WO2021251417A1 - ブロックコポリマーを含む生体物質への適合性を有するコーティング膜 - Google Patents

ブロックコポリマーを含む生体物質への適合性を有するコーティング膜 Download PDF

Info

Publication number
WO2021251417A1
WO2021251417A1 PCT/JP2021/021861 JP2021021861W WO2021251417A1 WO 2021251417 A1 WO2021251417 A1 WO 2021251417A1 JP 2021021861 W JP2021021861 W JP 2021021861W WO 2021251417 A1 WO2021251417 A1 WO 2021251417A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
substrate
group
cell culture
carbon atoms
Prior art date
Application number
PCT/JP2021/021861
Other languages
English (en)
French (fr)
Inventor
美耶 廣飯
真介 田所
征巳 小沢
佳臣 広井
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022530596A priority Critical patent/JPWO2021251417A1/ja
Priority to US18/001,505 priority patent/US20230242869A1/en
Priority to EP21822211.5A priority patent/EP4166645A4/en
Publication of WO2021251417A1 publication Critical patent/WO2021251417A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2537/00Supports and/or coatings for cell culture characterised by physical or chemical treatment
    • C12N2537/10Cross-linking
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2539/00Supports and/or coatings for cell culture characterised by properties

Definitions

  • the present invention relates to a composition for forming a coating film having compatibility with a biological substance containing a block copolymer, a coating film using the same, a cell culture substrate using the same, a method for producing a cell culture substrate, and cell aggregation. Regarding the method of producing a mass.
  • a coating material that has the ability to suppress the adhesion of various biological substances in order to suppress the adhesion of biological substances to various medical equipment such as artificial dialysers, artificial organs, medical instruments such as medical instruments, cell culture containers, and cell culture substrates. has been proposed.
  • Patent Document 1 discloses an ion complex material having an ability to control adhesion of biological substances.
  • Patent Document 2 discloses a method for producing a polymer used as a base film for cell culture and a cell culture container.
  • An object of the present invention is a composition for forming a coating film having compatibility with a biological substance, including a block copolymer having a specific structure, a coating film using the same, a substrate for cell culture using the same, and a cell culture.
  • the present invention provides a method for producing a substrate and a method for producing a cell aggregate.
  • the present inventors have a peculiar property that a coating film containing a block copolymer having a specific structure is particularly excellent in the ability to suppress protein adhesion, and as a coating film for a cell culture substrate, cells are attracted but not adhered. Therefore, it has been found that it exerts an excellent effect particularly in the production of cell aggregates, and the present invention has been completed.
  • Equation (1) and Equation (2) (In the formula, R 1 to R 3 , U 1 and U 2 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X 1 and X 2 independently represent the number of carbon atoms.
  • a composition for forming a coating film having compatibility with a biological substance which comprises a block copolymer having a unit structure represented by 1 to 5 alkylene groups and n1 representing an integer of 1 to 10), and a solvent.
  • the solvent contains water or alcohol.
  • a coating film having compatibility with a biological substance which is a coating film of the composition for forming a coating film having compatibility with the biological substance according to any one of the above [1] to [5].
  • a cell culture substrate comprising a coating film having compatibility with the biological substance according to the above [6] on at least a part of the substrate surface on a substrate having an ability to suppress adhesion of a biological substance.
  • a copolymer in which a substrate having an ability to suppress adhesion of a biological substance contains a repeating unit containing a group represented by the following formula (a) and a repeating unit containing a group represented by the following formula (b).
  • U a1 , U a2 , U b1 , U b2 and U b3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and An ⁇ is a halide ion, an inorganic acid ion or a hydroxide.
  • a composition for forming a coating film having compatibility with a biological substance which comprises a block copolymer having a unit structure represented by (1 to 5 representing an alkylene group and n1 representing an integer of 1 to 10) and a solvent.
  • a method for producing a substrate for cell culture which comprises a step of applying and then drying.
  • a method for producing a cell aggregate which comprises a step of seeding on the undercoat.
  • the block copolymer of the present invention contains a hydrophobic moiety (for example, a block having a unit structure represented by the formula (1)) and a hydrophilic moiety (for example, a block having a unit structure represented by the formula (2)).
  • a hydrophobic moiety for example, a block having a unit structure represented by the formula (1)
  • a hydrophilic moiety for example, a block having a unit structure represented by the formula (2)
  • 6 is a 1 H-NMR chart of the polymer obtained in Synthesis Example 1.
  • 6 is a 1 H-NMR chart of the polymer obtained in Synthesis Example 4. It is a photograph of the state of cell adhesion in a petri dish coated with each coating film forming composition of Preparation Examples 6 to 9 in Test Example 4 under a microscope. It is a photograph which observed the state of the cell aggregate formation in the petri dish coated with each coating film formation composition of Preparation Examples 6 to 9 in Test Example 4 under a microscope.
  • composition for forming a coating film having compatibility with biological substances has the formulas (1) and (2) :.
  • R 1 to R 3 , U 1 and U 2 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X 1 and X 2 independently represent the number of carbon atoms.
  • a block copolymer having a unit structure represented by (1 to 5 representing an alkylene group and n1 representing an integer of 1 to 10) and a coating composition for forming a coating film having compatibility with a biological substance, which comprises a solvent. Is.
  • alkyl group having 1 to 5 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group and an n-pentyl group.
  • examples thereof include 1-methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group or 1-ethylpropyl group.
  • R 1 to R 3 , U 1 and U 2 are independently selected from a hydrogen atom, a methyl group or an ethyl group.
  • Examples of the alkylene group having 1 to 5 carbon atoms include a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a 1-methylpropylene group, a 2-methylpropylene group, a dimethylethylene group, an ethylethylene group and a penta.
  • Methylene group, 1-methyl-tetramethylene group, 2-methyl-tetramethylene group, 1,1-dimethyl-trimethylene group, 1,2-dimethyl-trimethylene group, 2,2-dimethyl-trimethylene group, 1-ethyl- Examples include the trimethylene group.
  • the X 1 and X 2 are preferably selected from a methylene group, an ethylene group and a propylene group. As the above n1, an integer of 1 to 6 is preferable, and an integer of 2 to 4 is more preferable.
  • the unit structure represented by the above formula (1) is the following formula (1-1) and formula (2-1): It is preferably derived from the compound represented by.
  • R 1 to R 3 , U 1 and U 2 , X 1 and X 2 , and n 1 are the same as described above.
  • the monomer represented by the formula (1-1) include 2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate, 2-dipropylaminoethyl methacrylate and the like, but 2-dimethylaminoethyl methacrylate and the like. It is preferable to use 2-diethylaminoethyl methacrylate.
  • the monomer represented by the formula (2-1) include diethylene glycol monomethyl ether methacrylate, dipropylene glycol monomethyl ether methacrylate, and the like, but it is preferable to use diethylene glycol monomethyl ether methacrylate.
  • the block copolymer of the present invention preferably contains two blocks polymerized from one compound each, which induces the units of the above formulas (1) and (2), but one or both of them are two or more. It may contain 3 or more kinds of blocks polymerized from the compound of.
  • a compound that induces a repeating unit of the third component, which is represented by a formula other than the above formulas (1) and (2), may be further polymerized.
  • the molar ratio of the unit structures represented by the formulas (1) and (2) to the entire block copolymer is not particularly limited as long as the compatibility with biological substances is not impaired, but is, for example, 80 mol% or more, 90. It is more than mol% and 100 mol%.
  • the block copolymer can be synthesized by a known method, and may be produced, for example, by using a flow reactor equipped with a specific mixer described in International Publication No. 2017/135398.
  • the block copolymer of the present invention is a combination of a plurality of types of polymers (blocks) that are chemically different and covalently bonded to each other.
  • the block copolymer used in the present invention contains an organic polymer chain (A) containing an organic monomer (a) as a unit structure and a monomer (b) different from the organic monomer (a) as a unit structure, and the organic polymer chain (A). ) Includes a polymer chain (B).
  • Specific embodiments of the block copolymer used in the present invention include a polymer (block) composed of repeating units represented by the formula (1) and a polymer (block) composed of repeating units represented by the formula (2). Examples thereof include polymers in which both blocks are covalently bonded to each other.
  • the solid content of the coating film forming composition of the present invention can be 0.01 to 50% by mass, 0.1 to 20% by mass, or 0.1 to 10% by mass.
  • the solid content is the remaining ratio of the film-forming composition from which the solvent has been removed.
  • the proportion of block copolymer in the solid content can be 30 to 100% by mass, 50 to 100% by mass, 50 to 90% by mass, or 50 to 80% by mass.
  • the types of blocks present in the block copolymer can be 2 or 3 or more.
  • the number of blocks existing in the block copolymer can be 2 or 3 or more.
  • polymer chain (B) By changing the polymer chain (B), it is possible to use, for example, an adjacent polymer chain (C) containing the monomer (c) as a unit structure.
  • the block polymer include combinations of AB, ABAB, ABA, ABC and the like.
  • the polymerization process consists only of an initiation reaction and a growth reaction and is not accompanied by a side reaction that inactivates the growth end.
  • the growth end can continue to maintain the growth activity reaction during the polymerization reaction.
  • a polymer (A) having a uniform length can be obtained.
  • polymerization can proceed under the monomer (b) to form a block copolymer (AB).
  • Homopolymer A or B is a polymerizable compound having at least one polymerizable reactive group, preferably a radically polymerizable reactive group (vinyl group or vinyl group-containing organic group).
  • the weight average molecular weight Mw of the block copolymer used in the present invention may be 1,000 to 1,000,000, 5,000 to 500,000, 5,000 to 100,000 or 5,000 to 50,000. preferable. If it is less than 1000, the coatability to the substrate may be poor, and if it is more than 1,000,000, the solubility in the solvent may be poor.
  • the polydispersity (Mw / Mn) of the block copolymer of the present invention is preferably 1.00 to 2.00, and particularly preferably 1.00 to 1.50.
  • Examples of the solvent contained in the coating film forming composition having compatibility with the biological material of the present invention include water, phosphate buffered saline (PBS), alcohol, or a mixed solvent in which two or more of them are combined.
  • examples of the alcohol include alcohols having 2 to 6 carbon atoms, such as ethanol, propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, t-butanol, 1-pentanol, 2-pentanol and 3-pentanol.
  • biological substances include proteins, sugars, viruses, nucleic acids, cells or combinations thereof.
  • Having compatibility with biological substances means having the ability to suppress the adhesion of the biological substances (particularly proteins) and having no toxicity to the biological substances.
  • it means that it can be used for forming a base film for cell culture, and particularly preferably for forming a base film for cell culture for obtaining cell aggregates.
  • proteins include fibrinogen, bovine serum albumin (BSA), human albumin, various globulin, ⁇ -lipoprotein, various antibodies (IgG, IgA, IgM), peroxidase, various complements, various lectins, fibronectin, lysoteam, and von Ville.
  • BSA bovine serum albumin
  • human albumin various globulin
  • ⁇ -lipoprotein various antibodies (IgG, IgA, IgM)
  • IgG, IgA, IgM antibodies
  • peroxidase various complements
  • various lectins fibronectin
  • lysoteam lysoteam
  • von Ville von Ville
  • vWF Brand factor
  • sugars include glucose, galactose, mannose, fructose, heparin, hyaluronic acid
  • nucleic acid deoxyribonucleic acid (DNA), ribonucleic acid (RNA)
  • RNA ribonucleic acid
  • examples of the above cells include fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monospheres, bone cells, pericutaneous cells, dendritic cells, keratinocytes, fat cells, and mesenchymal cells.
  • Cells epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatic parenchymal cells, cartilage cells, oval cells, nervous system cells, glia cells, neurons, oligodendrocytes, microglia, stellate glue cells, heart cells, Esophageal cells, muscle cells (eg, smooth muscle cells or skeletal muscle cells), pancreatic beta cells, melanin cells, hematopoietic precursor cells, mononuclear cells, embryonic stem cells (ES cells), embryonic tumor cells, embryonic reproductive stem cells, Artificial pluripotent stem cells (iPS cells), nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells, hair follicle stem cells, and various cell lines (eg,) HCT116, Huh7, HEK293 (human fetal kidney cell), HeLa (human cervical
  • Having the ability to suppress protein adhesion means mass (%) per unit area relative to the case without a coating film in the QCM-D measurement performed by the method described in the example ((per unit area of the example). (Mass (ng / cm 2 )) / (mass per unit area without coating film (ng / cm 2 ))) is 50% or less, preferably 30% or less, more preferably 20% or less. death;
  • the ability to suppress cell adhesion is defined as the relative absorbance (WSTOD 450 nm) (%) ((Implementation)) when compared with the case without a coating film by a fluorescence microscope performed by the method described in International Publication No. 2016/093293.
  • the absorbance of the example (WST OD 450 nm)) / (absorbance of the comparative example (WST OD 450 nm)) is 50% or less, preferably 30% or less, and more preferably 20% or less. do.
  • the compatibility with the above-mentioned biological substances is the ability to suppress the adhesion of proteins.
  • the compatibility with the above-mentioned biological material is for forming a base film for cell culture.
  • the cell aggregate refers to a structure formed as a result of cell aggregation, and its shape is not limited to a spherical shape or a ring shape.
  • the size of the cell aggregates can be adjusted according to the regulation of the adhesion area (cell aggregates of any size can be produced). There is a merit in.
  • composition of the present invention may be added to the composition of the present invention as long as the performance of the obtained coating film is not impaired.
  • other substances include preservatives, surfactants, primers that enhance adhesion to a substrate, fungicides, saccharides and the like.
  • the coating film having compatibility with the biological substance of the present invention is a coating film of the coating film forming composition having compatibility with the biological substance, and typically, the coating film forming composition according to the present invention.
  • An object can be applied to a substrate and dried to form a coating film.
  • the same substrate as described in the cell culture substrate below can be used.
  • the above coating film forming composition is applied to at least a part of the surface of the substrate.
  • the coating method is not particularly limited, and ordinary spin coating, dip coating, solvent casting and other coating methods are used.
  • the step of drying the coating film according to the present invention is carried out under the atmosphere or vacuum in a temperature range of ⁇ 200 ° C. to 200 ° C.
  • the coating film can be formed by drying at room temperature (10 ° C. to 35 ° C., for example, 25 ° C.), for example, but in order to form the coating film more quickly, it is dried at, for example, 40 ° C. to 100 ° C. May be good.
  • a more preferable drying temperature is 10 ° C to 180 ° C, and a more preferable drying temperature is 20 ° C to 150 ° C.
  • Substrate for cell culture manufacturing method of substrate for cell culture, substrate having ability to suppress adhesion of biological substances> It is a cell culture substrate provided with a coating film having compatibility with biological substances on at least a part of the surface of the substrate on a substrate having an ability to suppress adhesion of biological substances.
  • the substrate in the present invention may be a flat plate substrate or a container-shaped substrate (so-called cell culture vessel) having a structure having recesses such as wells and dishes.
  • a cell culture substrate can be manufactured by applying the coating film forming composition having compatibility with the biological substance to the surface of the substrate and drying it.
  • the "surface” refers to a surface in contact with the contents such as cells or cell culture medium.
  • the cell culture substrate of the present invention may also be provided with a coating film having compatibility with biological substances as a plurality of spots on a substrate having an ability to suppress adhesion of biological substances.
  • the shape of the spot is not particularly limited. For example, it has a substantially circular or quadrangular shape, but it is preferably a substantially circular spot.
  • the ratio of the total area of spots to the surface area of the substrate, the diameter of each spot and the spacing between spots may be appropriately selected from a predetermined range according to the type of cells and substrates used, the desired size of cell aggregates, and the like.
  • the ratio of the total area of the spots to the surface area of the substrate is preferably 30% or more, 40% or more, 50% or more, and preferably 99% or less, and the diameter of each spot is 50 to 50. It is preferably 5000 ⁇ m and preferably 300 to 3000 ⁇ m, and the distance between the spots is preferably 30 to 1000 ⁇ m and preferably 100 to 500 ⁇ m.
  • an independent micro-sized region (spot) having compatibility with a biological substance is formed on a substrate having an ability to suppress adhesion of a biological substance at such a high density, preferably. By arranging them regularly, a plurality of cell aggregates of uniform size can be formed on one substrate (container) at one time.
  • Examples of the substrate include petri dishes commonly used for cell culture, tissue culture dishes, petri dishes such as multi-dish, flasks such as cell culture flasks and spinner flasks, and plastic bags. , Teflon (registered trademark) bags, bags such as culture bags, plates such as microplates, microwell plates, multiplates, multiwell plates, and bottles such as chamber slides, tubes, trays, and roller bottles. Preferred are petri dishes or dishes, plates and trays.
  • the material of the substrate may be, for example, glass, metal, metal-containing compound or metalloid-containing compound, activated carbon or resin.
  • Metals are typical metals: (alkali metals: Li, Na, K, Rb, Cs; alkaline earth metals: Ca, Sr, Ba, Ra), magnesium group elements: Be, Mg, Zn, Cd, Hg; aluminum group.
  • the metal-containing compound or semi-metal-containing compound is, for example, a ceramic whose basic component is a metal oxide and is a sintered body baked and hardened by heat treatment at a high temperature, a semiconductor such as silicon, a metal oxide or a semi-metal oxide (silicon).
  • Inorganic solid materials such as molded bodies of inorganic compounds such as oxides, alumina, etc.), metal carbides or semi-metal carbides, metal nitrides or semi-metal nitrides (silicon nitrides, etc.), metal boroides or semi-metal boroides, etc. Examples thereof include aluminum, nickel titanium, and stainless steel (SUS304, SUS316, SUS316L, etc.).
  • the resin may be a natural resin or a derivative thereof, or a synthetic resin, and the natural resin or a derivative thereof may be synthetic such as cellulose, cellulose triacetate (CTA), nitrocellulose (NC), and cellulose immobilized with dextran sulfate.
  • Resins include polyacrylonitrile (PAN), polyester polymer alloy (PEPA), polystyrene (PS), polysulfone (PSF), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polyvinyl alcohol (PVA), polyurethane (PU).
  • EVAL Ethylene vinyl alcohol
  • PE polyethylene
  • PP polypropylene
  • PVDF polyvinylidene fluoride
  • PES polyether sulfone
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PTFE polytetrafluoroethylene
  • UHPE ultra-high molecular weight polyethylene
  • PDMS polydimethylsiloxane
  • ABS acrylonitrile-butadiene-styrene resin
  • Teflon® Teflon®
  • the composition for forming a coating film when the composition for forming a coating film is coated so as to be present on at least a part of the surface of the substrate, it does not require treatment at a high temperature, so that the resin has low heat resistance. Etc. are also applicable.
  • the material of the substrate may be one type or a combination of two or more types.
  • Polypropylene (PP), stainless steel (SUS304, SUS316, SUS316L, etc.) and polydimethylsiloxane (PDMS) are particularly preferable.
  • the coating film forming composition of the present invention in addition to the spin coating method, dip coating method, solvent casting method and the like, for example, an inkjet method, a screen printing method, a slit coating method, a roll-to-roll method and the like are used. However, it is preferably performed by a printing technique such as an inkjet method or screen printing.
  • the container is immersed in the coating film forming composition
  • the coating film forming composition is added to the container and allowed to stand for a predetermined time, or the coating film forming composition is placed in the container.
  • a method such as coating on the surface of the substrate is used, but in the case of a container, in one aspect, a cell culture container, a coating film forming composition is added to the container and allowed to stand for a predetermined time.
  • the coating film is a spot
  • a substrate that protects the non-formed portion of the spot is immersed in the coating film forming composition
  • the coating film forming composition protects the non-formed portion of the spot in some cases.
  • the addition is carried out by a method such as adding to a substrate (container) and allowing it to stand for a predetermined time.
  • the addition can be performed, for example, by adding a coating film forming composition in an amount of 0.5 to 1 times the total volume of the container using a syringe or the like.
  • the standing is carried out by appropriately selecting the time and temperature according to the material of the container or substrate and the type of the substrate film forming agent for cell culture. For example, 1 minute to 24 hours, preferably 5 minutes to 3 hours. It is carried out at 10-80 ° C. This makes it possible to produce a cell culture container having a cell culture base film on at least a part of the surface of the container, preferably over the entire surface.
  • a composition for forming a coating film is added and allowed to stand for a predetermined time. It can be used as a cell culture container as it is without going through a drying step or after washing with water or a medium of a sample to be subjected to cell culture (for example, water, buffer solution, medium, etc.). can.
  • the medium of the sample eg, within 12 hours, more preferably within 6 hours, even more preferably within 3 hours, even more preferably within 1 hour, as is, or subject to water or cell culture, without going through a drying step. It can be used as a cell culture container after washing with water, a buffer solution, a medium, or the like, particularly preferably with a medium (for example, BME medium (Eagle's basal medium), DMEM medium (Dalveco's modified Eagle's medium)).
  • a medium for example, BME medium (Eagle's basal medium), DMEM medium (Dalveco's modified Eagle's medium)
  • the container may be attached to the drying process.
  • the drying step is carried out under air or vacuum, preferably in a temperature range of ⁇ 200 ° C. to 200 ° C. By removing the solvent in the undercoat film forming agent by the drying step, the solvent is completely adhered to the substrate.
  • the coating film can also be formed by drying at room temperature (10 ° C. to 35 ° C., preferably 20 ° C. to 30 ° C., for example 25 ° C.), but in order to form the undercoat film more quickly, for example, 40 ° C. It may be dried at ⁇ 100 ° C. A more preferable drying temperature is 10 ° C. to 180 ° C., and a more preferable drying temperature is 20 ° C. to 150 ° C.
  • the coating film of the present invention is manufactured through the above simple steps.
  • a step of washing with at least one solvent selected from an aqueous solution containing water and an electrolyte may be carried out.
  • at least one solvent selected from an aqueous solution containing water and an electrolyte may be carried out.
  • the aqueous solution containing the water and the electrolyte may be heated in the range of, for example, 40 ° C to 95 ° C.
  • the aqueous solution containing an electrolyte PBS, physiological saline (containing only sodium chloride), dalbecolinic acid buffered saline, Tris buffered saline, HEEPS buffered saline and Veronal buffered saline are preferable, and PBS is preferable. Especially preferable.
  • the coating film does not elute and remains firmly fixed to the substrate even when washed with water, PBS, alcohol, or the like.
  • the film thickness of the coating film of the present invention has a maximum film thickness and a minimum film thickness in the range of 1 to 1000 nm, preferably in the range of 5 to 500 nm, 10 to 300 nm, 10 to 200 nm, 10 to 100 nm, and 10 to 50 nm. be.
  • ⁇ Substrate having the ability to suppress the adhesion of biological substances As the substrate having the ability to suppress the adhesion of biological substances of the present invention, known materials such as commercially available products can be used, but the group represented by the following formula (a) described in International Publication No. 2014/196650.
  • the above-mentioned copolymer has the following formulas (a1) and (b1): During the ceremony T a , T b , U a1 , U a2 , U b1 , U b 2 and U b 3 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Q a and Q b are respectively.
  • Ra and R b each independently represent an alkylene group having 1 to 10 carbon atoms which may be substituted with a halogen atom
  • An ⁇ represents an anion selected from the group consisting of halide ion, inorganic acid ion, hydroxide ion and isothiocyanate ion, and m represents an integer of 0 to 6). It is preferable to include the repeating unit of.
  • the alkyl groups having 1 to 5 carbon atoms are as listed in the formulas (1) and (2).
  • the alkylene group having 1 to 10 carbon atoms which may be substituted with the halogen atom is an alkylene group having 1 to 10 carbon atoms or an alkylene group having 1 to 10 carbon atoms substituted with 1 or more halogen atoms. It means a group, and here, as the alkylene group having 1 to 10 carbon atoms, in addition to the examples given in the alkylene group having 1 to 5 carbon atoms in the formulas (1) and (2), a hexamethylene group and an octa. Examples thereof include a methylene group and a decamethylene group.
  • the linear or branched alkylene group having 1 to 10 carbon atoms substituted with one or more halogen atoms means that one or more arbitrary hydrogen atoms of the alkylene group are replaced with halogen atoms.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the halide ion means a fluoride ion, a chloride ion, a bromide ion or an iodide ion
  • the inorganic acid ion means a carbonate ion, a sulfate ion, a phosphate ion, a hydrogen phosphate ion and a phosphate. It means dihydrogen ion, nitrate ion, perchlorate ion or borate ion.
  • an ethylenically unsaturated monomer or a copolymer of a polysaccharide or a derivative thereof may be used.
  • ethylenically unsaturated monomers are one or two selected from the group consisting of (meth) acrylic acid and its esters; vinyl acetate; vinylpyrrolidone; ethylene; vinyl alcohol; and their hydrophilic functional derivatives.
  • examples thereof include ethylenically unsaturated monomers having more than one species.
  • polysaccharides or derivatives thereof include cellulosic polymers such as hydroxyalkyl cellulose (eg, hydroxyethyl cellulose or hydroxypropyl cellulose), starch, dextran, and curdlan.
  • the hydrophilic functional derivative refers to an ethylenically unsaturated monomer having a hydrophilic functional group or structure.
  • hydrophilic functional groups or structures include betaine structures; amide structures; alkylene glycol residues; amino groups; and sulfinyl groups.
  • Betaine structure means a monovalent or divalent group of a compound having an amphoteric center of a quaternary ammonium type cation structure and an acidic anion structure, for example, a phosphorylcholine group: Can be mentioned.
  • a phosphorylcholine group for example, a phosphorylcholine group:
  • examples of the ethylenically unsaturated monomer having such a structure include 2-methacryloyloxyethyl phosphorylcholine (MPC) and the like.
  • the amide structure is as follows: [Here, R 16 , R 17 and R 18 are hydrogen atoms or organic groups (eg, methyl group, hydroxymethyl group, hydroxyethyl group, etc.) independently of each other]. Means the group represented by. Examples of ethylenically unsaturated monomers having such a structure include (meth) acrylamide, N- (hydroxymethyl) (meth) acrylamide and the like. Further, a monomer or polymer having such a structure is disclosed in, for example, Japanese Patent Application Laid-Open No. 2010-169604.
  • the alkylene glycol residue remains after the hydroxyl group of one or both terminals of the alkylene glycol (HO-Alk-OH; where Alk is an alkylene group having 1 to 10 carbon atoms) undergoes a condensation reaction with another compound. It means an alkyleneoxy group (-Alk-O-) and also includes a poly (alkyleneoxy) group in which an alkyleneoxy unit is repeated.
  • alkyleneoxy group -Alk-O-
  • Examples of the ethylenically unsaturated monomer having such a structure include 2-hydroxyethyl (meth) acrylate and methoxypolyethylene glycol (meth) acrylate.
  • a monomer or polymer having such a structure is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-533489.
  • the amino group is of the formula: -NH 2 , -NHR 19 or -NR 20 R 21 [where R 19 , R 20 and R 21 are independent of each other and have an organic group (eg, 1-5 carbon atoms). Alkyl group, etc.)] means a group represented by.
  • Amino groups in the present invention include quaternized or chlorided amino groups. Examples of the ethylenically unsaturated monomer having such a structure include dimethylaminoethyl (meth) acrylate, 2- (t-butylamino) ethyl (meth) acrylate, and methacryloylcholine chloride.
  • the sulfinyl group has the following formula: [Here, R 22 is an organic group (for example, an organic group having 1 to 10 carbon atoms, preferably an alkyl group having 1 or more hydroxy groups and having 1 to 10 carbon atoms, etc.)]. Means the group represented by. As a polymer having such a structure, a copolymer disclosed in JP-A-2014-48278 can be mentioned.
  • the method for producing a cell aggregate of the present invention comprises formulas (1) and (2): on a substrate having an ability to suppress adhesion of biological substances.
  • R 1 to R 3 , U 1 and U 2 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X 1 and X 2 independently represent the number of carbon atoms.
  • the cell aggregate can be produced by a known method, for example, by the method described in the following Examples.
  • the weight average molecular weight (Mw) of the polymer (A) shown in the synthesis example below is a measurement result by a gel permeation chromatography (GPC) method.
  • the measurement conditions are as follows.
  • FIG. 1 shows a schematic diagram of the flow reactor (reaction device) used in the following synthesis examples 1 to 5.
  • the arrow indicates the direction in which the liquid flows. Plan using a plunger pump A (UI-22-110 manufactured by Fromm Co., Ltd.) and a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) for sending the first monomer liquid.
  • the other inlet of the mixer 2 is a syringe pump C (Keychem-L manufactured by YMC Co., Ltd.) and a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m) for second monomer liquid feeding. Connected.
  • the outlet of the mixer 2 and the inlet of the mixer 3 are PFA tubes (inner diameter 2.0 mm, outer diameter 3 mm, length 4 m (synthesis examples 1, 2, 3), inner diameter 2.0 mm, outer diameter 3 mm, length 5 m (inner diameter 2.0 mm, outer diameter 3 mm, length 5 m). It was connected in Synthesis Examples 4, 5)).
  • the other inlet of the mixer 3 is a syringe pump D (UI-22-110 manufactured by Fromm Co., Ltd.) for sending a polymerization inhibitor solution and a PTFE tube (inner diameter 1.0 mm, outer diameter 1.6 mm, length 2 m). ) Connected.
  • a PFA tube (inner diameter 2.0 mm, outer diameter 3 mm, length 0.7 m) was connected to the outlet of the mixer 3.
  • the flow path from each pump to 90% of the length of the tube connected to the tip and the outlet of the mixer 3 was immersed in a constant temperature bath at ⁇ 40 ° C. to adjust the temperature.
  • the mixer 1 used for the synthesis is a two-component mixing mixer having a double-tube structure described in International Publication No.
  • a DSP-MXA3-17 manufactured by Company Limited (a polyacetal element, a number of twisted blades of 17, and a diameter of 3 mm) was processed], and a general simple double-tube mixer was used as the mixer 3.
  • the first monomer solution tube was connected to the inlet of the introduction hole of the mixer 1, and the initiator solution tube was connected to the inlet of the inner tube.
  • a tube connected to the outlet of the mixer 1 was connected to the inlet of the introduction hole of the mixer 2, and a second monomer liquid tube was connected to the inlet of the inner tube.
  • a polymerization inhibitor solution was connected to the inlet of the introduction hole of the mixer 3, and a tube connected to the outlet of the mixer 2 was connected to the inlet of the inner tube.
  • a diethylene glycol monomethyl ether methacrylate solution as a second monomer was mixed with a mixer 2 at 0.92 mL / min and block-polymerized.
  • a 0.25 mol / L methanol / THF solution as a polymerization inhibitor was mixed with a mixer 3 at 10 mL / min to terminate the polymerization. Each pump was pumped for 5 minutes and the effluent was collected.
  • the solvent was substantially distilled off from the effluent by an evaporator, and then the effluent was added dropwise to a mixed solution of 200 ml of n-hexane and 200 ml of diethyl ether under an ice water bath.
  • the obtained white suspension was filtered through a 0.5 ⁇ m membrane filter.
  • the obtained filter medium was dissolved in 1,4-dioxane and then freeze-dried to obtain 4.1 g of PDM-b-PDEGMA.
  • diethylene glycol monomethyl ether methacrylate solution as the second monomer was mixed with a mixer 2 at 0.92 mL / min, and each pump was sent for 6 minutes. 2.5 g of PDEGMA was obtained.
  • a 1 H-NMR chart of the obtained polymer is shown in FIG.
  • a diethylene glycol monomethyl ether methacrylate solution as a second monomer was synthesized by the same method as in Synthesis Example 4 except that the mixture was mixed with a mixer 2 at 1.48 mL / min to obtain 1.6 g of PDE-b-PDEGMA.
  • the reaction solution was added dropwise to 500 mL of hexane, and the obtained white suspension was filtered through a 0.5 ⁇ m membrane filter. Subsequently, the obtained filter medium was dissolved in water and then freeze-dried to obtain 1.7 g of PDM-r-PDEGMA.
  • the reaction solution was added dropwise to 300 mL of hexane, and the obtained white suspension was filtered through a 0.5 ⁇ m membrane filter. Subsequently, the obtained filter medium was dissolved in 1,4-dioxane and then freeze-dried to obtain 1.8 g of PDE-r-PDEGMA.
  • Preparation Example 7 Preparation of Aqueous Polymer Solution> The polymer of Synthesis Example 1 was dissolved in sterile water to a concentration of 5 mg / mL to prepare a composition for forming a coating film (Preparation Example 7).
  • ⁇ Test Example 1 Coating film formation test>
  • the coating film forming compositions obtained in Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 were spin-coated on an HMDS-treated silicon wafer at 1500 rpm / 60 sec, and dried in an oven at 70 ° C. for 24 hours as a drying step. .. Then, after being thoroughly washed with PBS, it was dried in an oven at 70 ° C. for 1 hour to obtain a coating film on the HMDS-treated silicon wafer.
  • the film thickness of the coating film on the HMDS-treated silicon wafer measured using a spectroscopic ellipsometer is shown in Table 1 below. A coating film was formed when any of the coating film forming compositions was used.
  • the coating film forming compositions obtained in Preparation Examples 1 to 5 and Comparative Preparation Examples 1 and 2 were spin-coated on the QCM sensor (SiO 2 ) at 3500 rpm / 30 sec, and used on a hot plate at 100 ° C. as a drying step. It was baked for 5 hours. Then, as a cleaning step, the excess coating film forming composition was washed twice with PBS and pure water to obtain a surface-treated QCM sensor (SiO 2 ) (substrates No. 8 to 14).
  • a QCM sensor (PS) board No. 7
  • a QCM sensor SiO 2
  • ⁇ Test Example 3 Protein adhesion suppression test in medium> (Manufacturing of surface-treated QCM sensor (PS)) Similar to Test Example 2, after producing the QCM sensor (PS), the coating film forming compositions obtained in Preparation Examples 1 to 5 and Comparative Preparation Example 3 were spin-coated on the QCM sensor (PS) at 3500 rpm / 30 sec. As a drying step, it was baked in an oven at 70 ° C. for 24 hours. Then, as a washing step, the excess coating film forming composition was washed twice with PBS and pure water to obtain a surface-treated QCM sensor (PS) (substrates Nos. 1 to 5, 16).
  • a surface-treated QCM sensor (PS) (substrates Nos. 1 to 5, 16) prepared by the above method using a coating film forming composition is used as a dissipative quartz crystal microbalance QCM-D (E4, Q-Sence).
  • PS QCM sensor
  • the PBS was run until a stable baseline was established with a frequency change of 1 Hz or less in 1 hour.
  • PBS was run for about 10 minutes with the stable berth line frequency set to 0 Hz.
  • BME medium Thermo Fisher Scientific
  • FBS Sigma-Aldrich
  • L-glutamine-penicillin-streptomycin stabilizing solution Thermo Fisher Scientific.
  • the shift ( ⁇ f) of the adsorption-induced frequency of the 9th-order overtone was read.
  • the adsorption-induced frequency shift ( ⁇ f) and the adsorption-induced frequency shift ( ⁇ f) described by the Sauerbrey equation are masses per unit area (ng / ng /.
  • the amount converted to cm 2 ) is shown in Table 3 below as the amount of attached biological material.
  • Nos. 1 to 5 are substrates No. 1 using the coating film forming composition of Comparative Preparation Example 3 as a coating.
  • the amount of adhered protein and the like was lower than that of 16.
  • Example 4 Cell agglutination test> (Preparation of cell low adhesion petri dish) A coating solution was prepared from the copolymer-containing varnish according to the production method described in Example 30 of International Publication No. 2014/196650. Add 1 mL each of the prepared coating solution to ⁇ 40 mm Aznol Petri dish (manufactured by AS ONE Co., Ltd., # 1-8549-01), allow to stand at room temperature for 1 hour, remove excess coating solution, and oven at 50 ° C. Was baked for 24 hours. Then, after adding 2 mL of sterile water, the liquid was drained and washed. The same washing operation was performed twice more, and the cells were dried in an oven at 50 ° C. for 1 hour to obtain a cell low-adhesion petri dish.
  • ⁇ 40 mm Aznol Petri dish manufactured by AS ONE Co., Ltd., # 1-8549-01
  • mice embryo fibroblasts C3H10T1 / 2 (manufactured by DS Pharma Biomedical Co., Ltd.) were used.
  • the medium used for cell culture was BME medium (Thermo Fisher Scientific) containing 10% FBS (Sigma-Aldrich) and L-glutamine-penicillin-streptomycin stabilizing solution (Thermo Fisher Scientific). Made) was used.
  • the cells were statically cultured for 2 days or more in a petri dish (medium 10 mL) having a diameter of 10 cm while maintaining a 5% carbon dioxide concentration in a 37 ° C./CO 2 incubator.
  • the petri dish whose cell adhesion was confirmed above was allowed to stand in a CO 2 incubator at 37 ° C. for another 2 days. After standing still, the state of the cells was observed using an inverted research microscope IX73 (manufactured by Olympus Corporation). As a result, as shown in FIG. 5, the petri dish No. 1 in which the coating film forming composition prepared in Preparation Examples 6 to 9 was coated in a spot shape. It was confirmed that the cells adhering to the coating film forming spots 1 to 4 were peeled off from the plate and aggregated to form a cell aggregate (spheroid). From this, it was suggested that the undercoat containing the polymer of the present invention is useful as an undercoat for a cell culture vessel. Table 4 shows the results at each stage of cell adhesion before washing, maintenance of cell adhesion after washing, and formation of cell aggregates.
  • composition for forming a coating film having compatibility with a biological substance a coating film using the same, and a substrate for cell culture using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

特定の構造を有するブロックコポリマーを含む、生体物質への適合性を有するコーティング膜形成用組成物、それを用いたコーティング膜、それを用いた細胞培養用基板、細胞培養用基板の製造方法、及び細胞凝集塊の製造方法を提供すること。 式(1)及び式(2): (式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXは炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマー、及び溶媒を含む、生体物質への適合性を有するコーティング膜形成用組成物、である。

Description

ブロックコポリマーを含む生体物質への適合性を有するコーティング膜
 本発明は、ブロックコポリマーを含む生体物質への適合性を有するコーティング膜形成用組成物、それを用いたコーティング膜、それを用いた細胞培養用基板、細胞培養用基板の製造方法、及び細胞凝集塊の製造方法に関する。
 人工透析器、人工臓器、医療器具等の医療用器具、細胞培養容器、細胞培養用基板等の各種医療用途器材の生体物質付着抑制のために、様々な生体物質の付着抑制能を有するコーティング材料が提案されている。
 特許文献1には、生体物質の付着制御能を有するイオンコンプレックス材料が開示されている。特許文献2には、細胞培養の下地膜として使用するポリマーの製造方法及び細胞培養容器が開示されている。
国際公開第2014/196650号 国際公開第2020/040247号
 本発明の目的は、特定の構造を有するブロックコポリマーを含む、生体物質への適合性を有するコーティング膜形成用組成物、それを用いたコーティング膜、それを用いた細胞培養用基板、細胞培養用基板の製造方法、及び細胞凝集塊の製造方法を提供することである。
 本発明者らは、特定の構造を有するブロックコポリマーを含むコーティング膜が、特にタンパク質の付着抑制能に優れ、又細胞培養用基板のコーティング膜として、細胞が引き寄せられるが、接着しないという特異な性質を有し、そのため特に細胞凝集塊製造において優れた効果を奏することを見出し、本発明を完成させた。
 本発明は以下のとおりである。
[1] 式(1)及び式(2):
Figure JPOXMLDOC01-appb-C000005

(式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマー、及び溶媒を含む、生体物質への適合性を有するコーティング膜形成用組成物。
[2] 上記溶媒が、水又はアルコールを含む、上記[1]に記載の組成物。
[3] 上記生体物質への適合性が、タンパク質の付着抑制能である、上記[1]又は[2]に記載の組成物。
[4] 上記生体物質への適合性が、細胞培養の下地膜形成用である、上記[1]又は[2]に記載の組成物。
[5] 細胞を接着させた後に剥離させて、細胞凝集塊を得るための細胞培養の下地膜形成用である、上記[4]に記載の組成物。
[6] 上記[1]~[5]何れか1に記載の生体物質への適合性を有するコーティング膜形成用組成物の塗布膜である、生体物質への適合性を有するコーティング膜。
[7] 生体物質の付着抑制能を有する基板上に、上記[6]に記載の生体物質への適合性を有するコーティング膜を少なくとも基板表面の一部に備える、細胞培養用基板。
[8] 生体物質の付着抑制能を有する基板が、下記式(a)で表される基を含む繰り返し単位と、下記式(b)で表される基を含む繰り返し単位とを含む共重合体:
Figure JPOXMLDOC01-appb-C000006

 (式中、
 Ua1、Ua2、Ub1、Ub2及びUb3は、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、Anは、ハロゲン化物イオン、無機酸イオン、水酸化物イオン及びイソチオシアネートイオンからなる群から選ばれる陰イオンを表す)を含むコーティング膜をその表面の少なくとも一部に備える基板である、上記[7]に記載の細胞培養用基板。
[9] 生体物質の付着抑制能を有する基板上に、式(1)及び式(2):
Figure JPOXMLDOC01-appb-C000007

(式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマー、及び溶媒を含む、生体物質への適合性を有するコーティング膜形成用組成物を塗布し、次いで乾燥する工程を含む、細胞培養用基板の製造方法。
[10] 生体物質の付着抑制能を有する基板上に、式(1)及び式(2):
Figure JPOXMLDOC01-appb-C000008

(式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマーからなる細胞培養の下地膜を少なくとも基板表面の一部に備える工程、次いで細胞を前記下地膜の上に播種する工程を含む、細胞凝集塊の製造方法。
 本発明のブロックコポリマーは、疎水性部位(例えば式(1)で表される単位構造を有するブロック)と、親水性部位(例えば式(2)で表される単位構造を有するブロック)とを含み、これを基板にコーティング膜として形成すると、タンパク質の付着抑制能に優れること、さらに細胞が引き寄せられるが、接着しないという特異な性質を有する。疎水性部位が基板に固着し、親水性部位が表面に露出する構造をとることで、基板表面が親水性を呈することで、上記の細胞に対する特異な特性を有することが推定される。
合成例1~5で使用したフローリアクター(反応装置)の模式図である。 合成例1で得られたポリマーのH-NMRチャートである。 合成例4で得られたポリマーのH-NMRチャートである。 試験例4において調製例6乃至9の各コーティング膜形成用組成物をコーティングしたシャーレにおける細胞接着の様子を顕微鏡観察した写真である。 試験例4において調製例6乃至9の各コーティング膜形成用組成物をコーティングしたシャーレにおける細胞凝集塊形成の様子を顕微鏡観察した写真である。
<生体物質への適合性を有するコーティング膜形成用組成物>
 本発明の生体物質への適合性を有するコーティング膜形成用組成物は、式(1)及び式(2):
Figure JPOXMLDOC01-appb-C000009

(式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマー、及び溶媒を含む、生体物質への適合性を有するコーティング膜形成用組成物、である。
 上記炭素原子数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基又は1-エチルプロピル基が挙げられる。R~R、U及びUはそれぞれ独立して、水素原子、メチル基又はエチル基から選ばれることが好ましい。
 上記炭素原子数1~5のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、1-メチルプロピレン基、2-メチルプロピレン基、ジメチルエチレン基、エチルエチレン基、ペンタメチレン基、1-メチル-テトラメチレン基、2-メチル-テトラメチレン基、1,1-ジメチル-トリメチレン基、1,2-ジメチル-トリメチレン基、2,2-ジメチル-トリメチレン基、1-エチル-トリメチレン基が挙げられる。上記X及びXとしてはメチレン基、エチレン基及びプロピレン基から選ばれることが好ましい。 
 上記n1としては、1~6の整数が好ましく、2~4の整数がより好ましい。
 上記式(1)により表される単位構造は、下記式(1-1)及び式(2-1):
Figure JPOXMLDOC01-appb-C000010

で表される化合物から誘導されることが好ましい。式中、R~R、U及びU、X及びX、n1の意味及び好ましい態様は、上記と同じである。
 式(1-1)で表されるモノマーの具体例としては、2-ジメチルアミノエチルメタクリレート、2-ジエチルアミノエチルメタクリレート、2-ジプロピルアミノエチルメタクリレート等が挙げられるが、2-ジメチルアミノエチルメタクリレート及び2-ジエチルアミノエチルメタクリレートを用いることが好ましい。
 式(2-1)で表されるモノマーの具体例としては、ジエチレングリコールモノメチルエーテルメタクリレート、ジプロピレングリコールモノメチルエーテルメタクリレート等が挙げられるが、ジエチレングリコールモノメチルエーテルメタクリレートを用いることが好ましい。
 本発明のブロックコポリマーは、上記式(1)と式(2)の単位を誘導する、各々1種の化合物から重合された2種のブロックを含むことが好ましいが、一方又は双方が2種以上の化合物から重合された3種以上のブロックを含んでいてもよい。
 上記式(1)及び式(2)以外で表される、第3成分の繰り返し単位を誘導する化合物がさらに重合していてもよい。
 式(1)及び式(2)で表される単位構造の、各々のモル比率は、式(1):式(2)=20~90:80~10であることが好ましく、40~70:60~30であることが好ましい。
 式(1)及び式(2)で表される単位構造の、該ブロックコポリマー全体に対するモル比率は、生体物質への適合性を損なわない限り特に限定されないが、例えば80モル%以上であり、90モル%以上であり、100モル%である。
 上記ブロックコポリマーは、公知の方法で合成することができるが、例えば国際公開第2017/135398号に記載の特定のミキサーを備えるフローリアクターを用いて製造したものであってよい。
 本発明のブロックコポリマーは、化学的に異なりそして互いに共有結合している複数種類のポリマー(ブロック)が結合したものである。本発明に用いられるブロックコポリマーは、有機モノマー(a)を単位構造として含む有機ポリマー鎖(A)と、有機モノマー(a)とは異なるモノマー(b)を単位構造として含み該有機ポリマー鎖(A)に結合するポリマー鎖(B)とを含む。本発明に用いられるブロックコポリマーの具体的態様としては、式(1)で表される繰り返し単位からなるポリマー(ブロック)と、式(2)で表される繰り返し単位からなるポリマー(ブロック)とを含み、両ブロックが互いに共有結合しているポリマー等が挙げられる。
 本発明のコーティング膜形成用組成物の固形分は0.01~50質量%、又は0.1~20質量%、又は0.1~10質量%とすることができる。固形分は膜形成用組成物中から溶剤を除いた残りの割合である。
 固形分中に占めるブロックコポリマーの割合は、30~100質量%、又は50~100質量%、又は50~90質量%、又は50~80質量%にすることができる。
 ブロックコポリマー中に存在するブロックの種類が2又は3以上とすることができる。
そして、ブロックコポリマー中に存在するブロック数が2又は3以上とすることができる。
 ポリマー鎖(B)を変えることにより、例えばモノマー(c)を単位構造として含む隣
接するポリマー鎖(C)を用いることが可能である。ブロックポリマーとしてはAB、ABAB、ABA、ABC等の組み合わせがある。
 ブロックコポリマーを合成する方法の一つとして、重合過程が開始反応と成長反応のみからなり、成長末端を失活させる副反応を伴わないリビングラジカル重合、リビングカチオン重合、リビングアニオン重合によって得られる。成長末端は重合反応中に成長活性反応を保ち続けることができる。連鎖移動を生じなくすることで長さの揃ったポリマー(A)が得られる。このポリマー(A)の成長末端を利用して違うモノマー(b)を添加することにより、このモノマー(b)のもとで重合が進行しブロックコポリマー(AB)を形成することができる。
 ホモポリマーA、又はBは、重合可能な反応性基、好ましくはラジカル重合可能な反応性基(ビニル基又はビニル基含有有機基)を少なくとも一つ有する重合性化合物である。
 本発明に用いられるブロックコポリマーの重量平均分子量Mwは1,000~1,000,000、5,000~500,000、5,000~100,000又は5,000~50,000であることが好ましい。1000未満では基板への塗布性が悪い場合があり、また1,000,000超では溶媒への溶解性が悪い場合がある。
 本発明のブロックコポリマーの多分散度(Mw/Mn)は、好ましくは1.00~2.00であり、特に好ましくは1.00~1.50である。
 本発明の生体物質への適合性を有するコーティング膜形成用組成物が含む溶媒は、水、リン酸緩衝生理食塩水(PBS)、アルコール又はそれらの2種以上を組合せた混合溶媒が挙げられる。アルコールとしては、炭素原子数2~6のアルコール、例えば、エタノール、プロパノール、イソプロパノール、1-ブタノール、2-ブタノール、イソブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール(t-アミルアルコール)、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-エチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール及びシクロヘキサノールが挙げられ、単独で又はそれらの組み合わせの混合溶媒を用いてもよいが、ブロックコポリマーの溶解の観点から、水、PBS、エタノール及びそれらの2種以上を組み合わせた混合溶媒から選ばれるのが好ましい。
 本発明において、生体物質としては、タンパク質、糖、ウイルス、核酸、細胞又はそれらの組み合わせが挙げられる。
 生体物質への適合性を有するとは、上記生体物質(特に、タンパク質)の付着抑制能を有することや、上記生体物質に対し毒性を有さないことを意味する。或いは、細胞培養の下地膜形成用として、特に好ましくは細胞凝集塊を得るための細胞培養の下地膜の形成用として使用できること意味する。
 上記タンパク質としてはフィブリノゲン、牛血清アルブミン(BSA)、ヒトアルブミン、各種グロブリン、β-リポ蛋白質、各種抗体(IgG、IgA、IgM)、ペルオキシダーゼ、各種補体、各種レクチン、フィブロネクチン、リゾチーム、フォン・ヴィレブランド因子(vWF)、血清γ-グロブリン、ペプシン、卵白アルブミン、インシュリン、ヒストン、リボヌクレアーゼ、コラーゲン、シトクロームc、
 例えば糖としてはグルコース、ガラクトース、マンノース、フルクトース、ヘパリン、ヒアルロン酸、
 例えば核酸としてはデオキシリボ核酸(DNA)、リボ核酸(RNA)、
 上記細胞としては線維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、周皮細胞、樹枝状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(例えば、平滑筋細胞又は骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、単核細胞、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞、及び各種細胞株(例えば、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮頸癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、CHO(チャイニーズハムスター卵巣細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five、Vero)等が挙げられる。
 タンパク質の付着抑制能を有するとは、実施例に記載した方法で行うQCM-D測定にて、コーティング膜無しと比較した場合の相対単位面積当たりの質量(%)((実施例の単位面積当たりの質量(ng/cm))/(コーティング膜無しの単位面積当たりの質量(ng/cm)))が50%以下、好ましくは30%以下、さらに好ましくは20%以下であることを意味し;
 細胞の付着抑制能を有するとは、国際公開第2016/093293号に記載した方法で行う蛍光顕微鏡によるコーティング膜無しと比較した場合の相対吸光度(WST O.D.450nm)(%)((実施例の吸光度(WST O.D.450nm))/(比較例の吸光度(WST O.D.450nm)))が50%以下、好ましくは30%以下、さらに好ましくは20%以下であることを意味する。
 上記生体物質への適合性が、タンパク質の付着抑制能であることが好ましい。
 上記生体物質への適合性が、細胞培養の下地膜形成用であることが好ましい。
 細胞を接着させた後に剥離させて、細胞凝集塊を得るための細胞培養の下地膜形成用であることが好ましい。なお細胞凝集塊とは、細胞が凝集した結果形成する構造体を示し、球状やリング状などのように形状が限定されない。従来の細胞低接着プレート上での非接着培養により作製される細胞凝集塊と比較し、接着面積の規定による細胞凝集塊のサイズ調整(任意の大きさの細胞凝集塊が製造できる)などの点でメリットがある。
 本発明の組成物には、上記ブロックコポリマーと溶媒の他に、必要に応じて得られるコーティング膜の性能を損ねない範囲で他の物質を添加することもできる。他の物質としては、防腐剤、界面活性剤、基材との密着性を高めるプライマー、防カビ剤及び糖類等が挙げられる。
<生体物質への適合性を有するコーティング膜>
 本発明の生体物質への適合性を有するコーティング膜は、上記生体物質への適合性を有するコーティング膜形成用組成物の塗布膜であり、典型的には、本発明に係るコーティング膜形成用組成物を基体に塗布し、乾燥させてコーティング膜を形成することができる。
 本発明のコーティング膜を形成するための基体としては、下記の細胞培養用基板に記載のものと同じものを使用することができる。
 本発明のコーティング膜を形成すべく、上記のコーティング膜形成用組成物を基体の表面の少なくとも一部に塗布する。塗布方法としては特に制限は無く、通常のスピンコート、ディップコート、溶媒キャスト法等の塗布法が用いられる。
 本発明に係るコーティング膜の乾燥工程は、大気下又は真空下にて、温度-200℃乃
至200℃の範囲内で行なう。コーティング膜は、例えば室温(10℃~35℃、例えば25℃)での乾燥でも形成することができるが、より迅速にコーティング膜を形成させるために、例えば40℃~100℃にて乾燥させてもよい。
 より好ましい乾燥温度は10℃~180℃、より好ましい乾燥温度は20℃~150℃である。
<細胞培養用基板、細胞培養用基板の製造方法、生体物質の付着抑制能を有する基板>
 生体物質の付着抑制能を有する基板上に、生体物質への適合性を有するコーティング膜を少なくとも基板表面の一部に備える、細胞培養用基板である。
 本発明でいう基板とは、平面を有する平板基板の他、ウェル、ディッシュ等の窪みを有する構造をした容器形状のもの(いわゆる細胞培養容器)であってもよい。
 前記生体物質への適合性を有するコーティング膜形成用組成物を、基板の表面に塗布し乾燥することにより、細胞培養用基板が製造できる。ここで「表面」とは、細胞又は細胞培養液などの内容物と接する面を指す。
 本発明の細胞培養用基板はまた、生体物質の付着抑制能を有する基板上に、生体物質への適合性を有するコーティング膜を複数のスポットとして備えるものであってもよい。スポットの形状は、特に限定されない。例えば略円状、四角形形状であるが、略円状のスポットであることが好ましい。
 基板の表面積に対するスポットの総面積の割合、各スポットの直径やスポット間の間隔は、用いる細胞や基板の種類、細胞凝集塊の所望のサイズ等に応じて、所定の範囲から適宜選択することができるが、基板の表面積に対するスポットの総面積の割合は、30%以上、40%以上、50%以上であることが好ましく、かつ99%以下であることが好ましく、各スポットの直径は、50~5000μmであり、300~3000μmであることが好ましく、スポット間の間隔は、30~1000μmであり、100~500μmであることが好ましい。
 本発明の細胞培養用基板は、生体物質の付着抑制能を有する基板上に、生体物質への適合性を有する、独立したマイクロサイズの領域(スポット)を、このように高密度で、好ましくは規則的に配することにより、均一なサイズの細胞凝集塊を一つの基板(容器)で一度に複数形成できる。
 基板(特に、細胞培養容器)としては、例えば、細胞の培養に一般的に用いられるペトリデッシュ、組織培養用ディッシュ、マルチディッシュなどのシャーレ又はディッシュ、細胞培養フラスコ、スピナーフラスコなどのフラスコ、プラスチックバッグ、テフロン(登録商標)バッグ、培養バッグなどのバッグ、マイクロプレート、マイクロウェルプレート、マルチプレート、マルチウェルプレートなどのプレート、チャンバースライド、チューブ、トレイ、ローラーボトルなどのボトル等が挙げられる。好ましくは、シャーレ又はディッシュ、プレート、トレイが挙げられる。
 また、基板の材質は、例えば、ガラス、金属、金属含有化合物若しくは半金属含有化合物、活性炭又は樹脂を挙げることができる。金属は、典型金属:(アルカリ金属:Li、Na、K、Rb、Cs;アルカリ土類金属:Ca、Sr、Ba、Ra)、マグネシウム族元素:Be、Mg、Zn、Cd、Hg;アルミニウム族元素:Al、Ga、In;希土類元素:Y、La、Ce、Pr、Nd、Sm、Eu;スズ族元素:Ti、Zr、Sn、Hf、Pb、Th;鉄族元素:Fe、Co、Ni;土酸元素:V、Nb、Ta、クロム族元素:Cr、Mo、W、U;マンガン族元素:Mn、Re;貴金属:Cu、Ag、Au;白金族元素:Ru、Rh、Pd、Os、Ir、Pt等が挙げられる。金属含有化合物若しくは半金属含有化合物は、例えば基本成分が金属酸化物で、高温での熱処理によって焼き固めた焼結体であるセラミックス、シリコンのような半導体、金属酸化物若しくは半金属酸化物(シリコン酸化物、アルミナ等)、金属炭化物若しくは半金属炭化物、金属窒化物若しくは半金属窒化物(シリコン窒化物等)、金属ホウ化物若しくは半金属ホウ化物等の無機化合物の成形体等の無機固体材料、アルミニウム、ニッケルチタン、ステンレス(SUS304、SUS316、SUS316L等)が挙げられる。
 樹脂としては、天然樹脂若しくはその誘導体、又は合成樹脂いずれでもよく、天然樹脂若しくはその誘導体としては、セルロース、三酢酸セルロース(CTA)、ニトロセルロース(NC)、デキストラン硫酸を固定化したセルロース等、合成樹脂としてはポリアクリロニトリル(PAN)、ポリエステル系ポリマーアロイ(PEPA)、ポリスチレン(PS)、ポリスルホン(PSF)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリビニルアルコール(PVA)、ポリウレタン(PU)、エチレンビニルアルコール(EVAL)、ポリエチレン(PE)、ポリエステル、ポリプロピレン(PP)、ポリフッ化ビニリデン(PVDF)、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリテトラフルオロエチレン(PTFE)、超高分子量ポリエチレン(UHPE)、ポリジメチルシロキサン(PDMS)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS)又はテフロン(登録商標)が好ましく用いられる。本発明の細胞培養用基板の製造では、コーティング膜形成用組成物を、基板の表面の少なくとも一部に存在するようにコーティングする際に、高温での処理を要しないため、耐熱性が低い樹脂等も適用可能である。
 基板の材質は1種類であっても2種類以上の組み合わせであってもよい。これらの材質の中において、ガラス、シリコン、シリコン酸化物、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエーテルスルホン(PES)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、テフロン(登録商標)、シクロオレフィンポリマー(COP)、ポリジメチルシロキサン(PDMS)若しくはステンレス(SUS304、SUS316、SUS316L等)単独、又はこれらから選ばれる組み合わせであることが好ましく、ガラス、ポリスチレン(PS)、ポリプロピレン(PP)、ステンレス(SUS304、SUS316、SUS316L等)、ポリジメチルシロキサン(PDMS)であることが特に好ましい。
 本発明のコーティング膜形成用組成物の塗布の方式としては、スピンコート、ディップコート、溶媒キャスト法等の他、例えばインクジェット法、スクリーン印刷法、スリットコート法、ロール・トゥー・ロール法等を用いることが出来るが、好ましくはインクジェット法又はスクリーン印刷等の印刷技術で行われる。
 別の塗布方法としては、例えば該容器を上記コーティング膜形成用組成物に浸漬する、コーティング膜形成用組成物を容器に添加し、所定の時間静置する、又はコーティング膜形成用組成物を容器又は基板の表面に塗布する等の方法が用いられるが、容器、一態様として細胞培養容器の場合は、コーティング膜形成用組成物を容器に添加し、所定の時間静置する方法によって行われる。あるいはコーティング膜がスポットである場合、例えば場合によりスポットの非形成箇所を保護した基板を上記コーティング膜形成用組成物に浸漬する、コーティング膜形成用組成物を場合によりスポットの非形成箇所を保護した基板(容器)に添加し、所定の時間静置する等の方法によって行われる。添加は、例えば、容器の全容積の0.5~1倍量のコーティング膜形成用組成物を、シリンジ等を用いて添加することによって行うことができる。静置は、容器又は基板の材質や細胞培養の下地膜形成剤の種類に応じて、時間や温度を適宜選択して実施されるが、例えば、1分から24時間、好ましくは5分から3時間、10~80℃で実施される。これにより、容器の表面の少なくとも一部に、好ましくは全体にわたって、細胞培養の下地膜を有する細胞培養容器を製造することができる。
 また、かかる方法により得られる容器又は基板の表面のコーティング膜は、上記容器又は基板の表面の少なくとも一部と接触させる工程後、好ましくはコーティング膜形成用組成物を添加し、所定の時間静置する工程後、乾燥工程を経ずにそのまま、あるいは水又は細胞培養に付される試料の媒質(例えば、水、緩衝液、培地等)を用いての洗浄後に、細胞培養容器として使用することができる。
 すなわち、上記容器又は基板の表面の少なくとも一部と接触させる工程後、好ましくはコーティング膜形成用組成物を添加し、所定の時間静置する工程後、48時間以内、好ましくは24時間以内、さらに好ましくは12時間以内、さらに好ましくは6時間以内、さらに好ましくは3時間以内、さらに好ましくは1時間以内に乾燥工程を経ずにそのまま、あるいは水又は細胞培養に付される試料の媒質(例えば、水、緩衝液、培地等、特に好ましくは培地(例えば、BME培地(イーグル基礎培地)、DMEM培地(ダルベッコ改変イーグル培地))を用いての洗浄後に、細胞培養容器として使用することができる。
 容器は、乾燥工程に付してもよい。乾燥工程は、大気下又は真空下にて、好ましくは、温度-200℃~200℃の範囲内で行なう。乾燥工程により、上記下地膜形成剤中の溶媒を取り除くことで、基体へ完全に固着する。
 コーティング膜は、例えば室温(10℃~35℃、好ましくは20℃~30℃、例えば25℃)での乾燥でも形成することができるが、より迅速に下地膜を形成させるために、例えば40℃~100℃にて乾燥させてもよい。より好ましい乾燥温度は10℃~180℃、より好ましい乾燥温度は20℃~150℃である。
 本発明のコーティング膜は、以上の簡便な工程を経て製造される。
 また、コーティング膜に残存する不純物、未反応モノマー等を無くすために、水及び電解質を含む水溶液から選ばれる少なくとも1種の溶媒で洗浄する工程を実施してもよい。 洗浄は、流水洗浄又は超音波洗浄等が望ましい。上記水及び電解質を含む水溶液は例えば40℃~95℃の範囲で加温されたものでもよい。電解質を含む水溶液は、PBS、生理食塩水(塩化ナトリウムのみを含むもの)、ダルベッコリン酸緩衝生理食塩水、トリス緩衝生理食塩水、HEPES緩衝生理食塩水及びベロナール緩衝生理食塩水が好ましく、PBSが特に好ましい。固着後は水、PBS及びアルコール等で洗浄してもコーティング膜は溶出せずに基体に強固に固着したままである。
 本発明のコーティング膜の膜厚は、最大膜厚と最小膜厚が1~1000nmの範囲であり、好ましくは5~500nm、10~300nm、10~200nm、10~100nm、10~50nmの範囲である。
<生体物質の付着抑制能を有する基板>
 本発明の生体物質の付着抑制能を有する基板は、市販品等の公知のものを使用することができるが、国際公開第2014/196650号に記載の、下記式(a)で表される基を含む繰り返し単位と、下記式(b)で表される基を含む繰り返し単位とを含む共重合体:
Figure JPOXMLDOC01-appb-C000011

 (式中、
 Ua1、Ua2、Ub1、Ub2及びUb3は、それぞれ独立して、水素原子又は炭素
原子数1~5のアルキル基を表し、Anは、ハロゲン化物イオン、
無機酸イオン、水酸化物イオン及びイソチオシアネートイオンからなる群から選ばれる陰
イオンを表す)を含むコーティング膜を少なくとも基板表面の一部に備えることが好ましい。
 上記共重合体が、下記式(a1)及び式(b1):
Figure JPOXMLDOC01-appb-C000012

 式中、
 T、T、Ua1、Ua2、Ub1、Ub2及びUb3は、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、Q及びQは、それぞれ独立して、単結合、エステル結合又はアミド結合を表し、R及びRは、それぞれ独立して、ハロゲン原子で置換されていてもよい炭素原子数1~10のアルキレン基を表し、Anは、ハロゲン化物イオン、無機酸イオン、水酸化物イオン及びイソチオシアネートイオンからなる群から選ばれる陰イオンを表し、mは、0~6の整数を表す)
の繰り返し単位を含むことが好ましい。
 上記炭素原子数1~5のアルキル基は、式(1)及び(2)において挙げられたとおりである。上記ハロゲン原子で置換されていてもよい炭素原子数1~10のアルキレン基とは、炭素原子数1~10のアルキレン基、又は1以上のハロゲン原子で置換された炭素原子数1~10のアルキレン基を意味し、ここで炭素原子数1~10のアルキレン基としては、式(1)及び(2)の炭素原子数1~5のアルキレン基において挙げられた例に加え、ヘキサメチレン基、オクタメチレン基及びデカメチレン基等が挙げられる。そして上記1以上のハロゲン原子で置換された炭素原子数1乃至10の直鎖又は分岐アルキレン基は、上記アルキレン基の1以上の任意の水素原子が、ハロゲン原子で置き換えられているものを意味するが、ここで上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 さらに上記ハロゲン化物イオンとは、フッ化物イオン、塩化物イオン、臭化物イオン又はヨウ化物イオンを意味し、上記無機酸イオンとは、炭酸イオン、硫酸イオン、リン酸イオン、リン酸水素イオン、リン酸二水素イオン、硝酸イオン、過塩素酸イオン又はホウ酸イオンを意味する。
 上記共重合体を用いたコーティング膜についての詳細は国際公開第2014/196650号に記載の内容に準ずる。
 その他の生体物質の付着抑制能を有するコーティング膜として、エチレン性不飽和モノマー、又は多糖類若しくはその誘導体が共重合したものを用いてもよい。エチレン性不飽和モノマーの例としては、(メタ)アクリル酸及びそのエステル;酢酸ビニル;ビニルピロリドン;エチレン;ビニルアルコール;並びにそれらの親水性の官能性誘導体からなる群より選択される1種又は2種以上のエチレン性不飽和モノマーを挙げることができる。多糖類又はその誘導体の例としては、ヒドロキシアルキルセルロース(例えば、ヒドロキシエチルセルロース又はヒドロキシプロピルセルロース)等のセルロース系高分子、デンプン、デキストラン、カードランを挙げることができる。
 親水性の官能性誘導体とは、親水性の官能基又は構造を有するエチレン性不飽和モノマーを指す。親水性の官能性基又は構造の例としては、ベタイン構造;アミド構造;アルキレングリコール残基;アミノ基;並びにスルフィニル基等が挙げられる。
 ベタイン構造は、第4級アンモニウム型の陽イオン構造と、酸性の陰イオン構造との両性中心を持つ化合物の一価又は二価の基を意味し、例えば、ホスホリルコリン基:
Figure JPOXMLDOC01-appb-C000013

を挙げることができる。そのような構造を有するエチレン性不飽和モノマーの例としては、2-メタクリロイルオキシエチルホスホリルコリン(MPC)等を挙げることができる。
 アミド構造は、下記式:
Figure JPOXMLDOC01-appb-C000014

[ここで、R16、R17及びR18は、互いに独立して、水素原子又は有機基(例えば、メチル基、ヒドロキシメチル基又はヒドロキシエチル基等)である]
で表される基を意味する。そのような構造を有するエチレン性不飽和モノマーの例としては、(メタ)アクリルアミド、N-(ヒドロキシメチル)(メタ)アクリルアミド等を挙げることができる。さらに、そのような構造を有するモノマー又はポリマーは、例えば、特開2010-169604号公報等に開示されている。
 アルキレングリコール残基は、アルキレングリコール(HO-Alk-OH;ここでAlkは、炭素原子数1~10のアルキレン基である)の片側端末又は両端末の水酸基が他の化合物と縮合反応した後に残るアルキレンオキシ基(-Alk-O-)を意味し、アルキレンオキシ単位が繰り返されるポリ(アルキレンオキシ)基も包含する。そのような構造を有するエチレン性不飽和モノマーの例としては、2-ヒドロキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等を挙げることができる。さらに、そのような構造を有するモノマー又はポリマーは、例えば、特開2008-533489号公報等に開示されている。
 アミノ基は、式:-NH、-NHR19又は-NR2021[ここで、R19、R20及びR21は、互いに独立して、有機基(例えば、炭素原子数1~5のアルキル基等)である]で表される基を意味する。本発明におけるアミノ基には、4級化又は塩化されたアミノ基を包含する。そのような構造を有するエチレン性不飽和モノマーの例としては、ジメチルアミノエチル(メタ)アクリレート、2-(t-ブチルアミノ)エチル(メタ)アクリレート、メタクリロイルコリンクロリド等を挙げることができる。
 スルフィニル基は、下記式:
Figure JPOXMLDOC01-appb-C000015

[ここで、R22は、有機基(例えば、炭素原子数1~10の有機基、好ましくは、1個以上のヒドロキシ基を有する炭素原子数1~10のアルキル基等)である]
で表される基を意味する。そのような構造を有するポリマーとして、特開2014-48278号公報等に開示された共重合体を挙げることができる。
<細胞凝集塊の製造方法>
 本発明の細胞凝集塊の製造方法は、生体物質の付着抑制能を有する基板上に、式(1)及び式(2):
Figure JPOXMLDOC01-appb-C000016

(式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマーからなる細胞培養の下地膜を少なくとも基板表面の一部に備える工程、次いで細胞を前記下地膜の上に播種する工程を含む方法により製造できる。細胞凝集塊の製造は、公知の方法で行うことができ、例えば下記実施例に記載の方法で製造できる。
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 下記の合成例に示す重合体(A)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(Gel Permeation Chromatography、GPC)法による測定結果である。測定条件は下記のとおりである。
GPCカラム:PLgel 3μm MIXED-E(Agilent Technologies社製)
カラム温度:40°C
溶媒:テトラヒドロフラン(THF)
流量:1.00ml/分 
検出器:RI検出器
標準試料:ポリスチレン
[ブロックコポリマーの合成]
 下記の合成例1~5で使用したフローリアクター(反応装置)の模式図を図1に示す。なお、図1中、矢印は液体の流れる方向を示す。第1モノマー液送液用にプランジャーポンプA((株)フロム製UI-22-110)を用い、PTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)を用いてプランジャーポンプAとミキサー1とを接続し、開始剤溶液送液用にシリンジポンプB((株)ワイエムシィ製Keychem-L)を用い、PTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)を用いてシリンジポンプBとミキサー1とを接続した。ミキサー1の出口とミキサー2の入口とはPFA製チューブ(内径2.0mm、外径3mm、長さ5m(合成例1、2、3)、内径2.0mm、外径3mm、長さ4.5m(合成例4、5))で接続した。ミキサー2のもう一方の入口は、第2モノマー液送液用シリンジポンプC((株)ワイエムシィ製Keychem-L)とPTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)で接続した。ミキサー2の出口とミキサー3の入口とはPFA製チューブ(内径2.0mm、外径3mm、長さ4m(合成例1、2、3)、内径2.0mm、外径3mm、長さ5m(合成例4、5))で接続した。ミキサー3のもう一方の入口は、重合停止剤溶液送液用シリンジポンプD((株)フロム製UI-22-110)とPTFE製チューブ(内径1.0mm、外径1.6mm、長さ2m)で接続した。ミキサー3の出口にはPFA製チューブ(内径2.0mm、外径3mm、長さ0.7m)を接続した。なお、各ポンプから先とミキサー3の出口に接続されたチューブの9割長までの流路については-40℃の恒温槽に浸し温度を調整した。合成に使用したミキサー1は、国際公開第2017/135398号に記載の二重管構造をもつ2液混合用ミキサー[ジョイント部材、筒状体にステンレス製のものを用い、また、スタティックミキサーエレメント体としては(株)ノリタケカンパニーリミテド製DSP-MXA3-17(ポリアセタール製エレメント、ねじり羽根数17、3mm径)を加工し、3つ繋げてねじり羽根数を51としたもの]を用い、ミキサー2は、同じく国際公開第2017/135398号に記載の二重管構造をもつ2液混合用ミキサー[ジョイント部材、筒状体にステンレス製のものを用い、また、スタティックミキサーエレメント体としては(株)ノリタケカンパニーリミテド製DSP-MXA3-17(ポリアセタール製エレメント、ねじり羽根数17、3mm径)を加工したもの]を用い、ミキサー3は、一般的な簡便な二重管ミキサーを用いた。なお、各ミキサーへの接続方法は、ミキサー1の導入孔入口に第1モノマー溶液チューブ、内管入口に開始剤溶液チューブを接続した。ミキサー2の導入孔入口にミキサー1の出口と接続されたチューブ、内管入口に第2モノマー液チューブを接続した。ミキサー3の導入孔入口に重合停止剤溶液、内管入口にミキサー2の出口と接続されたチューブを接続した。
<合成例1 ポリ(2-ジメチルアミノエチルメタクリレート)-b-ポリ(ジエチレングリコールモノメチルエーテルメタクリレート)ブロックポリマー(PDM-b-PDEGMA)の合成>
 第1モノマーとして0.5mol/L 2-ジメチルアミノエチルメタクリレートTHF溶液と、開始剤として0.05mol/L 1,1-ジフェニルヘキシルリチウム溶液を、ミキサー1でそれぞれ流速10mL/min、1.5mL/minで混合し、第1モノマーを重合させた。続いて、第2モノマーとしてジエチレングリコールモノメチルエーテルメタクリレート液を、ミキサー2で0.92mL/minで混合し、ブロック重合させた。続いて、重合停止剤として0.25mol/L メタノール/THF溶液を、ミキサー3で10mL/minで混合し、重合を停止させた。各ポンプを5分間送液し、流出液を採取した。
 更に、前記流出液をエバポレーターで溶媒を概ね留去した後に、氷水浴下、n-ヘキサン200ml、ジエチルエーテル200mlの混合液に滴下した。得られた白色懸濁液を0.5μmのメンブレンフィルターでろ過した。続いて、得られたろ物を1,4-ジオキサンで溶解後、凍結乾燥し、PDM-b-PDEGMA4.1gを得た。得られたポリマーをGPCにて分析したところ、Mn=29,790、Mw/Mn=1.19であった。また、ポリマーのH-NMRの結果から、2-ジメチルアミノエチルメタクリレート単位及びジエチレングリコールモノメチルエーテルメタクリレート単位の組成比は、2-ジメチルアミノエチルメタクリレート単位:ジエチレングリコールモノメチルエーテルメタクリレート単位=48:52であった。得られたポリマーのH-NMRチャートを図2に示す。
<合成例2 ポリ(2-ジメチルアミノエチルメタクリレート)-b-ポリ(ジエチレングリコールモノメチルエーテルメタクリレート)ブロックポリマー(PDM-b-PDEGMA)の合成>
 第2モノマーとしてジエチレングリコールモノメチルエーテルメタクリレート液を、ミキサー2で0.46mL/minで混合、各ポンプを7分間送液した以外は、合成例1と同様の方法で合成し、PDM-b-PDEGMA3.4gを得た。得られたポリマーをGPCにて分析したところ、Mn=23,481、Mw/Mn=1.11であった。また、ポリマーのH-NMRの結果から、2-ジメチルアミノエチルメタクリレート単位及びジエチレングリコールモノメチルエーテルメタクリレート単位の組成比は、2-ジメチルアミノエチルメタクリレート単位:ジエチレングリコールモノメチルエーテルメタクリレート単位=63:37であった。
<合成例3 ポリ(2-ジメチルアミノエチルメタクリレート)-b-ポリ(ジエチレングリコールモノメチルエーテルメタクリレート)ブロックポリマー(PDM-b-PDEGMA)の合成>
 第2モノマーとしてジエチレングリコールモノメチルエーテルメタクリレート液を、ミキサー2で0.19mL/minで混合、各ポンプを8分間送液した以外は、合成例1と同様の方法で合成し、PDM-b-PDEGMA4.4gを得た。得られたポリマーをGPCにて分析したところ、Mn=15,065、Mw/Mn=1.17であった。また、ポリマーのH-NMRの結果から、2-ジメチルアミノエチルメタクリレート単位及びジエチレングリコールモノメチルエーテルメタクリレート単位の組成比は、2-ジメチルアミノエチルメタクリレート単位:ジエチレングリコールモノメチルエーテルメタクリレート単位=88:12であった。
<合成例4 ポリ(2-ジエチルアミノエチルメタクリレート)-b-ポリ(ジエチレングリコールモノメチルエーテルメタクリレート)ブロックポリマー(PDE-b-PDEGMA)の合成>
 第1モノマーとして0.5mol/L 2-ジエチルアミノエチルメタクリレートTHF溶液、開始剤として0.10mol/L 1,1-ジフェニルヘキシルリチウム溶液を、ミキサー1でそれぞれ流速10mL/min、1.5mL/minで混合、第2モノマーとしてジエチレングリコールモノメチルエーテルメタクリレート液を、ミキサー2で0.92mL/minで混合、各ポンプを6分間送液した以外は、合成例1と同様の方法で合成し、PDE-b-PDEGMA2.5gを得た。得られたポリマーをGPCにて分析したところ、Mn=17,555、Mw/Mn=1.21であった。また、ポリマーのH-NMRの結果から、2-ジエチルアミノエチルメタクリレート単位及びジエチレングリコールモノメチルエーテルメタクリレート単位の組成比は、2-ジエチルアミノエチルメタクリレート単位:ジエチレングリコールモノメチルエーテルメタクリレート単位=29:71であった。得られたポリマーのH-NMRチャートを図3に示す。
<合成例5 ポリ(2-ジエチルアミノエチルメタクリレート)-b-ポリ(ジエチレングリコールモノメチルエーテルメタクリレート)ブロックポリマー(PDE-b-PDEGMA)の合成>
 第1モノマーとして0.5mol/L 2-ジエチルアミノエチルメタクリレートTHF溶液、開始剤として0.10mol/L 1,1-ジフェニルヘキシルリチウム溶液を、ミキサー1でそれぞれ流速10mL/min、2.0mL/minで混合、第2モノマーとしてジエチレングリコールモノメチルエーテルメタクリレート液を、ミキサー2で1.48mL/minで混合した以外は、合成例4と同様の方法で合成し、PDE-b-PDEGMA1.6gを得た。得られたポリマーをGPCにて分析したところ、Mn=16,488、Mw/Mn=1.21であった。また、ポリマーのH-NMRの結果から、2-ジエチルアミノエチルメタクリレート単位及びジエチレングリコールモノメチルエーテルメタクリレート単位の組成比は、2-ジエチルアミノエチルメタクリレート単位:ジエチレングリコールモノメチルエーテルメタクリレート単位=43:57であった。
<比較合成例1 ポリ(2-ジメチルアミノエチルメタクリレート)-r-ポリ(ジエチレングリコールモノメチルエーテルメタクリレート)ランダムポリマー(PDM-r-PDEGMA)の合成>
 2-ジメチルアミノエチルメタクリレート1.0gとジエチレングリコールモノメチルエーテルメタクリレート1.0gにTHF18.0g、2,2'-アゾジイソブチロニトリル11.1mgを加え、溶解させた。その後、窒素雰囲気下、水浴の温度60℃に設定し、18時間攪拌した。反応液を室温に戻した後、ヘキサン500mLに滴下し、得られた白色懸濁液を0.5μmのメンブレンフィルターでろ過した。続いて、得られたろ物を水に溶解後、凍結乾燥し、PDM-r-PDEGMA1.7gを得た。得られたポリマーをGPCにて分析したところ、Mn=12,317、Mw/Mn=2.52であった。また、ポリマーのH-NMRの結果から、2-ジメチルアミノエチルメタクリレート単位及びジエチレングリコールモノメチルエーテルメタクリレート単位の組成比は、2-ジメチルアミノエチルメタクリレート単位:ジエチレングリコールモノメチルエーテルメタクリレート単位=46:54であった。
<比較合成例2 ポリ(2-ジエチルアミノエチルメタクリレート)-r-ポリ(ジエチレングリコールモノメチルエーテルメタクリレート)ランダムポリマー(PDE-r-PDEGMA)の合成>
 2-ジエチルアミノエチルメタクリレート1.0gとジエチレングリコールモノメチルエーテルメタクリレート1.4gにTHF21.2g、2,2'-アゾジイソブチロニトリル11.8mgを加え、溶解させた。その後窒素雰囲気下、水浴の温度60℃に設定し、21.5時間攪拌した。反応液を室温に戻した後、ヘキサン300mLに滴下し、得られた白色懸濁液を0.5μmのメンブレンフィルターでろ過した。続いて、得られたろ物を1,4-ジオキサンで溶解後、凍結乾燥し、PDE-r-PDEGMA1.8gを得た。
 得られたポリマーをGPCにて分析したところ、Mn=18,107、Mw/Mn=2.31であった。また、ポリマーのH-NMRの結果から、2-ジエチルアミノエチルメタクリレート単位及びジエチレングリコールモノメチルエーテルメタクリレート単位の組成比は、2-ジエチルアミノエチルメタクリレート単位:ジエチレングリコールモノメチルエーテルメタクリレート単位=46:54であった。
<比較合成例3 ポリ(2-ジエチルアミノエチルメタクリレート)-r-ポリ(メタクリル酸)ランダムポリマー(PDM-r-PMA)の合成>
 国際公開第2020/040247号の合成例8に記載の製造方法に従って、PDM-r-PMAを得た。得られたポリマーをGPCにて分析したところ、Mn=472,133、Mw/Mn=3.73であった。
<調製例1~5、比較調製例1~3:ポリマーエタノール溶液の調製>
 合成例1~5、及び比較合成例1~3のポリマーをそれぞれエタノールで10mg/mLの濃度となるように溶解させ、コーティング膜形成用組成物(調製例1~5、比較調製例1~3)を調製した。
<調製例6、比較調製例4:ポリマー水溶液の調製>
 合成例1、及び比較合成例1のポリマーをそれぞれ滅菌水で1mg/mLの濃度となるように溶解させ、コーティング膜形成用組成物(調製例6、比較調製例4)を調製した。
<調製例7:ポリマー水溶液の調製>
 合成例1のポリマーを滅菌水で5mg/mLの濃度となるように溶解させ、コーティング膜形成用組成物(調製例7)を調製した。
<調製例8、比較調製例5:ポリマー溶液の調製>
 合成例5、及び比較合成例2のポリマーをそれぞれ滅菌水/エタノール=7/3混合溶液で1mg/mLの濃度となるように溶解させ、コーティング膜形成用組成物(調製例8、比較調製例5)を調製した。
<調製例9:ポリマー溶液の調製>
 合成例5のポリマーを滅菌水/エタノール=7/3混合溶液で5mg/mLの濃度となるように溶解させ、コーティング膜形成用組成物(調製例9)を調製した。
<試験例1:コーティング膜形成試験>
 上記調製例1~5及び比較調製例1~3で得られたコーティング膜形成用組成物を1500rpm/60secでHMDS処理済みシリコンウェハにスピンコートし、乾燥工程として70℃のオーブンで24時間乾燥した。その後、PBSで充分に洗浄を行ったあと70℃のオーブンで1時間乾燥し、HMDS処理済みシリコンウェハ上にコーティング膜を得た。分光エリプソメーターを用いて測定したHMDS処理済みシリコンウェハ上のコーティング膜の膜厚を下記の表1に示す。いずれのコーティング膜形成用組成物を用いた場合にもコーティング膜を形成した。
Figure JPOXMLDOC01-appb-T000017
<試験例2:タンパク質付着抑制試験>
(QCMセンサー(PS)の作製)
 Au蒸着された水晶振動子(Q-Sence、QSX301)をソフトエッチング装置(メイワフォーシス(株)製、SEDE-GE)を用いて50mA/3min洗浄し、直後に2-アミンエタンチオール(東京化成工業(株)製)0.0772gをエタノール1000mLに溶解した溶液中に24時間浸漬した。エタノールでセンサー表面を洗浄後自然乾燥し、ポリスチレン(PS)(Sigma-Aldrich社製)1.00gをトルエン99.00gに溶解したワニスをスピンコーターにて3500rpm/30secで膜センサー側にスピンコートし、150℃/1min乾燥することでQCMセンサー(PS)とした。
(QCMセンサー(SiO)の作製)
 SiO蒸着された水晶振動子(Q-Sence、QSX303)をソフトエッチング装置(メイワフォーシス(株)製、SEDE-GE)を用いて50mA/3min洗浄し、そのまま用いた。
(表面処理済QCMセンサー(PS)及び表面処理済QCMセンサー(SiO)の調製)
 調製例1~5、比較調製例1で得た各コーティング膜形成用組成物を3500rpm/30secでQCMセンサー(PS)にスピンコートし、乾燥工程として70℃のオーブンで24時間焼成した。その後、洗浄工程として過剰についたコーティング膜形成用組成物をPBSと純水にて各2回ずつ洗浄し、表面処理済QCMセンサー(PS)(基板No.1~6)を得た。同様に、調製例1~5、比較調製例1~2で得た各コーティング膜形成用組成物を3500rpm/30secでQCMセンサー(SiO)にスピンコートし、乾燥工程として100℃のホットプレートで5時間焼成した。その後、洗浄工程として過剰についたコーティング膜形成用組成物をPBSと純水にて各2回ずつ洗浄し、表面処理済QCMセンサー(SiO)(基板No.8~14)を得た。リファレンスとして、QCMセンサー(PS)(基板No.7)及びQCMセンサー(SiO)(基板No.15)を用いた。
(タンパク質付着実験)
 コーティング膜形成用組成物を用いて上記手法より作成した表面処理済QCMセンサー(PS)(基板No.1~7)及び表面処理済QCMセンサー(SiO)(基板No.8~15)をそれぞれ散逸型水晶振動子マイクロバランスQCM-D(E4、Q-Sence)に取り付け、周波数の変化が1時間で1Hz以下となる安定したベースラインを確立するまでPBSを流した。次に、安定したベースラインの周波数を0Hzとして約10分間PBSを流した。引き続き、ヒト血清由来γ-グロブリンの100μg/mL PBS溶液を約30分流し、その後再びPBSを約20分流した後の9次オーバートーンの吸着誘起周波数のシフト(Δf)を読み取った。分析のためにQ-Tools(Q-Sence)を使用して、吸着誘起周波数のシフト(Δf)を、Sauerbrey式で説明される吸着誘起周波数のシフト(Δf)を単位面積当たりの質量(ng/cm)と換算したものを生体物質の付着量として下記の表2に示す。本発明に係る調製例1~5のコーティング膜形成用組成物をコーティングとして用いた基板No.1~5及び基板No.8~12は、コーティング膜無しの基板No.7、15と比較し、著しく低いタンパク質付着量を示した。また、比較調製例1~2にて調製したコーティング膜形成用組成物をコーティングとして用いた基板No.6及び基板No.13~14と比較をしても、優位にタンパク質の付着を抑制することが示された。
Figure JPOXMLDOC01-appb-T000018
<試験例3:培地中のタンパク質等付着抑制試験>
(表面処理済QCMセンサー(PS)の作製)
 試験例2と同様に、QCMセンサー(PS)を作製後、調製例1~5、比較調製例3で得た各コーティング膜形成用組成物を3500rpm/30secでQCMセンサー(PS)にスピンコートし、乾燥工程として70℃のオーブンで24時間焼成した。その後、洗浄工程として過剰についたコーティング膜形成用組成物をPBSと純水にて各2回ずつ洗浄し、表面処理済QCMセンサー(PS)(基板No.1~5、16)を得た。
(培地中のタンパク質等の付着実験)
 コーティング膜形成用組成物を用いて上記手法より作成した表面処理済QCMセンサー(PS)(基板No.1~5、16)を散逸型水晶振動子マイクロバランスQCM-D(E4、Q-Sence)に取り付け、周波数の変化が1時間で1Hz以下となる安定したベースラインを確立するまでPBSを流した。次に、安定したバースラインの周波数を0Hzとして約10分間PBSを流した。引き続き、10%FBS(Sigma-Aldrich社製)と1%のL-グルタミン-ペニシリン-ストレプトマイシン安定化溶液(サーモフィッシャーサイエンティフィック社製)を含むBME培地(サーモフィッシャーサイエンティフィック社製)を約30分流し、9次オーバートーンの吸着誘起周波数のシフト(Δf)を読み取った。分析のためにQ-Tools(Q-Sence)を使用して、吸着誘起周波数のシフト(Δf)を、Sauerbrey式で説明される吸着誘起周波数のシフト(Δf)を単位面積当たりの質量(ng/cm)と換算したものを生体物質の付着量として下記の表3に示す。本発明に係る調製例1~5のコーティング膜形成用組成物をコーティングとして用いた基板No.1~5は、比較調製例3のコーティング膜形成用組成物をコーティングとして用いた基板No.16と比較し低いタンパク質等の付着量を示した。
Figure JPOXMLDOC01-appb-T000019
<試験例4:細胞凝集塊形成試験>
(細胞低接着シャーレの作製)
 国際公開第2014/196650号の実施例30に記載の製造方法に従って、共重合体含有ワニスからコーティング溶液を調製した。調製したコーティング溶液を、φ40mmアズノールシャーレ(アズワン(株)製、#1-8549-01)に1mLずつ添加し、室温にて1時間静置後、過剰のコーティング溶液を除去し、50℃のオーブンで24時間焼成した。その後、滅菌水を2mL添加後、排液して洗浄を行った。同様の洗浄操作をさらに2回行い、50℃のオーブンで1時間乾燥させて細胞低接着シャーレを得た。
(インクジェットによる細胞凝集塊形成用シャーレの作製)
 インクジェット装置((株)マイクロジェット製、型番:LaboJet-600)、及びインクジェットヘッド(型番:500-S-C)を用いて、上記で作製した細胞低接着シャーレに約50nLずつ、調製例6~9および比較調製例4、5にて調製したコーティング膜形成用組成物をスポット状(円形状)に塗布した。70℃のオーブンで24時間乾燥し、細胞凝集塊形成用シャーレ(シャーレNo.1~6)を作製した。
(細胞の調製)
 細胞は、マウス胚線維芽細胞C3H10T1/2(DSファーマバイオメディカル(株)製)を用いた。細胞の培養に用いた培地は、10%FBS(Sigma-Aldrich社製)とL-グルタミン-ペニシリン-ストレプトマイシン安定化溶液(サーモフィッシャーサイエンティフィック社製)を含むBME培地(サーモフィッシャーサイエンティフィック社製)を用いた。細胞は、37℃/COインキュベーター内にて5%二酸化炭素濃度を保った状態で、直径10cmのシャーレ(培地10mL)を用いて2日間以上静置培養した。引き続き、本細胞をPBS5mLで洗浄した後、0.25w/v%トリプシン-1mmol/L EDTA溶液(富士フイルム和光純薬(株)製)1mLを添加して細胞を剥がし、上記の培地10mLにてそれぞれ懸濁した。本懸濁液を遠心分離(株式会社トミー精工製、型番LC-200、1000rpm/3分、室温)後、上清を除き、上記の培地を添加して細胞懸濁液を調製した。
(細胞接着の観察)
 上記にて作製した細胞凝集塊形成用シャーレに対して、細胞懸濁液を6.0×10cells/cmになるように各2mL加えた。その後、5%二酸化炭素濃度を保った状態で、37℃のCOインキュベーター内にて2時間静置した。静置後、倒立型顕微鏡((株)ニコン製、ECLIPSE TS100-F)を用いて、各コーティング剤をスポットした箇所に細胞が接着しているのを確認した。その後非接着細胞と培地をアスピレーターで除去し、PBSで洗浄することで接着細胞のみをウェル上へ残した。洗浄後、新しい培地を各2mL添加し、倒立型リサーチ顕微鏡IX73(オリンパス(株)製)を用いて接着細胞の様子を観察、撮影した。その結果、図4に示すように、調製例6~9で調製したコーティング膜形成用組成物をスポット状にコーティングしたシャーレNo.1~4のコーティング膜形成用スポット箇所への細胞の接着維持が確認された。一方で、比較調製例4、5で調製したコーティング膜形成用組成物をスポット状にコーティングしたシャーレNo.5、6のコーティング膜形成用スポット箇所へ接着していた細胞は洗浄によって除去されていることが確認された。
(細胞凝集塊の観察)
 上記にて細胞接着を確認したシャーレを37℃のCOインキュベーター内にてさらに2日間静置した。静置後、倒立型リサーチ顕微鏡IX73(オリンパス(株)製)を用いて細胞の様子を観察した。その結果、図5に示すように調製例6~9で調製したコーティング膜形成用組成物をスポット状にコーティングしたシャーレNo.1~4のコーティング膜形成用スポット箇所へ接着していた細胞がプレートから剥がれて凝集し、細胞凝集塊(スフェロイド)を形成していることを確認した。このことから、本発明のポリマーを含む下地膜は、細胞培養容器の下地膜として有用であることが示唆された。洗浄前の細胞接着、洗浄後の細胞接着の維持、細胞凝集塊の形成の各段階での結果を表4に示す。
Figure JPOXMLDOC01-appb-T000020
 本発明によれば、生体物質への適合性を有するコーティング膜形成用組成物、それを用いたコーティング膜、それを用いた細胞培養用基板が提供できる。

Claims (10)

  1.  式(1)及び式(2):
    Figure JPOXMLDOC01-appb-C000001

    (式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマー、及び溶媒を含む、生体物質への適合性を有するコーティング膜形成用組成物。
  2.  上記溶媒が、水又はアルコールを含む、請求項1に記載の組成物。
  3.  上記生体物質への適合性が、タンパク質の付着抑制能である、請求項1又は2に記載の組成物。
  4.  上記生体物質への適合性が、細胞培養の下地膜形成用である、請求項1又は2に記載の組成物。
  5.  細胞を接着させた後に剥離させて、細胞凝集塊を得るための細胞培養の下地膜形成用である、請求項4に記載の組成物。
  6.  請求項1~5何れか1項に記載の生体物質への適合性を有するコーティング膜形成用組成物の塗布膜である、生体物質への適合性を有するコーティング膜。
  7.  生体物質の付着抑制能を有する基板上に、請求項6に記載の生体物質への適合性を有するコーティング膜を少なくとも基板表面の一部に備える、細胞培養用基板。
  8.  生体物質の付着抑制能を有する基板が、下記式(a)で表される基を含む繰り返し単位と、下記式(b)で表される基を含む繰り返し単位とを含む共重合体:
    Figure JPOXMLDOC01-appb-C000002

     (式中、
     Ua1、Ua2、Ub1、Ub2及びUb3は、それぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、Anは、ハロゲン化物イオン、無機酸イオン、水酸化物イオン及びイソチオシアネートイオンからなる群から選ばれる陰イオンを表す)を含むコーティング膜をその表面の少なくとも一部に備える基板である、請求項7に記載の細胞培養用基板。
  9.  生体物質の付着抑制能を有する基板上に、式(1)及び式(2):
    Figure JPOXMLDOC01-appb-C000003

    (式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマー、及び溶媒を含む、生体物質への適合性を有するコーティング膜形成用組成物を塗布し、次いで乾燥する工程を含む、細胞培養用基板の製造方法。
  10.  生体物質の付着抑制能を有する基板上に、式(1)及び式(2):
    Figure JPOXMLDOC01-appb-C000004

    (式中、R~R、U及びUはそれぞれ独立して、水素原子又は炭素原子数1~5のアルキル基を表し、X及びXはそれぞれ独立して、炭素原子数1~5のアルキレン基を表し、n1は1~10の整数を表す)で表される単位構造を有するブロックコポリマーからなる細胞培養の下地膜を少なくとも基板表面の一部に備える工程、次いで細胞を前記下地膜の上に播種する工程を含む、細胞凝集塊の製造方法。
PCT/JP2021/021861 2020-06-12 2021-06-09 ブロックコポリマーを含む生体物質への適合性を有するコーティング膜 WO2021251417A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022530596A JPWO2021251417A1 (ja) 2020-06-12 2021-06-09
US18/001,505 US20230242869A1 (en) 2020-06-12 2021-06-09 Coating film having compatibility with biological substance containing block copolymer
EP21822211.5A EP4166645A4 (en) 2020-06-12 2021-06-09 BIOCOMPATIBLE COATING FILM CONTAINING A BLOCK COPOLYMER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-102646 2020-06-12
JP2020102646 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251417A1 true WO2021251417A1 (ja) 2021-12-16

Family

ID=78845712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021861 WO2021251417A1 (ja) 2020-06-12 2021-06-09 ブロックコポリマーを含む生体物質への適合性を有するコーティング膜

Country Status (4)

Country Link
US (1) US20230242869A1 (ja)
EP (1) EP4166645A4 (ja)
JP (1) JPWO2021251417A1 (ja)
WO (1) WO2021251417A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533489A (ja) 2005-03-15 2008-08-21 住友ベークライト株式会社 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP2010169604A (ja) 2009-01-26 2010-08-05 Jsr Corp 非特異吸着防止剤および物品のコーティング方法
JP2014048278A (ja) 2012-09-04 2014-03-17 Jsr Corp 無機材料で構成される表面用の表面処理剤、該表面処理剤でコーティングされた器具、その製造方法、及び新規重合体
US20140186945A1 (en) * 2011-06-14 2014-07-03 The University Court Of The University Of Edinburg Growth of cells
WO2014196650A1 (ja) 2013-06-07 2014-12-11 日産化学工業株式会社 生体物質の付着抑制能を有するイオンコンプレックス材料及びその製造方法
JP2016510902A (ja) * 2013-02-25 2016-04-11 ザ ユニバーシティー オブ クイーンズランド リソグラフィーによって生成された形体
WO2016093293A1 (ja) 2014-12-10 2016-06-16 日産化学工業株式会社 生体物質の付着抑制能を有するイオンコンプレックス材料及びその製造方法
WO2017135398A1 (ja) 2016-02-04 2017-08-10 日産化学工業株式会社 ポリマーの製造方法
WO2020040247A1 (ja) 2018-08-24 2020-02-27 日産化学株式会社 細胞培養の下地膜として使用するポリマーの製造方法及び細胞培養容器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633960A (zh) * 2012-04-01 2012-08-15 华东理工大学 多重环境响应性三嵌段共聚物及其制备方法和应用
JP2016192957A (ja) * 2015-03-31 2016-11-17 東ソー株式会社 細胞培養基材、その製造方法、およびそれを用いた細胞培養方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533489A (ja) 2005-03-15 2008-08-21 住友ベークライト株式会社 医療材料用高分子化合物及び該高分子化合物を用いたバイオチップ用基板
JP2010169604A (ja) 2009-01-26 2010-08-05 Jsr Corp 非特異吸着防止剤および物品のコーティング方法
US20140186945A1 (en) * 2011-06-14 2014-07-03 The University Court Of The University Of Edinburg Growth of cells
JP2014048278A (ja) 2012-09-04 2014-03-17 Jsr Corp 無機材料で構成される表面用の表面処理剤、該表面処理剤でコーティングされた器具、その製造方法、及び新規重合体
JP2016510902A (ja) * 2013-02-25 2016-04-11 ザ ユニバーシティー オブ クイーンズランド リソグラフィーによって生成された形体
WO2014196650A1 (ja) 2013-06-07 2014-12-11 日産化学工業株式会社 生体物質の付着抑制能を有するイオンコンプレックス材料及びその製造方法
WO2016093293A1 (ja) 2014-12-10 2016-06-16 日産化学工業株式会社 生体物質の付着抑制能を有するイオンコンプレックス材料及びその製造方法
WO2017135398A1 (ja) 2016-02-04 2017-08-10 日産化学工業株式会社 ポリマーの製造方法
WO2020040247A1 (ja) 2018-08-24 2020-02-27 日産化学株式会社 細胞培養の下地膜として使用するポリマーの製造方法及び細胞培養容器

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Copolymerization (Glossary of plastic terms: Ka line) | KDA's plastic processing technology", KDA, 17 May 2017 (2017-05-17), pages 1 - 3, XP055885389, Retrieved from the Internet <URL:https://web.archive.org/web/20170517213515/https://www.kda1969.com/words/words_pla_2k_08.htm> [retrieved on 20220131] *
MEI YING, SAHA KRISHANU, BOGATYREV SAID R., YANG JING, HOOK ANDREW L., KALCIOGLU Z. ILKE, CHO SEUNG-WOO, MITALIPOVA MAISAM, PYZOCH: "Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells", NATURE MATERIALS, NATURE PUBLISHING GROUP UK, LONDON, vol. 9, no. 9, 1 September 2010 (2010-09-01), London, pages 768 - 778, XP055885392, ISSN: 1476-1122, DOI: 10.1038/nmat2812 *
RICHARDS SARAH-JANE, JONES ADAM, TOMÁS RUBEN M. F., GIBSON MATTHEW I.: "Photochemical "In-Air" Combinatorial Discovery of Antimicrobial Co-polymers", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 24, no. 52, 18 September 2018 (2018-09-18), DE, pages 13758 - 13761, XP055885394, ISSN: 0947-6539, DOI: 10.1002/chem.201802594 *
See also references of EP4166645A4
YAMAMOTO, KATSUHIRO: "Block copolymer", KOBUNSHI RONBUNSHU, vol. 76, no. 1, 25 January 2019 (2019-01-25), JP , pages 1 - 2, XP009541542, ISSN: 0386-2186, DOI: 10.1295/koron.2018-0061 *
YAMAZAWA YUKA, KATO HIBIKI, NAKAJI-HIRABAYASHI TADASHI, YOSHIKAWA CHIAKI, KITANO HIROMI, OHNO KOHJI, SARUWATARI YOSHIYUKI, MATSUOK: "Bioinactive semi-interpenetrating network gel layers: zwitterionic polymer chains incorporated in a cross-linked polymer brush", JOURNAL OF MATERIALS CHEMISTRY. B, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 7, no. 27, 3 June 2019 (2019-06-03), GB , pages 4280 - 4291, XP055885383, ISSN: 2050-750X, DOI: 10.1039/C8TB03228A *

Also Published As

Publication number Publication date
EP4166645A1 (en) 2023-04-19
EP4166645A4 (en) 2024-01-10
US20230242869A1 (en) 2023-08-03
JPWO2021251417A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2016093293A1 (ja) 生体物質の付着抑制能を有するイオンコンプレックス材料及びその製造方法
JP7040446B2 (ja) 薄膜段差被覆性を有するコーティング膜、該膜を備える構造基体
JPWO2020040247A1 (ja) 細胞培養の下地膜として使用するポリマーの製造方法及び細胞培養容器
EP3561043A1 (en) Cell culture substrate
EP3719113A1 (en) Cell culture container capable of long-term culture, and method for manufacturing same
WO2017006850A1 (ja) 生体物質の付着抑制能を有するイオンコンプレックス材料及びその製造方法
WO2021251417A1 (ja) ブロックコポリマーを含む生体物質への適合性を有するコーティング膜
WO2021167037A1 (ja) 生体物質付着抑制剤
WO2022085783A1 (ja) コポリマーからなる生体物質低付着材料
WO2021167042A1 (ja) 細胞凝集速度が制御可能な細胞培養器
WO2015133461A1 (ja) 生体物質の付着抑制能を有するイオンコンプレックス材料
WO2022259998A1 (ja) コーティング膜形成用組成物、コーティング膜、及び細胞培養容器
WO2020166605A1 (ja) 生体物質への適合性を有するポリマーの製造方法
JP2023036217A (ja) 共重合体、表面改質剤、組成物、医療用デバイス、シリコーン基材、及び細胞培養容器
WO2021167041A1 (ja) 細胞凝集塊の製造方法
JP2019085520A (ja) ブロック共重合体、細胞培養基材及び細胞培養方法
WO2023282253A1 (ja) 無血清培地中での細胞培養用下地材料
JP2023008746A (ja) 無血清培地中での細胞培養用下地材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530596

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021822211

Country of ref document: EP

Effective date: 20230112

NENP Non-entry into the national phase

Ref country code: DE