WO2022142310A1 - 驱动控制电路、驱动控制方法、线路板及空调器 - Google Patents

驱动控制电路、驱动控制方法、线路板及空调器 Download PDF

Info

Publication number
WO2022142310A1
WO2022142310A1 PCT/CN2021/108992 CN2021108992W WO2022142310A1 WO 2022142310 A1 WO2022142310 A1 WO 2022142310A1 CN 2021108992 W CN2021108992 W CN 2021108992W WO 2022142310 A1 WO2022142310 A1 WO 2022142310A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power module
module
switch
energy storage
Prior art date
Application number
PCT/CN2021/108992
Other languages
English (en)
French (fr)
Inventor
江海昊
黄招彬
龙谭
张杰楠
曾贤杰
赵鸣
徐锦清
堀部美彦
井上薰
胡斌
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011633005.XA external-priority patent/CN114696667A/zh
Priority claimed from CN202023348001.5U external-priority patent/CN213817625U/zh
Priority claimed from CN202011636871.4A external-priority patent/CN114696668A/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2022142310A1 publication Critical patent/WO2022142310A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to a drive control circuit, a drive control method, a circuit board and an air conditioner.
  • Air conditioners are household appliances commonly used in people's daily life. Compressors are an important component of air conditioners. The energy consumption of compressors accounts for a large proportion of the total energy consumption of air conditioners. Therefore, improving the efficiency of the compressor has a significant effect on improving the overall energy efficiency of the air conditioner.
  • the drive motor of the compressor is generally a permanent magnet synchronous motor. Since the voltage of the power supply is generally fixed and limited by the DC bus voltage, the compressor is prone to voltage saturation under high load conditions and enters the field weakening control in advance, which makes the motor run. Efficiency drops.
  • the embodiments of the present application provide a drive control circuit, a drive control method, a circuit board and an air conditioner, which can improve the operation efficiency of the motor.
  • a first power module including a first input end and a first output end, the first output end is connected to the first three-phase outlet group;
  • a power supply connection end for connecting to a power supply, and the power supply connection end is connected to the first input end;
  • the drive control circuit provided by the embodiment of the present application has at least the following beneficial effects: by connecting the first power module and the second power module at both ends of the open-winding motor, and the second power module is connected with an energy storage module, the controller can be used according to the energy storage module.
  • the power of the module sends a control signal to the first power module and the second power module to change the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running, and the energy storage module can supply power to the open-winding motor when the energy is sufficient.
  • the drive control circuit further includes:
  • the switch module by setting the switch module, the on-off between the power connection terminal and the first power module can be controlled, and when the energy storage module supplies power to the open-winding motor, the open-winding motor can be isolated from the power source and run independently. It is beneficial to reduce the control loss of the open-winding motor.
  • the switch module includes a first switch, the power connection end includes a positive bus bar connection end and a negative bus bar connection end, and the first input end includes a positive bus bar input end and a negative bus bar input end , the first switch is connected between the positive busbar connection end and the positive busbar input end, and the negative busbar connection end is connected to the negative busbar input end;
  • the switch module includes a first switch and a second switch, the power connection end includes a positive busbar connection end and a negative busbar connection end, the first input end includes a positive busbar input end and a negative busbar input end, the first A switch is connected between the positive busbar connection end and the positive busbar input end, and the second switch is connected between the negative busbar connection end and the negative busbar input end.
  • the switch module can be a single-pole single-throw switch or a double-pole double-throw switch, which has the advantages of simple structure and low cost.
  • the drive control circuit further includes:
  • a capacitor is connected in parallel between the power connection terminal and the first power module.
  • the capacitor device by arranging the capacitor device, the electric energy of the power supply can be stored, and the signal at the connection end of the power supply can be filtered, so that the operation of the open-winding motor is more stable.
  • the embodiments of the present application also provide a drive control method, which is applied to a drive control circuit, and the drive control circuit is used to drive an open-winding motor with three-phase windings, and one end of the windings of each phase constitutes a first A three-phase outlet group, the other end of the winding of each phase forms a second three-phase outlet group,
  • the drive control circuit includes a first power module, a second power module, a power connection end, an energy storage module and a controller, the The first power module includes a first input end and a first output end, the first output end is connected to the first three-phase outlet group, the second power module includes a second input end and a second output end, so The second output terminal is connected to the second three-phase outlet group, the power connection terminal is connected to the first input terminal, the energy storage module is connected to the second input terminal, and the controller is respectively connected to the the first power module is connected to the second power module;
  • the drive control method includes:
  • a control signal is sent to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit.
  • the drive control method provided by the embodiment of the present application has at least the following beneficial effects: by acquiring the power of the energy storage module, the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the drive control circuit
  • the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the drive control circuit
  • the energy storage module can supply power to the open-winding motor when the energy is sufficient, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit includes:
  • a control signal is sent to the first power module and the second power module so that the drive control circuit is in a non-double-terminal power supply state.
  • the energy storage module when the power of the energy storage module is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient. At this time, a control signal can be sent to the first power module and the second power module to enable the The drive control circuit is in a non-double-terminal power supply state, and the energy storage module may be used to supply power to the open-winding motor, or the energy storage module may not be used to supply power to the open-winding motor.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each of the bridge arms includes two switch tubes connected in series with each other.
  • the first power module and the second power module send control signals to make the drive control circuit in a non-double-terminal power supply state, including at least one of the following:
  • the PWM pulse signals are respectively sent to the six switch tubes of the first power module to turn on the switch tubes of the upper half bridge of the second power module or the switch tubes of the lower half bridge of the second power module, At this time, the energy storage module is not used to supply power to the open-winding motor, and the open-winding motor operates in a star connection; PWM pulse signals are respectively sent to the six switching tubes of the second power module to turn on the switches of the upper half bridge of the first power module. At this time, the energy storage module is used to supply power to the open-winding motor, and the open-winding motor operates in a star connection.
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit further includes:
  • a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the first power module and the second power sends a control signal to change the working state of the drive control circuit, that is, to determine whether the energy storage module needs to be charged according to the load parameter of the open-winding motor.
  • the load parameter includes a required rotational speed of the open-winding motor
  • the first power module and the second power module are sent to the first power module and the second power module according to the load parameter of the open-winding motor.
  • Sending a control signal to change the working state of the drive control circuit includes at least one of the following:
  • a PWM pulse signal is respectively sent to the six switches of the first power module to turn on all the upper half bridges of the second power module.
  • the switch tube or the switch tube of the lower half bridge of the second power module is turned on.
  • the required rotational speed of the open-winding motor when the required rotational speed of the open-winding motor is less than or equal to the preset rotational speed threshold, it indicates that the required rotational speed of the open-winding motor is low at this time, and the first power module and the The six switching tubes of the second power module send PWM pulse signals respectively, so that the power supply can charge the energy storage module, and the open-winding motor runs in the open-winding connection; when the required rotational speed of the open-winding motor is greater than the preset rotational speed The threshold value indicates that the required rotational speed of the open-winding motor is high at this time. At this time, PWM pulse signals can be sent to the six switching tubes of the first power module to turn on the upper half bridge of the second power module. The switch tube or the switch tube of the lower half bridge of the second power module is turned on. At this time, the power supply does not charge the energy storage module, and the open-winding motor operates in a star connection.
  • the drive control circuit further includes a switch module, the switch module is connected between the first input terminal and the power supply connection terminal, the A power module and the second power module send control signals to change the working state of the drive control circuit, including:
  • the switch module When the power is greater than a preset power threshold, the switch module is controlled to be turned off, and a control signal is sent to the first power module and the second power module to control the energy storage module to supply power to the open-winding motor .
  • the switch module when the power is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient, and the switch module is controlled to be disconnected. At this time, the energy storage module alone supplies power to the open-winding motor to ensure the normal operation of the open-winding motor. operation, and the isolation effect of the switch module is beneficial to reduce the control loss of the open-winding motor.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each of the bridge arms includes two switch tubes connected in series with each other.
  • the first power module and the second power module send a control signal to control the energy storage module to supply power to the open-winding motor, including at least one of the following:
  • PWM pulse signals are respectively sent to the six switch tubes of the first power module and the second power module.
  • PWM pulse signals are respectively sent to the six switches of the second power module to turn on the switches of the upper half bridge of the first power module or turn on the second
  • the switch tubes of the lower half bridge of the power module the open-winding motor is running in star connection at this time; or respectively send PWM pulses to the six switch tubes of the first power module and the second power module respectively signal, at this time the open-winding motor is running on the open-winding connection.
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit includes:
  • the switch module When the power is less than or equal to the power threshold, the switch module is controlled to be closed, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the The working state of the drive control circuit.
  • the switch module is controlled to close, and it is determined whether it is necessary to store energy according to the load parameter of the open-winding motor. Module charging.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each of the bridge arms includes two switch tubes connected in series with each other;
  • the working state includes In a double-terminal power supply state, an energy storage module independent power supply state, and a power supply independent power supply state, the control signal is sent to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit ,include:
  • the time proportion of the double-terminal power supply state, the independent power supply state of the energy storage module, and the independent power supply state of the power source is controlled according to the load parameter of the open-winding motor.
  • the embodiments of the present application further provide a drive control circuit for driving an open-winding motor with three-phase windings, wherein one end of the windings in each phase forms a first three-phase outlet group, and the windings in each phase form a first three-phase outlet group.
  • the other end of the wire forms a second three-phase outlet group, and the drive control circuit includes:
  • a first power module including a first input end and a first output end, the first output end is connected to the first three-phase outlet group;
  • the second power module includes a second input end and a second output end, the second output end is connected to the second three-phase outlet group;
  • a power supply connection end for connecting to a power supply, and the power supply connection end is connected to the first input end;
  • a controller is connected to the first power module and the second power module respectively.
  • the drive control circuit provided by the embodiment of the present invention has at least the following beneficial effects: by connecting the first power module and the second power module at both ends of the open-winding motor, the second power module is connected with an energy storage module, and the energy storage module is respectively connected to the second power module.
  • the second input terminal is connected to the power connection terminal. Therefore, the current input from the power input terminal can not only supply power to the open-winding motor, but also directly charge the energy storage module, thereby reducing the control loss.
  • a power module and a second power module are used to control the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running.
  • the energy storage module can supply power to the open-winding motor when the energy is sufficient to increase the operating voltage of the motor and improve the motor. operating efficiency.
  • the drive control circuit further includes:
  • a switch module is used to control the connection between at least one of the first input terminal and the second input terminal and the power connection terminal, and the switch module is connected to the controller.
  • the open-winding motor can operate independently from the power supply, which is beneficial to reduce the control loss of the open-winding motor.
  • the switch module includes a first switch, the energy storage module and the first input terminal are connected to the power connection terminal through a common terminal, and the first switch is connected to the first switch respectively. an input terminal and the common terminal;
  • the switch module includes a first switch, the energy storage module and the first input terminal are connected to the power supply connection terminal through a common terminal, and the first switch is respectively connected to the energy storage module and the common terminal;
  • the switch module includes a first switch, and the first switch is connected between the second input terminal and the energy storage module.
  • the switch module includes a first switch, the first switch can be set at different positions, and the closing or opening of the first switch can be controlled according to the power condition of the energy storage module, so that the energy storage module can independently open the winding motor Power is supplied, or the open-winding motor can be powered simultaneously with the power supply, or the power supply can charge the energy storage module.
  • the energy storage module and the first input terminal are connected to the power connection terminal through a common terminal, wherein:
  • the switch module includes a first switch and a second switch, the first switch is respectively connected to the first input terminal and the common terminal, and the second switch is respectively connected to the energy storage module and the common terminal;
  • the switch module includes a first switch, and the first switch is respectively connected to the power connection terminal and the common terminal.
  • the closing or opening of the switch module can be controlled according to the power status of the energy storage module, so that the energy storage module can independently supply power to the open-winding motor, or can simultaneously supply power to the open-winding motor together with the power supply, or The power supply can charge the energy storage module.
  • the open-winding motor can be completely isolated from the power connection terminal, which is beneficial to reduce control loss.
  • an embodiment of the present invention further provides a drive control method, which is applied to a drive control circuit, wherein the drive control circuit is used to drive an open-winding motor with three-phase windings, and one end of each phase of the windings is composed of The first three-phase outlet group, the other end of the winding of each phase constitutes a second three-phase outlet group, the drive control circuit includes a first power module, a second power module, a power connection end, an energy storage module and a controller,
  • the first power module includes a first input end and a first output end, the first output end is connected to the first three-phase outlet group, and the second power module includes a second input end and a second output end , the second output terminal is connected to the second three-phase outlet group, the power supply connection terminal is connected to the first input terminal, and the energy storage module is respectively connected to the second input terminal and the power supply connection terminal connected, the controller is respectively connected with the first power module and the second power module;
  • the drive control method includes:
  • a control signal is sent to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit.
  • the drive control method provided by the embodiment of the present invention has at least the following beneficial effects: by acquiring the power of the energy storage module, the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the drive control circuit
  • the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the drive control circuit
  • the energy storage module can supply power to the open-winding motor when the energy is sufficient, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each of the bridge arms includes two switch tubes connected in series with each other.
  • the electricity sends a control signal to the first power module and the second power module to change the working state of the drive control circuit, including one of the following:
  • a PWM pulse signal can be sent to the six switching tubes of the second power module to guide the The switch tube of the upper half bridge of the first power module is turned on or the switch tube of the lower half bridge of the first power module is turned on, and the energy storage module supplies power to the open-winding motor alone; PWM pulse signals are respectively sent to the six switching tubes of the first power module and the second power module, and the energy storage module and the power supply together supply power to the open-winding motor.
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit further includes:
  • a PWM pulse signal can be sent to the six switches of the first power module respectively. , turn on the switch tube of the upper half bridge of the second power module or turn on the switch tube of the lower half bridge of the second power module, and only supply power to the open-winding motor from the power supply.
  • the energy module is directly connected to the power supply, and the power supply can also charge the energy storage module.
  • the drive control circuit further includes a switch module, the switch module includes a first switch, the energy storage module and the first input terminal are connected to the power supply connection terminal through a common terminal, the first switch is respectively connected to the first input terminal and the common terminal;
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit includes:
  • the on-off of the first switch is controlled according to the load quantity parameter of the open-winding motor, and a control signal is sent to the first power module and the second power module to change the the working state of the drive control circuit.
  • the first power module and the second power module send a control signal to change the working state of the drive control circuit, so that the energy storage module and the power supply together can be selected according to the load parameter of the open-winding motor to the open-winding motor.
  • the power supply is still powered by the energy storage module alone.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, each of the bridge arms includes two switch tubes connected in series with each other, and the load quantity parameter including the required rotational speed of the open-winding motor, controlling the on-off of the first switch according to the load parameter of the open-winding motor, and sending a control signal to the first power module and the second power module to Changing the working state of the drive control circuit includes at least one of the following:
  • the first switch When the required rotational speed of the open-winding motor is less than or equal to a preset rotational speed threshold, the first switch is turned off, and PWM pulse signals are respectively sent to the six switch tubes of the second power module to turn on the The switch tube of the upper half bridge of the first power module or the switch tube of the lower half bridge of the first power module is turned on;
  • the first switch When the required rotational speed of the open-winding motor is greater than a preset rotational speed threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switch tubes of the first power module and the second power module.
  • the first switch when the required rotational speed of the open-winding motor is less than or equal to a preset rotational speed threshold, indicating that the load demand is low, the first switch can be turned off at this time, and the sixth switch of the second power module can be turned off.
  • Each of the switch tubes sends a PWM pulse signal to turn on the switch tube of the upper half bridge of the first power module or turn on the switch tube of the lower half bridge of the first power module.
  • the energy storage module supplies power to the open-winding motor alone, and the open-winding motor works in a star connection; when the required rotational speed of the open-winding motor is greater than the preset rotational speed threshold, it indicates that the load demand is high, and the first switch can be closed at this time.
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit further includes:
  • the first switch When the power is less than or equal to the power threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the upper half of the second power module.
  • the switch tube of the bridge or the switch tube of the lower half bridge of the second power module is turned on.
  • the first switch when the power of the energy storage module is less than or equal to the power threshold, it indicates that the power of the energy storage module is insufficient.
  • the first switch can be closed, and the six switches of the first power module can be turned on.
  • the transistors send PWM pulse signals respectively to turn on the switch tube of the upper half bridge of the second power module or the switch tube of the lower half bridge of the second power module. Power is supplied, and the power supply charges the energy storage module at the same time, and the open-winding motor works in a star connection.
  • the drive control circuit further includes a switch module, the switch module includes a first switch, the energy storage module and the first input terminal are connected to the power supply connection terminal through a common terminal, the first switch is respectively connected to the energy storage module and the common terminal;
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit includes:
  • the first switch When the power is greater than a preset power threshold, the first switch is turned off, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the The working state of the drive control circuit.
  • the first switch when the power of the energy storage module is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient. At this time, the first switch can be turned off.
  • the load parameter of the winding motor sends a control signal to the first power module and the second power module to change the working state of the drive control circuit, so that the energy storage module can be selected according to the load parameter of the open-winding motor. Whether to supply power to the open-winding motor together with the power supply or separately from the energy storage module.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, each of the bridge arms includes two switch tubes connected in series with each other, and the load quantity parameter including the required rotational speed of the open-winding motor, and sending a control signal to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit, Include at least one of the following:
  • a PWM pulse signal is respectively sent to the six switching tubes of the second power module to turn on the upper half bridge of the first power module.
  • the switch tube of the first power module or the switch tube of the lower half bridge of the first power module is turned on;
  • a PWM pulse signal is respectively sent to the six switch tubes of the first power module and the second power module.
  • PWM can be sent to the six switches of the second power module respectively.
  • Pulse signal turn on the switch tube of the upper half bridge of the first power module or turn on the switch tube of the lower half bridge of the first power module, at this time, the energy storage module independently turns on the winding motor Power supply, the open-winding motor works in star connection; when the required speed of the open-winding motor is greater than the preset speed threshold, it indicates that the load demand is high, and the first power module and the second power module can be sent to the power module.
  • the six described switch tubes of the 1000000000000000 respectively send PWM pulse signals.
  • the energy storage module and the power supply together supply power to the open-winding motor, and the open-winding motor works in the open-winding connection.
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit further includes:
  • the first switch When the power is less than or equal to the power threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the upper half of the second power module.
  • the switch tube of the bridge or the switch tube of the lower half bridge of the second power module is turned on.
  • the first switch when the power of the energy storage module is less than or equal to the power threshold, it indicates that the power of the energy storage module is insufficient.
  • the first switch can be closed, and the six switches of the first power module can be turned on.
  • the transistors send PWM pulse signals respectively to turn on the switch tube of the upper half bridge of the second power module or the switch tube of the lower half bridge of the second power module. Power is supplied, and the power supply charges the energy storage module at the same time, and the open-winding motor works in a star connection.
  • the drive control circuit further includes a switch module, the switch module includes a first switch, and the first switch is connected between the second input terminal and the energy storage module;
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit includes:
  • the first switch When the power is greater than a preset power threshold, the first switch is closed, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the drive Control the working state of the circuit.
  • the first switch can be closed, and then the first switch can be closed according to the load parameter of the open-winding motor.
  • a power module and the second power module send a control signal to change the working state of the drive control circuit, so that whether to supply power to the open-winding motor from the energy storage module and the power supply together or from the open-winding motor can be selected according to the load parameter of the open-winding motor.
  • the energy storage module is powered independently.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, each of the bridge arms includes two switch tubes connected in series with each other, and the load parameter including the required rotational speed of the open-winding motor, controlling the on-off of the first switch according to the load parameter of the open-winding motor, and sending a control signal to the first power module and the second power module to Changing the working state of the drive control circuit includes at least one of the following:
  • a PWM pulse signal is respectively sent to the six switching tubes of the second power module to turn on the upper half bridge of the first power module.
  • the switch tube of the first power module or the switch tube of the lower half bridge of the first power module is turned on;
  • a PWM pulse signal is respectively sent to the six switch tubes of the first power module and the second power module.
  • PWM can be sent to the six switches of the second power module respectively.
  • Pulse signal turn on the switch tube of the upper half bridge of the first power module or turn on the switch tube of the lower half bridge of the first power module, at this time, the energy storage module independently turns on the winding motor Power supply, the open-winding motor works in star connection; when the required speed of the open-winding motor is greater than the preset speed threshold, it indicates that the load demand is high, and the first power module and the second power module can be sent to the power module.
  • the six described switch tubes of the 1000000000000000 respectively send PWM pulse signals.
  • the energy storage module and the power supply together supply power to the open-winding motor, and the open-winding motor works in the open-winding connection.
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the driving control circuit further includes:
  • the first switch When the power is less than or equal to the power threshold, the first switch is turned off, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the upper power of the second power module.
  • the switch tube of the half bridge or the switch tube of the lower half bridge of the second power module is turned on.
  • the switch tubes respectively send PWM pulse signals to turn on the switch tubes of the upper half bridge of the second power module or turn on the switch tubes of the lower half bridge of the second power module, and the power supply turns on the windings independently.
  • the motor is powered, and the power supply charges the energy storage module at the same time, and the open-winding motor works in a star connection.
  • the first switch since the first switch is turned off, the energy storage module is completely isolated from the open-winding motor during the charging process, which is beneficial to reduce control loss.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, each of the bridge arms includes two switch tubes connected in series with each other, and the drive control circuit It also includes a switch module, the drive control circuit further includes a switch module, and the energy storage module and the first input terminal are connected to the power connection terminal through a common terminal;
  • the switch module includes a first switch and a second switch, the first switch is respectively connected to the first input terminal and the common terminal, and the second switch is respectively connected to the energy storage module and the common terminal end;
  • the switch module includes a first switch, and the first switch is respectively connected to the power connection terminal and the common terminal;
  • the sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit includes at least one of the following:
  • the switch module When the power is greater than a preset power threshold, the switch module is turned off, and PWM pulse signals are respectively sent to the six switches of the second power module to turn on the upper half bridge of the first power module.
  • the switch tube of the first power module or the switch tube of the lower half bridge of the first power module is turned on.
  • the switch module When the power is less than or equal to a preset power threshold, the switch module is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the upper half of the second power module.
  • the switch tube of the bridge or the switch tube of the lower half bridge of the second power module is turned on.
  • PWM pulse signal turns on the switch tube of the upper half bridge of the first power module or turns on the switch tube of the lower half bridge of the first power module, at this time, the energy storage module opens the winding independently
  • the motor is powered, and the open-winding motor works in a star connection, and since the open-winding motor is completely isolated from the power supply after the switch module is disconnected, it is beneficial to reduce the control loss; when the power of the energy storage module is less than or equal to the preset power threshold, it indicates that When the power of the energy storage module is insufficient, the switch module can be closed at this time, and PWM pulse signals are respectively sent to the six switch tubes of the first power module to turn on the switch tubes of the upper half bridge of the second power module.
  • the switch tube of the lower half bridge of the second power module is turned on, the power supply alone supplies power to the open-winding motor, and the power supply simultaneously charges the energy storage module, and the open-winding motor operates in a star connection.
  • an embodiment of the present application further provides a circuit board, which includes the drive control circuit described in the first aspect. Therefore, the circuit board connects the first power module and the second power module at both ends of the open-winding motor, And the second power module is connected with an energy storage module, and the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running. , the energy storage module can supply power to the open-winding motor when the energy is sufficient, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • an embodiment of the present application further provides an air conditioner, including the circuit board described in the fifth aspect, or including a memory and a processor, where the memory stores a computer program, and the processor executes the computer program
  • the above-mentioned air conditioner connects the first power module and the second power module at both ends of the open-winding motor, and the second power module is connected with the energy storage module.
  • the power of the energy storage module sends a control signal to the first power module and the second power module to change the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running, and the energy storage module can open the winding motor when the energy is sufficient. Power supply, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • an embodiment of the present invention further provides a circuit board, which includes the drive control circuit described in the third aspect. Therefore, the circuit board connects the first power module and the second power module at both ends of the open-winding motor, An energy storage module is connected to the second power module, and the energy storage module is connected to the second input terminal and the power connection terminal respectively. Therefore, the current input from the power input terminal can either supply power to the open-winding motor, or directly The energy storage module is charged to reduce the control loss, and the working state of the drive control circuit can be controlled by controlling the first power module and the second power module, so that the electric energy can flow in both directions when the motor is running. Under the circumstance, it can supply power to the open-winding motor, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • an embodiment of the present invention further provides an air conditioner, including the circuit board described in the seventh aspect, or including a memory and a processor, where the memory stores a computer program, and the processor executes the computer program
  • the above-mentioned air conditioner connects the first power module and the second power module at both ends of the open-winding motor, and the second power module is connected with an energy storage module, and the energy storage modules are respectively Connect to the second input terminal and the power supply connection terminal, and use the controller to send a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit, so that when the motor is running Electric energy can flow in both directions, and the energy storage module can supply power to the open-winding motor when the energy is sufficient, increasing the operating voltage of the motor and improving the operating efficiency of the motor.
  • an embodiment of the present application further provides a computer-readable storage medium, where the storage medium stores a program, and the program is executed by a processor to implement the drive control method of the second aspect or the fourth aspect.
  • FIG. 1 is a schematic structural diagram of a drive control circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram (DC power supply) of a DC device provided by an embodiment of the present application.
  • FIG. 5 is another schematic structural diagram of the DC device provided by the embodiment of the present application (AC power supply + AC-DC converter);
  • FIG. 6 is a schematic structural diagram (battery) of an energy storage module provided by an embodiment of the present application.
  • FIG. 7 is another schematic structural diagram (capacitor) of an energy storage module provided by an embodiment of the present application.
  • FIG. 8 is another schematic structural diagram (battery+capacitor) of an energy storage module provided by an embodiment of the present application.
  • FIG 9 is another schematic structural diagram of an energy storage module provided by an embodiment of the present application (capacitor+bridge arm+inductor+battery);
  • FIG. 10 is a schematic diagram of switching the working state of the drive control circuit provided by the embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a drive control circuit provided by an embodiment of the present application (a switch module is provided);
  • FIG. 13 is a schematic structural diagram (single pole single throw) of a switch module provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a switch module provided by an embodiment of the present application (another connection method of SPST);
  • 15 is a schematic structural diagram (double pole double throw) of a switch module provided by an embodiment of the present application.
  • 16 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (the switch module is arranged in another position);
  • 17 is a flowchart of a drive control method provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a drive control circuit provided by an embodiment of the present application (without a switch module, a common DC bus);
  • FIG. 19 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (no switch module, common AC bus);
  • FIG. 20 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a switch module and a common DC bus are arranged between the first input terminal and the common terminal);
  • 21 is another schematic structural diagram of a drive control circuit provided by an embodiment of the present application (a switch module and a common AC bus are arranged between the first input terminal and the common terminal);
  • FIG. 22 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a switch module and a common DC bus are provided between the energy storage module and the common terminal);
  • FIG. 23 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a switch module and a common AC bus are arranged between the energy storage module and the common terminal);
  • FIG. 24 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a switch module and a common DC bus are provided between the energy storage module and the second input end);
  • FIG. 25 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a switch module and a common AC bus are arranged between the energy storage module and the second input end);
  • 26 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a switch module and a common AC bus are provided between the power connection terminal and the common terminal);
  • FIG. 27 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a switch module and a common DC bus are provided between the power connection terminal and the common terminal);
  • FIG. 28 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a first switch and a second switch and a common DC bus are correspondingly provided between the common terminal and the first input terminal, the common terminal and the energy storage module) ;
  • FIG. 29 is another schematic structural diagram of the drive control circuit provided by the embodiment of the present application (a first switch and a second switch and a common AC bus are correspondingly provided between the common terminal and the first input terminal, the common terminal and the energy storage module) ;as well as
  • FIG. 30 is a schematic structural diagram of an air conditioner provided by an embodiment of the present application.
  • multiple means more than two, greater than, less than, exceeding, etc. are understood as not including this number, above, below, within, etc. are understood as including this number. If there is a description of "first”, “second”, etc., it is only for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance, or implicitly indicating the number of indicated technical features or implicitly indicating the indicated The sequence of technical characteristics.
  • Air conditioners are household appliances commonly used in people's daily life. Compressors are an important component of air conditioners. The energy consumption of compressors accounts for a large proportion of the total energy consumption of air conditioners. Therefore, improving the efficiency of the compressor has a significant effect on improving the overall energy efficiency of the air conditioner.
  • the drive motor of the compressor is generally a permanent magnet synchronous motor. Since the voltage of the power supply is generally fixed and limited by the DC bus voltage, the compressor is prone to voltage saturation under high load conditions and enters the field weakening control in advance, which makes the motor run. Efficiency drops.
  • the embodiments of the present application provide a drive control circuit, a drive control method, a circuit board, and an air conditioner, which can improve the operation efficiency of the motor.
  • an embodiment of the present application provides a drive control circuit for driving an open-winding motor with three-phase windings.
  • One end of each phase winding forms a first three-phase outlet group 1100
  • the other end of each phase winding forms a first three-phase outlet group 1100 .
  • the drive control circuit includes a first power module, a second power module, a power connection terminal 1700, an energy storage module and a controller
  • the first power module includes a first input terminal 1300 and a first output terminal 1400
  • the first output terminal 1400 is connected to the first three-phase outlet group 1100
  • the second power module includes a second input terminal 1500 and a second output terminal 1600
  • the second output terminal 1600 is connected to the second three-phase outlet group 1200
  • the power connection terminal 1700 is used to connect the power supply
  • the power connection terminal 1700 is connected to the first input terminal 1300
  • the energy storage module is connected to the second input terminal 1500
  • the controller is used to send control signals to the first power module and the second power module according to the power of the energy storage module
  • the controller is respectively connected with the first power module and the second power module.
  • the power connection terminal 1700 is connected to the DC device
  • the first input terminal 1300 and the second input terminal 1500 are both provided with a positive bus input terminal and a ground terminal
  • the first output terminal 1400 and the second output terminal 1600 are both three-phase output terminals
  • the positive busbar and the negative busbar of the DC device are correspondingly connected to the positive busbar input terminal and the ground terminal of the first input terminal 1300
  • the positive busbar and ground wire of the energy storage module are correspondingly connected to the positive busbar input terminal and grounding terminal of the second input terminal 1500
  • the three-phase output terminal of the first output terminal 1400 corresponds to the first three-phase outlet group 1100 of the open-winding motor
  • the three-phase output terminal of the second output terminal 1600 corresponds to the second three-phase outlet group 1200 of the open-winding motor.
  • the driving control circuit may further include a capacitor C, which is connected in parallel between the power connection terminal 1700 and the first power module. The signal is filtered to make the operation of the open-winding motor more stable.
  • the first power module and the second power module each include three bridge arms connected in parallel with each other, and each bridge arm includes two switch tubes connected in series with each other, wherein the switch tubes can be MOSFETs (Metal-Oxide-Semiconductor Field -Effect Transistor, metal-oxide semiconductor field effect transistor) or IGBT ((Insulated Gate Bipolar Transistor), insulated gate bipolar transistor).
  • MOSFETs Metal-Oxide-Semiconductor Field -Effect Transistor, metal-oxide semiconductor field effect transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the DC device may be any one of a DC power supply, a DC power supply+DC-DC converter, and an AC power supply+AC-DC converter.
  • the DC power source may be a battery or a capacitor.
  • the DC device is a DC power supply
  • the positive busbar and ground wire of the DC power supply are connected to the power supply connection terminal 1700 correspondingly
  • the DC device is a DC power supply + DC-DC converter
  • the two output terminals of the DC-DC converter are correspondingly connected to the power supply Connection terminal 1700, wherein the positive busbar and ground wire of the DC power supply are connected to the two input terminals of the DC-DC converter
  • the DC device is an AC power supply + AC-DC converter
  • the two output terminals of the AC-DC converter are correspondingly connected
  • the power connection terminal 1700 wherein the positive busbar and the negative busbar of the AC power source are correspondingly connected to the two input terminals of the AC-DC converter.
  • the energy storage module may be any one of a battery, a capacitor, a battery+capacitor, a capacitor+bridge arm+inductor+battery.
  • the energy storage module is a battery
  • the positive busbar and ground wire of the battery are correspondingly connected to the positive busbar input terminal and the ground terminal of the second input terminal 1500
  • the energy storage module is a capacitor
  • the positive busbar and ground wire of the capacitor are correspondingly connected The positive bus input terminal and the ground terminal of the second input terminal 1500
  • the energy storage module is a battery + capacitor
  • the battery and the capacitor are connected in parallel with each other, and the positive bus bar and ground wire of the battery and the capacitor are connected to the positive bus input terminal of the second input terminal 1500 correspondingly and the ground terminal
  • the energy storage module is a capacitor + bridge arm + inductor + battery
  • the capacitor includes a first capacitor C1 and a second capacitor C2
  • the bridge arm includes two switch tubes connected in series
  • the first capacitor C1 is connected in parallel with the
  • first power module or the second power module has the following three working states:
  • PWM pulse signals are sent to the six switch tubes respectively, and the driving waveform of each switch tube is modulated by the duty cycle calculated by the controller, or the controller can also directly control the switch tubes through the calculated switch state;
  • Half-bridge modulation state turn on the switch tube of the upper half bridge of the first power module (or the second power module) or turn on the switch tube of the lower half bridge of the first power module (or the second power module), wherein the specific There are two ways.
  • the first way is that the controller determines the switching of the six switching tubes according to the three-phase current flow (the frequency of the switching is at the same level as the current fundamental frequency), and adjusts the switching state of the switching tubes to make the winding motor N.
  • the point (the intersection point of the three-phase current on the side of the corresponding power module) alternately appears on the positive busbar and the negative busbar of the first power module or the second power module, wherein the open-winding motor N points appear alternately on the first power module or
  • the positive bus of the second power module needs to open at least the upper half bridge of the corresponding phase with the current flowing from the first power module or the second power module to the open-winding motor; to make the open-winding motor N points alternately appear in the first power module Or the negative bus of the second power module needs to turn on at least the lower half bridge of the corresponding phase with the current flowing from the first power module or the second power module to the open-winding motor.
  • the second way is to turn on all three switches of the upper half bridge or turn on all three switches of the lower half bridge.
  • the first three-phase outlet group of the open-winding motor is connected, or the second three-phase outlet group is connected, so that the open-winding motor is in a star connection.
  • the switching modes of the six switch tubes are: alternately use the switch tubes that turn on the upper half bridge and the switch tubes at a certain frequency.
  • the method of turning on the switch tube of the lower half bridge is beneficial to reduce the conduction loss, balance the heat generation of the switch tube of the upper half bridge and the lower half bridge, improve the working reliability and prolong the service life of the switch tube; when When the switching tubes of the first power module and the second power module are IGBTs, if the forward conduction voltage drop when the IGBT is turned on is less than the conduction voltage drop of its reverse conduction, the corresponding phase of the current flowing to the open-winding motor can be turned on.
  • the upper half bridge of the IGBT and the lower half bridge of the corresponding phase of the current to the open-winding motor are turned on; if the forward conduction voltage drop when the IGBT is turned on is approximately equal to its reverse conduction voltage drop, there is no need to turn on the excess
  • the forward conduction voltage drop when the IGBT is turned on is approximately equal to its reverse conduction voltage drop, there is no need to turn on the excess
  • at least the corresponding phase with the current flowing from the first power module or the second power module to the open-winding motor needs to be turned on.
  • the drive control circuit has three working states, including a double-terminal power supply state, an energy storage module independent power supply state, and a power supply independent power supply state, where:
  • the controller sends PWM pulse signals to the six switching tubes of the first power module respectively, and turns on the upper part of the second power module.
  • the switch tube of the half bridge or the switch tube of the lower half bridge of the second power module is turned on, that is, the first power module is in a normal modulation state, and the second power module is in a half-bridge modulation state.
  • the DC device and the energy storage module supply power to the open-winding motor at the same time.
  • the controller sends PWM pulse signals to the six switching tubes of the first power module and the second power module respectively. , that is, both the first power module and the second power module are in a normal modulation state.
  • the controller sends PWM pulse signals to the six switching tubes of the second power module respectively to turn on the first power
  • the switch tube of the upper half bridge of the module or the switch tube of the lower half bridge of the first power module is turned on, that is, the first power module is in a half-bridge modulation state, and the second power module is in a normal modulation state.
  • the drive control circuit can switch between the above three working states, referring to FIG. 10 , specifically:
  • the drive control circuit switches from the dual-terminal power supply state to the independent power supply state of the energy storage module, and there is a transition state two, the first power module switches from the normal modulation state to the half-bridge modulation state at time t3, and the state switching of the first power module is completed at time t2;
  • the energy storage module is switched from the energy storage module independent power supply state to the dual-terminal power supply state, the switching action of the first power module is reversed, and the transition principle is similar, which is not repeated here.
  • the drive control circuit switches from the energy storage module independent power supply state to the power supply independent power supply state with transition state three, the second power module switches from the normal modulation state to the half-bridge modulation state at time t5, and the state switching of the second power module is completed at time t6;
  • the energy storage module is switched from the energy storage module independent power supply state to the dual-terminal power supply state, the switching action of the first power module is reversed, and the transition principle is similar, which is not repeated here.
  • the transition state is added in the process of switching the working state of the driving control circuit, so that the switching of the working state of the driving control circuit is more stable, and the working stability of the driving control circuit is improved.
  • the working state switching scenario of the drive control circuit provided by the embodiment of the present application is described below with an actual example:
  • Scenario 1 When the drive control circuit is in the state of independent power supply of the power supply, the DC device is powered off. At this time, the drive control circuit switches from the state of independent power supply of the power supply to the state of independent power supply of the energy storage module;
  • Scenario 2 When the drive control circuit is in the state of independent power supply of the power supply, the DC device is powered off. At this time, the drive control circuit switches from the state of independent power supply of the power supply to the state of double-terminal power supply. When the voltage of the capacitor C drops to the preset value, the drive control The circuit is switched from the double-ended power supply state to the independent power supply state of the energy storage module;
  • Scenario 3 When the drive control circuit is in the double-terminal power supply state, the DC device is powered off, and the drive control circuit switches from the double-terminal power supply state to the independent power supply state of the energy storage module.
  • Scenario 4 When the drive control circuit is in the independent power supply state of the energy storage module, the voltage drops to a preset value, and the drive control circuit switches from the independent power supply state of the energy storage module to the dual-terminal power supply state.
  • the time proportion of the double-terminal power supply state, the independent power supply state of the energy storage module, and the independent power supply state of the power supply can also be controlled according to the load parameter of the open-winding motor.
  • the load parameter may be the required rotational speed of the open-winding motor, the required power of the air conditioner, the required frequency of the air conditioner, and the like.
  • the load parameter as the required speed of the open-winding motor as an example to illustrate, when the required speed of the open-winding motor is high, the time ratio of the drive control circuit in the dual-terminal power supply state can be increased, and the drive control circuit in the energy storage state can be shortened accordingly.
  • the electricity price can also be used as the adjustment benchmark for the time proportion of the three working states of the drive control circuit.
  • the time proportion of the independent power supply state of the energy module can be shortened accordingly, and the time proportion of the drive control circuit in the double-terminal power supply state and the power supply independent power supply state can be shortened accordingly; in the case of low electricity prices, the time of the drive control circuit in the double-end power supply state can be increased.
  • the proportion of time when the drive control circuit is in the independent power supply state of the energy storage module and the independent power supply state of the power supply is correspondingly shortened.
  • the drive control circuit provided in the embodiment of the present application can charge the energy storage module when the open-winding motor stops, runs, and brakes, specifically:
  • the positive current phase and the negative current phase are selected, and the controller selects at least one of the voltage across the capacitor C, the voltage between the positive and negative busbars of the energy storage module, and the three-phase current.
  • the switching states of the switching tubes of the first power module and the second power module are calculated, and then the working states of the first power module and the second power module are controlled, so that the driving control circuit is in a charging state or a discharging state.
  • the switch tube of the X-phase upper half-bridge of the first power module performs the switching action, and the switching device of the Y-phase lower half-bridge of the first power module is disconnected.
  • the other bridge arms of the first power module are turned off, the diodes of the X-phase upper half-bridge of the second power module pass in the direction of the diodes, the Y-phase lower half-bridges of the second power module pass through in the diode direction, and the other bridges of the second power module
  • the arm is turned off; when the energy storage module needs to be charged, according to the preset charging current of the energy storage module, the duty cycle of the switch tube of the X-phase upper half bridge or the upper and lower current limits of the X-phase upper half bridge is obtained through the controller operation to determine the X-phase upper and lower limits.
  • the control signal of the switch tube of the half-bridge wherein, the X phase can be any phase of UVW, and the Y phase can be any one of the other two phases after removing the X phase in the UVW.
  • the switch tube of the upper half bridge of the U phase of the first power module performs the switching action, and the lower phase of the W phase of the first power module
  • the switch tube of the half-bridge is turned off, the other bridge arms of the first power module are turned off, the U-phase upper half-bridge of the second power module passes current, the W-phase lower half-bridge of the second power module passes current, and the second power module
  • the other bridge arms are turned off.
  • the controller calculates the first power according to at least one of the load parameter, the voltage across the capacitor C, the voltage between the positive and negative buses of the energy storage module, the three-phase current, and the required average charging current.
  • the switching states of the switch tubes of the module and the second power module further control the working states of the first power module and the second power module, so that the drive control circuit is in a charging state or a discharging state.
  • the controller calculates the first value according to at least one of the load parameter, the voltage across the capacitor C, the voltage between the positive and negative busbars of the energy storage module, the three-phase current, and the required average charging current.
  • the switching states of the switch tubes of the power module and the second power module further control the working states of the first power module and the second power module, so that the drive control circuit is in a charging state or a discharging state.
  • the controller By connecting the first power module and the second power module at both ends of the open-winding motor, and the second power module is connected with the energy storage module, the controller sends control to the first power module and the second power module according to the power of the energy storage module
  • the signal is used to change the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running.
  • the energy storage module can supply power to the open-winding motor when the energy is sufficient, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • the power of the energy storage module is greater than the preset power threshold, it indicates that the energy storage module
  • a control signal can be sent to the first power module and the second power module to make the drive control circuit in a non-double-terminal power supply state. Open winding motor power supply.
  • the power of the energy storage module may be obtained from parameters such as voltage and current of the energy storage module, or the voltage of the energy storage module may be directly used as the power, and accordingly, the power threshold may be a voltage threshold.
  • the non-double-terminal power supply state means that the drive control circuit is in the state of independent power supply of the power supply or the state of independent power supply of the energy storage module.
  • the controller sends PWM pulse signals to the six switch tubes of the first power module to turn on the power supply of the first power module.
  • the switch tube of the upper half bridge of the second power module or the switch tube of the lower half bridge of the second power module is turned on.
  • the drive control circuit is in the state of independent power supply, and the energy storage module is not used to supply power to the open-winding motor.
  • the motor runs in a star connection; or, the controller sends PWM pulse signals to the six switch tubes of the second power module respectively to turn on the switch tubes of the upper half bridge of the first power module or turn on the lower half of the first power module.
  • the switch tube of the bridge at this time, the drive control circuit is in the independent power supply state of the energy storage module, and the energy storage module is used to supply power to the open-winding motor, and the open-winding motor runs in a star connection.
  • a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the power of the energy storage module is less than or equal to the power threshold, it indicates that the power of the energy storage module is insufficient.
  • a control signal is sent to the first power module and the second power module to change the working state of the drive control circuit , that is, it is determined whether the energy storage module needs to be charged according to the load parameter of the open-winding motor.
  • the load parameter may be the required rotational speed of the open-winding motor.
  • a control signal is sent to the first power module and the second power module to change the working state of the drive control circuit.
  • the required rotational speed of the winding motor is less than or equal to the preset rotational speed threshold, indicating that the required rotational speed of the open-winding motor is relatively low at this time.
  • PWM pulse signals can be sent to the six switches of the first power module and the second power module respectively.
  • the six switch tubes of the first power module send PWM pulse signals respectively to turn on the switch tubes of the upper half bridge of the second power module or turn on the switch tubes of the lower half bridge of the second power module. At this time, the power supply does not store energy.
  • the module is charged, and the open-winding motor runs in a star connection.
  • PWM pulse signals are respectively sent to the six switch tubes of the first power module and the second power module, so that the power supply can be Charge the energy storage module, the drive control circuit is in the state of double-terminal power supply, and the open-winding motor runs in the open-winding connection; when the electricity price is greater than the preset electricity price threshold, the drive control circuit can be controlled according to the electricity condition of the energy storage module.
  • the energy storage module has sufficient power, it sends PWM pulse signals to the six switch tubes of the second power module to turn on the switch tubes of the upper half bridge of the first power module or turn on the lower part of the first power module.
  • the switch tube of the half-bridge at this time, the drive control circuit is in the state of independent power supply of the energy storage module, and the energy storage module is used to supply power to the open-winding motor, and the open-winding motor runs in a star connection to reduce the energy consumption of the DC device side.
  • an embodiment of the present application further provides a drive control circuit for driving an open-winding motor with three-phase windings, one end of each phase winding constitutes a first three-phase outlet group 1100 , and the other end of each phase winding constitutes a first three-phase outlet group 1100 .
  • the second three-phase outlet group 1200, the drive control circuit includes a first power module, a second power module, a power connection terminal 1700, a switch module, an energy storage module and a controller
  • the first power module includes a first input terminal 1300 and a first
  • the output terminal 1400, the first output terminal 1400 is connected with the first three-phase outlet group 1100
  • the second power module includes a second input terminal 1500 and a second output terminal 1600
  • the second output terminal 1600 is connected with the second three-phase outlet group 1200
  • the power connection terminal 1700 is used to connect the power supply
  • the power connection terminal 1700 is connected to the first input terminal 1300
  • the energy storage module is connected to the second input terminal 1500
  • the controller is used to send the power to the first power module and the second power module according to the power of the energy storage module.
  • the module sends a control signal to change the working state of the drive control circuit
  • the controller is connected to the first power module and the second power module respectively
  • the switch module is connected between the first input terminal 1300 and the power connection terminal 1700
  • the switch module is connected to the controller .
  • the controller sends control to the first power module and the second power module according to the power of the energy storage module
  • the signal is used to change the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running.
  • the energy storage module can supply power to the open-winding motor when the energy is sufficient, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • the switch module by arranging the switch module, the on-off between the power connection terminal 1700 and the first power module can be controlled, and when the energy storage module supplies power to the open-winding motor, the open-winding motor can be isolated from the power supply and run independently, which is conducive to reducing the power consumption. Control losses for open-winding motors.
  • the switch module includes a first switch
  • the power connection terminal 1700 includes a positive busbar connection terminal and a negative busbar connection terminal
  • the first input terminal 1300 includes a positive busbar input terminal and a negative busbar input terminal
  • the first switch is connected to Between the positive busbar connection end and the positive busbar input end, the negative busbar connection end is connected to the negative busbar input end;
  • the switch module includes a first switch
  • the power connection end 1700 includes a positive bus bar connection end and a negative bus bar connection end
  • the first input end 1300 includes a positive bus bar input end and a negative bus bar input end
  • the positive bus bar connection end is connected to the positive bus bar connection end a busbar input end
  • the first switch is connected between the negative busbar connection end and the negative busbar input end;
  • the switch module includes a first switch and a second switch
  • the power connection terminal 1700 includes a positive bus connection terminal and a negative bus connection terminal
  • the first input terminal 1300 includes a positive bus input terminal and a negative bus input terminal.
  • the switch is connected between the positive busbar connection end and the positive busbar input end
  • the second switch is connected between the negative busbar connection end and the negative busbar input end.
  • the switch module can be a single-pole single-throw switch or a double-pole double-throw switch, which has the advantages of simple structure and low cost.
  • the power connection terminal 1700 is connected to the DC device
  • the first input terminal 1300 and the second input terminal 1500 are both provided with a positive bus input terminal and a ground terminal
  • the first output terminal 1400 and the second output terminal 1600 are both three-phase output terminals
  • the positive busbar and the negative busbar of the DC device are correspondingly connected to the positive busbar input terminal and the ground terminal of the first input terminal 1300
  • the positive busbar and ground wire of the energy storage module are correspondingly connected to the positive busbar input terminal and grounding terminal of the second input terminal 1500
  • the three-phase output terminal of the first output terminal 1400 corresponds to the first three-phase outlet group 1100 of the open-winding motor
  • the three-phase output terminal of the second output terminal 1600 corresponds to the second three-phase outlet group 1200 of the open-winding motor.
  • the drive control circuit shown in FIG. 12 may also include a capacitor C, which is connected in parallel between the switch module and the first power module. By setting the capacitor C, the power of the power supply can be stored, and the power supply can be stored. The signal of the connection terminal 1700 is filtered, so that the operation of the open-winding motor is more stable.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each bridge arm includes two switch tubes connected in series with each other, wherein the switch tubes may be MOSFETs (Metal-Oxide-Semiconductor Field- Effect Transistor, metal-oxide semiconductor field effect transistor) or IGBT ((Insulated Gate Bipolar Transistor), insulated gate bipolar transistor).
  • MOSFETs Metal-Oxide-Semiconductor Field- Effect Transistor, metal-oxide semiconductor field effect transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the DC device may be any one of a DC power supply, a DC power supply+DC converter, and an AC power supply+AC-DC converter.
  • the energy storage module may be any one of a battery, a capacitor, a battery+capacitor, a capacitor+bridge arm+inductor+battery.
  • the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • the control switch module When the power is greater than the preset power threshold, the control switch module is turned off, and a control signal is sent to the first power module and the second power module to control the energy storage module to supply power to the open-winding motor.
  • the power of the energy storage module is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient, and the control switch module is disconnected. At this time, the energy storage module supplies power to the open-winding motor alone to ensure the normal operation of the open-winding motor.
  • the isolation effect is beneficial to reduce the control loss of the open-winding motor.
  • the controller can send PWM pulse signals to the six switch tubes of the second power module to turn on the switch tubes of the upper half bridge of the first power module or turn on the second power module.
  • the switch tube of the lower half bridge of the module, the open-winding motor is running in star connection at this time; alternatively, the controller can also send PWM pulse signals to the six switch tubes of the first power module and the second power module respectively, at this time Open-winding motors operate with open-winding connections.
  • the control switch module when the power of the energy storage module is less than or equal to the power threshold, the control switch module is closed, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the power of the energy storage module is less than or equal to the power threshold, it indicates that the power of the energy storage module is insufficient.
  • the switch module is controlled to close, and it is determined whether the energy storage module needs to be charged according to the load parameter of the open-winding motor.
  • the first power module and the second power module are respectively sent to the sixth power module.
  • Each switch tube sends a PWM pulse signal respectively, so that the power supply can charge the energy storage module, the drive control circuit is in the state of double-terminal power supply, and the open-winding motor runs in the open-winding connection; when the electricity price is greater than the preset electricity price threshold, at this time
  • the working state of the drive control circuit can be controlled according to the power of the energy storage module.
  • the switch module is turned off.
  • the drive control circuit is in the independent power supply state of the energy storage module, and the energy storage module is used to open the winding. Motor powered, open-winding motors run in star connection to reduce energy consumption on the DC side.
  • the switch module can also be arranged between the second power module and the energy storage module, and the on-off between the energy storage module and the second power module can be controlled by controlling the on-off of the switch module, thereby controlling the on-off between the energy storage module and the second power module.
  • the working state of the drive control circuit is beneficial to reduce the control loss of the second power module.
  • an embodiment of the present application further provides a drive control method, which is applied to the drive control circuit shown in FIG. 1 , and the drive control method includes but is not limited to the following steps 1701 to 1702 :
  • Step 1701 Obtain the power of the energy storage module
  • the size of the electric quantity of the energy storage module indicates the electric quantity of the energy storage module, and the larger the electric quantity of the energy storage module, the sufficient electric quantity of the energy storage module, wherein, the electric quantity of the energy storage module can be obtained through the sampling circuit accomplish.
  • Step 1702 Send a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • the energy storage module has three working states, including the double-terminal power supply state, the independent power supply state of the energy storage module and the independent power supply state of the power supply.
  • the DC device and the energy storage module supply power to the open-winding motor at the same time, and only the energy storage module supplies power to the open-winding motor in the state of independent power supply of the energy storage module.
  • the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit, so that when the motor is running Electric energy can flow in both directions, and the energy storage module can supply power to the open-winding motor when the energy is sufficient, increasing the operating voltage of the motor and improving the operating efficiency of the motor.
  • a control signal is sent to the first power module and the second power module to change the working state of the drive control circuit, which can be specifically:
  • a control signal is sent to the first power module and the second power module so that the drive control circuit is in a non-double-terminal power supply state.
  • the energy storage module when the power of the energy storage module is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient, and at this time, a control signal can be sent to the first power module and the second power module to make the drive control circuit in a non-double-terminal power supply state,
  • the energy storage module can be used to supply power to the open-winding motor, or the energy storage module can be used to supply power to the open-winding motor.
  • sending a control signal to the first power module and the second power module so that the drive control circuit is in a non-double-terminal power supply state may specifically include:
  • the PWM pulse signal is respectively sent to the six switches of the second power module to turn on the switches of the upper half bridge of the first power module or the switches of the lower half bridge of the first power module.
  • the PWM pulse signal is sent to the six switch tubes of the first power module or the second power module respectively, that is, the first power module or the second power module is in a normal modulation state, and the driving waveform of each switch tube is calculated by the controller.
  • the duty cycle is obtained by modulation, or the controller can directly control the switch tube through the calculated switch state.
  • the switch tube of the upper half bridge of the first power module (or the second power module) is turned on or the switch tube of the lower half bridge of the first power module (or the second power module) is turned on, that is, the first power module or
  • the second power module is in the half-bridge modulation state.
  • the first way is that the controller determines the switching of the six switching tubes according to the three-phase current flow (the switching frequency and the current fundamental frequency belong to the same level), Adjust the switching state of the switch tube so that the N point of the open-winding motor (the intersection of the three-phase current on the side of the corresponding power module) alternately appears on the positive busbar and the negative busbar of the first power module or the second power module.
  • Motor N points appear alternately on the positive bus of the first power module or the second power module, at least the upper half bridge of the corresponding phase with the current flowing from the first power module or the second power module to the open-winding motor needs to be turned on;
  • the winding motor N points alternately appear on the negative bus of the first power module or the second power module, and at least the lower half bridge of the corresponding phase with the current flowing from the first power module or the second power module to the open-winding motor needs to be turned on.
  • the second way is to turn on all three switches of the upper half bridge or turn on all three switches of the lower half bridge.
  • the PWM pulse signal is sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or the switches of the lower half bridge of the second power module.
  • the energy storage module supplies power to the open-winding motor, and the open-winding motor operates in a star connection;
  • PWM pulse signals are respectively sent to the six switching tubes of the second power module to turn on the switching tubes of the upper half bridge of the first power module or turn on
  • the switch tube of the lower half bridge of the first power module uses the energy storage module to supply power to the open-winding motor, and the open-winding motor operates in a star connection.
  • control signal is sent to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit, which can also be:
  • a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the load parameter includes the required rotational speed of the open-winding motor, and according to the load parameter of the open-winding motor, a control signal is sent to the first power module and the second power module to change the working state of the drive control circuit, which can be specifically:
  • a PWM pulse signal is sent to the six switch tubes of the first power module to turn on the switch tubes of the upper half bridge of the second power module or turn on the second power module.
  • the switch tube of the lower half bridge is
  • the six switch tubes of the first power module and the second power module can be respectively Send a PWM pulse signal, so that the power supply can charge the energy storage module, and the open-winding motor runs in the open-winding connection; when the required speed of the open-winding motor is greater than the preset speed threshold, it indicates that the required speed of the open-winding motor is high at this time.
  • PWM pulse signals can be sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or the switches of the lower half bridge of the second power module.
  • the power supply Without charging the energy storage module, the open-winding motor operates in a star connection.
  • the load parameter may also be the required power of the air conditioner, the required frequency of the air conditioner, and the like.
  • a control signal is sent to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • control switch module When the power of the energy storage module is greater than the preset power threshold, the control switch module is turned off, and a control signal is sent to the first power module and the second power module to control the energy storage module to supply power to the open-winding motor.
  • the energy storage module supplies power to the open-winding motor alone to ensure the normal operation of the open-winding motor, and through the The isolation function of the switch module is beneficial to reduce the control loss of the open-winding motor.
  • sending a control signal to the first power module and the second power module to control the energy storage module to supply power to the open-winding motor may specifically include:
  • the PWM pulse signal is respectively sent to the six switch tubes of the second power module to turn on the switch tubes of the upper half bridge of the first power module or the switch tubes of the lower half bridge of the second power module, and the winding is turned on at this time.
  • the motor runs in star connection; or sends PWM pulse signals to the six switch tubes of the first power module and the second power module respectively, and the open-winding motor runs in open-winding connection at this time.
  • a control signal is sent to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit, and also Can be:
  • control switch module When the power of the energy storage module is less than or equal to the power threshold, the control switch module is closed, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the switch module is controlled to close, and whether it is necessary to charge the energy storage module is determined according to the load parameter of the open-winding motor.
  • the working state of the drive control circuit includes the double-terminal power supply state, the independent power supply state of the energy storage module and the independent power supply state of the power supply, wherein:
  • PWM pulse signals are respectively sent to the six switches of the second power module to turn on the switches of the upper half bridge of the first power module or turn on the switches of the lower half bridge of the first power module.
  • the PWM pulse signal is respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or the switches of the lower half bridge of the second power module.
  • control signal is sent to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit, which can also be:
  • the phenomenon of power failure of the power supply can be prevented and the reliability of the open-winding motor operation can be improved.
  • the load parameter as the required speed of the open-winding motor as an example to illustrate, when the required speed of the open-winding motor is high, the time ratio of the drive control circuit in the dual-terminal power supply state can be increased, and the drive control circuit in the energy storage state can be shortened accordingly.
  • the electricity price can also be used as the adjustment benchmark for the time proportion of the three working states of the energy storage device.
  • the time proportion of the independent power supply state of the energy module can be shortened accordingly, and the time proportion of the drive control circuit in the double-terminal power supply state and the power supply independent power supply state can be shortened accordingly; in the case of low electricity prices, the time of the drive control circuit in the double-end power supply state can be increased.
  • the proportion of time when the drive control circuit is in the independent power supply state of the energy storage module and the independent power supply state of the power supply is correspondingly shortened.
  • an embodiment of the present application also provides a circuit board, which includes any one of the drive control circuits described in the above embodiments. Therefore, the above circuit board connects the first power module and the second power module at both ends of the open-winding motor, And the second power module is connected with an energy storage module, and the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running. , the energy storage module can supply power to the open-winding motor when the energy is sufficient, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • an embodiment of the present application also provides an air conditioner, including the above circuit board, or including a memory and a processor, where the memory stores a computer program, and the processor implements the second aspect when executing the computer program.
  • the drive control method described above therefore, the above-mentioned air conditioner connects the first power module and the second power module at both ends of the open-winding motor, and the second power module is connected with the energy storage module, and the controller is used according to the power of the energy storage module.
  • the first power module and the second power module send control signals to change the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running, and the energy storage module can supply power to the open-winding motor when the energy is sufficient to improve the operation of the motor. voltage to improve the operating efficiency of the motor.
  • an embodiment of the present application also provides a drive control circuit for driving an open-winding motor with three-phase windings.
  • One end of each phase winding constitutes a first three-phase outlet group 1100
  • the other end of each phase winding constitutes a first three-phase outlet group 1100 .
  • the second three-phase outlet group 1200, the drive control circuit includes a first power module, a second power module, a power connection end 1700, and an energy storage module
  • the first power module includes a first input end 1300 and a first output end 1400
  • the first The output terminal 1400 is connected to the first three-phase outlet group 1100
  • the second power module includes a second input terminal 1500 and a second output terminal 1600
  • the second output terminal 1600 is connected to the second three-phase outlet group 1200
  • the power connection terminal 1700 is used for For connecting to the power supply, the power supply connection terminal 1700 is connected to the first input terminal 1300 , and the energy storage module is connected to the second input terminal 1500 and the power supply connection terminal 1700 respectively.
  • the power connection terminal 1700 is connected to the power supply
  • the first input terminal 1300 and the second input terminal 1500 are both provided with a positive bus input terminal and a ground terminal
  • the first output terminal 1400 and the second output terminal 1600 are both three-phase output terminals.
  • the positive busbar and the negative busbar of the power supply are correspondingly connected to the positive busbar input terminal and the ground terminal of the first input terminal 1300
  • the positive busbar and ground wire of the energy storage module are correspondingly connected to the positive busbar input terminal and the ground terminal of the second input terminal 1500.
  • the three-phase output terminal of the output terminal 1400 corresponds to the first three-phase outlet group 1100 of the open-winding motor
  • the three-phase output terminal of the second output terminal 1600 corresponds to the second three-phase outlet group 1200 of the open-winding motor.
  • the power source can be an AC power source + an AC-DC converter, and the two output ends of the AC-DC converter are correspondingly connected to the power connection terminal 1700 , wherein the positive busbar and the negative busbar of the AC power source are correspondingly connected to the AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common DC bus connection, which is beneficial to improve the safety of the circuit.
  • FIG. 1 the power source + an AC-DC converter
  • the number of AC-DC converters can also be two, the power input terminal is arranged between the AC power supply and the AC-DC converter, and the power connection terminal 1700 is connected to the first input terminal 1300 through one of the AC-DC converters. , the power connection terminal 1700 is connected to the energy storage module through another AC/DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common AC bus connection, which can meet higher voltage requirements.
  • the power source may also be a separate AC power source or a separate DC power source, which is not limited in the embodiment of the present application.
  • the embodiment of the present application may further be provided with a controller, and the controller is connected to the first power module and the second power module respectively, and is used to control the actions of the first power module and the second power module.
  • the driving control circuit may further include a capacitor C, which is connected in parallel between the power connection terminal 1700 and the first power module. The signal is filtered to make the operation of the open-winding motor more stable.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each bridge arm includes two switch tubes connected in series with each other.
  • each bridge arm includes two switch tubes connected in series with each other.
  • the energy storage module may be any one of a battery, a capacitor, a battery+capacitor, a capacitor+bridge arm+inductor+battery.
  • the positive busbar and ground wire of the battery are correspondingly connected to the positive busbar input terminal and the ground terminal of the second input terminal 1500, while the positive busbar and ground wire of the battery are respectively connected to the power input terminal;
  • the module is a capacitor, the positive busbar and ground wire of the capacitor are correspondingly connected to the positive busbar input terminal and ground terminal of the second input terminal 1500, and the positive busbar and ground wire of the capacitor are respectively connected to the power input terminal;
  • the energy storage module is a battery + capacitor , the battery and the capacitor are connected in parallel with each other, the positive busbar and ground wire of the battery and the capacitor are respectively connected to the positive busbar input terminal and ground terminal of the second input terminal 1500, and the positive busbar and ground wire of the battery and the capacitor are respectively connected to the power input terminal;
  • the first power module or the second power module has three working states: an OFF state, a normal modulation state, and a half-bridge modulation state.
  • an OFF state a normal modulation state
  • a half-bridge modulation state a half-bridge modulation state
  • the energy storage module has three working states, including a dual-terminal power supply state, an independent power supply state of the energy storage module, and an independent power supply state of the power supply.
  • a dual-terminal power supply state including a dual-terminal power supply state, an independent power supply state of the energy storage module, and an independent power supply state of the power supply.
  • the energy storage module can be switched between the above three states, referring to FIG. 10 , the details are the same as those described above.
  • the second power module By connecting the first power module and the second power module at both ends of the open-winding motor, the second power module is connected with an energy storage module, and the energy storage module is respectively connected with the second input terminal 1500 and the power connection terminal 1700, therefore, from the power supply
  • the current input at the input terminal can not only supply power to the open-winding motor, but also directly charge the energy storage module, thereby reducing the control loss, and the working state of the drive control circuit can be controlled by controlling the first power module and the second power module.
  • the electric energy can flow in both directions, and the energy storage module can supply power to the open-winding motor when the energy is sufficient, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • the controller can be used to send a control signal to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • a PWM pulse signal can be sent to the six switch tubes of the second power module respectively to turn on the upper half of the first power module.
  • the switch tube of the bridge or the switch tube of the lower half bridge of the first power module is turned on, and the energy storage module supplies power to the open-winding motor alone; Sending a PWM pulse signal, the energy storage module and the power supply together supply power to the open-winding motor.
  • the power of the energy storage module may be obtained from parameters such as voltage and current of the energy storage module, or the voltage of the energy storage module may be directly used as the power, and accordingly, the power threshold may be a voltage threshold.
  • the power of the energy storage module When the power of the energy storage module is less than or equal to the preset power threshold, it indicates that the power of the energy storage module is insufficient. At this time, a PWM pulse signal can be sent to the six switch tubes of the first power module to turn on the upper power of the second power module.
  • the switch tube of the half bridge or the switch tube of the lower half bridge of the second power module is only powered by the power supply to the open-winding motor. At this time, since the energy storage module is directly connected to the power supply, the power supply can also charge the energy storage module.
  • PWM pulse signals are respectively sent to the six switch tubes of the first power module and the second power module to drive the control circuit.
  • the open-winding motor runs in the open-winding connection; when the electricity price is greater than the preset electricity price threshold, the working state of the drive control circuit can be controlled according to the power of the energy storage module.
  • the power of the energy storage module is sufficient
  • the PWM pulse signal is sent to the six switch tubes of the second power module, the switch tubes of the upper half bridge of the first power module are turned on or the switch tubes of the lower half bridge of the first power module are turned on.
  • the control circuit is in the independent power supply state of the energy storage module, and the energy storage module is used to supply power to the open-winding motor, and the open-winding motor runs in a star connection to reduce the energy consumption on the power supply side.
  • an embodiment of the present application also provides a drive control circuit for driving an open-winding motor with three-phase windings.
  • One end of each phase winding constitutes a first three-phase outlet group 1100
  • the other end of each phase winding constitutes a first three-phase outlet group 1100 .
  • the second three-phase outlet group 1200, the drive control circuit includes a first power module, a second power module, a power connection terminal 1700, a switch module, an energy storage module and a controller
  • the first power module includes a first input terminal 1300 and a first
  • the output terminal 1400, the first output terminal 1400 is connected with the first three-phase outlet group 1100
  • the second power module includes a second input terminal 1500 and a second output terminal 1600
  • the second output terminal 1600 is connected with the second three-phase outlet group 1200
  • the power connection terminal 1700 is used to connect the power supply
  • the power connection terminal 1700 is connected to the first input terminal 1300
  • the energy storage module is respectively connected to the second input terminal 1500 and the power supply connection terminal 1700
  • the switch module is connected to the controller.
  • the switch module includes a first switch, the energy storage module and the first input terminal 1300 are connected to the power connection terminal 1700 through the common terminal 1800 , and the first switch is respectively connected to the first input terminal 1300 and the common terminal 1800 .
  • the first switch includes a first switching device K1
  • the power connection terminal 1700 includes a positive busbar connection terminal and a negative busbar connection terminal
  • the first input terminal 1300 includes a positive busbar input terminal and a negative busbar input terminal.
  • the switching device K1 is connected between the positive busbar connection terminal and the positive busbar input terminal, and the negative busbar connection terminal is connected to the negative busbar input terminal.
  • the first switching device K1 can also be connected between the negative busbar connection terminal and the negative busbar connection terminal.
  • the busbar input terminal, the positive busbar connection terminal is connected to the positive busbar input terminal.
  • the first switch includes a first switching device K1 and a second switching device K2
  • the power connection terminal 1700 includes a positive busbar connection terminal and a negative busbar connection terminal
  • the first input terminal 1300 includes a positive busbar input terminal and a negative busbar
  • the first switch device K1 is connected between the positive busbar connection end and the positive busbar input end
  • the second switch device K2 is connected between the negative busbar connection end and the negative busbar input end.
  • the switch module can be a single-pole single-throw switch or a double-pole double-throw switch, which has the advantages of simple structure and low cost.
  • the power connection terminal 1700 is connected to the power supply
  • the first input terminal 1300 and the second input terminal 1500 are both provided with a positive bus input terminal and a ground terminal
  • the first output terminal 1400 and the second output terminal 1600 are both three-phase output terminals.
  • the positive busbar and the negative busbar of the power supply are correspondingly connected to the positive busbar input terminal and the ground terminal of the first input terminal 1300
  • the positive busbar and ground wire of the energy storage module are correspondingly connected to the positive busbar input terminal and the ground terminal of the second input terminal 1500.
  • the three-phase output terminal of the output terminal 1400 corresponds to the first three-phase outlet group 1100 of the open-winding motor
  • the three-phase output terminal of the second output terminal 1600 corresponds to the second three-phase outlet group 1200 of the open-winding motor.
  • the power source can be an AC power source + an AC-DC converter, and the two output ends of the AC-DC converter are correspondingly connected to the power supply connection terminal 1700 , wherein the positive busbar and the negative busbar of the AC power source are correspondingly connected to the AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common DC bus connection, which is beneficial to improve the safety of the circuit.
  • the number of AC-DC converters can also be two, the power input terminal is set between the AC power supply and the AC-DC converter, and the common terminal 1800 of the energy storage device and the first input terminal 1300 is also set accordingly.
  • the power connection terminal 1700 is connected to the first input terminal 1300 through one of the AC-DC converters, and the power connection terminal 1700 is connected to the energy storage module through the other AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common AC bus connection, which can meet higher voltage requirements.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each bridge arm includes two switch tubes connected in series with each other, wherein the switch tubes may be MOSFETs or IGBTs.
  • the driving control circuit may further include a capacitor C, which is connected in parallel between the power connection terminal 1700 and the first power module.
  • a capacitor C By setting the capacitor C, the power of the power supply can be stored, and the power supply connection terminal 1700 can be stored. The signal is filtered to make the operation of the open-winding motor more stable.
  • the energy storage module can be any one of battery, capacitor, battery+capacitor, capacitor+bridge arm+inductor+battery.
  • the first switch is a DC switch.
  • the controller can also send control signals to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • the power of the module is greater than the preset power threshold, the on-off of the first switch is controlled according to the load parameter of the open-winding motor, and a control signal is sent to the first power module and the second power module to change the working state of the drive control circuit.
  • the power of the energy storage module is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient.
  • the on-off of the first switch can be controlled according to the load parameter of the open-winding motor, and the first power module and the second power
  • the module sends a control signal to change the working state of the drive control circuit, so that according to the load parameter of the open-winding motor, it is possible to select whether the energy storage module and the power supply together supply power to the open-winding motor or the energy storage module alone supplies power.
  • the load parameter may be the required rotational speed of the open-winding motor.
  • the required rotational speed of the open-winding motor is less than or equal to the preset rotational speed threshold, it indicates that the load demand is low.
  • the first switch can be turned off, and the second power
  • the six switch tubes of the module send PWM pulse signals respectively to turn on the switch tube of the upper half bridge of the first power module or the switch tube of the lower half bridge of the first power module.
  • the energy storage module independently opens the winding.
  • the motor is powered, and the open-winding motor works in a star connection; when the required speed of the open-winding motor is greater than the preset speed threshold, it indicates that the load demand is high.
  • the first switch can be closed, and the first power module and the second power module can be sent to the first power module.
  • the six switch tubes of the switch send PWM pulse signals respectively.
  • the energy storage module and the power supply together supply power to the open-winding motor, and the open-winding motor works in the open-winding connection.
  • the first switch can be closed, and PWM pulse signals can be sent to the six switch tubes of the first power module to turn on the second power module.
  • the switch tube of the upper half bridge of the second power module or the switch tube of the lower half bridge of the second power module is powered by the power supply to the open-winding motor independently, and the power supply simultaneously charges the energy storage module, and the open-winding motor works in a star connection.
  • the drive control circuit when the electricity price is less than or equal to the preset electricity price threshold, the first switch is closed, and the first power module and the second The six switch tubes of the second power module send PWM pulse signals respectively, the drive control circuit is in the state of double-terminal power supply, and the open-winding motor runs in the open-winding connection; when the electricity price is greater than the preset electricity price threshold, the energy storage module can When the power of the energy storage module is sufficient, the first switch is turned off. At this time, the drive control circuit is in the independent power supply state of the energy storage module, and the energy storage module is used to supply power to the open-winding motor. Winding motors run in star connection to reduce energy consumption on the mains side.
  • an embodiment of the present application also provides a drive control circuit for driving an open-winding motor with three-phase windings.
  • One end of each phase winding constitutes a first three-phase outlet group 1100
  • the other end of each phase winding constitutes a first three-phase outlet group 1100 .
  • the second three-phase outlet group 1200, the drive control circuit includes a first power module, a second power module, a power connection terminal 1700, a switch module, an energy storage module and a controller
  • the first power module includes a first input terminal 1300 and a first
  • the output terminal 1400, the first output terminal 1400 is connected with the first three-phase outlet group 1100
  • the second power module includes a second input terminal 1500 and a second output terminal 1600
  • the second output terminal 1600 is connected with the second three-phase outlet group 1200
  • the power connection terminal 1700 is used to connect the power supply
  • the power connection terminal 1700 is connected to the first input terminal 1300
  • the energy storage module is respectively connected to the second input terminal 1500 and the power supply connection terminal 1700
  • the switch module is connected to the controller.
  • the switch module includes a first switch, the energy storage module and the first input terminal 1300 are connected to the power connection terminal 1700 through the common terminal 1800 , and the first switch is respectively connected to the energy storage module and the common terminal 1800 .
  • the power connection terminal 1700 is connected to the power supply
  • the first input terminal 1300 and the second input terminal 1500 are both provided with a positive bus input terminal and a ground terminal
  • the first output terminal 1400 and the second output terminal 1600 are both three-phase output terminals.
  • the positive busbar and the negative busbar of the power supply are correspondingly connected to the positive busbar input terminal and the ground terminal of the first input terminal 1300
  • the positive busbar and ground wire of the energy storage module are correspondingly connected to the positive busbar input terminal and the ground terminal of the second input terminal 1500.
  • the three-phase output terminal of the output terminal 1400 corresponds to the first three-phase outlet group 1100 of the open-winding motor
  • the three-phase output terminal of the second output terminal 1600 corresponds to the second three-phase outlet group 1200 of the open-winding motor.
  • the power source can be an AC power source + an AC-DC converter, and the two output ends of the AC-DC converter are correspondingly connected to the power supply connection terminal 1700 , wherein the positive busbar and the negative busbar of the AC power source are correspondingly connected to the AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common DC bus connection, which is beneficial to improve the safety of the circuit.
  • the number of AC-DC converters can also be two, the power input terminal is set between the AC power supply and the AC-DC converter, and the common terminal 1800 of the energy storage device and the first input terminal 1300 is also set accordingly.
  • the power connection terminal 1700 is connected to the first input terminal 1300 through one of the AC-DC converters, and the power connection terminal 1700 is connected to the energy storage module through the other AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common AC bus connection, which can meet higher voltage requirements.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each bridge arm includes two switch tubes connected in series with each other, wherein the switch tubes may be MOSFETs or IGBTs.
  • the driving control circuit may further include a capacitor C, which is connected in parallel between the power connection terminal 1700 and the first power module.
  • a capacitor C By setting the capacitor C, the power of the power supply can be stored, and the power supply connection terminal 1700 can be stored. The signal is filtered to make the operation of the open-winding motor more stable.
  • the energy storage module can be any one of battery, capacitor, battery+capacitor, capacitor+bridge arm+inductor+battery.
  • the first switch is a DC switch.
  • the first switch is an AC switch.
  • the controller can also send control signals to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • the first switch is turned off, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the first switch when the power of the energy storage module is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient, and the first switch can be turned off at this time, and the power supply does not need to charge the energy storage module, and then according to the load parameters of the open-winding motor Send a control signal to the first power module and the second power module to change the working state of the drive control circuit, so that according to the load parameter of the open-winding motor, it is possible to select whether to supply power to the open-winding motor together with the energy storage module and the power supply or to store energy. Modules are powered individually.
  • the load parameter may be the required rotational speed of the open-winding motor.
  • the required rotational speed of the open-winding motor is less than or equal to the preset rotational speed threshold, it indicates that the load demand is low.
  • the energy storage module separately supplies power to the open-winding motor, and the open-winding motor It works in star connection; when the required speed of the open-winding motor is greater than the preset speed threshold, it indicates that the load demand is high.
  • PWM pulse signals can be sent to the six switch tubes of the first power module and the second power module respectively.
  • the energy storage module and the power supply together supply power to the open-winding motor, and the open-winding motor works in the open-winding connection.
  • the first switch can be closed, and PWM pulse signals can be sent to the six switch tubes of the first power module to turn on the second power module.
  • the switch tube of the upper half bridge of the second power module or the switch tube of the lower half bridge of the second power module is powered by the power supply to the open-winding motor independently, and the power supply simultaneously charges the energy storage module, and the open-winding motor works in a star connection.
  • the drive control circuit when the electricity price is less than or equal to the preset electricity price threshold, the first switch is closed, and the first power module and the second The six switch tubes of the second power module send PWM pulse signals respectively, the drive control circuit is in the state of double-terminal power supply, and the open-winding motor runs in the open-winding connection; when the electricity price is greater than the preset electricity price threshold, the energy storage module can When the power of the energy storage module is sufficient, the first switch is turned off. At this time, the drive control circuit is in the independent power supply state of the energy storage module, and the energy storage module is used to supply power to the open-winding motor. Winding motors run in star connection to reduce energy consumption on the mains side.
  • an embodiment of the present application also provides a drive control circuit for driving an open-winding motor with three-phase windings.
  • One end of each phase winding constitutes a first three-phase outlet group 1100
  • the other end of each phase winding constitutes a first three-phase outlet group 1100 .
  • the second three-phase outlet group 1200, the drive control circuit includes a first power module, a second power module, a power connection terminal 1700, a switch module, an energy storage module and a controller
  • the first power module includes a first input terminal 1300 and a first
  • the output terminal 1400, the first output terminal 1400 is connected with the first three-phase outlet group 1100
  • the second power module includes a second input terminal 1500 and a second output terminal 1600
  • the second output terminal 1600 is connected with the second three-phase outlet group 1200
  • the power connection terminal 1700 is used to connect the power supply
  • the power connection terminal 1700 is connected to the first input terminal 1300
  • the energy storage module is respectively connected to the second input terminal 1500 and the power supply connection terminal 1700
  • the switch module is connected to the controller.
  • the switch module includes a first switch, and the first switch is connected between the second input terminal 1500 and the energy storage module.
  • the specific structure of the first switch has been described above and will not be repeated here.
  • the power connection terminal 1700 is connected to the power supply
  • the first input terminal 1300 and the second input terminal 1500 are both provided with a positive bus input terminal and a ground terminal
  • the first output terminal 1400 and the second output terminal 1600 are both three-phase output terminals.
  • the positive busbar and the negative busbar of the power supply are correspondingly connected to the positive busbar input terminal and the ground terminal of the first input terminal 1300
  • the positive busbar and ground wire of the energy storage module are correspondingly connected to the positive busbar input terminal and the ground terminal of the second input terminal 1500.
  • the three-phase output terminal of the output terminal 1400 corresponds to the first three-phase outlet group 1100 of the open-winding motor
  • the three-phase output terminal of the second output terminal 1600 corresponds to the second three-phase outlet group 1200 of the open-winding motor.
  • the power source can be an AC power source + an AC-DC converter, and the two output ends of the AC-DC converter are correspondingly connected to the power supply connection terminal 1700 , wherein the positive busbar and the negative busbar of the AC power source are correspondingly connected to the AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common DC bus connection, which is beneficial to improve the safety of the circuit.
  • FIG. 24 the power source + an AC-DC converter
  • the number of AC-DC converters can also be two, the power input terminal is provided between the AC power supply and the AC-DC converter, and correspondingly, the common terminal 1800 of the energy storage device and the first input terminal 1300 is also provided Between the AC power supply and the AC-DC converter, the power connection terminal 1700 is connected to the first input terminal 1300 through one of the AC-DC converters, and the power connection terminal 1700 is connected to the energy storage module through the other AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common AC bus connection, which can meet higher voltage requirements.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each bridge arm includes two switch tubes connected in series with each other, wherein the switch tubes may be MOSFETs or IGBTs.
  • the driving control circuit may further include a capacitor C, which is connected in parallel between the power connection terminal 1700 and the first power module.
  • a capacitor C By setting the capacitor C, the power of the power supply can be stored, and the power supply connection terminal 1700 can be stored. The signal is filtered to make the operation of the open-winding motor more stable.
  • the energy storage module can be any one of battery, capacitor, battery+capacitor, capacitor+bridge arm+inductor+battery.
  • the first switch is a DC switch.
  • the controller can also send control signals to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • the first switch is closed, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the first switch can be closed at this time, and then the first power module and the second power module are sent to the first power module and the second power module according to the load parameter of the open-winding motor.
  • Send a control signal to change the working state of the drive control circuit so that whether the energy storage module and the power supply together supply power to the open-winding motor or the energy storage module alone supplies power according to the load parameters of the open-winding motor.
  • the first switch can be turned off, and PWM pulse signals can be sent to the six switch tubes of the first power module to turn on the second power.
  • the switch tube of the upper half bridge of the module or the switch tube of the lower half bridge of the second power module is powered by the power supply to the open-winding motor independently, and the power supply simultaneously charges the energy storage module, and the open-winding motor works in a star connection.
  • the first switch since the first switch is turned off, the energy storage module is completely isolated from the open-winding motor during the charging process, which is beneficial to reduce control loss.
  • the drive control circuit when the electricity price is less than or equal to the preset electricity price threshold, the first switch is closed, and the first power module and the second The six switch tubes of the second power module send PWM pulse signals respectively, the drive control circuit is in the state of double-terminal power supply, and the open-winding motor runs in the open-winding connection; when the electricity price is greater than the preset electricity price threshold, the energy storage module can When the power of the energy storage module is sufficient, the first switch is turned off. At this time, the drive control circuit is in the independent power supply state of the energy storage module, and the energy storage module is used to supply power to the open-winding motor. Winding motors run in star connection to reduce energy consumption on the mains side.
  • an embodiment of the present application also provides a drive control circuit for driving an open-winding motor with three-phase windings.
  • One end of each phase winding constitutes a first three-phase outlet group 1100
  • the other end of each phase winding constitutes a first three-phase outlet group 1100 .
  • the second three-phase outlet group 1200, the drive control circuit includes a first power module, a second power module, a power connection terminal 1700, a switch module, an energy storage module and a controller
  • the first power module includes a first input terminal 1300 and a first
  • the output terminal 1400, the first output terminal 1400 is connected with the first three-phase outlet group 1100
  • the second power module includes a second input terminal 1500 and a second output terminal 1600
  • the second output terminal 1600 is connected with the second three-phase outlet group 1200
  • the power connection terminal 1700 is used to connect the power supply
  • the power connection terminal 1700 is connected to the first input terminal 1300
  • the energy storage module is respectively connected to the second input terminal 1500 and the power supply connection terminal 1700
  • the switch module is connected to the controller.
  • the switch module includes a first switch, the energy storage module and the first input terminal 1300 are connected to the power connection terminal 1700 through the common terminal 1800, and the first switch is respectively connected to the power connection terminal 1700 and the common terminal 1800;
  • the switch module may also include a first switch and a second switch.
  • the first switch is connected to the first input terminal 1300 and the common terminal 1800 respectively
  • the second switch is connected to the energy storage module and the common terminal 1800 respectively.
  • the power connection terminal 1700 is connected to the power supply
  • the first input terminal 1300 and the second input terminal 1500 are both provided with a positive bus input terminal and a ground terminal
  • the first output terminal 1400 and the second output terminal 1600 are both three-phase output terminals.
  • the positive busbar and the negative busbar of the power supply are correspondingly connected to the positive busbar input terminal and the ground terminal of the first input terminal 1300
  • the positive busbar and ground wire of the energy storage module are correspondingly connected to the positive busbar input terminal and the ground terminal of the second input terminal 1500.
  • the three-phase output terminal of the output terminal 1400 corresponds to the first three-phase outlet group 1100 of the open-winding motor
  • the three-phase output terminal of the second output terminal 1600 corresponds to the second three-phase outlet group 1200 of the open-winding motor.
  • the power source can be an AC power source + an AC-DC converter, and the two output ends of the AC-DC converter are correspondingly connected to the power supply connection terminal 1700 , wherein the positive busbar and the negative busbar of the AC power source are correspondingly connected to the AC
  • the two input terminals of the DC converter in this case, the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common DC bus connection, which is beneficial to improve the safety of the circuit.
  • the number of AC-DC converters can also be two, the power input terminal is arranged between the AC power supply and the AC-DC converter, and the common terminal of the energy storage device and the first input terminal 1300 is correspondingly 1800 is also arranged between the AC power supply and the AC-DC converter.
  • the power connection terminal 1700 is connected to the first input terminal 1300 through one of the AC-DC converters, and the power connection terminal 1700 is connected to the energy storage module through another AC-DC converter.
  • the charging circuit of the energy storage module and the power supply circuit of the open-winding motor form a common AC bus connection, which can meet the higher voltage requirements.
  • both the first power module and the second power module include three bridge arms connected in parallel with each other, and each bridge arm includes two switch tubes connected in series with each other, wherein the switch tubes may be MOSFETs or IGBTs.
  • the driving control circuit may further include a capacitor C, which is connected in parallel between the power connection terminal 1700 and the first power module.
  • a capacitor C By setting the capacitor C, the power of the power supply can be stored, and the power supply connection terminal 1700 can be stored. The signal is filtered to make the operation of the open-winding motor more stable.
  • the energy storage module can be any one of battery, capacitor, battery+capacitor, capacitor+bridge arm+inductor+battery.
  • the first switch is an AC switch.
  • the first switch and the second switch are DC switches.
  • the controller can also send control signals to the first power module and the second power module according to the power of the energy storage module to change the working state of the drive control circuit.
  • the power of the module is greater than the preset power threshold, indicating that the power of the energy storage module is sufficient.
  • the switch module can be disconnected, and PWM pulse signals can be sent to the six switch tubes of the second power module respectively to turn on the upper half of the first power module.
  • the switch tube of the bridge or the switch tube of the lower half bridge of the first power module is turned on.
  • the energy storage module supplies power to the open-winding motor alone, and the open-winding motor works in a star connection.
  • the winding motor is completely isolated from the power supply, which is conducive to reducing control losses; when the power of the energy storage module is less than or equal to the preset power threshold, it indicates that the power of the energy storage module is insufficient.
  • the switch tubes send PWM pulse signals respectively to turn on the switch tube of the upper half bridge of the second power module or the switch tube of the lower half bridge of the second power module, and the power supply separately supplies power to the open-winding motor, and the power supply is also used for storage. Capable of module charging, open-winding motors work in star connection.
  • the switch module when the electricity price is less than or equal to the preset electricity price threshold, the switch module is closed, and the first power module and the second power module are respectively The six switch tubes of the power module send PWM pulse signals respectively, the drive control circuit is in the state of double-terminal power supply, and the open-winding motor runs in the open-winding connection; when the electricity price is greater than the preset electricity price threshold, the energy storage module The power status controls the working state of the drive control circuit. When the energy storage module has sufficient power, the switch module is disconnected. At this time, the drive control circuit is in the independent power supply state of the energy storage module, and the energy storage module is used to supply power to the open-winding motor, and the open-winding motor Operates in star connection to reduce power consumption on the power side.
  • FIG. 27 It should be supplemented that the working principles of the circuit topologies of FIG. 27 , FIG. 28 and FIG. 29 are similar to those of FIG. 26 , and details are not repeated here.
  • opening the switch module means opening the first switch and the second switch at the same time
  • closing the switch module means closing the first switch and the second switch at the same time
  • an embodiment of the present application further provides a driving control method, which can be applied to the driving control circuit shown in FIG. 18 .
  • a driving control method which can be applied to the driving control circuit shown in FIG. 18 .
  • the above steps 1701 to 1702 applied to the drive control circuit shown in FIG. 18 by acquiring the power of the energy storage module, the controller sends a control signal to the first power module and the second power module according to the power of the energy storage module to change the
  • the working state of the drive control circuit enables the electric energy to flow in both directions when the motor is running.
  • the energy storage module can supply power to the open-winding motor when the energy is sufficient to increase the operating voltage of the motor and improve the operating efficiency of the motor.
  • sending a control signal to the first power module and the second power module to change the working state of the drive control circuit according to the amount of electricity includes one of the following:
  • the PWM pulse signals are respectively sent to the six switch tubes of the first power module and the second power module.
  • a PWM pulse signal can be sent to the six switch tubes of the second power module respectively to turn on the upper half of the first power module.
  • the switch tube of the bridge or the switch tube of the lower half bridge of the first power module is turned on, and the energy storage module supplies power to the open-winding motor alone; Sending a PWM pulse signal, the energy storage module and the power supply together supply power to the open-winding motor.
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit further includes:
  • the PWM pulse signal is sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or the switches of the lower half bridge of the second power module. Tube.
  • a PWM pulse signal can be sent to the six switch tubes of the first power module to turn on the power of the second power module.
  • the switch tube of the upper half bridge or the switch tube of the lower half bridge of the second power module is only powered by the power supply to the open-winding motor.
  • the power supply can also be charged to the energy storage module. .
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit may also include:
  • the on-off of the first switch is controlled according to the load parameter of the open-winding motor, and a control signal is sent to the first power module and the second power module to change the working state of the drive control circuit.
  • the on-off of the first switch can be controlled according to the load parameter of the open-winding motor, and the first power module and the second power The module sends a control signal to change the working state of the drive control circuit, so that according to the load parameter of the open-winding motor, it is possible to select whether the energy storage module and the power supply together supply power to the open-winding motor or the energy storage module alone supplies power.
  • the first switch When the required rotational speed of the open-winding motor is less than or equal to the preset rotational speed threshold, the first switch is turned off, and PWM pulse signals are respectively sent to the six switch tubes of the second power module to turn on the switches of the upper half bridge of the first power module. tube or a switch tube that conducts the lower half bridge of the first power module;
  • the first switch When the required rotational speed of the open-winding motor is greater than the preset rotational speed threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switch tubes of the first power module and the second power module.
  • the first switch when the required rotational speed of the open-winding motor is less than or equal to the preset rotational speed threshold, indicating that the load demand is low, the first switch can be turned off at this time, and PWM pulse signals can be sent to the six switch tubes of the second power module respectively, leading to The switch tube of the upper half bridge of the first power module is connected or the switch tube of the lower half bridge of the first power module is turned on.
  • the energy storage module supplies power to the open-winding motor independently, and the open-winding motor works in a star connection; when The required rotational speed of the open-winding motor is greater than the preset rotational speed threshold, indicating that the load demand is high.
  • the first switch can be closed to send PWM pulse signals to the six switches of the first power module and the second power module respectively.
  • the energy storage module and the power supply together supply power to the open-winding motor, and the open-winding motor works in the open-winding connection.
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit may further include:
  • the first switch When the power is less than or equal to the power threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or turn on the switches of the second power module.
  • the switch tube of the lower half bridge When the power is less than or equal to the power threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or turn on the switches of the second power module.
  • the first switch can be closed, and PWM pulse signals can be sent to the six switch tubes of the first power module to turn on the second power.
  • the switch tube of the upper half bridge of the module or the switch tube of the lower half bridge of the second power module is powered by the power supply to the open-winding motor independently, and the power supply simultaneously charges the energy storage module, and the open-winding motor works in a star connection.
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit may also include:
  • the first switch When the power is greater than the preset power threshold, the first switch is turned off, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the first switch when the power of the energy storage module is greater than the preset power threshold, it indicates that the power of the energy storage module is sufficient, and the first switch can be turned off at this time, and the power supply does not need to charge the energy storage module, and then according to the load parameters of the open-winding motor Send a control signal to the first power module and the second power module to change the working state of the drive control circuit, so that according to the load parameter of the open-winding motor, it is possible to select whether to supply power to the open-winding motor together with the energy storage module and the power supply or to store energy. Modules are powered individually.
  • sending a control signal to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit includes at least one of the following:
  • a PWM pulse signal is sent to the six switch tubes of the second power module respectively to turn on the switches of the upper half bridge of the first power module or turn on the first power module.
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit may further include:
  • the first switch When the power is less than or equal to the power threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or turn on the switches of the second power module.
  • the switch tube of the lower half bridge When the power is less than or equal to the power threshold, the first switch is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or turn on the switches of the second power module.
  • the first switch can be closed, and PWM pulse signals can be sent to the six switch tubes of the first power module to turn on the second power.
  • the switch tube of the upper half bridge of the module or the switch tube of the lower half bridge of the second power module is powered by the power supply to the open-winding motor independently, and the power supply simultaneously charges the energy storage module, and the open-winding motor works in a star connection.
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit may also include:
  • the first switch When the power is greater than the preset power threshold, the first switch is closed, and a control signal is sent to the first power module and the second power module according to the load parameter of the open-winding motor to change the working state of the drive control circuit.
  • the first switch can be closed at this time, and then the first power module and the second power module are sent to the first power module and the second power module according to the load parameter of the open-winding motor.
  • Send a control signal to change the working state of the drive control circuit so that whether the energy storage module and the power supply together supply power to the open-winding motor or the energy storage module alone supplies power according to the load parameters of the open-winding motor.
  • the on-off of the first switch is controlled according to the load parameter of the open-winding motor, and a control signal is sent to the first power module and the second power module to change the working state of the drive control circuit, including at least one of the following:
  • a PWM pulse signal is sent to the six switch tubes of the second power module respectively to turn on the switches of the upper half bridge of the first power module or turn on the first power module.
  • a PWM pulse signal is respectively sent to the six switch tubes of the first power module and the second power module.
  • a PWM pulse signal can be sent to the six switching tubes of the second power module to turn on the power of the first power module.
  • the switch tube of the upper half bridge or the switch tube of the lower half bridge of the first power module is turned on.
  • the energy storage module supplies power to the open-winding motor alone, and the open-winding motor works in a star connection; when the required speed of the open-winding motor If the speed is greater than the preset speed threshold, it indicates that the load demand is high.
  • PWM pulse signals can be sent to the six switching tubes of the first power module and the second power module respectively.
  • the energy storage module and the power supply together to the open-winding motor Powered, open-winding motors operate with open-winding connections.
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit may also include:
  • the first switch When the power is less than or equal to the power threshold, the first switch is turned off, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or turn on the second power module.
  • the switch tube of the lower half bridge When the power is less than or equal to the power threshold, the first switch is turned off, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or turn on the second power module.
  • the first switch can be turned off, and PWM pulse signals can be sent to the six switch tubes of the first power module respectively, and the second power module can be turned on.
  • the switch tube of the upper half bridge of the power module or the switch tube of the lower half bridge of the second power module is connected to the open-winding motor independently from the power supply, and the power supply simultaneously charges the energy storage module, and the open-winding motor works in a star connection. .
  • the first switch since the first switch is turned off, the energy storage module is completely isolated from the open-winding motor during the charging process, which is beneficial to reduce control loss.
  • sending a control signal to the first power module and the second power module according to the electric quantity to change the working state of the drive control circuit also includes at least one of the following:
  • the switch module When the power is greater than the preset power threshold, the switch module is turned off, and PWM pulse signals are respectively sent to the six switches of the second power module to turn on the switches of the upper half bridge of the first power module or turn on the first power module.
  • the switch tube of the lower half bridge When the power is greater than the preset power threshold, the switch module is turned off, and PWM pulse signals are respectively sent to the six switches of the second power module to turn on the switches of the upper half bridge of the first power module or turn on the first power module.
  • the switch tube of the lower half bridge When the power is greater than the preset power threshold, the switch module is turned off, and PWM pulse signals are respectively sent to the six switches of the second power module to turn on the switches of the upper half bridge of the first power module or turn on the first power module.
  • the switch module When the power is less than or equal to the preset power threshold, the switch module is closed, and PWM pulse signals are respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or turn on the second power The switch tube of the lower half bridge of the module.
  • the switch module can be disconnected, and PWM pulse signals are respectively sent to the six switch tubes of the second power module to turn on the first power module.
  • the switch tube of the upper half bridge of the power module or the switch tube of the lower half bridge of the first power module is turned on.
  • the energy storage module supplies power to the open-winding motor alone, and the open-winding motor works in a star connection.
  • the open-winding motor is completely isolated from the power supply, which is conducive to reducing control losses; when the power of the energy storage module is less than or equal to the preset power threshold, it indicates that the power of the energy storage module is insufficient.
  • the six switch tubes of the power module send PWM pulse signals respectively to turn on the switch tube of the upper half bridge of the second power module or the switch tube of the lower half bridge of the second power module, and the power supply separately supplies power to the open-winding motor, And the power supply charges the energy storage module at the same time, and the open-winding motor works in a star connection.
  • the working states of the drive control circuit include the double-terminal power supply state, the independent power supply state of the energy storage module, and the independent power supply state of the power supply, wherein:
  • PWM pulse signals are respectively sent to the six switches of the second power module to turn on the switches of the upper half bridge of the first power module or turn on the switches of the lower half bridge of the first power module.
  • the PWM pulse signal is respectively sent to the six switches of the first power module to turn on the switches of the upper half bridge of the second power module or the switches of the lower half bridge of the second power module.
  • the time proportion of the double-terminal power supply state, the independent power supply state of the energy storage module, and the independent power supply state of the power supply can be controlled according to the load parameter of the open-winding motor.
  • the phenomenon of power failure of the power supply can be prevented and the reliability of the open-winding motor operation can be improved.
  • the load parameter as the required speed of the open-winding motor as an example to illustrate, when the required speed of the open-winding motor is high, the time ratio of the drive control circuit in the dual-terminal power supply state can be increased, and the drive control circuit in the energy storage state can be shortened accordingly.
  • the electricity price can also be used as the adjustment benchmark for the time proportion of the three working states of the energy storage device.
  • the time proportion of the independent power supply state of the energy module can be shortened accordingly, and the time proportion of the drive control circuit in the double-terminal power supply state and the power supply independent power supply state can be shortened accordingly; in the case of low electricity prices, the time of the drive control circuit in the double-end power supply state can be increased.
  • the proportion of time when the drive control circuit is in the independent power supply state of the energy storage module and the independent power supply state of the power supply is correspondingly shortened.
  • an embodiment of the present application also provides a circuit board, which includes any one of the drive control circuits described in the above embodiments. Therefore, the above circuit board connects the first power module and the second power module at both ends of the open-winding motor, The second power module is connected with an energy storage module, and the energy storage module is connected to the second input terminal 1500 and the power connection terminal 1700 respectively.
  • the current input from the power input terminal can supply power to the open-winding motor, and also
  • the energy storage module can be charged directly, thereby reducing the control loss, and the working state of the drive control circuit can be controlled by controlling the first power module and the second power module, so that the electric energy can flow in both directions when the motor is running, and the energy storage module can Under sufficient conditions, it can supply power to the open-winding motor, improve the operating voltage of the motor, and improve the operating efficiency of the motor.
  • an embodiment of the present application also provides an air conditioner, including the above circuit board, or including a memory and a processor, where the memory stores a computer program, and the processor implements the second aspect when executing the computer program. Therefore, the above-mentioned air conditioner connects a first power module and a second power module at both ends of the open-winding motor, the second power module is connected with an energy storage module, and the energy storage module is respectively connected with the second input power module.
  • the terminal 1500 is connected to the power connection terminal 1700.
  • the current input from the power input terminal can not only supply power to the open-winding motor, but also directly charge the energy storage module, so as to reduce the control loss, and can control the first power
  • the module and the second power module are used to control the working state of the drive control circuit, so that the electric energy can flow in both directions when the motor is running.
  • the energy storage module can supply power to the open-winding motor when the energy is sufficient to increase the operating voltage of the motor and improve the operation of the motor. efficiency.
  • FIG. 30 shows an air conditioner 3000 provided by an embodiment of the present application.
  • the air conditioner 3000 includes: a memory 3001, a processor 3002, and a computer program stored in the memory 3001 and executable on the processor 3002, and the computer program is used to execute the above-mentioned drive control method when running.
  • the processor 3002 and the memory 3001 may be connected by a bus or other means.
  • the memory 3001 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and an application program required by at least one function; the storage data area may store and execute the above-mentioned drive control method.
  • memory 3001 may include high-speed random access memory 3001, and may also include non-transitory memory 3001, such as at least one storage device storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory 3001 may optionally include memory 3001 located remotely from the processor 3002, and these remote memories 3001 may be connected to the air conditioner 3000 through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the above drive control method are stored in the memory 3001, and when executed by one or more processors 3002, execute the above drive control method, for example, execute the method steps in FIG. 17 1701 to 1702.
  • Embodiments of the present application further provide a computer-readable storage medium, which stores computer-executable instructions, where the computer-executable instructions are used to execute the above drive control method.
  • the computer-readable storage medium stores computer-executable instructions, which are executed by one or more control processors, for example, by one of the processors 3002 in the air conditioner 3000 described above, which may
  • the above-mentioned processor 3002 is caused to execute the above-mentioned drive control method, for example, to execute the method steps 1701 to 1702 in FIG. 17 .
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, tapes, storage device storage or other magnetic storage devices, or Any other medium that can be used to store the desired information and that can be accessed by a computer.
  • communication media typically include computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Abstract

一种驱动控制电路、驱动控制方法、线路板及空调器,其中,驱动控制电路通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。

Description

驱动控制电路、驱动控制方法、线路板及空调器
相关申请的交叉引用
本申请要求于2020年12月31日提交的申请号为202011633005.X、名称为“驱动控制电路、驱动控制方法、线路板及空调器”,于2020年12月31日提交的申请号为202011636871.4、名称为“驱动控制电路、驱动控制方法、线路板及空调器”,以及于2020年12月31日提交的申请号为202023348001.5、名称为“驱动控制电路、线路板及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,特别是涉及一种驱动控制电路、驱动控制方法、线路板及空调器。
背景技术
空调器是人们日常生活中常用的家用电器,压缩机是空调器的一个重要组成器件,压缩机的能耗在空调器总能耗中占有很大的比例。因此,提高压缩机的效率,对于空调器的整体能效提升有显著的效果。压缩机的驱动电机一般为永磁同步电机,由于电源的电压一般是固定的,受限于直流母线电压,压缩机在高负载状态下容易出现电压饱和而提前进入弱磁控制,使得电机的运行效率下降。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种驱动控制电路、驱动控制方法、线路板及空调器,能够提升电机的运行效率。
第一方面,本申请实施例提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括:
第一功率模块,包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接;
第二功率模块,包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接;
电源连接端,用于连接电源,所述电源连接端连接所述第一输入端;
储能模块,与所述第二输入端连接;
控制器,用于根据所述储能模块的电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,所述控制器分别与所述第一功率模块和所述第二功率模块连接。
本申请实施例提供的驱动控制电路至少具有以下有益效果:通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
在本申请的一些实施例中,所述驱动控制电路还包括:
开关模块,所述开关模块连接于所述第一输入端与所述电源连接端之间。
在上述技术方案中,通过设置开关模块,可以控制电源连接端与第一功率模块之间的通断,在储能模块向开绕组电机供电的情况下,开绕组电机可以与电源隔离独立运行,有利于降低开绕组电机的控制损耗。
在本申请的一些实施例中,所述开关模块包括第一开关,所述电源连接端包括正母线连接端和负母线连接端,所述第一输入端包括正母线输入端和负母线输入端,所述第一开关连接于所述正母线连接端与所述正母线输入端之间,所述负母线连接端连接所述负母线输入端;
或者,
所述开关模块包括第一开关和第二开关,所述电源连接端包括正母线连接端和负母线连接端,所述第一输入端 包括正母线输入端和负母线输入端,所述第一开关连接于所述正母线连接端与所述正母线输入端之间,所述第二开关连接于所述负母线连接端与所述负母线输入端之间。
在上述技术方案中,开关模块可以为单刀单掷开关或者双刀双掷开关,具有结构简单,成本低的优点。
在本申请的一些实施例中,所述驱动控制电路还包括:
电容器件,所述电容器件并联于所述电源连接端与所述第一功率模块之间。
在上述技术方案中,通过设置电容器件,既可以储存电源的电能,又可以对电源连接端的信号进行滤波,使得开绕组电机的运行更加稳定。
第二方面,本申请实施例还提供了一种驱动控制方法,应用于驱动控制电路,所述驱动控制电路用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括第一功率模块、第二功率模块、电源连接端、储能模块和控制器,所述第一功率模块包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接,所述第二功率模块包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接,所述电源连接端连接所述第一输入端,所述储能模块与所述第二输入端连接,所述控制器分别与所述第一功率模块和所述第二功率模块连接;
所述驱动控制方法包括:
获取所述储能模块的电量;
根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
本申请实施例提供的驱动控制方法至少具有以下有益效果:通过获取储能模块的电量,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
在本申请的一些实施例中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
当所述电量大于预设的电量阈值,向所述第一功率模块和所述第二功率模块发送控制信号以使所述驱动控制电路处于非双端供电状态。
在上述技术方案中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以向所述第一功率模块和所述第二功率模块发送控制信号以使所述驱动控制电路处于非双端供电状态,可以利用储能模块向开绕组电机供电,也可以不利用储能模块向开绕组电机供电。
在本申请的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述向所述第一功率模块和所述第二功率模块发送控制信号以使所述驱动控制电路处于非双端供电状态,包括以下至少之一:
向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管;
向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管。
在上述技术方案中,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,此时不利用储能模块向开绕组电机供电,开绕组电机运行在星形连接;向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时利用储能模块向开绕组电机供电,开绕组电机运行在星形连接。
在本申请的一些实施例中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
当所述电量小于或者等于所述电量阈值,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功 率模块发送控制信号以改变所述驱动控制电路的工作状态。
在上述技术方案中,当所述电量小于或者等于所述电量阈值,表明储能模块电量不足,此时根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,即根据开绕组电机的负载量参数来确定是否需要对储能模块进行充电。
在本申请的一些实施例中,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
当所述开绕组电机的需求转速小于或者等于预设的转速阈值,分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号;
当所述开绕组电机的需求转速大于预设的转速阈值,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
在上述技术方案中,当所述开绕组电机的需求转速小于或者等于预设的转速阈值,表明此时开绕组电机的需求转速较低,此时可以分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,使得电源可以向储能模块进行充电,开绕组电机运行在开绕组连接;当所述开绕组电机的需求转速大于预设的转速阈值,表明此时开绕组电机的需求转速较高,此时可以向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管,此时电源不向储能模块充电,开绕组电机运行在星形连接。
在本申请的一些实施例中,所述驱动控制电路还包括开关模块,所述开关模块连接于所述第一输入端与所述电源连接端之间,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
当所述电量大于预设的电量阈值,控制所述开关模块断开,向所述第一功率模块和所述第二功率模块发送控制信号以控制所述储能模块向所述开绕组电机供电。
在上述技术方案中,当所述电量大于预设的电量阈值,表明储能模块电量充足,控制所述开关模块断开,此时储能模块单独向开绕组电机供电,保证开绕组电机的正常运行,并且通过开关模块的隔离作用有利于降低开绕组电机的控制损耗。
在本申请的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述向所述第一功率模块和所述第二功率模块发送控制信号以控制所述储能模块向所述开绕组电机供电,包括以下至少之一:
向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管;
分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
在上述技术方案中,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管,此时开绕组电机运行在星形连接;或者分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,此时开绕组电机运行在开绕组连接。
在本申请的一些实施例中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
当所述电量小于或者等于所述电量阈值,控制所述开关模块闭合,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
在上述技术方案中,当所述电量小于或者等于所述电量阈值,表明储能模块电量不足,此时控制所述开关模块 闭合,根据所述开绕组电机的负载量参数确定是否需要给储能模块充电。
在本申请的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管;所述工作状态包括双端供电状态、储能模块独立供电状态和电源独立供电状态,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
根据所述开绕组电机的负载量参数控制所述双端供电状态、所述储能模块独立供电状态和所述电源独立供电状态的时间占比。
在上述技术方案中,通过根据所述开绕组电机的负载量参数控制所述双端供电状态、所述储能模块独立供电状态和所述电源独立供电状态的时间占比,可以防止电源出现掉电的现象,提高开绕组电机运行的可靠性。
第三方面,本申请实施例还提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,其中每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括:
第一功率模块,包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接;
第二功率模块,包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接;
电源连接端,用于连接电源,所述电源连接端连接所述第一输入端;
储能模块,分别与所述第二输入端和所述电源连接端连接;以及
控制器,分别与所述第一功率模块和所述第二功率模块连接。
本发明实施例提供的驱动控制电路至少具有以下有益效果:通过在开绕组电机两端连接第一功率模块和第二功率模块,第二功率模块连接有储能模块,并且储能模块分别与所述第二输入端和所述电源连接端连接,因此,从电源输入端输入的电流既可以向开绕组电机供电,也可以直接为储能模块充电,从而降低控制损耗,并且,可以通过控制第一功率模块和第二功率模块来控制驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
在本发明的一些实施例中,所述驱动控制电路还包括:
开关模块,用于控制所述第一输入端和所述第二输入端中的至少一个与所述电源连接端之间的通断,所述开关模块与所述控制器连接。
在上述技术方案中,通过设置开关模块,可以控制所述第一输入端和所述第二输入端中的至少一个与所述电源连接端之间的通断,在储能模块向开绕组电机供电的情况下,开绕组电机可以与电源隔离独立运行,有利于降低开绕组电机的控制损耗。
在本发明的一些实施例中,所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述第一输入端与所述公共端;
或者,
所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述储能模块以及所述公共端;
或者,
所述开关模块包括第一开关,所述第一开关连接于所述第二输入端与所述储能模块之间。
在上述技术方案中,开关模块包括第一开关,第一开关可以设置于不同位置,可以根据储能模块的电量情况控制第一开关的闭合或者断开,使得储能模块可以独立向开绕组电机进行供电,或者可以与电源一起同时向开绕组电机进行供电,或者电源可以向储能模块充电。
在本发明的一些实施例中,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,其中:
所述开关模块包括第一开关和第二开关,所述第一开关分别连接所述第一输入端与所述公共端,所述第二开关分别连接所述储能模块以及所述公共端;
或者,
所述开关模块包括第一开关,所述第一开关分别连接所述电源连接端以及所述公共端。
在上述技术方案中,可以根据储能模块的电量情况控制开关模块的闭合或者断开,使得储能模块可以独立向开绕组电机进行供电,或者可以与电源一起同时向开绕组电机进行供电,或者电源可以向储能模块充电。并且,开关模块断开后可以使得开绕组电机与电源连接端完全隔离,有利于降低控制损耗。
第四方面,本发明实施例还提供了一种驱动控制方法,应用于驱动控制电路,其中,所述驱动控制电路用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括第一功率模块、第二功率模块、电源连接端、储能模块和控制器,所述第一功率模块包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接,所述第二功率模块包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接,所述电源连接端连接所述第一输入端,所述储能模块分别与所述第二输入端和所述电源连接端连接,所述控制器分别与所述第一功率模块和所述第二功率模块连接;
所述驱动控制方法包括:
获取所述储能模块的电量;以及
根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
本发明实施例提供的驱动控制方法至少具有以下有益效果:通过获取储能模块的电量,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
在本发明的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下之一:
当所述电量大于预设的电量阈值,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
当所述电量大于预设的电量阈值,分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
在上述技术方案中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管,储能模块单独向开绕组电机供电;或者,也可以分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,储能模块和电源一起向开绕组电机供电。
在本发明的一些实施例中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
当所述电量小于或者等于所述电量阈值,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
在上述技术方案中,当储能模块的电量小于或者等于预设的电量阈值,表明储能模块电量不足,此时可以向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管,仅由电源向开绕组电机供电,此时由于储能模块与电源直接连接,电源也可以向储能模块进行充电。
在本发明的一些实施例中,所述驱动控制电路还包括开关模块,所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述第一输入端与所述公共端;
所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
当所述电量大于预设的电量阈值,根据所述开绕组电机的负载量参数控制所述第一开关的通断,向所述第一功 率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
在上述技术方案中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以根据所述开绕组电机的负载量参数控制所述第一开关的通断,向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
在本发明的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数控制所述第一开关的通断,向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
当所述开绕组电机的需求转速小于或者等于预设的转速阈值,断开所述第一开关,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
当所述开绕组电机的需求转速大于预设的转速阈值,闭合所述第一开关,向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
在上述技术方案中,当所述开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以断开所述第一开关,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当所述开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以闭合所述第一开关,向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
在本发明的一些实施例中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
当所述电量小于或者等于所述电量阈值,闭合所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
在上述技术方案中,当储能模块的电量小于或者等于所述电量阈值,表明储能模块电量不足,此时可以闭合所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
在本发明的一些实施例中,所述驱动控制电路还包括开关模块,所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述储能模块以及所述公共端;
所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
当所述电量大于预设的电量阈值,断开所述第一开关,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
在上述技术方案中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以断开第一开关,电源无须对储能模块进行充电,然后再根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
在本发明的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数 向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
当所述开绕组电机的需求转速小于或者等于预设的转速阈值,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
当所述开绕组电机的需求转速大于预设的转速阈值,向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
在上述技术方案中,当所述开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当所述开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
在本发明的一些实施例中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
当所述电量小于或者等于所述电量阈值,闭合所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
在上述技术方案中,当储能模块的电量小于或者等于所述电量阈值,表明储能模块电量不足,此时可以闭合所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
在本发明的一些实施例中,所述驱动控制电路还包括开关模块,所述开关模块包括第一开关,所述第一开关连接于所述第二输入端与所述储能模块之间;
所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
当所述电量大于预设的电量阈值,闭合所述第一开关,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
在上述技术方案中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以闭合第一开关,然后再根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
在本发明的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数控制所述第一开关的通断,向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
当所述开绕组电机的需求转速小于或者等于预设的转速阈值,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
当所述开绕组电机的需求转速大于预设的转速阈值,向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
在上述技术方案中,当所述开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形 连接;当所述开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
在本发明的一些实施例中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
当所述电量小于或者等于所述电量阈值,断开所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
在上述技术方案中,当储能模块的电量小于或者等于所述电量阈值,表明储能模块电量不足,此时可以断开所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。并且,由于第一开关断开,储能模块在充电的过程中与开绕组电机完全隔离,有利于降低控制损耗。
在本发明的一些实施例中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述驱动控制电路还包括开关模块,所述驱动控制电路还包括开关模块,所述储能模块和所述第一输入端通过公共端连接所述电源连接端;
其中,所述开关模块包括第一开关和第二开关,所述第一开关分别连接所述第一输入端与所述公共端,所述第二开关分别连接所述储能模块以及所述公共端;
或者,所述开关模块包括第一开关,所述第一开关分别连接所述电源连接端以及所述公共端;
所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
当所述电量大于预设的电量阈值,断开所述开关模块,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管。
当所述电量小于或者等于预设的电量阈值,闭合所述开关模块,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
在上述技术方案中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以断开开关模块,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接,并且,由于开关模块断开后开绕组电机与电源完全隔离,有利于降低控制损耗;当储能模块的电量小于或者等于预设的电量阈值,表明储能模块电量不足,此时可以闭合开关模块,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
第五方面,本申请实施例还提供了一种线路板,包括第一方面所述的驱动控制电路,因此,上述线路板通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
第六方面,本申请实施例还提供了一种空调器,包括第五方面所述的线路板,或者包括存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现第二方面所述的驱动控制方法,因此,上述空调器通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效 率。
第七方面,本发明实施例还提供了一种线路板,包括第三方面所述的驱动控制电路,因此,上述线路板通过在开绕组电机两端连接第一功率模块和第二功率模块,第二功率模块连接有储能模块,并且储能模块分别与所述第二输入端和所述电源连接端连接,因此,从电源输入端输入的电流既可以向开绕组电机供电,也可以直接为储能模块充电,从而降低控制损耗,并且,可以通过控制第一功率模块和第二功率模块来控制驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
第八方面,本发明实施例还提供了一种空调器,包括第七方面所述的线路板,或者包括存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现第四方面所述的驱动控制方法,因此,上述空调器通过在开绕组电机两端连接第一功率模块和第二功率模块,第二功率模块连接有储能模块,并且储能模块分别与所述第二输入端和所述电源连接端连接,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
第九方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质存储有程序,所述程序被处理器执行实现第二方面或者第四方面所述的驱动控制方法。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请实施例提供的驱动控制电路的结构示意图;
图2是本申请实施例提供的第一功率模块/第二功率模块的结构示意图;
图3是本申请实施例提供的直流装置的一种结构示意图(直流电源);
图4是本申请实施例提供的直流装置的另一种结构示意图(直流电源+直流直流变换器);
图5是本申请实施例提供的直流装置的另一种结构示意图(交流电源+交流直流变换器);
图6是本申请实施例提供的储能模块的一种结构示意图(电池);
图7是本申请实施例提供的储能模块的另一种结构示意图(电容);
图8是本申请实施例提供的储能模块的另一种结构示意图(电池+电容);
图9是本申请实施例提供的储能模块的另一种结构示意图(电容+桥臂+电感+电池);
图10是本申请实施例提供的驱动控制电路的工作状态的切换示意图;
图11是本申请实施例提供的储能模块充电时的电流流向示意图;
图12是本申请实施例提供的驱动控制电路的另一种结构示意图(设置有开关模块);
图13是本申请实施例提供的开关模块的结构示意图(单刀单掷);
图14是本申请实施例提供的开关模块的结构示意图(单刀单掷的另一种连接方式);
图15是本申请实施例提供的开关模块的结构示意图(双刀双掷);
图16是本申请实施例提供的驱动控制电路的另一种结构示意图(开关模块设置在另一种位置);
图17是本申请实施例提供的驱动控制方法的流程图;
图18是本申请实施例提供的驱动控制电路的结构示意图(无开关模块、共直流母线);
图19是本申请实施例提供的驱动控制电路的另一种结构示意图(无开关模块、共交流母线);
图20是本申请实施例提供的驱动控制电路的另一种结构示意图(第一输入端与公共端之间设置有开关模块、 共直流母线);
图21是本申请实施例提供的驱动控制电路的另一种结构示意图(第一输入端与公共端之间设置有开关模块、共交流母线);
图22是本申请实施例提供的驱动控制电路的另一种结构示意图(储能模块与公共端之间设置有开关模块、共直流母线);
图23是本申请实施例提供的驱动控制电路的另一种结构示意图(储能模块与公共端之间设置有开关模块、共交流母线);
图24是本申请实施例提供的驱动控制电路的另一种结构示意图(储能模块与第二输入端之间设置有开关模块、共直流母线);
图25是本申请实施例提供的驱动控制电路的另一种结构示意图(储能模块与第二输入端之间设置有开关模块、共交流母线);
图26是本申请实施例提供的驱动控制电路的另一种结构示意图(电源连接端与公共端之间设置有开关模块、共交流母线);
图27是本申请实施例提供的驱动控制电路的另一种结构示意图(电源连接端与公共端之间设置有开关模块、共直流母线);
图28是本申请实施例提供的驱动控制电路的另一种结构示意图(公共端与第一输入端、公共端与储能模块之间对应设置有第一开关和第二开关、共直流母线);
图29是本申请实施例提供的驱动控制电路的另一种结构示意图(公共端与第一输入端、公共端与储能模块之间对应设置有第一开关和第二开关、共交流母线);以及
图30是本申请实施例提供的空调器的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
空调器是人们日常生活中常用的家用电器,压缩机是空调器的一个重要组成器件,压缩机的能耗在空调器总能耗中占有很大的比例。因此,提高压缩机的效率,对于空调器的整体能效提升有显著的效果。压缩机的驱动电机一般为永磁同步电机,由于电源的电压一般是固定的,受限于直流母线电压,压缩机在高负载状态下容易出现电压饱和而提前进入弱磁控制,使得电机的运行效率下降。
基于此,本申请实施例提供了一种驱动控制电路、驱动控制方法、线路板及空调器,能够提升电机的运行效率。
参照图1,本申请实施例提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相绕组的一端组成第一三相出线组1100,每相绕组的另一端组成第二三相出线组1200,驱动控制电路包括第一功率模块、第二功率模块、电源连接端1700、储能模块以及控制器,第一功率模块包括第一输入端1300和第一输出端1400,第一输出端1400与第一三相出线组1100连接,第二功率模块包括第二输入端1500和第二输出端1600,第二输出端1600与第二三相出线组1200连接,电源连接端1700用于连接电源,电源连接端1700连接第一输入端1300,储能模块与第二输入端1500连接,控制器用于根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,控制器分别与第一功率模块和第二功率模块连接。
可以理解,电源连接端1700连接直流装置,第一输入端1300和第二输入端1500均设置有正母线输入端和接 地端,第一输出端1400和第二输出端1600均为三相输出端,直流装置的正母线和负母线对应连接第一输入端1300的正母线输入端和接地端,储能模块的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,第一输出端1400的三相输出端对应连接开绕组电机的第一三相出线组1100,第二输出端1600的三相输出端对应连接开绕组电机的第二三相出线组1200。
可以理解,驱动控制电路还可以包括电容器件C,电容器件C并联于电源连接端1700与第一功率模块之间,通过设置电容器件C,既可以储存电源的电能,又可以对电源连接端1700的信号进行滤波,使得开绕组电机的运行更加稳定。
参照图2,第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个桥臂包括相互串联的两个开关管,其中,开关管可以为MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)或者IGBT((Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管)。
参照图3至图5,直流装置可以为:直流电源、直流电源+直流直流变换器、交流电源+交流直流变换器中的任意一种。其中,直流电源可以为电池或者电容。其中,若直流装置为直流电源,则直流电源的正母线和地线对应连接电源连接端1700;若直流装置为直流电源+直流直流变换器,则直流直流变换器的两个输出端对应连接电源连接端1700,其中,直流电源的正母线和地线对应连接直流直流变换器的两个输入端;若直流装置为交流电源+交流直流变换器,则交流直流变换器的两个输出端对应连接电源连接端1700,其中,交流电源的正母线和负母线对应连接交流直流变换器的两个输入端。
参照图6至图9,储能模块可以为电池、电容、电池+电容、电容+桥臂+电感+电池中的任意一种。其中,若储能模块为电池,则电池的正母线和地线对应连接第二输入端1500的正母线输入端和接地端;若储能模块为电容,则电容的正母线和地线对应连接第二输入端1500的正母线输入端和接地端;若储能模块为电池+电容,电池与电容相互并联,电池与电容的正母线和地线对应连接第二输入端1500的正母线输入端和接地端;若储能模块为电容+桥臂+电感+电池,电容包括第一电容C1和第二电容C2,桥臂包括两个相互串联的开关管,第一电容C1与桥臂相并联,第二电容C2与电池均并联于桥臂下半桥开关管上,电感的一端连接于两个开关管之间,电感的另一端连接电池的正母线,第一电容C1的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,储能模块的桥臂的两个开关管分别连接控制器。
可以理解,第一功率模块或者第二功率模块具有以下三种工作状态:
OFF态:上半桥和下半桥的开关管均处于断开状态;
正常调制状态:向六个开关管分别发送PWM脉冲信号,各个开关管的驱动波形由控制器计算得到的占空比经调制得到,或者控制器也可以通过计算得到的开关状态直接控制开关管;
半桥调制状态:导通第一功率模块(或者第二功率模块)的上半桥的开关管或者导通第一功率模块(或者第二功率模块)的下半桥的开关管,其中,具体可以有两种方式,第一种方式是控制器根据三相电流流向决定六个开关管的开关(开关的频率与电流基频属同一个级别),调整开关管的开关状态使开绕组电机N点(三相电流在对应功率模块侧的交汇点)交替出现在第一功率模块或者第二功率模块的正母线和负母线,其中,要使开绕组电机N点交替出现在第一功率模块或者第二功率模块的正母线,需至少开通具有从第一功率模块或者第二功率模块流向开绕组电机的电流的对应相的上半桥;要使开绕组电机N点交替出现在第一功率模块或者第二功率模块的负母线,需至少开通具有从第一功率模块或者第二功率模块流向开绕组电机的电流的对应相的下半桥。第二种方式是导通上半桥的所有三个开关管或者导通下半桥的所有三个开关管。在此状态下,开绕组电机的第一三相出线组相连,或者第二三相出线组相连,使得开绕组电机处于星形连接。
若选取上述的第一种方式,当第一功率模块和第二功率模块的开关管采用MOSFET时,六个开关管的开关方式为:以一定的频率交替使用导通上半桥的开关管和导通下半桥的开关管的方式,这种开关方式有利于减小导通损耗,使得上半桥和下半桥的开关管发热平衡,提高工作可靠性,延长开关管的使用寿命;当第一功率模块和第二功率模 块的开关管采用IGBT时,若IGBT开通时的正向导通压降小于其反向通流的导通压降,可以导通流向开绕组电机的电流的对应相的上半桥,并导通向开绕组电机的电流的对应相的下半桥;若IGBT开通时的正向导通压降与其反向通流的导通压降近似相等时,不需开通多余开关,例如要使开绕组电机N点交替出现在第一功率模块或者第二功率模块的正母线,需至少开通具有从第一功率模块或者第二功率模块流向开绕组电机的电流的对应相的上半桥;要使开绕组电机N点交替出现在第一功率模块或者第二功率模块的负母线,需至少开通具有从第一功率模块或者第二功率模块流向开绕组电机的电流的对应相的下半桥。
可以理解,基于图1所示的拓扑结构,驱动控制电路具有三种工作状态,包括双端供电状态、储能模块独立供电状态和电源独立供电状态,其中:
电源独立供电状态下仅由直流装置向开绕组电机供电,相对应地,在此状态下,控制器向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,即第一功率模块处于正常调制状态,第二功率模块处于半桥调制状态。
在双端供电状态直流装置和储能模块同时向开绕组电机供电,相对应地,在此状态下,控制器分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,即第一功率模块和第二功率模块均处于正常调制状态。
储能模块独立供电状态下仅由储能模块向开绕组电机供电,相对应地,在此状态下,控制器向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,即第一功率模块处于半桥调制状态,第二功率模块处于正常调制状态。
可以理解,驱动控制电路可以在上述三种工作状态之间切换,参照图10,具体地:
驱动控制电路由电源独立供电状态切换至双端供电状态之间具有过渡态一,t1时刻第二功率模块由半桥调制状态切换至正常调制状态,t2时刻第二功率模块状态切换完成;当储能模块由双端供电状态切换至电源独立供电状态,第二功率模块的切换动作相反,过渡原理类似,在此不再赘述。
驱动控制电路由双端供电状态切换至储能模块独立供电状态之间具有过渡态二,t3时刻第一功率模块由正常调制状态切换至半桥调制状态,t2时刻第一功率模块状态切换完成;当储能模块由储能模块独立供电状态切换至双端供电状态,第一功率模块的切换动作相反,过渡原理类似,在此不再赘述。
驱动控制电路由储能模块独立供电状态切换至电源独立供电状态之间具有过渡态三,t5时刻第二功率模块由正常调制状态切换至半桥调制状态,t6时刻第二功率模块状态切换完成;当储能模块由储能模块独立供电状态切换至双端供电状态,第一功率模块的切换动作相反,过渡原理类似,在此不再赘述。
其中,在驱动控制电路工作状态切换的过程中加入过渡态,使得驱动控制电路的工作状态切换更加平稳,提高驱动控制电路工作的稳定性。下面以实际例子说明本申请实施例提供的驱动控制电路的工作状态切换场景:
场景一:当驱动控制电路处于电源独立供电状态时直流装置掉电,此时驱动控制电路由电源独立供电状态切换到储能模块独立供电状态;
场景二:当驱动控制电路处于电源独立供电状态时直流装置掉电,此时驱动控制电路由电源独立供电状态切换到双端供电状态,当电容器件C的电压下降到预设值时,驱动控制电路由双端供电状态切换到储能模块独立供电状态;
场景三:当驱动控制电路处于双端供电状态时直流装置掉电,驱动控制电路由双端供电状态切换到储能模块独立供电状态。
场景四:当驱动控制电路处于储能模块独立供电状态时电压下降到预设值,驱动控制电路由储能模块独立供电状态切换到双端供电状态。
可以理解,上述场景仅为示意性的说明,本申请实施例不穷举各个切换场景一一说明。
可以理解,还可以根据开绕组电机的负载量参数控制双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比。通过根据开绕组电机的负载量参数控制双端供电状态、储能模块独立供电状态和电源独立供电状态 的时间占比,可以防止电源出现掉电的现象,提高开绕组电机运行的可靠性。其中,负载量参数可以是开绕组电机的需求转速、空调器的需求功率、空调器的需求频率等等。
以负载量参数为开绕组电机的需求转速为例进行说明,当开绕组电机的需求转速较高时,可以提高驱动控制电路处于双端供电状态的时间占比,相应缩短驱动控制电路处于储能模块独立供电状态和电源独立供电状态的时间占比;当开绕组电机的需求转速较低时,若储能模块的电量充足,则可以提高驱动控制电路处于储能模块独立供电状态的时间占比,相应缩短驱动控制电路处于双端供电状态和电源独立供电状态的时间占比。可以理解,上述双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比是基于开绕组电机保持一定能耗的基础上进行控制的。
可以理解,还可以以电价作为驱动控制电路三个工作状态的时间占比的调节基准,若以电价作为时间占比的调节基准,则可以在电价较高的情况下,提高驱动控制电路处于储能模块独立供电状态的时间占比,相应缩短驱动控制电路处于双端供电状态和电源独立供电状态的时间占比;在电价较低的情况下,可以提高驱动控制电路处于双端供电状态的时间占比,相应缩短驱动控制电路处于储能模块独立供电状态和电源独立供电状态的时间占比。
可以理解,本申请实施例提供的驱动控制电路,在开绕组电机停止、运行、制动,均可以对储能模块进行充电,具体地:
当开绕组电机停止提供转矩(例如停止转动),选取正电流相和负电流相,控制器根据电容器件C两端的电压、储能模块正负母线间的电压、三相电流中的至少一个计算第一功率模块和第二功率模块的开关管的开关状态,进而控制第一功率模块和第二功率模块的工作状态,使得驱动控制电路处于充电状态或者是放电状态。当选取正电流相为X相、负电流相为Y相时,第一功率模块的X相上半桥的开关管做开关动作,第一功率模块的Y相下半桥的开关器件断开,第一功率模块的其他桥臂关断,第二功率模块的X相上半桥的二极管方向通流,第二功率模块的Y相下半桥的二极管方向通流,第二功率模块的其他桥臂关断;当储能模块需要充电时,根据预设的储能模块的充电电流,通过控制器运算得到X相上半桥的开关管的占空比或者电流上下限等值确定X相上半桥的开关管的控制信号;其中,X相可以取UVW任意一相,Y相可以为UVW中除去X相后的另两相中的任意一相。参照图11,举例来说,当选取正电流相为U相、负电流相为W相时,第一功率模块的U相上半桥的开关管做开关动作,第一功率模块的W相下半桥的开关管断开,第一功率模块的其他桥臂关断,第二功率模块的U相上半桥通流,第二功率模块的W相的下半桥通流,第二功率模块的其他桥臂关断。
当开绕组电机运转的同时,控制器根据负载量参数、电容器件C两端的电压、储能模块正负母线间的电压、三相电流以及所需的平均充电电流中的至少一个计算第一功率模块和第二功率模块的开关管的开关状态,进而控制第一功率模块和第二功率模块的工作状态,使得驱动控制电路处于充电状态或者是放电状态。
当开绕组电机制动的同时,控制器根据负载量参数、电容器件C两端的电压、储能模块正负母线间的电压、三相电流以及所需的平均充电电流中的至少一个计算第一功率模块和第二功率模块的开关管的开关状态,进而控制第一功率模块和第二功率模块的工作状态,使得驱动控制电路处于充电状态或者是放电状态。
下面详细描述本申请实施例提供的驱动控制电路的工作原理。
通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
可以理解,控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以向第一功率模块和第二功率模块发送控制信号以使驱动控制电路处于非双端供电状态,可以利用储能模块向开绕组电机供电,也可以不利用储能模块向开绕组电机供电。
其中,储能模块的电量可以通过储能模块的电压、电流等参数得到,或者直接将储能模块的电压作为电量,相应地,电量阈值可以为电压阈值。
可以理解,非双端供电状态即驱动控制电路处于电源独立供电状态或者储能模块独立供电状态,相对应地,控制器向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,此时即驱动控制电路处于电源独立供电状态,不利用储能模块向开绕组电机供电,开绕组电机运行在星形连接;或者,控制器向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接。
可以理解,当储能模块的电量小于或者等于电量阈值,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,即根据开绕组电机的负载量参数来确定是否需要对储能模块进行充电。
其中,负载量参数可以是开绕组电机的需求转速,此时根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,可以是当开绕组电机的需求转速小于或者等于预设的转速阈值,表明此时开绕组电机的需求转速较低,此时可以分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,使得电源可以向储能模块进行充电,开绕组电机运行在开绕组连接;当开绕组电机的需求转速大于预设的转速阈值,表明此时开绕组电机的需求转速较高,此时可以向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,此时电源不向储能模块充电,开绕组电机运行在星形连接。
可以理解,也可以从用电成本的角度出发,当电价小于或者等于预设的电价阈值时,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,使得电源可以向储能模块进行充电,驱动控制电路处于双端供电状态,开绕组电机运行在开绕组连接;当电价大于该预设的电价阈值时,此时可以根据储能模块的电量情况控制驱动控制电路的工作状态,当储能模块电量充足时,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接,以降低直流装置侧的能耗。
参照图12,本申请实施例还提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相绕组的一端组成第一三相出线组1100,每相绕组的另一端组成第二三相出线组1200,驱动控制电路包括第一功率模块、第二功率模块、电源连接端1700、开关模块、储能模块以及控制器,第一功率模块包括第一输入端1300和第一输出端1400,第一输出端1400与第一三相出线组1100连接,第二功率模块包括第二输入端1500和第二输出端1600,第二输出端1600与第二三相出线组1200连接,电源连接端1700用于连接电源,电源连接端1700连接第一输入端1300,储能模块与第二输入端1500连接,控制器用于根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,控制器分别与第一功率模块和第二功率模块连接,开关模块连接于第一输入端1300与电源连接端1700之间,开关模块连接控制器。通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。并且,通过设置开关模块,可以控制电源连接端1700与第一功率模块之间的通断,在储能模块向开绕组电机供电的情况下,开绕组电机可以与电源隔离独立运行,有利于降低开绕组电机的控制损耗。
可以理解,参照图13,开关模块包括第一开关,电源连接端1700包括正母线连接端和负母线连接端,第一输入端1300包括正母线输入端和负母线输入端,第一开关连接于正母线连接端与正母线输入端之间,负母线连接端 连接负母线输入端;
或者,参照图14,开关模块包括第一开关,电源连接端1700包括正母线连接端和负母线连接端,第一输入端1300包括正母线输入端和负母线输入端,正母线连接端连接正母线输入端,第一开关连接于负母线连接端与负母线输入端之间;
或者,参照图15,开关模块包括第一开关和第二开关,电源连接端1700包括正母线连接端和负母线连接端,第一输入端1300包括正母线输入端和负母线输入端,第一开关连接于正母线连接端与正母线输入端之间,第二开关连接于负母线连接端与负母线输入端之间。
可见,开关模块可以为单刀单掷开关或者双刀双掷开关,具有结构简单,成本低的优点。
可以理解,电源连接端1700连接直流装置,第一输入端1300和第二输入端1500均设置有正母线输入端和接地端,第一输出端1400和第二输出端1600均为三相输出端,直流装置的正母线和负母线对应连接第一输入端1300的正母线输入端和接地端,储能模块的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,第一输出端1400的三相输出端对应连接开绕组电机的第一三相出线组1100,第二输出端1600的三相输出端对应连接开绕组电机的第二三相出线组1200。
可以理解,图12所示的驱动控制电路还可以包括电容器件C,电容器件C并联于开关模块与第一功率模块之间,通过设置电容器件C,既可以储存电源的电能,又可以对电源连接端1700的信号进行滤波,使得开绕组电机的运行更加稳定。
类似地,第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个桥臂包括相互串联的两个开关管,其中,开关管可以为MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属-氧化物半导体场效应晶体管)或者IGBT((Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管)。
类似地,参照图3至图5,直流装置可以为:直流电源、直流电源+直流变换器、交流电源+交流直流变换器中的任意一种。
类似地,参照图6至图9,储能模块可以为电池、电容、电池+电容、电容+桥臂+电感+电池中的任意一种。
可以理解,基于图12所示的电路拓扑,控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体地,当储能模块的电量大于预设的电量阈值,控制开关模块断开,向第一功率模块和第二功率模块发送控制信号以控制储能模块向开绕组电机供电。当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,控制开关模块断开,此时储能模块单独向开绕组电机供电,保证开绕组电机的正常运行,并且通过开关模块的隔离作用有利于降低开绕组电机的控制损耗。
可以理解,在开关模块断开的情况下,控制器可以向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,此时开绕组电机运行在星形连接;或者,控制器也可以分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时开绕组电机运行在开绕组连接。
可以理解,当储能模块的电量小于或者等于电量阈值,控制开关模块闭合,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时控制开关模块闭合,根据开绕组电机的负载量参数确定是否需要给储能模块充电。
需要补充说明的是,当开关模块闭合时,图12的电路拓扑结构与图1的电路拓扑结构一致,因此当储能模块的电量小于或者等于电量阈值,根据开绕组电机的负载量参数确定是否需要给储能模块充电的具体原理也一致,上面已经进行了说明,在此不再赘述。
可以理解,在图12所示的电路拓扑的基础上,也可以从用电成本的角度出发,当电价小于或者等于预设的电价阈值时,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,使得电源可以向储能模块进行充电,驱动控制电路处于双端供电状态,开绕组电机运行在开绕组连接;当电价大于该预设的电价阈值时,此时 可以根据储能模块的电量情况控制驱动控制电路的工作状态,当储能模块电量充足时,断开开关模块,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接,以降低直流装置侧的能耗。
可以理解,参照图16,开关模块也可以设置于第二功率模块和储能模块之间,可以通过控制开关模块的通断来控制储能模块与第二功率模块之间的通断,进而控制驱动控制电路的工作状态,有利于减少第二功率模块的控制损耗。
参照图17,本申请实施例还提供了一种驱动控制方法,应用于图1所示的驱动控制电路,该驱动控制方法包括但不限于以下步骤1701至步骤1702:
步骤1701:获取储能模块的电量;
其中,在步骤1701中,储能模块的电量的大小表明储能模块的电量情况,储能模块的电量越大,表明储能模块的电量充足,其中,获取储能模块的电量可以通过采样电路实现。
步骤1702:根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。
其中,储能模块具有三种工作状态,包括双端供电状态、储能模块独立供电状态和电源独立供电状态,其中,电源独立供电状态下仅由直流装置向开绕组电机供电,双端供电状态直流装置和储能模块同时向开绕组电机供电,储能模块独立供电状态下仅由储能模块向开绕组电机供电。
上述步骤1701至步骤1702,通过获取储能模块的电量,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
可以理解,上述步骤1702中,根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体可以为:
当储能模块的电量大于预设的电量阈值,向第一功率模块和第二功率模块发送控制信号以使驱动控制电路处于非双端供电状态。
其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以向第一功率模块和第二功率模块发送控制信号以使驱动控制电路处于非双端供电状态,可以利用储能模块向开绕组电机供电,也可以不利用储能模块向开绕组电机供电。
可以理解,向第一功率模块和第二功率模块发送控制信号以使驱动控制电路处于非双端供电状态,具体可以包括:
向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管;
向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管。
其中,向第一功率模块或者第二功率模块的六个开关管分别发送PWM脉冲信号,即第一功率模块或者第二功率模块处于正常调制状态,各个开关管的驱动波形由控制器计算得到的占空比经调制得到,或者控制器也可以通过计算得到的开关状态直接控制开关管。
其中,导通第一功率模块(或者第二功率模块)的上半桥的开关管或者导通第一功率模块(或者第二功率模块)的下半桥的开关管,即第一功率模块或者第二功率模块处于半桥调制状态,具体可以有两种方式,第一种方式是控制器根据三相电流流向决定六个开关管的开关(开关的频率与电流基频属同一个级别),调整开关管的开关状态使开绕组电机N点(三相电流在对应功率模块侧的交汇点)交替出现在第一功率模块或者第二功率模块的正母线和负母线,其中,要使开绕组电机N点交替出现在第一功率模块或者第二功率模块的正母线,需至少开通具有从第一功率模块或者第二功率模块流向开绕组电机的电流的对应相的上半桥;要使开绕组电机N点交替出现在第一功率模块 或者第二功率模块的负母线,需至少开通具有从第一功率模块或者第二功率模块流向开绕组电机的电流的对应相的下半桥。第二种方式是导通上半桥的所有三个开关管或者导通下半桥的所有三个开关管。
因此,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,此时不利用储能模块向开绕组电机供电,开绕组电机运行在星形连接;向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时利用储能模块向开绕组电机供电,开绕组电机运行在星形连接。
可以理解,上述步骤1702中,根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,还可以为:
当储能模块的电量小于或者等于电量阈值,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。
其中,当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,即根据开绕组电机的负载量参数来确定是否需要对储能模块进行充电。
可以理解,负载量参数包括开绕组电机的需求转速,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体可以为:
当开绕组电机的需求转速小于或者等于预设的转速阈值,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号;
当开绕组电机的需求转速大于预设的转速阈值,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管。
其中,当开绕组电机的需求转速小于或者等于预设的转速阈值,表明此时开绕组电机的需求转速较低,此时可以分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,使得电源可以向储能模块进行充电,开绕组电机运行在开绕组连接;当开绕组电机的需求转速大于预设的转速阈值,表明此时开绕组电机的需求转速较高,此时可以向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,此时电源不向储能模块充电,开绕组电机运行在星形连接。
可以理解,负载量参数也可以是空调器的需求功率、空调器的需求频率等等。
可以理解,基于图12所示的驱动控制电路,上述步骤1702中,根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体也可以为:
当储能模块的电量大于预设的电量阈值,控制开关模块断开,向第一功率模块和第二功率模块发送控制信号以控制储能模块向开绕组电机供电。
其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,控制开关模块断开,此时储能模块单独向开绕组电机供电,保证开绕组电机的正常运行,并且通过开关模块的隔离作用有利于降低开绕组电机的控制损耗。
可以理解,向第一功率模块和第二功率模块发送控制信号以控制储能模块向开绕组电机供电,具体可以包括:
向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管;
分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号。
其中,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,此时开绕组电机运行在星形连接;或者分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时开绕组电机运行在开绕组连接。
可以理解,基于图1或者图12所示的驱动控制电路,上述步骤1702中,根据储能模块的电量向第一功率模块 和第二功率模块发送控制信号以改变驱动控制电路的工作状态,也可以为:
当储能模块的电量小于或者等于电量阈值,控制开关模块闭合,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。
其中,当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时控制开关模块闭合,根据开绕组电机的负载量参数确定是否需要给储能模块充电。
可以理解,驱动控制电路的工作状态包括双端供电状态、储能模块独立供电状态和电源独立供电状态,其中:
在双端供电状态下,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号;
在储能模块独立供电状态下,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管;
在电源独立供电状态下,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管;
因此,上述步骤1702中,根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,也可以为:
根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,并根据开绕组电机的负载量参数控制双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比。
其中,通过根据开绕组电机的负载量参数控制双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比,可以防止电源出现掉电的现象,提高开绕组电机运行的可靠性。
以负载量参数为开绕组电机的需求转速为例进行说明,当开绕组电机的需求转速较高时,可以提高驱动控制电路处于双端供电状态的时间占比,相应缩短驱动控制电路处于储能模块独立供电状态和电源独立供电状态的时间占比;当开绕组电机的需求转速较低时,若储能模块的电量充足,则可以提高驱动控制电路处于储能模块独立供电状态的时间占比,相应缩短驱动控制电路处于双端供电状态和电源独立供电状态的时间占比。可以理解,上述双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比是基于开绕组电机保持一定能耗的基础上进行控制的。
可以理解,还可以以电价作为储能装置三个工作状态的时间占比的调节基准,若以电价作为时间占比的调节基准,则可以在电价较高的情况下,提高驱动控制电路处于储能模块独立供电状态的时间占比,相应缩短驱动控制电路处于双端供电状态和电源独立供电状态的时间占比;在电价较低的情况下,可以提高驱动控制电路处于双端供电状态的时间占比,相应缩短驱动控制电路处于储能模块独立供电状态和电源独立供电状态的时间占比。
另外,本申请实施例还提供了一种线路板,包括上述实施例所述的任意一个驱动控制电路,因此,上述线路板通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
另外,本申请实施例还提供了一种空调器,包括上述的线路板,或者包括存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现第二方面所述的驱动控制方法,因此,上述空调器通过在开绕组电机两端连接第一功率模块和第二功率模块,并且第二功率模块连接有储能模块,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
参照图18,本申请实施例还提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相绕组的一端组成第一三相出线组1100,每相绕组的另一端组成第二三相出线组1200,驱动控制电路包括第一功率模块、第二功率模块、电源连接端1700、储能模块,第一功率模块包括第一输入端1300和第一输出端1400,第一输出端1400与第一三相出线组1100连接,第二功率模块包括第二输入端1500和第二输出端1600,第二输出端1600与第二三 相出线组1200连接,电源连接端1700用于连接电源,电源连接端1700连接第一输入端1300,储能模块分别与第二输入端1500和电源连接端1700连接。
可以理解,电源连接端1700连接电源,第一输入端1300和第二输入端1500均设置有正母线输入端和接地端,第一输出端1400和第二输出端1600均为三相输出端,电源的正母线和负母线对应连接第一输入端1300的正母线输入端和接地端,储能模块的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,第一输出端1400的三相输出端对应连接开绕组电机的第一三相出线组1100,第二输出端1600的三相输出端对应连接开绕组电机的第二三相出线组1200。
可以理解,参照图1,电源可以为交流电源+交流直流转换器,交流直流变换器的两个输出端对应连接电源连接端1700,其中,交流电源的正母线和负母线对应连接交流直流变换器的两个输入端,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共直流母线的连接,有利于提升电路的安全性。另外,参照图19,交流直流变换器的数量也可以为两个,电源输入端设置于交流电源和交流直流转换器之间,电源连接端1700通过其中一个交流直流变换器连接第一输入端1300,电源连接端1700通过另一个交流直流变换器连接储能模块,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共交流母线的连接,可以满足较高的电压需求。
当然,电源也可以采用单独的交流电源或者单独的直流电源的方式,本申请实施例并不做出限定。
可以理解,本申请实施例还可以设置有控制器,控制器分别连接第一功率模块和第二功率模块,用于控制第一功率模块和第二功率模块动作。
可以理解,驱动控制电路还可以包括电容器件C,电容器件C并联于电源连接端1700与第一功率模块之间,通过设置电容器件C,既可以储存电源的电能,又可以对电源连接端1700的信号进行滤波,使得开绕组电机的运行更加稳定。
参照图2,第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个桥臂包括相互串联的两个开关管,具体可参见前文描述,在此不再赘述。
参照图6至图9,储能模块可以为电池、电容、电池+电容、电容+桥臂+电感+电池中的任意一种。其中,若储能模块为电池,则电池的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,同时电池的正母线和地线分别连接电源输入端;若储能模块为电容,则电容的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,同时电容的正母线和地线分别连接电源输入端;若储能模块为电池+电容,电池与电容相互并联,电池与电容的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,同时电池与电容的正母线和地线分别连接电源输入端;若储能模块为电容+桥臂+电感+电池,电容包括第一电容C1和第二电容C2,桥臂包括两个相互串联的开关管,第一电容C1与桥臂相并联,第二电容C2与电池均并联于桥臂下半桥开关管上,电感的一端连接于两个开关管之间,电感的另一端连接电池的正母线,第一电容C1的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,同时第一电容C1的正母线和地线分别连接电源输入端,储能模块的桥臂的两个开关管分别连接控制器。
可以理解,第一功率模块或者第二功率模块具有OFF态、正常调制状态和半桥调制状态共三种工作状态,具体可参见前文描述,在此不再赘述。
可以理解,基于图1所示的拓扑结构,储能模块具有三种工作状态,包括双端供电状态、储能模块独立供电状态和电源独立供电状态,具体可参见前文描述,在此不再赘述。
可以理解,储能模块可以在上述三种状态之间切换,参照图10,具体同前文描述。
下面详细描述图18所示的本申请实施例提供的驱动控制电路的工作原理。
通过在开绕组电机两端连接第一功率模块和第二功率模块,第二功率模块连接有储能模块,并且储能模块分别与第二输入端1500和电源连接端1700连接,因此,从电源输入端输入的电流既可以向开绕组电机供电,也可以直接为储能模块充电,从而降低控制损耗,并且,可以通过控制第一功率模块和第二功率模块来控制驱动控制电路的 工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
可以理解,可以利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,储能模块单独向开绕组电机供电;或者,也可以分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,储能模块和电源一起向开绕组电机供电。
其中,储能模块的电量可以通过储能模块的电压、电流等参数得到,或者直接将储能模块的电压作为电量,相应地,电量阈值可以为电压阈值。
而当储能模块的电量小于或者等于预设的电量阈值,表明储能模块电量不足,此时可以向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,仅由电源向开绕组电机供电,此时由于储能模块与电源直接连接,电源也可以向储能模块进行充电。
可以理解,也可以从用电成本的角度出发,当电价小于或者等于预设的电价阈值时,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,驱动控制电路处于双端供电状态,开绕组电机运行在开绕组连接;当电价大于该预设的电价阈值时,此时可以根据储能模块的电量情况控制驱动控制电路的工作状态,当储能模块电量充足时,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接,以降低电源侧的能耗。
参照图20,本申请实施例还提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相绕组的一端组成第一三相出线组1100,每相绕组的另一端组成第二三相出线组1200,驱动控制电路包括第一功率模块、第二功率模块、电源连接端1700、开关模块、储能模块和控制器,第一功率模块包括第一输入端1300和第一输出端1400,第一输出端1400与第一三相出线组1100连接,第二功率模块包括第二输入端1500和第二输出端1600,第二输出端1600与第二三相出线组1200连接,电源连接端1700用于连接电源,电源连接端1700连接第一输入端1300,储能模块分别与第二输入端1500和电源连接端1700连接,开关模块与控制器连接。
其中,开关模块包括第一开关,储能模块和第一输入端1300通过公共端1800连接电源连接端1700,第一开关分别连接第一输入端1300与公共端1800。
可以理解,参照图13,第一开关包括第一开关器件K1,电源连接端1700包括正母线连接端和负母线连接端,第一输入端1300包括正母线输入端和负母线输入端,第一开关器件K1连接于正母线连接端与正母线输入端之间,负母线连接端连接负母线输入端,可以理解,参照图14,也可以是第一开关器件K1连接于负母线连接端和负母线输入端,正母线连接端连接正母线输入端。
或者,参照图15,第一开关包括第一开关器件K1和第二开关器件K2,电源连接端1700包括正母线连接端和负母线连接端,第一输入端1300包括正母线输入端和负母线输入端,第一开关器件K1连接于正母线连接端与正母线输入端之间,第二开关器件K2连接于负母线连接端与负母线输入端之间。
可见,开关模块可以为单刀单掷开关或者双刀双掷开关,具有结构简单,成本低的优点。
可以理解,电源连接端1700连接电源,第一输入端1300和第二输入端1500均设置有正母线输入端和接地端,第一输出端1400和第二输出端1600均为三相输出端,电源的正母线和负母线对应连接第一输入端1300的正母线输入端和接地端,储能模块的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,第一输出端1400的三相输出端对应连接开绕组电机的第一三相出线组1100,第二输出端1600的三相输出端对应连接开绕组电机的第二三相出线组1200。
类似地,参照图20,电源可以为交流电源+交流直流转换器,交流直流变换器的两个输出端对应连接电源连接 端1700,其中,交流电源的正母线和负母线对应连接交流直流变换器的两个输入端,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共直流母线的连接,有利于提升电路的安全性。另外,参照图14,交流直流变换器的数量也可以为两个,电源输入端设置于交流电源和交流直流转换器之间,相应地储能装置和第一输入端1300的公共端1800也设置于交流电源和交流直流转换器之间,电源连接端1700通过其中一个交流直流变换器连接第一输入端1300,电源连接端1700通过另一个交流直流变换器连接储能模块,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共交流母线的连接,可以满足较高的电压需求。
类似地,第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个桥臂包括相互串联的两个开关管,其中,开关管可以为MOSFET或者IGBT。
类似地,驱动控制电路还可以包括电容器件C,电容器件C并联于电源连接端1700与第一功率模块之间,通过设置电容器件C,既可以储存电源的电能,又可以对电源连接端1700的信号进行滤波,使得开绕组电机的运行更加稳定。
类似地,储能模块可以为电池、电容、电池+电容、电容+桥臂+电感+电池中的任意一种。
可以理解,基于图10或者图14所示的电源结构,第一开关为直流开关。
下面详细描述图20所示的本申请实施例提供的驱动控制电路的工作原理。
类似地,基于图20所示的电路拓扑,控制器也可以根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体地,当储能模块的电量大于预设的电量阈值,根据开绕组电机的负载量参数控制第一开关的通断,向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以根据开绕组电机的负载量参数控制第一开关的通断,向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
具体地,负载量参数可以为开绕组电机的需求转速,当开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以断开第一开关,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以闭合第一开关,向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
而当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时可以闭合第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
可以理解,在图20所示的电路拓扑的基础上,也可以从用电成本的角度出发,当电价小于或者等于预设的电价阈值时,闭合第一开关,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,驱动控制电路处于双端供电状态,开绕组电机运行在开绕组连接;当电价大于该预设的电价阈值时,此时可以根据储能模块的电量情况控制驱动控制电路的工作状态,当储能模块电量充足时,断开第一开关,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接,以降低电源侧的能耗。
需要补充说明的是,图21的电路拓扑的工作原理与图20的类似,在此不再赘述。
参照图22,本申请实施例还提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相绕组的一端组成第一三相出线组1100,每相绕组的另一端组成第二三相出线组1200,驱动控制电路包括第一功率模块、第二功率模块、电源连接端1700、开关模块、储能模块和控制器,第一功率模块包括第一输入端1300和第一输出端1400,第一输出端1400与第一三相出线组1100连接,第二功率模块包括第二输入端1500和第二输出端1600,第二输出端1600与第二三相出线组1200连接,电源连接端1700用于连接电源,电源连接端1700连接第一输入端1300,储 能模块分别与第二输入端1500和电源连接端1700连接,开关模块与控制器连接。
其中,开关模块包括第一开关,储能模块和第一输入端1300通过公共端1800连接电源连接端1700,第一开关分别连接储能模块与公共端1800。
第一开关的具体结构在前文已经进行了说明,在此不再赘述。
可以理解,电源连接端1700连接电源,第一输入端1300和第二输入端1500均设置有正母线输入端和接地端,第一输出端1400和第二输出端1600均为三相输出端,电源的正母线和负母线对应连接第一输入端1300的正母线输入端和接地端,储能模块的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,第一输出端1400的三相输出端对应连接开绕组电机的第一三相出线组1100,第二输出端1600的三相输出端对应连接开绕组电机的第二三相出线组1200。
类似地,参照图22,电源可以为交流电源+交流直流转换器,交流直流变换器的两个输出端对应连接电源连接端1700,其中,交流电源的正母线和负母线对应连接交流直流变换器的两个输入端,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共直流母线的连接,有利于提升电路的安全性。另外,参照图16,交流直流变换器的数量也可以为两个,电源输入端设置于交流电源和交流直流转换器之间,相应地储能装置和第一输入端1300的公共端1800也设置于交流电源和交流直流转换器之间,电源连接端1700通过其中一个交流直流变换器连接第一输入端1300,电源连接端1700通过另一个交流直流变换器连接储能模块,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共交流母线的连接,可以满足较高的电压需求。
类似地,第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个桥臂包括相互串联的两个开关管,其中,开关管可以为MOSFET或者IGBT。
类似地,驱动控制电路还可以包括电容器件C,电容器件C并联于电源连接端1700与第一功率模块之间,通过设置电容器件C,既可以储存电源的电能,又可以对电源连接端1700的信号进行滤波,使得开绕组电机的运行更加稳定。
类似地,储能模块可以为电池、电容、电池+电容、电容+桥臂+电感+电池中的任意一种。
可以理解,基于图22所示的电源结构,第一开关为直流开关。基于图23所示的电源结构,第一开关为交流开关。
下面详细描述图22所示的本申请实施例提供的驱动控制电路的工作原理。
类似地,基于图22所示的电路拓扑,控制器也可以根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体地,当储能模块的电量大于预设的电量阈值,断开第一开关,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以断开第一开关,电源无须对储能模块进行充电,然后再根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
具体地,负载量参数可以为开绕组电机的需求转速,当开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
而当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时可以闭合第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开 关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
可以理解,在图22所示的电路拓扑的基础上,也可以从用电成本的角度出发,当电价小于或者等于预设的电价阈值时,闭合第一开关,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,驱动控制电路处于双端供电状态,开绕组电机运行在开绕组连接;当电价大于该预设的电价阈值时,此时可以根据储能模块的电量情况控制驱动控制电路的工作状态,当储能模块电量充足时,断开第一开关,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接,以降低电源侧的能耗。
需要补充说明的是,图23的电路拓扑的工作原理与图22的类似,在此不再赘述。
参照图24,本申请实施例还提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相绕组的一端组成第一三相出线组1100,每相绕组的另一端组成第二三相出线组1200,驱动控制电路包括第一功率模块、第二功率模块、电源连接端1700、开关模块、储能模块和控制器,第一功率模块包括第一输入端1300和第一输出端1400,第一输出端1400与第一三相出线组1100连接,第二功率模块包括第二输入端1500和第二输出端1600,第二输出端1600与第二三相出线组1200连接,电源连接端1700用于连接电源,电源连接端1700连接第一输入端1300,储能模块分别与第二输入端1500和电源连接端1700连接,开关模块与控制器连接。
其中,开关模块包括第一开关,第一开关连接于第二输入端1500与储能模块之间。第一开关的具体结构在上面已经进行说明,在此不再赘述。
可以理解,电源连接端1700连接电源,第一输入端1300和第二输入端1500均设置有正母线输入端和接地端,第一输出端1400和第二输出端1600均为三相输出端,电源的正母线和负母线对应连接第一输入端1300的正母线输入端和接地端,储能模块的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,第一输出端1400的三相输出端对应连接开绕组电机的第一三相出线组1100,第二输出端1600的三相输出端对应连接开绕组电机的第二三相出线组1200。
类似地,参照图24,电源可以为交流电源+交流直流转换器,交流直流变换器的两个输出端对应连接电源连接端1700,其中,交流电源的正母线和负母线对应连接交流直流变换器的两个输入端,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共直流母线的连接,有利于提升电路的安全性。另外,参照图18,交流直流变换器的数量也可以为两个,电源输入端设置于交流电源和交流直流转换器之间,相应地储能装置和第一输入端1300的公共端1800也设置于交流电源和交流直流转换器之间,电源连接端1700通过其中一个交流直流变换器连接第一输入端1300,电源连接端1700通过另一个交流直流变换器连接储能模块,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共交流母线的连接,可以满足较高的电压需求。
类似地,第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个桥臂包括相互串联的两个开关管,其中,开关管可以为MOSFET或者IGBT。
类似地,驱动控制电路还可以包括电容器件C,电容器件C并联于电源连接端1700与第一功率模块之间,通过设置电容器件C,既可以储存电源的电能,又可以对电源连接端1700的信号进行滤波,使得开绕组电机的运行更加稳定。
类似地,储能模块可以为电池、电容、电池+电容、电容+桥臂+电感+电池中的任意一种。
可以理解,基于图24或者图25所示的电源结构,第一开关为直流开关。
下面详细描述图24所示的本申请实施例提供的驱动控制电路的工作原理。
类似地,基于图24所示的电路拓扑,控制器也可以根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体地,当储能模块的电量大于预设的电量阈值,闭合第一开关,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以闭合第一开关,然后再根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,从而可以根据开绕组电 机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
具体地,当开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
而当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时可以断开第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。并且,由于第一开关断开,储能模块在充电的过程中与开绕组电机完全隔离,有利于降低控制损耗。
可以理解,在图24所示的电路拓扑的基础上,也可以从用电成本的角度出发,当电价小于或者等于预设的电价阈值时,闭合第一开关,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,驱动控制电路处于双端供电状态,开绕组电机运行在开绕组连接;当电价大于该预设的电价阈值时,此时可以根据储能模块的电量情况控制驱动控制电路的工作状态,当储能模块电量充足时,断开第一开关,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接,以降低电源侧的能耗。
需要补充说明的是,图25的电路拓扑的工作原理与图24的类似,在此不再赘述。
参照图26,本申请实施例还提供了一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,每相绕组的一端组成第一三相出线组1100,每相绕组的另一端组成第二三相出线组1200,驱动控制电路包括第一功率模块、第二功率模块、电源连接端1700、开关模块、储能模块和控制器,第一功率模块包括第一输入端1300和第一输出端1400,第一输出端1400与第一三相出线组1100连接,第二功率模块包括第二输入端1500和第二输出端1600,第二输出端1600与第二三相出线组1200连接,电源连接端1700用于连接电源,电源连接端1700连接第一输入端1300,储能模块分别与第二输入端1500和电源连接端1700连接,开关模块与控制器连接。
开关模块包括第一开关,储能模块和第一输入端1300通过公共端1800连接电源连接端1700,第一开关分别连接电源连接端1700以及公共端1800;
可以理解,参照图28或者图29,开关模块也可以包括第一开关和第二开关,第一开关分别连接第一输入端1300与公共端1800,第二开关分别连接储能模块以及公共端1800。
第一开关和第二开关的结构相类似,并且上面已经进行说明,在此不再赘述。
可以理解,电源连接端1700连接电源,第一输入端1300和第二输入端1500均设置有正母线输入端和接地端,第一输出端1400和第二输出端1600均为三相输出端,电源的正母线和负母线对应连接第一输入端1300的正母线输入端和接地端,储能模块的正母线和地线对应连接第二输入端1500的正母线输入端和接地端,第一输出端1400的三相输出端对应连接开绕组电机的第一三相出线组1100,第二输出端1600的三相输出端对应连接开绕组电机的第二三相出线组1200。
类似地,参照图27或者图28,电源可以为交流电源+交流直流转换器,交流直流变换器的两个输出端对应连接电源连接端1700,其中,交流电源的正母线和负母线对应连接交流直流变换器的两个输入端,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共直流母线的连接,有利于提升电路的安全性。另外,参照图19或者图22,交流直流变换器的数量也可以为两个,电源输入端设置于交流电源和交流直流转换器之间,相应地储能装置和第一输入端1300的公共端1800也设置于交流电源和交流直流转换器之间,电源连接端1700通过其中一个交流直流变换器连接第一输入端1300,电源连接端1700通过另一个交流直流变换器连接储能模块,在此情况下,储能模块的充电回路以及开绕组电机的供电回路形成共交流母线的连接,可以满足较高的电压需求。
类似地,第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个桥臂包括相互串联的两个开关管,其 中,开关管可以为MOSFET或者IGBT。
类似地,驱动控制电路还可以包括电容器件C,电容器件C并联于电源连接端1700与第一功率模块之间,通过设置电容器件C,既可以储存电源的电能,又可以对电源连接端1700的信号进行滤波,使得开绕组电机的运行更加稳定。
类似地,储能模块可以为电池、电容、电池+电容、电容+桥臂+电感+电池中的任意一种。
可以理解,基于图26所示的电源结构,第一开关为交流开关。基于图27、图28或者图29所示的电源结构,第一开关和第二开关为直流开关。
下面详细描述图26所示的本申请实施例提供的驱动控制电路的工作原理。
类似地,基于图26所示的电路拓扑,控制器也可以根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,具体地,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以断开开关模块,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接,并且,由于开关模块断开后开绕组电机与电源完全隔离,有利于降低控制损耗;当储能模块的电量小于或者等于预设的电量阈值,表明储能模块电量不足,此时可以闭合开关模块,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
可以理解,在图26所示的电路拓扑的基础上,也可以从用电成本的角度出发,当电价小于或者等于预设的电价阈值时,闭合开关模块,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,驱动控制电路处于双端供电状态,开绕组电机运行在开绕组连接;当电价大于该预设的电价阈值时,此时可以根据储能模块的电量情况控制驱动控制电路的工作状态,当储能模块电量充足时,断开开关模块,此时即驱动控制电路处于储能模块独立供电状态,利用储能模块向开绕组电机供电,开绕组电机运行在星形连接,以降低电源侧的能耗。
需要补充说明的是,图27、图28和图29的电路拓扑的工作原理与图26的类似,在此不再赘述。
可以理解,基于图28或者图29所示的电路拓扑,断开开关模块即同时断开第一开关和第二开关,闭合开关模块即同时闭合第一开关和第二开关。
参照图17,本申请实施例还提供了一种驱动控制方法,所述方法可应用于图18所示的驱动控制电路,具体可参见上文描述,在此不再赘述。
应用于图18所示的驱动控制电路的上述步骤1701至步骤1702,通过获取储能模块的电量,利用控制器根据储能模块的电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
可以理解,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,包括以下之一:
当电量大于预设的电量阈值,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管;
当电量大于预设的电量阈值,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号。
其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,储能模块单独向开绕组电机供电;或者,也可以分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,储能模块和电源一起向开绕组电机供电。
可以理解,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,还包括:
当电量小于或者等于电量阈值,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管。
其中,当储能模块的电量小于或者等于预设的电量阈值,表明储能模块电量不足,此时可以向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,仅由电源向开绕组电机供电,此时由于储能模块与电源直接连接,电源也可以向储能模块进行充电。
可以理解,基于图20或图21所示的电路拓扑,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,也可以包括:
当电量大于预设的电量阈值,根据开绕组电机的负载量参数控制第一开关的通断,向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。
其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以根据开绕组电机的负载量参数控制第一开关的通断,向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
可以理解,根据开绕组电机的负载量参数控制第一开关的通断,向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,包括以下至少之一:
当开绕组电机的需求转速小于或者等于预设的转速阈值,断开第一开关,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管;
当开绕组电机的需求转速大于预设的转速阈值,闭合第一开关,向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号。
其中,当开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以断开第一开关,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以闭合第一开关,向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
可以理解,基于图20所示的电路拓扑,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,还可以包括:
当电量小于或者等于电量阈值,闭合第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管。
其中,当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时可以闭合第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
可以理解,基于图22所示的电路拓扑,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,也可以包括:
当电量大于预设的电量阈值,断开第一开关,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。
其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以断开第一开关,电源无须对储能模块进行充电,然后再根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
可以理解,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,包括以下至少之一:
当开绕组电机的需求转速小于或者等于预设的转速阈值,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管;
当开绕组电机的需求转速大于预设的转速阈值,向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号。
其中,当开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
可以理解,基于图22所示的电路拓扑,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,还可以包括:
当电量小于或者等于电量阈值,闭合第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管。
其中,当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时可以闭合第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
可以理解,基于图24所示的电路拓扑,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,也可以包括:
当电量大于预设的电量阈值,闭合第一开关,根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态。
其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以闭合第一开关,然后再根据开绕组电机的负载量参数向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,从而可以根据开绕组电机的负载量参数选取是由储能模块和电源一起向开绕组电机供电还是由储能模块单独供电。
可以理解,根据开绕组电机的负载量参数控制第一开关的通断,向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,包括以下至少之一:
当开绕组电机的需求转速小于或者等于预设的转速阈值,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管;
当开绕组电机的需求转速大于预设的转速阈值,向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号。
其中,当开绕组电机的需求转速小于或者等于预设的转速阈值,表明负载需求较低,此时可以向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接;当开绕组电机的需求转速大于预设的转速阈值,表明负载需求较高,此时可以向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号,此时由储能模块和电源一起向开绕组电机供电,开绕组电机工作在开绕组连接。
可以理解,基于图24所示的电路拓扑,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,还可以包括:
当电量小于或者等于电量阈值,断开第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管。
其中,当储能模块的电量小于或者等于电量阈值,表明储能模块电量不足,此时可以断开第一开关,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥 的开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。并且,由于第一开关断开,储能模块在充电的过程中与开绕组电机完全隔离,有利于降低控制损耗。
可以理解,基于图26所示的电路拓扑,上述步骤1702中,根据电量向第一功率模块和第二功率模块发送控制信号以改变驱动控制电路的工作状态,也包括以下至少之一:
当电量大于预设的电量阈值,断开开关模块,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管。
当电量小于或者等于预设的电量阈值,闭合开关模块,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管。
其中,当储能模块的电量大于预设的电量阈值,表明储能模块电量充足,此时可以断开开关模块,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管,此时由储能模块单独向开绕组电机供电,开绕组电机工作在星形连接,并且,由于开关模块断开后开绕组电机与电源完全隔离,有利于降低控制损耗;当储能模块的电量小于或者等于预设的电量阈值,表明储能模块电量不足,此时可以闭合开关模块,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管,由电源单独向开绕组电机供电,并且电源同时为储能模块充电,开绕组电机工作在星形连接。
可以理解,基于图18所示的电路拓扑,驱动控制电路的工作状态包括双端供电状态、储能模块独立供电状态和电源独立供电状态,其中:
在双端供电状态下,分别向第一功率模块和第二功率模块的六个开关管分别发送PWM脉冲信号;
在储能模块独立供电状态下,向第二功率模块的六个开关管分别发送PWM脉冲信号,导通第一功率模块的上半桥的开关管或者导通第一功率模块的下半桥的开关管;
在电源独立供电状态下,向第一功率模块的六个开关管分别发送PWM脉冲信号,导通第二功率模块的上半桥的开关管或者导通第二功率模块的下半桥的开关管;
因此,可以根据开绕组电机的负载量参数控制双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比。
其中,通过根据开绕组电机的负载量参数控制双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比,可以防止电源出现掉电的现象,提高开绕组电机运行的可靠性。
以负载量参数为开绕组电机的需求转速为例进行说明,当开绕组电机的需求转速较高时,可以提高驱动控制电路处于双端供电状态的时间占比,相应缩短驱动控制电路处于储能模块独立供电状态和电源独立供电状态的时间占比;当开绕组电机的需求转速较低时,若储能模块的电量充足,则可以提高驱动控制电路处于储能模块独立供电状态的时间占比,相应缩短驱动控制电路处于双端供电状态和电源独立供电状态的时间占比。可以理解,上述双端供电状态、储能模块独立供电状态和电源独立供电状态的时间占比是基于开绕组电机保持一定能耗的基础上进行控制的。
可以理解,还可以以电价作为储能装置三个工作状态的时间占比的调节基准,若以电价作为时间占比的调节基准,则可以在电价较高的情况下,提高驱动控制电路处于储能模块独立供电状态的时间占比,相应缩短驱动控制电路处于双端供电状态和电源独立供电状态的时间占比;在电价较低的情况下,可以提高驱动控制电路处于双端供电状态的时间占比,相应缩短驱动控制电路处于储能模块独立供电状态和电源独立供电状态的时间占比。
可以理解,若基于图20、图22、图24、图26的电路拓扑,上述双端供电状态、储能模块独立供电状态和电源独立供电状态的原理相类似,电路拓扑实施例中已经进行详细描述,在此不再赘述。
另外,本申请实施例还提供了一种线路板,包括上述实施例所述的任意一个驱动控制电路,因此,上述线路板通过在开绕组电机两端连接第一功率模块和第二功率模块,第二功率模块连接有储能模块,并且储能模块分别与所 述第二输入端1500和所述电源连接端1700连接,因此,从电源输入端输入的电流既可以向开绕组电机供电,也可以直接为储能模块充电,从而降低控制损耗,并且,可以通过控制第一功率模块和第二功率模块来控制驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
另外,本申请实施例还提供了一种空调器,包括上述的线路板,或者包括存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现第二方面所述的驱动控制方法,因此,上述空调器通过在开绕组电机两端连接第一功率模块和第二功率模块,第二功率模块连接有储能模块,并且储能模块分别与所述第二输入端1500和所述电源连接端1700连接,因此,从电源输入端输入的电流既可以向开绕组电机供电,也可以直接为储能模块充电,从而降低控制损耗,并且,可以通过控制第一功率模块和第二功率模块来控制驱动控制电路的工作状态,使得电机运行时电能可以双向流动,储能模块在能量充足的情况下可以向开绕组电机供电,提高电机的运行电压,提升电机的运行效率。
图30示出了本申请实施例提供的空调器3000。空调器3000包括:存储器3001、处理器3002及存储在存储器3001上并可在处理器3002上运行的计算机程序,计算机程序运行时用于执行上述的驱动控制方法。
处理器3002和存储器3001可以通过总线或者其他方式连接。
存储器3001作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请实施例描述的驱动控制方法。处理器3002通过运行存储在存储器3001中的非暂态软件程序以及指令,从而实现上述的驱动控制方法。
存储器3001可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的驱动控制方法。此外,存储器3001可以包括高速随机存取存储器3001,还可以包括非暂态存储器3001,例如至少一个储存设备存储器件、闪存器件或其他非暂态固态存储器件。在一些实施方式中,存储器3001可选包括相对于处理器3002远程设置的存储器3001,这些远程存储器3001可以通过网络连接至该空调器3000。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的驱动控制方法所需的非暂态软件程序以及指令存储在存储器3001中,当被一个或者多个处理器3002执行时,执行上述的驱动控制方法,例如,执行图17中的方法步骤1701至1702。
本申请实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的驱动控制方法。
在一实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器执行,例如,被上述空调器3000中的一个处理器3002执行,可使得上述处理器3002执行上述的驱动控制方法,例如,执行图17中的方法步骤1701至1702。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、储存设备存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通 技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (33)

  1. 一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,其中,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括:
    第一功率模块,包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接;
    第二功率模块,包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接;
    电源连接端,用于连接电源,所述电源连接端连接所述第一输入端;
    储能模块,与所述第二输入端连接;以及
    控制器,用于根据所述储能模块的电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,所述控制器分别与所述第一功率模块和所述第二功率模块连接。
  2. 根据权利要求1所述的驱动控制电路,还包括:
    开关模块,所述开关模块连接于所述第一输入端与所述电源连接端之间,所述开关模块连接所述控制器。
  3. 根据权利要求2所述的驱动控制电路,其中:
    所述开关模块包括第一开关,所述电源连接端包括正母线连接端和负母线连接端,所述第一输入端包括正母线输入端和负母线输入端,所述第一开关连接于所述正母线连接端与所述正母线输入端之间,所述负母线连接端连接所述负母线输入端;
    或者,
    所述开关模块包括第一开关,所述电源连接端包括正母线连接端和负母线连接端,所述第一输入端包括正母线输入端和负母线输入端,所述正母线连接端连接所述正母线输入端,所述第一开关连接于所述负母线连接端与所述负母线输入端之间;
    或者,
    所述开关模块包括第一开关和第二开关,所述电源连接端包括正母线连接端和负母线连接端,所述第一输入端包括正母线输入端和负母线输入端,所述第一开关连接于所述正母线连接端与所述正母线输入端之间,所述第二开关连接于所述负母线连接端与所述负母线输入端之间。
  4. 根据权利要求1至3任意一项所述的驱动控制电路,还包括:
    电容器件,所述电容器件并联于所述电源连接端与所述第一功率模块之间。
  5. 一种驱动控制方法,应用于驱动控制电路,其中,所述驱动控制电路用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括第一功率模块、第二功率模块、电源连接端、储能模块和控制器,所述第一功率模块包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接,所述第二功率模块包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接,所述电源连接端连接所述第一输入端,所述储能模块与所述第二输入端连接,所述控制器分别与所述第一功率模块和所述第二功率模块连接;
    所述驱动控制方法包括:
    获取所述储能模块的电量;以及
    根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
  6. 根据权利要求5所述的驱动控制方法,其中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
    当所述电量大于预设的电量阈值,向所述第一功率模块和所述第二功率模块发送控制信号以使所述驱动控制电路处于非双端供电状态。
  7. 根据权利要求6所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥 臂,每个所述桥臂包括相互串联的两个开关管,所述向所述第一功率模块和所述第二功率模块发送控制信号以使所述驱动控制电路处于非双端供电状态,包括以下至少之一:
    向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管;
    向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管。
  8. 根据权利要求7所述的驱动控制方法,其中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
    当所述电量小于或者等于所述电量阈值,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
  9. 根据权利要求8所述的驱动控制方法,其中,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
    当所述开绕组电机的需求转速小于或者等于预设的转速阈值,分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号;
    当所述开绕组电机的需求转速大于预设的转速阈值,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
  10. 根据权利要求5所述的驱动控制方法,其中,所述驱动控制电路还包括开关模块,所述开关模块连接于所述第一输入端与所述电源连接端之间,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
    当所述电量大于预设的电量阈值,控制所述开关模块断开,向所述第一功率模块和所述第二功率模块发送控制信号以控制所述储能模块向所述开绕组电机供电。
  11. 根据权利要求10所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述向所述第一功率模块和所述第二功率模块发送控制信号以控制所述储能模块向所述开绕组电机供电,包括以下至少之一:
    向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管;
    分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
  12. 根据权利要求10或11所述的驱动控制方法,其中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
    当所述电量小于或者等于所述电量阈值,控制所述开关模块闭合,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
  13. 根据权利要求5所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述工作状态包括电源独立供电状态、双端供电状态和储能模块独立供电状态,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
    根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,并根据所述开绕组电机的负载量参数控制所述电源独立供电状态、所述双端供电状态和所述储能模块独立供电状态的时间占比。
  14. 一种驱动控制电路,用于驱动具有三相绕组的开绕组电机,其中每相所述绕组的一端组成第一三相出线组, 每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括:
    第一功率模块,包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接;
    第二功率模块,包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接;
    电源连接端,用于连接电源,所述电源连接端连接所述第一输入端;
    储能模块,分别与所述第二输入端和所述电源连接端连接;以及
    控制器,分别与所述第一功率模块和所述第二功率模块连接。
  15. 根据权利要求14所述的驱动控制电路,还包括:
    开关模块,用于控制所述第一输入端和所述第二输入端中的至少一个与所述电源连接端之间的通断,所述开关模块与所述控制器连接。
  16. 根据权利要求15所述的驱动控制电路,其中:
    所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述第一输入端与所述公共端;
    或者,
    所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述储能模块以及所述公共端;
    或者,
    所述开关模块包括第一开关,所述第一开关连接于所述第二输入端与所述储能模块之间。
  17. 根据权利要求15所述的驱动控制电路,其中:
    所述储能模块和所述第一输入端通过公共端连接所述电源连接端,其中:
    所述开关模块包括第一开关和第二开关,所述第一开关分别连接所述第一输入端与所述公共端,所述第二开关分别连接所述储能模块以及所述公共端;
    或者,
    所述开关模块包括第一开关,所述第一开关分别连接所述电源连接端以及所述公共端。
  18. 一种驱动控制方法,应用于驱动控制电路,其中,所述驱动控制电路用于驱动具有三相绕组的开绕组电机,每相所述绕组的一端组成第一三相出线组,每相所述绕组的另一端组成第二三相出线组,所述驱动控制电路包括第一功率模块、第二功率模块、电源连接端、储能模块和控制器,所述第一功率模块包括第一输入端和第一输出端,所述第一输出端与所述第一三相出线组连接,所述第二功率模块包括第二输入端和第二输出端,所述第二输出端与所述第二三相出线组连接,所述电源连接端连接所述第一输入端,所述储能模块分别与所述第二输入端和所述电源连接端连接,所述控制器分别与所述第一功率模块和所述第二功率模块连接;
    所述驱动控制方法包括:
    获取所述储能模块的电量;以及
    根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
  19. 根据权利要求18所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下之一:
    当所述电量大于预设的电量阈值,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
    当所述电量大于预设的电量阈值,分别向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
  20. 根据权利要求19所述的驱动控制方法,其中,所述根据所述电量向所述第一功率模块和所述第二功率模 块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
    当所述电量小于或者等于所述电量阈值,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
  21. 根据权利要求18所述的驱动控制方法,其中,所述驱动控制电路还包括开关模块,所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述第一输入端与所述公共端;
    所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
    当所述电量大于预设的电量阈值,根据所述开绕组电机的负载量参数控制所述第一开关的通断,向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
  22. 根据权利要求21所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数控制所述第一开关的通断,向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
    当所述开绕组电机的需求转速小于或者等于预设的转速阈值,断开所述第一开关,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
    当所述开绕组电机的需求转速大于预设的转速阈值,闭合所述第一开关,向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
  23. 根据权利要求22所述的驱动控制方法,其中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
    当所述电量小于或者等于所述电量阈值,闭合所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
  24. 根据权利要求18所述的驱动控制方法,其中,所述驱动控制电路还包括开关模块,所述开关模块包括第一开关,所述储能模块和所述第一输入端通过公共端连接所述电源连接端,所述第一开关分别连接所述储能模块以及所述公共端;
    所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
    当所述电量大于预设的电量阈值,断开所述第一开关,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
  25. 根据权利要求24所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
    当所述开绕组电机的需求转速小于或者等于预设的转速阈值,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
    当所述开绕组电机的需求转速大于预设的转速阈值,向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
  26. 根据权利要求25所述的驱动控制方法,其中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
    当所述电量小于或者等于所述电量阈值,闭合所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
  27. 根据权利要求18所述的驱动控制方法,其中,所述驱动控制电路还包括开关模块,所述开关模块包括第一开关,所述第一开关连接于所述第二输入端与所述储能模块之间;
    所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括:
    当所述电量大于预设的电量阈值,闭合所述第一开关,根据所述开绕组电机的负载量参数向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态。
  28. 根据权利要求27所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述负载量参数包括所述开绕组电机的需求转速,所述根据所述开绕组电机的负载量参数控制所述第一开关的通断,向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
    当所述开绕组电机的需求转速小于或者等于预设的转速阈值,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管;
    当所述开绕组电机的需求转速大于预设的转速阈值,向所述第一功率模块和所述第二功率模块的六个所述开关管分别发送PWM脉冲信号。
  29. 根据权利要求28所述的驱动控制方法,其中,所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,还包括:
    当所述电量小于或者等于所述电量阈值,断开所述第一开关,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
  30. 根据权利要求18所述的驱动控制方法,其中,所述第一功率模块和第二功率模块均包括三个相互并联的桥臂,每个所述桥臂包括相互串联的两个开关管,所述驱动控制电路还包括开关模块,所述驱动控制电路还包括开关模块,所述储能模块和所述第一输入端通过公共端连接所述电源连接端;
    其中,所述开关模块包括第一开关和第二开关,所述第一开关分别连接所述第一输入端与所述公共端,所述第二开关分别连接所述储能模块以及所述公共端;
    或者,所述开关模块包括第一开关,所述第一开关分别连接所述电源连接端以及所述公共端;
    所述根据所述电量向所述第一功率模块和所述第二功率模块发送控制信号以改变所述驱动控制电路的工作状态,包括以下至少之一:
    当所述电量大于预设的电量阈值,断开所述开关模块,向所述第二功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第一功率模块的上半桥的所述开关管或者导通所述第一功率模块的下半桥的所述开关管。
    当所述电量小于或者等于预设的电量阈值,闭合所述开关模块,向所述第一功率模块的六个所述开关管分别发送PWM脉冲信号,导通所述第二功率模块的上半桥的所述开关管或者导通所述第二功率模块的下半桥的所述开关管。
  31. 一种线路板,其特征在于,包括权利要求1至4中任意一项所述的驱动控制电路或者权利要求14至17中任意一项所述的驱动控制电路。
  32. 一种空调器,其特征在于,包括权利要求14所述的线路板,或者,包括存储器、处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如权利要求5至13中任意一项所述的驱动控制方法或者如权利要求18至30中任意一项所述的驱动控制方法。
  33. 一种计算机可读存储介质,其特征在于,所述存储介质存储有程序,所述程序被处理器执行实现如权利要求5至13中任意一项所述的驱动控制方法或者如权利要求18至30中任意一项所述的驱动控制方法。
PCT/CN2021/108992 2020-12-31 2021-07-28 驱动控制电路、驱动控制方法、线路板及空调器 WO2022142310A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202011633005.X 2020-12-31
CN202023348001.5 2020-12-31
CN202011633005.XA CN114696667A (zh) 2020-12-31 2020-12-31 驱动控制电路、驱动控制方法、线路板及空调器
CN202011636871.4 2020-12-31
CN202023348001.5U CN213817625U (zh) 2020-12-31 2020-12-31 驱动控制电路、线路板及空调器
CN202011636871.4A CN114696668A (zh) 2020-12-31 2020-12-31 驱动控制电路、驱动控制方法、线路板及空调器

Publications (1)

Publication Number Publication Date
WO2022142310A1 true WO2022142310A1 (zh) 2022-07-07

Family

ID=82260173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108992 WO2022142310A1 (zh) 2020-12-31 2021-07-28 驱动控制电路、驱动控制方法、线路板及空调器

Country Status (1)

Country Link
WO (1) WO2022142310A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125245A (zh) * 2023-03-14 2023-05-16 广州小鹏汽车科技有限公司 功率模块驱动状态判断方法、电机控制器及汽车
WO2024037343A1 (zh) * 2022-08-17 2024-02-22 华为数字能源技术有限公司 一种动力总成、控制方法及混合动力汽车

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684196A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统
CN103780191A (zh) * 2014-01-24 2014-05-07 浙江大学 开绕组永磁同步电机串联补偿矢量控制系统及控制方法
US10562404B1 (en) * 2015-10-05 2020-02-18 University Of Maryland Integrated onboard chargers for plug-in electric vehicles
CN111327105A (zh) * 2018-12-14 2020-06-23 青岛昕阳雨丁能源科技有限公司 市电互补光伏系统
CN213817625U (zh) * 2020-12-31 2021-07-27 广东美的制冷设备有限公司 驱动控制电路、线路板及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684196A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统
CN103780191A (zh) * 2014-01-24 2014-05-07 浙江大学 开绕组永磁同步电机串联补偿矢量控制系统及控制方法
US10562404B1 (en) * 2015-10-05 2020-02-18 University Of Maryland Integrated onboard chargers for plug-in electric vehicles
CN111327105A (zh) * 2018-12-14 2020-06-23 青岛昕阳雨丁能源科技有限公司 市电互补光伏系统
CN213817625U (zh) * 2020-12-31 2021-07-27 广东美的制冷设备有限公司 驱动控制电路、线路板及空调器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024037343A1 (zh) * 2022-08-17 2024-02-22 华为数字能源技术有限公司 一种动力总成、控制方法及混合动力汽车
CN116125245A (zh) * 2023-03-14 2023-05-16 广州小鹏汽车科技有限公司 功率模块驱动状态判断方法、电机控制器及汽车
CN116125245B (zh) * 2023-03-14 2023-11-03 肇庆小鹏智能智造研究院有限公司 功率模块驱动状态判断方法、电机控制器及汽车

Similar Documents

Publication Publication Date Title
CN107086770B (zh) Pfc电路及变频空调器
JP5556677B2 (ja) バッテリ充電回路
JP6675106B2 (ja) 電力変換システム
WO2022142310A1 (zh) 驱动控制电路、驱动控制方法、线路板及空调器
US10396676B2 (en) Bidirectional DC-DC converter and control method therefor
CN111355416A (zh) 电机驱动控制电路、驱动方法、线路板及空调器
US9203323B2 (en) Very high efficiency uninterruptible power supply
WO2023010898A1 (zh) 充放电电路、系统及其控制方法
CN111355415A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN112389234B (zh) 能量转换装置及车辆
CN103582999A (zh) 用于控制绕线转子式感应电机中的转子电流的设备
CN213817625U (zh) 驱动控制电路、线路板及空调器
CN114696668A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN112224056B (zh) 一种车辆及其能量转换装置
JP7348409B2 (ja) モータ駆動制御回路、駆動方法、配線板及び空調機
CN103872940A (zh) 一种双向变流拓扑
CN216216619U (zh) 电压驱动电路、系统及家电设备
CN111355421B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN211791346U (zh) 电机驱动控制电路、线路板及空调器
CN111478641B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN111355425A (zh) 驱动控制电路、驱动方法、装置、压缩机和空调设备
CN113904611A (zh) 电压驱动电路、系统及家电设备
CN114696667A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN211630105U (zh) 驱动控制电路、线路板及空调器
CN104682734A (zh) 电源转换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-11-2023)