WO2021251369A1 - 装置状態監視システム - Google Patents
装置状態監視システム Download PDFInfo
- Publication number
- WO2021251369A1 WO2021251369A1 PCT/JP2021/021712 JP2021021712W WO2021251369A1 WO 2021251369 A1 WO2021251369 A1 WO 2021251369A1 JP 2021021712 W JP2021021712 W JP 2021021712W WO 2021251369 A1 WO2021251369 A1 WO 2021251369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- unit
- monitoring system
- operation information
- work
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 121
- 230000008569 process Effects 0.000 claims abstract description 117
- 238000012545 processing Methods 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 6
- 238000013024 troubleshooting Methods 0.000 claims description 2
- 238000003466 welding Methods 0.000 description 64
- 238000003860 storage Methods 0.000 description 42
- 238000004519 manufacturing process Methods 0.000 description 33
- 238000007726 management method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000010801 machine learning Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3447—Performance evaluation by modeling
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/3013—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is an embedded system, i.e. a combination of hardware and software dedicated to perform a certain function in mobile devices, printers, automotive or aircraft systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y10/00—Economic sectors
- G16Y10/25—Manufacturing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Y—INFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
- G16Y40/00—IoT characterised by the purpose of the information processing
- G16Y40/40—Maintenance of things
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Definitions
- the present invention relates to a device condition monitoring system that monitors the operating state of the device.
- the operating status of equipment etc. is one index.
- plans and actual results are reviewed and improvement proposals are made at regular intervals such as monthly.
- the main work such as the processing work that directly produces the processed product, but also the preparatory work such as setup change, the post-work, the standby, the stop due to trouble and the trouble handling work such as dealing with it. include. Therefore, in order to accurately manage profits from the operating status of the equipment, it is not enough to grasp the operation and non-operation of the main work.
- the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a device status monitoring system capable of monitoring the operating status of a device in detail.
- the collection unit acquires the operation information of the device acquired from the device that executes a series of steps in chronological order, and the collection unit acquires the operation information.
- the process determination is performed by matching the operation information obtained with the matching data that models the operation information obtained from the device when the device is in each process, and determining the process information related to the process being executed by the device. It is equipped with a department.
- the operating status of the device can be monitored in detail.
- the schematic functional block diagram which shows the functional configuration of the apparatus state monitoring system in this embodiment.
- the figure explaining the relationship between a production line and a cell.
- the figure which visually showed the series of steps which a welding system can perform.
- a flowchart illustrating a process information determination process executed by the device condition monitoring system.
- the figure which shows an example of the operation information acquired by a collecting part in chronological order.
- Explanatory drawing which shows the display example of process information.
- a flowchart illustrating an alternative product proposal process executed by the device status monitoring system.
- the device condition monitoring system according to the present invention will be described with reference to the attached drawings.
- a case where the device condition monitoring system according to the present invention is applied to welding for welding such as arc welding and condition monitoring of a welding or processing system used for various processing / forming will be described as an example.
- the welding or processing system is simply referred to as a “welding system”. Also, when simply referring to welding, it may mean “welding or processing”.
- FIG. 1 is a schematic functional block diagram showing a functional configuration of the device status monitoring system 1 in the present embodiment.
- the "user” mainly refers to a person who operates and uses the equipment in the user equipment (factory) such as the welding system 35.
- “Seller” means a person who sells a device (including parts attached to the device) to a user, maintains the device, or modifies the device.
- “Manufacturer” means a person who manufactures equipment and parts for sale to a user by a seller and sells them to the seller.
- the “device” and “part” include the welding system 35, the robot body 36, the jigs / sensors 37, and the robot controller 38, the dedicated substrate 39, or their parts, PLC32, PLC-GW33, and the parts included in the cell 31. It may include the communication GW 34 or the components contained therein.
- the device status monitoring system 1 is connected to the network 2.
- the device condition monitoring system 1 is connected to the production line 3, ... 3n, the seller terminal 4, the manufacturer terminal 5, and the user terminal 6, ..., 6n via the network 2.
- the production line 3, ... 3n is a facility composed of a plurality of cells 31 managed by the user.
- the cell 31 is a concept in which a small section included in the production line 3 is a unit, and the same production line 3 may include a plurality of cells 31a, 31b, 31c.
- FIG. 2 is a diagram illustrating the relationship between the production line 3 and the cell 31.
- the production line 3A for producing the product A includes cells A-1 to A-4 and cells 31A represented by cells C-1 to C-2.
- the production line 3B for producing the product B includes cells B-1 to B-4 and cells 31B represented by cells C-1 to C-2.
- cell 31 may be included in a plurality of production lines 3.
- a plurality of (different users) user equipment managed by a plurality of users may be connected to the network 2, but since each user equipment has almost the same configuration, only one user equipment is illustrated and described here. do.
- the production line 3 has a cell 31, PLC32, PLC-GW33, and a communication GW34.
- the cell 31 has a welding system 35, a robot body 36, jigs / sensors 37, and a robot controller 38.
- the welding system 35 includes a welding machine, a feeder control box, a wire supply device, a welding torch, a torch cable, and the like.
- the robot body 36 is a robot for automatically performing welding using the welding system 35.
- the jig / sensor 37 includes a jig such as a positioner, a position sensor, a temperature sensor, sensors such as a vibration meter, and an image pickup device.
- the welding system 35 and the robot body 36 are connected to the robot controller 38.
- the robot controller 38 controls the welding system 35 and the robot body 36 based on the control of the PLC (Programmable Logic Controller) 32.
- PLC Programmable Logic Controller
- the PLC 32 is connected to the robot controller 38 and the jigs / sensors 37, and by controlling these based on the control contents programmed in advance, the welding system 35, the robot body 36 and the jigs / sensors 37 (cell 31). ) Is controlled higher.
- the dedicated substrate 39 acquires operation information including physical quantities related to various weldings from the welding system 35, the robot controller 38, and the PLC 32, and is equipped with a dedicated computing CPU (Central Processing Unit).
- a dedicated computing CPU Central Processing Unit
- the operation information corresponds to all the quantifiable (outputtable) information obtained from the production line 3.
- the operation information includes, for example, the operation information of the motor for driving the shaft of the robot main body 36 obtained from the robot controller 38, or the welding conditions obtained from the welding device.
- the motor operation information includes, for example, a motor current command value, an actual current value, a motor speed command value, an actual speed, or an encoder position information.
- Welding conditions include, for example, welding method, welding current, welding voltage, welding wire feeding speed, welding speed, welding waveform adjustment amount, protrusion amount, advance / reverse angle of welding torch, target angle, target position, shield gas flow rate. , Weaving condition, arc sensor condition, welding position offset amount at the time of multi-layer welding.
- the operation information includes various values measured from the welding system 35, the robot body 36, and the jigs / sensors 37 that operate based on these welding conditions. Each of these operation information is measured by a predetermined measuring device.
- the operation information includes, for example, the image pickup data of the welded portion imaged by the image pickup apparatus, the appearance of the weld bead obtained by processing the image pickup data, the extra height of the bead, the bead width, and the amount of spatter generated. .. Further, the operation information includes the penetration amount obtained from the penetration measuring device and the arc sound wave type obtained from the sound collecting device.
- the PLC 32a is connected to a plurality of cells 31a and 31b as shown in FIG. 1 as an example.
- a separate PLC 32b is provided in a different cell 31c, and this PLC 32b is also connected to a cell 31c having substantially the same configuration as the cell 31a.
- the PLC 32 and the dedicated board 39 are sequentially connected to the PLC-GW (PLC-Gateway) 33 and the communication GW (communication Gateway) 34.
- the PLC-GW 33 converts the communication protocols of the plurality of PLCs 32a and 32b connected to the apparatus and the dedicated substrate 39 into a predetermined format available in the apparatus condition monitoring system 1.
- the PLC-GW 33 transmits the operation information obtained from the dedicated board 39 to the device condition monitoring system 1 via the communication GW 34 and the network 2.
- the PLC-GW 33 acquires and transmits operation information at regular intervals. At this time, along with the operation information of the cell 31, the operation information regarding the PLC-GW 33 or the communication GW 34 may be transmitted to the device status monitoring system 1.
- the device connected to the dedicated substrate 39 also includes a device (for example, a press machine or a welding machine alone) that operates without being controlled by the PLC 32 or the robot controller 38.
- the dedicated board 39 is directly connected to these devices, and acquires and transmits an acquireable electric signal such as an ON / OFF signal that simply indicates whether or not the device is operating (for example, a 24V contact output). ..
- a unique ID is assigned to each device (hereinafter, simply referred to as "device") that provides information to the device status monitoring system 1 such as the welding system 35, the robot body 36, and the jigs / sensors 37. Similarly, a unique ID is attached to the parts constituting the device (welding torch, welding wire, welding tip, etc.) and the elements composed of the device and parts (for example, the shaft of the robot body 36). The information provided to the device condition monitoring system 1 is associated with these IDs and transmitted in an identifiable manner.
- the seller terminal 4 is a terminal (computer) used by the seller.
- the seller uses the seller terminal 4 to access the information in the device condition monitoring system 1 to be disclosed to the seller terminal 4, and receives a notification from the device condition monitoring system 1.
- the maker terminal 5 is a terminal used by the maker.
- the maker uses the maker terminal 5 to access the information in the device condition monitoring system 1 which is the object of disclosure to the maker terminal 5, and receives a notification from the device condition monitoring system 1.
- User terminals 6, ..., 6n are terminals used by each user.
- a plurality of (different users) user terminals 6, ... 6n, managed by a plurality of users are connected to the network 2, but since each user terminal 6, ... 6n has almost the same configuration, it is simply a user terminal. It will be described as 6.
- the user uses the user terminal 6 to access the information in the device condition monitoring system 1 to be disclosed to the user terminal 6 and receive a notification from the device condition monitoring system 1.
- the device status monitoring system 1 is, for example, a system using SaaS (Software as a Service) using cloud computing.
- the device condition monitoring system 1 includes a collection unit 11, a process determination unit 21, a storage unit 12, a display control unit 22, a calculation unit 13, a notification unit 14, and an ordering unit 15.
- the collecting unit 11 acquires operation information and various physical quantities related to devices such as the welding system 35 from the production line 3 via the network 2.
- the collection unit 11 records the acquired operation information and the like in the operation information storage unit 18 through the process determination unit 21.
- the process determination unit 21 has matching data used for matching stored in advance.
- the process determination unit 21 collates the matching data with the operation information acquired by the collection unit 11 to determine the process being executed by the apparatus from the operation information and generate the process information.
- the process determination unit 21 stores the generated process information in the operation information storage unit 18 together with the matching data. The details of the process determination unit 21 will be described later.
- the storage unit 12 has a sales information storage unit 17 and an operation information storage unit 18.
- the operation information storage unit 18 acquires and stores the operation information obtained from the collection unit 11 via the process determination unit 21. Further, the operation information storage unit 18 stores the process information generated by the process determination unit 21 in association with the matching data associated with the process information.
- the display control unit 22 reads the operation information and process information stored in the operation information storage unit 18 and controls the display in a designated format. Specifically, when the display control unit 22 is requested to display the operation information or the like from the seller terminal 4, the maker terminal 5, or the user terminal 6, the display control unit 22 reads the information in response to the request, and the seller terminal 4; It is displayed in a predetermined format on the maker terminal 5 or the user terminal 6.
- the sales information storage unit 17, the calculation unit 13, the notification unit 14, and the ordering unit 15 will be described in detail after explaining the process of generating the process information in order to execute the function using the generated process information. ..
- the cell 31 executes a series of steps in order to perform welding on a certain processing target. That is, in the series of processes of the cell 31, the main work of actually performing welding (directly producing a processed product by the device) such as "setup change", "standby", “operating", and "abnormality occurrence". This includes not only processing work) but also work that accompanies the main work, such as setup change work, preparatory work such as standby work, post-work, and trouble-shooting work such as interruption due to trouble. That is, a process is a concept that can include various tasks that the device can actually perform.
- FIG. 3 is a diagram visually showing a series of steps that the cell 31 can perform.
- the device status monitoring system 1 in the present embodiment automatically acquires operation information from the cell 31. Further, the device condition monitoring system 1 automatically determines the process information from the operation information by matching the process executed by the cell 31 with the matching data stored in advance based on the operation information. It can be generated in real time.
- the process for determining the process information will be described using a flowchart.
- FIG. 4 is a flowchart illustrating a process information determination process executed by the device condition monitoring system 1.
- the process information determination process is repeatedly executed at predetermined timings or at predetermined time intervals, for example, every time the collecting unit 11 acquires operation information.
- step S101 the collecting unit 11 acquires operation information from the cell 31 via the network 2.
- the operation information used here is information necessary for determining the process in which the cell 31 is being executed among the above-mentioned operation information, and mainly has time information and element information.
- the time information is information representing the date and time when the operation information is output from the cell 31.
- the element information is information about a plurality of operating elements included in the cell 31, and for example, whether or not a predetermined state is satisfied in each operating element can be represented by binary values of "0" and "1". Information.
- the element information is information indicating an internal state (depending on the cell 31) peculiar to the device of the cell 31, and is a kind of information that is difficult to generalize and compare with other devices such as process information.
- FIG. 5 is a diagram showing an example of the operation information acquired by the collecting unit 11 in chronological order.
- FIG. 5 shows an example of acquiring element information from cell 31 (cell A-1) as 32-bit information.
- the element information consisting of 32 shown as an example in FIG. 5 corresponds to the items described together in each process of FIG. 3, and in FIG. 3, the element information related to each process is shown.
- the element information necessary for determining "1 process production standby" is "mode 1 process use", "1 process in-situ” and the like.
- the element information is, for example, information regarding whether or not a laser emission abnormality has occurred in the cell 31, and is "1" when a laser emission abnormality has occurred and "0" when no laser emission abnormality has occurred. expressed.
- the other element information is information on whether or not the movable element (for example, the positioner jig) used in a certain process (for example, one step) is in the in-situ position, and when the movable element is in the in-situ position. Is represented by "1", and if it is not in the original position, it is represented by "0".
- step S102 the process determination unit 21 collates the matching data possessed by the process determination unit 21 with the element information (operation information) acquired from the collection unit 11.
- the matching data is data defined by modeling a pattern of element information that will be obtained from the cell 31 while the cell 31 is executing each process. For example, in the element information, when a certain operating element is in the original position and "mode 1 process use” is established, the cell 31 is executing the process "1 process production standby". It is the data to define.
- mode 1 process use means a state in which an instruction to use one process is received from an operator.
- step S103 the process determination unit 21 determines the process in which the cell 31 estimated from the operation information is being executed based on the collation result of the matching data. Specifically, the process determination unit 21 extracts a pattern that matches the pattern of the element information to be compared from the matching data, and generates process information from the process defined in the pattern.
- step S104 the process determination unit 21 associates the operation information acquired from the collection unit 11 with the matching data (process information), and stores the operation information in the operation information storage unit 18 at any time.
- the process information is associated with the operation information by the process determination unit 21, and the process information relatively comparable to other devices is generated (operation) from the internal operation information depending on the cell 31.
- Information can be converted into process information).
- the process information is, for example, linked with the related diagram of the process exemplified in FIG. 3, and the process in which the cell 31 is being executed (“two-process production standby” in FIG. 3) is clearly indicated by changing the color. You can grasp the current situation in real time.
- FIG. 6 is an explanatory diagram showing a display example of process information.
- the display control unit 22 can display the ratio of the processes executed by the cell 31 in a certain period in a table format based on the process information. Further, as shown in FIG. 6B, the display control unit 22 can also display the ratio of the steps executed by the cell 31 in a pie chart format. Further, as shown in FIG. 6C, the display control unit 22 can also display in a Gantt chart format so that the processes executed by the cell 31 can be listed on the time axis.
- Such process information can be utilized for various analyzes by being associated with data created and input by a user or the like in advance.
- the user can perform forecast / actual management, prediction of ordering points of materials, and the like by using process information.
- process information By using the obtained process information, sellers and manufacturers can make demand forecasts for consumables, failure forecasts for equipment or parts, automatic ordering proposals for consumables / materials, ordering point forecasts for materials, manufacturing forecasts for materials, etc. It can be carried out.
- the device condition monitoring system 1 can accurately obtain process information as an actual result of the cell 31 in real time. Therefore, by having the required analysis unit, the device condition monitoring system 1 has a value output (for example, a finished product) with respect to budgetary input resources (for example, material cost, raw material cost, labor cost). Analysis of price forecasting and actual management of profits obtained) can be automatically processed.
- a value output for example, a finished product
- budgetary input resources for example, material cost, raw material cost, labor cost. Analysis of price forecasting and actual management of profits obtained
- the device condition monitoring system 1 can accurately grasp all the processes executed while the cell 31 is in operation, it is possible to perform direct processing (main work) for the number of processed products in a certain period. It is possible to manage profits not only by simply comparing the required resources, but also by considering the preparatory work and post-work (setup work, standby time, etc.) other than the operating time, and the input resources involved in the trouble. can.
- the device condition monitoring system 1 determines the process by generating matching data in which the operation information and the process information are associated in advance, the process information can be obtained from any device as long as there is matching data. Can be generated. That is, even if the device status monitoring system 1 is an old machine that is not controlled by the PLC 32 or the robot controller 38, for example, if the operating status such as the ON / OFF signal can be acquired from various output terminals, the process is performed through matching. Information can be generated. That is, the device condition monitoring system 1 can be applied to any device or factory regardless of whether the device is new or old.
- the device condition monitoring system 1 has a sales information storage unit 17, a calculation unit 13, a notification unit 14, and an ordering unit 15 of the storage unit 12 shown in FIG. 1 in order to perform failure prediction.
- the sales information storage unit 17 records sales information of the device or parts to the user by the seller.
- the sales information may include a history of sales of products or parts made by the seller to the user, a history of maintenance of equipment or parts, or a history of modification of equipment or parts.
- the sales information storage unit 17 has, for example, a tree structure having user information (user name or the like) as an apex.
- the sales information storage unit 17 sequentially stores information about the production line 3 (user equipment), information about the cell 31, information about the device included in the cell 31, and information about the elements or parts included in the device under the user information. I'm recording.
- the sales information storage unit 17 assigns and records the above-mentioned device-specific ID to the information.
- the sales information storage unit 17 acquires and records information on sales, maintenance, and modification performed by the seller to the user from the seller terminal 4. In addition to the sales information, the sales information storage unit 17 holds information necessary for the seller to sell, such as the required inventory quantity of each device and parts for each user. The sales information storage unit 17 also holds substitute information regarding substitutes for each device or component. These information are appropriately transmitted from the seller terminal 4 and recorded (updated, added, or modified) in the sales information storage unit 17. The sales information storage unit 17 is recorded in association with the operation information recorded in the operation information storage unit 18. The association is made by ID.
- the calculation unit 13 has a prediction unit 19 and a proposal unit 20.
- the prediction unit 19 performs machine learning based on sales information and operation information (hereinafter, in the case of simply “operation information”, information associated with process information may also be included), thereby timing a failure of a device or a component. Predict (time point of failure prediction). Specifically, the prediction unit 19 machine-learns the past sales information and operation information stored in the sales information storage unit 17 and the operation information storage unit 18 from the operation of the device to the failure, and the device or Generate an inference model to infer the point of failure of a part. For example, the prediction unit 19 qualitatively (probability-distributes) evaluates changes in operating information up to the time of failure and performs machine learning.
- the prediction unit 19 obtains a difference from the obtained estimation model from the operating state until the current device or component fails, and obtains a curve (transition) up to the time of failure prediction.
- the prediction unit 19 updates this estimation model every time the past sales information and the operation information from the operation of the device to the failure are obtained, and further collects the information about the production line 3 of another user to obtain the accuracy. It is designed to predict the time of failure with high failure.
- the prediction unit 19 machine-learns the operation information about the motor regarding the failure prediction of the motor of the robot main body 36 with respect to the cycle until the failure, and the responsiveness slows down, the load factor changes, and the ambient temperature and vibration as additional information. Generates an inference model that takes into account the effect of frequency on failure. For machine learning, methods such as deep learning can be used, and various methods such as supervised learning, unsupervised learning, semi-supervised learning, enhanced learning, translation, and multitasking learning can be applied. The same applies to the proposal unit 20.
- “failure” refers to a state in which the device or part cannot be used for welding, and includes a state in which replacement with a new device or part is required. Also, “failure” includes a condition in which the device or part can be used for welding, but the required welding quality cannot be obtained.
- the proposal unit 20 proposes a substitute for a device or a part by machine learning based on sales information, operation information, and parts information. Specifically, the proposal unit 20 machine-learns the past sales information and operation information stored in the sales information storage unit 17 and the operation information storage unit 18, and substitutes the device or component currently in use for a substitute. Generate an inference model for evaluation. Proposal Unit 20 determines if there is a preferred alternative to the product or component currently in use, based on the evaluation of the alternatives obtained from this guess model.
- the notification unit 14 notifies the user terminal 6 based on the estimation results of the prediction unit 19 and the proposal unit 20. For example, when the time until the failure prediction time is less than the notification time, which is the preset notification time, the notification unit 14 notifies the user terminal 6 by e-mail or the like. Further, the notification unit 14 notifies the user terminal 6 by e-mail or the like when there is an alternative product to be proposed to the user.
- the ordering unit 15 automatically performs an ordering process for a device or a part whose failure is presumed based on the estimation result of the prediction unit 19. For example, when the time until the failure prediction time is less than the ordering time, which is the time for placing a preset order, the ordering unit 15 records the information of the corresponding part in the sales information storage unit 17 and sells the contents. Send to the person terminal 4. The seller ships the device or part to the user based on this notification.
- Such an apparatus status monitoring system 1 is obtained from the production line 3 with detailed information about the equipment or parts used in the production line 3 already recorded in the sales information storage unit 17, information about the production line 3, and the like. Record in association with the operation information to be used. Therefore, the machine learning can be executed by reflecting the user's usage environment more than the machine learning only by the operation information obtained from the device or the component.
- FIG. 7 is a flowchart illustrating a failure prediction process executed by the device condition monitoring system 1 in the present embodiment.
- FIG. 8 is a sequence diagram for specifically explaining the processing in the production line 3 and the device condition monitoring system 1.
- step S1 of FIG. 7 the collecting unit 11 acquires operation information. That is, the collecting unit 11 acquires the physical quantity related to welding (step S11 in FIG. 8) acquired from the device or the component by the production line 3 via the network 2 (step S12). The collecting unit 11 acquires operation information by performing the above-mentioned required processing on the physical quantity related to this welding (step S13).
- step S2 the operation information storage unit 18 acquires and records the operation information from the collection unit 11 (step S14). At this time, the operation information storage unit 18 records the sales information stored in the sales information storage unit 17 in association with the sales information (step S15).
- step S3 the prediction unit 19 acquires operation information from the operation information storage unit 18 (step S16). Further, the prediction unit 19 acquires sales information from the sales information storage unit 17 (step S17). The prediction unit 19 performs machine learning based on the acquired information and updates the guess model for performing failure prediction (step S18). The guess model may be updated at various timings, such as every time new sales information is recorded in the sales information storage unit 17.
- step S4 the prediction unit 19 acquires a failure prediction time point based on the guess model (step S19).
- the prediction unit 19 outputs the acquired failure prediction time point to the notification unit 14 and the ordering unit 15 (steps S20 and S21).
- step S5 the notification unit 14 determines whether or not the notification time is less than the preset notification time until the failure prediction time.
- the notification unit 14 determines that the notification time is less than the notification time (YES in step S5)
- the time until the time when the device or component is predicted to fail in the user terminal 6 in step S6 corresponds to the notification time. Notify that it is less than the time to do (step S22).
- the user can perform necessary maintenance and ordering work such as replacement parts. This makes it possible to reduce the downtime due to an unintended failure.
- step S7 the ordering unit 15 determines whether or not the ordering time is less than the preset ordering time until the failure prediction time. If it is determined that the ordering time is less than the ordering time (YES in step S7), the ordering unit 15 performs an ordering process for a device or a part that needs to be replaced due to a failure in step S8 (step S23). This process is performed by the device condition monitoring system 1 automatically determining a required device or component without the user performing an order process.
- the ordering unit 15 can also determine the number of orders by referring to the required inventory quantity of the user recorded in the sales information storage unit 17. As a result, the user can save the trouble of performing the ordering work and can automate the inventory management. In addition, the seller can also save the trouble of interacting with the user.
- the ordering unit 15 determines that the ordering time is not less than the ordering time (NO in step S7), and after S8, the process returns to step S1. This process is repeatedly executed while the production line 3 is in operation.
- FIG. 9 is a flowchart illustrating an alternative product proposal process executed by the device condition monitoring system 1.
- This alternative product proposal process may be performed at a fixed cycle, or may be executed at a predetermined timing (for example, the timing of failure of a device or a component).
- the process corresponding to the alternative product proposal process is described following the sequence diagram of FIG. 8 used in the explanation of the failure prediction process described above, but the timing at which the process is executed is not limited to this.
- step S31 the proposal unit 20 appropriately acquires sales information and substitute product information from the sales information storage unit 17 (step S41 in FIG. 8).
- the sales information and the substitute product information are appropriately input from the seller terminal 4, for example, and are recorded in the sales information storage unit 17 (step S42 in FIG. 8).
- step S32 the proposal unit 20 performs machine learning based on the acquired information and updates the guessing model for estimating the failure prediction time point according to the device or part (step S44).
- step S33 the proposal unit 20 evaluates when an alternative product is used based on the guess model (step S45).
- the guess model may be updated at various timings, such as every time new sales information is recorded in the sales information storage unit 17.
- the evaluation of the welding tip can be evaluated by the wear that can be judged from the welding current and the welding voltage. Based on the estimation model, the proposal unit 20 selects a welding tip as an alternative that reduces wear and improves productivity.
- the proposal unit 20 calculates the cost of the welding tip in a certain period from, for example, the replacement cycle and the price of the welding tip currently in use. Further, the proposal unit 20 calculates the cost of the welding tip in a certain period from the replacement cycle of the welding tip and the component price predicted when the welding tip as a substitute is used. The proposal unit 20 can compare these costs and evaluate that the alternative should be used if the cost of using the alternative is small.
- the evaluation of the welded wire can be evaluated by the transmission resistance that can be judged from the current and voltage of the transmission motor of the wire.
- the proposal unit 20 selects a welded wire as an alternative to reduce the transmission resistance based on the guess model.
- the proposal unit 20 considers, for example, the frequency of replacement, the yield, and the number of stops or slips (so-called chocolate stops) due to primary troubles caused by the wire as evaluation items, and uses the currently used welding wire and the welding wire as an alternative. To compare.
- the proposal unit 20 can evaluate that the alternative should be used if the alternative is better.
- step S34 the proposal unit 20 determines whether or not the evaluation is improved when the alternative product is used as compared with the case where the currently used device or component is used.
- the proposal unit 20 determines that the improvement is to be made (YES in step S34)
- the proposal unit 20 outputs the evaluation information to the notification unit 14 (step S46).
- step S35 the notification unit 14 notifies the user terminal 6 of the content of proposing an alternative product based on the evaluation information (step S47).
- the process is terminated.
- Such a device status monitoring system 1 is managed by the seller, and stores the operation information acquired from the production line 3 in association with a system such as a customer relationship management (CRM) system that holds customer information and sales information.
- a system such as a customer relationship management (CRM) system that holds customer information and sales information.
- CRM customer relationship management
- the seller can input the information associated with the sales information and the operation information regarding the sales history, maintenance history or modification history owned by the seller without the trouble of inputting or collecting or inputting the device information.
- the device condition monitoring system 1 can perform highly accurate failure prediction more realistically by performing machine learning based on this information.
- the device status monitoring system 1 allows the seller to obtain information on failure prediction, it can be used for the seller's own sales forecast, and for the manufacturing forecast and sales forecast of the manufacturer who sells the product or part to the seller. Can also utilize information.
- the seller or the manufacturer can predict the appropriate supply timing and supply quantity of the product or part, and can enjoy the advantage that the supply can be proposed before the stock runs out.
- the manufacturer can quantitatively grasp the target of product development.
- the device status monitoring system 1 is a CRM system for managing information about a seller's user, it is possible to use information about the same type of device or component obtained from a plurality of users for the seller across the board. , The amount of information that can be obtained is large, and more accurate predictions can be made. Therefore, the device condition monitoring system 1 is a system capable of sharing production information, optimizing, and providing improvement policies across a plurality of companies (multiple users, sellers, manufacturers).
- the configuration of the production line 3 in FIG. 1 is an example, and the PLC 32, PLC-GW 33, and the dedicated substrate 39 can be omitted so that the physical quantity related to welding is directly transmitted from the robot controller 38 or the like to the network 2. You may.
- the seller terminal 4, the maker terminal 5, and the user terminal 6 are not indispensable, and the calculation unit 13, the notification unit 14, and the ordering unit 15 for analysis using process information are also indispensable for the device condition monitoring system 1 of the present invention. It is not the composition of. Further, it is not essential to transmit the operation information via the network 2, and the device condition monitoring system 1 may be realized on a closed network such as in a factory.
- a “dealer” is a person who sells equipment or parts to a user, and when the manufacturer sells these directly to the user, the “dealer” includes the manufacturer.
- FIG. 1 shows an example in which each part of the device condition monitoring system 1 is in the same system, but a part of the device status monitoring system 1 may be included in different systems via the network 2.
- the collection unit 11 and the calculation unit 13 may use different SaaS.
- the device condition monitoring system 1 may be, for example, a customer relationship management (CRM) system for the seller, or may be used for management / analysis of customer information.
- CRM customer relationship management
- equipment condition monitoring system 1 has been described using an example of being applied to the condition monitoring of a welding or processing system, a series of processes such as a construction site, various plants, commercial facilities, medical facilities, etc. are executed in addition to the manufacturing industry. It can be applied to any type of facility or equipment in which the equipment is used.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Computing Systems (AREA)
- Business, Economics & Management (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- Manufacturing & Machinery (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Health & Medical Sciences (AREA)
- Entrepreneurship & Innovation (AREA)
- Automation & Control Theory (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Operations Research (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
装置の稼働状況を詳細に監視できる装置状態監視システムは、一連の工程を実行する装置から取得される装置の稼働情報を時系列に取得する収集部と、収集部が取得した稼働情報を、装置が各工程にある場合に装置から得られる稼働情報をモデル化したマッチングデータとマッチングし、装置が実行中の工程に関する工程情報を決定する工程決定部と、を備える。
Description
本発明は、装置の稼働状態を監視する装置状態監視システムに関する。
従来、生産設備における生産状況や稼働状況をリアルタイムにモニタリングするための技術が知られている。
例えば、工場などの収益管理においては、装置などの稼働状況が1つの指標になる。従来においては、月単位などの一定期間毎に、計画と実績の振り返りや改善提案が行われている。しかしながら、装置の稼働状態には、加工品を直接生み出す加工作業のような主作業のみならず、段取り替えなどの準備作業や、後作業、待機、トラブルによる停止やその対応などのトラブル対応作業も含まれている。このため、正確に装置の稼働状況から収益管理を行おうとすると、主作業の稼働と非稼働を把握するのみでは不十分である。
本発明はこのような事情を考慮してなされたもので、装置の稼働状況を詳細に監視できる装置状態監視システムを提供することを目的とする。
本発明に係る装置状態監視システムは、上述した課題を解決するために、一連の工程を実行する装置から取得される前記装置の稼働情報を時系列に取得する収集部と、前記収集部が取得した前記稼働情報を、前記装置が各前記工程にある場合に前記装置から得られる前記稼働情報をモデル化したマッチングデータとマッチングし、前記装置が実行中の前記工程に関する工程情報を決定する工程決定部と、を備える。
本発明に係る装置状態監視システムにおいては、装置の稼働状況を詳細に監視できる。
本発明に係る装置状態監視システムの実施形態を添付図面に基づいて説明する。本実施形態においては、本発明に係る装置状態監視システムがアーク溶接などのための溶接や種々の加工・成形に用いられる、溶接または加工システムの状態監視に適用される場合を例に説明する。以下、単に溶接または加工システムを「溶接システム」という。また、単に溶接という場合には、「溶接または加工」を意味し得る。
図1は、本実施形態における装置状態監視システム1の機能構成を示す概略的な機能ブロック図である。
以下の説明において、「ユーザ」は、主に、溶接システム35をはじめとするユーザ設備(工場)内の装置を稼働し使用する者をいう。「販売者」は、装置(装置に付随する部品を含む。)をユーザに対し販売すること、装置をメンテナンスすること、もしくは装置を改造することを行う者をいう。「メーカ」は、販売者がユーザに販売する装置や部品を製造し販売者に販売する者をいう。「装置」および「部品」は、セル31に含まれる溶接システム35、ロボット本体36、治具・センサ類37、およびロボットコントローラ38、専用基板39、またはこれらの部品、PLC32、PLC-GW33、および通信GW34またはこれらに含まれる部品を含み得る。
装置状態監視システム1は、ネットワーク2に接続されている。装置状態監視システム1は、ネットワーク2を介して、製造ライン3、…3n、販売者端末4、メーカ端末5、およびユーザ端末6、…、6nと接続している。
製造ライン3、…3nは、ユーザにより管理される、複数のセル31からなる設備である。セル31は、製造ライン3に含まれる小区画を単位とした概念であり、同一の製造ライン3には複数のセル31a、31b、31cが含まれ得る。ここで、図2は、製造ライン3と、セル31との関係を説明する図である。
例えば、製品Aを製造するための製造ライン3Aには、セルA-1~A-4およびセルC-1~C-2で表されるセル31Aが含まれる。製品Bを製造するための製造ライン3Bには、セルB-1~B-4およびセルC-1~C-2で表されるセル31Bが含まれる。なお、セルC-1~C-2のように、セル31は複数の製造ライン3に含まれ得る。
ネットワーク2には、複数のユーザにより管理される複数(異なるユーザ)のユーザ設備が接続され得るが、各ユーザ設備はほぼ同様の構成を有するため、ここでは一のユーザ設備のみを図示して説明する。
製造ライン3は、セル31、PLC32、PLC-GW33、および通信GW34を有している。
セル31は、溶接システム35、ロボット本体36、治具・センサ類37、およびロボットコントローラ38を有している。
溶接システム35は、溶接機、フィーダコントロールボックス、ワイヤー供給装置、溶接トーチ、トーチケーブルなどを含む。ロボット本体36は、溶接システム35を利用して溶接を自動的に行うためのロボットである。治具・センサ類37は、ポジショナなどの治具、位置センサ、温度センサ、振動計などのセンサ類、および撮像装置などを含む。
溶接システム35およびロボット本体36は、ロボットコントローラ38に接続されている。ロボットコントローラ38は、PLC(Programmable Logic Controller)32の制御に基づいて、溶接システム35、ロボット本体36を制御する。
PLC32は、ロボットコントローラ38および治具・センサ類37と接続され、予めプログラムされた制御内容に基づいてこれらを制御することにより、溶接システム35、ロボット本体36および治具・センサ類37(セル31)を上位的に制御する。
また、溶接システム35、ロボットコントローラ38、およびPLC32は、専用基板39と接続されている。専用基板39は、溶接システム35、ロボットコントローラ38、およびPLC32から各種溶接に関する物理量などからなる稼働情報を取得するものであり、専用の演算用CPU(Central Processing Unit)を搭載している。
稼働情報は、製造ライン3から得られる数値化可能な(出力可能な)情報の全てが該当する。稼働情報は、例えば、ロボットコントローラ38より得られるロボット本体36の軸を駆動するモータの運転情報、または溶接装置から得られる溶接条件を含む。モータの運転情報は、例えば、モータ電流指令値、実電流値、モータ速度指令値、実速度、またはエンコーダ位置情報を含む。溶接条件は、例えば、溶接手法、溶接電流、溶接電圧、溶接ワイヤー送給速度、溶接速度、溶接波形調整量、突き出し量、溶接トーチの前進角・後進角、狙い角、狙い位置、シールドガス流量、ウィービング条件、アークセンサ条件、多層盛溶接時の溶接位置オフセット量を含む。また、稼働情報は、これら溶接条件に基づいて動作する溶接システム35、ロボット本体36、および治具・センサ類37から計測される各種値を含む。これら稼働情報は、それぞれ所定の計測装置により計測される。
また、稼働情報は、例えば、撮像装置により撮像された溶接部の撮像データ、この撮像データを処理することにより得られる溶接ビードの外観、ビードの余盛り高さ、ビード幅、スパッタ発生量を含む。さらに、稼働情報は、溶け込み計測装置から得られる溶け込み量、集音装置から得られるアーク音波形を含む。
PLC32aは、一例として図1に示すように、複数のセル31a、31bと接続されている。例えば、異なるセル31cには、別途のPLC32bが設けられており、このPLC32bも上記セル31aとほぼ同様の構成を有するセル31cと接続されている。
PLC32および専用基板39は、PLC-GW(PLC-Gateway)33および通信GW(通信Gateway)34と順次接続されている。PLC-GW33は、装置に接続された複数のPLC32a、32b、および専用基板39の通信プロトコルを、装置状態監視システム1で利用可能な所定の形式に変換する。PLC-GW33は、通信GW34およびネットワーク2を介して、専用基板39から得られた上記稼働情報を装置状態監視システム1に送信する。PLC-GW33は、稼働情報を一定周期で取得し、送信する。このとき、セル31の稼働情報とともに、PLC-GW33または通信GW34に関する稼働情報も装置状態監視システム1に送信されてもよい。
なお、専用基板39と接続される装置は、PLC32やロボットコントローラ38により制御されることなく作動する装置(例えばプレス機、溶接機単体)も含まれる。この場合、専用基板39は、これら装置と直接接続され、ON、OFF信号のような単に作動しているか否かを示す信号(例えば24V接点出力)など取得可能な電気信号を取得し、送信する。
溶接システム35、ロボット本体36および治具・センサ類37などの装置状態監視システム1に情報を提供する各装置(以下単に「装置」という。)には、固有のIDが付与されている。また、装置を構成する部品(溶接トーチ、溶接ワイヤー、溶接チップなど)、および装置や部品で構成される要素(例えばロボット本体36の軸)にも同様に、固有のIDが付されている。装置状態監視システム1に提供される情報は、これらIDと関連付けられて識別可能に送信される。
販売者端末4は、販売者が使用する端末(コンピュータ)である。販売者は、販売者端末4を利用して販売者端末4に対して開示対象となっている装置状態監視システム1内の情報にアクセスしたり、装置状態監視システム1より通知を受け取ったりする。
メーカ端末5は、メーカが使用する端末である。メーカは、メーカ端末5を利用して、メーカ端末5に対して開示対象となっている装置状態監視システム1内の情報にアクセスしたり、装置状態監視システム1より通知を受け取ったりする。
ユーザ端末6、…、6nは、各ユーザが使用する端末である。ネットワーク2には、複数のユーザにより管理される複数(異なるユーザ)のユーザ端末6、…6nが接続されているが、各ユーザ端末6、…6nはほぼ同様の構成を有するため、単にユーザ端末6として説明する。ユーザは、ユーザ端末6を利用して、ユーザ端末6に対して開示対象となっている装置状態監視システム1内の情報にアクセスしたり、装置状態監視システム1より通知を受け取ったりする。
装置状態監視システム1は、例えば、クラウドコンピューティングを利用した、SaaS(Software as a Service)を利用したシステムである。装置状態監視システム1は、収集部11と、工程決定部21と、記憶部12と、表示制御部22と、演算部13と、通知部14と、発注部15と、を有している。
収集部11は、ネットワーク2を介して製造ライン3より溶接システム35などの装置に関する稼働情報や種々の物理量などを取得する。収集部11は、取得した稼働情報などを、工程決定部21を通して稼働情報記憶部18に記録する。
工程決定部21は、予め記憶されたマッチングに用いるマッチングデータを有している。工程決定部21は、マッチングデータと、収集部11により取得された稼働情報とを照合することにより、稼働情報から装置が実行中の工程を決定し、工程情報を生成する。工程決定部21は、生成した工程情報をマッチングデータとともに稼働情報記憶部18に記憶する。工程決定部21の詳細については、後述する。
記憶部12は、販売情報記憶部17と、稼働情報記憶部18と、を有している。
稼働情報記憶部18は、収集部11より得られる稼働情報を、工程決定部21を介して取得し、記憶する。また、稼働情報記憶部18は、工程決定部21により生成された工程情報と、この工程情報に関連付けられたマッチングデータとを関連付けて記憶する。
表示制御部22は、稼働情報記憶部18に記憶された稼働情報や工程情報を読み込み、指定された形式で表示するための制御を行う。具体的には、表示制御部22は、販売者端末4、メーカ端末5、またはユーザ端末6より稼働情報などを表示するよう要求されると、要求に応じて情報を読み込み、販売者端末4、メーカ端末5またはユーザ端末6に所定の形式で表示する。
なお、販売情報記憶部17、演算部13、通知部14および発注部15については、生成された工程情報を利用した機能を実行するため、工程情報を生成する処理を説明した後に詳細に説明する。
次に、本実施形態における装置状態監視システム1により実行される処理について、詳細に説明する。以下、装置状態監視システム1が、セル31を対象として処理を実行する例を用いて説明する。セル31は、ある加工対象に溶接を施すため、一連の工程を実行する。すなわち、セル31の一連の工程には、「段取り替え」、「待機中」、「運転中」、および「異常発生」のように、実際に溶接を施す主作業(装置により加工品を直接生み出す加工作業)のみならず、段取り替え作業、待機などの準備作業や後作業、トラブルによる中断などのトラブル対応作業などの、主作業に付随して発生する作業が含まれる。すなわち、工程は、装置が実際に実施し得る種々の作業を含みうる概念である。
ここで、図3は、セル31が実行し得る一連の工程を視覚的に示した図である。
これら工程は、稼働情報の取得元となるセル31の機種や、セル31の加工対象に依存するものではなく、またセル31以外の他の装置との間でも比較可能な情報であり、例えば収益管理や予実管理を行う上で用いることもできる情報である。
例えば、セル31において、段取り替え(段替え)から運転までの各工程がどのような割合でどのような流れで実行されているか、について正確に把握することができると、計画と実績との比較や、作業効率の分析を行うことができる。
セル31に依存する稼働情報の記録や集計を人的資源で補うことにより、セル31の収益管理や予実管理を行うことは可能である。しかしながら、稼働情報から自動的に、かつリアルタイムにセル31が実行している工程に関する工程情報を収集することができれば、収益管理や予実管理のための分析をより詳細に、より効率的に行うことができる。
そこで、本実施形態における装置状態監視システム1は、セル31より、稼働情報を自動的に取得する。また、装置状態監視システム1は、この稼働情報に基づいてセル31が実行している工程を予め記憶されたマッチングデータとのマッチングにより決定することにより、稼働情報から工程情報を自動的に、かつリアルタイムに生成することができる。以下、工程情報を決定するための処理をフローチャートを用いて説明する。
図4は、装置状態監視システム1により実行される工程情報決定処理を説明するフローチャートである。工程情報決定処理は、例えば収集部11が稼働情報を取得するたびなどの、所定タイミング、または所定時間毎に繰り返し実行される。
ステップS101において、収集部11は、セル31よりネットワーク2を介して稼働情報を取得する。ここで使用される稼働情報は、上述した稼働情報のうち、セル31が実行中の工程を決定するために必要な情報であり、主に時間情報と、要素情報と、を有する。時間情報は、稼働情報がセル31から出力された日時を表す情報である。要素情報は、セル31に含まれる複数の稼働要素に関する情報であり、例えば各稼働要素において所定の状態が成立しているか否かを「0」および「1」の二値で表すことが可能な情報である。要素情報は、セル31の装置固有の(セル31依存の)内部状態を示す情報であり、工程情報のように一般化して他の装置と比較することが困難な類いの情報である。
ここで、図5は、収集部11が取得した稼働情報の一例を時系列で示す図である。図5においては、セル31(セルA-1)から要素情報を32ビットの情報として取得する例が示されている。図5に一例として示す32からなる要素情報は、図3の各工程に併記された項目と一致しており、図3においては、各工程に関連する要素情報が示されている。例えば「1工程生産待機」を決定するために必要な要素情報は、「モード1工程使用」、「1工程原位置」などである。
要素情報は、例えば、セル31にレーザ射出異常が発生しているか否かに関する情報であり、レーザ射出異常が発生している場合には「1」、発生していない場合には「0」で表される。また、他の要素情報は、ある工程(例えば1工程)に使用される可動要素(例えば、ポジッショナー治具)が原位置にあるか否かに関する情報であり、可動要素が原位置にある場合には「1」、原位置にない場合には「0」で表される。
ステップS102において、工程決定部21は、自らが有するマッチングデータを、収集部11から取得した要素情報(稼働情報)と照合する。
マッチングデータは、セル31が各工程を実行中にセル31から得られるであろう要素情報のパターンをモデル化して定義したデータである。例えば、要素情報において、ある稼働要素が原位置にあり、かつ「モード1工程使用」が成立している場合には、セル31は「1工程の生産待機」という工程を実行中であることを定義するためのデータである。なお、「モード1工程使用」とは、作業者より1工程を使用する指示を受け付けている状態をいう。
ステップS103において、工程決定部21は、マッチングデータの照合結果に基づいて、稼働情報から推定されるセル31が実行中の工程を決定する。具体的には、工程決定部21は、マッチングデータから比較対象の要素情報のパターンと一致するパターンを抽出し、そのパターンに定義づけられた工程から工程情報を生成する。
ステップS104において、工程決定部21は、収集部11から取得した稼働情報をマッチングデータ(工程情報)と関連付けて、稼働情報記憶部18に随時記憶する。
このようにして、工程決定部21により稼働情報に工程情報が関連付けされることにより、セル31に依存した内部的な稼働情報から、他の装置と相対的に比較可能な工程情報を生成(稼働情報を工程情報に変換)できる。工程情報は、例えば図3で例示した工程の関連図と連動させて、セル31が実行中の工程(図3においては「2工程生産待機」)を色を変えるなどして明示することで、現状をリアルタイムに把握できる。
また、表示制御部22は、ユーザ端末6などから工程情報を表示する指示を受け付けた場合、種々の態様により工程情報を表示し、ユーザなどにセル31により実施された工程の実績を視覚的に把握させることができる。例えば、図6は、工程情報の表示例を示す説明図である。
図6(A)に示すように、表示制御部22は、工程情報に基づいて、ある一定期間においてセル31が実行した工程の割合を表形式で表示することができる。また、図6(B)に示すように、表示制御部22は、セル31が実行した工程の割合を、円グラフ形式で表示することもできる。さらに、図6(C)に示すように、表示制御部22は、セル31が実行した工程が時間軸で一覧できるよう、ガントチャート形式で表示することもできる。
このような工程情報は、予めユーザなどにより作成され入力されたデータと関連付けられることにより、種々の分析に活用できる。例えば、ユーザは、工程情報を利用することにより、予実管理、材料の発注点予測などを行うことができる。販売者およびメーカは、得られる工程情報を利用することにより、消耗品の需要予測、装置または部品の故障予測、消耗品・材料の自動発注提案、材料の発注点予測、材料の製造予測などを行うことができる。
例えば、装置状態監視システム1は、実際のセル31の実績としての工程情報をリアルタイムに、かつ正確に得ることができる。このため、装置状態監視システム1が、所要の分析部を有することにより、予算上の投入資源(例えば、材料費、原料費、人件費)に対して、出力される価値(例えば、完成品で得られる利益)の価格予実管理に関する分析を自動で処理できる。
具体的には、装置状態監視システム1がセル31が稼働中において実行する全ての工程を正確に把握できるため、ある一定期間の加工品数に対して、直接的な加工(主作業)のために要した投入資源を単純に比較するのみならず、運転時間以外の準備作業および後作業(段取り替え作業、待機時間など)やトラブルに関与した投入資源なども考慮して、収益管理を行うことができる。
また、装置状態監視システム1は、稼働情報と工程情報とを関連付けたマッチングデータを予め生成することにより工程を決定するため、マッチングデータさえあれば、どのような装置からであっても工程情報を生成できる。すなわち、装置状態監視システム1は、例えばPLC32やロボットコントローラ38により制御されないような、古い機械であっても、ON、OFF信号のような稼働状態を種々の出力端子から取得できれば、マッチングを経て工程情報を生成することができる。すなわち、装置の新旧に依らずどのような装置、工場であっても、装置状態監視システム1を適用可能である。
次に、装置状態監視システム1により生成された工程情報を活用した処理の一例として、販売者が工程情報を用いて、装置または部品の故障予測を行う例を具体的に説明する。装置状態監視システム1は、故障予測を行うために、図1に示す記憶部12の販売情報記憶部17と、演算部13と、通知部14と、発注部15と、を有する。
販売情報記憶部17は、販売者によるユーザに対する装置または部品の販売情報を記録する。販売情報は、販売者がユーザに対して行った製品または部品の販売履歴、装置または部品のメンテナンス履歴、もしくは装置または部品の改造履歴を含み得る。販売情報記憶部17は、例えば、ユーザ情報(ユーザ名など)を頂点とするツリー構造を有している。例えば、販売情報記憶部17は、ユーザ情報の下位に、製造ライン3(ユーザ設備)に関する情報、セル31に関する情報、セル31に含まれる装置に関する情報、装置に含まれる要素または部品に関する情報を順次記録している。販売情報記憶部17は、これら情報に上述した装置固有のIDを付与して記録している。
販売情報記憶部17は、販売者がユーザに対して行った販売、メンテナンス、改造に関する情報を販売者端末4より取得し、記録する。販売情報記憶部17は、販売情報の他に、ユーザごとの各装置や部品の必要在庫数など、販売者が販売に必要な情報を保持している。販売情報記憶部17は、各装置や部品に対する代替品に関する代替品情報も保持している。これら情報は、販売者端末4より適宜送信され、販売情報記憶部17に記録(更新、追加、または修正)される。販売情報記憶部17は、稼働情報記憶部18に記録された稼働情報と関連付けて記録される。関連付けは、IDによって行われる。
演算部13は、予測部19と、提案部20と、を有している。
予測部19は、販売情報および稼働情報(以下単に「稼働情報」という場合には、工程情報が関連付けられた情報も含み得る。)に基づいて機械学習することにより、装置または部品の故障のタイミング(故障予測時点)を予測する。具体的には、予測部19は、販売情報記憶部17および稼働情報記憶部18に蓄積された、装置が稼働してから故障するまでの過去の販売情報および稼働情報を機械学習し、装置または部品の故障時点を推測するための推測モデルを生成する。例えば、予測部19は、故障時点までの稼働情報の変化を定性的(確率分布的)に評価し、機械学習する。予測部19は、得られた推測モデルから現在の装置または部品が故障するまでの稼働状態との差分を得て、故障予測時点までの曲線(推移)を得る。予測部19は、装置が稼働してから故障するまでの過去の販売情報および稼働情報が得られるたびにこの推測モデルを更新し、さらに他ユーザの製造ライン3に関する情報も集積することにより、精度の高い故障時点の予測を行うようになっている。
例えば、予測部19は、ロボット本体36のモータの故障予測について、モータに関する稼働情報を故障までのサイクルに関して機械学習し、応答性の鈍化、負荷率の変化、ならびに追加情報としての周囲温度および振動の周波数が、故障に与える影響を考慮した推測モデルを生成する。機械学習は、ディープラーニングなどの手法を用いることができ、さらには教師あり学習、教師なし学習、半教師あり学習、強化学習、トランスダクション、マルチタスク学習など、各種の手法を適用し得る。提案部20についても同様である。
ここで、「故障」は、装置または部品が溶接に使用できない状態をいい、新しい装置または部品との交換が必要な状態を含む。また、「故障」は、装置または部品が溶接に使用できるが、所要の溶接品質を得ることができない状態を含む。
提案部20は、販売情報、稼働情報および部品情報に基づいて機械学習することにより、装置または部品の代替品を提案する。具体的には、提案部20は、販売情報記憶部17および稼働情報記憶部18に蓄積された、過去の販売情報および稼働情報を機械学習し、現在使用中の装置または部品を代替品に代替した場合の評価を行うための推測モデルを生成する。提案部20は、この推測モデルから得られる代替品の評価に基づいて、現在使用中の製品または部品よりも好ましい代替品があるかどうかを判定する。
通知部14は、予測部19および提案部20の推測結果に基づいて、ユーザ端末6に通知を行う。通知部14は、例えば、故障予測時点までの時間が、予め設定された通知を行う時間である通知時間未満である場合、ユーザ端末6にメールなどで通知を行う。また、通知部14は、ユーザに提案すべき代替品がある場合には、ユーザ端末6にメールなどで通知を行う。
発注部15は、予測部19の推測結果に基づいて、故障が推測される装置または部品の発注処理を自動的に行う。例えば、故障予測時点までの時間が、予め設定された発注を行う時間である発注時間未満である場合、発注部15は、該当部品の情報を販売情報記憶部17に記録し、その内容を販売者端末4へ送信する。販売者は、この通知に基づいて、ユーザへ装置または部品を発送する。
このような装置状態監視システム1は、すでに販売情報記憶部17に記録されている製造ライン3で使用されている装置または部品に関する詳細な情報、製造ライン3に関する情報などと、製造ライン3から得られる稼働情報とを関連付けて記録する。このため、装置または部品から得られる稼働情報のみで機械学習するよりも、ユーザの使用環境をより反映させて機械学習を実行することができる。
図7は、本実施形態における装置状態監視システム1により実行される故障予測処理を説明するフローチャートである。
図8は、製造ライン3および装置状態監視システム1における処理を特に説明するシーケンス図である。
図7のステップS1において、収集部11は、稼働情報を取得する。すなわち、収集部11は、製造ライン3が装置または部品より取得した溶接に関する物理量(図8のステップS11)を、ネットワーク2を介して取得する(ステップS12)。収集部11は、この溶接に関する物理量に対して上述した所要の処理を行うことにより、稼働情報を取得する(ステップS13)。
ステップS2において、稼働情報記憶部18は、収集部11より稼働情報を取得し、記録する(ステップS14)。このとき、稼働情報記憶部18は、販売情報記憶部17に記憶された販売情報と関連付けて記録する(ステップS15)。
ステップS3において、予測部19は、稼働情報記憶部18より稼働情報を取得する(ステップS16)。また、予測部19は、販売情報記憶部17より販売情報を取得する(ステップS17)。予測部19は、取得したこれら情報に基づいて機械学習し、故障予測を行うための推測モデルを更新する(ステップS18)。なお、推測モデルは、販売情報記憶部17に新たな販売情報が記録されるたびなど、種々のタイミングで更新されてもよい。
ステップS4において、予測部19は、推測モデルに基づいて故障予測時点を取得する(ステップS19)。予測部19は、取得した故障予測時点を、通知部14および発注部15に出力する(ステップS20、S21)。
ステップS5において、通知部14は、故障予測時点まで予め設定された通知時間未満であるか否かの判定を行う。通知部14は、通知時間未満であると判定した場合(ステップS5のYES)、ステップS6において、ユーザ端末6に装置または部品が故障することが予測される時点までの時間が、通知時間に相当する時間未満である旨を通知する(ステップS22)。ユーザは、この通知を受信することにより、必要なメンテナンスや、交換部品などの発注作業を行うことができる。これにより、意図しない故障による停止時間を低減することができる。
ステップS7において、発注部15は、故障予測時点まで予め設定された発注時間未満であるか否かの判定を行う。発注部15は、発注時間未満であると判定した場合(ステップS7のYES)、ステップS8において、故障に伴い交換が必要な装置または部品の発注処理を行う(ステップS23)。この処理は、ユーザが発注処理を行うことなく、装置状態監視システム1が自動的に必要な装置または部品を判断することにより行われる。発注部15は、販売情報記憶部17に記録されているユーザの必要在庫数を参照することにより、発注数も決定することができる。これにより、ユーザは、発注作業を行う手間を省くことができ、在庫管理を自動化できる。また、販売者も、ユーザとのやりとりの手間を省くことができる。通知部14が通知時間未満ではないと判定した場合(ステップS5のNO)、発注部15が発注時間未満ではないと判定した場合(ステップS7のNO)、およびS8の後、ステップS1に戻り、この処理は製造ライン3が稼働中において繰り返し実行される。
次に、装置状態監視システム1により実行される代替品提案処理を説明する。
図9は、装置状態監視システム1により実行される代替品提案処理を説明するフローチャートである。この代替品提案処理は、一定周期で行われてもよいし、所定のタイミング(例えば装置または部品の故障のタイミング)で実行されてもよい。代替品提案処理に対応する処理は、上述した故障予測処理の説明に用いた図8のシーケンス図に続けて記載されているが、処理が実行されるタイミングはこれに限らない。
ステップS31において、提案部20は、販売情報記憶部17より販売情報および代替品情報を適宜取得する(図8のステップS41)。販売情報および代替品情報は、例えば、販売者端末4より適宜入力され、販売情報記憶部17に記録されている(図8のステップS42)。
ステップS32において、提案部20は、取得した情報に基づいて機械学習し、装置または部品に応じた故障予測時点を推測するための推測モデルを更新する(ステップS44)。ステップS33において提案部20は、推測モデルに基づいて、代替品を使用した場合の評価を行う(ステップS45)。なお、推測モデルは、販売情報記憶部17に新たな販売情報が記録されるたびなど、種々のタイミングで更新されてもよい。
一例として、溶接チップの評価は、溶接電流および溶接電圧から判断可能な摩耗で評価することができる。提案部20は、推測モデルに基づいて、摩耗を小さくし生産性を向上させる、代替品としての溶接チップを選定する。提案部20は、例えば、現在使用されている溶接チップの交換周期および価格から一定期間における溶接チップのコストを算出する。また、提案部20は、代替品としての溶接チップを使用した場合に予測される溶接チップの交換周期および部品価格から一定期間における溶接チップのコストを算出する。提案部20は、これらのコストを比較し、代替品を使用した場合のコストが小さければ、代替品を使用すべきと評価することができる。
また、他の例として、溶接ワイヤーの評価は、ワイヤーの送線モータの電流および電圧から判断可能な送線抵抗で評価することができる。提案部20は、推測モデルに基づいて、送線抵抗を小さくする代替品としての溶接ワイヤーを選定する。提案部20は、例えば交換頻度、歩留まり、ワイヤーに起因する一次的なトラブルによる停止または空転(いわゆるチョコ停)の回数を評価項目として、現在使用されている溶接ワイヤーと代替品としての溶接ワイヤーとを比較する。提案部20は、代替品の方が良い評価であれば、代替品を使用すべきと評価することができる。
ステップS34において、提案部20は、現在使用されている装置または部品が使用される場合に比べて、代替品が使用される場合のほうが評価が改善されるか否かの判定を行う。提案部20は、改善されると判定した場合(ステップS34のYES)、評価情報を通知部14に出力する(ステップS46)。ステップS35において、通知部14は、評価情報に基づいて、代替品を提案する内容の通知をユーザ端末6に対して行う(ステップS47)。一方、提案部20は改善されないと判定した場合(ステップS34のNO)、処理を終了する。
このような装置状態監視システム1は、販売者により管理され、顧客情報や販売情報を保持する顧客関係管理(CRM)システムのようなシステムに、製造ライン3より取得される稼働情報を関連付けて記憶することにより、販売者は、販売者自身が保有する販売履歴、メンテナンス履歴または改造履歴に関する販売情報と稼働情報とが関連付けられた情報を、入力や装置情報の収集や入力の手間をかけることなく得ることができる。装置状態監視システム1は、この情報に基づいて機械学習を行うことにより、より実態に即した精度の高い故障予測を行うことができる。
また、装置状態監視システム1は、販売者が故障予測に関する情報を得ることができるため、販売者自身の販売予測や、販売者に対して製品や部品を販売するメーカの製造予測および販売予測にも情報を活用することができる。その結果、販売者またはメーカは、製品または部品の適正な供給タイミングや供給数量を予測することができ、在庫が無くなる前に補給を提案することもできるというメリットを享受することができる。さらに、メーカは、製品開発のターゲットを定量的に把握することもできる。
装置状態監視システム1は、販売者のユーザに関する情報を管理するためのCRMシステムである場合、販売者に対する複数のユーザから得られる同種の装置または部品に関する情報を横断的に利用することができるため、得られる情報量が多く、より精度の高い予測ができる。故に、装置状態監視システム1は、複数社(複数のユーザ、販売者、メーカ)にまたがって生産情報を共有、最適化および改良方針の提供を実現することができるシステムである。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、図1の製造ライン3の構成は一例であって、PLC32、PLC-GW33および専用基板39は省略が可能であり、ロボットコントローラ38などから直接ネットワーク2に溶接に関する物理量が送信されるようにしてもよい。
販売者端末4、メーカ端末5、およびユーザ端末6は必須ではなく、また工程情報を利用する分析のための演算部13や通知部14、発注部15も本発明の装置状態監視システム1の必須の構成ではない。また、稼働情報をネットワーク2を介して送信することも必須ではなく、装置状態監視システム1が工場内などの閉じたネットワーク上で実現されてもよい。
「販売店」は、ユーザに装置または部品を販売する者であり、メーカが直接ユーザにこれらを販売する場合には「販売店」にメーカが含まれる。
図1においては、装置状態監視システム1の各部が同一のシステム内にある例が示されているが、一部がネットワーク2を介して異なるシステムに含まれていてもよい。例えば、収集部11や演算部13は、異なるSaaSを利用してもよい。
装置状態監視システム1は、例えば販売者にとっての顧客関係管理(CRM)システムであってもよく、顧客情報の管理・分析などに用いられるものであってもよい。
装置状態監視システム1が溶接または加工システムの状態監視に適用される例を用いて説明したが、製造業以外にも、工事現場、各種プラント、商業施設、医療施設など、一連の工程を実行する装置が用いられる施設、設備であればどのような業種にも適用可能である。
1 装置状態監視システム
2 ネットワーク
3 製造ライン
4 販売者端末
5 メーカ端末
6 ユーザ端末
11 収集部
12 記憶部
13 演算部
14 通知部
15 発注部
17 販売情報記憶部
18 稼働情報記憶部
19 予測部
20 提案部
21 工程決定部
22 表示制御部
31、31a、31b、31c セル
32、32a、32b PLC
33 PLC-GW
34 通信GW
35 溶接システム
36 ロボット本体
37 センサ類
38 ロボットコントローラ
39 専用基板
2 ネットワーク
3 製造ライン
4 販売者端末
5 メーカ端末
6 ユーザ端末
11 収集部
12 記憶部
13 演算部
14 通知部
15 発注部
17 販売情報記憶部
18 稼働情報記憶部
19 予測部
20 提案部
21 工程決定部
22 表示制御部
31、31a、31b、31c セル
32、32a、32b PLC
33 PLC-GW
34 通信GW
35 溶接システム
36 ロボット本体
37 センサ類
38 ロボットコントローラ
39 専用基板
Claims (4)
- 一連の工程を実行する装置から取得される前記装置の稼働情報を時系列に取得する収集部と、
前記収集部が取得した前記稼働情報を、前記装置が各前記工程にある場合に前記装置から得られる前記稼働情報をモデル化したマッチングデータとマッチングし、前記装置が実行中の前記工程に関する工程情報を決定する工程決定部と、を備える装置状態監視システム。 - 前記装置は、所定の状態を取り得る複数の稼働要素を有し、
前記稼働情報は、各前記稼働要素において前記所定の状態が成立しているか否かを表す要素情報を含み、
前記マッチングデータは、前記稼働情報に含まれる前記要素情報のパターンをモデル化したデータである、請求項1記載の装置状態監視システム。 - 前記工程は、前記装置が実行する主作業と、前記主作業に付随して発生する作業を含む、請求項1または2記載の装置状態監視システム。
- 前記主作業は、前記装置により加工品を直接生み出す加工作業を含み、前記作業に付随して発生する作業は、段取り替え作業、後作業、待機、トラブル対応作業を含む、請求項3記載の装置状態監視システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021003169.4T DE112021003169T5 (de) | 2020-06-08 | 2021-06-08 | Vorrichtungszustandsüberwachungssystem |
US18/008,762 US20230222046A1 (en) | 2020-06-08 | 2021-06-08 | Device state monitoring system |
CN202180041102.6A CN115843344A (zh) | 2020-06-08 | 2021-06-08 | 装置状态监视系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-099607 | 2020-06-08 | ||
JP2020099607A JP7551967B2 (ja) | 2020-06-08 | 2020-06-08 | 装置状態監視システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021251369A1 true WO2021251369A1 (ja) | 2021-12-16 |
Family
ID=78845723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021712 WO2021251369A1 (ja) | 2020-06-08 | 2021-06-08 | 装置状態監視システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230222046A1 (ja) |
JP (1) | JP7551967B2 (ja) |
CN (1) | CN115843344A (ja) |
DE (1) | DE112021003169T5 (ja) |
WO (1) | WO2021251369A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004178379A (ja) * | 2002-11-28 | 2004-06-24 | Toshiba Elevator Co Ltd | 工数自動算出システム、工数自動算出方法及びそのプログラム |
JP2008108008A (ja) * | 2006-10-24 | 2008-05-08 | Omron Corp | 移動パターン特定装置、移動パターン特定方法、移動パターン特定プログラム、およびこれを記録した記録媒体 |
JP2011003000A (ja) * | 2009-06-18 | 2011-01-06 | Mitsubishi Electric Corp | ラインモニタリング装置 |
JP2018097494A (ja) * | 2016-12-09 | 2018-06-21 | Dmg森精機株式会社 | 情報処理方法、情報処理システム、および情報処理装置 |
JP2019095879A (ja) * | 2017-11-20 | 2019-06-20 | オークマ株式会社 | 稼働モニタリング装置及びプログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4446231B2 (ja) | 2001-07-30 | 2010-04-07 | アプライド マテリアルズ インコーポレイテッド | 製造データ分析方法及び装置 |
JP5402183B2 (ja) | 2009-04-10 | 2014-01-29 | オムロン株式会社 | 監視装置、監視装置の制御方法、および制御プログラム |
-
2020
- 2020-06-08 JP JP2020099607A patent/JP7551967B2/ja active Active
-
2021
- 2021-06-08 CN CN202180041102.6A patent/CN115843344A/zh active Pending
- 2021-06-08 US US18/008,762 patent/US20230222046A1/en active Pending
- 2021-06-08 WO PCT/JP2021/021712 patent/WO2021251369A1/ja active Application Filing
- 2021-06-08 DE DE112021003169.4T patent/DE112021003169T5/de active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004178379A (ja) * | 2002-11-28 | 2004-06-24 | Toshiba Elevator Co Ltd | 工数自動算出システム、工数自動算出方法及びそのプログラム |
JP2008108008A (ja) * | 2006-10-24 | 2008-05-08 | Omron Corp | 移動パターン特定装置、移動パターン特定方法、移動パターン特定プログラム、およびこれを記録した記録媒体 |
JP2011003000A (ja) * | 2009-06-18 | 2011-01-06 | Mitsubishi Electric Corp | ラインモニタリング装置 |
JP2018097494A (ja) * | 2016-12-09 | 2018-06-21 | Dmg森精機株式会社 | 情報処理方法、情報処理システム、および情報処理装置 |
JP2019095879A (ja) * | 2017-11-20 | 2019-06-20 | オークマ株式会社 | 稼働モニタリング装置及びプログラム |
Non-Patent Citations (1)
Title |
---|
ISHIZUKA YASUNARI ET AL.: "A study of state management system in manufacturing processes using IoT", IEEEJ TRANSACTIONS ON ELECTRONICS, INFORMATION AND SYSTEMS, THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, vol. 140, no. 6, 1 June 2020 (2020-06-01), pages 573 - 582 * |
Also Published As
Publication number | Publication date |
---|---|
CN115843344A (zh) | 2023-03-24 |
JP2021193519A (ja) | 2021-12-23 |
US20230222046A1 (en) | 2023-07-13 |
JP7551967B2 (ja) | 2024-09-18 |
DE112021003169T5 (de) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shao | Use case scenarios for digital twin implementation based on ISO 23247 | |
US11675344B2 (en) | Systems and methods for maintaining equipment in an industrial automation environment | |
JP6806384B2 (ja) | 故障予測システム | |
KR101754721B1 (ko) | 제조 시스템 성능을 개선시키기 위해 자동화 기술 감독 동작들을 실행하는 반-자동화된 제조 셋업(manufacturing set-up)에서의 각각의 운영자에게 트라이벌 지식을 확인하고, 획득하고, 분류하며, 전달하는 시스템 및 장치와 그 방법 | |
US8670962B2 (en) | Process simulation utilizing component-specific consumption data | |
CN104914825B (zh) | 工厂环境中的自动维护评估 | |
US11687064B2 (en) | IBATCH interactive batch operations system enabling operational excellence and competency transition | |
CN103917708B (zh) | 刺绣设计生产管理设备和方法 | |
JP2004086911A (ja) | プロセス管理を改善する方法、システム及び記憶媒体 | |
KR20170130823A (ko) | 중소.중견기업에 최적화된 내장된 i.o.t기술을 응용한 첨단제품 제조 자동화 라인의 설비고장과 품질불량의 가시적 예지 시스템 | |
Stecken et al. | Digital shadow platform as an innovative business model | |
WO2006132174A1 (ja) | 分散型トレーサビリティ管理システム | |
Reisgen et al. | Connected, digitalized welding production—Industrie 4.0 in gas metal arc welding | |
JP7408606B2 (ja) | 可視化システム | |
CN114330780A (zh) | 设备售后维护系统及方法 | |
KR100453699B1 (ko) | 생산공정 모니터링 시스템을 이용한 생산관리 시스템제공방법 및 장치 | |
CN116300720A (zh) | 一种智能化产线柔性调度高级计划排产系统 | |
Ramesh et al. | Digital thread enabled manufacturing automation towards mass personalization | |
WO2021251369A1 (ja) | 装置状態監視システム | |
Schlick et al. | Cognition-enhanced, self-optimizing production networks | |
Sonar et al. | Role of IoT and AI in Welding Industry 4.0. | |
KR20180081257A (ko) | 자동차 부품 제작용 스마트 용접 공정 시스템 | |
Preethesh et al. | Feasibility Study of Digital Twin in Automotive Industry—Trends and Challenges | |
Joshi | Smart Factory Digital Twin for Performance Measurement, Optimization, and Prediction | |
Woodruff | Stepping toward a smarter factory at Canam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21821320 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21821320 Country of ref document: EP Kind code of ref document: A1 |