WO2021253212A1 - 一种获取车辆转向角的方法、装置、设备及存储介质 - Google Patents

一种获取车辆转向角的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021253212A1
WO2021253212A1 PCT/CN2020/096281 CN2020096281W WO2021253212A1 WO 2021253212 A1 WO2021253212 A1 WO 2021253212A1 CN 2020096281 W CN2020096281 W CN 2020096281W WO 2021253212 A1 WO2021253212 A1 WO 2021253212A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
data
steering angle
steering wheel
wheel encoder
Prior art date
Application number
PCT/CN2020/096281
Other languages
English (en)
French (fr)
Inventor
郭信平
麦克卢尔·约翰·A
吴林
唐李征
Original Assignee
北京合众思壮科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京合众思壮科技股份有限公司 filed Critical 北京合众思壮科技股份有限公司
Priority to CN202080093254.6A priority Critical patent/CN115003587B/zh
Priority to EP20941501.7A priority patent/EP4166424A4/en
Priority to BR112022025649A priority patent/BR112022025649A2/pt
Priority to PCT/CN2020/096281 priority patent/WO2021253212A1/zh
Publication of WO2021253212A1 publication Critical patent/WO2021253212A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/024Other means for determination of steering angle without directly measuring it, e.g. deriving from wheel speeds on different sides of the car
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such

Definitions

  • This application relates to the field of automatic driving technology, and in particular to a method, device, equipment, and storage medium for obtaining a steering angle of a vehicle.
  • the automatic driving system needs to obtain the steering angle of the vehicle, and control the vehicle according to the obtained steering angle of the vehicle to realize automatic driving.
  • a steering angle sensor needs to be installed in the steering structure outside the vehicle, the steering angle sensor is used to measure the steering angle of the vehicle, and the obtained steering angle of the vehicle is sent to the automatic driving system.
  • the steering angle sensor is easily damaged, and the cost of installing and repairing the steering angle sensor is high, and the automatic driving system cannot obtain the steering angle of the vehicle, which affects the control of the automatic driving system on the vehicle, and reduces the reliability of the automatic driving system. sex.
  • the embodiments of the present application provide a method, device, device, and storage medium for obtaining the steering angle of a vehicle. There is no need to install a steering angle sensor in the steering structure outside the vehicle, which can solve the problem that the steering angle sensor in the prior art is easily damaged. This leads to the problems of higher cost and lower safety of autonomous driving.
  • a method for obtaining a steering angle of a vehicle comprising:
  • each group of the vehicle test data includes first steering wheel encoder data, first vehicle speed data, and first vehicle steering angle rate data;
  • the second vehicle steering angle data corresponding to the second steering wheel encoder data is obtained.
  • the acquiring vehicle test data when the vehicle is driving in a preset manner includes:
  • the first steering wheel encoder data generated by the steering wheel encoder, the first vehicle speed data collected by the satellite positioning module, and the first vehicle steering angle rate data collected by the gyro inertial sensor are acquired at the same time.
  • the first steering wheel encoder data, the first vehicle speed data, and the first vehicle steering angle rate data form a set of vehicle test data.
  • the calculating the first vehicle steering angle data corresponding to each group of the vehicle test data includes:
  • the arc sine value of the third calculation result is calculated and then multiplied by 2, to obtain the first vehicle steering angle data corresponding to the vehicle test data.
  • the method further includes:
  • the method further includes:
  • the second vehicle steering angle data is corrected according to the vehicle steering angle correction data.
  • the calculating the third vehicle steering angle data according to the second vehicle speed data and the second vehicle steering angle rate data includes:
  • the arc sine value of the sixth calculation result is calculated and then multiplied by 2 to obtain the third vehicle steering angle data.
  • the method further includes:
  • the steering wheel limit signal is triggered.
  • a device for obtaining a steering angle of a vehicle comprising:
  • the first acquiring unit is configured to acquire vehicle test data when the vehicle is running in a preset mode, and each group of the vehicle test data includes first steering wheel encoder data, first vehicle speed data, and first vehicle steering angle rate data;
  • the first calculation unit is configured to calculate the first vehicle steering angle data corresponding to each group of the vehicle test data
  • the fitting unit is configured to use the first steering wheel encoder data in the vehicle test data and the corresponding first vehicle steering angle data to fit the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data;
  • the second acquiring unit is configured to acquire the second steering wheel encoder data when the vehicle is running normally;
  • the second calculation unit is configured to obtain the second vehicle steering angle data corresponding to the second steering wheel encoder data according to the correspondence between the steering wheel encoder data and the vehicle steering angle data.
  • a device for obtaining a steering angle of a vehicle comprising: a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the foregoing The method of obtaining the steering angle of the vehicle.
  • a computer-readable storage medium stores instructions in the computer-readable storage medium, and when the instructions run on a terminal device, the terminal device executes the aforementioned method for obtaining a steering angle of a vehicle.
  • the vehicle when the vehicle is driving in a preset manner, first obtain the vehicle test data, and then calculate the first vehicle steering angle data corresponding to each set of vehicle test data; use the vehicle test data in the vehicle test data
  • the first steering wheel encoder data and the corresponding first vehicle steering angle data are fitted to obtain the correspondence between the steering wheel encoder data and the vehicle steering angle data; when the vehicle is running normally, the second steering wheel encoder data is obtained; According to the correspondence between the steering wheel encoder data and the vehicle steering angle data, the second vehicle steering angle data corresponding to the second steering wheel encoder data is obtained.
  • the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data can be obtained by fitting the vehicle test data.
  • the second steering wheel encoder data is obtained, and then the second vehicle steering angle data can be determined according to the obtained corresponding relationship.
  • High precision requirements for angle data Therefore, the cost of installing and repairing the steering angle sensor can be saved; the problem that the automatic driving system may not be able to obtain the steering angle of the vehicle normally due to the failure of the steering angle sensor can also be solved, and the operational reliability of automatic driving can be improved.
  • FIG. 1 is a schematic diagram of a framework of an exemplary application scenario of a method for obtaining a steering angle of a vehicle provided by an embodiment of the application;
  • FIG. 2 is a flowchart of a method for obtaining a steering angle of a vehicle according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a preset mode of vehicle driving provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of linear fitting of first steering wheel encoder data and corresponding first vehicle steering angle data provided by an embodiment of the application;
  • FIG. 5 is a flowchart of another method for obtaining a steering angle of a vehicle according to an embodiment of the application
  • FIG. 6 is a schematic diagram of correcting the steering angle data of a second vehicle according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a device for obtaining a steering angle of a vehicle provided by an embodiment of the application.
  • the inventor found that the traditional method of obtaining the steering angle of the vehicle is to obtain the steering angle of the vehicle through the steering angle sensor.
  • the steering angle sensor By installing the steering angle sensor in the steering structure outside the vehicle, the steering angle of the vehicle is measured and the obtained steering angle is sent to the automatic driving system so that the automatic driving system can control the vehicle according to the steering angle of the vehicle. Since the steering angle sensor is installed in the steering structure outside the vehicle, and the driving environment of the vehicle is relatively harsh, the steering angle sensor is easily damaged, causing the automatic driving system to be unable to obtain the steering angle of the vehicle, which affects the normal control of the vehicle by the automatic driving system .
  • the embodiment of the present application provides a method for obtaining the steering angle of a vehicle.
  • the vehicle When the vehicle is driving in a preset mode, first obtain the vehicle test data, and then calculate the first vehicle steering angle data corresponding to each set of vehicle test data;
  • the first steering wheel encoder data and the corresponding first vehicle steering angle data in the vehicle test data are fitted to obtain the correspondence between the steering wheel encoder data and the vehicle steering angle data;
  • the second steering wheel code is obtained Device data;
  • the second vehicle steering angle data corresponding to the second steering wheel encoder data is obtained.
  • the second vehicle steering angle data can be obtained through the second steering wheel encoder data, and the steering angle of the vehicle does not need to be measured by the steering angle sensor, which can avoid the problem that the steering angle of the vehicle cannot be obtained normally due to the damage of the steering angle sensor , Can also reduce the cost of installation and maintenance.
  • FIG. 1 is a schematic framework diagram of an exemplary application scenario of a method for obtaining a steering angle of a vehicle provided by an embodiment of the application.
  • the method for obtaining the steering angle of the vehicle provided by the embodiment of the present application can be applied to an automatic driving system.
  • the automatic driving system may include the steering wheel encoder 101 and the automatic driving controller 102 in the electric steering wheel.
  • the automatic driving controller 102 can calculate the first vehicle steering angle data, and the first steering wheel encoder data can be obtained through the steering wheel encoder 101, and the first vehicle steering angle data and the first steering wheel The encoder data is fitted to obtain the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data.
  • the second steering wheel encoder data can be obtained from the steering wheel encoder 101, and then according to the correspondence between the steering wheel encoder data and the vehicle steering angle data, the corresponding second vehicle steering angle data can be obtained.
  • FIG. 1 the schematic diagram of the framework shown in FIG. 1 is only an example in which the embodiments of the present application can be implemented. The scope of application of the implementation of this application is not limited by any aspect of the framework.
  • FIG. 2 is a flowchart of a method for obtaining a steering angle of a vehicle according to an embodiment of the application. As shown in FIG. 2, the method may include S201-S205:
  • each group of vehicle test data includes first steering wheel encoder data, first vehicle speed data, and first vehicle steering angle rate data.
  • the steering angle of the vehicle can be determined by the correspondence between the steering wheel encoder data and the steering angle data of the vehicle. Before the vehicle runs normally, it is necessary to determine the correspondence between the steering wheel encoder data and the vehicle steering angle data.
  • the embodiment of the present application does not limit the preset mode of vehicle travel.
  • the preset method may be to drive in a straight line first, then turn the steering wheel in the first direction to a certain angle and drive for a certain period of time, and then turn the steering wheel in the opposite direction to the first direction for a certain angle and drive for a certain period of time to realize the "S" shape
  • the driving route will eventually return to the original direction and drive in a straight line.
  • FIG. 3 is a schematic diagram of a preset mode of vehicle driving provided by an embodiment of the application.
  • the vehicle first travels in a straight line for 10 seconds; then turn the steering wheel to the left 10 degrees to make the vehicle drive to the left and hold for 10 seconds; then turn the steering wheel to the right 20 degrees (equivalent to the steering wheel back to the right) Turn 10 degrees to the right) to make the vehicle drive to the right for 20 seconds; then control the steering wheel to turn the steering wheel 20 degrees to the left (equivalent to turning the steering wheel 10 degrees to the left after returning to normal) to make the vehicle drive to the left, and Hold for 10 seconds; finally turn the steering wheel 10 degrees to the right to return to the original direction and drive straight.
  • the embodiments of this application do not limit the driving time at each stage of the preset mode, the angle of steering wheel adjustment, and the number of steering wheel adjustments in the preset mode and the sequence of adjustment directions, which can be carried out according to actual needs. set up.
  • the travel time of each stage may be more than 10 seconds, and the travel time of each stage may be different.
  • the angle of steering wheel adjustment can be 5 degrees, 10 degrees, 15 degrees, and so on.
  • Each group of vehicle test data includes first steering wheel encoder data, first vehicle speed data, and first vehicle steering angle rate data.
  • first steering wheel encoder data generated by the steering wheel encoder, the first vehicle speed data collected by the satellite positioning module, and the first vehicle steering angle rate data collected by the gyro inertial sensor may be obtained when the vehicle is traveling in a preset manner.
  • the first steering wheel encoder data is steering wheel encoder data generated by the steering wheel encoder, and may have a corresponding relationship with the angle of rotation of the steering wheel.
  • the first vehicle speed data is collected by the satellite positioning module and used to represent the data of the vehicle traveling speed.
  • the first vehicle steering angular rate data is collected by the gyro inertial sensor, and is used to represent the angular rate of rotation of the vehicle direction axis.
  • the vehicle can be made to drive in a preset manner multiple times, and the vehicle test data can be obtained correspondingly. And in order to reduce the error of the corresponding relationship between the obtained steering wheel encoder data and the vehicle steering angle data, the preset mode of vehicle driving can be adjusted to obtain vehicle test data corresponding to different preset modes.
  • the corresponding first vehicle steering angle data Using the obtained vehicle test data, calculate the corresponding first vehicle steering angle data. According to the first vehicle steering angle rate data and the first vehicle speed data in the vehicle test data, the corresponding first vehicle steering angle data can be calculated.
  • A1 Calculate the product of the steering angle rate data of the first vehicle, the pi and the distance between the front and rear axles of the vehicle to obtain the first calculation result.
  • the first vehicle steering angle rate data is the data in the vehicle test data, and the distance between the front and rear axles of the vehicle is the distance between the corresponding front axle and the rear axle of the vehicle.
  • the first calculation result can be expressed by formula (1):
  • ROT 1 is the steering angle rate data of the first vehicle
  • PI is the circle ratio
  • WB 1 is the distance between the front and rear axles of the vehicle.
  • A2 Calculate 360 and multiply the first vehicle speed data to obtain the second calculation result.
  • the second calculation result can be expressed by formula (2):
  • VEL 1 is the first vehicle speed data belonging to the same set of vehicle test data as the first vehicle steering angle rate data.
  • A3 Calculate the first calculation result and divide the second calculation result to get the third calculation result.
  • A4 Calculate the arc sine value of the third calculation result and multiply it by 2 to obtain the first vehicle steering angle data corresponding to the vehicle test data.
  • the steering angle data of the first vehicle can be expressed by formula (3):
  • S203 Use the first steering wheel encoder data in the vehicle test data and the corresponding first vehicle steering angle data to fit the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data.
  • the first vehicle steering angle data can be calculated using the first vehicle steering angle rate data and the first vehicle speed data, and then the first steering wheel encoder belonging to the same vehicle test data can be used to obtain the difference between the steering wheel encoder data and the vehicle steering angle data Correspondence between.
  • the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data can be obtained by fitting the first steering wheel encoder data and the corresponding first vehicle steering angle data.
  • the embodiment of this application does not limit the fitting method.
  • the first steering wheel encoder data and the corresponding first vehicle steering angle data can be subjected to a single-segment linear fitting, according to the linear fitting
  • the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data is obtained.
  • FIG. 4 is a schematic diagram of linear fitting of first steering wheel encoder data and corresponding first vehicle steering angle data provided by an embodiment of the application. Establish a coordinate system with the angle of the steering angle and the value of the steering wheel encoder data as the abscissa and ordinate.
  • the origin is the point where the steering angle is zero degrees
  • the value of the steering wheel encoder data is 10000
  • the abscissa of the coordinate system is the angle of the steering angle
  • the ordinate is the value of the steering wheel encoder data.
  • the corresponding coordinate points are marked in the established coordinate system. Perform linear fitting according to the coordinate points marked in the coordinate system to obtain a fitting straight line, which can represent the correspondence between the steering wheel encoder data and the vehicle steering angle data.
  • the first steering wheel encoder data and the corresponding first vehicle steering angle data may also be subjected to two-stage linear fitting or non-linear fitting as required.
  • the vehicle test data is obtained when the vehicle is running in a preset mode, and the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data is obtained by using the vehicle test data.
  • the vehicle steering angle data can be obtained according to the steering wheel encoder data during normal driving. There is no need to set the steering angle sensor to obtain the steering angle of the vehicle, which saves installation and maintenance of steering. The cost of the angle sensor.
  • the normal running of the vehicle refers to the running state of the vehicle in the non-test state.
  • obtain the second steering wheel encoder data during the running of the vehicle obtain the second steering wheel encoder data during the running of the vehicle.
  • the second steering wheel encoder data may be generated by the steering wheel encoder when the vehicle is running normally.
  • S205 Obtain second vehicle steering angle data corresponding to the second steering wheel encoder data according to the correspondence between the steering wheel encoder data and the vehicle steering angle data.
  • the second vehicle steering angle data corresponding to the second steering wheel encoder data can be obtained.
  • the automatic driving state of the vehicle can be adjusted according to the obtained second vehicle steering angle data.
  • the second steering wheel encoder data is acquired during the normal driving of the vehicle, and then the steering wheel encoder data obtained by fitting and the steering angle data of the vehicle are used when the vehicle is driving in a preset manner. Correspondence between the two, the corresponding steering angle data of the second vehicle can be obtained. Therefore, the steering angle of the vehicle can be obtained without using the steering angle sensor. On the one hand, it can save the cost of installing and repairing the steering angle sensor; on the other hand, it can solve the problem of the failure of the steering angle sensor and the automatic driving system may not be able to obtain the steering angle of the vehicle, which can improve the operational reliability of automatic driving.
  • the second vehicle steering angle data can be obtained in real time by acquiring the second steering wheel encoder data. Because in the embodiment of the present application, the second vehicle steering angle data is determined by the correspondence between the steering wheel encoder data and the vehicle steering angle data. The correspondence between the steering wheel encoder data and the vehicle steering angle data does not involve time, and there is no problem of error accumulation caused by time integration, so that the vehicle steering can be obtained based on the correspondence between the steering wheel encoder data and the vehicle steering angle data The angle data has high accuracy and can meet the needs of the automatic driving system for vehicle control.
  • the steering structure may undergo certain changes, which will cause the value of the steering wheel encoder data to have a zero offset from the actual steering angle. This will cause the vehicle turning angle indicated by the acquired second steering wheel encoder data to change when the vehicle is driving normally, which in turn causes the second vehicle steering angle data obtained according to the second steering wheel encoder data to have a difference with the actual vehicle steering angle. deviation.
  • the embodiment of the present application also provides a method for obtaining the correction of the zero offset of the steering angle of the vehicle.
  • FIG. 5 is a flowchart of another method for obtaining a steering angle of a vehicle according to an embodiment of the application. As shown in FIG. .
  • the target time period can be divided to obtain the second vehicle steering angle data in the target time period, so that Carry out subsequent corrections to the steering angle of the vehicle.
  • the second vehicle steering angle data may be obtained by acquiring steering wheel encoder data in the target time period, and using the corresponding relationship between the steering wheel encoder data obtained by fitting and the vehicle steering angle data.
  • the target time period may be a time period less than or equal to the time period length threshold.
  • the steering angle data of the second vehicle fluctuates due to the steering angle of the vehicle, in order to achieve real-time correction of the steering angle of the vehicle and improve the accuracy of the corrected vehicle steering angle, the second vehicle in the target time period
  • the fluctuation range of the steering angle data should be within the preset range.
  • the target time period can be set according to the time period length threshold and the fluctuation range of the steering angle data of the second vehicle within the target time period.
  • the target time period may be obtained by using a sliding window method.
  • the embodiment of the present application does not limit the time gap between adjacent sliding windows, and can be set according to the need to modify the steering angle data of the second vehicle.
  • the length threshold of the sliding window is set to 3 seconds, and the preset range of the fluctuation range of the steering angle data of the second vehicle is ⁇ 2 degrees. If the fluctuation range of the steering angle data of the second vehicle is less than 2 degrees from the 0th second to the 3rd second, then the 0th to 3rd second is the first target time period. As time increases, the sliding window with a length of 3 seconds is correspondingly moved backward by 0.5 seconds. Each time the sliding window is moved, the second vehicle steering angle data in the sliding window is the second vehicle steering in the corresponding target time period Angular data. If the fluctuation range of the second vehicle steering angle data in the 4th second is greater than 2 degrees, the sliding window continues to move backward. If the fluctuation range of the second vehicle steering angle data from the 4th to the 7th second does not exceed 2 degrees, the fourth The second to the seventh second is another target time period, and so on, so that the target time period is updated over time.
  • S207 Acquire the second vehicle speed data and the second vehicle steering angle rate data in the target time period.
  • the second vehicle speed data and the second vehicle steering angle rate data in the target time period are acquired.
  • the second vehicle speed data may be collected by a satellite positioning module
  • the second vehicle steering angle rate data may be collected by a gyro inertial sensor. It can be understood that the second vehicle steering angle data, the second vehicle speed data, and the second vehicle steering angle rate data acquired in the same target time period have a corresponding relationship.
  • S208 Calculate the third vehicle steering angle data according to the second vehicle speed data and the second vehicle steering angle rate data.
  • the third vehicle steering angle data can be calculated according to the acquired second vehicle speed data and the second vehicle steering angle rate data.
  • the calculated third vehicle steering angle data is more accurate vehicle steering angle data, which can be calculated according to the third vehicle steering angle data.
  • the steering angle data is corrected for the steering angle data of the second vehicle.
  • the third vehicle steering angle data can be calculated according to formula (4).
  • ROT 2 ⁇ PI ⁇ WB 2 is the fourth calculation result, which is obtained by calculating the product of the second vehicle steering angle rate data ROT 2 , the PI and the vehicle front and rear axle distance WB 2 , the vehicle front and rear axle distance is the vehicle The distance between the corresponding front and rear axles.
  • the fifth calculation result can be obtained, that is, 360 ⁇ VEL 2 .
  • S209 Determine vehicle steering angle correction data according to the second vehicle steering angle data and the third vehicle steering angle data in the target time period.
  • the vehicle steering angle data can be corrected according to the acquired second vehicle steering angle data in the target time period and the corresponding calculated third vehicle steering angle data.
  • the vehicle steering angle correction data may be calculated by using the difference between the third vehicle steering angle data and the second vehicle steering angle data. For example, the average value of the steering angle data of the third vehicle in a target time period and the average value of the steering angle data of the second vehicle in the same target time period can be calculated, and the average value of the steering angle data of the third vehicle can be compared with that of the second vehicle. The difference between the mean values of the vehicle steering angle data is used as the vehicle steering angle correction data. In another possible implementation manner, the average value of the difference between the steering angle of the third vehicle and the steering angle of the second vehicle at each moment may also be used as the vehicle steering angle correction data.
  • the steering angle data of the second vehicle, the second vehicle speed data, and the second vehicle steering angle rate data are acquired in the target time period, and the steering angle data of the third vehicle is used as the correction target to determine the steering angle of the vehicle.
  • Angle correction data According to the vehicle steering angle correction data, the second vehicle steering angle data can be corrected to obtain a more accurate steering angle of the vehicle, avoiding the deviation of the value of the steering wheel encoder data from the steering angle of the actual vehicle rotation, resulting in the corresponding second vehicle steering angle. 2. The problem of deviation of vehicle steering angle data.
  • the obtained vehicle steering angle offset correction data may be used to correct the second vehicle steering angle data obtained at subsequent moments of the target time period, which may specifically include:
  • the second vehicle steering angle data is corrected according to the vehicle steering angle correction data.
  • the subsequent time of the target time period may be a time in the next target time period after the target time period.
  • the vehicle steering angle correction data obtained in the last target time period can be used to correct the second vehicle steering angle data belonging to the current target time period.
  • FIG. 6 is a schematic diagram of correcting the steering angle data of the second vehicle according to an embodiment of the application.
  • a coordinate system with time as the abscissa and steering angle as the ordinate is established.
  • the second vehicle steering angle data and the third vehicle steering angle data in each target time period are represented in a coordinate system.
  • the solid black line in the coordinate system represents the steering angle data of the second vehicle
  • the solid gray line represents the steering angle data of the third vehicle
  • the dashed black line represents the corrected steering angle data of the second vehicle.
  • the preset range is ⁇ 1 degree
  • the time period length threshold is 4 seconds. Among them, 342 seconds to 343 seconds are the first target time period.
  • the sliding window is re-established from 343 seconds to obtain the second target time period of 343 seconds to 347 seconds. Since the fluctuation range of 347 seconds exceeds ⁇ 1 degree, the sliding window is re-established from 347 seconds to 351 seconds, and the sliding window is moved to the right as time increases. Taking the moving interval between sliding windows as 1 second, moving the sliding window, 347 seconds to 351 seconds are the third target time period, 348 seconds to 352 seconds are the fourth target time period, and 349 seconds to 353 seconds are the first target time period. Five target time periods.
  • the second vehicle steering angle data of the second target time period is corrected according to the vehicle steering angle correction data of the first target time period. Then, according to the second vehicle steering angle data and the third vehicle steering angle data in the second target time period, the vehicle steering angle correction data in the second target time period is obtained. Then, according to the vehicle steering angle correction data in the second target time period, the second vehicle steering angle data in the third target time period is corrected.
  • the correction of the steering angle data of the second vehicle in all target time periods is completed.
  • the vehicle steering angle correction data obtained in the last target time period is used to correct the steering angle data of the second vehicle in the current target time period, which can realize the timely correction of the steering angle data of the second vehicle. Make corrections accordingly. And because the vehicle steering angle correction data is generated in the last target time period, the real-time performance is stronger, and the correction result obtained is more accurate.
  • the rotation angle of the steering wheel can also be restricted, and the method also includes:
  • the steering wheel limit signal is triggered.
  • the corresponding second vehicle steering angle data can be obtained.
  • the second vehicle steering angle data may indicate the magnitude of the current steering angle of the vehicle.
  • a preset threshold can be set. It is then determined whether the absolute value of the steering angle data of the second vehicle is greater than the preset threshold, and if it is greater, the steering wheel limit signal is triggered to limit the rotation angle triggered by the steering wheel.
  • the steering wheel limit signal is used to limit the rotation angle triggered by the steering wheel.
  • the rotation angle triggered by the steering wheel can be limited to a preset threshold. For example, if the preset threshold is the absolute value of the steering angle of 60 degrees, if the second vehicle steering angle data indicates that the steering angle of the vehicle is -70 degrees, which exceeds the preset threshold, then the steering wheel limit signal is triggered to control the steering wheel trigger Steering angle. Even if the steering angle actually triggered by the steering wheel is -70 degrees, when turning, the steering angle triggered by the steering wheel is limited to -60 degrees.
  • the rotation angle triggered by the steering wheel can be controlled, and the rotation angle triggered by the steering wheel can be prevented from being too large without installing a limit sensor, resulting in control Abnormal, to ensure the operational reliability of automatic driving.
  • an embodiment of the present application also provides a device for obtaining a steering angle of a vehicle, which will be separately introduced below with reference to the accompanying drawings.
  • FIG. 7 is a schematic structural diagram of a device for obtaining a steering angle of a vehicle provided by an embodiment of the application.
  • the first acquiring unit 701 is configured to acquire vehicle test data when the vehicle is running in a preset mode, and each group of the vehicle test data includes first steering wheel encoder data, first vehicle speed data, and first vehicle steering angle rate data ;
  • the first calculation unit 702 is configured to calculate the first vehicle steering angle data corresponding to each group of the vehicle test data
  • the fitting unit 703 is configured to use the first steering wheel encoder data and the corresponding first vehicle steering angle data in the vehicle test data to fit the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data;
  • the second obtaining unit 704 is configured to obtain the second steering wheel encoder data when the vehicle is running normally;
  • the second calculation unit 705 is configured to obtain the second vehicle steering angle data corresponding to the second steering wheel encoder data according to the correspondence between the steering wheel encoder data and the vehicle steering angle data.
  • the first obtaining unit 701 is specifically configured to obtain the first steering wheel encoder data generated by the steering wheel encoder, the first vehicle speed data collected by the satellite positioning module, and the gyro inertia when the vehicle is driving in a preset manner.
  • the first vehicle steering angle rate data collected by the sensor, the first steering wheel encoder data, the first vehicle speed data, and the first vehicle steering angle rate data collected at the same time constitute a set of vehicle test data.
  • the first calculation unit 702 includes:
  • the first calculation subunit is used to calculate the product of the first vehicle steering angle rate data, the circumference ratio, and the distance between the front and rear axles of the vehicle to obtain a first calculation result;
  • the second calculation subunit is used to calculate 360 multiplied by the first vehicle speed data to obtain a second calculation result
  • the third calculation subunit is configured to calculate the first calculation result divided by the second calculation result to obtain a third calculation result
  • the first data calculation subunit is configured to calculate the arc sine value of the third calculation result and then multiply it by 2 to obtain the first vehicle steering angle data corresponding to the vehicle test data.
  • the device further includes:
  • the third acquiring unit is configured to acquire the steering angle data of the second vehicle in a target time period when the vehicle is running normally, and the fluctuation range of the steering angle data of the second vehicle in the target time period is within a preset range ;
  • the fourth acquiring unit is configured to acquire the second vehicle speed data and the second vehicle steering angle rate data within the target time period;
  • the third calculation unit is configured to calculate the third vehicle steering angle data according to the second vehicle speed data and the second vehicle steering angle rate data;
  • the correction data determining unit is configured to determine vehicle steering angle correction data according to the second vehicle steering angle data and the third vehicle steering angle data in the target time period.
  • the device further includes:
  • the correction unit is configured to correct the second vehicle steering angle data according to the vehicle steering angle correction data at a subsequent time of the target time period.
  • the third calculation unit includes:
  • the fourth calculation subunit is used to calculate the product of the second vehicle steering angle rate data, the pi and the distance between the front and rear axles of the vehicle to obtain a fourth calculation result;
  • a sixth calculation subunit configured to calculate the fourth calculation result divided by the fifth calculation result to obtain a sixth calculation result
  • the third data calculation subunit is used to calculate the arc sine value of the sixth calculation result and then multiply it by 2 to obtain the third vehicle steering angle data.
  • the device further includes:
  • the limit unit is used to trigger a steering wheel limit signal when the absolute value of the second vehicle steering angle data is greater than a preset threshold.
  • the vehicle when the vehicle is running in a preset mode, first obtain the vehicle test data, and then calculate the first vehicle steering angle data corresponding to each set of vehicle test data; use the first steering wheel encoder data in the vehicle test data And the corresponding first vehicle steering angle data, fitting to obtain the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data; when the vehicle is running normally, obtain the second steering wheel encoder data; and then according to the steering wheel encoder data and the vehicle Correspondence between the steering angle data to obtain the second vehicle steering angle data corresponding to the second steering wheel encoder data.
  • the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data can be obtained by fitting the vehicle test data.
  • the second steering wheel encoder data When the vehicle is running normally, the second steering wheel encoder data is obtained, and then the second vehicle steering angle data can be determined according to the obtained corresponding relationship.
  • the second vehicle steering angle data it is possible to obtain the second vehicle steering angle data in real time through the second steering wheel encoder data, and it is not necessary to measure the steering angle of the vehicle through the steering angle sensor. It can save the cost of installing and repairing the steering angle sensor; it can also solve the problem that the automatic driving system may not be able to obtain the steering angle of the vehicle normally due to the failure of the steering angle sensor, and improve the operational reliability of automatic driving.
  • the correspondence between the steering wheel encoder data and the vehicle steering angle data can achieve error accumulation without time integration, which can meet the high-precision requirements of the automatic driving system for the vehicle steering angle data.
  • An embodiment of the present application also provides a device for obtaining a steering angle of a vehicle, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • a device for obtaining a steering angle of a vehicle including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • each group of the vehicle test data includes first steering wheel encoder data, first vehicle speed data, and first vehicle steering angle rate data;
  • the second vehicle steering angle data corresponding to the second steering wheel encoder data is obtained.
  • the acquiring vehicle test data when the vehicle is driving in a preset manner includes:
  • the first steering wheel encoder data generated by the steering wheel encoder, the first vehicle speed data collected by the satellite positioning module, and the first vehicle steering angle rate data collected by the gyro inertial sensor are acquired at the same time.
  • the first steering wheel encoder data, the first vehicle speed data, and the first vehicle steering angle rate data form a set of vehicle test data.
  • the calculating the first vehicle steering angle data corresponding to each group of the vehicle test data includes:
  • the arc sine value of the third calculation result is calculated and then multiplied by 2, to obtain the first vehicle steering angle data corresponding to the vehicle test data.
  • the method further includes:
  • the method further includes:
  • the second vehicle steering angle data is corrected according to the vehicle steering angle correction data.
  • the calculating the third vehicle steering angle data according to the second vehicle speed data and the second vehicle steering angle rate data includes:
  • the arc sine value of the sixth calculation result is calculated and then multiplied by 2 to obtain the third vehicle steering angle data.
  • the method further includes:
  • the steering wheel limit signal is triggered.
  • the vehicle when the vehicle is running in a preset mode, first obtain the vehicle test data, and then calculate the first vehicle steering angle data corresponding to each set of vehicle test data; use the first steering wheel encoder data in the vehicle test data And the corresponding first vehicle steering angle data, fitting to obtain the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data; when the vehicle is running normally, obtain the second steering wheel encoder data; and then according to the steering wheel encoder data and the vehicle Correspondence between the steering angle data to obtain the second vehicle steering angle data corresponding to the second steering wheel encoder data.
  • the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data can be obtained by fitting the vehicle test data.
  • the second steering wheel encoder data When the vehicle is running normally, the second steering wheel encoder data is obtained, and then the second vehicle steering angle data can be determined according to the obtained corresponding relationship.
  • the second vehicle steering angle data it is possible to obtain the second vehicle steering angle data in real time through the second steering wheel encoder data, and it is not necessary to measure the steering angle of the vehicle through the steering angle sensor. It can save the cost of installing and repairing the steering angle sensor; it can also solve the problem that the automatic driving system may not be able to obtain the steering angle of the vehicle normally due to the failure of the steering angle sensor, and improve the operational reliability of automatic driving.
  • the correspondence between the steering wheel encoder data and the vehicle steering angle data can achieve error accumulation without time integration, which can meet the high-precision requirements of the automatic driving system for the vehicle steering angle data.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions run on a terminal device, the terminal device executes the following method:
  • each group of the vehicle test data includes first steering wheel encoder data, first vehicle speed data, and first vehicle steering angle rate data;
  • the second vehicle steering angle data corresponding to the second steering wheel encoder data is obtained.
  • the acquiring vehicle test data when the vehicle is driving in a preset manner includes:
  • the first steering wheel encoder data generated by the steering wheel encoder, the first vehicle speed data collected by the satellite positioning module, and the first vehicle steering angle rate data collected by the gyro inertial sensor are acquired at the same time.
  • the first steering wheel encoder data, the first vehicle speed data, and the first vehicle steering angle rate data form a set of vehicle test data.
  • the calculating the first vehicle steering angle data corresponding to each group of the vehicle test data includes:
  • the arc sine value of the third calculation result is calculated and then multiplied by 2, to obtain the first vehicle steering angle data corresponding to the vehicle test data.
  • the method further includes:
  • the method further includes:
  • the second vehicle steering angle data is corrected according to the vehicle steering angle correction data.
  • the calculating the third vehicle steering angle data according to the second vehicle speed data and the second vehicle steering angle rate data includes:
  • the arc sine value of the sixth calculation result is calculated and then multiplied by 2 to obtain the third vehicle steering angle data.
  • the method further includes:
  • the steering wheel limit signal is triggered.
  • the vehicle when the vehicle is running in a preset mode, first obtain the vehicle test data, and then calculate the first vehicle steering angle data corresponding to each set of vehicle test data; use the first steering wheel encoder data in the vehicle test data And the corresponding first vehicle steering angle data, fitting to obtain the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data; when the vehicle is running normally, obtain the second steering wheel encoder data; and then according to the steering wheel encoder data and the vehicle Correspondence between the steering angle data to obtain the second vehicle steering angle data corresponding to the second steering wheel encoder data.
  • the corresponding relationship between the steering wheel encoder data and the vehicle steering angle data can be obtained by fitting the vehicle test data.
  • the second steering wheel encoder data When the vehicle is running normally, the second steering wheel encoder data is obtained, and then the second vehicle steering angle data can be determined according to the obtained corresponding relationship.
  • the second vehicle steering angle data it is possible to obtain the second vehicle steering angle data in real time through the second steering wheel encoder data, and it is not necessary to measure the steering angle of the vehicle through the steering angle sensor. It can save the cost of installing and repairing the steering angle sensor; it can also solve the problem that the automatic driving system may not be able to obtain the steering angle of the vehicle normally due to the failure of the steering angle sensor, and improve the operational reliability of automatic driving.
  • the correspondence between the steering wheel encoder data and the vehicle steering angle data can achieve error accumulation without time integration, which can meet the high-precision requirements of the automatic driving system for the vehicle steering angle data.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships. For example, “A and/or B” can mean: only A, only B, and both A and B. , Where A and B can be singular or plural. The character “/” generally indicates that the associated objects before and after are in an “or” relationship. "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the steps of the method or algorithm described in combination with the embodiments disclosed herein can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种获取车辆转向角的方法、装置、设备及存储介质,该方法包括:在车辆按照预设方式行驶时,获取车辆测试数据,计算每组车辆测试数据对应的第一车辆转向角数据;利用车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;当车辆正常行驶时,获取第二方向盘编码器数据;再根据方向盘编码器数据与车辆转向角数据之间的对应关系,得到第二方向盘编码器数据对应的第二车辆转向角数据。从而可以节约安装以及维修转向角传感器的成本,提高获取车辆转向角数据的准确性,提高自动驾驶的运行可靠性。

Description

一种获取车辆转向角的方法、装置、设备及存储介质 技术领域
本申请涉及自动驾驶技术领域,具体涉及一种获取车辆转向角的方法、装置、设备及存储介质。
背景技术
在车辆自动驾驶的过程中,自动驾驶系统需要获取车辆的转向角,并根据获取的车辆的转向角对车辆进行控制,实现自动驾驶。
目前,在现有技术中,需要在车辆外部的转向结构中安装转向角传感器,通过转向角传感器实现对于车辆的转向角的测量,并将得到的车辆的转向角发送至自动驾驶系统。但是,转向角传感器容易损坏,安装以及维修转向角传感器的成本较高,并且会导致自动驾驶系统不能获取到车辆的转向角,影响自动驾驶系统对于车辆的控制,降低了自动驾驶系统运行的可靠性。
发明内容
有鉴于此,本申请实施例提供一种获取车辆转向角的方法、装置、设备及存储介质,无需在车辆外部的转向结构中安装转向角传感器,可以解决现有技术中转向角传感器容易损坏,导致成本较高以及自动驾驶安全性较低的问题。
为解决上述问题,本申请实施例提供的技术方案如下:
一种获取车辆转向角的方法,所述方法包括:
在车辆按照预设方式行驶时,获取车辆测试数据,每组所述车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据;
计算每组所述车辆测试数据对应的第一车辆转向角数据;
利用所述车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;
在所述车辆正常行驶时,获取第二方向盘编码器数据;
根据所述方向盘编码器数据与车辆转向角数据之间的对应关系,得到所述第二方向盘编码器数据对应的第二车辆转向角数据。
在一种可能的实现方式中,所述在车辆按照预设方式行驶时,获取车辆测试数据,包括:
在车辆按照预设方式行驶时,获取方向盘编码器产生的第一方向盘编码器数据、卫星定位模块采集的第一车辆速度数据以及陀螺惯性传感器采集的第一车辆转向角速率数据,同一时刻采集的所述第一方向盘编码器数据、所述第一车辆速度数据以及所述第一车辆转向角速率数据组成一组车辆测试数据。
在一种可能的实现方式中,所述计算每组所述车辆测试数据对应的第一车辆转向角数据,包括:
计算所述第一车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第一计算结果;
计算360乘以所述第一车辆速度数据,得到第二计算结果;
计算所述第一计算结果除以所述第二计算结果,得到第三计算结果;
计算所述第三计算结果的反正弦值之后乘以2,得到所述车辆测试数据对应的第一车辆转向角数据。
在一种可能的实现方式中,所述方法还包括:
在所述车辆正常行驶时,获取目标时间段内的第二车辆转向角数据,所述目标时间段内所述第二车辆转向角数据的波动范围在预设范围内;
获取所述目标时间段内的第二车辆速度数据、第二车辆转向角速率数据;
根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据;
根据所述目标时间段内的第二车辆转向角数据以及所述第三车辆转向角数据,确定车辆转向角修正数据。
在一种可能的实现方式中,所述方法还包括:
在所述目标时间段的后续时刻,根据所述车辆转向角修正数据对所述第二车辆转向角数据进行修正。
在一种可能的实现方式中,所述根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据,包括:
计算所述第二车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第四计算结果;
计算360乘以所述第二车辆速度数据,得到第五计算结果;
计算所述第四计算结果除以所述第五计算结果,得到第六计算结果;
计算所述第六计算结果的反正弦值之后乘以2,得到第三车辆转向角数据。
在一种可能的实现方式中,所述方法还包括:
当所述第二车辆转向角数据的绝对值大于预设阈值,触发方向盘限位信号。
一种获取车辆转向角的装置,所述装置包括:
第一获取单元,用于在车辆按照预设方式行驶时,获取车辆测试数据,每组所述车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据;
第一计算单元,用于计算每组所述车辆测试数据对应的第一车辆转向角数据;
拟合单元,用于利用所述车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;
第二获取单元,用于在所述车辆正常行驶时,获取第二方向盘编码器数据;
第二计算单元,用于根据所述方向盘编码器数据与车辆转向角数据之间的对应关系,得到所述第二方向盘编码器数据对应的第二车辆转向角数据。
一种获取车辆转向角的设备,包括:存储器,处理器,及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现上述的获取车辆转向角的方法。
一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在终端设备上运行时,使得所述终端设备执行上述的获取车辆转向角的方法。
由此可见,本申请实施例具有如下有益效果:
本申请实施例提供的获取车辆转向角的方法中,在车辆按照预设方式行驶时,先获取车辆测试数据,再计算每组车辆测试数据对应的第一车辆转向角数据;利用车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;当车辆正常行驶时,获取第二方向盘编码器数据;再根据方向盘编码器数据与车辆转向角数据之间的对应关系,得到第二方向盘编码器数据对应的第二车辆转向角数据。在本申请实施例中,通过获取车辆测试数据可以拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系。在车辆正常行驶时,获取第二方向盘编码器数据,再根据得到的对应关系可以确定第二车辆转向角数据。由此,可以实现通过第二方向盘编码器数据实时得到第二车辆转向角数据,无需通过转向角传感器对车辆的转向角进行测量,且达到了无时间积分误差累积,满足自动驾驶系统对车辆转向角数据的高精度要求。从而可以节约安装以及维修转向角传感器的成本;也可以解决由于转向角传感器故障,导致的自动驾驶系统可能无法正常获取车辆的转向角的问题,提高自动驾驶的运行可靠性。
附图说明
图1为本申请实施例提供的获取车辆转向角的方法的示例性应用场景的框架示意图;
图2为本申请实施例提供的一种获取车辆转向角的方法的流程图;
图3为本申请实施例提供的一种车辆行驶的预设方式的示意图;
图4为本申请实施例提供的第一方向盘编码器数据以及对应的第一车辆转向角数据进行线性拟合的示意图;
图5为本申请实施例提供的另一种获取车辆转向角的方法的流程图;
图6为本申请实施例提供的对第二车辆转向角数据进行修正的示意图;
图7为本申请实施例提供的一种获取车辆转向角的装置的结构示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
为了便于理解和解释本申请实施例提供的技术方案,下面将先对本申请的背景技术进行说明。
发明人在对传统的获取车辆转向角的方法进行研究后发现,传统的获取车辆转向角的方法是通过转向角传感器来获取车辆的转向角的。通过将转向角传感器安装在车辆外部的转向结构中,对车辆的转向角进行测量,并将得到的转向角发送至自动驾驶系统,以便自动驾驶系统根据车辆的转向角对车辆进行控制。由于转向角传感器是安装在车辆外部的转向结构中的,而车辆的行驶环境较为恶劣,转向角传感器容易损坏,导致自动驾驶系统无法获取到车辆的转向角,影响自动驾驶系统对于车辆的正常控制。
基于此,本申请实施例提供了一种获取车辆转向角的方法,在车辆按照预设方式行驶时,先获取车辆测试数据,再计算每组车辆测试数据对应的第一车辆转向角数据;利用车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;当车辆正常行驶时,获取第二方向盘编码器数据;再根据方向盘编码器数据与车辆转向角数据之间的对应关系,得到第二方向盘编码器数据对应的第二车辆转向角数据。由此,可以实现通过第二方向盘编码器数据得到第二车辆转 向角数据,无需通过转向角传感器对车辆的转向角进行测量,可以避免由于转向角传感器损坏导致无法正常获取车辆的转向角的问题,还可以降低安装和维修的成本。
为了便于理解本申请实施例提供的获取车辆转向角的方法,下面先结合图1对本申请实施例提供的获取车辆转向角的方法的应用场景进行说明。其中,图1为本申请实施例提供的获取车辆转向角的方法的示例性应用场景的框架示意图。其中,本申请实施例提供的获取车辆转向角的方法可以应用于自动驾驶系统。
实际应用中,在自动驾驶系统中可以包括电动方向盘中的方向盘编码器101以及自动驾驶控制器102。在车辆按照预设方式行驶时,可以由自动驾驶控制器102计算得到第一车辆转向角数据,通过方向盘编码器101可以得到第一方向盘编码器数据,将第一车辆转向角数据和第一方向盘编码器数据进行拟合,可以得到方向盘编码器数据与车辆转向角数据之间的对应关系。在车辆正常行驶时,可以从方向盘编码器101中获取第二方向盘编码器数据,再根据方向盘编码器数据与车辆转向角数据之间的对应关系,可以得到对应的第二车辆转向角数据。
本领域技术人员可以理解,图1所示的框架示意图仅是本申请的实施方式可以在其中得以实现的一个示例。本申请实施方式的适用范围不受到该框架任何方面的限制。
为便于理解本申请实施例提供的技术方案,下面将结合附图对本申请实施例提供的获取车辆转向角的方法进行说明。
参见图2,该图为本申请实施例提供的一种获取车辆转向角的方法的流程图,如图2所示,该方法可以包括S201-S205:
S201:在车辆按照预设方式行驶时,获取车辆测试数据,每组车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据。
在本申请实施例中,可以通过方向盘编码器数据与车辆转向角数据之间的对应关系来确定车辆转向角。在车辆正常行驶之前,需要先确定方向盘编码器数据与车辆转向角数据之间的对应关系。
需要说明的是,为了通过车辆测试数据,较为准确地确定方向盘编码器数 据与车辆转向角数据之间的对应关系,可以先设置车辆行驶的预设方式,以避免车辆随意行驶导致得到的车辆测试数据不能满足确定方向盘编码器数据与车辆转向角数据之间的对应关系的要求。
本申请实施例中不限定车辆行驶的预设方式。在一种可能的实现方式中,为了获得更多的转向角,可以按照“S”型的行驶路线进行行驶。
具体的,预设方式可以为先进行直线行驶,之后将方向盘转动向第一方向转动一定角度行驶一定时间,再将方向盘向第一方向的反方向转动一定角度行驶一定时间,实现“S”型的行驶路线,最终恢复原方向进行直线行驶。
参见图3,该图为本申请实施例提供的一种车辆行驶的预设方式的示意图。在一次行驶的过程中,车辆先沿直线行驶10秒;之后向左转动方向盘10度,使得车辆向左行驶,并保持10秒;然后向右转动方向盘20度(相当于方向盘回正后向右转动10度),使得车辆向右行驶,保持20秒;再控制方向盘向左转动方向盘20度(相当于方向盘回正后向左转动10度),使得车辆向左行驶,并保持10秒;最后向右转动方向盘10度,恢复原方向直线行驶。需要说明的是,本申请实施例中不限定预设方式中每个阶段行驶的时间、方向盘调整的角度大小,以及预设方式中方向盘调整次数以及调整方向的先后顺序,可以分别根据实际需要进行设置。例如,每个阶段行驶的时间可以为10秒以上,并且每个阶段的行驶时间可以不同。方向盘调整的角度大小可以为5度、10度以及15度等。
在车辆按照预设方式行驶时,获取多组车辆测试数据。每组车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据。具体的,可以在车辆按照预设方式行驶时,获取方向盘编码器产生的第一方向盘编码器数据、卫星定位模块采集的第一车辆速度数据以及陀螺惯性传感器采集的第一车辆转向角速率数据。
为了明确各个第一方向盘编码器数据、各个第一车辆速度数据和各个第一车辆转向角速率数据之间的对应关系,可以将同一时刻采集到的第一方向盘编码器数据、第一车辆速度数据和第一车辆转向角速率数据作为一组车辆测试数据。其中,第一方向盘编码器数据为方向盘编码器产生的方向盘编码器数据,可以与方向盘转动的角度存在对应关系。第一车辆速度数据为卫星定位模块采 集的,用于表示车辆行驶速度的数据。第一车辆转向角速率数据为由陀螺惯性传感器采集得到的,用于表示车辆方向轴转动的角速率的数据。
可以理解的是,仅凭一组车辆测试数据难以得到较为准确的方向盘编码器数据与车辆转向角数据之间的对应关系。可以多次使得车辆按照预设方式进行行驶,对应的获取车辆测试数据。并且为了降低得到的方向盘编码器数据与车辆转向角数据之间的对应关系的误差,可以对车辆行驶的预设方式进行调整,得到对应于不同的预设方式的车辆测试数据。
S202:计算每组车辆测试数据对应的第一车辆转向角数据。
利用得到的车辆测试数据,计算对应的第一车辆转向角数据。通过车辆测试数据中的第一车辆转向角速率数据以及第一车辆速度数据,可以计算得到对应的第一车辆转向角数据。
计算每组车辆测试数据对应的第一车辆转向角数据,包括A1-A4:
A1:计算第一车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第一计算结果。
第一车辆转向角速率数据为车辆测试数据中的数据,车辆前后轴距离为车辆对应的前轴与后轴之间的距离。第一计算结果可以由公式(1)表示:
ROT 1×PI×WB 1    (1)
其中,ROT 1为第一车辆转向角速率数据,PI为圆周率,WB 1为车辆前后轴距离。
A2:计算360乘以第一车辆速度数据,得到第二计算结果。
第二计算结果可以由公式(2)表示:
360×VEL 1    (2)
其中,VEL 1为与上述第一车辆转向角速率数据属于同一组车辆测试数据的第一车辆速度数据。
A3:计算第一计算结果除以第二计算结果,得到第三计算结果。
A4:计算第三计算结果的反正弦值之后乘以2,得到车辆测试数据对应的第一车辆转向角数据。
第一车辆转向角数据可以用公式(3)表示:
Figure PCTCN2020096281-appb-000001
需要说明的是,asin为计算反正弦值。
S203:利用车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系。
利用第一车辆转向角速率数据以及第一车辆速度数据可以计算得到第一车辆转向角数据,再利用属于同一车辆测试数据的第一方向盘编码器,可以得到方向盘编码器数据与车辆转向角数据之间的对应关系。
方向盘编码器数据与车辆转向角数据之间的对应关系可以通过将第一方向盘编码器数据以及对应的第一车辆转向角数据拟合得到。
本申请实施例中不限定拟合的方式,在一种可能的实现方式中,可以将第一方向盘编码器数据以及对应的第一车辆转向角数据进行单段线性拟合,根据线性拟合的结果得到方向盘编码器数据与车辆转向角数据之间的对应关系。具体的,参见图4,该图为本申请实施例提供的第一方向盘编码器数据以及对应的第一车辆转向角数据进行线性拟合的示意图。建立以转向角的角度和方向盘编码器数据的数值为横纵坐标的坐标系。其中,原点为转向角的角度为零度,方向盘编码器数据的数值为10000的点,坐标系的横坐标为转向角的角度,纵坐标为方向盘编码器数据的数值。根据车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,在建立的坐标系中进行对应的坐标点的标记。根据在坐标系中标记的坐标点进行线性拟合,可以得到一条拟合直线,该拟合直线可以表示方向盘编码器数据与车辆转向角数据之间的对应关系。在另一种可能的实现方式中,也可以将第一方向盘编码器数据以及对应的第一车辆转向角数据根据需要进行两段线性拟合或者非线性拟合。
在本申请实施例中,通过车辆在按照预设方式行驶时,获取车辆测试数据,利用车辆测试数据得到方向盘编码器数据与车辆转向角数据之间的对应关系。利用方向盘编码器数据与车辆转向角数据之间的对应关系就可以在正常行驶时根据方向盘编码器数据得到车辆转向角数据,无需通过设置转向角传感器获取车辆的转向角,节约了安装以及维修转向角传感器的成本。
S204:在车辆正常行驶时,获取第二方向盘编码器数据。
需要说明的是,车辆正常行驶是指车辆在非测试状态下的行驶状态。当车辆正常行驶时,获取车辆行驶过程中的第二方向盘编码器数据。第二方向盘编 码器数据可以是方向盘编码器在车辆正常行驶时产生的。
S205:根据方向盘编码器数据与车辆转向角数据之间的对应关系,得到第二方向盘编码器数据对应的第二车辆转向角数据。
利用确定的方向盘编码器数据与车辆转向角数据之间的对应关系,以及第二方向盘编码器数据,可以得到与第二方向盘编码器数据对应的第二车辆转向角数据。根据得到的第二车辆转向角数据可以对车辆的自动驾驶状态进行调整。
基于上述S201-S205中的内容可知,在车辆正常行驶的过程中获取第二方向盘编码器数据,再利用在车辆按照预设方式行驶时,拟合得到的方向盘编码器数据与车辆转向角数据之间的对应关系,可以得到对应的第二车辆转向角数据。由此,无需通过转向角传感器可以得到车辆的转向角。一方面,可以节约安装以及维修转向角传感器的成本;另一方面,可以解决转向角传感器故障,导致的自动驾驶系统可能无法获取车辆的转向角的问题,可以提高自动驾驶的运行可靠性。此外,通过获取第二方向盘编码器数据可以实时得到第二车辆转向角数据,由于本申请实施例中是通过方向盘编码器数据与车辆转向角数据之间的对应关系确定第二车辆转向角数据,方向盘编码器数据与车辆转向角数据之间的对应关系中不涉及时间,不存在时间积分导致的误差积累的问题,使得根据方向盘编码器数据与车辆转向角数据之间的对应关系得到的车辆转向角数据精度较高,可以满足自动驾驶系统对于车辆控制的需要。
可以理解的是,车辆的转向结构之间存在着操作间隙。在进行一定次数的车辆转向后,转向结构可能会发生一定的改变,对应的会导致方向盘编码器数据的数值与实际转动的转向角发生零点偏移。这会导致在车辆正常行驶时,获取的第二方向盘编码器数据表示的车辆转动角度发生改变,进而导致根据第二方向盘编码器数据得到的第二车辆转向角数据与实际的车辆的转向角具有偏差。
基于上述内容,本申请实施例还提供了一种获取车辆转向角零点偏移修正的方法。参见图5,该图为本申请实施例提供的另一种获取车辆转向角的方法的流程图,如图5所示,该方法在包括上述S201-S205的内容之外,还包括S206至S209。
S206:在车辆正常行驶时,获取目标时间段内的第二车辆转向角数据,目标时间段内第二车辆转向角数据的波动范围在预设范围内。
为了在车辆正常行驶过程中对车辆转向角零点偏移进行修正,并且考虑到对车辆转向角数据修正的实时性,可以划分目标时间段,获取目标时间段内的第二车辆转向角数据,以便进行后续对于车辆转向角的修正。其中,第二车辆转向角数据可以是通过获取目标时间段中的方向盘编码器数据,并利用拟合得到的方向盘编码器数据与车辆转向角数据之间的对应关系得到的。
需要说明的是,目标时间段可以为小于或者等于时间段长度阈值的时间段。此外,由于在车辆转向的作用下,第二车辆转向角数据具有波动,为了实现对于车辆转向角的实时修正,并且提高修正后的车辆转向角的准确性,在目标时间段内的第二车辆转向角数据的波动范围应当在预设范围之内。通过目标时间段内较为平稳的第二车辆转向角数据,可以得到较为准确的车辆转向角的修正数据。
具体的,可以根据时间段长度阈值以及目标时间段内第二车辆转向角数据的波动范围对目标时间段进行设定。在一种可能的实现方式中,考虑到第二车辆转向角数据的连续性以及修正的实时性,目标时间段可以采用滑动窗口的方法获取。本申请实施例中不限定相邻的滑动窗口之间的时间差距,可以根据修正第二车辆转向角数据的需要进行设置。
例如,设定滑动窗口的长度阈值为3秒,第二车辆转向角数据的波动范围的预设范围为±2度。若从第0秒开始至第3秒,第二车辆转向角数据的波动范围均小于2度,则第0秒至第3秒为第一个目标时间段。随着时间的增加,长度为3秒的滑动窗口相应的后移0.5秒,每次移动滑动窗口后,滑动窗口内的第二车辆转向角数据就为对应的目标时间段内的第二车辆转向角数据。若第4秒第二车辆转向角数据的波动范围大于2度,则滑动窗口向后继续移动,若第4秒至第7秒的第二车辆转向角数据的波动范围不超过2度,第4秒至第7秒为又一个目标时间段,以此类推,从而随时间推移更新目标时间段。
S207:获取目标时间段内的第二车辆速度数据、第二车辆转向角速率数据。
在获取目标时间段的第二车辆转向角数据之外,获取该目标时间段内的第二车辆速度数据以及第二车辆转向角速率数据。其中,第二车辆速度数据可以 是通过卫星定位模块采集得到的,第二车辆转向角速率数据可以是陀螺惯性传感器采集得到的。可以理解的是,同一目标时间段内获取到的第二车辆转向角数据、第二车辆速度数据以及第二车辆转向角速率数据具有对应关系。
S208:根据第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据。
根据获取到的第二车辆速度数据和第二车辆转向角速率数据可以计算得到第三车辆转向角数据,计算得到的第三车辆转向角数据为较为准确的车辆转向角数据,可以根据第三车辆转向角数据进行对第二车辆转向角数据的修正。
第三车辆转向角数据可以根据公式(4)计算得到。
Figure PCTCN2020096281-appb-000002
其中,ROT 2×PI×WB 2为第四计算结果,是通过计算第二车辆转向角速率数据ROT 2、圆周率PI与车辆前后轴距离WB 2之间的乘积得到的,车辆前后轴距离为车辆对应的前轴与后轴之间的距离。通过计算360乘以第二车辆速度数据VEL 2,可以得到第五计算结果,也就是360×VEL 2。将第四计算结果除以第五计算结果,得到第六计算结果
Figure PCTCN2020096281-appb-000003
最后将第六计算结果的反正弦值之后乘以2,可以得到第三车辆转向角数据。
S209:根据目标时间段内的第二车辆转向角数据以及第三车辆转向角数据,确定车辆转向角修正数据。
根据获取到的目标时间段内的第二车辆转向角数据,以及对应的计算得到的第三车辆转向角数据,可以对车辆转向角数据进行修正。在一种可能的实现方式中,可以利用第三车辆转向角数据与第二车辆转向角数据之间的差值计算得到车辆转向角修正数据。例如,可以计算在一个目标时间段内的第三车辆转向角数据的均值,以及在同一个目标时间段内的第二车辆转向角数据的均值,将第三车辆转向角数据的均值与第二车辆转向角数据的均值之间的差值作为车辆转向角修正数据。在另一种可能的实现方式中,也可以将每个时刻的第三车辆转向角和第二车辆转向角之间差值的均值作为车辆转向角修正数据。
在本申请实施例中,通过获取目标时间段内的第二车辆转向角数据以及第 二车辆速度数据、第二车辆转向角速率数据,以第三车辆转向角数据为修正的目标,确定车辆转向角修正数据。根据车辆转向角修正数据,可以对第二车辆转向角数据进行修正,得到较为准确的车辆的转向角,避免由于方向盘编码器数据的数值与实际车辆转动的转向角发生偏移,导致对应的第二车辆转向角数据出现偏差的问题。
进一步的,可以利用得到的车辆转向角偏移修正数据对目标时间段的后续时刻得到的第二车辆转向角数据进行修正,具体可以包括:
在目标时间段的后续时刻,根据车辆转向角修正数据对第二车辆转向角数据进行修正。
需要说明的是,目标时间段的后续时刻可以是目标时间段后的下一个目标时间段内的时刻。也就是说,可以利用上一个目标时间段中得到的车辆转向角修正数据对属于当前的目标时间段中的第二车辆转向角数据进行修正。
参见图6,图为本申请实施例提供的对第二车辆转向角数据进行修正的示意图。
如图6所示,建立以时间为横坐标,转向角为纵坐标的坐标系。将各个目标时间段中的第二车辆转向角数据以及第三车辆转向角数据在坐标系中进行表示。如图6所示,坐标系中黑色实线表示第二车辆转向角数据,灰色实线表示第三车辆转向角数据,黑色虚线表示修正后的第二车辆转向角数据。预设范围为±1度,时间段长度阈值为4秒。其中,342秒至343秒为第一个目标时间段,之后由于343秒的波动范围超过±1度,从343秒重新建立滑动窗口,得到343秒至347秒的第二个目标时间段。由于347秒的波动范围超过±1度,从347秒再次重新建立滑动窗口,至351秒得到滑动窗口,并随着时间增加滑动窗口向右移动。以滑动窗口之间的移动间隔为1秒计算,移动滑动窗口,347秒至351秒为第三个目标时间段,348秒至352秒为第四个目标时间段,349秒至353秒为第五个目标时间段。由于353秒的波动范围超过±1度,再次从353秒开始建立滑动窗口,最终得到353秒至356秒的第六个目标时间段。在进行第二车辆转向角数据的修正时,根据第一个目标时间段的车辆转向角修正数据对第二个目标时间段的第二车辆转向角数据进行修正。再根据第二个目标时间段中的第二车辆转向角数据和第三车辆转向角数据,得到第二个目标时间 段中的车辆转向角修正数据。之后根据第二个目标时间段中的车辆转向角修正数据,对第三个目标时间段中的第二车辆转向角数据进行修正。依次类推,完成对全部目标时间段中的第二车辆转向角数据的修正。
如此,在本申请实施例中,利用上一个目标时间段中得到的车辆转向角修正数据对当前的目标时间段中的第二车辆转向角数据进行修正,可以实现对第二车辆转向角数据及时地进行修正。并且由于车辆转向角修正数据是上一个目标时间段生成的,实时性较强,得到的修正结果更为准确。
此外,还可以对方向盘的转动角度进行限制,方法还包括:
当第二车辆转向角数据的绝对值大于预设阈值,触发方向盘限位信号。
通过第二方向盘编码器数据以及方向盘编码器数据与车辆转向角数据之间的对应关系,可以得到对应的第二车辆转向角数据。第二车辆转向角数据可以表示当前车辆的转向角的角度大小。为了防止车辆的转向角过大,引发控制异常,可以设置预设阈值。再判断第二车辆转向角数据的绝对值是否大于预设阈值,若大于,则触发方向盘限位信号,对方向盘触发的转动角度进行限制。
方向盘限位信号是用于限制方向盘触发的转动角度的,当触发方向盘限位信号时,可以将方向盘触发的转动角度限定在预设阈值之中。例如,若预设阈值为转向角的绝对值为60度,若第二车辆转向角数据表示车辆的转向角为-70度,超过预设阈值,此时触发方向盘限位信号,控制方向盘触发的转向角度。即使方向盘实际触发的转向角度为-70度,在进行转向时,也将方向盘触发的转向角度限定为-60度。
基于上述内容可知,根据第二车辆转向角数据的绝对值以及预设阈值的大小关系,可以控制方向盘触发的转动角度,无需安装限位传感器的情况下避免方向盘触发的转动角度过大,造成控制异常,确保自动驾驶的运行可靠性。
基于上述方法实施例提供的获取车辆转向角的方法,本申请实施例还提供了一种获取车辆转向角的装置,下面结合附图分别进行介绍。
参见图7,该图为本申请实施例提供的一种获取车辆转向角的装置的结构示意图。
第一获取单元701,用于在车辆按照预设方式行驶时,获取车辆测试数据,每组所述车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一 车辆转向角速率数据;
第一计算单元702,用于计算每组所述车辆测试数据对应的第一车辆转向角数据;
拟合单元703,用于利用所述车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;
第二获取单元704,用于在所述车辆正常行驶时,获取第二方向盘编码器数据;
第二计算单元705,用于根据所述方向盘编码器数据与车辆转向角数据之间的对应关系,得到所述第二方向盘编码器数据对应的第二车辆转向角数据。
可选的,所述第一获取单元701,具体用于在车辆按照预设方式行驶时,获取方向盘编码器产生的第一方向盘编码器数据、卫星定位模块采集的第一车辆速度数据以及陀螺惯性传感器采集的第一车辆转向角速率数据,同一时刻采集的所述第一方向盘编码器数据、所述第一车辆速度数据以及所述第一车辆转向角速率数据组成一组车辆测试数据。
可选的,所述第一计算单元702,包括:
第一计算子单元,用于计算所述第一车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第一计算结果;
第二计算子单元,用于计算360乘以所述第一车辆速度数据,得到第二计算结果;
第三计算子单元,用于计算所述第一计算结果除以所述第二计算结果,得到第三计算结果;
第一数据计算子单元,用于计算所述第三计算结果的反正弦值之后乘以2,得到所述车辆测试数据对应的第一车辆转向角数据。
可选的,所述装置还包括:
第三获取单元,用于在所述车辆正常行驶时,获取目标时间段内的第二车辆转向角数据,所述目标时间段内所述第二车辆转向角数据的波动范围在预设范围内;
第四获取单元,用于获取所述目标时间段内的第二车辆速度数据、第二车 辆转向角速率数据;
第三计算单元,用于根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据;
修正数据确定单元,用于根据所述目标时间段内的第二车辆转向角数据以及所述第三车辆转向角数据,确定车辆转向角修正数据。
可选的,所述装置还包括:
修正单元,用于在所述目标时间段的后续时刻,根据所述车辆转向角修正数据对所述第二车辆转向角数据进行修正。
可选的,所述第三计算单元,包括:
第四计算子单元,用于计算所述第二车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第四计算结果;
第五计算子单元,用于计算360乘以所述第二车辆速度数据,得到第五计算结果;
第六计算子单元,用于计算所述第四计算结果除以所述第五计算结果,得到第六计算结果;
第三数据计算子单元,用于计算所述第六计算结果的反正弦值之后乘以2,得到第三车辆转向角数据。
可选的,所述装置还包括:
限位单元,用于当所述第二车辆转向角数据的绝对值大于预设阈值,触发方向盘限位信号。
在本申请实施例中,在车辆按照预设方式行驶时,先获取车辆测试数据,再计算每组车辆测试数据对应的第一车辆转向角数据;利用车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;当车辆正常行驶时,获取第二方向盘编码器数据;再根据方向盘编码器数据与车辆转向角数据之间的对应关系,得到第二方向盘编码器数据对应的第二车辆转向角数据。在本申请实施例中,通过获取车辆测试数据可以拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系。在车辆正常行驶时,获取第二方向盘编码器数据,再根据得到的对应关系可以确定第二车辆转向角数 据。由此,可以实现通过第二方向盘编码器数据实时地得到第二车辆转向角数据,无需通过转向角传感器对车辆的转向角进行测量。可以节约安装以及维修转向角传感器的成本;还可以解决由于转向角传感器故障,导致的自动驾驶系统可能无法正常获取车辆的转向角的问题,提高自动驾驶的运行可靠性。此外,通过方向盘编码器数据与车辆转向角数据之间的对应关系可以达到无时间积分的误差累积,能够满足自动驾驶系统对车辆转向角数据的高精度要求。
本申请实施例还提供了一种获取车辆转向角的设备,包括:存储器,处理器,及存储在存储器上并可在处理器上运行的计算机程序。处理器执行计算机程序时,可以实现下述方法:
在车辆按照预设方式行驶时,获取车辆测试数据,每组所述车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据;
计算每组所述车辆测试数据对应的第一车辆转向角数据;
利用所述车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;
在所述车辆正常行驶时,获取第二方向盘编码器数据;
根据所述方向盘编码器数据与车辆转向角数据之间的对应关系,得到所述第二方向盘编码器数据对应的第二车辆转向角数据。
可选的,所述在车辆按照预设方式行驶时,获取车辆测试数据,包括:
在车辆按照预设方式行驶时,获取方向盘编码器产生的第一方向盘编码器数据、卫星定位模块采集的第一车辆速度数据以及陀螺惯性传感器采集的第一车辆转向角速率数据,同一时刻采集的所述第一方向盘编码器数据、所述第一车辆速度数据以及所述第一车辆转向角速率数据组成一组车辆测试数据。
可选的,所述计算每组所述车辆测试数据对应的第一车辆转向角数据,包括:
计算所述第一车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第一计算结果;
计算360乘以所述第一车辆速度数据,得到第二计算结果;
计算所述第一计算结果除以所述第二计算结果,得到第三计算结果;
计算所述第三计算结果的反正弦值之后乘以2,得到所述车辆测试数据对应的第一车辆转向角数据。
可选的,所述方法还包括:
在所述车辆正常行驶时,获取目标时间段内的第二车辆转向角数据,所述目标时间段内所述第二车辆转向角数据的波动范围在预设范围内;
获取所述目标时间段内的第二车辆速度数据、第二车辆转向角速率数据;
根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据;
根据所述目标时间段内的第二车辆转向角数据以及所述第三车辆转向角数据,确定车辆转向角修正数据。
可选的,所述方法还包括:
在所述目标时间段的后续时刻,根据所述车辆转向角修正数据对所述第二车辆转向角数据进行修正。
可选的,所述根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据,包括:
计算所述第二车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第四计算结果;
计算360乘以所述第二车辆速度数据,得到第五计算结果;
计算所述第四计算结果除以所述第五计算结果,得到第六计算结果;
计算所述第六计算结果的反正弦值之后乘以2,得到第三车辆转向角数据。
可选的,所述方法还包括:
当所述第二车辆转向角数据的绝对值大于预设阈值,触发方向盘限位信号。
在本申请实施例中,在车辆按照预设方式行驶时,先获取车辆测试数据,再计算每组车辆测试数据对应的第一车辆转向角数据;利用车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;当车辆正常行驶时,获取第二方向盘编码器数据;再根据方向盘编码器数据与车辆转向角 数据之间的对应关系,得到第二方向盘编码器数据对应的第二车辆转向角数据。在本申请实施例中,通过获取车辆测试数据可以拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系。在车辆正常行驶时,获取第二方向盘编码器数据,再根据得到的对应关系可以确定第二车辆转向角数据。由此,可以实现通过第二方向盘编码器数据实时地得到第二车辆转向角数据,无需通过转向角传感器对车辆的转向角进行测量。可以节约安装以及维修转向角传感器的成本;还可以解决由于转向角传感器故障,导致的自动驾驶系统可能无法正常获取车辆的转向角的问题,提高自动驾驶的运行可靠性。此外,通过方向盘编码器数据与车辆转向角数据之间的对应关系可以达到无时间积分的误差累积,能够满足自动驾驶系统对车辆转向角数据的高精度要求。
此外,本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当所述指令在终端设备上运行时,使得所述终端设备执行下述方法:
在车辆按照预设方式行驶时,获取车辆测试数据,每组所述车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据;
计算每组所述车辆测试数据对应的第一车辆转向角数据;
利用所述车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;
在所述车辆正常行驶时,获取第二方向盘编码器数据;
根据所述方向盘编码器数据与车辆转向角数据之间的对应关系,得到所述第二方向盘编码器数据对应的第二车辆转向角数据。
可选的,所述在车辆按照预设方式行驶时,获取车辆测试数据,包括:
在车辆按照预设方式行驶时,获取方向盘编码器产生的第一方向盘编码器数据、卫星定位模块采集的第一车辆速度数据以及陀螺惯性传感器采集的第一车辆转向角速率数据,同一时刻采集的所述第一方向盘编码器数据、所述第一车辆速度数据以及所述第一车辆转向角速率数据组成一组车辆测试数据。
可选的,所述计算每组所述车辆测试数据对应的第一车辆转向角数据,包括:
计算所述第一车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第一计算结果;
计算360乘以所述第一车辆速度数据,得到第二计算结果;
计算所述第一计算结果除以所述第二计算结果,得到第三计算结果;
计算所述第三计算结果的反正弦值之后乘以2,得到所述车辆测试数据对应的第一车辆转向角数据。
可选的,所述方法还包括:
在所述车辆正常行驶时,获取目标时间段内的第二车辆转向角数据,所述目标时间段内所述第二车辆转向角数据的波动范围在预设范围内;
获取所述目标时间段内的第二车辆速度数据、第二车辆转向角速率数据;
根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据;
根据所述目标时间段内的第二车辆转向角数据以及所述第三车辆转向角数据,确定车辆转向角修正数据。
可选的,所述方法还包括:
在所述目标时间段的后续时刻,根据所述车辆转向角修正数据对所述第二车辆转向角数据进行修正。
可选的,所述根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据,包括:
计算所述第二车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第四计算结果;
计算360乘以所述第二车辆速度数据,得到第五计算结果;
计算所述第四计算结果除以所述第五计算结果,得到第六计算结果;
计算所述第六计算结果的反正弦值之后乘以2,得到第三车辆转向角数据。
可选的,所述方法还包括:
当所述第二车辆转向角数据的绝对值大于预设阈值,触发方向盘限位信号。
在本申请实施例中,在车辆按照预设方式行驶时,先获取车辆测试数 据,再计算每组车辆测试数据对应的第一车辆转向角数据;利用车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;当车辆正常行驶时,获取第二方向盘编码器数据;再根据方向盘编码器数据与车辆转向角数据之间的对应关系,得到第二方向盘编码器数据对应的第二车辆转向角数据。在本申请实施例中,通过获取车辆测试数据可以拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系。在车辆正常行驶时,获取第二方向盘编码器数据,再根据得到的对应关系可以确定第二车辆转向角数据。由此,可以实现通过第二方向盘编码器数据实时地得到第二车辆转向角数据,无需通过转向角传感器对车辆的转向角进行测量。可以节约安装以及维修转向角传感器的成本;还可以解决由于转向角传感器故障,导致的自动驾驶系统可能无法正常获取车辆的转向角的问题,提高自动驾驶的运行可靠性。此外,通过方向盘编码器数据与车辆转向角数据之间的对应关系可以达到无时间积分的误差累积,能够满足自动驾驶系统对车辆转向角数据的高精度要求。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统或装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这 些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种获取车辆转向角的方法,其特征在于,所述方法包括:
    在车辆按照预设方式行驶时,获取车辆测试数据,每组所述车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据;
    计算每组所述车辆测试数据对应的第一车辆转向角数据;
    利用所述车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角数据之间的对应关系;
    在所述车辆正常行驶时,获取第二方向盘编码器数据;
    根据所述方向盘编码器数据与车辆转向角数据之间的对应关系,得到所述第二方向盘编码器数据对应的第二车辆转向角数据。
  2. 根据权利要求1所述的方法,其特征在于,所述在车辆按照预设方式行驶时,获取车辆测试数据,包括:
    在车辆按照预设方式行驶时,获取方向盘编码器产生的第一方向盘编码器数据、卫星定位模块采集的第一车辆速度数据以及陀螺惯性传感器采集的第一车辆转向角速率数据,同一时刻采集的所述第一方向盘编码器数据、所述第一车辆速度数据以及所述第一车辆转向角速率数据组成一组车辆测试数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述计算每组所述车辆测试数据对应的第一车辆转向角数据,包括:
    计算所述第一车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第一计算结果;
    计算360乘以所述第一车辆速度数据,得到第二计算结果;
    计算所述第一计算结果除以所述第二计算结果,得到第三计算结果;
    计算所述第三计算结果的反正弦值之后乘以2,得到所述车辆测试数据对应的第一车辆转向角数据。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述车辆正常行驶时,获取目标时间段内的第二车辆转向角数据, 所述目标时间段内所述第二车辆转向角数据的波动范围在预设范围内;
    获取所述目标时间段内的第二车辆速度数据、第二车辆转向角速率数据;
    根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据;
    根据所述目标时间段内的第二车辆转向角数据以及所述第三车辆转向角数据,确定车辆转向角修正数据。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在所述目标时间段的后续时刻,根据所述车辆转向角修正数据对所述第二车辆转向角数据进行修正。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述第二车辆速度数据、第二车辆转向角速率数据,计算第三车辆转向角数据,包括:
    计算所述第二车辆转向角速率数据、圆周率与车辆前后轴距离之间的乘积,得到第四计算结果;
    计算360乘以所述第二车辆速度数据,得到第五计算结果;
    计算所述第四计算结果除以所述第五计算结果,得到第六计算结果;
    计算所述第六计算结果的反正弦值之后乘以2,得到第三车辆转向角数据。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述第二车辆转向角数据的绝对值大于预设阈值,触发方向盘限位信号。
  8. 一种获取车辆转向角的装置,其特征在于,所述装置包括:
    第一获取单元,用于在车辆按照预设方式行驶时,获取车辆测试数据,每组所述车辆测试数据包括第一方向盘编码器数据、第一车辆速度数据、第一车辆转向角速率数据;
    第一计算单元,用于计算每组所述车辆测试数据对应的第一车辆转向角数据;
    拟合单元,用于利用所述车辆测试数据中的第一方向盘编码器数据以及对应的第一车辆转向角数据,拟合得到方向盘编码器数据与车辆转向角 数据之间的对应关系;
    第二获取单元,用于在所述车辆正常行驶时,获取第二方向盘编码器数据;
    第二计算单元,用于根据所述方向盘编码器数据与车辆转向角数据之间的对应关系,得到所述第二方向盘编码器数据对应的第二车辆转向角数据。
  9. 一种获取车辆转向角的设备,其特征在于,包括:存储器,处理器,及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-7任一项所述的获取车辆转向角的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在终端设备上运行时,使得所述终端设备执行如权利要求1-7任一项所述的获取车辆转向角的方法。
PCT/CN2020/096281 2020-06-16 2020-06-16 一种获取车辆转向角的方法、装置、设备及存储介质 WO2021253212A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080093254.6A CN115003587B (zh) 2020-06-16 2020-06-16 一种获取车辆转向角的方法、装置、设备及存储介质
EP20941501.7A EP4166424A4 (en) 2020-06-16 2020-06-16 METHOD FOR ACQUIRING A VEHICLE STEERING ANGLE, APPARATUS, DEVICE AND RECORDING MEDIUM
BR112022025649A BR112022025649A2 (pt) 2020-06-16 2020-06-16 Método para adquirir ângulo de direção de veículo, aparelho, dispositivo e meio de armazenamento
PCT/CN2020/096281 WO2021253212A1 (zh) 2020-06-16 2020-06-16 一种获取车辆转向角的方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096281 WO2021253212A1 (zh) 2020-06-16 2020-06-16 一种获取车辆转向角的方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021253212A1 true WO2021253212A1 (zh) 2021-12-23

Family

ID=79269019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096281 WO2021253212A1 (zh) 2020-06-16 2020-06-16 一种获取车辆转向角的方法、装置、设备及存储介质

Country Status (4)

Country Link
EP (1) EP4166424A4 (zh)
CN (1) CN115003587B (zh)
BR (1) BR112022025649A2 (zh)
WO (1) WO2021253212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543733A (zh) * 2022-01-19 2022-05-27 江苏大学 一种轮式车辆主动轮转角测量装置及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135066A (en) * 1989-06-02 1992-08-04 Mitsubishi Denki Kabushiki Kaisha Apparatus for detecting the steering angle of rear wheels of a vehicle
US20030019113A1 (en) * 2001-07-26 2003-01-30 Valeo Schalter Und Sensoren Gmbh Steering column module with steering angle sensor having low sensitivity to steering column radial run-out
CN203332203U (zh) * 2013-07-03 2013-12-11 宁波如意股份有限公司 一种编码器的浮动安装结构
CN203496981U (zh) * 2013-10-21 2014-03-26 北京农业智能装备技术研究中心 一种电动转向控制装置
CN203854712U (zh) * 2014-05-25 2014-10-01 华安 带编码器的汽车方向机
CN206187095U (zh) * 2016-11-29 2017-05-24 江苏科力机械有限公司 叉车转向减速装置
CN106965850A (zh) * 2015-12-14 2017-07-21 现代摩比斯株式会社 电机驱动动力转向系统及其控制方法
CN207832207U (zh) * 2018-02-28 2018-09-07 西安微电机研究所 一种用于控制无人驾驶方向盘的编码器装置
CN109398482A (zh) * 2017-08-17 2019-03-01 西北农林科技大学 一种编码器采集车辆转角机构的安装装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170185A (ja) * 2002-11-19 2004-06-17 Koyo Seiko Co Ltd 操舵角補正装置
DE602004010652T2 (de) * 2003-06-11 2008-12-04 Snr Roulements Bestimmung der absoluten winkelposition eines lenkrads durch binärsequenz-diskrimination
CN108007417B (zh) * 2016-10-27 2021-02-05 上海华测导航技术股份有限公司 一种农机自动驾驶控制系统角度传感器自动标定方法
SE541512C2 (en) * 2017-06-07 2019-10-22 Scania Cv Ab Method and system for determining offset of a steering wheel angle sensor
CN109278859B (zh) * 2018-08-31 2020-07-07 百度在线网络技术(北京)有限公司 车辆安全控制方法、装置、设备及可读存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5135066A (en) * 1989-06-02 1992-08-04 Mitsubishi Denki Kabushiki Kaisha Apparatus for detecting the steering angle of rear wheels of a vehicle
US20030019113A1 (en) * 2001-07-26 2003-01-30 Valeo Schalter Und Sensoren Gmbh Steering column module with steering angle sensor having low sensitivity to steering column radial run-out
CN203332203U (zh) * 2013-07-03 2013-12-11 宁波如意股份有限公司 一种编码器的浮动安装结构
CN203496981U (zh) * 2013-10-21 2014-03-26 北京农业智能装备技术研究中心 一种电动转向控制装置
CN203854712U (zh) * 2014-05-25 2014-10-01 华安 带编码器的汽车方向机
CN106965850A (zh) * 2015-12-14 2017-07-21 现代摩比斯株式会社 电机驱动动力转向系统及其控制方法
CN206187095U (zh) * 2016-11-29 2017-05-24 江苏科力机械有限公司 叉车转向减速装置
CN109398482A (zh) * 2017-08-17 2019-03-01 西北农林科技大学 一种编码器采集车辆转角机构的安装装置
CN207832207U (zh) * 2018-02-28 2018-09-07 西安微电机研究所 一种用于控制无人驾驶方向盘的编码器装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166424A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543733A (zh) * 2022-01-19 2022-05-27 江苏大学 一种轮式车辆主动轮转角测量装置及控制方法

Also Published As

Publication number Publication date
BR112022025649A2 (pt) 2023-03-07
CN115003587B (zh) 2023-05-02
EP4166424A4 (en) 2024-05-01
EP4166424A1 (en) 2023-04-19
CN115003587A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US7840369B2 (en) Apparatus and method for correcting bias of gyroscope mounted on mobile robot
KR101222298B1 (ko) 2-륜 이동 로봇의 오도메트리 오차 보정 방법
JP2014023419A (ja) 車両モーター位置センサーのオフセット補正方法
US10071764B2 (en) Methods to control a steering system
TW201314240A (zh) 慣性導航系統之修正方法、裝置及系統
US8731779B2 (en) Method and device for aligning a determined steer angle with a measured steer angle
WO2021253212A1 (zh) 一种获取车辆转向角的方法、装置、设备及存储介质
CN109552417A (zh) 一种驱动轮角度零偏的校准方法及系统
JP3342365B2 (ja) ヨーレートセンサの較正方法
JP2016017796A (ja) 車輌位置計測装置及び方法
CN112388602B (zh) 一种移动机器人的标定方法、装置及设备
JP2001510890A (ja) 自律的移動ユニットの回転状態の検出のための方法及び自律的移動ユニット
KR20030033092A (ko) 자동적으로 차량의 우측 및 좌측 차륜을 위치 선정하기위한 방법
CN114217620B (zh) 一种轮式机器人智能避障控制系统及方法
CN116338719A (zh) 基于b样条函数的激光雷达-惯性-车辆融合定位方法
JP2711746B2 (ja) 角速度計測装置
CN113320566B (zh) 多列车铰接角零位标定方法、装置和计算机设备
JP6620625B2 (ja) 位置推定装置
JP7360976B2 (ja) センサ誤差補正装置
KR20160103750A (ko) 차량의 곡률 반경 추정장치 및 그 방법
CN113050622B (zh) 无人压路机路径跟踪控制方法及系统、服务器及介质
CN113753024B (zh) 一种车辆稳态偏差消除方法、装置、设备及存储介质
JPH05119046A (ja) 車速検出装置
US20220278637A1 (en) Estimation of rotor operational characteristics for a wind turbine
JP6495609B2 (ja) 方位検出装置および方位検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941501

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025649

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020941501

Country of ref document: EP

Effective date: 20230116

ENP Entry into the national phase

Ref document number: 112022025649

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221215