the other is the inverter circuit of the fan 348
  • the freewheeling diode in the H-bridge acts as a part of the series-in circuit.
  • the inverter circuit of the fan motor 344 and the inverter circuit of the drum motor 310 share the DC bus 1094.
  • the windings (32a, 32b, 32c) of the fan motor 344 are serially connected to the positive DC bus 1090, the windings (32a, 32b, 32c) of the three-phase (or two-phase) fan motor 344 are connected in series with the upper tube freewheeling diode 44 of the H bridge Then connect to the corresponding circuit; when the windings (32a, 32b, 32c) of the fan motor 344 are serially connected to the negative DC bus 1092, the windings (32a, 32b, 32c) of the three-phase (or two-phase) fan motor 344 are connected in series with the H bridge The freewheeling diode 46 of the lower tube is then connected to the corresponding circuit.
  • the main control board 202 of the washing machine supplies power and communication to the motor controller 1 through the cable assembly, issues motor operation instructions and receives feedback information from the motor controller 1, and the motor controller 1 controls the operation of the drum motor and feeds back the motor by receiving instructions from the upper computer. Speed, temperature and other information, while controlling the switching component 1044 in the second control function according to the state of the whole machine.
  • the washing machine main control board 202 provides power to the motor device 100, and issues motor operation instructions and receives feedback information through communication.
  • the motor controller 1 controls the operation of the motor after receiving the operation instructions from the washing machine main control board 202 .
  • the motor device 100 includes a drum motor 310 and a motor controller 1.
  • the motor controller 1 is arranged on the rear cover 204 of the motor, and the motor controller 1 and the drum motor 310 are electrically connected.
  • the motor controller 1 Including the first control function and the second control function, the first control function controls the operation of the motor, and the second control function is used to equivalently realize the function of the incoming line reactor.
  • the fan motor adopts a three-phase motor, and the windings (32a, 32b, 32c) of the fan motor are directly connected in series to the AC power inlet.
  • the switching assembly 1044 includes a first switching element 1051, a second switching element 1052 and a third switching element 1053, and the electrical connection portion 1046 includes a first connection line 1071 and a second connection line 1072.
  • the first inverter circuit 1026 is a drum motor inverter circuit
  • the second inverter circuit 4 is a fan inverter circuit.
  • the first switching element 1051 is a single-pole single-throw switch
  • the second switching element 1052 and the third switching element 1053 are single-pole double-throw switches.
  • the fan motor is a three-phase motor, including three sets of windings (32a, 32b, 32c).
  • the static contact of the second switching element 1052 is connected to the one-phase winding 32a of the fan motor, and the two moving contacts are respectively connected to the first connection line 1071 and the fan inverter circuit.
  • the static contact of the third switching element 1053 is connected to the other phase winding 32b of the fan motor, and the two moving contacts are respectively connected to the second connection line 1072 and the fan inverter circuit.
  • the first switching element 1051 When the whole machine is in the non-drying state, the first switching element 1051 is disconnected, the second switching element 1052 is closed to the moving contact of the first connection line 1071, and the third switching element 1053 is closed to the connection of the second connection line 1072. Moving contacts.
  • the first switching element 1051 When the whole machine is in the drying state, the first switching element 1051 is closed, the second switching element 1052 is closed to the moving contact connected to the fan inverter circuit, and the third switching element 1053 is closed to the moving contact connected to the fan inverter circuit.
  • the difference from the first embodiment is that the fan motor adopts a two-phase motor, and the windings (32a, 32b) of the fan motor are directly connected in series to the AC power inlet.
  • the fan motor adopts a three-phase motor, and the windings (32a, 32b, 32c) of the fan motor are directly connected to the DC positive bus 1090.
  • the electrical connection portion 1046 includes a third connection line 1073 and a fourth connection line 1074.
  • the switching assembly 1044 includes: a fourth switching element 1054, a fifth switching element 1055, and a sixth switching element 1056.
  • the fourth switching element 1054 is a single-pole single-throw switch, and the fifth switching element 1055 and the sixth switching element 1056 are single-pole double-throw switches.
  • the second driving motor 3 is a three-phase motor and includes three sets of windings (32a, 32b, 32c).
  • the static contact of the fifth switching element 1055 is connected to the one-phase winding 32a of the second drive motor 3, and the two moving contacts are respectively connected to the third connection line 1073 and the wind turbine inverter circuit.
  • the static contact of the sixth switching element 1056 is connected to the other phase winding 32b of the second drive motor 3, and the two moving contacts are respectively connected to the fourth connection line 1074 and the wind turbine inverter circuit.
  • the fourth switching element 1054 When the whole machine is in a non-drying state, the fourth switching element 1054 is disconnected, the fifth switching element 1055 is closed to the movable contact of the third connection line 1073, and the sixth switching element 1056 is closed to the connection of the fourth connection line 1074. Moving contacts.
  • the fourth switching element 1054 When the whole machine is in the drying state, the fourth switching element 1054 is closed, the fifth switching element 1055 is closed to the moving contact connected to the fan inverter circuit, and the sixth switching element 1056 is closed to the moving contact connected to the fan inverter circuit.
  • the fan motor adopts a three-phase motor, and the windings (32a, 32b, 32c) of the fan motor are directly connected to the DC negative bus 1092.
  • the electrical connection portion 1046 includes a fifth connection line 1075 and a sixth connection line 1076.
  • the switching assembly 1044 includes: an eighth switching element 1058, a ninth switching element 1059, and a tenth switching element 1060.
  • the eighth switching element 1058 is a single-pole single-throw switch, and the ninth switching element 1059 and the tenth switching element 1060 are single-pole double-throw switches.
  • the second driving motor 3 is a three-phase motor and includes three sets of windings (32a, 32b, 32c).
  • the static contact of the ninth switching element 1059 is connected to the one-phase winding 32a of the second drive motor 3, and the two moving contacts are respectively connected to the fifth connection line 1075 and the second inverter circuit 4.
  • the static contact of the tenth switching element 1060 is connected to the other phase winding 32b of the second drive motor 3, and the two moving contacts are respectively connected to the sixth connection line 1076 and the second inverter circuit 4.
  • the eighth switching element 1058 When the whole machine is in the non-drying state, the eighth switching element 1058 is disconnected, the ninth switching element 1059 is closed to the moving contact of the fifth connection line 1075, and the tenth switching element 1060 is closed to the connection of the sixth connection line 1076. Moving contacts.
  • the eighth switching element 1058 is closed, the ninth switching element 1059 is closed to the moving contact connected to the fan inverter circuit, and the tenth switching element 1060 is closed to the moving contact connected to the fan inverter circuit.
  • the difference from the third embodiment is that the fan motor adopts a two-phase motor, and the windings (32a, 32b) of the fan motor are directly connected to the DC positive bus 1090.
  • the difference from the fourth embodiment is that the fan motor adopts a two-phase motor, and the windings (32a, 32b) of the fan motor are directly connected in series with the negative DC bus 1092.
  • the fan motor adopts a three-phase motor, and the windings (32a, 32b, 32c) of the fan motor are connected to the DC positive bus 1090 through the inverter H-bridge freewheeling diode.
  • the fan inverter circuit and the drum motor inverter circuit share a rectifier circuit 1096.
  • the switching assembly 1044 includes a seventh switching element 1057.
  • the electrical connection part 1046 includes a connection line 1070.
  • the seventh switching element 1057 is a single-pole double-throw switch, the static contact is connected to the DC positive bus 1090, the two moving contacts are respectively connected to the first control circuit 102 and one end of the connection line 1070, and the other end of the connection line 1070 is connected to the second drive motor 3 windings (32a, 32b, 32c).
  • the positive and negative poles of the wind turbine inverter circuit are respectively connected with the positive and negative poles filtered by the filter circuit 1024.
  • the seventh switching element 1057 is closed to the movable contact of the connection line 1070.
  • the seventh switching element 1057 is closed to the movable contact of the filter circuit 1024.
  • the fan motor adopts a three-phase motor, and the windings (32a, 32b, 32c) of the fan motor are connected to the DC negative bus 1092 through the inverter H-bridge freewheeling diode.
  • the fan inverter circuit and the drum motor inverter circuit share a rectifier circuit 1096.
  • the switch assembly 1044 includes an eleventh switch 1061.
  • the electrical connection part 1046 includes a connection line 1070.
  • the eleventh switching element 1061 is a single-pole double-throw switch.
  • the static contact is connected to the DC negative bus 1092, the two moving contacts are respectively connected to the filter circuit 1024 and one end of the connection line 1070, and the other end of the connection line 1070 is connected to the second drive motor 3.
  • the positive and negative poles of the wind turbine inverter circuit are respectively connected with the positive and negative poles filtered by the filter circuit 1024.
  • the eleventh switching element 1061 is closed to the movable contact of the connection line 1070.
  • the eleventh switch 1061 is closed to the moving contact of the filter circuit 1024.
  • the difference from the seventh embodiment is that the fan motor adopts a two-phase motor, and the windings (32a, 32b) of the fan motor are connected to the DC positive bus 1090 through the inverter H-bridge freewheeling diode.
  • the difference from the eighth embodiment is that the fan motor adopts a two-phase motor, and the windings (32a, 32b) of the fan motor are connected to the DC negative bus 1092 through the inverter H-bridge freewheeling diode.
  • the function of the incoming line reactor is integrated into the motor controller, and the motor controller is fixed on the rear cover of the drum drive motor, which can effectively improve the integration of the washing machine system and improve Production efficiency, reduce material costs, increase the utilization rate of the internal space of the washing machine, and bring convenience for optimizing the internal wiring design and structural design of the washing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电器设备(200)的电机控制器(1)、电器设备的电机装置(100)和电器设备,该电机控制器包括:第一控制电路(102),第一控制电路与第一驱动电机(2)和第二驱动电机(3)电连接,用于控制第一驱动电机和第二驱动电机运行;和第二控制电路(104),第二控制电路与第二驱动电机的绕组电连接,用于控制第二驱动电机的绕组(32a、32b、32c)充当电抗器。当需要电抗器时,利用第二驱动电机的绕组充当电抗器,简化了电器设备的结构,节省了整机内部的利用空间,能够提高电器设备的集成度,并减少安装工序,提升生产效率,减少电器设备的系统材料成本。

Description

电器设备的电机控制器、电器设备的电机装置和电器设备 技术领域
本申请涉及电器设备技术领域,具体而言,涉及一种电器设备的电机控制器、一种电器设备的电机装置和一种电器设备。
背景技术
通常,洗衣机等电器设备包括电机装置、电抗器等结构。电机装置安装在一个部位,用于驱动滚筒转动。电抗器通常安装在其他部位并通过导线接入电器设备的电路中。由于电机装置与电抗器需要分别单独安装,既占用较多的空间,导致电器设备结构复杂;且较多的部件安装,使得电器设备的生产线效率偏低,需要较多工序,导致组装成本偏高。
发明内容
为了解决上述技术问题至少之一,本申请的一个目的在于提供一种电器设备的电机控制器。
本申请的另一个目的在于提供另一种电器设备的电机控制器。
本申请的又一个目的在于提供一种包括上述电机控制器的电机装置。
本申请的再一个目的在于提供一种包括上述电机装置的电器设备。
为了实现上述目的,本申请第一方面的技术方案提供了一种电器设备的电机控制器,该电器设备包括第一驱动电机和第二驱动电机,该第一驱动电机的运行功率大于该第二驱动电机的运行功率,其中,该电机控制器包括:第一控制电路,该第一控制电路与该第一驱动电机和该第二驱动电机电连接,用于控制该第一驱动电机和该第二驱动电机运行;和第二控制电路,该第二控制电路与该第二驱动电机的绕组电连接,用于控制该第二驱动电机的绕组充当电抗器。
本申请第一方面的技术方案提供的电器设备的电机控制器,包括第一控制 电路和第二控制电路,且第一控制电路既与第一驱动电机电连接,又与第二驱动电机电连接,使得第一驱动电机的电机控制器具备三个控制功能,其中一个功能控制第一驱动电机运行,另一个功能控制第二驱动电机运行,还有一个功能控制第二驱动电机的绕组充当电抗器。如此一来,当需要电抗器时,直接利用第二控制电路使第二驱动电机的绕组充当电抗器即可,从而省去了额外的电抗器,既简化了电器设备的结构,节省了整机内部的利用空间,能够提高电器设备的集成度,并减少安装工序,提升生产效率,有效减少电器设备的系统材料成本。
换言之,本方案将第一驱动电机的控制电路和第二驱动电机的控制电路集成在一起,则无需对第二驱动电机额外设置控制器,从而提高了电器设备的集成度;还有利于第一驱动电机和第二驱动电机共用某些硬件结构(如共用整流电路),这能够减少电器设备的元器件数量,简化电器设备的线路布局。同时,该电机控制器还增设了第二控制电路,使得第二驱动电机的绕组可以充当电抗器,由此省去电器设备额外设置的电抗器,进一步减少了部件数量,简化了整机结构,节约了整机内部空间,既有利于降低成本,也有利于简化安装工序,提高生产效率。
在上述技术方案中,该电机控制器包括电源电路,该电源电路用于连接外部电源;该第二控制电路用于使该第二驱动电机的绕组选择性地接入该电源电路。
当电器设备运行主要功能时,第一驱动电机运行,此时电机控制器功率较大,一般需要进线电抗器;而当电器设备运行次要功能时,第二驱动电机运行,此时控制器功率较小,一般不需要进线电抗器。因此,在电机控制器上增设第二控制电路,利用第二控制电路将第二驱动电机的绕组选择性地接入电源电路,即可利用第二驱动电机的绕组等效实现进线电抗器的功能。这相当于将进线电抗器的功能集成在了电机控制器中,从而省去了额外设置的进线电抗器,可以有效提高电器设备的集成度,提升生产效率,减少材料成本,提高电器设备内部空间的利用率,为优化电器设备内部布线设计以及结构设计带来便利。
在上述技术方案中,该第一控制电路与该电源电路电连接;该第二控制电路与该电源电路电连接,该第二控制电路包括组件切换电路,该组件切换电路 包括连接线路和设在该连接线路上的切换件,该连接线路将该第二驱动电机的绕组串联接入该电源电路,该切换件用于根据该电器设备的状态控制该连接线路的通断,以使该第二驱动电机的绕组选择性地串联接入该电源电路。
电机控制器通过电源电路来连接外部电源,保证电机控制器的正常供电。同时,电源电路、第一控制电路和第二控制电路集成在电机控制器上,则第一控制电路和第二控制电路与电源电路相距较近,便于布线设计,简化线路结构,提高电机控制器的电路板的集成度。电源电路为第一控制电路供电,保证第一控制电路能够控制第一驱动电机和第二驱动电机正常运行。第二控制电路通过组件切换电路实现控制功能,具体通过控制切换件闭合或断开来控制第二驱动电机的绕组选择性地串联接入电源电路。当切换件导通连接线路,则第二驱动电机的绕组通过连接线路串联接入电源电路;当切换件断开连接线路时,则第二驱动电机的绕组与电源电路断开。本方案构思巧妙,且成本低,易于推广。
在上述技术方案中,该第一控制电路包括:第一逆变电路,该第一逆变电路与该第一驱动电机电连接;和第二逆变电路,该第二逆变电路与该第二驱动电机电连接,且该第二逆变电路与该第一逆变电路相并联。
第一控制电路包括第一逆变电路和第二逆变电路,且第一逆变电路和第二逆变电路相并联,便于共用整流电路,则无需为第二驱动电机额外设置整流电路,因而提高了电机控制器的集成度,降低了产品成本。第一逆变电路能够将电压调整为适合第一驱动电机运行的电压,第二逆变电路能够将电压调整为适合第二驱动电机运行的电压,从而保证第一驱动电机和第二驱动电机的正常运行。当然,第一控制电路还可以包括其他用于控制第一驱动电机和第二驱动电机运行的电路结构。
在上述技术方案中,该电源电路包括:整流主电路,用于连接该外部电源;和滤波电路,该滤波电路连接该整流主电路与该第一控制电路;其中,该整流主电路与该滤波电路之间连接有直流母线,该组件切换电路接在该直流母线上,以使该第二驱动电机的绕组串联在该直流母线上。
本方案能够将第二驱动电机的绕组串联在整流电路整流后的直流母线上,使得第二驱动电机的绕组也能够串联在整流后的直流母线上,使得第二驱动电机的绕组串入交流电源进线中,从而使得第二驱动电机的绕组充当进线电抗器 的功能。如此,便于技术人员根据电路板的具体形状、尺寸、布局及电器设备的其他结构等因素进行合理设计,以优化电路板的结构和性能。
具体地,电源电路包括整流主电路和滤波电路。整流主电路能够将交流电转换为直流电,这样即可利用交流电源为电机控制器供电,便于电器设备利用常见的市政交流电等电源工作,提高电器设备的普适性。滤波电路滤去整流输出电压中的纹波,从而保证供给第一控制电路的电压更加稳定,便于第一控制电路根据第一驱动电机和第二驱动电机的运行需求提供所需的电能,满足第一驱动电机和第二驱动电机的运行需求。同时,直流母线位于整流主电路与滤波电路之间,则组件切换电路可以接入整流主电路和滤波电路之间,防止第二驱动电机的绕组串入后对滤波电路及后续第一控制电路的运行造成影响。
在上述技术方案中,该直流母线包括直流正母线;该切换件接入该直流正母线,用于控制该直流正母线与该第二驱动电机的绕组导通或直接与该滤波电路导通;或者该直流母线包括直流负母线;该切换件接入该直流负母线,用于控制该直流负母线与该第二驱动电机的绕组导通或直接与该滤波电路导通。
第二逆变电路和第一逆变电路共用整流电路,则无需为第二驱动电机额外设置整流电路,因而提高了电机控制器的集成度,降低了产品成本。本方案具体利用一个切换件和一个连接线路实现了第二驱动电机的绕组的选择性串入电源电路,有利于降低成本。
具体地,组件切换电路可以接在直流正母线上。当整机处于第一驱动电机运行对应的状态时,切换件控制直流正母线与第二驱动电机的绕组导通,则整流主电路、直流正母线、连接线路、第二驱动电机的绕组的中性点、第二驱动电机的绕组、第二逆变电路的H桥的上管续流二极管顺次导通,然后接第一逆变电路,即:实现了将第二驱动电机的绕组接入直流正母线。当整机处于第二驱动电机运行对应的状态时,切换件控制直流正母线与滤波电路直接连通,则第二驱动电机的绕组与电源电路之间断开,第二驱动电机的绕组切回第二驱动电机的正常电路中,保证第二驱动电机及其驱动的部件的正常运行。
或者,组件切换电路也可以接在直流负母线上。当整机处于第一驱动电机运行对应的状态时,切换件控制直流负母线与第二驱动电机的绕组导通,则滤波电路、第二逆变电路上的H桥的下管续流二极管、第二驱动电机的绕组、 第二驱动电机的绕组的中性点、连接线路、整流主电路顺次导通,即:实现了将第二驱动电机的绕组接入直流负母线。当整机处于第二驱动电机运行对应的状态时,切换件控制直流负母线与滤波电路直接连通,则第二驱动电机的绕组与电源电路之间断开,第二驱动电机的绕组切回第二驱动电机的正常电路中,保证第二驱动电机及其驱动的部件的正常运行。
在上述任一技术方案中,该组件切换电路具体用于:当该电器设备处于该第一驱动电机运行对应的状态时,该切换件控制该连接线路处于导通状态,以使该第二驱动电机的绕组串联接入该电源电路;当该电器设备处于该第二驱动电机运行对应的状态时,该切换件控制该连接线路处于断开状态,以使该第二驱动电机的绕组与所电源电路断开。
对于具备第一驱动电机和第二驱动电机的电器设备而言,电器设备运行第二驱动电机对应的功能时,控制器功率低无需进线电抗器,而电器设备运行第一驱动电机对应的功能时,控制器功率高需要进线电抗器。因此,当电器设备整机处于第一驱动电机运行对应的状态时,即第二驱动电机不需要运行时,切换件控制连接线路处于导通状态,即可将第二驱动电机的绕组串入电源电路,充当电抗器的功能。而当整机处于第二驱动电机运行对应的状态时,即第二驱动电机需要运行时,则切换件控制连接线路处于断开状态,即可将第二驱动电机的绕组切回到正常的电路中,保证第二驱动电机及其驱动的部件的正常运行。
本申请第二方面的技术方案提供了一种电器设备的电机控制器,该电器设备包括第一驱动电机和第二驱动电机,该第一驱动电机的运行功率大于该第二驱动电机的运行功率,该电机控制器包括:第一控制电路,该第一控制电路与该第一驱动电机电连接,用于控制该第一驱动电机运行;和第二控制电路,该第二控制电路与该第二驱动电机的绕组电连接,用于控制该第二驱动电机的绕组充当电抗器。
本申请第二方面的技术方案提供的电器设备的电机控制器,包括第一控制电路和第二控制电路,使得第一驱动电机的电机控制器具备两个控制功能,其中一个功能控制第一驱动电机运行,另一个控制功能控制第二驱动电机的绕组充当电抗器。如此一来,当需要电抗器时,直接利用第二控制电路使第二驱动 电机的绕组充当电抗器即可,从而省去了额外的电抗器,既简化了电器设备的结构,节省了整机内部的利用空间,能够提高电器设备的集成度,并减少安装工序,提升生产效率,有效减少电器设备的系统材料成本。
另外,本申请提供的上述技术方案中的电机控制器还可以具有如下附加技术特征:
在上述技术方案中,该电路板包括电源电路,该电源电路用于连接外部电源;该第二控制电路用于使该第二驱动电机的绕组选择性地接入该电源电路。
当电器设备运行主要功能时,第一驱动电机运行,此时电机控制器功率较大,一般需要进线电抗器;而当电器设备运行次要功能时,第二驱动电机运行,此时控制器功率较小,一般不需要进线电抗器。因此,在第一驱动电机的电机控制器上增设第二控制电路,利用第二控制电路将第二驱动电机的绕组选择性地接入电源电路,即可利用第二驱动电机的绕组等效实现进线电抗器的功能。这相当于将进线电抗器的功能集成在了第一驱动电机的电机控制器中,从而省去了额外设置的进线电抗器,可以有效提高电器设备的集成度,提升生产效率,减少材料成本,提高电器设备内部空间的利用率,为优化电器设备内部布线设计以及结构设计带来便利。
在上述技术方案中,该第一控制电路与该电源电路电连接;该第二控制电路与该电源电路电连接,该第二控制电路包括组件切换电路,该组件切换电路包括电连接部和设在该电连接部上的切换组件,该电连接部将该第二驱动电机的绕组串联接入该电源电路,该切换组件用于根据该电器设备的状态控制该电连接部的通断,以使该第二驱动电机的绕组选择性地串联接入该电源电路。
电机控制器通过电源电路来连接外部电源,保证电机控制器的正常供电。同时,电源电路、第一控制电路和第二控制电路集成在电机控制器上,则第一控制电路、第二控制电路与电源电路相距较近,便于布线设计,简化线路结构,提高电路板的集成度。电源电路为第一控制电路供电,保证第一控制电路能够控制第一驱动电机正常运行。第二控制电路通过组件切换电路实现控制功能,具体通过控制切换组件闭合或断开来控制第二驱动电机的绕组选择性地串联接入电源电路。当切换组件导通电连接部,则第二驱动电机的绕组通过电连接部串联接入电源电路;当切换组件断开电连接部时,则第二驱动电机的绕组与 电源电路断开。本方案构思巧妙,且成本低,易于推广。
在上述技术方案中,该组件切换电路具体用于:当该电器设备处于该第一驱动电机运行对应的状态时,该切换组件控制该电连接部处于导通状态,以使该第二驱动电机的绕组串联接入该电源电路;当该电器设备处于该第二驱动电机运行对应的状态时,该切换组件控制该电连接部处于断开状态,以使该第二驱动电机的绕组与所电源电路断开。
如前该,对于具备第一驱动电机和第二驱动电机的电器设备而言,电器设备运行第二驱动电机对应的功能时,控制器功率低无需进线电抗器,而电器设备运行第一驱动电机对应的功能时,控制器功率高需要进线电抗器。因此,当电器设备整机处于第一驱动电机运行对应的状态时,即第二驱动电机不需要运行时,切换组件控制电连接部处于导通状态,即可将第二驱动电机的绕组串入电源电路,充当电抗器的功能。而当整机处于第二驱动电机运行对应的状态时,即第二驱动电机需要运行时,则切换组件控制电连接部处于断开状态,即可将第二驱动电机的绕组切回到正常的电路中,保证第二驱动电机及其驱动的部件的正常运行。
在上述技术方案中,该电源电路包括:交流电源接入电路,该交流电源接入电路包括交流电源正极端和交流电源负极端;和整流电路,该整流电路连接该交流电源接入电路与该第一控制电路。
电源电路包括交流电源接入电路和整流电路。交流电源接入电路的交流电源正极端接交流电源的正极,交流电源负极端接交流电源的负极,这样即可利用交流电源为电机控制器供电,便于电器设备利用常见的市政交流电等电源工作,提高电器设备的普适性。而整流电路能够将交流电转换为直流电,便于第一控制电路根据第一驱动电机的运行需求提供所需的电能,满足第一驱动电机的运行需求。
在上述技术方案中,该组件切换电路接在该交流电源正极端与该整流电路之间,以使该第二驱动电机的绕组串联在该交流电源正极端与该整流电路之间。
本方案能够直接将第二驱动电机的绕组串入交流电源进线中,从而使得第二驱动电机的绕组充当进线电抗器的功能。本方案结构简单,便于布线设计。
在上述技术方案中,该电连接部包括第一连接线路和第二连接线路,该切换组件包括:第一切换件,串联在该交流电源正极端与该整流电路之间,用于控制该交流电源正极端与该整流电路之间的通断,且该第一切换件的两端分别连接该第一连接线路的一端和该第二连接线路的一端;第二切换件,连接在该第一连接线路的另一端,用于控制该第二驱动电机的一相绕组与该第一连接线路导通或与该第二驱动电机的第二逆变电路导通;和第三切换件,连接在该第二连接线路的另一端,用于控制该第二驱动电机的另一相绕组与该第二连接线路导通或与该第二驱动电机的第二逆变电路导通。
本方案具体利用三个切换件和两个连接线路实现了第二驱动电机的绕组的选择性串入电源电路。具体地,当整机处于第一驱动电机运行对应的状态时,第一切换件断开交流电源正极端与整流电路之间的直接连通,第二切换件控制第二驱动电机的一相绕组与第一连接线路导通,第三切换件控制第二驱动电机的另一相绕组与第二连接线路导通,则交流电源正极端、第一连接线路、第二驱动电机的一相绕组、第二驱动电机的另一相绕组、第二连接线路顺次导通,然后接整流电路,即:实现了将第二驱动电机的绕组串联在交流电源正极端与整流电路之间。当整机处于第二驱动电机运行对应的状态时,第一切换件控制交流电源正极端与整流电路之间处于直接连通状态,第二切换件控制第二驱动电机的一相绕组与第二驱动电机的第二逆变电路导通,第三切换件控制第二驱动电机的另一相绕组与第二驱动电机的第二逆变电路导通,则第二驱动电机的绕组与电源电路之间断开,第二驱动电机的绕组切回第二驱动电机的正常电路中,保证第二驱动电机及其驱动的部件的正常运行。
在上述技术方案中,该组件切换电路接在该整流电路整流后的直流母线上,以使该第二驱动电机的绕组串联在该直流母线上。
本方案能够将第二驱动电机的绕组串联在整流电路整流后的直流母线上,使得第二驱动电机的绕组也能够串联在整流后的直流母线上,也使得第二驱动电机的绕组串入交流电源进线中,从而使得第二驱动电机的绕组充当进线电抗器的功能。如此,便于技术人员根据电路板的具体形状、尺寸、布局及电器设备的其他结构等因素进行合理设计,以优化电路板的结构和性能。
在上述技术方案中,该整流电路包括:整流主电路,该整流主电路与该交 流电源接入电路连接;和滤波电路,该滤波电路连接该整流主电路与该第一控制电路,该直流母线接在该整流主电路与该滤波电路之间。
整流电路包括整流主电路和滤波电路,整流主电路将交流电转换为直流电,滤波电路滤去整流输出电压中的纹波,从而保证供给第一控制电路的电压更加稳定。同时,直流母线位于整流电路与滤波电路之间,则组件切换电路可以接入整流主电路和滤波电路之间,防止第二驱动电机的绕组串入后对滤波电路及后续第一控制电路的运行造成影响。
在上述技术方案中,该直流母线包括直流正母线;其中,该组件切换电路接入该直流正母线,以使该第二驱动电机的绕组串联接入该直流正母线。
本方案直接将组件切换电路接入直流正母线,使得第二驱动电机的绕组也能够串联在整流后的直流正母线上,从而实现第二驱动电机的绕组等效实现进线电控器的功能。
在上述技术方案中,该电连接部包括第三连接线路和第四连接线路,该切换组件包括:第四切换件,接入该直流正母线,用于控制该直流正母线与该滤波电路之间的通断,且该第四切换件的两端分别连接该第三连接线路的一端和该第四连接线路的一端;第五切换件,连接在该第三连接线路的另一端,用于控制该第二驱动电机的一相绕组与该第三连接线路导通或与该第二驱动电机的第二逆变电路导通;和第六切换件,连接在该第四连接线路的另一端,用于控制该第二驱动电机的另一相绕组与该第四连接线路导通或与该第二驱动电机的第二逆变电路导通。
本方案具体利用三个切换件和两个连接线路实现了第二驱动电机的绕组的选择性串入电源电路。具体地,当整机处于第一驱动电机运行对应的状态时,第四切换件断开直流正母线与滤波电路之间的直接连通,第五切换件控制第二驱动电机的一相绕组与第三连接线路导通,第六切换件控制第二驱动电机的另一相绕组与第四连接线路导通,则交流电源正极端、整流主电路、直流正母线、第三连接线路、第二驱动电机的一相绕组、第二驱动电机的另一相绕组、第四连接线路顺次导通,然后接滤波电路,即:实现了将第二驱动电机的绕组接入直流正母线。当整机处于第二驱动电机运行对应的状态时,第四切换件导通直流正母线与滤波电路之间的直接连通,第五切换件控制第二驱动电机的一相绕 组与第二驱动电机的第二逆变电路导通,第六切换件控制第二驱动电机的另一相绕组与第二驱动电机的第二逆变电路导通,则第二驱动电机的绕组与电源电路之间断开,第二驱动电机的绕组切回第二驱动电机的正常电路中,保证第二驱动电机及其驱动的部件的正常运行。
在上述技术方案中,该电机控制器还包括第二逆变电路,该第二逆变电路与该第二驱动电机的绕组电连接;该第一控制电路包括第一逆变电路,该第二逆变电路与该第一逆变电路并联;该整流电路还与该第二逆变电路连接;该切换组件包括第七切换件,该第七切换件接入该直流正母线,用于控制该直流正母线与该第二驱动电机的绕组导通或直接与该滤波电路导通。
本方案中,第二逆变电路和第一逆变电路共用整流电路,则无需为第二驱动电机额外设置整流电路,因而提高了电机控制器的集成度,降低了产品成本。本方案具体利用一个切换件和一个连接线路实现了第二驱动电机的绕组的选择性串入电源电路,有利于降低成本。具体地,当整机处于第一驱动电机运行对应的状态时,第七切换件控制直流正母线与第二驱动电机的绕组导通,则交流电源正极端、整流主电路、直流正母线、连接线路、第二驱动电机的绕组的中性点、第二驱动电机的绕组、第二逆变电路的H桥的上管续流二极管顺次导通,然后接第一逆变电路,即:实现了将第二驱动电机的绕组接入直流正母线。当整机处于第二驱动电机运行对应的状态时,第七切换件控制直流正母线与滤波电路直接连通,则第二驱动电机的绕组与电源电路之间断开,第二驱动电机的绕组切回第二驱动电机的正常电路中,保证第二驱动电机及其驱动的部件的正常运行。
在上述技术方案中,该直流母线包括直流负母线;其中,该组件切换电路接入该直流负母线,以使该第二驱动电机的绕组串联接入该直流负母线。
本方案直接将组件切换电路接入直流负母线,使得第二驱动电机的绕组也能够串联在整流后的直流负母线上,由于直流负母线与直流正母线属于一个回路,因而也能够实现第二驱动电机的绕组等效实现进线电控器的功能。
在上述技术方案中,该电连接部包括第五连接线路和第六连接线路,该切换组件包括:第八切换件,接入该直流负母线,用于控制该直流负母线与该滤波电路之间的通断,且该第八切换件的两端分别连接该第五连接线路的一端和 该第六连接线路的一端;第九切换件,连接在该第五连接线路的另一端,用于控制该第二驱动电机的一相绕组与该第五连接线路导通或与该第二驱动电机的第二逆变电路导通;和第十切换件,连接在该第六连接线路的另一端,用于控制该第二驱动电机的另一相绕组与该第六连接线路导通或与该第二驱动电机的第二逆变电路导通。
本方案具体利用三个切换件和两个连接线路实现了第二驱动电机的绕组的选择性串入电源电路。具体地,当整机处于第一驱动电机运行对应的状态时,第八切换件断开直流负母线与滤波电路之间的直接连通,第九切换件控制第二驱动电机的一相绕组与第五连接线路导通,第十切换件控制第二驱动电机的另一相绕组与第六连接线路导通,则滤波电路、第五连接线路、第二驱动电机的一相绕组、第二驱动电机的另一相绕组、第六连接线路、整流主电路、交流电源负极端顺次导通,即:实现了将第二驱动电机的绕组接入直流负母线。当整机处于第二驱动电机运行对应的状态时,第八切换件导通直流负母线与滤波电路之间的直接连通,第九切换件控制第二驱动电机的一相绕组与第二驱动电机的第二逆变电路导通,第十切换件控制第二驱动电机的另一相绕组与第二驱动电机的第二逆变电路导通,则第二驱动电机的绕组与电源电路之间断开,第二驱动电机的绕组切回第二驱动电机的正常电路中,保证第二驱动电机及其驱动的部件的正常运行。
在上述技术方案中,该电机控制器还包括第二逆变电路,该第二逆变电路与该第二驱动电机的绕组电连接;该第一控制电路包括第一逆变电路,该第二逆变电路与该第一逆变电路并联;该整流电路还与该第二逆变电路连接;该切换组件包括第十一切换件,该第十一切换件接入该直流负母线,用于控制该直流负母线与该第二驱动电机的绕组导通或直接与该滤波电路导通。
本方案中,第二逆变电路和第一逆变电路共用整流电路,则无需为第二驱动电机额外设置整流电路,因而提高了电机控制器的集成度,降低了产品成本。本方案具体利用一个切换件和一个连接线路实现了第二驱动电机的绕组的选择性串入电源电路,有利于降低成本。具体地,当整机处于第一驱动电机运行对应的状态时,第十一切换件控制直流负母线与第二驱动电机的绕组导通,则滤波电路、第二逆变电路上的H桥的下管续流二极管、第二驱动电机的绕组、 第二驱动电机的绕组的中性点、连接线路、整流主电路、交流电源负极端顺次导通,即:实现了将第二驱动电机的绕组接入直流负母线。当整机处于第二驱动电机运行对应的状态时,第十一切换件控制直流负母线与滤波电路直接连通,则第二驱动电机的绕组与电源电路之间断开,第二驱动电机的绕组切回第二驱动电机的正常电路中,保证第二驱动电机及其驱动的部件的正常运行。
在上述任一技术方案中,该切换组件包括至少一个切换件,该切换件的种类包括开关元件和继电器中的至少一种。
切换组件主要通过开闭来实现电源电路、电连接部、第二驱动电机的绕组之间的通断。因此,常见的开关元件、继电器等均能满足该要求。
本申请第三方面的技术方案提供了一种电器设备的电机装置,包括:如第一方面技术方案和第二方面技术方案中任一项的电器设备的电机控制器;和第一驱动电机,该第一驱动电机与该电机控制器的第一控制电路电连接。
本申请第三方面的技术方案提供的电器设备的电机装置,因包括第一方面技术方案和第二方案技术方案中任一项的电器设备的电机控制器,因而具有上述任一技术方案所具有的一切有益效果,在此不再赘述。
在上述技术方案中,该第一驱动电机包括外壳,该外壳包括后端盖,该电机控制器固定在该后端盖上。
将电机控制器固定在第一驱动电机的后端盖上,既便于电路板与第一驱动电机接线,又便于对电机控制器起到保护作用,防止电机控制器发生摩擦等情况而对电机控制器造成干扰。
本申请第四方面的技术方案提供了一种电器设备,包括:如第三方面技术方案中任一项的电器设备的电机装置;和第二驱动电机,该第二驱动电机的绕组与该电机装置的第二控制电路电连接。
本申请第四方面的技术方案提供的电器设备,因包括第三方面技术方案中任一项的电机装置,因而具有上述任一技术方案所具有的一切有益效果,在此不再赘述。
在上述技术方案中,该电器设备包括主控板,该主控板与该电机装置的电源电路电连接。
本方案利用电器设备的主控板为电机控制器供电,即主控板充当了电机控 制器的外部电源,无需为电机控制器额外配置电源,有利于简化电器设备的布线结构。
在上述技术方案中,该主控板通过通讯装置与该电机装置的电机控制器进行通讯,并通过该通讯装置向该电机控制器下达指令,以及接收该电机控制器反馈的信息。
本方案利用主控板为电机控制器及第一驱动电机供电,并通过通讯方式下达电机运行指令,并接收电机控制器反馈的电机转速、温度等信息,同时根据整机状态对第二控制电路的切换组件进行控制。其中通讯装置可以为但不局限于电缆组件。
在上述技术方案中,该第二驱动电机包括两相电机;或者该第二驱动电机包括三相电机。
第二驱动电机采用两相电机或三相电机,都能够满足风机的运行,也能够满足电抗器功能,且结构简单,成本较低。
在上述任一技术方案中,该电器设备包括滚筒洗衣机,该电机装置的第一驱动电机包括滚筒电机,该第二驱动电机包括风机电机;或者该电器设备包括空调器,该电机装置的第一驱动电机包括压缩机电机,该第二驱动电机包括风机电机;或者该电器设备包括热水器,该电机装置的第一驱动电机包括压缩机电机,该第二驱动电机包括风机电机;或者该电器设备包括冰箱,该电机装置的第一驱动电机包括压缩机电机,该第二驱动电机包括风机电机。
当然,电器设备不局限于滚筒洗衣机、空调器、热水器、冰箱,也可以为其他具备双电机或更多电机的电器设备。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例所述的电器设备的硬件框图;
图2是本申请一个实施例所述的电器设备的硬件框图;
图3是本申请一个实施例所述的电器设备的硬件框图;
图4是本申请一个实施例所述的电器设备的硬件框图;
图5是本申请一个实施例所述的电机控制器的示意框图;
图6是本申请一个实施例所述的电器设备的硬件框图;
图7是本申请一个实施例所述的电器设备的硬件框图;
图8是本申请一个实施例所述的电器设备的硬件框图;
图9是本申请一个实施例所述的电器设备的硬件框图;
图10是本申请一个实施例所述的电器设备的硬件框图;
图11是本申请一个实施例所述的电器设备的硬件框图;
图12是本申请一个实施例所述的电器设备的硬件框图;
图13是本申请一个实施例所述的电器设备的硬件框图;
图14是本申请一个实施例所述的电器设备的硬件框图;
图15是本申请一个实施例所述的电器设备的硬件框图;
图16是本申请一个实施例所述的电机控制器的示意框图;
图17是本申请一个实施例所述的电机装置的示意框图;
图18是本申请一个实施例所述的电机装置的示意框图;
图19是本申请一个实施例所述的电器设备的示意框图;
图20是本申请一个实施例所述的电器设备的示意框图;
图21是本申请一些实施例所述的滚筒洗衣机的结构示意图;
图22是本申请一些实施例所述的电机装置的结构示意图。
其中,图1至图22中的附图标记与部件名称之间的对应关系为:
1:电机控制器;10:电路板;102:第一控制电路;1024:滤波电路;1026:第一逆变电路;104:第二控制电路;1042:组件切换电路;1044:切换组件;1046:电连接部;1050:切换件;1051:第一切换件;1052:第二切换件;1053:第三切换件;1054:第四切换件;1055:第五切换件;1056:第六切换件;1057:第七切换件;1058:第八切换件;1059:第九切换件;1060:第十切换件;1061:第十一切换件;1070:连接线路;1071:第一连接线路;1072:第二连接线路;1073:第三连接线路;1074:第四连接线路;1075:第五连接线路;1076:第六连接线路;108:电源电路;1082:交流电源接入电路;1084:交流电源正 极端;1086:交流电源负极端;1088:整流主电路;1090:直流正母线;1092:直流负母线;1094:直流母线;1096:整流电路;
2:第一驱动电机;220:外壳;204:后端盖;
3:第二驱动电机;32a、32b、32c:绕组;
4:第二逆变电路;42:IGBT;44:上管续流二极管;46:下管续流二极管;
100:电机装置;
200:电器设备;202:主控板;
300:滚筒洗衣机;302:箱体;304:投放口;306:门;308:外筒;310:滚筒电机;312:旋转轴;314:滚筒;318:贯通孔;319:提升筋;320:供水阀;324:注水盒;326:注水口;328:排水管;330:排水阀;334:主风道;336:前风道;338:风机壳体;340:吸气口;342:排气口;344:风机电机;346:风机旋转轴;348:风机;350:后风道。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图22描述本申请一些实施例所述的电器设备的电机控制器、电器设备的电机装置和电器设备。
本申请第一方面的实施例提供的电器设备的电机控制器1,电器设备包括第一驱动电机2和第二驱动电机3。第一驱动电机2的运行功率大于第二驱动电机3的运行功率。第一驱动电机2与第二驱动电机3错开时间运行。换言之,第一驱动电机2与第二驱动电机3不同时运行。
具体地,如图5所示,电机控制器1包括:第一控制电路102和第二控制电路104。第一控制电路102与第一驱动电机2和第二驱动电机3电连接,用 于控制第一驱动电机2和第二驱动电机3运行。第二控制电路104与第二驱动电机3的绕组(32a、32b、32c)电连接,用于控制第二驱动电机3的绕组(32a、32b、32c)充当电抗器。
本申请第一方面的实施例提供的电器设备的电机控制器1,包括第一控制电路102和第二控制电路104,且第一控制电路102既与第一驱动电机2电连接,又与第二驱动电机3电连接,使得第一驱动电机2的电机控制器1具备三个控制功能,其中一个功能控制第一驱动电机2运行,另一个功能控制第二驱动电机3运行,还有一个功能控制第二驱动电机3的绕组(32a、32b、32c)充当电抗器。如此一来,当需要电抗器时,直接利用第二控制电路104使第二驱动电机3的绕组(32a、32b、32c)充当电抗器即可,从而省去了额外的电抗器,既简化了电器设备的结构,节省了整机内部的利用空间,能够提高电器设备的集成度,并减少安装工序,提升生产效率,有效减少电器设备的系统材料成本。
换言之,本方案将第一驱动电机2的控制电路和第二驱动电机3的控制电路集成在一起,则无需对第二驱动电机3额外设置控制器,从而提高了电器设备的集成度;还有利于第一驱动电机2和第二驱动电机3共用某些硬件结构(如共用整流电路),这能够减少电器设备的元器件数量,简化电器设备的线路布局。同时,该电机控制器1还增设了第二控制电路104,使得第二驱动电机3的绕组(32a、32b、32c)可以充当电抗器,由此省去电器设备额外设置的电抗器,进一步减少了部件数量,简化了整机结构,节约了整机内部空间,既有利于降低成本,也有利于简化安装工序,提高生产效率。
值得说明的是,本申请中,第二驱动电机3的绕组的相数不局限于附图中的三相或两相,也可以为一相或四相或更多相。进一步地,第二驱动电机3的绕组接入电路中充当电抗器的具体相数也不受限制,比如三相绕组只有两相绕组接入电路充当电抗器,或者两相绕组全部接入电路充当电抗器都可以。只要第二驱动电机3有绕组接入电路充当电感,即可充当电抗器。
下面结合图1至图4介绍一些实施例。
实施例一
电机控制器1包括电源电路108,如图1所示。电源电路108用于连接外 部电源。第二控制电路104用于使第二驱动电机3的绕组(32a、32b、32c)选择性地接入电源电路108。
当电器设备运行主要功能时,第一驱动电机2运行,此时电机控制器1功率较大,一般需要进线电抗器;而当电器设备运行次要功能时,第二驱动电机3运行,此时控制器功率较小,一般不需要进线电抗器。因此,在电机控制器1上增设第二控制电路104,利用第二控制电路104将第二驱动电机3的绕组(32a、32b、32c)选择性地接入电源电路108,即可利用第二驱动电机3的绕组(32a、32b、32c)等效实现进线电抗器的功能。
这相当于将进线电抗器的功能集成在了电机控制器1中,从而省去了额外设置的进线电抗器,可以有效提高电器设备的集成度,提升生产效率,减少材料成本,提高电器设备内部空间的利用率,为优化电器设备内部布线设计以及结构设计带来便利。
当然,第二驱动电机3的绕组(32a、32b、32c)也可以一直接入电源电路108,即:并非选择性地接入电源电路108。这样,当第一驱动电机2运行而第二驱动电机3不运行时,第二驱动电机3的绕组(32a、32b、32c)充当进线电抗器;当第一驱动电机2电机运行而第二驱动电机3也运行时,第二驱动电机3的绕组(32a、32b、32c)既参与第二驱动电机3的正常电路以保证第二驱动电机3的正常运行,同时也接入了电源电路108,充当了进线电抗器;当第一驱动电机2不运行而第二驱动电机3运行时,第二驱动电机3的绕组(32a、32b、32c)只参与第二驱动电机3的正常电路,保证第二驱动电机3的正常运行。
进一步地,第一控制电路102与电源电路108电连接。
第二控制电路104与电源电路108电连接,第二控制电路104包括组件切换电路1042。组件切换电路1042包括连接线路1070和设在连接线路1070上的切换件1050。
连接线路1070将第二驱动电机3的绕组(32a、32b、32c)串联接入电源电路108。
切换件1050用于根据电器设备的状态控制连接线路1070的通断,以使第二驱动电机3的绕组(32a、32b、32c)选择性地串联接入电源电路108。
电机控制器1通过电源电路108来连接外部电源,保证电机控制器1的正常供电。同时,电源电路108、第一控制电路102和第二控制电路104集成在电机控制器1上,则第一控制电路102和第二控制电路104与电源电路108相距较近,便于布线设计,简化线路结构,提高电机控制器1的电路板10的集成度。电源电路108为第一控制电路102供电,保证第一控制电路102能够控制第一驱动电机2和第二驱动电机3正常运行。第二控制电路104通过组件切换电路1042实现控制功能,具体通过控制切换件1050闭合或断开来控制第二驱动电机3的绕组(32a、32b、32c)选择性地串联接入电源电路108。
当切换件1050导通连接线路1070,则第二驱动电机3的绕组(32a、32b、32c)通过连接线路1070串联接入电源电路108。当切换件1050断开连接线路1070时,则第二驱动电机3的绕组(32a、32b、32c)与电源电路108断开。本方案构思巧妙,且成本低,易于推广。
其中,组件切换电路1042具体用于:当电器设备处于第一驱动电机2运行对应的状态时,切换件1050控制连接线路1070处于导通状态,以使第二驱动电机3的绕组(32a、32b、32c)串联接入电源电路108。当电器设备处于第二驱动电机3运行对应的状态时,切换件1050控制连接线路1070处于断开状态,以使第二驱动电机3的绕组(32a、32b、32c)与所电源电路108断开。
对于具备第一驱动电机2和第二驱动电机3的电器设备而言,电器设备运行第二驱动电机3对应的功能时,控制器功率低无需进线电抗器,而电器设备运行第一驱动电机2对应的功能时,控制器功率高需要进线电抗器。因此,当电器设备整机处于第一驱动电机2运行对应的状态时,即第二驱动电机3不需要运行时,切换件1050控制连接线路1070处于导通状态,即可将第二驱动电机3的绕组(32a、32b、32c)串入电源电路108,充当电抗器的功能。而当整机处于第二驱动电机3运行对应的状态时,即第二驱动电机3需要运行时,则切换件1050控制连接线路1070处于断开状态,即可将第二驱动电机3的绕组(32a、32b、32c)切回到正常的电路中,保证第二驱动电机3及其驱动的部件的正常运行。
其中,切换件1050可以只有一种闭合状态,如单刀单掷开关,只控制一条线路的通断。切换件1050也可以具有多种闭合状态,如单刀双掷开关,通 过选择具体的闭合状态,来实现多条线路的选择性通断。
值得说明的是,电器设备200的运行模式以及运行模式的切换,一般写入计算机程序中,处理器执行计算机程序,控制各个硬件部件执行相应动作。因此,本方案中,切换件1050具体动作的时机也可以写入电器设备200的计算机程序中,与整机的状态保持吻合,实现自动切换。
比如:当电器设备200要运行第一驱动电机2运行对应的模式时,切换件1050提前设定时间(如3秒钟、5秒钟等)发生动作,导通连接线路1070,使第二驱动电机3的绕组(32a、32b、32c)串联接入电源电路108,保证后续第一驱动电机2即可正常运行。
当电器设备200要切换至第二驱动电机3运行对应的模式时,切换件1050提前设定时间(如3秒钟、5秒钟等)发生动作,断开连接线路1070,使第二驱动电机3的绕组(32a、32b、32c)与电源电路108断开,保证后续第二驱动电机3能够正常运行。
进一步地,如图1所示,第一控制电路102包括:第一逆变电路1026和第二逆变电路4。第一逆变电路1026与第一驱动电机2电连接。第二逆变电路4与第二驱动电机3电连接,且第二逆变电路4与第一逆变电路1026相并联。
第一控制电路102包括第一逆变电路1026和第二逆变电路4,且第一逆变电路1026和第二逆变电路4相并联,便于共用整流电路,则无需为第二驱动电机3额外设置整流电路,因而提高了电机控制器1的集成度,降低了产品成本。第一逆变电路1026能够将电压调整为适合第一驱动电机2运行的电压,第二逆变电路4能够将电压调整为适合第二驱动电机3运行的电压,从而保证第一驱动电机2和第二驱动电机3的正常运行。
当然,第一控制电路102还可以包括其他用于控制第一驱动电机2和第二驱动电机3运行的电路结构。
具体地,如图1所示,电源电路108包括:整流主电路1088和滤波电路1024。整流主电路1088用于连接外部电源。滤波电路1024连接整流主电路1088与第一控制电路102。
其中,整流主电路1088与滤波电路1024之间连接有直流母线1094,组 件切换电路1042接在直流母线1094上,以使第二驱动电机3的绕组(32a、32b、32c)串联在直流母线1094上。
本方案能够将第二驱动电机3的绕组(32a、32b、32c)串联在整流电路整流后的直流母线1094上,使得第二驱动电机3的绕组(32a、32b、32c)也能够串联在整流后的直流母线1094上,使得第二驱动电机3的绕组(32a、32b、32c)串入交流电源进线中,从而使得第二驱动电机3的绕组(32a、32b、32c)充当进线电抗器的功能。如此,便于技术人员根据电路板10的具体形状、尺寸、布局及电器设备的其他结构等因素进行合理设计,以优化电路板10的结构和性能。
更具体地,电源电路108包括整流主电路1088和滤波电路1024。整流主电路1088能够将交流电转换为直流电,这样即可利用交流电源为电机控制器1供电,便于电器设备利用常见的市政交流电等电源工作,提高电器设备的普适性。滤波电路1024滤去整流输出电压中的纹波,从而保证供给第一控制电路102的电压更加稳定,便于第一控制电路102根据第一驱动电机2和第二驱动电机3的运行需求提供所需的电能,满足第一驱动电机2和第二驱动电机3的运行需求。
同时,直流母线1094位于整流主电路1088与滤波电路1024之间,则组件切换电路1042可以接入整流主电路1088和滤波电路1024之间,防止第二驱动电机3的绕组(32a、32b、32c)串入后对滤波电路1024及后续第一控制电路102的运行造成影响。
进一步地,直流母线1094包括直流正母线1090。如图1所示,切换件1050接入直流正母线1090,用于控制直流正母线1090与第二驱动电机3的绕组(32a、32b、32c)导通或直接与滤波电路1024导通。
第二逆变电路4和第一逆变电路1026共用整流电路,则无需为第二驱动电机3额外设置整流电路,因而提高了电机控制器1的集成度,降低了产品成本。本方案具体利用一个切换件1050和一个连接线路1070实现了第二驱动电机3的绕组(32a、32b、32c)的选择性串入电源电路108,有利于降低成本。
具体地,组件切换电路1042可以接在直流正母线1090上。当整机处于第一驱动电机2运行对应的状态时,第二逆变电路4的IGBT 42全部断开(IGBT, Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管,可以理解为开关元件),切换件1050控制直流正母线1090与第二驱动电机3的绕组(32a、32b、32c)导通,则整流主电路1088、直流正母线1090、连接线路1070、第二驱动电机3的绕组(32a、32b、32c)的中性点、第二驱动电机3的绕组(32a、32b、32c)、第二逆变电路4的H桥的上管续流二极管44顺次导通,然后接第一逆变电路1026,即:实现了将第二驱动电机3的绕组(32a、32b、32c)接入直流正母线1090。当整机处于第二驱动电机3运行对应的状态时,切换件1050控制直流正母线1090与滤波电路1024直接连通,则第二驱动电机3的绕组(32a、32b、32c)与电源电路108之间断开,第二驱动电机3的绕组(32a、32b、32c)切回第二驱动电机3的正常电路中,保证第二驱动电机3及其驱动的部件的正常运行。
更具体地,第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第二逆变电路4通过三相桥接6个IGBT 42(开关元件)而构成,在各IGBT 42的集电极与发射极之间连接有续流二极管,即:上桥臂侧的三个上管续流二极管44和下桥臂侧的三个下管续流二极管46。第二逆变电路4的各相输出端子连接在第二驱动电机3的各相绕组上。第一逆变电路1026的构成以及与第一驱动电机2的绕组的连接方式与此相同,不再赘述。
切换件1050为单刀双掷开关,静触点连接直流正母线1090,两个动触点分别连接滤波电路1024和连接线路1070的一端,连接线路1070的另一端连接第二驱动电机3的绕组(32a、32b、32c)。第二逆变电路4的正负极分别与滤波电路1024滤波后的正负极相接。
当整机处于第一驱动电机2运行对应的状态时,切换件1050闭合至连接连接线路1070的动触点。
当整机处于第二驱动电机3运行对应的状态时,切换件1050闭合至连接滤波电路1024的动触点。
实施例二
与实施例一的区别在于:直流母线1094包括直流负母线1092。如图2所示,切换件1050接入直流负母线1092,用于控制直流负母线1092与第二驱动电机3的绕组(32a、32b、32c)导通或直接与滤波电路1024导通。
组件切换电路1042也可以接在直流负母线1092上。当整机处于第一驱动电机2运行对应的状态时,第二逆变电路4的IGBT 42全部断开,切换件1050控制直流负母线1092与第二驱动电机3的绕组(32a、32b、32c)导通,则滤波电路1024、第二逆变电路4上的H桥的下管续流二极管46、第二驱动电机3的绕组(32a、32b、32c)、第二驱动电机3的绕组(32a、32b、32c)的中性点、连接线路1070、直流负母线1092、整流主电路顺次导通,即:实现了将第二驱动电机3的绕组(32a、32b、32c)接入直流负母线1092。当整机处于第二驱动电机3运行对应的状态时,切换件1050控制直流负母线1092与滤波电路1024直接连通,则第二驱动电机3的绕组(32a、32b、32c)与电源电路之间断开,第二驱动电机3的绕组(32a、32b、32c)切回第二驱动电机3的正常电路中,保证第二驱动电机3及其驱动的部件的正常运行。
更具体地,第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第二逆变电路通过三相桥接6个IGBT 42(开关元件)而构成,在各IGBT 42的集电极与发射极之间连接有续流二极管,即:上桥臂侧的三个上管续流二极管44和下桥臂侧的三个下管续流二极管46。第二逆变电路4的各相输出端子连接在第二驱动电机的各相绕组上。
切换件1050为单刀双掷开关,静触点连接直流负母线1092,两个动触点分别连接滤波电路1024和连接线路1070的一端,连接线路1070的另一端连接第二驱动电机3的绕组(32a、32b、32c)。第二逆变电路4的正负极分别与滤波电路1024滤波后的正负极相接。
当整机处于第一驱动电机2运行对应的状态时,切换件1050闭合至连接连接线路1070的动触点。
当整机处于第二驱动电机3运行对应的状态时,切换件1050闭合至连接滤波电路1024的动触点。
实施例三
如图3所示,与实施例一的区别在于:第二驱动电机3为两相电机,包括两组绕组(32a、32b)。第二逆变电路4通过两相桥接四个IGBT 42(开关元件)而构成,在各IGBT 42的集电极与发射极之间连接有续流二极管,即:上桥臂侧的两个上管续流二极管44和下桥臂侧的两个下管续流二极管46。第二 逆变电路4的各相输出端子连接在第二驱动电机3的各相绕组上。
其工作原理与实施例一基本相同,在此不再赘述。
实施例四
如图4所示,与实施例二的区别在于:第二驱动电机3为两相电机,包括两组绕组(32a、32b)。第二逆变电路4通过两相桥接四个IGBT 42(开关元件)而构成,在各IGBT 42的集电极与发射极之间连接有续流二极管,即:上桥臂侧的两个上管续流二极管44和下桥臂侧的两个下管续流二极管46。第二逆变电路4的各相输出端子连接在第二驱动电机3的各相绕组(32a、32b)上。
其工作原理与实施例二基本相同,在此不再赘述。
本申请第二方面的实施例提供的电器设备200的电机控制器1,电器设备200包括第一驱动电机2和第二驱动电机3。第一驱动电机2的运行功率大于第二驱动电机3的运行功率。第一驱动电机2与第二驱动电机3错开时间运行。换言之,第一驱动电机2与第二驱动电机3不同时运行。
具体地,电机控制器1包括:第一控制电路102和第二控制电路104,如图16所示。第一控制电路102与第一驱动电机2电连接,用于控制第一驱动电机2运行。第二控制电路104与第二驱动电机3的绕组(32a、32b、32c)电连接,用于控制第二驱动电机3的绕组(32a、32b、32c)充当电抗器。
本申请第二方面的实施例提供的电器设备200的电机控制器1,包括第一控制电路102和第二控制电路104,使得第一驱动电机2的电机控制器1具备两个控制功能,其中一个功能控制第一驱动电机2运行,另一个控制功能控制第二驱动电机3的绕组(32a、32b、32c)充当电抗器。如此一来,当需要电抗器时,直接利用第二控制电路104使第二驱动电机3的绕组(32a、32b、32c)充当电抗器即可,从而省去了额外的电抗器,既简化了电器设备200的结构,节省了整机内部的利用空间,能够提高电器设备200的集成度,并减少安装工序,提升生产效率,有效减少电器设备200的系统材料成本。
其中,用于控制第二驱动电机3运行的控制电路,可以单独设置在其他控制器的电路板上,也可以部分集成该电机控制器1的电路板10上,也可以全部集成在该电机控制器1的电路板10上。
值得说明的是,对于具备第一驱动电机2和第二驱动电机3的电器设备 200而言,一般同时具备多种功能,第一驱动电机2驱动大部件运行,实现主要功能;第二驱动电机3驱动小部件运行,实现次要功能。因此,第一驱动电机2和第二驱动电机3一般不会同时运行。当电器设备200运行主要功能时,第一驱动电机2运行,此时电机控制器1功率较大,需要电抗器;而当电器设备200运行次要功能时,第二驱动电机3运行,此时控制器功率较小,一般不需要电抗器。因此,在第一驱动电机2的电机控制器1上增设第二控制电路104,通过第二控制电路104即可利用第二驱动电机3的绕组(32a、32b、32c)等效实现电抗器的功能。这相当于将电抗器的功能集成在了第一驱动电机2的电机控制器1中,从而省去了额外设置的电抗器,可以有效提高电器设备200的集成度,提升生产效率,减少材料成本,提高电器设备200内部空间的利用率,为优化电器设备200内部布线设计以及结构设计带来便利。
比如:对于具备滚筒电机和风机电机的洗衣机而言,一般同时具备洗涤功能和烘干功能,滚筒电机驱动滚筒运行,实现洗涤、脱水等功能,为主要功能;风机电机驱动风机运行,实现烘干功能,为次要功能。换言之,当洗衣机整机处于非烘干状态,滚筒电机驱动滚筒运行;当洗衣机整机处于烘干状态,风机电机驱动风机运行。因此,滚筒电机和风机电机一般不会同时运行。故而可以利用风机电机的绕组(32a、32b、32c)等效实现电抗器。
下面结合附图介绍一些实施例。
实施例五
电机控制器1包括电源电路108(如图6所示),电源电路108用于连接外部电源。第二控制电路104用于使第二驱动电机3的绕组(32a、32b、32c)选择性地接入电源电路108。
当电器设备200运行主要功能时,第一驱动电机2运行,此时电机控制器1功率较大,一般需要进线电抗器;而当电器设备200运行次要功能时,第二驱动电机3运行,此时控制器功率较小,一般不需要进线电抗器。因此,在第一驱动电机2的电机控制器1上增设第二控制电路104,利用第二控制电路104将第二驱动电机3的绕组(32a、32b、32c)选择性地接入电源电路108,即可利用第二驱动电机3的绕组(32a、32b、32c)等效实现进线电抗器的功能。
这相当于将进线电抗器的功能集成在了第一驱动电机2的电机控制器1 中,从而省去了额外设置的进线电抗器,可以有效提高电器设备200的集成度,提升生产效率,减少材料成本,提高电器设备200内部空间的利用率,为优化电器设备200内部布线设计以及结构设计带来便利。
进一步地,第一控制电路102与电源电路108电连接。
第二控制电路104与电源电路108电连接。第二控制电路104包括组件切换电路1042。组件切换电路1042包括电连接部1046和设在电连接部1046上的切换组件1044,如图7所示。
电连接部1046将第二驱动电机3的绕组(32a、32b、32c)串联接入电源电路108。
切换组件1044用于根据电器设备200的状态控制电连接部1046的通断,以使第二驱动电机3的绕组(32a、32b、32c)选择性地串联接入电源电路108。
电机控制器1的电路板10通过电源电路108来连接外部电源,保证电路板10的正常供电。同时,电源电路108、第一控制电路102和第二控制电路104集成在电路板10上,则第一控制电路102、第二控制电路104与电源电路108相距较近,便于布线设计,简化线路结构,提高电路板10的集成度。电源电路108为第一控制电路102供电,保证第一控制电路102能够控制第一驱动电机2正常运行。第二控制电路104通过组件切换电路1042实现控制功能,具体通过控制切换组件1044闭合或断开来控制第二驱动电机3的绕组(32a、32b、32c)选择性地串联接入电源电路108。
当切换组件1044导通电连接部1046,则第二驱动电机3的绕组(32a、32b、32c)通过电连接部1046串联接入电源电路108。当切换组件1044断开电连接部1046时,则第二驱动电机3的绕组(32a、32b、32c)与电源电路108断开。本方案构思巧妙,且成本低,易于推广。
其中,组件切换电路1042具体用于:当电器设备200处于第一驱动电机2运行对应的状态时,切换组件1044控制电连接部1046处于导通状态,以使第二驱动电机3的绕组(32a、32b、32c)串联接入电源电路108。当电器设备200处于第二驱动电机3运行对应的状态时,切换组件1044控制电连接部1046处于断开状态,以使第二驱动电机3的绕组(32a、32b、32c)与所电源电路108断开。
如前所述,对于具备第一驱动电机2和第二驱动电机3的电器设备200而言,电器设备200运行第二驱动电机3对应的功能时,控制器功率低无需进线电抗器,而电器设备200运行第一驱动电机2对应的功能时,控制器功率高需要进线电抗器。因此,当电器设备200整机处于第一驱动电机2运行对应的状态时,即第二驱动电机3不需要运行时,切换组件1044控制电连接部1046处于导通状态,即可将第二驱动电机3的绕组(32a、32b、32c)串入电源电路108,充当电抗器的功能。而当整机处于第二驱动电机3运行对应的状态时,即第二驱动电机3需要运行时,则切换组件1044控制电连接部1046处于断开状态,即可将第二驱动电机3的绕组(32a、32b、32c)切回到正常的电路中,保证第二驱动电机3及其驱动的部件的正常运行。
值得说明的是,电器设备200的运行模式以及运行模式的切换,一般写入计算机程序中,处理器执行计算机程序,控制各个硬件部件执行相应动作。因此,本方案中,切换组件1044具体动作的时机也可以写入电器设备200的计算机程序中,与整机的状态保持吻合,实现自动切换。
比如:当电器设备200要运行第一驱动电机2运行对应的模式时,切换组件1044提前设定时间(如3秒钟、5秒钟等)发生动作,导通电连接部1046,使第二驱动电机3的绕组(32a、32b、32c)串联接入电源电路108,保证后续第一驱动电机2即可正常运行。
当电器设备200要切换至第二驱动电机3运行对应的模式时,切换组件1044提前设定时间(如3秒钟、5秒钟等)发生动作,断开电连接部1046,使第二驱动电机3的绕组(32a、32b、32c)与电源电路108断开,保证后续第二驱动电机3能够正常运行。
进一步地,电源电路108包括:交流电源接入电路1082和整流电路1096,如图6所示。交流电源接入电路1082包括交流电源正极端1084和交流电源负极端1086。整流电路1096连接交流电源接入电路1082与第一控制电路102。
电源电路108包括交流电源接入电路1082和整流电路1096。交流电源接入电路1082的交流电源正极端1084接交流电源的正极,交流电源负极端1086接交流电源的负极,这样即可利用交流电源为电机控制器1供电,便于电器设备200利用常见的市政交流电等电源工作,提高电器设备200的普适性。而整 流电路1096能够将交流电转换为直流电,便于第一控制电路102根据第一驱动电机2的运行需求提供所需的电能,满足第一驱动电机2的运行需求。
其中,组件切换电路1042接在交流电源正极端1084与整流电路1096之间,以使第二驱动电机3的绕组(32a、32b、32c)串联在交流电源正极端1084与整流电路1096之间。
本方案能够直接将第二驱动电机3的绕组(32a、32b、32c)串入交流电源进线中,从而使得第二驱动电机3的绕组(32a、32b、32c)充当进线电抗器的功能。本方案结构简单,便于布线设计。
进一步地,切换组件1044包括至少一个切换件1050,切换件1050的种类包括开关元件和继电器中的至少一种。
切换组件1044主要通过开闭来实现电源电路108、电连接部1046、第二驱动电机3的绕组(32a、32b、32c)之间的通断。因此,常见的开关元件、继电器等均能满足该要求。
其中,切换件1050可以只有一种闭合状态,如单刀单掷开关,只控制一条线路的通断。切换件1050也可以具有多种闭合状态,如单刀双掷开关,通过选择具体的闭合状态,来实现多条线路的选择性通断。
当然,具有多种闭合状态的切换件1050也可以由多个只有一种闭合状态的切换件1050等效替换,如利用两个单刀单掷开关可以等效替换一个单刀双掷开关。
具体地,如图6所示,电连接部1046包括第一连接线路1071和第二连接线路1072。切换组件1044包括:第一切换件1051、第二切换件1052和第三切换件1053。
第一切换件1051串联在交流电源正极端1084与整流电路1096之间,用于控制交流电源正极端1084与整流电路1096之间的通断,且第一切换件1051的两端分别连接第一连接线路1071的一端和第二连接线路1072的一端。
第二切换件1052连接在第一连接线路1071的另一端,用于控制第二驱动电机3的一相绕组32a与第一连接线路1071导通或与第二驱动电机3的第二逆变电路4导通。
第三切换件1053连接在第二连接线路1072的另一端,用于控制第二驱动 电机3的另一相绕组32b与第二连接线路1072导通或与第二驱动电机3的第二逆变电路4导通。
本方案具体利用三个切换件和两个连接线路1070实现了第二驱动电机3的绕组(32a、32b)的选择性串入电源电路108。
具体地,当整机处于第一驱动电机2运行对应的状态时,第一切换件1051断开交流电源正极端1084与整流电路1096之间的直接连通,第二切换件1052控制第二驱动电机3的一相绕组32a与第一连接线路1071导通,第三切换件1053控制第二驱动电机3的另一相绕组32b与第二连接线路1072导通,则交流电源正极端1084、第一连接线路1071、第二驱动电机3的一相绕组32a、第二驱动电机3的另一相绕组32b、第二连接线路1072顺次导通,然后接整流电路1096,即:实现了将第二驱动电机3的绕组(32a、32b)串联在交流电源正极端1084与整流电路1096之间。
当整机处于第二驱动电机3运行对应的状态时,第一切换件1051导通交流电源正极端1084与整流电路1096之间的直接连通,第二切换件1052控制第二驱动电机3的一相绕组32a与第二驱动电机3的第二逆变电路4导通,第三切换件1053控制第二驱动电机3的另一相绕组32b与第二驱动电机3的第二逆变电路4导通,则第二驱动电机3的绕组(32a、32b)与电源电路108之间断开,第二驱动电机3的绕组(32a、32b)切回第二驱动电机3的正常电路中,保证第二驱动电机3及其驱动的部件的正常运行。
更具体地,如图6所示,第一切换件1051为单刀单掷开关,第二切换件1052和第三切换件1053为单刀双掷开关。第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第二切换件1052的静触点与第二驱动电机3的一相绕组32a连接,两个动触点分别与第一连接线路1071及第二逆变电路4连接。第三切换件1053的静触点与第二驱动电机3的另一相绕组32b连接,两个动触点分别与第二连接线路1072及第二逆变电路4连接。
当整机处于第一驱动电机2运行对应的状态时,第一切换件1051断开,第二切换件1052闭合至连接第一连接线路1071的动触点,第三切换件1053闭合至连接第二连接线路1072的动触点。
当整机处于第二驱动电机3运行对应的状态时,第一切换件1051闭合, 第二切换件1052闭合至连接第二逆变电路4的动触点,第三切换件1053闭合至连接第二逆变电路4的动触点。
其中,第二逆变电路4与第二驱动电机3的绕组(32a、32b、32c)的连接属于现有技术,在此不再详述。
实施例六
如图8所示,与实施例五的区别在于:组件切换电路1042接在整流电路1096整流后的直流母线1094上,以使第二驱动电机3的绕组(32a、32b、32c)串联在直流母线1094上。
本方案能够将第二驱动电机3的绕组(32a、32b、32c)串联在整流电路1096整流后的直流母线1094上,使得第二驱动电机3的绕组(32a、32b、32c)也能够串联在整流后的直流母线1094上,也使得第二驱动电机3的绕组(32a、32b、32c)串入交流电源进线中,从而使得第二驱动电机3的绕组(32a、32b、32c)充当进线电抗器的功能。如此,便于技术人员根据电路板10的具体形状、尺寸、布局及电器设备200的其他结构等因素进行合理设计,以优化电路板10的结构和性能。
其中,整流电路1096包括:整流主电路1088和滤波电路1024,如图6所示。整流主电路1088与交流电源接入电路1082连接。滤波电路1024连接整流主电路1088与第一控制电路102。直流母线1094接在整流主电路1088与滤波电路1024之间。
整流电路1096包括整流主电路1088和滤波电路1024,整流主电路1088将交流电转换为直流电,滤波电路1024滤去整流输出电压中的纹波,从而保证供给第一控制电路102的电压更加稳定。同时,直流母线1094位于整流电路1096与滤波电路1024之间,则组件切换电路1042可以接入整流主电路1088和滤波电路1024之间,防止第二驱动电机3的绕组(32a、32b、32c)串入后对滤波电路1024及后续第一控制电路102的运行造成影响。
具体地,直流母线1094包括直流正母线1090。其中,组件切换电路1042接入直流正母线1090,以使第二驱动电机3的绕组(32a、32b、32c)串联接入直流正母线1090。
本方案直接将组件切换电路1042接入直流正母线1090,使得第二驱动电 机3的绕组(32a、32b、32c)也能够串联在整流后的直流正母线1090上,从而实现第二驱动电机3的绕组(32a、32b、32c)等效实现进线电控器的功能。
其中,如图8所示,电连接部1046包括第三连接线路1073和第四连接线路1074。切换组件1044包括:第四切换件1054、第五切换件1055和第六切换件1056。
第四切换件1054接入直流正母线1090,用于控制直流正母线1090与滤波电路1024之间的通断,且第四切换件1054的两端分别连接第三连接线路1073的一端和第四连接线路1074的一端。
第五切换件1055连接在第三连接线路1073的另一端,用于控制第二驱动电机3的一相绕组32a与第三连接线路1073导通或与第二驱动电机3的第二逆变电路4导通。
第六切换件1056连接在第四连接线路1074的另一端,用于控制第二驱动电机3的另一相绕组32b与第四连接线路1074导通或与第二驱动电机3的第二逆变电路4导通。
本方案具体利用三个切换件和两个连接线路1070实现了第二驱动电机3的绕组(32a、32b)的选择性串入电源电路108。具体地,当整机处于第一驱动电机2运行对应的状态时,第四切换件1054断开直流正母线1090与滤波电路1024之间的直接连通,第五切换件1055控制第二驱动电机3的一相绕组32a与第三连接线路1073导通,第六切换件1056控制第二驱动电机3的另一相绕组32b与第四连接线路1074导通,则交流电源正极端1084、整流主电路1088、直流正母线1090、第三连接线路1073、第二驱动电机3的一相绕组32a、第二驱动电机3的另一相绕组32b、第四连接线路1074顺次导通,然后接滤波电路1024,即:实现了将第二驱动电机3的绕组(32a、32b)接入直流正母线1090。
当整机处于第二驱动电机3运行对应的状态时,第四切换件1054导通直流正母线1090与滤波电路1024之间的直接连通,第五切换件1055控制第二驱动电机3的一相绕组32a与第二驱动电机3的第二逆变电路4导通,第六切换件1056控制第二驱动电机3的另一相绕组32b与第二驱动电机3的第二逆变电路4导通,则第二驱动电机3的绕组(32a、32b)与电源电路108之间断 开,第二驱动电机3的绕组(32a、32b)切回第二驱动电机3的正常电路中,保证第二驱动电机3及其驱动的部件的正常运行。
更具体地,如图8所示,第四切换件1054为单刀单掷开关,第五切换件1055和第六切换件1056为单刀双掷开关。第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第五切换件1055的静触点与第二驱动电机3的一相绕组32a连接,两个动触点分别与第三连接线路1073及第二逆变电路4连接。第六切换件1056的静触点与第二驱动电机3的另一相绕组32b连接,两个动触点分别与第四连接线路1074及第二逆变电路4连接。
当整机处于第一驱动电机2运行对应的状态时,第四切换件1054断开,第五切换件1055闭合至连接第三连接线路1073的动触点,第六切换件1056闭合至连接第四连接线路1074的动触点。
当整机处于第二驱动电机3运行对应的状态时,第四切换件1054闭合,第五切换件1055闭合至连接第二逆变电路4的动触点,第六切换件1056闭合至连接第二逆变电路4的动触点。
实施例七
如图12所示,与实施例六的区别在于:电机控制器1还包括第二逆变电路4,第二逆变电路4与第二驱动电机3的绕组(32a、32b、32c)电连接。第一控制电路102包括第一逆变电路1026,第二逆变电路4与第一逆变电路1026并联。整流电路1096还与第二逆变电路4连接。第一控制电路102还可以包括驱动电路或者其他电路。
本方案中,第二逆变电路4和第一逆变电路1026共用整流电路1096,则无需为第二驱动电机3额外设置整流电路1096,因而提高了电机控制器1的集成度,降低了产品成本。
切换组件1044包括第七切换件1057。第七切换件1057接入直流正母线1090,用于控制直流正母线1090与第二驱动电机3的绕组(32a、32b、32c)导通或直接与滤波电路1024导通。
本方案具体利用一个切换件和一个连接线路1070实现了第二驱动电机3的绕组(32a、32b、32c)的选择性串入电源电路108,有利于降低成本。具体地,当整机处于第一驱动电机2运行对应的状态时,第二逆变电路4的IGBT 42全部断开,第七切换件1057控制直流正母线1090与第二驱动电机3的绕组(32a、32b、32c)导通,则交流电源正极端1084、整流主电路1088、直流正母线1090、连接线路1070、第二驱动电机3的绕组(32a、32b、32c)的中性点、第二驱动电机3的绕组(32a、32b、32c)、第二逆变电路4的H桥的上管续流二极管44顺次导通,然后接第一逆变电路1026,即:实现了将第二驱动电机3的绕组(32a、32b、32c)接入直流正母线1090。
当整机处于第二驱动电机3运行对应的状态时,第七切换件1057控制直流正母线1090与滤波电路1024直接连通,则第二驱动电机3的绕组(32a、32b、32c)与电源电路108之间断开,第二驱动电机3的绕组(32a、32b、32c)切回第二驱动电机3的正常电路中,保证第二驱动电机3及其驱动的部件的正常运行。
更具体地,第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第二驱动逆变电路4的构成及连接方式与第一方面实施例中的实施例一相同,在此不再重复。电连接部1046包括连接线路1070。第七切换件1057为单刀双掷开关,静触点连接直流正母线1090,两个动触点分别连接第一控制电路102和连接线路1070的一端,连接线路1070的另一端连接第二驱动电机3的绕组(32a、32b、32c)。第二逆变电路4的正负极分别与滤波电路1024滤波后的正负极相接。
当整机处于第一驱动电机2运行对应的状态时,第七切换件1057闭合至连接连接线路1070的动触点。
当整机处于第二驱动电机3运行对应的状态时,第七切换件1057闭合至连接滤波电路1024的动触点。
实施例八
如图9所示,与实施例六的区别在于:直流母线1094包括直流负母线1092。其中,组件切换电路1042接入直流负母线1092,以使第二驱动电机3的绕组(32a、32b、32c)串联接入直流负母线1092。
本方案直接将组件切换电路1042接入直流负母线1092,使得第二驱动电机3的绕组(32a、32b、32c)也能够串联在整流后的直流负母线1092上,由于直流负母线1092与直流正母线1090属于一个回路,因而也能够实现第二驱 动电机3的绕组(32a、32b、32c)等效实现进线电控器的功能。
具体地,电连接部1046包括第五连接线路1075和第六连接线路1076。切换组件1044包括:第八切换件1058、第九切换件1059和第十切换件1060。
第八切换件1058接入直流负母线1092,用于控制直流负母线1092与滤波电路1024之间的通断,且第八切换件1058的两端分别连接第五连接线路1075的一端和第六连接线路1076的一端。
第九切换件1059连接在第五连接线路1075的另一端,用于控制第二驱动电机3的一相绕组32a与第五连接线路1075导通或与第二驱动电机3的第二逆变电路4导通。
第十切换件1060连接在第六连接线路1076的另一端,用于控制第二驱动电机3的另一相绕组32b与第六连接线路1076导通或与第二驱动电机3的第二逆变电路4导通。
本方案具体利用三个切换件和两个连接线路1070实现了第二驱动电机3的绕组(32a、32b)的选择性串入电源电路108。具体地,当整机处于第一驱动电机2运行对应的状态时,第八切换件1058断开直流负母线1092与滤波电路1024之间的直接连通,第九切换件1059控制第二驱动电机3的一相绕组32a与第五连接线路1075导通,第十切换件1060控制第二驱动电机3的另一相绕组32b与第六连接线路1076导通,则滤波电路1024、第五连接线路1075、第二驱动电机3的一相绕组32a、第二驱动电机3的另一相绕组32b、第六连接线路1076、整流主电路1088、交流电源负极端1086顺次导通,即:实现了将第二驱动电机3的绕组(32a、32b)接入直流负母线1092。
当整机处于第二驱动电机3运行对应的状态时,第八切换件1058导通直流负母线1092与滤波电路1024之间的直接连通,第九切换件1059控制第二驱动电机3的一相绕组32a与第二驱动电机3的第二逆变电路4导通,第十切换件1060控制第二驱动电机3的另一相绕组32b与第二驱动电机3的第二逆变电路4导通,则第二驱动电机3的绕组(32a、32b)与电源电路108之间断开,第二驱动电机3的绕组(32a、32b)切回第二驱动电机3的正常电路中,保证第二驱动电机3及其驱动的部件的正常运行。
更具体地,第八切换件1058为单刀单掷开关,第九切换件1059和第十切 换件1060为单刀双掷开关。第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第九切换件1059的静触点与第二驱动电机3的一相绕组32a连接,两个动触点分别与第五连接线路1075及第二逆变电路4连接。第十切换件1060的静触点与第二驱动电机3的另一相绕组32b连接,两个动触点分别与第六连接线路1076及第二逆变电路4连接。
当整机处于第一驱动电机2运行对应的状态时,第八切换件1058断开,第九切换件1059闭合至连接第五连接线路1075的动触点,第十切换件1060闭合至连接第六连接线路1076的动触点。
当整机处于第二驱动电机3运行对应的状态时,第八切换件1058闭合,第九切换件1059闭合至连接第二逆变电路4的动触点,第十切换件1060闭合至连接第二逆变电路4的动触点。
实施例九
如图13所示,与实施例八的区别在于:电机控制器1还包括第二逆变电路4,第二逆变电路4与第二驱动电机3的绕组(32a、32b、32c)电连接。第一控制电路102包括第一逆变电路1026,第二逆变电路4与第一逆变电路1026并联。整流电路1096还与第二逆变电路4连接。
本方案中,第二逆变电路4和第一逆变电路1026共用整流电路1096,则无需为第二驱动电机3额外设置整流电路1096,因而提高了电机控制器1的集成度,降低了产品成本。
切换组件1044包括第十一切换件1061,第十一切换件1061接入直流负母线1092,用于控制直流负母线1092与第二驱动电机3的绕组(32a、32b、32c)导通或直接与滤波电路1024导通。
本方案具体利用一个切换件和一个连接线路1070实现了第二驱动电机3的绕组(32a、32b、32c)的选择性串入电源电路108,结构简单,成本低。具体地,当整机处于第一驱动电机2运行对应的状态时,第二逆变电路4的IGBT 42全部断开,第十一切换件1061控制直流负母线1092与第二驱动电机3的绕组(32a、32b、32c)导通,则滤波电路1024、第二逆变电路4的H桥的下管续流二极管46、第二驱动电机3的绕组(32a、32b、32c)、第二驱动电机3的绕组(32a、32b、32c)的中性点、连接线路1070、整流主电路1088、 交流电源负极端1086顺次导通,即:实现了将第二驱动电机3的绕组(32a、32b、32c)接入直流负母线1092。
当整机处于第二驱动电机3运行对应的状态时,第十一切换件1061控制直流负母线1092与滤波电路1024直接连通,则第二驱动电机3的绕组(32a、32b、32c)与电源电路108之间断开,第二驱动电机3的绕组(32a、32b、32c)切回第二驱动电机3的正常电路中,保证第二驱动电机3及其驱动的部件的正常运行。
更具体地,第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第二逆变电路4的构成及连接方式与第一方面实施例中的实施例二相同,在此不再重复。电连接部1046包括连接线路1070。第十一切换件1061为单刀双掷开关,静触点连接直流负母线1092,两个动触点分别连接滤波电路1024和连接线路1070的一端,连接线路1070的另一端连接第二驱动电机3的绕组(32a、32b、32c)。第二逆变电路4的正负极分别与滤波电路1024滤波后的正负极相接。
当整机处于第一驱动电机2运行对应的状态时,第十一切换件1061闭合至连接连接线路1070的动触点。
当整机处于第二驱动电机3运行对应的状态时,第十一切换件1061闭合至连接滤波电路1024的动触点。
实施例十
如图7所示,与实施例五的区别在于:第二驱动电机3为两相电机,包括两组绕组(32a、32b)。其工作原理与实施例五基本相同,在此不再赘述。
实施例十一
如图10所示,与实施例六的区别在于:第二驱动电机3为两相电机,包括两组绕组(32a、32b)。其工作原理与实施例六基本相同,在此不再赘述。
实施例十二
如图14所示,与实施例七的区别在于:第二驱动电机3为两相电机,包括两组绕组(32a、32b)。第二逆变电路4的构成及连接方式与第一方面实施例中的实施例三相同,在此不再重复。其工作原理与实施例七基本相同,在此不再赘述。
实施例十三
如图11所示,与实施例八的区别在于:第二驱动电机3为两相电机,包括两组绕组(32a、32b)。其工作原理与实施例八基本相同,在此不再赘述。
实施例十四
如图15所示,与实施例九的区别在于:第二驱动电机3为两相电机,包括两组绕组(32a、32b)。第二逆变电路4的构成及连接方式与第一方面实施例中的实施例四相同,在此不再重复。其工作原理与实施例九基本相同,在此不再赘述。
如图17和图18所示,本申请第三方面的实施例提供的电器设备200的电机装置100,包括:如第一方面实施例和第二方面实施例中任一项的电器设备200的电机控制器1和第一驱动电机2。第一驱动电机2与电机控制器1的第一控制电路102电连接。
本申请第三方面的实施例提供的电器设备200的电机装置100,因包括第一方面实施例和第二方面实施例中任一项的电器设备200的电机控制器1,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
其中,对于电机控制器1为第一方面实施例中任一项的电器设备的电机控制器1的情况,第一控制电路102还与第二驱动电机3电连接。
在上述实施例中,第一驱动电机2包括外壳220,如图22所示。外壳220包括后端盖204,电机控制器1固定在后端盖204上。
将电机控制器1固定在第一驱动电机2的后端盖204上,既便于电路板10与第一驱动电机2接线,又便于对电机控制器1起到保护作用,防止滚筒与电机控制器1发生摩擦等情况而对电机控制器1造成干扰。
如图19和图20所示,本申请第四方面的实施例提供的电器设备200,包括:如第三方面实施例中任一项的电机装置100和第二驱动电机3,第二驱动电机3的绕组(32a、32b、32c)与电机装置100的第二控制电路104电连接。
本申请第四方面的实施例提供的电器设备200,因包括第三方面实施例中任一项的电机装置100,因而具有上述任一实施例所具有的一切有益效果,在此不再赘述。
在上述实施例中,电器设备200包括主控板202,如图20所示。主控板 202与电机装置100的电源电路108电连接。
本方案利用电器设备200的主控板202为电机控制器1供电,即主控板202充当了电机控制器1的外部电源,无需为电机控制器1额外配置电源,有利于简化电器设备200的布线结构。
在上述实施例中,主控板202通过通讯装置(如电缆装置)与电机装置100的电机控制器1进行通讯,并通过通讯装置向电机控制器1下达指令,以及接收电机控制器1反馈的信息。
本方案利用主控板202为电机控制器1及第一驱动电机2供电,并通过通讯方式下达电机运行指令,并接收电机控制器1反馈的电机转速、温度等信息,同时根据整机状态对第二控制电路104的切换组件1044进行控制。其中通讯装置可以为但不局限于电缆组件。
在一些实施例中,第二驱动电机3包括两相电机。
在另一些实施例中,第二驱动电机3包括三相电机。
第二驱动电机3采用两相电机或三相电机,都能够满足风机的运行,也能够满足电抗器功能,且结构简单,成本较低。
在上述任一实施例中,电器设备200包括滚筒洗衣机,电机装置100的第一驱动电机2包括滚筒电机,第二驱动电机3包括风机电机。第一逆变电路1026包括滚筒电机逆变电路,第二逆变电路4包括风机逆变电路。
在另一些实施例中,电器设备200包括空调器,电机装置100的第一驱动电机2包括压缩机电机,第二驱动电机3包括风机电机。
或者,电器设备200包括热水器,电机装置100的第一驱动电机2包括压缩机电机,第二驱动电机3包括风机电机。
或者,电器设备200包括冰箱,电机装置100的第一驱动电机2包括压缩机电机,第二驱动电机3包括风机电机。
当然,电器设备200不局限于滚筒洗衣机、空调器、热水器、冰箱,也可以为其他具备双电机或更多电机电器设备200。
下面以滚筒洗衣机为例,介绍一些具体实施例。
如图21所示,用于洗烘干的一体式滚筒洗衣机300,包括箱体302、主控板202、电机装置100、风机电机344、风机348、滚筒314等部件。滚筒314 前端敞口,与洗衣机的衣物投放口304连通,用于取放衣物等物品。滚筒314套装于外筒308内,外筒308和滚筒314置于箱体302内,箱体302前端设有门306,用于打开或关闭衣物投放口304。滚筒314设有贯通孔318,通过贯通孔318与外筒308的内部空间连通。滚筒314内壁一般还设有提升筋319,用于带动衣物上升,使衣物上升后在重力作用下落下,实现搅拌。
箱体302内部固定有供水阀320,供水阀320具有入口以及出口,供水阀320的入口连接在自来水管道的水龙头上。该供水阀320以供水阀电机为驱动源,并根据供水阀电机的旋转量,打开或关闭供水阀320的出口。供水阀320的出口连接在注水盒324上,当供水阀320打开,自来水通过供水阀320注入到注水盒324内。注水盒324具有筒状的注水口326,该注水口326被插入到外筒308的内部,进而将水注入到外筒308中。
在外筒308上,在位于最低部的位置连接有排水管328的上端部,在排水管328上设置有排水阀330。排水阀330以排水阀电机为驱动源,并根据排水阀电机的旋转量,打开或关闭排水阀330。当排水阀330关闭,从注水口326注入外筒308的水蓄留在外筒308内。当排水阀330打开,外筒308中的水通过排水管328排出。
滚筒洗衣机300设有风道,风道内设有风机348,风机348用于驱动风道内的空气流动。风道的两端与滚筒314的前后两端分别连通,使得气流形成循环。风道内还可以设置冷凝器或者加热器,便于快速带走滚筒314内的湿空气,以从而实现烘干功能。风机电机344与风机348相连,用于驱动风机348旋转。具体地,风道包括依次连通的前风道336、主风道334和后风道350。主风道334位于外筒308下方;前风道336位于外筒308前方,通过外筒308前端部与外筒308内部空间连通;后风道350位于外筒308后方,通过外筒308后端部与外筒308内部空间连通。
主风道334的后端部固定有风机壳体338,风机壳体338具有吸气口340和排气口342,吸气口340与主风道334的内部空间连接,排气口342与后风道350的下端部连接。风机壳体338内固定有风机348,风机壳体338外固定有风机电机344,风机电机344通过风机旋转轴346与风机348连接,驱动风机348转动。
电机装置100包含滚筒电机310和电机控制器1。滚筒电机310位于外筒308后方,通过旋转轴312与滚筒314直接相连。或者,滚筒314位于外筒308下方,通过皮带轮等传动装置与滚筒314相连。滚筒电机310用于驱动滚筒314转动,滚筒314转动带动内部的衣物等物品旋转、落下、摩擦等,从而实现洗涤和脱水功能。
电机控制器1设置在滚筒电机310的后端盖204上,电机控制器1和滚筒电机310电气连接。电机控制器1包括第一控制电路102和第二控制电路104。第一控制电路102用于实现第一控制功能,第二控制电路104用于实现第二控制功能。第一控制功能控制滚筒电机310运行,第二控制功能用来等效实现进线电抗器的功能。
电路板10包含上述第一控制电路102和第二控制电路104。其中,第一控制功能控制滚筒314驱动电机运行;第二控制功能根据整机的状态对切换组件1044进行控制。
第二控制电路104包括切换组件1044和控制模块。根据整机运行状态,第二控制功能通过对切换组件1044的控制,确定风机电机344的绕组(32a、32b、32c)是否接入交流电源进线端或整流后的直流母线端(即整流后的直流母线1094上)。结合烘干状态下电机控制器1功率低无需进线电抗器的特性,当整机处于非烘干状态,即(烘干)风机348不需运行时,第二控制功能控制切换组件1044将风机348的绕组(32a、32b、32c)串入交流电源进线端或整流后的直流母线1094,充当电抗器的功能;当整机处于烘干状态,即(烘干)风机348需要运行时,第二控制功能控制切换组件1044将风机348的绕组(32a、32b、32c)提前切回到正常风机348的电路中,交流或直流进线通过直连方式接入对应电路中。
其中,风机电机344可以是三相电机,也可以是两相电机。风机电机344的绕组(32a、32b、32c)串入整流后直流母线端时,可以串于直流正母线1090,也可以串于直流负母线1092。对于直流正母线1090或者直流负母线1092的串入形式,其硬件连接方式又各自分为两种:一种是绕组(32a、32b、32c)直接串入,一种是风机348的逆变电路H桥中的续流二极管充当串入电路一部分。对于第二种拓扑,风机电机344的逆变电路与滚筒电机310的逆变电路 共用直流母线1094。当风机电机344的绕组(32a、32b、32c)串于直流正母线1090时,三相(或两相)风机电机344的绕组(32a、32b、32c)串联H桥的上管续流二极管44后接入对应电路中;当风机电机344的绕组(32a、32b、32c)串于直流负母线1092时,三相(或两相)风机电机344的绕组(32a、32b、32c)串联H桥的下管续流二极管46后接入对应电路中。
洗衣机的主控板202通过电缆组件给电机控制器1供电以及进行通讯,下达电机运行指令和接收电机控制器1的反馈信息,电机控制器1通过接收上位机指令分别控制滚筒电机运行并反馈电机转速、温度等信息,同时根据整机状态对第二控制功能中的切换组件1044进行控制。
如图20所示,洗衣机主控板202为电机装置100提供电源,并通过通讯方式下达电机运行指令和接收反馈信息,电机控制器1收到洗衣机主控板202的运行指令后,控制电机运行。
如图17所示,电机装置100包含滚筒电机310和电机控制器1,电机控制器1设置在电机的后端盖204上,电机控制器1和滚筒电机310电气连接,其中,电机控制器1包括第一控制功能和第二控制功能,第一控制功能控制电机运行,第二控制功能用来等效实现进线电抗器的功能。
具体实施例一
如图6所示,风机电机采用三相电机,风机电机的绕组(32a、32b、32c)直接串于交流电源进线端。切换组件1044包括第一切换件1051、第二切换件1052和第三切换件1053,电连接部1046包括第一连接线路1071和第二连接线路1072。第一逆变电路1026为滚筒电机逆变电路,第二逆变电路4为风机逆变电路。
第一切换件1051为单刀单掷开关,第二切换件1052和第三切换件1053为单刀双掷开关。风机电机为三相电机,包括三组绕组(32a、32b、32c)。第二切换件1052的静触点与风机电机的一相绕组32a连接,两个动触点分别与第一连接线路1071及风机逆变电路连接。第三切换件1053的静触点与风机电机的另一相绕组32b连接,两个动触点分别与第二连接线路1072及风机逆变电路连接。
当整机处于非烘干状态时,第一切换件1051断开,第二切换件1052闭合 至连接第一连接线路1071的动触点,第三切换件1053闭合至连接第二连接线路1072的动触点。
当整机处于烘干状态时,第一切换件1051闭合,第二切换件1052闭合至连接风机逆变电路的动触点,第三切换件1053闭合至连接风机逆变电路的动触点。
具体实施例二
如图7所示,与实施例一的区别在于:风机电机采用两相电机,风机电机的绕组(32a、32b)直接串于交流电源进线端。
其工作原理与具体实施例一相同,在此不赘述。
具体实施例三
如图8所示,风机电机采用三相电机,风机电机的绕组(32a、32b、32c)直接串于直流正母线1090。电连接部1046包括第三连接线路1073和第四连接线路1074。切换组件1044包括:第四切换件1054、第五切换件1055和第六切换件1056。
第四切换件1054为单刀单掷开关,第五切换件1055和第六切换件1056为单刀双掷开关。第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第五切换件1055的静触点与第二驱动电机3的一相绕组32a连接,两个动触点分别与第三连接线路1073及风机逆变电路连接。第六切换件1056的静触点与第二驱动电机3的另一相绕组32b连接,两个动触点分别与第四连接线路1074及风机逆变电路连接。
当整机处于非烘干状态时,第四切换件1054断开,第五切换件1055闭合至连接第三连接线路1073的动触点,第六切换件1056闭合至连接第四连接线路1074的动触点。
当整机处于烘干状态时,第四切换件1054闭合,第五切换件1055闭合至连接风机逆变电路的动触点,第六切换件1056闭合至连接风机逆变电路的动触点。
具体实施例四
如图9所示,风机电机采用三相电机,风机电机的绕组(32a、32b、32c)直接串于直流负母线1092。电连接部1046包括第五连接线路1075和第六连 接线路1076。切换组件1044包括:第八切换件1058、第九切换件1059和第十切换件1060。
第八切换件1058为单刀单掷开关,第九切换件1059和第十切换件1060为单刀双掷开关。第二驱动电机3为三相电机,包括三组绕组(32a、32b、32c)。第九切换件1059的静触点与第二驱动电机3的一相绕组32a连接,两个动触点分别与第五连接线路1075及第二逆变电路4连接。第十切换件1060的静触点与第二驱动电机3的另一相绕组32b连接,两个动触点分别与第六连接线路1076及第二逆变电路4连接。
当整机处于非烘干状态时,第八切换件1058断开,第九切换件1059闭合至连接第五连接线路1075的动触点,第十切换件1060闭合至连接第六连接线路1076的动触点。
当整机处于烘干状态时,第八切换件1058闭合,第九切换件1059闭合至连接风机逆变电路的动触点,第十切换件1060闭合至连接风机逆变电路的动触点。
具体实施例五
如图10所示,与具体实施例三的区别在于:风机电机采用两相电机,风机电机的绕组(32a、32b)直接串于直流正母线1090。
其工作原理与具体实施例三相同,在此不赘述。
具体实施例六
如图11所示,与具体实施例四的区别在于:风机电机采用两相电机,风机电机的绕组(32a、32b)直接串于直流负母线1092。
其工作原理与具体实施例四相同,在此不赘述。
具体实施例七
如图12所示,风机电机采用三相电机,风机电机的绕组(32a、32b、32c)经逆变H桥续流二极管串于直流正母线1090。风机逆变电路和滚筒电机逆变电路共用整流电路1096。
切换组件1044包括第七切换件1057。电连接部1046包括连接线路1070。第七切换件1057为单刀双掷开关,静触点连接直流正母线1090,两个动触点分别连接第一控制电路102和连接线路1070的一端,连接线路1070的另一端 连接第二驱动电机3的绕组(32a、32b、32c)。风机逆变电路的正负极分别与滤波电路1024滤波后的正负极相接。
当整机处于非烘干状态时,第七切换件1057闭合至连接连接线路1070的动触点。
当整机处于烘干状态时,第七切换件1057闭合至连接滤波电路1024的动触点。
具体实施例八
如图13所示,风机电机采用三相电机,风机电机的绕组(32a、32b、32c)经逆变H桥续流二极管串于直流负母线1092。风机逆变电路和滚筒电机逆变电路共用整流电路1096。
切换组件1044包括第十一切换件1061。电连接部1046包括连接线路1070。第十一切换件1061为单刀双掷开关,静触点连接直流负母线1092,两个动触点分别连接滤波电路1024和连接线路1070的一端,连接线路1070的另一端连接第二驱动电机3的绕组(32a、32b、32c)。风机逆变电路的正负极分别与滤波电路1024滤波后的正负极相接。
当整机处于非烘干状态时,第十一切换件1061闭合至连接连接线路1070的动触点。
当整机处于烘干状态时,第十一切换件1061闭合至连接滤波电路1024的动触点。
具体实施例九
如图14所示,与具体实施例七的区别在于:风机电机采用两相电机,风机电机的绕组(32a、32b)经逆变H桥续流二极管串于直流正母线1090。
其工作原理与具体实施例七相同,在此不赘述。
具体实施例十
如图15所示,与具体实施例八的区别在于:风机电机采用两相电机,风机电机的绕组(32a、32b)经逆变H桥续流二极管串于直流负母线1092。
其工作原理与具体实施例八相同,在此不赘述。
综上所述,通过上述设计,将进线电抗器的功能集成在电机控制器中,并且将该电机控制器固定在滚筒驱动电机的后端盖上,可以有效提高洗衣机系统 的集成度,提升生产效率,减少材料成本,提高洗衣机内部空间利用率,为优化洗衣机内部布线设计以及结构设计带来便利。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种电器设备的电机控制器,所述电器设备包括第一驱动电机和第二驱动电机,所述第一驱动电机的运行功率大于所述第二驱动电机的运行功率,其中,所述电机控制器包括:
    第一控制电路,所述第一控制电路与所述第一驱动电机和所述第二驱动电机电连接,用于控制所述第一驱动电机和所述第二驱动电机运行;和
    第二控制电路,所述第二控制电路与所述第二驱动电机的绕组电连接,用于控制所述第二驱动电机的绕组充当电抗器。
  2. 根据权利要求1所述的电器设备的电机控制器,其中,
    所述电机控制器包括电源电路,所述电源电路用于连接外部电源;
    所述第二控制电路用于使所述第二驱动电机的绕组选择性地接入所述电源电路。
  3. 根据权利要求2所述的电器设备的电机控制器,其中,
    所述第一控制电路与所述电源电路电连接;
    所述第二控制电路与所述电源电路电连接,所述第二控制电路包括组件切换电路,所述组件切换电路包括连接线路和设在所述连接线路上的切换件,所述连接线路将所述第二驱动电机的绕组串联接入所述电源电路,所述切换件用于根据所述电器设备的状态控制所述连接线路的通断,以使所述第二驱动电机的绕组选择性地串联接入所述电源电路。
  4. 根据权利要求3所述的电器设备的电机控制器,其中,所述第一控制电路包括:
    第一逆变电路,所述第一逆变电路与所述第一驱动电机电连接;和
    第二逆变电路,所述第二逆变电路与所述第二驱动电机电连接,且所述第二逆变电路与所述第一逆变电路相并联。
  5. 根据权利要求4所述的电器设备的电机控制器,其中,所述电源电路包括:
    整流主电路,用于连接所述外部电源;和
    滤波电路,所述滤波电路连接所述整流主电路与所述第一控制电路;
    其中,所述整流主电路与所述滤波电路之间连接有直流母线,所述组件切换电路接在所述直流母线上,以使所述第二驱动电机的绕组串联在所述直流母线上。
  6. 根据权利要求5所述的电器设备的电机控制器,其中,
    所述直流母线包括直流正母线;所述切换件接入所述直流正母线,用于控制所述直流正母线与所述第二驱动电机的绕组导通或直接与所述滤波电路导通;或者
    所述直流母线包括直流负母线;所述切换件接入所述直流负母线,用于控制所述直流负母线与所述第二驱动电机的绕组导通或直接与所述滤波电路导通。
  7. 根据权利要求3至6中任一项所述的电器设备的电机控制器,其中,所述组件切换电路具体用于:
    当所述电器设备处于所述第一驱动电机运行对应的状态时,所述切换件控制所述连接线路处于导通状态,以使所述第二驱动电机的绕组串联接入所述电源电路;
    当所述电器设备处于所述第二驱动电机运行对应的状态时,所述切换件控制所述连接线路处于断开状态,以使所述第二驱动电机的绕组与所电源电路断开。
  8. 一种电器设备的电机控制器,所述电器设备包括第一驱动电机和第二驱动电机,所述第一驱动电机的运行功率大于所述第二驱动电机的运行功率,其中,所述电机控制器包括:
    第一控制电路,所述第一控制电路与所述第一驱动电机电连接,用于控制所述第一驱动电机运行;和
    第二控制电路,所述第二控制电路与所述第二驱动电机的绕组电连接,用于控制所述第二驱动电机的绕组充当电抗器。
  9. 根据权利要求8所述的电器设备的电机控制器,其中,
    所述电机控制器包括电源电路,所述电源电路用于连接外部电源;
    所述第二控制电路用于使所述第二驱动电机的绕组选择性地接入所述电 源电路。
  10. 根据权利要求9所述的电器设备的电机控制器,其中,
    所述第一控制电路与所述电源电路电连接;
    所述第二控制电路与所述电源电路电连接,所述第二控制电路包括组件切换电路,所述组件切换电路包括电连接部和设在所述电连接部上的切换组件,所述电连接部将所述第二驱动电机的绕组串联接入所述电源电路,所述切换组件用于根据所述电器设备的状态控制所述电连接部的通断,以使所述第二驱动电机的绕组选择性地串联接入所述电源电路。
  11. 根据权利要求10所述的电器设备的电机控制器,其中,所述组件切换电路具体用于:
    当所述电器设备处于所述第一驱动电机运行对应的状态时,所述切换组件控制所述电连接部处于导通状态,以使所述第二驱动电机的绕组串联接入所述电源电路;
    当所述电器设备处于所述第二驱动电机运行对应的状态时,所述切换组件控制所述电连接部处于断开状态,以使所述第二驱动电机的绕组与所电源电路断开。
  12. 根据权利要求11所述的电器设备的电机控制器,其中,所述电源电路包括:
    交流电源接入电路,所述交流电源接入电路包括交流电源正极端和交流电源负极端;和
    整流电路,所述整流电路连接所述交流电源接入电路与所述第一控制电路。
  13. 根据权利要求12所述的电器设备的电机控制器,其中,
    所述组件切换电路接在所述交流电源正极端与所述整流电路之间,以使所述第二驱动电机的绕组串联在所述交流电源正极端与所述整流电路之间。
  14. 根据权利要求13所述的电器设备的电机控制器,其中,所述电连接部包括第一连接线路和第二连接线路,所述切换组件包括:
    第一切换件,串联在所述交流电源正极端与所述整流电路之间,用于控制所述交流电源正极端与所述整流电路之间的通断,且所述第一切换件的两端分 别连接所述第一连接线路的一端和所述第二连接线路的一端;
    第二切换件,连接在所述第一连接线路的另一端,用于控制所述第二驱动电机的一相绕组与所述第一连接线路导通或与所述第二驱动电机的第二逆变电路导通;和
    第三切换件,连接在所述第二连接线路的另一端,用于控制所述第二驱动电机的另一相绕组与所述第二连接线路导通或与所述第二驱动电机的第二逆变电路导通。
  15. 根据权利要求12所述的电器设备的电机控制器,其中,
    所述组件切换电路接在所述整流电路整流后的直流母线上,以使所述第二驱动电机的绕组串联在所述直流母线上。
  16. 根据权利要求15所述的电器设备的电机控制器,其中,所述整流电路包括:
    整流主电路,所述整流主电路与所述交流电源接入电路连接;和
    滤波电路,所述滤波电路连接所述整流主电路与所述第一控制电路,所述直流母线接在所述整流主电路与所述滤波电路之间。
  17. 根据权利要求16所述的电器设备的电机控制器,其中,
    所述直流母线包括直流正母线;
    其中,所述组件切换电路接入所述直流正母线,以使所述第二驱动电机的绕组串联接入所述直流正母线。
  18. 根据权利要求17所述的电器设备的电机控制器,其中,所述电连接部包括第三连接线路和第四连接线路,所述切换组件包括:
    第四切换件,接入所述直流正母线,用于控制所述直流正母线与所述滤波电路之间的通断,且所述第四切换件的两端分别连接所述第三连接线路的一端和所述第四连接线路的一端;
    第五切换件,连接在所述第三连接线路的另一端,用于控制所述第二驱动电机的一相绕组与所述第三连接线路导通或与所述第二驱动电机的第二逆变电路导通;和
    第六切换件,连接在所述第四连接线路的另一端,用于控制所述第二驱动电机的另一相绕组与所述第四连接线路导通或与所述第二驱动电机的第二逆 变电路导通。
  19. 根据权利要求17所述的电器设备的电机控制器,其中,
    所述电机控制器还包括第二逆变电路,所述第二逆变电路与所述第二驱动电机的绕组电连接;
    所述第一控制电路包括第一逆变电路,所述第二逆变电路与所述第一逆变电路并联;
    所述整流电路还与所述第二逆变电路连接;
    所述切换组件包括第七切换件,所述第七切换件接入所述直流正母线,用于控制所述直流正母线与所述第二驱动电机的绕组导通或直接与所述滤波电路导通。
  20. 根据权利要求16所述的电器设备的电机控制器,其中,
    所述直流母线包括直流负母线;
    其中,所述组件切换电路接入所述直流负母线,以使所述第二驱动电机的绕组串联接入所述直流负母线。
  21. 根据权利要求20所述的电器设备的电机控制器,其中,所述电连接部包括第五连接线路和第六连接线路,所述切换组件包括:
    第八切换件,接入所述直流负母线,用于控制所述直流负母线与所述滤波电路之间的通断,且所述第八切换件的两端分别连接所述第五连接线路的一端和所述第六连接线路的一端;
    第九切换件,连接在所述第五连接线路的另一端,用于控制所述第二驱动电机的一相绕组与所述第五连接线路导通或与所述第二驱动电机的第二逆变电路导通;和
    第十切换件,连接在所述第六连接线路的另一端,用于控制所述第二驱动电机的另一相绕组与所述第六连接线路导通或与所述第二驱动电机的第二逆变电路导通。
  22. 根据权利要求20所述的电器设备的电机控制器,其中,
    所述电机控制器还包括第二逆变电路,所述第二逆变电路与所述第二驱动电机的绕组电连接;
    所述第一控制电路包括第一逆变电路,所述第二逆变电路与所述第一逆变 电路并联;
    所述整流电路还与所述第二逆变电路连接;
    所述切换组件包括第十一切换件,所述第十一切换件接入所述直流负母线,用于控制所述直流负母线与所述第二驱动电机的绕组导通或直接与所述滤波电路导通。
  23. 根据权利要求10至22中任一项所述的电器设备的电机控制器,其中,
    所述切换组件包括至少一个切换件,所述切换件的种类包括开关元件和继电器中的至少一种。
  24. 一种电器设备的电机装置,其中,包括:
    如权利要求1至23中任一项所述的电器设备的电机控制器;和
    第一驱动电机,所述第一驱动电机与所述电机控制器的第一控制电路电连接。
  25. 根据权利要求24所述的电器设备的电机装置,其中,
    所述第一驱动电机包括外壳,所述外壳包括后端盖,所述电机控制器固定在所述后端盖上。
  26. 一种电器设备,其中,包括:
    如权利要求24或25所述的电器设备的电机装置;和
    第二驱动电机,所述第二驱动电机的绕组与所述电机装置的第二控制电路电连接。
  27. 根据权利要求26所述的电器设备,其中,
    所述电器设备包括主控板,所述主控板与所述电机装置的电源电路电连接。
  28. 根据权利要求27所述的电器设备,其中,
    所述主控板通过通讯装置与所述电机装置的电机控制器进行通讯,并通过所述通讯装置向所述电机控制器下达指令,以及接收所述电机控制器反馈的信息。
  29. 根据权利要求26至28中任一项所述的电器设备,其中,
    所述第二驱动电机包括两相电机;或者
    所述第二驱动电机包括三相电机。
  30. 根据权利要求26至28中任一项所述的电器设备,其中,
    所述电器设备包括滚筒洗衣机,所述电机装置的第一驱动电机包括滚筒电机,所述第二驱动电机包括风机电机;或者
    所述电器设备包括空调器,所述电机装置的第一驱动电机包括压缩机电机,所述第二驱动电机包括风机电机;或者
    所述电器设备包括热水器,所述电机装置的第一驱动电机包括压缩机电机,所述第二驱动电机包括风机电机;或者
    所述电器设备包括冰箱,所述电机装置的第一驱动电机包括压缩机电机,所述第二驱动电机包括风机电机。
PCT/CN2020/096436 2020-06-16 2020-06-16 电器设备的电机控制器、电器设备的电机装置和电器设备 WO2021253249A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/096436 WO2021253249A1 (zh) 2020-06-16 2020-06-16 电器设备的电机控制器、电器设备的电机装置和电器设备
CN202080003523.5A CN114097174B (zh) 2020-06-16 2020-06-16 电器设备的电机控制器、电器设备的电机装置和电器设备
CN202110285920.2A CN113054808B (zh) 2020-06-16 2021-03-17 电器设备的电机控制器、电器设备的电机装置和电器设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096436 WO2021253249A1 (zh) 2020-06-16 2020-06-16 电器设备的电机控制器、电器设备的电机装置和电器设备

Publications (1)

Publication Number Publication Date
WO2021253249A1 true WO2021253249A1 (zh) 2021-12-23

Family

ID=76512985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096436 WO2021253249A1 (zh) 2020-06-16 2020-06-16 电器设备的电机控制器、电器设备的电机装置和电器设备

Country Status (2)

Country Link
CN (2) CN114097174B (zh)
WO (1) WO2021253249A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253249A1 (zh) * 2020-06-16 2021-12-23 美的威灵电机技术(上海)有限公司 电器设备的电机控制器、电器设备的电机装置和电器设备
CN113676575B (zh) * 2021-08-17 2024-04-09 维沃移动通信有限公司 天线模组及电子设备
CN114938316B (zh) * 2022-05-20 2023-09-22 淮安威灵电机制造有限公司 家电设备的隔离异步通讯电路、方法以及家电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146726A1 (en) * 2002-02-05 2003-08-07 Toyota Jidosha Kabushiki Kaisha Load driver with power storage unit
CN101460333A (zh) * 2006-06-07 2009-06-17 丰田自动车株式会社 车辆驱动系统以及具备该系统的车辆
JP2009232672A (ja) * 2008-02-28 2009-10-08 Fuji Electric Systems Co Ltd モータ駆動システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2073193U (zh) * 1990-06-25 1991-03-13 云庆龙 多台电机并联串级调速装置
JP2586771B2 (ja) * 1992-03-06 1997-03-05 ブラザー工業株式会社 モータの駆動装置
JP2003284378A (ja) * 2002-03-20 2003-10-03 Denso Corp 車両用交流発電電動装置
CN1665121A (zh) * 2004-12-31 2005-09-07 中原工学院 具有超电容的组合直流斩波调速潜艇推进装置
JP4752779B2 (ja) * 2007-01-29 2011-08-17 パナソニック株式会社 洗濯乾燥機のモータ駆動装置
JP2009159663A (ja) * 2007-12-25 2009-07-16 Toyota Motor Corp 電動機駆動装置、電動車両および電動機駆動装置の制御方法
CN105075103B (zh) * 2013-04-09 2017-04-12 三菱电机株式会社 多轴驱动装置
DE112015006526T5 (de) * 2015-05-11 2018-01-25 Mitsubishi Electric Corporation Wechselstrom-Drehelektromaschinen-Steuervorrichtung
CN107364367B (zh) * 2017-08-15 2023-04-21 东南大学盐城新能源汽车研究院 一种基于多励磁源电机的集成式电机驱动与车载充电系统
JP6669787B2 (ja) * 2018-01-12 2020-03-18 ファナック株式会社 蓄電部を有するモータ駆動装置及びモータ駆動システム
WO2021253249A1 (zh) * 2020-06-16 2021-12-23 美的威灵电机技术(上海)有限公司 电器设备的电机控制器、电器设备的电机装置和电器设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146726A1 (en) * 2002-02-05 2003-08-07 Toyota Jidosha Kabushiki Kaisha Load driver with power storage unit
CN101460333A (zh) * 2006-06-07 2009-06-17 丰田自动车株式会社 车辆驱动系统以及具备该系统的车辆
JP2009232672A (ja) * 2008-02-28 2009-10-08 Fuji Electric Systems Co Ltd モータ駆動システム

Also Published As

Publication number Publication date
CN114097174B (zh) 2024-05-24
CN113054808A (zh) 2021-06-29
CN114097174A (zh) 2022-02-25
CN113054808B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2021253249A1 (zh) 电器设备的电机控制器、电器设备的电机装置和电器设备
RU2459570C2 (ru) Водоносный бытовой прибор с электроприводом
CN101346595A (zh) 开关磁阻电机控制系统在冷却系统中的应用
CN111478642B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
JP2011229221A (ja) 密閉形電動圧縮機,冷凍サイクル装置
CN113315445B (zh) Spim电机驱动电路及方法
CN101839940B (zh) 反相器输出电流检测电路
CN101599681B (zh) 用于洗衣机的皮带轮电机和驱动系统及洗衣机
WO2022142310A1 (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN113241990A (zh) Spim电机驱动电路及方法
CN112762525A (zh) 空调室外机控制电路、电控组件及空调器
CN113315447B (zh) Spim电机驱动电路及方法
WO2020077787A1 (zh) 空调设备以及用于空调设备的电能处理方法
CN215120634U (zh) Spim电机驱动电路
WO2022095575A1 (zh) 电机驱动器、电机速度控制方法及控制系统
CN109253103A (zh) 一种风机驱动电路、风机驱动装置及空调器
CN113422561A (zh) Spim电机驱动电路及方法
CN113315448A (zh) Spim电机驱动电路及方法
CN215601206U (zh) 电源电路、线路板及电器
CN111355423A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN205401077U (zh) 一种多速电机驱动的空调压缩机
CN215268114U (zh) Spim电机驱动电路
CN106440027B (zh) 定频一拖二空调机组
CN215871239U (zh) 一种用于浴霸的双电机控制电路及内置该电路的集成电机
CN215120633U (zh) Spim电机驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940487

Country of ref document: EP

Kind code of ref document: A1