WO2021251333A1 - テラヘルツ装置 - Google Patents

テラヘルツ装置 Download PDF

Info

Publication number
WO2021251333A1
WO2021251333A1 PCT/JP2021/021550 JP2021021550W WO2021251333A1 WO 2021251333 A1 WO2021251333 A1 WO 2021251333A1 JP 2021021550 W JP2021021550 W JP 2021021550W WO 2021251333 A1 WO2021251333 A1 WO 2021251333A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
antenna
base
reflective film
reflecting surface
Prior art date
Application number
PCT/JP2021/021550
Other languages
English (en)
French (fr)
Inventor
一魁 鶴田
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to DE112021002389.6T priority Critical patent/DE112021002389T5/de
Priority to US17/998,883 priority patent/US20230213442A1/en
Priority to JP2022530549A priority patent/JPWO2021251333A1/ja
Priority to CN202180040999.0A priority patent/CN115699564A/zh
Publication of WO2021251333A1 publication Critical patent/WO2021251333A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • G01N21/3586Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation by Terahertz time domain spectroscopy [THz-TDS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • H01L29/882Resonant tunneling diodes, i.e. RTD, RTBD
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • H01L29/66219Diodes with a heterojunction, e.g. resonant tunneling diodes [RTD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/145Reflecting surfaces; Equivalent structures comprising a plurality of reflecting particles, e.g. radar chaff
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Definitions

  • This disclosure relates to a terahertz device.
  • an element that generates or receives an electromagnetic wave having a frequency in the terahertz band for example, an element having a structure in which a resonance tunnel diode and a fine slot antenna are integrated is known (see, for example, Patent Document 1).
  • the terahertz device is used as a light source that outputs an electromagnetic wave having a frequency in the terahertz band and a detector that detects an electromagnetic wave having a frequency in the terahertz band. In such a terahertz device, it is desired to increase the output and the resolution.
  • An object of the present disclosure is to provide a terahertz device capable of increasing output or improving resolution.
  • a terahertz device that solves the above problems has a plurality of terahertz elements including a first terahertz element and a second terahertz element that receive electromagnetic waves, and faces the first terahertz element in the thickness direction of the first terahertz element.
  • the first reflecting surface that reflects the incident electromagnetic wave toward the first terahertz element, and the second terahertz element facing the second terahertz element in the thickness direction of the second terahertz element, and the incident electromagnetic wave is the first terahertz element.
  • a terahertz device including a plurality of terahertz surfaces including a second terahertz surface that reflects toward the two terahertz elements, wherein the first terahertz surface is open toward the first terahertz element and is open. It is curved so as to be recessed in a direction away from the first terahertz element, and the second reflective surface is open toward the second terahertz element and is recessed in a direction away from the second terahertz element. It is curved, and the first reflecting surface and the second reflecting surface are arranged adjacent to each other in the first direction, and the height of the terahertz device is parallel to the thickness direction of the first terahertz element.
  • At least one of the sizes of the first reflecting surface and the second reflecting surface along the first direction when viewed from the height direction of the terahertz device is a direction different from the first direction. It is smaller than the respective sizes of the first reflecting surface and the second reflecting surface along the second direction.
  • the distance between the first terahertz element and the second terahertz element adjacent to each other in the first direction can be reduced. Therefore, it is possible to improve the resolution in the detection range of the electromagnetic wave of the terahertz device.
  • a terahertz device that solves the above problems has a plurality of terahertz elements including a first terahertz element and a second terahertz element that generate electromagnetic waves, and faces the first terahertz element in the thickness direction of the first terahertz element.
  • the first terahertz element that reflects the electromagnetic wave generated from the first terahertz element in one direction
  • the second terahertz element that faces the second terahertz element in the thickness direction of the second terahertz element.
  • a terahertz device including a plurality of terahertz surfaces including a second terahertz surface that reflects electromagnetic waves generated from the above in one direction, wherein the first terahertz surface opens toward the first terahertz element. And is curved so as to be recessed in a direction away from the first terahertz element, and the second reflective surface is open toward the second terahertz element and away from the second terahertz element.
  • the first reflecting surface and the second reflecting surface are arranged adjacent to each other in the first direction, and the direction parallel to the thickness direction of the first terahertz element is the terahertz.
  • At least one of the sizes of the first reflecting surface and the second reflecting surface along the first direction when viewed from the height direction of the terahertz device is the first direction. It is smaller than the respective sizes of the first reflecting surface and the second reflecting surface along the second direction, which is a different direction from the above.
  • the terahertz device by providing a plurality of terahertz elements, it is possible to increase the output of the light source when the terahertz device is used as a light source for outputting electromagnetic waves in the terahertz band.
  • a plurality of electromagnetic waves output in one direction from the plurality of terahertz elements via the plurality of reflecting surfaces. Can eliminate or reduce the spacing in the first direction, so that the electromagnetic waves output by the terahertz device can be made uniform in the first direction.
  • the back view of the terahertz device of FIG. FIG. 3 is an end view of line 4-4 of the terahertz device of FIG.
  • FIG. 3 is an end view of line 5-5 of the terahertz device of FIG.
  • Top view of the antenna base of FIG. FIG. 10 is a cross-sectional view taken along the line 11-11 of the antenna base of FIG. FIG.
  • FIG. 3 is a cross-sectional view taken along the line 12-12 of the terahertz device of FIG.
  • FIG. 12 is a cross-sectional view taken along the line 13-13 of the terahertz device of FIG.
  • FIG. 13 is an enlarged view of a portion of the conductive portion and its periphery thereof.
  • FIG. 14 is an enlarged view of a portion of the conductive portion and its periphery thereof. It is explanatory drawing for demonstrating an example of one step of the manufacturing method of the terahertz apparatus of 1st Embodiment.
  • FIG. 16 is a cross-sectional view taken along the line 17-17 of the support substrate of FIG. 16 and its surroundings.
  • FIG. 20 is a cross-sectional view taken along the line 21-21 of the support substrate of FIG. 20 and its surroundings.
  • FIG. 22 is a cross-sectional view taken along the line 23-23 of the support substrate of FIG. 22 and its surroundings.
  • Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus. Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus. Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus. Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus. Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus. Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus. Explanatory drawing for demonstrating an example of one process of the manufacturing method of a terahertz apparatus.
  • FIG. 6 is a schematic cross-sectional view showing the distance between adjacent terahertz elements of the terahertz device of the first embodiment.
  • FIG. 36 is a plan view of the antenna base of FIG.
  • FIG. 3 is a plan view showing one type of individual antenna base constituting the antenna base of FIG. 37.
  • FIG. 3 is a plan view of another type of individual antenna base constituting the antenna base of FIG. 37.
  • FIG. 3 is a plan view of yet another type of individual antenna base constituting the antenna base of FIG. 37.
  • FIG. 35 is a cross-sectional view taken along the line 41-41 of the terahertz device of FIG.
  • FIG. 35 is a cross-sectional view taken along the line 42-42 of the terahertz device of FIG.
  • FIG. 35 is a cross-sectional view taken along the line 43-43 of the terahertz device of FIG. It is sectional drawing for demonstrating the arrangement relation of the conductive part of the terahertz apparatus of FIG. Partially enlarged view of the antenna base.
  • FIG. 8 is a plan view showing one type of individual antenna base constituting the antenna base of FIG. 48.
  • Top view of another type of individual antenna base constituting the antenna base of FIG. 48 Top view of yet another type of individual antenna base constituting the antenna base of FIG. 48.
  • FIG. 46 is a cross-sectional view taken along the line 52-52 of the terahertz device of FIG.
  • FIG. 46 is a cross-sectional view taken along the line 53-53 of the terahertz device of FIG.
  • FIG. 4 is a cross-sectional view for explaining the arrangement relationship of the conductive portion of the terahertz device of FIG. 46.
  • FIG. 54 is a partially enlarged view of the conductive portion of FIG. 54. Partially enlarged view of the antenna base.
  • the cross-sectional view which shows the modification example of the terahertz apparatus of 1st Embodiment.
  • the cross-sectional view which shows the modification example of the terahertz apparatus of 2nd Embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing a partially modified example of the terahertz device of the first embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing a modified example of the terahertz device of the second embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing a modified example of the terahertz device of the second embodiment.
  • the front view which shows typically the terahertz element of the modification example.
  • the plan view of the antenna base about the modification example of the terahertz apparatus of 1st Embodiment.
  • FIG. 67 is a cross-sectional view taken along the line 68-68 of the antenna base of FIG.
  • the plan view of the antenna base about the modification example of the terahertz apparatus of 1st Embodiment.
  • FIG. 69 is a cross-sectional view taken along the line 70-70 of the antenna base of FIG.
  • FIG. 3 is a plan view of an antenna base for a modified example of the terahertz device of the second embodiment.
  • FIG. 3 is a plan view of an antenna base for a modified example of the terahertz device according to the third embodiment. Plan view of the antenna base for the modified terahertz device.
  • FIG. 7 is a plan view of a modified terahertz device including the antenna base of FIG. 73.
  • FIG. 3 is a cross-sectional view of a modified example of the terahertz device of the first embodiment.
  • a is formed on B means a configuration in which A is directly formed on B and an inclusion provided between A and B, unless otherwise specified. Includes a configuration in which A is formed on B via.
  • a is placed on B means a configuration in which A is placed directly on B and an inclusion provided between A and B, unless otherwise specified. Includes a configuration in which A is located on B.
  • a overlaps with B means a configuration in which all of A overlaps with B and a configuration in which a part of A overlaps with B, unless otherwise specified. include.
  • the terahertz device 10 of the present embodiment is formed in an elongated rectangular parallelepiped shape as a whole.
  • the terahertz device 10 has a device main surface 11, a device back surface 12 which is a surface opposite to the device main surface 11, and four device side surfaces 13 to 16.
  • the device main surface 11 is an elongated rectangle having a longitudinal direction and a lateral direction orthogonal to each other.
  • the terahertz device 10 of the present embodiment receives an electromagnetic wave from the outside of the device. It should be noted that the electromagnetic wave includes the concept of either light or radio wave or both.
  • the longitudinal direction of the device main surface 11 is the x direction
  • the lateral direction of the device main surface 11 is the y direction.
  • the direction orthogonal to both the x-direction and the y-direction is defined as the z-direction.
  • the z direction can also be said to be the height direction of the terahertz device 10.
  • the main surface 11 of the device and the back surface 12 of the device are planes that intersect with each other in the z direction, and are orthogonal to the z direction in the present embodiment.
  • the back surface 12 of the device is a surface facing the opposite side of the main surface 11 of the device in the z direction. That is, it can be said that the main surface 11 of the device and the back surface 12 of the device are both end faces in the height direction of the terahertz device 10.
  • the direction from the back surface 12 of the device to the main surface 11 of the device in the z direction is referred to as "upward". It can be said that the upper side is a direction orthogonal to the main surface of the device 11 and away from the main surface 11 of the device on the side opposite to the back surface 12 of the device. Further, the four device side surfaces 13 to 16 may be referred to as a first device side surface 13, a second device side surface 14, a third device side surface 15, and a fourth device side surface 16.
  • the side surface 13 of the first device and the side surface 14 of the second device are both end faces in the x direction of the terahertz device 10, and intersect with each other in the x direction.
  • the side surface 13 of the first device and the side surface 14 of the second device of the present embodiment are orthogonal to the x direction and extend along the y direction and the z direction, respectively.
  • the side surface 13 of the first device and the side surface 14 of the second device are each formed in a stepped shape. This point will be described later.
  • the side surface 15 of the third device and the side surface 16 of the fourth device are both end faces in the y direction of the terahertz device 10 and intersect with each other in the y direction.
  • the third device side surface 15 and the fourth device side surface 16 of the present embodiment are orthogonal to the y direction, respectively, and extend along the x direction and the z direction.
  • the terahertz device 10 includes a plurality of terahertz elements 20.
  • the plurality of terahertz elements 20 include a terahertz element 20A, a terahertz element 20B, and a terahertz element 20C.
  • Each terahertz element 20A to 20C has the same configuration as each other.
  • the terahertz elements 20A to 20C are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • the terahertz element 20A is arranged closer to the side surface 15 of the third device than the center of the terahertz device 10 in the y direction, and the terahertz element 20C is arranged closer to the side surface 16 of the fourth device than the center of the terahertz device 10 in the y direction.
  • the terahertz element 20B is arranged between the terahertz element 20A and the terahertz element 20C in the y direction.
  • the terahertz element 20B is arranged at the center of the terahertz device 10 in the y direction.
  • each terahertz element 20A to 20C is arranged at the center of the terahertz device 10 in the x direction.
  • the terahertz element 20 will be simply described. Further, when it is not necessary to distinguish each terahertz element 20A to 20C, the terahertz element 20 will be described as a plurality of terahertz elements 20.
  • the terahertz element 20 is an element that converts electromagnetic waves in the terahertz band and electrical energy.
  • the terahertz element 20 receives an electromagnetic wave in the terahertz band (in other words, a terahertz wave).
  • the frequency of such an electromagnetic wave in the terahertz band is, for example, 0.1 Thz to 10 Thz.
  • the terahertz element 20 has a plate shape with the z direction as the thickness direction.
  • the terahertz element 20 has a rectangular plate shape as a whole.
  • the terahertz element 20 is a square when viewed from the z direction.
  • the shape of the terahertz element 20 when viewed from the z direction is not limited to a square shape, and may be a rectangular shape, a circular shape, an elliptical shape, or a polygonal shape.
  • the element thickness D1 which is the dimension of the terahertz element 20 in the z direction, is set based on, for example, the frequency of the received electromagnetic wave.
  • the element thickness D1 may be thinner as the frequency of the electromagnetic wave is higher and thicker as the frequency of the electromagnetic wave is lower.
  • the terahertz element 20 has an element main surface 21 and an element back surface 22 as surfaces intersecting the thickness direction of the terahertz element 20.
  • the element main surface 21 and the element back surface 22 are surfaces that intersect with each other in the z direction, and are orthogonal to the z direction in the present embodiment. Therefore, the z direction can be said to be a direction orthogonal to the element main surface 21.
  • the element main surface 21 and the element back surface 22 are each rectangular, for example, square when viewed from the z direction.
  • the shapes of the element main surface 21 and the element back surface 22 as viewed from the z direction are not limited to this, and can be arbitrarily changed.
  • the terahertz element 20 of the present embodiment is arranged with the element back surface 22 facing upward (in other words, the element main surface 21 facing downward).
  • the element main surface 21 is arranged closer to the device back surface 12 than the element back surface 22, and the element back surface 22 is arranged closer to the device main surface 11 than the element main surface 21.
  • the terahertz element 20 has a first element side surface 23 and a second element side surface 24 which are both end faces in the x direction, and a third element side surface 25 and a fourth element side surface 26 which are both end surfaces in the y direction. And have.
  • the side surface 23 of the first element and the side surface 24 of the second element are planes that intersect with each other in the x direction, and in the present embodiment, they are orthogonal to the x direction.
  • the side surface 25 of the third element and the side surface 26 of the fourth element are planes that intersect with each other in the y direction, and are orthogonal to the y direction in the present embodiment.
  • the side surface 23 of the first element and the side surface 24 of the second element and the side surface 25 of the third element and the side surface 26 of the fourth element are orthogonal to each other.
  • this receiving point P1 is a resonance point that resonates with an electromagnetic wave in the terahertz band.
  • the receiving point P1 is a point (in other words, a region) for receiving an electromagnetic wave.
  • the receiving point P1 is formed on the element main surface 21.
  • the element main surface 21 on which the receiving point P1 is located constitutes an active surface for receiving electromagnetic waves.
  • the z direction (in other words, the thickness direction of the terahertz element 20 or the height direction of the terahertz device 10) can be said to be a direction orthogonal to the surface provided with the receiving point P1.
  • the receiving point P1 of the present embodiment is arranged at the center of the element main surface 21.
  • the position of the receiving point P1 is not limited to the center of the element main surface 21, and is arbitrary.
  • Ramuda' InP is effective wavelength of an electromagnetic wave propagating through the terahertz device 20.
  • Speed of light element refractive index n1, c is the refractive index of the terahertz device 20, when the center frequency of the electromagnetic wave fc, ⁇ 'InP is (1 / n1) ⁇ (c / fc). It can be said that fc is the target frequency of the terahertz element 20. Further, fc may be the frequency having the largest output among the electromagnetic waves received by the terahertz element 20.
  • the terahertz element 20 since the element refractive index n1 is higher than the dielectric refractive index n2 which is the refractive index of the dielectric 50 surrounding the terahertz element 20, the electromagnetic wave received by the terahertz element 20 is the second element side surface 24. Reflects at the free end. Therefore, by setting the first vertical distance x1 as described above, the terahertz element 20 itself is designed as a resonator (primary resonator) in the terahertz device 10.
  • the second vertical distance y1 between the reception point P1 and the fourth element side 26 (or the third element side 25), for example ( ⁇ 'InP / 2) + ( ( ⁇ 'InP / 2) ⁇ N) It is good to have (N is an integer of 0 or more: N 0, 1, 2, ).
  • the vertical distances x1 and y1 may be different values for each of the element side surfaces 23, 24, 25, and 26 as long as each is a value calculated by the above formula.
  • the first vertical distance x1 between the second element side surface 24 and the receiving point P1 and the first vertical distance between the first element side surface 23 and the receiving point P1 may be different.
  • the second vertical distance y1 between the side surface 26 of the fourth element and the receiving point P1 and the second vertical distance between the side surface 25 of the third element and the receiving point P1 may be different.
  • the terahertz element 20 includes an element substrate 31, an active element 32, a first element conductive layer 33, and a second element conductive layer 34.
  • the element substrate 31 is made of a semiconductor and has semi-insulating properties.
  • the semiconductor constituting the device substrate 31 is, for example, InP (indium phosphide).
  • the element refractive index n1 is the refractive index (absolute refractive index) of the element substrate 31.
  • the element substrate 31 is InP, the element refractive index n1 is about 3.4.
  • the element substrate 31 has a rectangular plate shape, for example, a square shape when viewed from the z direction.
  • the element main surface 21 and the element back surface 22 are the main surface and the back surface of the element substrate 31, and both element side surfaces 23 to 26 are side surfaces of the element substrate 31.
  • the active element 32 converts electromagnetic waves in the terahertz band and electrical energy.
  • the active element 32 is formed on the element substrate 31.
  • the active element 32 is provided at the center of the element main surface 21. It can be said that the receiving point P1 is a position where the active element 32 is provided.
  • the active element 32 is typically a resonant tunneling diode (RTD).
  • RTD resonant tunneling diode
  • the active element 32 is not limited to this, and examples of the active element 32 include a TANNETT (Tunnel injection Transit Time) diode, an IMPATT (Impact Ionization Avalanche Transit Time) diode, and a GaAs field effect transistor (FET: Field Effect Transistor). ), GAN-based FET, high electron mobility transistor (HEMT: High Electron Mobility Transistor), or heterojunction bipolar transistor (HBT: Hetero junction Bipolar Transistor).
  • the semiconductor layer 41a is formed on the element substrate 31.
  • the semiconductor layer 41a is formed by, for example, GaInAs.
  • the semiconductor layer 41a is heavily doped with n-type impurities.
  • a GaInAs layer 42a is laminated on the semiconductor layer 41a.
  • the GaInAs layer 42a is doped with n-type impurities.
  • the impurity concentration of the GaInAs layer 42a is lower than the impurity concentration of the semiconductor layer 41a.
  • a GaInAs layer 43a is laminated on the GaInAs layer 42a.
  • the GaInAs layer 43a is not doped with impurities.
  • the AlAs layer 44a is laminated on the GaInAs layer 43a
  • the InGaAs layer 45 is laminated on the AlAs layer 44a
  • the AlAs layer 44b is laminated on the InGaAs layer 45.
  • the RTD portion is composed of the AlAs layer 44a, the InGaAs layer 45, and the AlAs layer 44b.
  • the GaInAs layer 43b which is not doped with impurities, is laminated on the AlAs layer 44b.
  • a GaInAs layer 42b doped with an n-type impurity is laminated on the GaInAs layer 43b.
  • a GaInAs layer 41b is laminated on the GaInAs layer 42b.
  • the GaInAs layer 41b is heavily doped with n-type impurities. For example, the impurity concentration of the GaInAs layer 41b is higher than the impurity concentration of the GaInAs layer 42b.
  • the specific configuration of the active element 32 is arbitrary as long as it can receive (or generate or both) electromagnetic waves. In other words, it can be said that the active element 32 may be any one that receives electromagnetic waves in the terahertz band.
  • an element reflection layer 35 that reflects electromagnetic waves is formed on the element back surface 22 of the present embodiment.
  • the electromagnetic wave incident on the portion of the terahertz element 20 above the receiving point P1 (active element 32) is reflected by the element reflecting layer 35 and heads downward.
  • the element thickness D1 may be set so that the resonance condition of the electromagnetic wave is satisfied. Specifically, when the element reflection layer 35 is formed, the electromagnetic wave is reflected at the fixed end at the interface between the element back surface 22 and the element reflection layer 35, so that the phase is shifted by ⁇ .
  • the element thickness D1 is not limited to the above and can be arbitrarily changed.
  • the first element conductive layer 33 and the second element conductive layer 34 are each formed on the element main surface 21.
  • the first element conductive layer 33 and the second element conductive layer 34 each have a metal laminated structure.
  • the laminated structure of each of the first element conductive layer 33 and the second element conductive layer 34 is, for example, a structure in which Au (gold), Pd (palladium) and Ti (titanium) are laminated.
  • the laminated structure of each of the first element conductive layer 33 and the second element conductive layer 34 is a structure in which Au and Ti are laminated.
  • Both the first element conductive layer 33 and the second element conductive layer 34 are formed by a vacuum vapor deposition method, a sputtering method, or the like.
  • the element conductive layers 33 and 34 are opposed to the pads 33a and 34a arranged so as to be separated from each other in a predetermined direction (in the present embodiment, the y direction) via the receiving point P1 (active element 32). It includes element conduction portions 33b and 34b extending from the pads 33a and 34a toward the active element 32.
  • the pad 33a may be referred to as a first pad 33a
  • the pad 34a may be referred to as a second pad 34a
  • the element conduction portion 33b may be referred to as a first element conduction portion 33b
  • the element conduction portion 34b may be referred to as a second element conduction portion 34b.
  • the pads 33a and 34a extend in a direction orthogonal to the facing direction of both pads 33a and 34a (in the present embodiment, the x direction).
  • the pads 33a and 34a have a rectangular shape having a longitudinal direction and a lateral direction, respectively, when viewed from the z direction, for example.
  • the pads 33a and 34a each have a rectangular shape with the x direction as the longitudinal direction and the y direction as the lateral direction.
  • the pads 33a and 34a are arranged at positions that do not overlap with the receiving point P1 when viewed from the z direction.
  • the pads 33a and 34a are arranged on both sides in the y direction with respect to the receiving point P1 (in other words, the active element 32), and in this embodiment, they are arranged closer to the element side surfaces 25 and 26 than the receiving point P1. Has been done.
  • the element conduction portions 33b and 34b each have an elongated shape extending in the y direction, for example.
  • the length of the element conduction portions 33b, 33b in the x direction is shorter than the length of the pads 33a, 34a in the x direction.
  • the tip portions 33ba and 34ba of the element conduction portions 33b and 34b overlap with the active element 32 when viewed from the z direction and are electrically connected to the active element 32.
  • the tip portion 33ba of the first element conduction portion 33b is located on the GaInAs layer 41b and is in contact with the GaInAs layer 41b.
  • the semiconductor layer 41a extends in the y direction toward the second pad 34a (see FIG. 6) from other layers such as the GaInAs layer 42a.
  • the tip portion 34ba of the second element conduction portion 34b is laminated on the portion of the semiconductor layer 41a where the GaInAs layer 42a or the like is not laminated.
  • the active element 32 is electrically connected to the conductive layers 33 and 34 of both elements (in other words, both pads 33a and 34a).
  • the second element conduction portion 34b and other layers such as the GaInAs layer 42a are separated from each other in the x direction.
  • a GaInAs layer doped with a high concentration of n-type impurities may be interposed between the GaInAs layer 41b and the tip portion 33ba of the first element conduction portion 33b. .. As a result, the contact between the first element conductive layer 33 and the GaInAs layer 41b can be improved.
  • the terahertz device 10 includes a dielectric 50 as an example of a holding member, an antenna base 70, a reflective film 82 as an example of a reflecting portion, and a gas space 92. There is.
  • the dielectric 50 is made of a dielectric material that is a material through which electromagnetic waves received by the terahertz element 20 are transmitted.
  • the dielectric 50 is made of a resin material, for example, an epoxy resin (for example, glass epoxy resin).
  • the dielectric 50 has an insulating property.
  • the color of the dielectric 50 is arbitrary, such as black.
  • the refractive index n2 which is the refractive index (absolute refractive index) of the dielectric 50, is lower than the element refractive index n1.
  • the dielectric refractive index n2 is 1.55.
  • the dielectric 50 may have a one-layer structure or a multi-layer structure. That is, one or a plurality of interfaces may be formed in the dielectric 50.
  • the dielectric 50 surrounds each of the plurality of terahertz elements 20.
  • the dielectric 50 surrounds the entire terahertz element 20A, 20B, 20C, and the element main surface 21, the element back surface 22 and the element side surfaces 23 to 26 of each terahertz element 20A, 20B, 20C (FIG. 6) is covered.
  • each terahertz element 20A, 20B, 20C are in contact with the dielectric 50. That is, the dielectric 50 of the present embodiment surrounds the terahertz elements 20A, 20B, 20C so that no gap is formed between the dielectric 50 and the terahertz elements 20A, 20B, 20C. In other words, the dielectric 50 seals each terahertz element 20A, 20B, 20C.
  • the dielectric 50 is formed in a plate shape having the z direction as the thickness direction, for example. Specifically, as shown in FIG. 3, the dielectric 50 has a rectangular plate shape with the y direction as the longitudinal direction and the x direction as the lateral direction.
  • the dielectric 50 has a dielectric main surface 51 and a dielectric back surface 52 as surfaces intersecting in the z direction.
  • the dielectric main surface 51 and the dielectric back surface 52 are orthogonal to each other, for example, in the z direction.
  • the dielectric main surface 51 faces downward.
  • the dielectric back surface 52 is a surface opposite to the dielectric main surface 51 and faces upward. In this embodiment, the dielectric back surface 52 constitutes the device main surface 11.
  • the dielectric 50 has a first dielectric side surface 53 and a second dielectric side surface 54 which are both end faces in the x direction, and a third dielectric side surface 55 and a fourth dielectric side surface 56 which are both end faces in the y direction. And have.
  • Each dielectric side surface 53 to 56 constitutes a part of the device side surface 13 to 16.
  • the first dielectric side surface 53 and the second dielectric side surface 54 are orthogonal to the third dielectric side surface 55 and the fourth dielectric side surface 56.
  • the terahertz element 20 is provided in the dielectric 50 with the element main surface 21 facing the dielectric main surface 51.
  • the terahertz element 20 is arranged between the dielectric main surface 51 and the dielectric back surface 52.
  • ⁇ ′ R is an effective wavelength of the electromagnetic wave propagating in the dielectric 50, and is, for example, (1 / n2) ⁇ (c / fc).
  • the dielectric thickness D2 can be said to be the distance between the dielectric main surface 51 and the dielectric back surface 52 in the z direction.
  • the dielectric 50 and the antenna base 70 are separate bodies. In other words, the dielectric 50 and the antenna base 70 are formed separately.
  • the antenna base 70 may be made of the same material as the dielectric 50, or may be made of a different material.
  • the antenna base 70 is provided on the dielectric main surface 51 side of the dielectric 50.
  • the antenna base 70 is provided at a position facing the dielectric 50 in the z direction. It can be said that the z direction is the opposite direction between the antenna base 70 and the dielectric 50.
  • the dielectric 50 includes protrusions 61 and 62 that project laterally from the antenna base 70 when viewed from the z direction.
  • the dielectric 50 of the present embodiment is formed longer in the x direction than the antenna base 70. Therefore, the projecting portions 61 and 62 project to both sides in the x direction with respect to the antenna base 70.
  • Both protrusions 61 and 62 are provided on both sides of the antenna base 70 in the x direction when viewed from the z direction, and are separated from each other in the x direction.
  • the terahertz element 20 is arranged between the protruding portions 61 and 62.
  • the length of the dielectric 50 in the y direction and the length of the antenna base 70 in the y direction are set to be the same. That is, the dielectric 50 does not project in the y direction with respect to the antenna base 70. Further, the length of the antenna base 70 in the z direction is set to be longer than the dielectric thickness D2.
  • the antenna base 70 of the present embodiment has, for example, an elongated rectangular parallelepiped shape as a whole.
  • the longitudinal direction of the antenna base 70 is the same as the longitudinal direction of the terahertz device 10, and the lateral direction of the antenna base 70 is the same as the lateral direction of the terahertz device 10.
  • the antenna base 70 is made of, for example, an insulating material. Specifically, the antenna base 70 is made of a dielectric, and is made of a synthetic resin such as an epoxy resin.
  • the epoxy resin is, for example, a glass epoxy resin.
  • the material of the antenna base 70 is not limited to this, and may be arbitrary, for example, Si, Teflon (registered trademark), glass, or the like.
  • the color of the antenna base 70 is arbitrary, such as black.
  • the antenna base 70 has a base main surface 71T, a base back surface 72T which is a surface opposite to the base main surface 71T, and four base side surfaces 73T to 76T.
  • the base main surface 71T and the base back surface 72T are elongated rectangles having a longitudinal direction and a lateral direction orthogonal to each other, respectively.
  • the antenna base 70 is arranged so that the longitudinal direction of the base main surface 71T and the base back surface 72T is along the y direction, and the lateral direction is along the x direction.
  • the four base side surfaces 73T to 76T may be referred to as a first base side surface 73T, a second base side surface 74T, a third base side surface 75T, and a fourth base side surface 76T.
  • the base main surface 71T and the base back surface 72T are planes that intersect with each other in the z direction, and are orthogonal to the z direction in the present embodiment.
  • the back surface 72T of the base is a surface facing the opposite side of the main surface 71T of the base in the z direction. As shown in FIGS. 4 and 5, the base main surface 71T is a surface facing the same side as the device main surface 11, and the base back surface 72T is a surface facing the same side as the device back surface 12.
  • the base main surface 71T faces the dielectric main surface 51.
  • the back surface 72T of the base constitutes the back surface 12 of the device.
  • the base main surface 71T and the base back surface 72T have, for example, the same shape. However, the shape is not limited to this, and the base main surface 71T and the base back surface 72T may have different shapes.
  • the dielectric 50 is placed on the base main surface 71T. That is, it can be said that the base main surface 71T is a surface facing the dielectric main surface 51 of the dielectric 50 and is a surface on which the dielectric 50 is placed.
  • the base main surface 71T is formed smaller in the x direction with respect to the dielectric main surface 51. Therefore, a part of the dielectric main surface 51 protrudes in the x direction from the base main surface 71T.
  • the length of the base main surface 71T in the y direction and the length of the dielectric main surface 51 in the y direction are set to be the same.
  • the first base side surface 73T and the second base side surface 74T are both end faces in the x direction.
  • the first base side surface 73T and the second base side surface 74T are planes that intersect with each other in the x direction, and are orthogonal to the x direction in the present embodiment.
  • the first base side surface 73T constitutes the first device side surface 13.
  • the first device side surface 13 is composed of a first dielectric side surface 53 and a first base side surface 73T.
  • the first dielectric side surface 53 is arranged sideways from the first base side surface 73T, in other words, in a direction away from the terahertz element 20. Therefore, the side surface 13 of the first device has a stepped shape, and a part of the main dielectric surface 51 is exposed as a stepped surface between the first dielectric side surface 53 and the first base side surface 73T. That is, the dielectric main surface 51 has a first protruding surface 51a that protrudes laterally from the antenna base 70 (in other words, the first base side surface 73T).
  • the first protruding surface 51a is a portion of the dielectric main surface 51 corresponding to the first protruding portion 61.
  • the second base side surface 74T constitutes the second device side surface 14.
  • the second device side surface 14 is composed of a second dielectric side surface 54 and a second base side surface 74T.
  • the second dielectric side surface 54 is arranged sideways from the second base side surface 74T, in other words, in a direction away from the terahertz element 20. Therefore, the side surface 14 of the second device has a stepped shape, and a part of the dielectric main surface 51 is exposed as a stepped surface between the second dielectric side surface 54 and the second base side surface 74T. That is, the dielectric main surface 51 has a second protruding surface 51b that protrudes laterally from the antenna base 70 (in other words, the second base side surface 74T).
  • the second protruding surface 51b is a portion of the dielectric main surface 51 corresponding to the second protruding portion 62.
  • the third base side surface 75T and the fourth base side surface 76T are both end faces in the y direction.
  • the third base side surface 75T and the fourth base side surface 76T are planes that intersect with each other in the y direction, and are orthogonal to the y direction in the present embodiment.
  • the third base side surface 75T constitutes the third device side surface 15.
  • the third device side surface 15 is composed of a third dielectric side surface 55 and a third base side surface 75T.
  • the third dielectric side surface 55 and the third base side surface 75T are flush with each other. Therefore, the side surface 15 of the third device is a flat surface on which no step is formed.
  • the fourth base side surface 76T constitutes the fourth device side surface 16.
  • the fourth device side surface 16 is composed of a fourth dielectric side surface 56 and a fourth base side surface 76T.
  • the fourth dielectric side surface 56 and the fourth base side surface 76T are flush with each other. Therefore, the side surface 16 of the fourth device is a flat surface on which no step is formed.
  • the antenna base 70 is configured by combining a plurality of individual antenna bases.
  • the antenna base 70 of the present embodiment is configured by combining three individual antenna bases 70A, 70B, and 70C with each other.
  • the individual antenna bases 70A, 70B, and 70C are combined so as to form one row in the y direction.
  • the individual antenna base 70A and the individual antenna base 70C have the same configuration, and the individual antenna base 70B has a different configuration from the individual antenna bases 70A and 70C. That is, the antenna base 70 is composed of a combination of antenna bases having two types of configurations.
  • the individual antenna base 70A is arranged so as to face the terahertz element 20A in the thickness direction (z direction) of the terahertz element 20A.
  • the individual antenna base 70B is arranged so as to face the terahertz element 20B in the thickness direction (z direction) of the terahertz element 20B.
  • the individual antenna base 70C is arranged so as to face the terahertz element 20C in the thickness direction (z direction) of the terahertz element 20C.
  • the individual antenna bases 70A to 70C are arranged below the terahertz elements 20A to 20C.
  • the individual antenna bases 70A to 70C each have a base main surface 71 and a base back surface 72 as surfaces intersecting in the z direction.
  • the base main surface 71 and the base back surface 72 are planes that intersect with each other in the z direction, and are orthogonal to the z direction in the present embodiment.
  • the base main surface 71 and the base back surface 72 are each having, for example, a rectangular shape (for example, a square shape).
  • the base main surface 71 and the base back surface 72 of the individual antenna bases 70A to 70C constitute the base main surface 71T and the base back surface 72T of the antenna base 70.
  • the base main surface 71 and the base back surface 72 have, for example, the same shape.
  • the shape is not limited to this, and the base main surface 71 and the base back surface 72 may have different shapes.
  • the individual antenna bases 70A to 70C have a first base side surface 73, a second base side surface 74, a third base side surface 75, and a fourth base side surface 76, respectively.
  • These base side surfaces 73 to 76 are surfaces facing sideways in the terahertz device 10 (antenna base 70).
  • Each of the base side surfaces 73 to 76 is a surface in a direction orthogonal to the facing direction between the base main surface 71 and the base back surface 72.
  • the base side surfaces 73 to 76 connect the base main surface 71 and the base back surface 72 (see FIG. 9).
  • the base side surfaces 73 to 76 of the individual antenna bases 70A to 70C are determined corresponding to the base side surfaces 73T to 76T of the antenna base 70 in a state where the individual antenna bases 70A to 70C are combined. That is, although the individual antenna base 70A and the individual antenna base 70C have the same shape, the positions of the base side surfaces 73 and 74 are opposite to each other, and the positions of the base side surfaces 75 and 76 are opposite to each other.
  • the first base side surface 73 and the second base side surface 74 of the individual antenna bases 70A to 70C are both end faces in the x direction of the individual antenna bases 70A to 70C, respectively.
  • the first base side surface 73 and the second base side surface 74 are planes that intersect with each other in the x direction, and are orthogonal to the x direction in the present embodiment.
  • the first base side surface 73 and the second base side surface 74 of the individual antenna bases 70A to 70C respectively constitute the first base side surface 73T and the second base side surface 74T of the antenna base 70.
  • the third base side surface 75 and the fourth base side surface 76 of the individual antenna bases 70A to 70C are both end faces in the y direction of the individual antenna bases 70A to 70C, respectively.
  • the third base side surface 75 and the fourth base side surface 76 are planes that intersect with each other in the y direction, and are orthogonal to the y direction in the present embodiment.
  • the individual antenna bases 70A to 70C have a rectangular shape having a longitudinal direction and a lateral direction when viewed from the z direction.
  • the individual antenna bases 70A to 70C are arranged so that the longitudinal direction is along the x direction and the lateral direction is along the y direction.
  • the lengths of the individual antenna bases 70A to 70C in the x direction are equal to each other.
  • the length of the individual antenna bases 70B in the y direction is shorter than the length of the individual antenna bases 70A and 70B in the y direction.
  • the fourth base side surface 76 of the individual antenna base 70A and the third base side surface 75 of the individual antenna base 70B face each other in the y direction
  • the individual antenna bases 70A to 70C are arranged so as to face the third base side surface 75. That is, the third base side surface 75 of the individual antenna base 70A and the fourth base side surface 76 of the individual antenna base 70C form both end faces in the y direction of the antenna base 70.
  • the third base side surface 75 of the individual antenna base 70A constitutes the third base side surface 75T of the antenna base 70
  • the fourth base side surface 76 of the individual antenna base 70C is the fourth base side surface 76T of the antenna base 70. It is composed.
  • the individual antenna bases 70A and 70B are fixed by, for example, an adhesive
  • the individual antenna bases 70B and 70C are fixed by, for example, an adhesive. That is, the fourth base side surface 76 of the individual antenna base 70A and the third base side surface 75 of the individual antenna base 70B are joined by an adhesive, and the fourth base side surface 76 of the individual antenna base 70B and the third base side surface 70C of the individual antenna base 70C are joined. 3 It is joined to the base side surface 75 by an adhesive.
  • the antenna base 70 has a plurality of antenna recesses 80.
  • the individual antenna base 70A has an antenna recess 80A
  • the individual antenna base 70B has an antenna recess 80B
  • the individual antenna base 70C has an antenna recess 80C. That is, the antenna base 70 has one antenna recess 80 for each individual antenna base.
  • the shapes of the antenna recesses 80A and 80C and the shapes of the antenna recesses 80B are different from each other. In the following description, the items common to the antenna recesses 80A, 80B, 80C, that is, the case where the antenna recesses 80A, 80B, 80C do not need to be distinguished will be described using the antenna recess 80.
  • the antenna recess 80 is recessed in the direction from the base main surface 71T toward the base back surface 72T, that is, downward. In other words, it can be said that the antenna recess 80 is recessed in the direction away from the dielectric 50 (or the dielectric main surface 51) from the base main surface 71T, or is recessed in the direction away from the terahertz element 20. As shown in FIGS. 4 and 5, in the present embodiment, the antenna recess 80 is curved so as to be convex toward the back surface 12 of the device in a cross-sectional view in which the antenna base 70 is cut in a plane along the x direction and the z direction. is doing. The antenna recess 80 is open upward.
  • the antenna recess 80 has an antenna surface 81 facing the terahertz element 20 via the dielectric 50 and the gas space 92.
  • the antenna recess 80A has an antenna surface 81A
  • the antenna recess 80B has an antenna surface 81B
  • the antenna recess 80C has an antenna surface 81C. ..
  • the antenna surfaces 81A to 81C are each formed so as to correspond to the shape of the antenna. Specifically, as shown in FIG.
  • the antenna surface 81A is curved so as to be recessed in the direction away from the terahertz element 20A
  • the antenna surface 81B is curved so as to be recessed in the direction away from the terahertz element 20B.
  • the antenna surface 81C is curved so as to be recessed in a direction away from the terahertz element 20C.
  • the antenna surfaces 81A to 81C are curved, for example, in a mortar shape, and as an example, they are curved so as to form a part of the parabolic antenna shape.
  • the items common to the antenna surfaces 81A to 81C that is, the description when the antenna surfaces 81A to 81C do not need to be distinguished, will be described using the antenna surface 81.
  • each of the openings of the antenna recesses 80A to 80C has a circular shape with a part missing when viewed from above. That is, each of the openings of the antenna surfaces 81A to 81C has a circular shape with a part missing when viewed from above. More specifically, in the present embodiment, the openings of the antenna surfaces 81A to 81C are circles in which at least one of the two opening ends of the antenna surfaces 81A to 81C is missing in the arrangement direction of the antenna surfaces 81A to 81C, respectively. The shape.
  • the opening of the antenna surface 81A lacks the opening end 81Aa near the fourth base side surface 76 among both opening ends in the y direction.
  • the open end 81Aa is formed at the same position as the fourth base side surface 76 of the individual antenna base 70A.
  • the opening end 81Aa is a straight line extending in the x direction.
  • the opening of the antenna surface 81B lacks both end ends 81Ba and 81Bb in the y direction.
  • the opening end 81Ba is the end of the opening of the antenna surface 81B in the y direction near the third base side surface 75
  • the opening end 81Bb is the end of the opening of the antenna surface 81B in the y direction. 4 The end near the base side surface 76.
  • the opening end 81Ba is formed at the same position as the third base side surface 75 of the individual antenna base 70B
  • the opening end 81Bb is formed at the same position as the fourth base side surface 76 of the individual antenna base 70B. ..
  • both end ends 81Ba and 81Bb are linear extending along the x direction.
  • the opening of the antenna surface 81C lacks the opening end 81Ca near the third base side surface 75 among both opening ends in the y direction.
  • the open end 81Ca is formed at the same position as the third base side surface 75 of the individual antenna base 70C.
  • the opening end 81Ca is a straight line extending along the x direction.
  • the diameter of the antenna surface 81A, the diameter of the antenna surface 81B, and the diameter of the antenna surface 81C are equal to each other.
  • the open end 81Aa of the antenna surface 81A and the open end 81Ba of the antenna surface 81B are connected, and the open end 81Bb of the antenna surface 81B and the open end 81Ca of the antenna surface 81C are connected.
  • the length of the opening end 81Aa in the x direction is equal to the length of the opening end 81Ba in the x direction
  • the length of the opening end 81Bb in the x direction is equal to the length of the opening end 81Ca in the x direction.
  • the length of the opening end 81Ba in the x direction and the length of the opening end 81Bb in the x direction are equal to each other. That is, in the present embodiment, the length of the opening end 81Aa in the x direction and the length of the opening end 81Ca in the x direction are equal to each other.
  • the open end 81Aa of the antenna surface 81A is located below the base main surface 71 of the individual antenna base 70A (base main surface 71T of the antenna base 70).
  • the open end 81Aa of the antenna surface 81A is aligned with the open end 81Ba of the antenna surface 81B.
  • the open end 81Ca of the antenna surface 81C is located below the base main surface 71 of the individual antenna base 70C (base main surface 71T of the antenna base 70).
  • the opening end 81Ca of the antenna surface 81C is aligned with the opening end 81Bb of the antenna surface 81B.
  • the open end 81Ba of the antenna surface 81B is aligned with the open end 81Bb. That is, in the z direction, the opening end 81Aa of the antenna surface 81A is aligned with the opening end 81Ca of the antenna surface 81C.
  • the reflective film 82 reflects the electromagnetic wave propagating in the antenna recess 80 toward the terahertz element 20 corresponding to the antenna recess 80.
  • the reflective film 82 is formed on the antenna surface 81.
  • the reflective film 82 is made of a material that reflects electromagnetic waves, and is made of a metal or alloy such as Cu.
  • the reflective film 82 may have a single-layer structure or a multi-layer structure. In this embodiment, the reflective film 82 is formed over the entire antenna surface 81. On the other hand, the reflective film 82 is not formed on the base main surface 71T.
  • the reflective film 82 includes a reflective film 82A formed on the antenna surface 81A, a reflective film 82B formed on the antenna surface 81B, and a reflective film 82C formed on the antenna surface 81C.
  • the reflective films 82A to 82C are a single component integrally formed. In the following description, the matters common to the reflective films 82A to 82C, that is, the case where it is not necessary to distinguish between the reflective films 82A to 82C, will be described using the reflective film 82.
  • the reflective film 82 since the reflective film 82 is formed on the antenna surface 81, the reflective film 82 has substantially the same shape as the antenna surface 81. That is, the reflective film 82A has substantially the same shape as the antenna surface 81A, the reflective film 82B has substantially the same shape as the antenna surface 81B, and the reflective film 82C has substantially the same shape as the antenna surface 81C. In other words, the reflective films 82A to 82C are rotating parabolic mirrors, respectively, and are curved in a mortar shape. In the present embodiment, the surface of the reflective film 82A opposite to the surface in contact with the antenna surface 81A, that is, the surface of the reflective film 82A facing the terahertz element 20A corresponds to the "first reflective surface".
  • the surface of the reflective film 82B opposite to the surface in contact with the antenna surface 81B, that is, the surface of the reflective film 82B facing the terahertz element 20B corresponds to the "second reflective surface”.
  • the surface of the reflective film 82C opposite to the surface in contact with the antenna surface 81C, that is, the surface of the reflective film 82C toward the terahertz element 20C corresponds to the "third reflective surface”.
  • Each of the reflective films 82A to 82C is curved so as to be convex toward the back surface 12 of the device (the back surface 72 of the bases of the individual antenna bases 70A to 70C).
  • the reflective films 82A to 82C each open in one direction (upward in this embodiment).
  • the reflective film 82 and the dielectric 50 face each other in the z direction.
  • the reflective film 82 is provided at a position facing the dielectric 50.
  • the electromagnetic wave reflected by the reflective film 82 is output toward the receiving point P1.
  • the electromagnetic wave reflected by the reflective film 82A is output toward the receiving point P1 of the terahertz element 20A.
  • the electromagnetic wave reflected by the reflective film 82B is output toward the receiving point P1 of the terahertz element 20B.
  • the electromagnetic wave reflected by the reflective film 82C is output toward the receiving point P1 of the terahertz element 20C.
  • the reflective film 82 is arranged not on the back surface 22 of the element but on the main surface 21 side of the element where the receiving point P1 exists, and faces the terahertz element 20 (main surface 21 of the element in this embodiment).
  • the terahertz element 20 is arranged in the dielectric 50 with the element main surface 21 facing the reflective film 82. Focusing on the positional relationship between the pads 33a and 34a and the reflective film 82, it can be said that the pads 33a and 34a face the reflective film 82.
  • the reflective film 82 is arranged so that, for example, the focal point of the reflective film 82 is the receiving point P1. More specifically, as shown in FIG. 12, the plurality of terahertz elements 20 are arranged corresponding to the antenna surfaces 81A to 81C (reflection films 82A to 82C).
  • the terahertz element 20A is arranged corresponding to the antenna surface 81A (reflective film 82A)
  • the terahertz element 20B is arranged corresponding to the antenna surface 81B (reflective film 82B)
  • the terahertz element 20C is arranged corresponding to the antenna surface 81C (reflective film 82B). It is arranged corresponding to the reflective film 82C).
  • the reflective film 82A is arranged so that the focal point of the reflective film 82A is the receiving point P1 of the terahertz element 20A.
  • the reflective film 82B is arranged so that the focal point of the reflective film 82B is the receiving point P1 of the terahertz element 20B.
  • the reflective film 82C is arranged so that the focal point of the reflective film 82C is the receiving point P1 of the terahertz element 20C.
  • the center point P2 of the reflective film 82A and the receiving point P1 of the terahertz element 20A coincide with each other when viewed from the z direction, and the center point P2 of the reflecting film 82B and the receiving point P1 of the terahertz element 20B are They are in agreement, and the center point P2 of the reflective film 82C and the receiving point P1 of the terahertz element 20C are in agreement.
  • the center points P2 of the reflective films 82A to 82C are aligned in the z direction.
  • the z-direction coordinates of the reflective film 82 are Z
  • the x-direction position of the reflective film 82 is X
  • Z (1 / (1 / ( 4z1)) may reflecting film 82 is curved so as to satisfy the condition of X 2.
  • X is set to "0" at the center point P2.
  • the bending mode of the reflective film 82 is not limited to this, and can be arbitrarily changed.
  • the z direction is the opposite direction between the reflective film 82 and the terahertz element 20 (element main surface 21). Further, the z direction can be said to be the opposite direction between the center point P2 of the reflective film 82 and the receiving point P1.
  • the specified distance z1 can be said to be the distance between the receiving point P1 and the position of the reflective film 82 corresponding to the center point P2.
  • the reflective film 82 may be arranged at a position corresponding to the frequency of the electromagnetic wave so that the electromagnetic wave received by the terahertz element 20 resonates.
  • the specified distance z1 may be set so as to satisfy the resonance condition of the electromagnetic wave received by the terahertz element 20.
  • the openings of the reflective films 82A to 82C have the same shape as the openings of the antenna surfaces 81A to 81C. That is, when viewed from above, the openings of the reflective films 82A to 82C have a circular shape in which at least one of both open ends of the reflective films 82A to 82C is missing in the arrangement direction of the reflective films 82A to 82C.
  • the opening of the reflective film 82A lacks the opening end 82Aa at a position overlapping the opening end 81Aa of the antenna surface 81A.
  • the opening end 82Aa is a straight line extending along the x direction.
  • the opening of the reflective film 82B lacks the opening ends 82Ba, 82Bb at positions overlapping the both opening ends 81Ba, 81Bb of the antenna surface 81B.
  • both end ends 82Ba and 82Bb are linear shapes extending in the x direction, respectively.
  • the opening of the reflective film 82C lacks the opening end 82Ca at a position overlapping the opening end 81Ca of the antenna surface 81C.
  • the opening end 82Ca is a straight line extending along the x direction.
  • the diameter of the reflective film 82A, the diameter of the reflective film 82B, and the diameter of the reflective film 82C are equal to each other when viewed from above.
  • the open end 82Aa of the reflective film 82A and the open end 82Ba of the reflective film 82B are connected, and the open end 82Bb of the reflective film 82B and the open end 82Ca of the reflective film 82C are connected.
  • the length of the opening end 82Aa in the x direction is equal to the length of the opening end 82Ba in the x direction.
  • the length of the opening end 82Ba in the x direction is equal to the length of the opening end 82Ca in the x direction. Further, the length of the opening end 82Ba in the x direction and the length of the opening end 82Bb in the x direction are equal to each other. That is, in the present embodiment, the length of the opening end 81Aa in the x direction and the length of the opening end 82Ca in the x direction are equal to each other.
  • the open end 82Aa of the reflective film 82A is located below the base main surface 71 of the individual antenna base 70A (base main surface 71T of the antenna base 70).
  • the position of the opening end 82Aa of the reflective film 82A in the z direction is aligned with the position of the opening end 82Ba of the reflective film 82B in the z direction.
  • the open end 82Ca of the reflective film 82C is located below the base main surface 71 of the individual antenna base 70C (base main surface 71T of the antenna base 70). In the z direction, the open end 82Ca of the reflective film 82C is aligned with the open end 82Bb of the reflective film 82B.
  • the open end 82Ba of the reflective film 82B is aligned with the open end 82Bb. That is, in the z direction, the open end 82Aa of the reflective film 82A is aligned with the open end 82Ca of the reflective film 82C.
  • the reflective film 82A when viewed from above, is formed so that its center point P2 is located at a position different from the center of the individual antenna base 70A.
  • the center point P2 of the reflective film 82A is the center of the circular reflective film 82A, which is partially missing when viewed from above, and coincides with the center point of the antenna surface 81A. More specifically, when viewed from above, the reflective film 82A is formed so that its center point P2 is at the center of the individual antenna base 70A in the x direction. When viewed from above, the reflective film 82A is formed so that its center point P2 is closer to the fourth base side surface 76 of the individual antenna base 70A in the y direction. In other words, when viewed from above, the center point P2 of the reflective film 82A is located closer to the individual antenna base 70B than to the center of the individual antenna base 70A in the y direction.
  • the center point P2 of the reflective film 82A and the center point of the antenna surface 81A coincide with each other, and the shape of the reflective film 82A and the shape of the antenna surface 81A are substantially the same. Similar to the reflective film 82A, the antenna surface 81A is formed so that the center point of the antenna surface 81A is different from the center of the individual antenna base 70A.
  • the portion of the arcuate outer peripheral edge of the reflective film 82A that connects both end edges in the first direction is the central angle thereof. Is an arc shape with an angle of less than 180 °.
  • the first direction is a direction that intersects the height direction (z direction) of the terahertz device 10. In the present embodiment, the first direction is a direction orthogonal to the height direction of the terahertz device 10.
  • the portion connecting the edge of the surface is an arc shape having a central angle ⁇ a1 of less than 180 °.
  • the connecting portion has an arc shape whose central angle ⁇ a2 is less than 180 °.
  • the central angle ⁇ a1 and the central angle ⁇ a2 are equal to each other.
  • the antenna surfaces 81A to 81C are arranged in the arcuate outer peripheral edge of the antenna surface 81A, similarly to the reflective film 82A.
  • the portion connecting both end edges in a certain first direction has an arc shape whose central angle is less than 180 °.
  • the size of the reflective film 82A along the first direction which is the direction in which the reflective films 82A to 82C are arranged, is smaller than the size of the reflective film 82A along the second direction different from the first direction. More specifically, when viewed from above, the length of the reflective film 82A passing through the center point P2 in the first direction (y direction in the present embodiment) is the length of the reflective film 82A passing through the center point P2 in the second direction. Shorter than the length.
  • the second direction is, for example, a direction orthogonal to the first direction when viewed from above (x direction in the present embodiment).
  • the length LAY of the reflective film 82A passing through the center point P2 in the y direction when viewed from above is shorter than the length LAX of the reflective film 82A passing through the center point P2 in the y direction.
  • the length LAX of the reflective film 82A passing through the center point P2 can be said to be the diameter of the reflective film 82A viewed from above.
  • the relationship between the length of the antenna surface 81A in the x direction and the length in the y direction is the length of the above-mentioned reflective film 82A. It is the same as the relationship of. That is, when viewed from above, the length of the antenna surface 81A passing through the center point of the antenna surface 81A in the first direction in which the antenna surfaces 81A to 81C are arranged is the antenna in the second direction different from the first direction. It is shorter than the length of the antenna surface 81A passing through the center point of the surface 81A.
  • the second direction is, for example, a direction orthogonal to the first direction when viewed from above (x direction in the present embodiment).
  • the length of the antenna surface 81A passing through the center point of the antenna surface 81A in the second direction can be said to be the diameter of the antenna surface 81A viewed from above.
  • the portion connecting both end edges of the reflective film 82A is the portion thereof.
  • the central angle ⁇ z1 is formed in an arc shape of less than 180 °.
  • the antenna surface 81A also passes through the center point of the antenna surface 81A, and in a cross-sectional view in which the individual antenna base 70A is cut along the planes along the y and z directions, the portion connecting both ends of the antenna surface 81A is the center thereof. It is formed in an arc shape with an angle of less than 180 °.
  • the reflective film 82B when viewed from above, is formed so that its center point P2 is aligned with the center of the individual antenna base 70B.
  • the center point P2 of the reflective film 82B is the center of the circular reflective film 82B, which is partially missing when viewed from above, and coincides with the center point of the antenna surface 81B.
  • the center point P2 of the reflective film 82B and the center point of the antenna surface 81B coincide with each other, and the shape of the reflective film 82B and the shape of the antenna surface 81B are substantially the same.
  • the antenna surface 81B is formed so that the center point of the antenna surface 81B is aligned with the center of the individual antenna base 70B.
  • the portion of the arcuate outer peripheral edge of the reflective film 82B that connects both end edges in the first direction (y direction in this embodiment), which is the direction in which the reflective films 82A to 82C are arranged, is the central angle thereof. Is an arc shape with an angle of less than 180 °.
  • the portion connecting to the edge closer to the first base side surface 73 is an arc shape having a central angle ⁇ b1 of less than 180 °.
  • the portion connecting to the edge closer to 74 is an arc shape having a central angle ⁇ b2 of less than 180 °.
  • the central angles ⁇ b1 and ⁇ b2 are equal to each other. Further, the central angles ⁇ b1 and ⁇ b2 are smaller than the central angles ⁇ a1 and ⁇ a2.
  • the antenna surfaces 81A to 81C are arranged in the arcuate outer peripheral edge of the antenna surface 81A, similarly to the reflective film 82B.
  • the portion connecting both end edges in a certain first direction has an arc shape whose central angle is less than 180 °.
  • the size of the reflective film 82B along the first direction which is the direction in which the reflective films 82A to 82C are arranged, is larger than the size of the reflective film 82B along the second direction, which is a direction different from the first direction. Is also small. More specifically, when viewed from above, the length of the reflective film 82B passing through the center point P2 in the first direction (y direction in the present embodiment) is the length of the reflective film 82B passing through the center point P2 in the second direction. Shorter than the length.
  • the second direction is, for example, a direction orthogonal to the first direction when viewed from above (x direction in the present embodiment).
  • the length LBY in the y direction of the reflective film 82B passing through the center point P2 is shorter than the length LBX in the y direction of the reflective film 82B passing through the center point P2 when viewed from above.
  • the length LBX of the reflective film 82B passing through the center point P2 can be said to be the diameter of the reflective film 82A viewed from above. That is, when viewed from above, the length LBX of the reflective film 82B passing through the center point P2 is equal to the length LAX of the reflective film 82A passing through the center point P2.
  • the relationship between the length of the antenna surface 81B in the x direction and the length in the y direction is the length of the above-mentioned reflective film 82B. It is the same as the relationship of. That is, when viewed from above, the length of the antenna surface 81B passing through the center point of the antenna surface 81B in the first direction (y direction in the present embodiment) in which the antenna surfaces 81A to 81C are arranged is the first direction. It is shorter than the length of the antenna surface 81B passing through the center point of the antenna surface 81B in the second direction different from the above.
  • the second direction is, for example, a direction orthogonal to the first direction when viewed from above (x direction in the present embodiment).
  • the length of the antenna surface 81B passing through the center point of the antenna surface 81B in the second direction can be said to be the diameter of the antenna surface 81B viewed from above. That is, when viewed from above, the length of the antenna surface 81B passing through the center point of the antenna surface 81B in the second direction is equal to the length of the antenna surface 81A passing through the center point of the antenna surface 81A in the second direction.
  • the portion connecting both end edges of the reflective film 82B is the portion thereof.
  • the central angle ⁇ z2 is formed in an arc shape of less than 180 °. In the present embodiment, the central angle ⁇ z2 is smaller than the central angle ⁇ z1 of the reflective film 82A.
  • the antenna surface 81B also passes through the center point of the antenna surface 81B, and in a cross-sectional view of the individual antenna base 70B cut along the planes along the y and z directions, the portion connecting both ends of the antenna surface 81B is the center thereof. It is formed in an arc shape with an angle of less than 180 °.
  • the reflective film 82C when viewed from above, is formed so that its center point P2 is located at a position different from the center of the individual antenna base 70C.
  • the center point P2 of the reflective film 82C is the center of the circular reflective film 82C, which is partially missing when viewed from above, and coincides with the center point of the antenna surface 81C. More specifically, when viewed from above, the reflective film 82C is formed so that its center point P2 is at the center of the individual antenna base 70C in the x direction. When viewed from above, the reflective film 82C is formed so that its center point P2 is closer to the third base side surface 75 of the individual antenna base 70C in the y direction. In other words, when viewed from above, the center point P2 of the reflective film 82C is located closer to the individual antenna base 70B than to the center of the individual antenna base 70C in the y direction.
  • the center point P2 of the reflective film 82C and the center point of the antenna surface 81C coincide with each other, and the shape of the reflective film 82C and the shape of the antenna surface 81C are substantially the same.
  • the antenna surface 81C is formed so that the center point of the antenna surface 81C is located at a position different from the center of the individual antenna base 70C.
  • the portion of the arcuate outer peripheral edge of the reflective film 82C that connects both end edges in the first direction (y direction in this embodiment), which is the direction in which the reflective films 82A to 82C are arranged, is the central angle thereof. Is an arc shape with an angle of less than 180 °.
  • the portion connecting the edge of the ring is in the shape of an arc whose central angle ⁇ c1 is less than 180 °.
  • the connecting portion has an arc shape whose central angle ⁇ c2 is less than 180 °.
  • the central angle ⁇ c1 and the central angle ⁇ c2 are equal to each other.
  • the central angles ⁇ c1 and ⁇ c2 are equal to the central angles ⁇ a1 and ⁇ a2 of the reflective film 82A.
  • the antenna surfaces 81A to 81C are arranged in the arcuate outer peripheral edge of the antenna surface 81C, similarly to the reflective film 82C.
  • the portion connecting both end edges in a certain first direction has an arc shape whose central angle is less than 180 °.
  • the size of the reflective film 82C along the first direction which is the direction in which the reflective films 82A to 82C are arranged, is smaller than the size of the reflective film 82B along the second direction different from the first direction. More specifically, when viewed from above, the length of the reflective film 82C passing through the center point P2 in the first direction is shorter than the length of the reflective film 82C passing through the center point P2 in the second direction.
  • the second direction is, for example, a direction orthogonal to the first direction when viewed from above (x direction in the present embodiment).
  • the length LCY of the reflective film 82C passing through the center point P2 in the y direction is shorter than the length LXY of the reflective film 82C passing through the center point P2 in the x direction.
  • the length LCX of the reflective film 82C passing through the center point P2 can be said to be the diameter of the reflective film 82C seen from above. That is, the length LCX of the reflective film 82C passing through the center point P2 is equal to the length LAX of the reflective film 82A passing through the center point P2.
  • the length LCY of the reflective film 82C is longer than the length LBY of the reflective film 82B. That is, the length LBY of the reflective film 82B is shorter than both the length LAY of the reflective film 82A and the length LCY of the reflective film 82B.
  • the lengths LAY to LCY of the reflective films 82A to 82C are shorter than the lengths LAX to LCX of the reflective films 82A to 82C. Therefore, it can be said that the size of the reflective films 82A to 82C along the first direction is smaller than the size of the reflective films 82A to 82C along the second direction.
  • the relationship between the length of the antenna surface 81C in the x direction and the length in the y direction is the length of the above-mentioned reflective film 82C. It is the same as the relationship of. That is, when viewed from above, the length of the antenna surface 81C passing through the center point of the antenna surface 81C in the first direction (y direction in the present embodiment) in which the antenna surfaces 81A to 81C are arranged is the first direction. It is shorter than the length of the antenna surface 81C passing through the center point of the antenna surface 81C in the second direction different from the above.
  • the second direction is, for example, a direction orthogonal to the first direction when viewed from above (x direction in the present embodiment).
  • the length of the antenna surface 81C passing through the center point of the antenna surface 81C in the second direction can be said to be the diameter of the antenna surface 81C viewed from above. That is, the length of the antenna surface 81C passing through the center point of the antenna surface 81C in the second direction is equal to the length of the antenna surface 81A passing through the center point of the antenna surface 81A in the second direction.
  • the portion connecting both ends of the reflective film 82C is the portion thereof.
  • the central angle ⁇ z3 is formed in an arc shape of less than 180 °. In the present embodiment, the central angle ⁇ z3 is equal to the central angle ⁇ z1 of the individual antenna base 70A.
  • the antenna surface 81C also passes through the center point of the antenna surface 81C, and in a cross-sectional view of the individual antenna base 70C cut along the planes along the y and z directions, the portion connecting both ends of the antenna surface 81C is the center thereof. It is formed in an arc shape with an angle of less than 180 °.
  • the reflective film 82A is formed larger than the terahertz element 20A when viewed from the z direction. Specifically, the reflective film 82A is formed larger in both the x-direction and the y-direction than the terahertz element 20A.
  • the length LAX of the reflective film 82A is set to be longer than the length of the terahertz element 20A in the x direction, and the length LAY of the reflective film 82A is set to be longer than the length of the terahertz element 20A in the y direction.
  • the reflective film 82B is formed larger than the terahertz element 20B when viewed from the z direction. Specifically, the reflective film 82B is formed larger in both the x-direction and the y-direction than the terahertz element 20B.
  • the length LBX of the reflective film 82B is set to be longer than the length of the terahertz element 20B in the x direction, and the length LBY of the reflective film 82B is set to be longer than the length of the terahertz element 20B in the y direction.
  • the reflective film 82C is formed larger than the terahertz element 20C when viewed from the z direction. Specifically, the reflective film 82C is formed larger in both the x-direction and the y-direction than the terahertz element 20C.
  • the length LCX of the reflective film 82C is set to be longer than the length of the terahertz element 20C in the x direction, and the length LCY of the reflective film 82C is set to be longer than the length of the terahertz element 20C in the y direction.
  • the individual antenna base 70A has a peripheral wall portion 78A that surrounds a portion of the opening of the antenna recess 80A other than the portion in contact with the antenna recess 80B that is missing. ..
  • the individual antenna base 70B has a peripheral wall portion 78B that surrounds a portion of the opening of the antenna recess 80B that is in contact with each of the antenna recesses 80A and 80C except for a portion that is missing.
  • the individual antenna base 70C has a peripheral wall portion 78C that surrounds a portion of the opening of the antenna recess 80C that is in contact with each of the antenna recesses 80B except for a portion that is missing.
  • the element-to-element distance DE1 which is the distance between the receiving point P1 of the terahertz element 20A and the receiving point P1 of the terahertz element 20B in the y direction, is x on the antenna surface 81A and the antenna surface 81B. It is smaller than the lengths LAX and LBX, which are the diameters along the direction.
  • the element-to-element distance DE2 which is the distance between the receiving point P1 of the terahertz element 20B and the receiving point P1 of the terahertz element 20C in the y direction, is a length that is the diameter along the x direction of the antenna surface 81B and the antenna surface 81C. It is smaller than LBX and LCX.
  • the antenna base 70 and the dielectric 50 are separate bodies and are assembled and fixed in the z direction.
  • the terahertz device 10 includes an adhesive layer 91 as a fixing portion for fixing the dielectric 50 and the antenna base 70.
  • the adhesive layer 91 is made of, for example, an insulating material, and is made of, for example, a resin-based adhesive.
  • the adhesive layer 91 is provided between the base main surface 71T and the dielectric main surface 51, and is provided on the peripheral edge of the opening of the antenna recess 80A, the peripheral edge of the opening of the antenna recess 80B, and the peripheral edge of the opening of the antenna recess 80C. It is provided along each.
  • the adhesive layer 91 adheres and fixes the dielectric 50 and the antenna base 70. That is, the dielectric 50 and the antenna base 70 are assembled from the z direction via the adhesive layer 91. As a result, the dielectric 50 and the antenna base 70 are unitized. As a result, the positional deviation between the dielectric 50 and the antenna base 70 in the direction orthogonal to the z direction is regulated by the adhesive layer 91, so that the terahertz elements 20A, 20B, 20C and the antenna base 70 in the dielectric 50 are regulated. The relative positions with the reflective films 82A, 82B, and 82C are less likely to shift.
  • the inner peripheral end of the adhesive layer 91 is arranged at a position flush with the surface of the reflective film 82, and is formed so as to straddle the end of the base main surface 71T and the reflective film 82. ing. That is, the adhesive layer 91 is configured so as not to protrude inward (in other words, on the terahertz element 20 side) of the reflective film 82.
  • the inner peripheral end of the adhesive layer 91 can be said to be the end of the adhesive layer 91 on the terahertz element 20 side. That is, it can be said that the inner peripheral end of the adhesive layer 91 formed on the base main surface 71 of the individual antenna base 70A is the end of the adhesive layer 91 on the terahertz element 20A side.
  • the inner peripheral end of the adhesive layer 91 has a circular shape, for example, corresponding to the antenna recess 80A and partially missing when viewed from the z direction. It can be said that the inner peripheral end of the adhesive layer 91 formed on the base main surface 71 of the individual antenna base 70B is the end of the adhesive layer 91 on the terahertz element 20B side.
  • the inner peripheral end of the adhesive layer 91 has a circular shape, for example, corresponding to the antenna recess 80B and partially missing when viewed from the z direction. It can be said that the inner peripheral end of the adhesive layer 91 formed on the base main surface 71 of the individual antenna base 70C is the end of the adhesive layer 91 on the terahertz element 20C side.
  • the inner peripheral end of the adhesive layer 91 has a circular shape, for example, corresponding to the antenna recess 80C and partially missing when viewed from the z direction. However, the shape of the inner peripheral end of these adhesive layers 91 can be arbitrarily changed.
  • the gas space 92 of the present embodiment is partitioned by a dielectric main surface 51 and an antenna surface 81. Specifically, the opening of the antenna recess 80 is closed by the dielectric main surface 51. As a result, the gas space 92 is partitioned by the dielectric main surface 51 and the antenna surface 81, which is the inner surface of the antenna recess 80. More specifically, the gas space 92 is partitioned by a dielectric main surface 51 and antenna surfaces 81A to 81C. Specifically, the openings of the antenna recesses 80A to 80C are each closed by the dielectric main surface 51.
  • the gas space 92 is sealed. That is, the gas space 92 is sealed by the adhesive layer 91.
  • the reflective films 82A to 82C are provided in the gas space 92, respectively.
  • the gas space 92 includes a gas space 92A partitioned by an antenna recess 80A and a dielectric main surface 51, a gas space 92B partitioned by an antenna recess 80B and a dielectric main surface 51, and an antenna recess. It has a gas space 92C partitioned by 80C and a dielectric main surface 51.
  • the gas space 92A, the gas space 92B, and the gas space 92C communicate with each other.
  • the gas space 92A and the gas space 92B communicate with each other at the opening end 81Aa of the antenna surface 81A (opening end 82Aa of the reflective film 82A) and the opening end 81Ba of the antenna surface 81B (opening end 82Ba of the reflective film 82B). is doing.
  • the gas space 92B and the gas space 92C communicate with each other at the opening end 81Bb of the antenna surface 81B (opening end 82Bb of the reflective film 82B) and the opening end 81Ca of the antenna surface 81C (opening end 82Ca of the reflective film 82C).
  • the gas spaces 92A to 92C are each formed in a substantially hemispherical shape.
  • the gas space 92A is formed larger in the direction orthogonal to the z direction than the terahertz element 20A when viewed from the z direction.
  • the length of the gas space 92A in the x direction is longer than the length of the terahertz element 20A in the x direction
  • the length of the gas space 92A in the y direction is longer than the length of the terahertz element 20A in the y direction.
  • the gas space 92B is formed larger in the direction orthogonal to the z direction than the terahertz element 20B when viewed from the z direction.
  • the length of the gas space 92B in the x direction is longer than the length of the terahertz element 20B in the x direction
  • the length of the gas space 92B in the y direction is longer than the length of the terahertz element 20B in the y direction.
  • the gas space 92C is formed larger in the direction orthogonal to the z direction than the terahertz element 20C when viewed from the z direction.
  • the length of the gas space 92C in the x direction is longer than the length of the terahertz element 20C in the x direction
  • the length of the gas space 92C in the y direction is longer than the length of the terahertz element 20C in the y direction.
  • the gas refractive index n3 which is the refractive index of the gas existing in each of the gas spaces 92A to 92C, is set lower than the dielectric refractive index n2. That is, in each of the gas spaces 92A to 92C, a gas having a refractive index lower than the dielectric refractive index n2 exists.
  • the gas existing in each of the gas spaces 92A to 92C is air.
  • the gas refractive index n3 is about 1 each.
  • the gas existing in each of the gas spaces 92A to 92C is not limited to air, and is arbitrary as long as it has a dielectric refractive index lower than n2.
  • the reflective film 82A has a portion facing the terahertz element 20A via the dielectric 50 and the gas space 92A. In this embodiment, the entire reflective film 82A faces the terahertz element 20A via the dielectric 50 and the gas space 92A.
  • the reflective film 82A passes through the dielectric 50 and reflects the electromagnetic wave propagated through the gas space 92A toward the receiving point P1 of the terahertz element 20A. In other words, it can be said that the reflective film 82A guides the electromagnetic wave transmitted through the dielectric 50 and propagated through the gas space 92A toward the receiving point P1 of the terahertz element 20A.
  • the reflective film 82B has a portion facing the terahertz element 20B via the dielectric 50 and the gas space 92B. In this embodiment, the entire reflective film 82B faces the terahertz element 20B via the dielectric 50 and the gas space 92B.
  • the reflective film 82B passes through the dielectric 50 and reflects the electromagnetic wave propagated through the gas space 92B toward the receiving point P1 of the terahertz element 20B. In other words, it can be said that the reflective film 82B guides the electromagnetic wave transmitted through the dielectric 50 and propagated through the gas space 92B toward the receiving point P1 of the terahertz element 20B.
  • the reflective film 82C has a portion facing the terahertz element 20C via the dielectric 50 and the gas space 92C. In this embodiment, the entire reflective film 82C faces the terahertz element 20C via the dielectric 50 and the gas space 92C.
  • the reflective film 82C passes through the dielectric 50 and reflects the electromagnetic wave propagated through the gas space 92C toward the receiving point P1 of the terahertz element 20C. In other words, it can be said that the reflective film 82C guides the electromagnetic wave transmitted through the dielectric 50 and propagated through the gas space 92C toward the receiving point P1 of the terahertz element 20C.
  • the terahertz device 10 is provided in a dielectric 50 with a first electrode 101 and a second electrode 102 used for electrical connection with the outside, and is electrically connected to the terahertz element 20.
  • the first conductive portion 110 and the second conductive portion 120 are provided.
  • both electrodes 101 and 102 are individually provided according to the individual antenna bases 70A to 70C. That is, both electrodes 101 and 102 include the first electrode 101A and the second electrode 102A provided on the individual antenna base 70A, the first electrode 101B and the second electrode 102B provided on the individual antenna base 70B, and the individual antenna base. It has a first electrode 101C and a second electrode 102C provided on the 70C.
  • both the conductive portions 110 and 120 are individually provided according to the terahertz elements 20A to 20C. That is, both the conductive portions 110 and 120 are the first conductive portion 110A and the second conductive portion 120A electrically connected to the terahertz element 20A, and the first conductive portion 110B and the first conductive portion 110B electrically connected to the terahertz element 20B. It has two conductive portions 120B, a first conductive portion 110C and a second conductive portion 120C electrically connected to the terahertz element 20C.
  • Both electrodes 101A and 102A of the present embodiment are formed on a portion of the dielectric 50 that does not overlap with the reflective film 82A when viewed from the z direction, and a portion of the dielectric 50 that overlaps with the reflective film 82A when viewed from the x direction. It is formed. In other words, both electrodes 101A and 102A are arranged on one side of the dielectric 50 in the x direction with respect to the reflective film 82A.
  • Both electrodes 101A and 102A of this embodiment are provided on the side of the antenna base 70 (individual antenna base 70A). Specifically, both electrodes 101A and 102A are formed on a portion of the dielectric main surface 51 corresponding to the first protruding portion 61, that is, on the first protruding surface 51a (see FIGS. 4 and 5). Both electrodes 101A and 102A are arranged side by side in the y direction in a state of being aligned with each other in the x direction. Both electrodes 101A and 102A face downward.
  • Both electrodes 101B and 102B of the present embodiment are formed on a portion of the dielectric 50 that does not overlap with the reflective film 82B when viewed from the z direction, and a portion of the dielectric 50 that overlaps with the reflective film 82B when viewed from the x direction. It is formed. In other words, both electrodes 101B and 102B are arranged on one side of the dielectric 50 in the x direction with respect to the reflective film 82B.
  • Both electrodes 101B and 102B of this embodiment are provided on the side of the antenna base 70 (individual antenna base 70B). Specifically, both electrodes 101B and 102B are formed on a portion of the dielectric main surface 51 corresponding to the first protruding portion 61, that is, on the first protruding surface 51a. Both electrodes 101B and 102B are arranged side by side in the y direction in a state of being aligned with each other in the x direction. Both electrodes 101B and 102B face downward.
  • Both electrodes 101C and 102C of the present embodiment are formed on a portion of the dielectric 50 that does not overlap with the reflective film 82C when viewed from the z direction, and a portion of the dielectric 50 that overlaps with the reflective film 82C when viewed from the x direction. It is formed. In other words, both electrodes 101C and 102C are arranged on one side of the dielectric 50 in the x direction with respect to the reflective film 82C.
  • Both electrodes 101C and 102C of this embodiment are provided on the side of the antenna base 70 (individual antenna base 70C). Specifically, both electrodes 101C and 102C are formed on a portion of the dielectric main surface 51 corresponding to the first protruding portion 61, that is, on the first protruding surface 51a. Both electrodes 101C and 102C are arranged side by side in the y direction in a state of being aligned with each other in the x direction. Both electrodes 101C and 102C face downward.
  • both electrodes 101A and 102A, both electrodes 101B and 102B, and both electrodes 101C and 102C are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • each of the electrodes 101A, 102A, 101B, 102B, 101C, 102C has a laminated structure including, for example, a Ni layer and an Au layer, respectively.
  • the structure of each of the electrodes 101A, 102A, 101B, 102B, 101C, and 102C is not limited to this, and may be arbitrary, for example, a configuration including a Pd layer or a configuration including a Sn layer.
  • the shapes of the electrodes 101A, 102A, 101B, 102B, 101C, and 102C viewed from the z direction are arbitrary, but for example, they are rectangular with the y direction as the long side direction and the x direction as the short side direction. be.
  • the shapes of the electrodes 101A and 102A viewed from the z direction, the shapes of the electrodes 101B and 102B viewed from the z direction, and the shapes of the electrodes 101C and 102C viewed from the z direction may be different from each other.
  • the length of the antenna base 70 (individual antenna bases 70A, 70B, 70C) in the z direction is larger than the thickness of the dielectric 50. Therefore, the electrodes 101A, 102A, 101B, 102B, 101C, and 102C are arranged unevenly above the center of the terahertz device 10 in the z direction (in other words, on the device main surface 11 side).
  • the entire conductive portions 110A, 110B, 110C, 120A, 120B, and 120C are provided in the dielectric 50. That is, the dielectric 50 seals the terahertz elements 20A to 20C together with the conductive portions 110A, 110B, 110C, 120A, 120B, and 120C. As a result, the conductive portions 110A, 110B, 110C, 120A, 120B, 120C inside the dielectric 50 and the reflective films 82A to 82C outside the dielectric 50 are prevented from coming into contact with each other. That is, the dielectric 50 functions as an insulator between the conductive portions 110A, 110B, 110C, 120A, 120B, 120C and the reflective films 82A to 82C.
  • both the conductive portions 110A and 120A extend in the x direction, which is the protruding direction of the first protruding portion 61, so as to overlap both the terahertz element 20A and the electrodes 101A and 102A when viewed from the z direction.
  • Both conductive portions 110B and 120B extend in the x direction so as to overlap both the terahertz element 20B and the electrodes 101B and 102B when viewed from the z direction.
  • Both conductive portions 110C and 120C extend in the x direction so as to overlap both the terahertz element 20C and the electrodes 101C and 102C when viewed from the z direction.
  • each of the conductive portions 110A, 120A, 110B, 120B, 110C, and 120C has a strip shape extending in the x direction with the y direction as the width direction.
  • Each of the conductive portions 110A, 120A, 110B, 120B, 110C, and 120C of the present embodiment is in the form of a thin film having the z direction as the thickness direction.
  • the specific shape of each conductive portion 110A, 120A, 110B, 120B, 110C, 120C is arbitrary, and may be a plate shape having a predetermined thickness.
  • the terahertz element 20A is flip-chip mounted on both conductive portions 110A and 120A
  • the terahertz element 20B is flip-chip mounted on both conductive portions 110B and 120B
  • the terahertz element 20C is both conductive portions 110C
  • a flip chip is mounted on the 120C.
  • the first conductive portion 110A electrically connects the terahertz element 20A and the first electrode 101A.
  • the first conductive portion 110A extends in the x direction, which is the protruding direction of the first protruding portion 61, so as to face both the first pad 33a and the first electrode 101A of the terahertz element 20A.
  • the first conductive portion 110A faces the first element facing portion 111 facing the first pad 33a of the terahertz element 20A in the z direction and facing the first electrode 101A in the z direction.
  • a unit 115 is provided.
  • the first element facing portion 111 and the first electrode facing portion 112 constitute both ends of the first conductive portion 110A in the x direction.
  • the first element facing portion 111 is provided between the terahertz element 20A and the reflective film 82A in the z direction, and at least a part thereof is a terahertz element when viewed from the z direction. It is formed so as to overlap with the first pad 33a of 20A.
  • the first element facing portion 111 faces the reflective film 82A in the z direction.
  • the first element facing portion 111 extends in the x direction in correspondence with the first pad 33a of the terahertz element 20A extending in the x direction.
  • the shape of the first element facing portion 111 viewed from the z direction is a rectangular shape with the x direction as the long side direction and the y direction as the short side direction.
  • the first conductive portion 110A includes a first bump 114 provided between the first element facing portion 111 and the first pad 33a of the terahertz element 20A.
  • the terahertz element 20A is flip-chip mounted on the first element facing portion 111 via the first bump 114.
  • the first pad 33a and the first element facing portion 111 are electrically connected by the first bump 114.
  • a plurality of first bumps 114 are provided.
  • a plurality of first bumps 114 (two in the present embodiment) are arranged in the x direction in correspondence with the case where the first pad 33a and the first element facing portion 111 of the terahertz element 20A extend in the x direction.
  • the first element facing portion 111 and the first bump 114 are arranged at positions that do not overlap with the receiving point P1 when viewed from the z direction.
  • the shape of the first bump 114 is, for example, a square columnar shape. However, the shape of the first bump 114 is not limited to this and is arbitrary.
  • the first bump 114 may have a single-layer structure or a plurality of laminated structures.
  • the first bump 114 may have a laminated structure of a metal layer containing Cu, a metal layer containing Ti, and an alloy layer containing Sn.
  • the alloy layer containing Sn is, for example, a Sn—Sb-based alloy layer or a Sn—Ag-based alloy layer.
  • a first insulating layer surrounding the first bump 114 may be formed on the first element facing portion 111.
  • the first insulating layer is formed in a frame shape that opens upward, and it is preferable that the first bump 114 is housed in the first insulating layer. As a result, it is possible to prevent the first bump 114 from sagging laterally.
  • the first insulating layer is not essential.
  • the first electrode facing portion 112 is formed so that at least a part thereof overlaps with the first electrode 101A when viewed from the z direction.
  • the first electrode facing portion 112 is formed at a position protruding laterally from the antenna base 70 (individual antenna base 70A), and specifically, is formed in the first protruding portion 61. Therefore, the first electrode facing portion 112 is arranged at a position that does not overlap with the reflective film 82A when viewed from the z direction.
  • the first electrode facing portion 112 of the present embodiment has a rectangular shape extending in the x direction and the y direction when viewed from the z direction.
  • the first electrode 101A is formed wider than the first electrode facing portion 112 when viewed from the z direction.
  • the shape and size of the first electrode 101A are not limited to this, and may be formed smaller than the first electrode facing portion 112 or may have the same shape.
  • the first connection portion 113 is provided between the first element facing portion 111 and the first electrode facing portion 112, and extends in the x direction with the y direction as the width direction. There is. A part of the first connecting portion 113 faces the reflective film 82A in the z direction. That is, a part of the first connecting portion 113 is provided at a position overlapping with the reflective film 82A. In other words, the first connecting portion 113 has a portion that overlaps with the reflective film 82A and a portion that does not overlap with the reflective film 82A when viewed from the z direction.
  • the first connection portion 113 of the present embodiment is formed to be narrower than the first element facing portion 111. Specifically, the width (length in the y direction) of the first connecting portion 113 is set shorter than the width (length in the y direction) of the first element facing portion 111.
  • the first connection portion 113 of the present embodiment is formed to be narrower than, for example, the first electrode facing portion 112. In other words, the first electrode facing portion 112 extends longer in the y direction than the first connecting portion 113.
  • the first connection portion 113 is formed on both sides of the first connection main body portion 113a formed narrower than the first element facing portion 111 and the first electrode facing portion 112 in the longitudinal direction of the first connection main body portion 113a. It has a tapered portion 113b on the one element side and a tapered portion 113c on the first electrode side.
  • the first connection main body 113a extends in the x direction as the longitudinal direction and has a constant width in the y direction.
  • the first connection main body portion 113a overlaps with the reflective film 82A when viewed from the z direction. It can be said that the first connection main body portion 113a connects the first element facing portion 111 and the first electrode facing portion 112. As shown in FIG. 15, the width W1 of the first connection main body portion 113a is shorter than the width W2 of the first element facing portion 111.
  • the first element side taper portion 113b connects the first connection main body portion 113a and the first element facing portion 111.
  • the taper portion 113b on the first element side is formed at a position adjacent to the terahertz element 20A in the x direction when viewed from the z direction, and overlaps with the reflective film 82A when viewed from the z direction.
  • the taper portion 113b on the first element side is gradually formed wider toward the first element facing portion 111 from the first connection main body portion 113a.
  • the first element-side tapered portion 113b has a pair of first element-side inclined surfaces 113ba that are inclined so as to gradually separate from each other toward the first element facing portion 111 from the first connection main body portion 113a. ing.
  • the first electrode side tapered portion 113c connects the first connection main body portion 113a and the first electrode facing portion 112.
  • the taper portion 113c on the first electrode side is formed in a portion that does not overlap with the reflective film 82A, for example, when viewed from the z direction, and is formed in, for example, the first protrusion 61.
  • the first electrode side tapered portion 113c is gradually formed wider toward the first electrode facing portion 112 from the first connection main body portion 113a.
  • the first electrode side tapered portion 113c has a pair of first electrode side inclined surfaces 113ca that are inclined so as to gradually separate from each other toward the first electrode facing portion 112 from the first connection main body portion 113a. ing.
  • the first pillar portion 115 is provided between the first electrode 101A and the first electrode facing portion 112.
  • the first pillar portion 115 extends with the z direction as the height direction, and is connected to the first electrode 101A and the first electrode facing portion 112.
  • the first pillar portion 115 is formed in a columnar shape, for example.
  • the specific shape of the first pillar portion 115 is arbitrary, and may be, for example, a prismatic shape.
  • the first recess 112a is formed at a position of the first electrode facing portion 112 that overlaps with the first pillar portion 115.
  • the first recess 112a may not be provided.
  • the first pad 33a and the first electrode 101A of the terahertz element 20A are the first bump 114, the first element facing portion 111, the first connecting portion 113, the first electrode facing portion 112, and the first pillar. It is electrically connected via the portion 115.
  • the shapes of the first conductive portions 110B and 110C seen from the z direction are the same as the shapes of the first conductive portions 110A seen from the z direction. That is, the first conductive portions 110B and 110C have the same as the first conductive portion 110A, that is, the first element facing portion 111, the first electrode facing portion 112, the first connecting portion 113, the first bump 114, and the first pillar portion 115. It is equipped with. Therefore, the first pad 33a and the first electrode 101B of the terahertz element 20B are the first bump 114 of the first conductive portion 110B, the first element facing portion 111, the first connecting portion 113, the first electrode facing portion 112, and the first electrode facing portion 112. It is electrically connected via the first pillar portion 115.
  • the first conductive portion 110B electrically connects the terahertz element 20B and the first electrode 101B.
  • the first pad 33a and the first electrode 101C of the terahertz element 20C are the first bump 114 of the first conductive portion 110C, the first element facing portion 111, the first connecting portion 113, the first electrode facing portion 112, and the first electrode 101C. It is electrically connected via one pillar portion 115. Therefore, it can be said that the first conductive portion 110C electrically connects the terahertz element 20C and the first electrode 101C.
  • the second conductive portion 120A electrically connects the terahertz element 20A and the second electrode 102A.
  • the first conductive portion 110A and the second conductive portion 120A are provided side by side in the y direction when viewed from the z direction. It can be said that both the conductive portions 110A and 120A extend from the terahertz element 20A in one of the radial directions of the reflective film 82A when viewed from the z direction.
  • both the conductive portions 110A and 120A of the present embodiment extend in the direction away from the terahertz element 20A when viewed from the z direction.
  • both the conductive portions 110A and 120A extend in the x direction from the terahertz element 20A toward the first protruding portion 61 when viewed from the z direction.
  • the second conductive portion 120A faces the second element facing portion 121 facing the second pad 34a of the terahertz element 20A in the z direction and facing the second electrode 102A in the z direction. It has a second electrode facing portion 122, and a second pillar portion 125 connecting the second element facing portion 121 and the second electrode 102A.
  • the second element facing portion 121 and the second electrode facing portion 122 form both ends of the second conductive portion 120A in the x direction.
  • the second element facing portion 121 is provided between the terahertz element 20A and the reflective film 82A in the z direction, so that at least a part thereof overlaps with the second pad 34a of the terahertz element 20A when viewed from the z direction. It is formed.
  • the second element facing portion 121 faces the reflective film 82A in the z direction.
  • the second element facing portion 121 extends in the x direction in correspondence with the second pad 34a of the terahertz element 20A extending in the x direction.
  • the second element facing portion 121 is formed in a rectangular shape with the x direction as the longitudinal direction and the y direction as the lateral direction.
  • the facing portions 111 and 121 of the terahertz element 20A are arranged side by side in the y direction in correspondence with the pads 33a and 34a of the terahertz element 20A being separated from each other in the y direction.
  • a dielectric 50 exists between the facing portions 111 and 121 of both elements, and is insulated by the dielectric 50.
  • the second conductive portion 120A includes a second bump 124 provided between the second element facing portion 121 and the second pad 34a of the terahertz element 20A.
  • the terahertz element 20A is flip-chip mounted on the second element facing portion 121 via the second bump 124.
  • the second pad 34a of the terahertz element 20A and the second element facing portion 121 are electrically connected by a second bump 124.
  • a plurality of second bumps 124 are provided.
  • a plurality of second bumps 124 (two in the present embodiment) are arranged in the x direction in correspondence with the second pad 34a of the terahertz element 20A and the second element facing portion 121 extending in the x direction.
  • the second element facing portion 121 and the second bump 124 are arranged at positions that do not overlap with the receiving point P1 when viewed from the z direction.
  • the first bump 114 and the second bump 124 are arranged so as to face each other so as to be separated from each other in the y direction, and are aligned in the x direction.
  • the arrangement mode of the first bump 114 and the second bump 124 is not limited to this, and for example, the first bump 114 and the second bump 124 may be arranged so as to be offset in the y direction.
  • the second electrode facing portion 122 is formed so that at least a part thereof overlaps with the second electrode 102A when viewed from the z direction.
  • the second electrode facing portion 122 is formed at a position protruding laterally from the antenna base 70 (individual antenna base 70A), and specifically, is formed in the second protruding portion 62. Therefore, the second electrode facing portion 122 is arranged at a position that does not overlap with the reflective film 82A when viewed from the z direction.
  • the second electrode facing portion 122 of the present embodiment has a rectangular shape extending in the x direction and the y direction when viewed from the z direction.
  • the second electrode 102A is formed wider than the second electrode facing portion 122 when viewed from the z direction.
  • the size and shape of the second electrode 102A are not limited to this, and may be formed smaller than the second electrode facing portion 122 or may have the same shape.
  • the second connection portion 123 is provided between the second element facing portion 121 and the second electrode facing portion 122, and extends in the x direction with the y direction as the width direction. A part of the second connecting portion 123 faces the reflective film 82A in the z direction. That is, a part of the second connecting portion 123 is provided at a position overlapping with the reflective film 82A. In other words, the second connecting portion 123 has a portion that overlaps with the reflective film 82A and a portion that does not overlap with the reflective film 82A when viewed from the z direction.
  • the second connection portion 123 of the present embodiment is formed to be narrower than the second element facing portion 121. Specifically, the width (length in the y direction) of the second connecting portion 123 is set shorter than the width (length in the y direction) of the second element facing portion 121.
  • the second connection portion 123 of the present embodiment is formed to be narrower than, for example, the second electrode facing portion 122. In other words, the second electrode facing portion 122 extends longer in the y direction than the second connecting portion 123.
  • the second connection portion 123 is formed at both ends in the longitudinal direction of the second connection main body portion 123a formed narrower than the second element facing portion 121 and the second electrode facing portion 122, and the second connection main body portion 123a. It has a two-element side tapered portion 123b and a second electrode side tapered portion 123c.
  • the second connection main body portion 123a extends in the x direction as the longitudinal direction and has a constant width in the y direction.
  • the second connection main body portion 123a overlaps with the reflective film 82A when viewed from the z direction. It can be said that the second connection main body portion 123a connects the second element facing portion 121 and the second electrode facing portion 122.
  • the width W3 of the second connection main body portion 123a is shorter than the width W4 of the second element facing portion 121.
  • the second element side taper portion 123b connects the second connection main body portion 123a and the second element facing portion 121.
  • the second element-side tapered portion 123b is formed at a position adjacent to the terahertz element 20A in the x direction when viewed from the z direction, and overlaps with the reflective film 82A when viewed from the z direction.
  • the second element side tapered portion 123b is gradually formed wider toward the second element facing portion 121 from the second connection main body portion 123a.
  • the second element-side tapered portion 123b has a pair of second element-side inclined surfaces 123ba that are inclined so as to gradually separate from each other toward the second element facing portion 121 from the second connection main body portion 123a. ing.
  • the second electrode side tapered portion 123c connects the second connection main body portion 123a and the second electrode facing portion 122.
  • the second electrode side tapered portion 123c is formed in a portion that does not overlap with the reflective film 82A, for example, when viewed from the z direction, and is formed in, for example, the second protruding portion 62.
  • the second electrode side tapered portion 123c is gradually formed wider toward the second electrode facing portion 122 from the second connection main body portion 123a.
  • the second electrode side tapered portion 123c has a pair of second electrode side inclined surfaces 123ca that are inclined so as to gradually separate from each other toward the second electrode facing portion 122 from the second connection main body portion 123a. ing.
  • the second pillar portion 125 is provided between the second electrode 102A and the second electrode facing portion 122.
  • the second pillar portion 125 extends with the z direction as the height direction, and is connected to the second electrode 102A and the second electrode facing portion 122.
  • the second pillar portion 125 is formed in a columnar shape, for example.
  • the specific shape of the second pillar portion 125 can be arbitrarily changed, and may be, for example, a prismatic shape.
  • the second recess 122a is formed in the portion of the second electrode facing portion 122 that overlaps with the second pillar portion 125.
  • the second recess 122a may not be provided.
  • the second pad 34a and the second electrode 102A of the terahertz element 20A are the second bump 124, the second element facing portion 121, the second connecting portion 123, the second electrode facing portion 122, and the second pillar. It is electrically connected via the portion 125.
  • the shapes of the second conductive portions 120B and 120C seen from the z direction are the same as the shapes of the second conductive portions 120A seen from the z direction. That is, the second conductive portions 120B and 120C have the same as the second conductive portion 120A, that is, the second element facing portion 121, the second electrode facing portion 122, the second connecting portion 123, the second bump 124, and the second pillar portion 125. It is equipped with. Therefore, the second pad 34a and the second electrode 102B of the terahertz element 20B are the second bump 124 of the second conductive portion 120B, the second element facing portion 121, the second connecting portion 123, the second electrode facing portion 122, and the second electrode facing portion 122.
  • the second conductive portion 120B electrically connects the terahertz element 20B and the second electrode 102B.
  • the second pad 34a and the second electrode 102C of the terahertz element 20C are the second bump 124 of the second conductive portion 120C, the second element facing portion 121, the second connecting portion 123, the second electrode facing portion 122, and the second electrode 102C. It is electrically connected via the two pillar portions 125. Therefore, it can be said that the second conductive portion 120C electrically connects the terahertz element 20C and the second electrode 102C.
  • the first conductive portion 110B and the second conductive portion 120B are formed side by side in the y direction when viewed from the z direction. It can be said that both the conductive portions 110B and 120B extend from the terahertz element 20B in one of the radial directions of the reflective film 82B when viewed from the z direction.
  • both the conductive portions 110B and 120B of the present embodiment extend in the direction away from the terahertz element 20B when viewed from the z direction.
  • both the conductive portions 110B and 120B extend in the x direction from the terahertz element 20B toward the first protruding portion 61 when viewed from the z direction.
  • the first conductive portion 110C and the second conductive portion 120C are formed side by side in the y direction when viewed from the z direction. It can be said that both the conductive portions 110C and 120C extend from the terahertz element 20C in one of the radial directions of the reflective film 82C when viewed from the z direction.
  • both the conductive portions 110C and 120C of the present embodiment extend in the direction away from the terahertz element 20C when viewed from the z direction.
  • both the conductive portions 110C and 120C extend in the x direction from the terahertz element 20C toward the first protruding portion 61 when viewed from the z direction.
  • the two conductive portions 110A and 120A, the two conductive portions 110B and 120B, and the two conductive portions 110C and 120C are separated from each other in the y direction while being aligned with each other in the x direction. Are arranged.
  • the reflective film 82A of this embodiment is electrically in a floating state.
  • the individual antenna base 70A on which the reflective film 82A is formed has an insulating property. Since both conductive portions 110A and 120A are provided in the dielectric 50, the reflective film 82A and both conductive portions 110A and 120A are insulated from each other. Further, the reflective film 82A and both electrodes 101A and 102A are separated from each other, and an individual antenna base 70A is interposed between the two electrodes. Therefore, the reflective film 82A and the electrodes 101A and 102A are insulated from each other. As a result, the floating state of the reflective film 82A is maintained.
  • the reflective films 82B and 82C are also electrically floating like the reflective films 82A.
  • the method for manufacturing the terahertz device 10 is roughly divided into a step of forming a dielectric 50 in which a terahertz element 20 and the like are sealed, a step of forming an antenna base 70, and a step of assembling the dielectric 50 and the antenna base 70. It is equipped with.
  • the method for manufacturing the terahertz device 10 includes a step of forming the column portions 115 and 125 on the support substrate 130.
  • the support substrate 130 is made of a semiconductor material which is a single crystal material, and in the present embodiment, it is a Si single crystal material.
  • the thickness of the support substrate 130 in this embodiment is, for example, about 725 to 775 ⁇ m.
  • the support substrate 130 is not limited to the Si wafer, and may be, for example, a glass substrate.
  • the step of forming the pillar portions 115 and 125 includes, for example, a step of forming a base layer on the support substrate 130.
  • This base layer is formed by a sputtering method.
  • a Ti layer is formed on the support substrate 130, and then a Cu layer in contact with the Ti layer is formed. That is, the base layer is formed of a Ti layer and a Cu layer laminated on each other.
  • the thickness of the Ti layer is about 10 to 30 ⁇ m
  • the thickness of the Cu layer is about 200 to 800 ⁇ m.
  • the constituent materials and thickness of the base layer are not limited to those described above.
  • a plating layer in contact with the base layer is formed.
  • the plating layer is formed by forming a resist pattern by photolithography and electrolytic plating. Specifically, a photosensitive resist is applied so as to cover the entire surface of the base layer, and the photosensitive resist is exposed and developed. As a result, a patterned resist layer (hereinafter referred to as "resist pattern") is formed.
  • the photosensitive resist is applied using, for example, a spin coater, but is not limited to this. At this time, a part of the base layer is exposed from the resist pattern.
  • electrolytic plating is performed using the base layer as a conductive path. As a result, the plating layer is laminated on the base layer exposed from the resist pattern.
  • the constituent material of the plating layer according to this embodiment is, for example, Cu.
  • the resist pattern is removed.
  • the pillar portions 115 and 125 are formed.
  • the pillar portions 115 and 125 stand upward from the support substrate 130.
  • the method for manufacturing the terahertz device 10 includes a first sealing step of forming a first dielectric layer 131 that covers the pillar portions 115 and 125.
  • the first dielectric layer 131 is formed, for example, by molding.
  • the first dielectric layer 131 has an electrical insulating property, and is, for example, a synthetic resin containing an epoxy resin as a main component.
  • the first dielectric layer 131 constitutes a part of the dielectric 50.
  • the specific steps for forming the first dielectric layer 131 are optional, but for example, by forming the first dielectric layer 131 higher than the pillars 115 and 125 and then polishing the first dielectric layer 131.
  • a process of exposing the tip surfaces of the column portions 115 and 125 can be considered.
  • polishing marks which are traces of polishing, are formed on the upper surface of the first dielectric layer 131.
  • the tip surfaces of the column portions 115 and 125 may be polished.
  • burrs may occur on the tip surfaces of the column portions 115 and 125. Therefore, the method for manufacturing the terahertz device 10 may include a step of removing burrs from the pillar portions 115 and 125. In this case, as shown in FIG. 17, the tip surfaces of the pillar portions 115 and 125 are slightly recessed from the upper surface of the first dielectric layer 131.
  • the method for manufacturing the terahertz device 10 includes a step of forming both conductive portions 110A and 120A, a step of forming both conductive portions 110B and 120B, and both conductive portions 110C, It includes a step of forming 120C. Since the steps for forming these conductive portions are common steps, the steps for forming both conductive portions 110A and 120A will be described, and the steps for forming both conductive portions 110B and 120B and the steps for forming both conductive portions 110C and 120C will be described. The description of the process will be omitted.
  • the step of forming both conductive portions 110A and 120A includes a step of forming the element facing portions 111 and 121, the electrode facing portions 112 and 122 and the connecting portions 113 and 123.
  • the element facing portions 111, 121, the electrode facing portions 112, 122, and the connecting portions 113, 123 are formed by patterning on the first dielectric layer 131.
  • the element facing portions 111, 121, the electrode facing portions 112, 122, and the connecting portions 113, 123 may be composed of a base layer and a plating layer.
  • both conductive portions 110A and 120A the pillar portions 115 and 125 are recessed from the upper surface of the first dielectric layer 131 because the tip surfaces of the pillar portions 115 and 125 are recessed from the upper surface.
  • the recesses 112a and 122a are formed in the electrode facing portions 112 and 122 formed on the tip surface of the above.
  • recesses 112a and 122a are formed in the electrode facing portions 112 and 122 as in the case of both conductive portions 110A and 120A.
  • the method for manufacturing the terahertz device 10 includes an element mounting process for mounting the terahertz element 20A, the terahertz element 20B, and the terahertz element 20C, respectively.
  • the element mounting process is performed by, for example, flip chip bonding.
  • the element mounting step includes a step of forming bumps 114 and 124 on the conductive portions 110A, 120A, 110B, 120B, 110C and 120C.
  • the steps for forming the bumps 114 and 124 include, for example, a step of forming a resist layer other than the bump forming region for forming the bumps 114 and 124, and a step of laminating a conductive layer constituting the bumps 114 and 124 on the bump forming region. , A step of removing the resist layer, and the like.
  • the resist layer is formed of, for example, a photosensitive resist and is patterned by exposure and development.
  • the manufacturing method of the terahertz apparatus 10 includes a step of removing the unnecessary base layer. You may be prepared. Unwanted underlayers may be removed, for example, by wet etching with a mixed solution of H 2 SO 4 (sulfuric acid) and H 2 O 2 (hydrogen peroxide).
  • the element mounting steps include a step of joining the terahertz element 20A to the conductive portions 110A and 120A using the bumps 114 and 124, and a step of joining the terahertz element 20B to the conductive portion using the bumps 114 and 124. It includes a step of joining to the 110B and 120B and a step of joining the terahertz element 20C to the conductive portions 110C and 120C using the bumps 114 and 124.
  • the terahertz element 20A is flip-chip mounted on both conductive portions 110A and 120A, so that the terahertz element 20A and both conductive portions 110A and 120A are conductive.
  • the terahertz element 20B is flip-mounted on both conductive portions 110B and 120B, the terahertz element 20B and both conductive portions 110B and 120B are conductive. Since the terahertz element 20C is flip-mounted on both conductive portions 110C and 120C, the terahertz element 20C and both conductive portions 110C and 120C are conductive.
  • the method for manufacturing the terahertz device 10 is to form a second dielectric layer 132 that seals each conductive portion 110A, 120A, 110B, 120B, 110C, 120C and each terahertz element 20A to 20C. It has a sealing process.
  • the second dielectric layer 132 is laminated on the first dielectric layer 131.
  • the second dielectric layer 132 is made of the same material as the first dielectric layer 131. That is, the second dielectric layer 132 has an electrical insulating property, and is, for example, a synthetic resin containing an epoxy resin as a main component.
  • the dielectric 50 is composed of a first dielectric layer 131 and a second dielectric layer 132, the lower surface of the first dielectric layer 131 constitutes a dielectric main surface 51, and the upper surface of the second dielectric layer 132 has a dielectric back surface 52.
  • Each terahertz element 20A to 20C and both conductive portions 110A, 120A, 110B, 120B, 110C, 120C are sealed by both dielectric layers 131 and 132.
  • the terahertz element 20B and the first dielectric layer are located below the terahertz elements 20A to 20C (between the terahertz element 20A and the first dielectric layer 131 or both conductive portions 110A and 120A).
  • An underfill containing, for example, an epoxy resin as a main component is filled between 131 or both conductive portions 110B and 120B, and between the terahertz element 20C and the first dielectric layer 131 or both conductive portions 110C and 120C. You may.
  • the interface 133 may be formed between the first dielectric layer 131 and the second dielectric layer 132. However, it is not necessary that both the dielectric layers 131 and 132 are completely integrated to form the interface 133.
  • the method for manufacturing the terahertz device 10 includes a step of removing the support substrate 130 to expose the dielectric main surface 51 of the dielectric 50 and the base end surfaces of the column portions 115 and 125.
  • the step of removing the support substrate 130 uses, for example, a mechanical grinding machine.
  • the method of removing the support substrate 130 is not limited to the configuration using a mechanical grinding machine.
  • the method for manufacturing the terahertz device 10 includes a step of forming both electrodes 101A, 102A, 101B, 102B, 101C, 102C.
  • the step of forming both electrodes 101A, 102A, 101B, 102B, 101C, 102C is performed by, for example, electroless plating.
  • both electrodes 101A, 102A, 101B, 102B, 101C, 102C are formed by laminating each of the Ni layer, the Pd layer, and the Au layer in this order by, for example, electroless plating.
  • the method for forming both electrodes 101A, 102A, 101B, 102B, 101C, 102C is not limited to this, and the Ni layer and the Au layer may be laminated in order, or only the Au layer may be laminated. , Sn may be formed only, or Sn may be formed on the Ni layer.
  • the method for manufacturing the terahertz device 10 includes a step of forming the antenna recess 80A in the individual antenna base 70A, a step of forming the antenna recess 80B in the individual antenna base 70B, and a step of forming the antenna recess 80C in the individual antenna base 70C. ing.
  • the individual antenna bases 70A and 70C have the same shape, a method for forming the individual antenna base 70A and a method for forming the individual antenna base 70B will be described together.
  • the antenna recesses 80A and 80C are used by using the molds DUA and DLA formed corresponding to the antenna surfaces 81A and 81C.
  • the antenna recess 80C is formed.
  • the antenna recess 80B having the antenna surface 81B is formed by using the molds DUB and DLB formed corresponding to the antenna surface 81B.
  • the method for manufacturing the terahertz device 10 includes a step of forming the metal films 134A, 134B, 134C constituting the reflective films 82A, 82B, 82C. This step is performed after each antenna recess 80A to 80C is formed.
  • metal films 134A and 134C are formed on both the base main surface 71 and the antenna surfaces 81A and 81C of the individual antenna bases 70A and 70C. Further, the metal film 134B is formed on both the base main surface 71 and the antenna surface 81B of the individual antenna base 70B.
  • the metal films 134A and 134C formed on the base main surface 71 of the individual antenna bases 70A and 70C and the metal film 134B formed on the base main surface 71 of the individual antenna base 70B are formed.
  • the specific method for removing the metal films 134A to 134C formed on the main surface 71 of each base is arbitrary, but for example, a method for removing by patterning or a method for removing by polishing may be used.
  • the reflective film 82A is formed only on the antenna surface 81A
  • the reflective film 82B is formed only on the antenna surface 81B
  • the reflective film 82C is formed only on the antenna surface 81C.
  • the step of forming the reflective films 82A to 82C is not limited to the above step.
  • the method for manufacturing the terahertz device 10 includes a step of masking the base main surface 71 of the individual antenna bases 70A to 70C and a step of forming the reflective films 82A to 82C on the antenna surfaces 81A to 81C by vapor deposition using an electron beam or the like. And may be configured to include. In this case, the step of removing the reflective films 82A to 82C formed on the main surface 71 of each base becomes unnecessary.
  • the individual antenna bases 70A to 70C are formed, after the individual antenna bases 70A to 70C are formed, the individual antenna bases 70A and the individual antenna bases 70B are assembled, and the individual antenna bases 70B and the individual antenna bases 70C are assembled. It has a process of assembling. Specifically, in the process, the individual antenna base 70A and the individual antenna base 70B are adhered to each other by using the adhesive layer, and the individual antenna base 70B and the individual antenna base 70C are adhered to each other.
  • the method for manufacturing the terahertz device 10 includes a step of assembling the dielectric 50 and the antenna base 70 on which the reflective films 82A, 82B, 82C are formed. In this step, the antenna base 70 and the dielectric 50 are adhered to each other by using the adhesive layer 91. Through the above steps, the terahertz device 10 is manufactured.
  • FIG. 31 (a) schematically shows a terahertz element 20 surrounded by a gas
  • FIG. 31 (b) is a graph showing a change in the refractive index in the case of FIG. 31 (a).
  • FIG. 32 (a) schematically shows a terahertz element 20 surrounded by a gas and a dielectric 50
  • FIG. 32 (b) is a graph showing a change in the refractive index in the case of FIG. 32 (a).
  • the electromagnetic wave propagating toward the terahertz device 10 propagates to the reflective film 82 through the dielectric 50 and the gas space 92, and the reflective film 82 causes the terahertz element 20 (preferably the receiving point P1). It is reflected toward.
  • the terahertz element 20 receives the electromagnetic wave.
  • the device main surface 11 can be said to be an incident surface on which electromagnetic waves are incident, and the inner surface of the reflective film 82 can be said to be a reflective surface that reflects the electromagnetic waves incident from the device main surface 11 toward the terahertz element 20.
  • the device main surface 11 can be said to be an input surface to which electromagnetic waves are input, and the terahertz device 10 can be said to receive electromagnetic waves input from the device main surface 11.
  • the electromagnetic wave is propagated from the reflective film 82 toward the terahertz element 20 without passing through the dielectric 50, the electromagnetic wave is propagated from the reflective film 82 toward the terahertz element 20 via the dielectric 50. It will be explained in comparison with the case.
  • the refractive index is the boundary between the inside and outside of the terahertz element 20, specifically. Changes significantly at the boundary between the terahertz element 20 and the gas. In this case, since the reflection of the electromagnetic wave is likely to occur at the boundary between the inside and the outside of the terahertz element 20, the electromagnetic wave is likely to be confined in the terahertz element 20. As a result, a large number of resonance modes are likely to occur in the terahertz element 20. Therefore, an electromagnetic wave having a frequency other than the target frequency may be generated in the terahertz element 20 and receive the electromagnetic wave.
  • the terahertz element 20 has a dielectric refractive index n2 lower than the element refractive index n1 and higher than the gas refractive index n3.
  • the refractive index gradually decreases as the distance from the terahertz element 20 increases. Therefore, the change in the refractive index at the boundary between the inside and outside of the terahertz element 20, specifically, the boundary between the terahertz element 20 and the dielectric 50 is small.
  • the reflection of electromagnetic waves at the inner and outer boundaries of the terahertz element 20 can be suppressed to some extent, so that a large number of resonance modes are less likely to occur.
  • FIG. 33 schematically shows the cross-sectional structure of the terahertz device 10X of the comparative example
  • FIG. 34 schematically shows the cross-sectional structure of the terahertz device 10 of the present embodiment.
  • 33 and 34 are cross-sectional structures cut at positions where the terahertz element 20 is arranged on a plane along the arrangement direction of the antenna base 70 (70X) and the height direction of the terahertz device 10 (10X).
  • the terahertz device 10X of the comparative example includes an antenna base 70X.
  • the antenna base 70X is configured by combining the individual antenna base 70P, the individual antenna base 70Q, and the individual antenna base 70R in a row.
  • the individual antenna base 70Q is sandwiched between the individual antenna base 70P and the individual antenna base 70R.
  • each of the individual antenna bases 70P, 70Q, and 70R has the same shape, and are provided with a substantially hemispherical antenna recess 80X.
  • the antenna recess 80X is recessed from the base main surface 71X of each of the individual antenna bases 70P, 70Q, and 70R toward the base back surface 72X, and is open in the base main surface 71X. That is, in each of the individual antenna bases 70P, 70Q, and 70R, the open end of the antenna recess 80X is surrounded by the base main surface 71X over the entire circumference thereof. Therefore, each of the individual antenna bases 70P, 70Q, and 70R is formed with a peripheral wall portion 78X including the base main surface 71X over the entire circumference of the opening end of the antenna recess 80X.
  • the peripheral wall portion 78X of the individual antenna base 70P and the peripheral wall portion 78X of the individual antenna base 70Q are interposed between the antenna recess 80X of the individual antenna base 70P and the antenna recess 80X of the individual antenna base 70Q. is doing. Further, between the antenna recess 80X of the individual antenna base 70Q and the antenna recess 80X of the individual antenna base 70R, the peripheral wall portion 78X of the individual antenna base 70Q and the peripheral wall portion 78X of the individual antenna base 70R are interposed.
  • the peripheral wall portion 78X is not provided between the individual antenna base 70A and the individual antenna base 70B, and the peripheral wall portion 78X is not provided between the individual antenna base 70B and the individual antenna base 70C.
  • the peripheral wall portion 78X is not provided. That is, the adjacent antenna recesses 80A and 80B are in contact with each other in the arrangement direction (y direction) of the individual antenna bases 70A and 70B, and the adjacent antenna recesses 80B and 80C are in contact with each other in the arrangement direction (y direction) of the individual antenna bases 70B and 70C. I'm in contact.
  • the element-to-element distance DE1 which is the distance between the receiving point P1 of the terahertz element 20A and the receiving point P1 of the terahertz element 20B of the present embodiment is a comparative example.
  • the distance between the terahertz element 20A and the terahertz element 20B is smaller than DEX1.
  • the inter-element distance DE2 between the receiving point P1 of the terahertz element 20B and the receiving point P1 of the terahertz element 20C of the present embodiment is smaller than the inter-element distance DEX2 between the terahertz element 20B and the terahertz element 20C of the comparative example. That is, in the terahertz device 10 of the present embodiment, the adjacent terahertz elements 20A and 20B can be brought closer to each other and the adjacent terahertz elements 20B and 20C can be brought closer to each other as compared with the terahertz device 10X of the comparative example.
  • the length LAY of the reflective film 82A and the length LBY of the reflective film 82B in the y direction are the reflective films 82A in the x direction, which are different from the y direction, respectively.
  • the length of LAX and the length of the reflective film 82B are shorter than each of the LBX.
  • the length LAY of the reflective film 82A and the length LBY of the reflective film 82B are equal to each of the length LAX of the reflective film 82A and the length LBX of the reflective film 82B, respectively.
  • the inter-element distance DE1 which is the distance between the receiving point P1 of the terahertz element 20A adjacent to each other in one direction (y direction in the present embodiment) and the receiving point P1 of the terahertz element 20B can be reduced. Therefore, the resolution in the detection range for detecting the electromagnetic wave of the terahertz device 10 can be improved.
  • the central angles ⁇ a1 and ⁇ a2 of the portions connecting both ends of the first direction (y direction in the present embodiment) of the arcuate outer peripheral edge of the reflective film 82A are less than 180 °. It is formed in the shape of an arc.
  • the portions of the outer peripheral edge of the reflective film 82B connecting both ends in the first direction are formed in an arc shape having central angles ⁇ b1 and ⁇ b2 of less than 180 °, respectively.
  • the length LAY of the reflective film 82A and the length LBY of the reflective film 82B are each of the reflective film 82A while maintaining the spherical shape formed by the reflective film 82A and the reflective film 82B with a constant curvature. It is possible to form the reflective film 82A and the reflective film 82B having a shorter relationship than each of the length LAX and the length LBY of the reflective film 82B.
  • the length LAY of the reflective film 82A and the length LBY of the reflective film 82B are each maintained in a spherical shape formed by the reflective film 82A and the reflective film 82B with a constant curvature, respectively. It is possible to form the reflective film 82A and the reflective film 82B having a shorter relationship than each of the length LAX and the length LBY of the reflective film 82B.
  • the open end 82Aa of the reflective film 82A and the open end 82Ba of the reflective film 82B which are the boundaries between the reflective film 82A and the reflective film 82B, are each formed linearly.
  • the length LAY of the reflective film 82A and the length LBY of the reflective film 82B are each maintained in a spherical shape formed by the reflective film 82A and the reflective film 82B with a constant curvature, respectively. It is possible to form the reflective film 82A and the reflective film 82B having a shorter relationship than each of the length LAX and the length LBY of the reflective film 82B.
  • the size of the reflective film 82B and the reflective film 82C along the first direction is smaller than the size of the reflective film 82B and the reflective film 82C along the second direction.
  • the length LBY of the reflective film 82B and the length LCY of the reflective film 82C in the y direction which is the arrangement direction of the reflective films 82A to 82C, are the reflective films 82B in the x direction, which are different from the y direction, respectively.
  • the length of LBX and the length of the reflective film 82C are shorter than each of the LCX.
  • the length LBY of the reflective film 82B and the length LCY of the reflective film 82C are equal to each of the length LBX of the reflective film 82B and the length LCX of the reflective film 82C, respectively.
  • the inter-element distance DE2 which is the distance between the receiving point P1 of the terahertz element 20B adjacent to each other in one direction (y direction in the present embodiment) and the receiving point P1 of the terahertz element 20C, can be reduced. Therefore, the resolution in the detection range for detecting the electromagnetic wave of the terahertz device 10 can be improved.
  • the reflective film 82C is formed so that the length LCY of the reflective film 82C is shorter than the length LCX of the reflective film 82C while maintaining the spherical shape formed by the reflective film 82C with a constant curvature. can do.
  • the opening end 82Bb of the reflective film 82B and the opening end 82Ca of the reflective film 82C which are the boundaries between the reflective film 82B and the reflective film 82C, are each formed linearly.
  • the reflective film 82C is formed so that the length LCY of the reflective film 82C is shorter than the length LCX of the reflective film 82C while maintaining the spherical shape formed by the reflective film 82C with a constant curvature. can do.
  • the terahertz device 10 includes a dielectric 50 as a holding member attached to the base main surface 71 of the individual antenna bases 70A to 70C.
  • the dielectric 50 holds each terahertz element 20A to 20C.
  • the dielectric 50 is held by the dielectric 50 which is a common holding member for each terahertz element 20A to 20C, a dielectric which is an individual holding member is provided for each terahertz element 20A to 20C.
  • the man-hours in the assembling process of the dielectric 50 and the antenna base 70 can be reduced.
  • the terahertz device 10 is composed of a plurality of terahertz elements 20A to 20C for receiving electromagnetic waves and a dielectric material, and a dielectric 50 surrounding each terahertz element 20A to 20C and a gas space 92A to which a gas exists. It includes 92C and reflective films 82A to 82C constituting the first reflecting surface to the third reflecting surface.
  • the reflective film 82A has a portion facing the terahertz element 20A via the dielectric 50 and the gas space 92A, and directs the electromagnetic wave propagating through the dielectric 50 and the gas space 92A toward the receiving point P1 of the terahertz element 20A. It is a reflection.
  • the reflective film 82B has a portion facing the terahertz element 20B via the dielectric 50 and the gas space 92B, and directs the electromagnetic wave propagating through the dielectric 50 and the gas space 92B toward the receiving point P1 of the terahertz element 20B. It is a reflection.
  • the reflective film 82C has a portion facing the terahertz element 20C via the dielectric 50 and the gas space 92C, and directs the electromagnetic wave propagating through the dielectric 50 and the gas space 92C toward the receiving point P1 of the terahertz element 20C. It is a reflection.
  • each terahertz element 20A to 20C is defined as the element refractive index n1
  • the refractive index of the gas in the gas spaces 92A to 92C is defined as the gas refractive index n3
  • the refractive index of the dielectric 50 is defined as the dielectric refractive index n2.
  • the terahertz elements 20A to 20C are surrounded by the dielectric 50 having a refractive index between the element refractive index n1 and the gas refractive index n3, the refraction at the inner and outer boundaries of the terahertz elements 20A to 20C.
  • the change in rate can be reduced.
  • the dielectric 50 has a dielectric main surface 51 facing the reflective films 82A to 82C, and a dielectric back surface 52 on the opposite side of the dielectric main surface 51.
  • the terahertz device 10 includes an individual antenna base 70A having an antenna surface 81A curved in a direction away from the terahertz element 20A, and an individual antenna base 70B having an antenna surface 81B curved in a direction away from the terahertz element 20B.
  • the individual antenna base 70C has an antenna surface 81C curved so as to be recessed in a direction away from the terahertz element 20C.
  • the reflective films 82A to 82C are films formed on the antenna surfaces 81A to 81C, and the gas spaces 92A to 92C are partitioned by the dielectric main surface 51 and the antenna surfaces 81A to 81C.
  • the gas spaces 92A to 92C are partitioned by the dielectric main surfaces 51 and the antenna surfaces 81A to 81C, the electromagnetic waves emitted from the dielectric main surfaces 51 pass through the gas spaces 92A to 92C and are reflective films. It reaches 82A-82C. Thereby, the effect of (1-10) can be obtained.
  • the dielectric 50 and the antenna base 70 are separate bodies, and the terahertz device 10 includes an adhesive layer 91 as a fixing portion for fixing the dielectric 50 and the antenna base 70. According to this configuration, since the positional deviation between the dielectric 50 and the antenna base 70 can be suppressed by the adhesive layer 91, the positional deviation between the terahertz element 20A and the reflective film 82A, the positional deviation between the terahertz element 20B and the reflective film 82B, Further, the positional deviation between the terahertz element 20C and the reflective film 82C can be suppressed.
  • the reflective film 82A is formed on the antenna surface 81A, but is not formed on the base main surface 71 of the individual antenna base 70A.
  • the reflective film 82B is formed on the antenna surface 81B, but is not formed on the base main surface 71 of the individual antenna base 70B.
  • the reflective film 82C is formed on the antenna surface 81C, but is not formed on the base main surface 71 of the individual antenna base 70C.
  • Reflective films 82A to 82C each have a parabolic antenna shape. According to this configuration, the electromagnetic wave can be suitably reflected toward the receiving point P1 of the terahertz elements 20A to 20C.
  • the reflective films 82A to 82C are electrically in a floating state, respectively. According to this configuration, inconveniences such as absorption of electromagnetic waves by the reflective films 82A to 82C can be suppressed.
  • the individual antenna bases 70A to 70C are each formed of an insulating material. According to this configuration, it is possible to prevent the reflective films 82A to 82C from being electrically connected to some member via the individual antenna bases 70A to 70C.
  • the terahertz device 10 includes conductive portions 110A, 120A, 110B, 120B, 110C, 120C provided in the dielectric 50 and electrically connected to each terahertz element 20. According to this configuration, the conductive portions 110A, 120A, 110B, 120B, 110C, 120C and the reflective films 82A to 82C outside the dielectric 50 are less likely to come into contact with each other. As a result, the electrical connection between the conductive portions 110A, 120A, 110B, 120B, 110C, 120C and the reflective films 82A to 82C can be suppressed.
  • the dielectric 50 has protrusions 61 and 62 protruding laterally from the antenna base 70 when viewed from the z direction. Electrodes 101A, 102A, 101B electrically connected to conductive portions 110A, 120A, 110B, 120B, 110C, 120C on the protruding surfaces 51a, 51b, which are portions of the dielectric main surface 51 corresponding to the protruding portions 61, 62. , 102B, 101C, 102C are formed.
  • the terahertz elements 20A to 20C and the external electrical connection are realized by using the electrodes 101A, 102A, 101B, 102B, 101C, 102C and the conductive portions 110A, 120A, 110B, 120B, 110C, 120C. can.
  • the terahertz elements 20A to 20C each include pads 33a and 34a formed on the element main surface 21.
  • the conductive portions 110A, 120A, 110B, 120B, 110C, 120C have protruding portions 61, so as to overlap both the terahertz elements 20A to 20C and the electrodes 101A, 102A, 101B, 102B, 101C, 102C when viewed from the z direction. It extends in the x direction, which is the protruding direction of 62, and includes element facing portions 111, 121 facing the pads 33a, 34a in the z direction.
  • the terahertz elements 20A to 20C are connected to the element facing portions 111 via bumps 114 and 124 provided between the pads 33a and 34a and the element facing portions 111 and 121 of the conductive portions 110A, 120A, 110B, 120B, 110C and 120C. , 121 is mounted on a flip chip. Thereby, the terahertz elements 20A to 20C and both electrodes 101A, 102A, 101B, 102B, 101C, 102C can be electrically connected.
  • the conductive portions 110A and 120A connect the electrode facing portions 112 and 122 facing the electrodes 101A and 102A, and the element facing portions 111 and 121 and the electrode facing portions 112 and 122 in the x direction.
  • the connecting portions 113 and 123 extending to the above are provided. Assuming that the y direction of the conductive portions 110A and 120A is the width direction, at least a part of the connecting portions 113 and 123 is formed to be narrower than the element facing portions 111 and 121. According to this configuration, since part or all of the connecting portions 113 and 123 overlap with the reflective film 82A, there is a concern that the connecting portions 113 and 123 may block electromagnetic waves (hereinafter referred to as blocking).
  • the blocked area can be reduced. This can reduce blocking.
  • the contact area can be increased.
  • the pads 33a and 34a using the bumps 114 and 124 can be suitably electrically connected to the element facing portions 111 and 121.
  • the conductive portions 110B, 120B, 110C, 120C also include electrode facing portions 112, 122 and connection portions 113, 123, similarly to the conductive portions 110A, 120A.
  • blocking can be reduced as in the conductive portions 110A and 120A, and the pads 33a and 34a using the bumps 114 and 124 can be suitably electrically connected to the element facing portions 111 and 121.
  • the electrode facing portions 112 and 122 of the conductive portions 110A and 120A are formed wider than the connecting portions 113 and 123. According to this configuration, since the contact area can be increased, the electrical connection between the electrode facing portions 112 and 122 and the electrodes 101A and 102A can be suitably performed. Further, since the electrode facing portions 112 and 122 of the conductive portions 110B, 120B, 110C and 120C are also formed wider than the connecting portions 113 and 123, the above effect can be obtained.
  • the first connection portion 113 connects the first connection main body portion 113a formed narrower than the first element facing portion 111, the first connection main body portion 113a, and the first element facing portion 111. It has a tapered portion 113b on the first element side. The taper portion 113b on the first element side is gradually formed wider toward the first element facing portion 111 from the first connection main body portion 113a. According to this configuration, the reflected wave generated in the first conductive portions 110A to 110C can be reduced. The same applies to the second connection portion 123.
  • the first connection main body portion 113a is formed to be narrower than the first electrode facing portion 112.
  • the first connection portion 113 includes a first electrode-side tapered portion 113c that connects the first connection main body portion 113a and the first electrode facing portion 112, and the first electrode-side tapered portion 113c is formed from the first connection main body portion 113a. It is gradually formed wider toward the one electrode facing portion 112. According to this configuration, the reflected wave generated in the first conductive portions 110A to 110C can be reduced. The same applies to the second connection portion 123.
  • the first pad 33a and the first element facing portion 111 extend in the x direction, and a plurality of first bumps 114 are arranged in the x direction.
  • the second pad 34a and the second element facing portion 121 extend in the x direction, and a plurality of second bumps 124 are arranged in the x direction.
  • the terahertz device 10 of the second embodiment will be described with reference to FIGS. 35 to 45.
  • the terahertz device 10 of the present embodiment is mainly different from the terahertz device 10 of the first embodiment in the configuration of the antenna base 70.
  • components common to the terahertz device 10 of the first embodiment may be designated by the same reference numerals, and the description thereof may be omitted.
  • the configuration of the antenna base 70 is different from that of the antenna base 70 of the first embodiment, a plurality of individual antenna bases are sequentially designated as 70A, 70B, 70C ... For identification.
  • the terahertz device 10 includes a plurality of (eight in this embodiment) terahertz elements 20, a dielectric 50 as an example of a holding member, an antenna base 70, and a reflective film 82. , Gas space 92, and so on.
  • the plurality of terahertz elements 20 include a terahertz element 20A, a terahertz element 20B, a terahertz element 20C, a terahertz element 20D, a terahertz element 20E, a terahertz element 20F, a terahertz element 20G, and a terahertz element 20H.
  • Each of the terahertz elements 20A to 20H has the same configuration as each other, and has the same configuration as the terahertz element 20 of the first embodiment.
  • the dielectric 50 surrounds each of the plurality of terahertz elements 20. As shown in FIGS. 41 and 42, the dielectric 50 surrounds the entire terahertz element 20E and covers the element main surface 21, the element back surface 22, and the element side surfaces 23 to 26 of the terahertz element 20E.
  • the element main surface 21, the element back surface 22, and the element side surfaces 23 to 26 of the terahertz element 20E are in contact with the dielectric 50. That is, the dielectric 50 of the present embodiment surrounds the terahertz element 20E so that a gap does not occur between the dielectric 50 and the terahertz element 20E, as in the first embodiment. In other words, the dielectric 50 seals the terahertz element 20E.
  • the dielectric 50 surrounds the entire terahertz elements 20A to 20D and 20F to 20H, like the terahertz element 20E, and each of the terahertz elements 20A to 20D and 20F to 20H. It covers the element main surface 21, the element back surface 22, and the element side surfaces 23 to 26. That is, the dielectric 50 seals each of the terahertz elements 20A to 20D and 20F to 20H.
  • the dielectric 50 is formed in a plate shape having, for example, the z direction as the thickness direction.
  • the dielectric 50 has a rectangular plate shape with the y direction as the longitudinal direction and the x direction as the lateral direction.
  • the dielectric 50 is configured to cover the entire antenna base 70 from above.
  • the dielectric 50 has a configuration in which it protrudes from both sides of the antenna base 70 in the x direction and protrudes from both sides of the antenna base 70 in the y direction.
  • the dielectric 50 has a dielectric main surface 51 and a dielectric back surface 52 as surfaces intersecting in the z direction.
  • the dielectric main surface 51 and the dielectric back surface 52 are orthogonal to each other, for example, in the z direction.
  • the dielectric main surface 51 faces downward.
  • the dielectric back surface 52 is a surface opposite to the dielectric main surface 51 and faces upward. In this embodiment, the dielectric back surface 52 constitutes the device main surface 11.
  • the dielectric 50 includes a first dielectric side surface 53 and a second dielectric side surface 54 which are end faces in the x direction, and a third dielectric side surface 55 and a fourth dielectric side surface 56 which are end faces in the y direction. have.
  • Each dielectric side surface 53 to 56 constitutes a part of the device side surface 13 to 16.
  • the first dielectric side surface 53 and the second dielectric side surface 54 are orthogonal to the third dielectric side surface 55 and the fourth dielectric side surface 56.
  • the terahertz element 20E is provided in the dielectric 50 with the element main surface 21 facing the dielectric main surface 51, as in the first embodiment.
  • the terahertz element 20E is arranged between the dielectric main surface 51 and the dielectric back surface 52.
  • the dielectric thickness D2 which is the length of the dielectric 50 in the z direction, is set so as to satisfy the resonance condition of the electromagnetic wave received by the terahertz element 20E.
  • the terahertz elements 20A to 20D and 20F to 20H are also provided in the dielectric 50 in the same manner as the terahertz element 20E.
  • the terahertz element 20A, the terahertz element 20B, the terahertz element 20C, and the terahertz element 20D are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • the terahertz element 20E, the terahertz element 20F, the terahertz element 20G, and the terahertz element 20H are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • the pitch (distance between elements) of each terahertz element 20E to 20H in the y direction is equal to the pitch (distance between elements) of each terahertz element 20A to 20D in the y direction.
  • the difference between the average value of the pitches of the terahertz elements 20E to 20H in the y direction and the average value of the pitches of the terahertz elements 20A to 20D in the y direction is the average of the pitches of the terahertz elements 20A to 20D in the y direction. If it is within 5% of the value, it can be said that the pitch of each terahertz element 20E to 20H in the y direction is equal to the pitch of each terahertz element 20A to 20D in the y direction.
  • the pitch (distance between elements) in the y direction is the distance connecting the receiving points P1 of the terahertz elements 20 adjacent to each other in the y direction.
  • the terahertz elements 20A to 20D and the terahertz elements 20E to 20H are arranged apart from each other in the x direction. In the present embodiment, the terahertz elements 20A to 20D are arranged closer to the first dielectric side surface 53 than the terahertz elements 20E to 20H.
  • the terahertz elements 20A to 20D and the terahertz elements 20E to 20H are arranged apart from each other in the x direction in a state of being displaced in the y direction.
  • the terahertz elements 20A to 20D and the terahertz elements 20E to 20H are alternately arranged in the y direction when viewed from above.
  • the terahertz elements 20A to 20D are arranged closer to the third dielectric side surface 55 with respect to the terahertz elements 20E to 20H. More specifically, the terahertz element 20A is arranged closer to the third dielectric side surface 55 than the terahertz element 20E in the y direction.
  • the terahertz element 20B is arranged between the terahertz element 20E and the terahertz element 20F in the y direction.
  • the terahertz element 20C is arranged between the terahertz element 20F and the terahertz element 20G in the y direction.
  • the terahertz element 20D is arranged between the terahertz element 20G and the terahertz element 20H in the y direction.
  • the shape of the antenna base 70 viewed from above is a substantially rectangular shape in which the y direction is the long side direction and the x direction is the short side direction. More specifically, the first step portion 79A and the second step portion 79B are individually provided at both ends of the antenna base 70 in the y direction.
  • the first step portion 79A is provided on the third base side surface 75T of the antenna base 70, and the second step portion 79B is provided on the fourth base side surface 76T of the antenna base 70.
  • the first step portion 79A is provided so that the portion of the third base side surface 75T closer to the first base side surface 73T is closer to the first dielectric side surface 53 of the dielectric 50 than the portion closer to the second base side surface 74T.
  • the second step portion 79B is provided so that the portion of the fourth base side surface 76T closer to the first base side surface 73T is closer to the first dielectric side surface 53 than the portion closer to the second base side surface 74T. Therefore, the first base side surface 73T of the antenna base 70 is formed so as to be displaced toward the first dielectric side surface 53 in the y direction with respect to the second base side surface 74T.
  • the antenna base 70 of the present embodiment is formed of, for example, an insulating material like the antenna base 70 of the first embodiment.
  • the antenna base 70 is made of a dielectric, and is made of a synthetic resin such as an epoxy resin.
  • the epoxy resin is, for example, a glass epoxy resin.
  • the material of the antenna base 70 is not limited to this, and may be arbitrary, for example, Si, Teflon, glass, or the like.
  • the color of the antenna base 70 is arbitrary, such as black.
  • the antenna base 70 of this embodiment is composed of a combination of a plurality of (8 pieces in this embodiment) individual antenna bases 70A to 70H. More specifically, the antenna base 70 has a row of individual antenna bases 70A to 70D and a row of individual antenna bases 70E to 70H.
  • the individual antenna bases 70A to 70D constitute the first base side surface 73T, and are arranged along the y direction.
  • the individual antenna base 70A constitutes the third base side surface 75T
  • the individual antenna base 70D constitutes the fourth base side surface 76T.
  • the individual antenna base 70B is adjacent to the individual antenna base 70A and the individual antenna base 70C. That is, the individual antenna base 70B is sandwiched between the individual antenna base 70A and the individual antenna base 70C.
  • the individual antenna base 70C is adjacent to the individual antenna base 70B and the individual antenna base 70D. That is, the individual antenna base 70C is sandwiched between the individual antenna base 70B and the individual antenna base 70D.
  • the individual antenna bases 70E to 70H constitute the second base side surface 74T, and are arranged along the y direction.
  • the individual antenna base 70E constitutes the third base side surface 75T. That is, the third base side surface 75T is composed of the individual antenna base 70A and the individual antenna base 70E.
  • the individual antenna base 70H constitutes the fourth base side surface 76T. That is, the fourth base side surface 76T is composed of the individual antenna base 70D and the individual antenna base 70H.
  • the individual antenna base 70F is adjacent to the individual antenna base 70E and the individual antenna base 70G. That is, the individual antenna base 70F is sandwiched between the individual antenna base 70E and the individual antenna base 70G.
  • the individual antenna base 70G is adjacent to the individual antenna base 70F and the individual antenna base 70H. That is, the individual antenna base 70G is sandwiched between the individual antenna base 70F and the individual antenna base 70H.
  • the individual antenna bases 70A to 70D and the individual antenna bases 70E to 70H are arranged so as to be offset in the y direction. More specifically, when viewed from the x direction, the individual antenna base 70A overlaps both the individual antenna bases 70E and 70F, the individual antenna base 70B overlaps both the individual antenna bases 70F and 70G, and the individual antenna base 70C is the individual antenna. It is arranged so as to overlap with both the bases 70G and 70H. Specifically, in the y direction, the individual antenna base 70A is arranged closer to the third base side surface 75T with respect to the individual antenna base 70E and closer to the fourth base side surface 76T with respect to the individual antenna base 70F. The individual antenna base 70A is in contact with the individual antenna base 70E.
  • the individual antenna base 70B is arranged closer to the third base side surface 75T with respect to the individual antenna base 70F and closer to the fourth base side surface 76T with respect to the individual antenna base 70G.
  • the individual antenna base 70B is in contact with both the individual antenna bases 70E and 70F.
  • the individual antenna base 70C is arranged closer to the third base side surface 75T with respect to the individual antenna base 70G and closer to the fourth base side surface 76T with respect to the individual antenna base 70H.
  • the individual antenna base 70C is in contact with both the individual antenna bases 70F and 70G.
  • the individual antenna base 70H is arranged closer to the side surface 75T of the third base with respect to the individual antenna base 70D.
  • the individual antenna base 70D is in contact with both the individual antenna bases 70G and 70H.
  • the individual antenna base 70A is arranged so as to face the terahertz element 20A in the thickness direction (z direction) of the terahertz element 20A.
  • the individual antenna base 70B is arranged so as to face the terahertz element 20B in the thickness direction (z direction) of the terahertz element 20B.
  • the individual antenna base 70C is arranged so as to face the terahertz element 20C in the thickness direction (z direction) of the terahertz element 20C.
  • the individual antenna base 70D is arranged so as to face the terahertz element 20D in the thickness direction (z direction) of the terahertz element 20D.
  • the individual antenna base 70E is arranged so as to face the terahertz element 20E in the thickness direction (z direction) of the terahertz element 20E.
  • the individual antenna base 70F is arranged so as to face the terahertz element 20F in the thickness direction (z direction) of the terahertz element 20F.
  • the individual antenna base 70G is arranged so as to face the terahertz element 20G in the thickness direction (z direction) of the terahertz element 20G.
  • the individual antenna base 70H is arranged so as to face the terahertz element 20H in the thickness direction (z direction) of the terahertz element 20H.
  • the individual antenna bases 70A to 70H are arranged below the terahertz elements 20A to 20H, respectively.
  • the antenna base 70 has a plurality of antenna recesses 80 recessed from the base main surface 71T toward the base back surface 72T, as in the first embodiment.
  • the individual antenna base 70A has an antenna recess 80A
  • the individual antenna base 70B has an antenna recess 80B
  • the individual antenna has an individual antenna.
  • the base 70C has an antenna recess 80C
  • the individual antenna base 70D has an antenna recess 80D
  • the individual antenna base 70E has an antenna recess 80E
  • the individual antenna base 70F has an antenna recess 80F.
  • the individual antenna base 70G has an antenna recess 80G
  • the individual antenna base 70H has an antenna recess 80H. That is, the antenna base 70 has one antenna recess 80 for each individual antenna base.
  • the antenna recess 80 has an antenna surface 81 facing the terahertz element 20 via the dielectric 50 and the gas space 92, as in the first embodiment.
  • the antenna recess 80A has an antenna surface 81A
  • the antenna recess 80B has an antenna surface 81B
  • the antenna recess 80C has an antenna surface 81B.
  • the antenna surface 81C is provided
  • the antenna recess 80D has an antenna surface 81D.
  • the antenna recess 80E has an antenna surface 81E
  • the antenna recess 80F has an antenna surface 81F
  • the antenna recess 80G has an antenna surface 81G
  • the antenna recess 80H has an antenna surface 81H. is doing.
  • These antenna surfaces 81A to 81H have the same shape as the openings of the corresponding antenna recesses 80A to 80H when viewed from above.
  • the reflective film 82 is formed on the antenna surface 81 as in the first embodiment.
  • the reflective film 82 is formed over the entire antenna surface 81.
  • the reflective film 82 is not formed on the base main surface 71T. That is, the reflective film 82 has substantially the same shape as the antenna surface 81.
  • the reflective film 82 is made of the same material as the reflective film 82 of the first embodiment.
  • the reflective film 82 is formed on the antenna surface 81A, the reflective film 82B formed on the antenna surface 81B, the reflective film 82C formed on the antenna surface 81C, and the antenna surface 81D.
  • the reflective films 82A to 82H are a single component integrally formed.
  • the reflective film 82A has substantially the same shape as the antenna surface 81A
  • the reflective film 82B has substantially the same shape as the antenna surface 81B
  • the reflective film 82C has substantially the same shape as the antenna surface 81C.
  • the 82D has substantially the same shape as the antenna surface 81D
  • the reflective film 82E has substantially the same shape as the antenna surface 81E
  • the reflective film 82F has substantially the same shape as the antenna surface 81F
  • the reflective film 82G has a substantially same shape. It has substantially the same shape as the antenna surface 81G
  • the reflective film 82H has substantially the same shape as the antenna surface 81H.
  • the reflective films 82A to 82H are rotating parabolic mirrors, respectively, and are curved in a mortar shape.
  • Each of the reflective films 82A to 82H has a circular shape with a part missing when viewed from above.
  • Each of the reflective films 82A to 82H is curved so as to be convex toward the back surface 12 of the device.
  • the reflective film 82 is open in one direction (upward in this embodiment).
  • the reflective film 82 and the dielectric 50 face each other in the z direction.
  • the reflective film 82 is provided at a position facing the dielectric 50.
  • the electromagnetic wave reflected by the reflective film 82 is output toward the receiving point P1.
  • the electromagnetic wave reflected by the reflective film 82A is output toward the receiving point P1 of the terahertz element 20A.
  • the electromagnetic wave reflected by the reflective film 82B is output toward the receiving point P1 of the terahertz element 20B.
  • the electromagnetic wave reflected by the reflective film 82C is output toward the receiving point P1 of the terahertz element 20C.
  • the electromagnetic wave reflected by the reflective film 82D is output toward the receiving point P1 of the terahertz element 20D.
  • the electromagnetic wave reflected by the reflective film 82E is output toward the receiving point P1 of the terahertz element 20E.
  • the electromagnetic wave reflected by the reflective film 82F is output toward the receiving point P1 of the terahertz element 20F.
  • the electromagnetic wave reflected by the reflective film 82G is output toward the receiving point P1 of the terahertz element 20G.
  • the electromagnetic wave reflected by the reflective film 82H is output toward the receiving point P1 of the terahertz element 20H.
  • the arrangement relationship between the reflective film 82 and the terahertz element 20 is the same as in the first embodiment. Further, the size relationship between the reflective film 82 and the terahertz element 20 is the same as in the first embodiment. That is, when viewed from above, the reflective films 82A to 82H are formed larger than the terahertz elements 20A to 20H, respectively.
  • the antenna base 70 and the dielectric 50 are fixed via the adhesive layer 91 as in the first embodiment.
  • the adhesive layer 91 is configured so as not to protrude inward from the reflective film 82 (in other words, on the terahertz element 20 side).
  • the individual antenna base 70E has a base main surface 71 and a base back surface 72 as surfaces intersecting in the z direction.
  • the base main surface 71 and the base back surface 72 are planes that intersect with each other in the z direction, and are orthogonal to the z direction in the present embodiment.
  • the shapes of the base main surface 71 and the base back surface 72 when viewed from the z direction are pentagonal, respectively.
  • the base main surface 71 and the base back surface 72 have, for example, the same shape. However, the shape is not limited to this, and the base main surface 71 and the base back surface 72 may have different shapes.
  • the individual antenna base 70E has a first base side surface 73, a second base side surface 74, a third base side surface 75, and a fourth base side surface 76 as base side surfaces.
  • These base side surfaces 73 to 76 are surfaces facing sideways in the terahertz device 10 (antenna base 70).
  • Each of the base side surfaces 73 to 76 is a surface in a direction orthogonal to the facing direction between the base main surface 71 and the base back surface 72.
  • the base side surfaces 73 to 76 connect the base main surface 71 and the base back surface 72.
  • the third base side surface 75 and the fourth base side surface 76 are both end faces in the y direction of the individual antenna base 70E, respectively.
  • the third base side surface 75 constitutes a part of the third base side surface 75T of the antenna base 70. Seen from the z direction, the third base side surface 75 and the fourth base side surface 76 extend along the x direction, respectively.
  • the first base side surface 73 and the second base side surface 74 are both end faces in the x direction of the individual antenna base 70E, respectively.
  • the first base side surface 73 is a surface of the individual antenna base 70E near the first base side surface 73T (see FIG. 37) of the antenna base 70, and intersects both the x direction and the y direction when viewed from the z direction. It extends in the direction.
  • the first base side surface 73 is formed in a V shape when viewed from above.
  • the first base side surface 73 is a base side surface portion 73a which is a portion of the first base side surface 73 closer to the third base side surface 75, and a base side surface portion which is a portion of the first base side surface 73 closer to the fourth base side surface 76. 73b and.
  • the base side surface portion 73a is a surface that inclines toward the third base side surface 75 toward the second base side surface 74.
  • the base side surface portion 73b is a surface that inclines toward the fourth base side surface 76 toward the second base side surface 74.
  • the second base side surface 74 constitutes a part of the second base side surface 74T of the antenna base 70. Seen from the z direction, the second base side surface 74 extends along the y direction.
  • the antenna surface 81E of the antenna recess 80E is recessed from the base main surface 71 of the individual antenna base 70E toward the base back surface 72. In the present embodiment, the antenna surface 81E is curved so as to be convex toward the back surface 72 of the base in a cross-sectional view in which the individual antenna base 70E is cut in a plane along the x direction and the z direction.
  • the antenna surface 81E is open on the base main surface 71. That is, the antenna surface 81E is open upward.
  • the opening of the antenna surface 81E is a circular shape with a part missing when viewed from above.
  • the opening of the antenna surface 81E includes an opening end 81Ea which is an end portion of the opening portion of the antenna surface 81E on the base side surface portion 73a side and an opening end 81Eb which is an end portion of the base side surface portion 73b side.
  • Is missing at the open end 81Ec which is the end on the side surface 76 side of the fourth base.
  • Each of these open ends 81Ea to 81Ec is formed in a straight line when viewed from above.
  • the open end 81Ea of the antenna surface 81E is formed at a position overlapping the base side surface portion 73a
  • the open end 81Eb is formed at a position overlapping the base side surface portion 73b
  • the open end 81Ec is the fourth base. It is formed at a position overlapping the side surface 76.
  • the reflective film 82E is formed on the antenna surface 81E.
  • the reflective film 82E is formed over the entire antenna surface 81E.
  • the reflective film 82E is not formed on the base main surface 71 of the individual antenna base 70E.
  • the opening of the reflective film 82E has the same shape as the opening of the antenna surface 81E. That is, when viewed from above, the opening of the reflective film 82E has an opening end 82Ea at a position overlapping with the opening end 81Ea of the antenna surface 81E, an opening end 82Eb at a position overlapping with the opening end 81Eb of the antenna surface 81E, and an antenna surface 81E. It has an opening end 82Ec at a position overlapping with the opening end 81Ec. When viewed from above, the opening ends 82Ea to 82Ec are each formed in a straight line.
  • the reflective film 82E When viewed from above, the reflective film 82E is formed so that its center point P2 is located at a position different from the center of the individual antenna base 70E in the x-direction and the y-direction. In the present embodiment, the reflective film 82E is formed so that the center point P2 thereof is closer to the side surface 73 of the first base in the x direction than the center of the individual antenna base 70E in the x direction when viewed from above. When viewed from above, the reflective film 82E is formed so that its center point P2 is closer to the fourth base side surface 76 than the center of the individual antenna base 70E in the y direction in the y direction.
  • the center point P2 of the reflective film 82E and the center point of the antenna surface 81E coincide with each other, and the shape of the reflective film 82E and the shape of the antenna surface 81E are substantially the same.
  • the antenna surface 81E is formed so that the center point of the antenna surface 81E is different from the center of the individual antenna base 70E in the x-direction and the y-direction.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82E that connects both end edges in the first direction which is the arrangement direction of the reflective film 82E and the reflective film 82F, has an arc-shaped central angle of less than 180 °. It is formed.
  • the portion of the outer peripheral edge of the arcuate shape of the reflective film 82E connecting both end edges in the first direction (y direction in the present embodiment) when viewed from above is a circle having a central angle ⁇ e1 of less than 180 °. It is formed in an arc shape.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82E that connects both end edges in the third direction which is the arrangement direction of the reflective film 82E and the reflective film 82A, has an arc-shaped central angle of less than 180 °. It is formed.
  • the third direction is a direction different from both the x direction and the y direction when viewed from the z direction.
  • the third direction is a direction that intersects both the x-direction and the y-direction when viewed from the z-direction.
  • the third direction is a direction obliquely from the base side surface 75T toward the base side surface 76T as the antenna base 70 is directed from the base side surface 73T to the base side surface 74T.
  • both ends of the arcuate outer peripheral edge of the reflective film 82E when viewed from above are connected in the third direction (in the present embodiment, the direction orthogonal to the direction in which the base side surface portion 73a extends when viewed from above).
  • the portion is formed in an arc shape having a central angle ⁇ e2 of less than 180 °.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82E that connects both end edges in the fourth direction which is the arrangement direction of the reflective film 82E and the reflective film 82B, has an arc-shaped central angle of less than 180 °. It is formed.
  • the fourth direction is a direction different from the x direction, the y direction, and the third direction when viewed from the z direction.
  • the fourth direction is a direction that intersects each of the x direction, the y direction, and the third direction when viewed from the z direction.
  • the fourth direction is a direction obliquely from the base side surface 76T toward the base side surface 75T as the antenna base 70 is directed from the base side surface 73T to the base side surface 74T.
  • both ends of the arcuate outer peripheral edge of the reflective film 82E are connected in the fourth direction (in the present embodiment, the direction orthogonal to the direction in which the base side surface portion 73b extends when viewed from above).
  • the portion is formed in an arc shape having a central angle ⁇ e3 of less than 180 °.
  • the reflective film 82E and the antenna surface 81E have substantially the same shape when viewed from above, in the arrangement direction of the antenna surface 81E and the antenna surface 81F among the arcuate outer peripheral edges of the antenna surface 81E, similar to the reflective film 82E.
  • the portion connecting both end edges in a certain first direction is formed in an arc shape having a central angle of less than 180 °.
  • Both end edges of the arcuate outer peripheral edge of the antenna surface 81E in the third direction (in this embodiment, the direction orthogonal to the direction in which the base side surface portion 73a extends when viewed from above), which is the arrangement direction of the antenna surface 81E and the antenna surface 81A.
  • the portion connecting the above is formed in an arc shape having a central angle of less than 180 °. Both end edges of the arcuate outer peripheral edge of the antenna surface 81E in the fourth direction (in this embodiment, the direction orthogonal to the direction in which the base side surface portion 73b extends when viewed from above), which is the arrangement direction of the antenna surface 81E and the antenna surface 81B.
  • the portion connecting the above is formed in an arc shape having a central angle of less than 180 °.
  • the length LR1 of the perpendicular line passing through the center point P2 of the reflective film 82E among the perpendicular lines to the opening end 82Ea of the reflective film 82E is smaller than the radius RE of the reflective film 82E.
  • the length LR2 of the perpendicular line passing through the center point P2 of the reflective film 82E among the perpendicular lines to the opening end 82Eb of the reflective film 82E is smaller than the radius RE of the reflective film 82E.
  • the length LR3 of the perpendicular line passing through the center point P2 of the reflective film 82E among the perpendicular lines with respect to the opening end 82Ec of the reflective film 82E is smaller than the radius RE of the reflective film 82E.
  • the perpendicular line passing through the center point P2 of the reflective film 82E is a straight line extending along the y direction.
  • the length LR1 can be said to be a length along the third direction
  • the length LR2 can be said to be a length along the fourth direction.
  • the length (LR1 + RE) of the reflective film 82E in the third direction is shorter than the diameter of the reflective film 82E
  • the length (LR2 + RE) of the reflective film 82E in the fourth direction is shorter than the diameter of the reflective film 82E
  • the length (LR3 + RE) of the reflective film 82E in the first direction is shorter than the diameter of the reflective film 82E.
  • the size of the reflective film 82E along the first direction which is the direction in which the reflective films 82E to 82H (see FIG. 37) are arranged when viewed from above, is along the second direction different from the first direction. It can be said that it is smaller than the size of the reflective film 82E.
  • the second direction is a direction orthogonal to the first direction (x direction in the present embodiment) when viewed from above.
  • the size of the reflective film 82E along the third direction which is the direction in which the reflective films 82E and 82A are arranged, is smaller than the size of the reflective film 82E along the second direction.
  • the size of the reflective film 82E along the fourth direction which is the direction in which the reflective films 82E and 82B are arranged, is smaller than the size of the reflective film 82E along the second direction.
  • the reflective film 82E and the antenna surface 81E have substantially the same shape when viewed from above, the length of the perpendicular line passing through the center point of the antenna surface 81E and the antenna surface among the perpendicular lines of the open ends 81Ea to 81Ec of the antenna surface 81E.
  • the relationship with the radius of 81E is the same as the relationship between the lengths LR1 to LR3 of the reflective film 82E and the radius RE of the reflective film 82E.
  • a portion connecting both ends of the reflective film 82E in the y direction in a cross-sectional view in which the individual antenna base 70E is cut in a plane along the y direction and the z direction through the center point P2 of the reflective film 82E. Is formed in an arc shape having a central angle of less than 180 °.
  • both end edges of the reflective film 82E in the third direction are shown in a cross-sectional view in which the individual antenna base 70E is cut in a plane along the third direction and the z direction through the center point P2 of the reflective film 82E.
  • the connected portion is formed in an arc shape having a central angle of less than 180 °.
  • both end edges of the reflective film 82E in the fourth direction are shown.
  • the connected portion is formed in an arc shape having a central angle of less than 180 °.
  • both ends of the antenna surface 81E in the third direction are connected in a cross-sectional view in which the individual antenna base 70E is cut in a plane along the third direction and the z direction through the center point of the antenna surface 81E.
  • the antennae are formed in an arc shape having a central angle of less than 180 °.
  • both ends of the antenna surface 81E in the fourth direction are connected in a cross-sectional view in which the individual antenna base 70E is cut in a plane along the fourth direction and the z direction through the center point of the antenna surface 81E.
  • the antennae are formed in an arc shape having a central angle of less than 180 °.
  • the individual antenna base 70E has a peripheral wall portion 78E that surrounds a portion of the opening of the antenna recess 80E other than the portion where a part of the opening is missing.
  • the peripheral wall portion 78E constitutes the base main surface 71 of the individual antenna base 70E.
  • the individual antenna base 70A has a base main surface 71 and a base back surface 72 as surfaces intersecting in the z direction, similarly to the individual antenna base 70E.
  • the shapes of the base main surface 71 and the base back surface 72 as viewed from the z direction are substantially quadrangular shapes in which one of the four sides extends in both the x and y directions.
  • the base main surface 71 and the base back surface 72 have, for example, the same shape.
  • the shape is not limited to this, and the base main surface 71 and the base back surface 72 may have different shapes.
  • the individual antenna base 70A has a first base side surface 73, a second base side surface 74, a third base side surface 75, and a fourth base side surface 76 as four base side surfaces.
  • These base side surfaces 73 to 76 are surfaces facing sideways in the terahertz device 10 (antenna base 70).
  • Each of the base side surfaces 73 to 76 is a surface in a direction orthogonal to the facing direction between the base main surface 71 and the base back surface 72, and connects the base main surface 71 and the base back surface 72.
  • the third base side surface 75 and the fourth base side surface 76 constitute both end faces in the y direction of the individual antenna base 70A.
  • the third base side surface 75 constitutes a part of the third base side surface 75T of the antenna base 70.
  • the third base side surface 75 and the fourth base side surface 76 each extend in the x direction when viewed from above. Seen from the z direction, the length of the fourth base side surface 76 in the x direction is shorter than the length of the third base side surface 75 in the x direction.
  • the first base side surface 73 and the second base side surface 74 constitute both end faces in the x direction of the individual antenna base 70A.
  • the first base side surface 73 constitutes a part of the first base side surface 73T of the antenna base 70. Seen from above, the first base side surface 73 extends along the y direction.
  • the second base side surface 74 is a side surface of the individual antenna base 70A near the second base side surface 74T of the antenna base 70, and extends in a direction intersecting both the x direction and the y direction when viewed from above.
  • the second base side surface 74 has a base side surface portion 74a which is a portion closer to the third base side surface 75 and a base side surface portion 74b which is a portion closer to the fourth base side surface 76.
  • the base side surface portion 74a extends along the y direction.
  • the base side surface portion 74b is an inclined surface that inclines toward the first base side surface 73 toward the fourth base side surface 76.
  • the antenna surface 81A of the antenna recess 80A is recessed from the base main surface 71 of the individual antenna base 70A toward the base back surface 72.
  • the antenna surface 81A is curved so as to be convex toward the back surface 72 of the base in a cross-sectional view in which the individual antenna base 70A is cut in a plane along the x direction and the z direction.
  • the antenna surface 81A is open on the base main surface 71. That is, the antenna surface 81A is open upward.
  • the opening of the antenna surface 81A has a circular shape with a part missing when viewed from above. Specifically, of the openings of the antenna surface 81A, the opening end 81Aa on the second base side surface 74 side and the opening end 81Ab on the fourth base side surface 76 side are missing. That is, these open ends 81Aa and 81Ab are each formed in a straight line when viewed from above. When viewed from above, the opening end 81Aa is formed at a position overlapping with the base side surface portion 74b, and the opening end 81Ab is formed at a position overlapping with the fourth base side surface portion 76.
  • the reflective film 82A is formed so that its center point P2 is located at a position different from the center of the individual antenna base 70A in the x-direction and the y-direction.
  • the reflective film 82A is formed so that its center point P2 is closer to the base side surface portion 74b than the center of the individual antenna base 70A in the x direction in the x direction.
  • the reflective film 82A is formed so that its center point P2 is closer to the fourth base side surface 76 than the center of the individual antenna base 70A in the y direction in the y direction.
  • the center point P2 of the reflective film 82A and the center point of the antenna surface 81A coincide with each other, and the shape of the reflective film 82A and the shape of the antenna surface 81A are substantially the same.
  • the antenna surface 81A is formed so that the center point of the antenna surface 81A is different from the center of the individual antenna base 70A in the x-direction and the y-direction.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82A that connects both end edges in the first direction which is the arrangement direction of the reflective film 82A and the reflective film 82B, has an arc-shaped central angle of less than 180 °. It is formed.
  • the portion of the outer peripheral edge of the arcuate shape of the reflective film 82A connecting both end edges in the first direction (y direction in the present embodiment) when viewed from above is a circle having a central angle ⁇ a1 of less than 180 °. It is formed in an arc shape.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82A that connects both end edges in the third direction which is the arrangement direction of the reflective film 82A and the reflective film 82E, has an arc-shaped central angle of less than 180 °. It is formed.
  • both ends of the arcuate outer peripheral edge of the reflective film 82A are connected in the third direction (in the present embodiment, the direction orthogonal to the direction in which the base side surface portion 74b extends when viewed from above).
  • the portion is formed in an arc shape having a central angle ⁇ a2 of less than 180 °.
  • the reflective film 82A and the antenna surface 81A have substantially the same shape when viewed from above, in the arrangement direction of the antenna surface 81A and the antenna surface 81B among the arcuate outer peripheral edges of the antenna surface 81A, similarly to the reflective film 82A.
  • the portion connecting both end edges in a certain first direction is formed in an arc shape having a central angle of less than 180 °.
  • the portion of the outer peripheral edge of the arc shape of the antenna surface 81A that connects both ends of the antenna surface 81A and the antenna surface 81E in the third direction, which is the arrangement direction has an arc shape with a central angle of less than 180 °. It is formed.
  • the length LR4 of the perpendicular line passing through the center point P2 of the reflective film 82A among the perpendicular lines to the opening end 82Aa of the reflective film 82A is smaller than the radius RA of the reflective film 82A.
  • the length LR5 of the perpendicular line passing through the center point P2 of the reflective film 82A among the perpendicular lines to the opening end 82Ab of the reflective film 82A is smaller than the radius RA of the reflective film 82A.
  • the radius RA of the reflective film 82A is equal to the radius RE of the reflective film 82E.
  • the perpendicular line passing through the center point P2 of the reflective film 82A is a straight line extending in the y direction.
  • the length LR4 is also referred to as a length along the third direction. Therefore, the length (LR3 + RA) of the reflective film 82A in the third direction is shorter than the diameter of the reflective film 82A. Further, the length (LR5 + RA) of the reflective film 82A in the first direction is shorter than the diameter of the reflective film 82A. In this way, the size of the reflective film 82A along the first direction, which is the direction in which the reflective films 82A to 82D (see FIG.
  • the second direction is a direction orthogonal to the first direction (x direction in the present embodiment) when viewed from above.
  • the size of the reflective film 82A along the third direction which is the direction in which the reflective films 82E and 82A are arranged, is smaller than the size of the reflective film 82A along the second direction.
  • the reflective film 82A and the antenna surface 81A have substantially the same shape when viewed from above, the length of the perpendicular line passing through the center point of the antenna surface 81A and the antenna surface among the perpendicular lines of the opening ends 81Aa and 81Ab of the antenna surface 81A.
  • the relationship with the radius of 81A is the same as the relationship between the lengths LR4 and LR5 of the reflective film 82A and the radius RA of the reflective film 82A.
  • the portion connecting both ends of the reflective film 82A in the y direction is , Its central angle is formed in an arc shape of less than 180 °.
  • the portion connecting both ends of the reflective film 82A in the third direction is the portion thereof. It is formed in an arc shape with a central angle of less than 180 °.
  • the portion connecting both ends of the antenna surface 81A in the y direction is Its central angle is formed in an arc shape of less than 180 °.
  • the portion connecting both ends of the antenna surface 81A in the third direction is the center thereof. It is formed in an arc shape with an angle of less than 180 °.
  • the individual antenna bases 70B, 70C, 70D, 70F, 70G, and 70H have the same shape. Therefore, as an example, the configuration of the individual antenna base 70B shown in FIG. 40 will be described, and the description of the configuration of the individual antenna bases 70C, 70D, 70F to 70H will be omitted.
  • the individual antenna base 70B has a base main surface 71 and a base back surface 72 as surfaces intersecting in the z direction, similarly to the individual antenna base 70A.
  • the shapes of the base main surface 71 and the base back surface 72 when viewed from the z direction are pentagonal, respectively.
  • the base main surface 71 and the base back surface 72 have, for example, the same shape.
  • the shape is not limited to this, and the base main surface 71 and the base back surface 72 may have different shapes.
  • the individual antenna base 70B has a first base side surface 73, a second base side surface 74, a third base side surface 75, and a fourth base side surface 76 as base side surfaces.
  • These base side surfaces 73 to 76 are surfaces facing sideways in the terahertz device 10 (antenna base 70).
  • Each of the base side surfaces 73 to 76 is a surface in a direction orthogonal to the facing direction between the base main surface 71 and the base back surface 72, and connects the base main surface 71 and the base back surface 72.
  • the third base side surface 75 and the fourth base side surface 76 are both end faces in the y direction of the individual antenna base 70B, respectively. Seen from the z direction, the third base side surface 75 and the fourth base side surface 76 extend along the x direction, respectively.
  • the first base side surface 73 and the second base side surface 74 are both end faces in the x direction of the individual antenna base 70B, respectively. Seen from above, the first base side surface 73 extends along the y direction.
  • the second base side surface 74 extends in a direction intersecting the x direction and the y direction. Specifically, the second base side surface 74 is formed in a V shape when viewed from above.
  • the second base side surface 74 has a base side surface portion 74a which is a portion closer to the third base side surface 75 and a base side surface portion 74b which is a portion closer to the fourth base side surface 76.
  • the base side surface portion 74a is a surface that inclines toward the third base side surface 75 toward the first base side surface 73.
  • the base side surface portion 74b is a surface that inclines toward the fourth base side surface 76 toward the first base side surface 73.
  • the antenna surface 81B of the antenna recess 80B is recessed from the base main surface 71 of the individual antenna base 70B toward the base back surface 72.
  • the antenna surface 81B is curved so as to be convex toward the back surface 72 of the base in a cross-sectional view in which the individual antenna base 70B is cut in a plane along the x direction and the z direction.
  • the antenna surface 81B is open on the base main surface 71. That is, the antenna surface 81B is open upward.
  • the opening of the antenna surface 81B has a circular shape with a part missing when viewed from above. Specifically, among the openings of the antenna surface 81B, the opening end 81Ba on the base side surface portion 74a side, the opening end 81Bb on the base side surface portion 74b side, the opening end 81Bc on the third base side surface 75 side, and the fourth base. It is missing at the opening end 81Bd on the side surface 76 side. Each of these open ends 81Ba to 81Bd is formed in a straight line when viewed from above.
  • the opening end 81Ba is formed at a position overlapping with the base side surface portion 74a
  • the opening end 81Bb is formed at a position overlapping with the base side surface portion 74b
  • the opening end 81Bc overlaps with the third base side surface portion 75. It is formed at a position
  • the opening end 81Bd is formed at a position overlapping with the fourth base side surface 76.
  • the opening of the reflective film 82B has the same shape as the opening of the antenna surface 81B. That is, when viewed from above, the opening of the reflective film 82B has an opening end 82Ba at a position overlapping the opening end 81Ba of the antenna surface 81B, an opening end 82Bb at a position overlapping the opening end 81Bb of the antenna surface 81B, and an antenna surface 81B. It has an opening end 82Bc at a position overlapping with the opening end 81Bc and an opening end 82Bd at a position overlapping with the opening end 81Bd of the antenna surface 81B. When viewed from above, the opening ends 82Ba to 82Bd are each formed in a straight line.
  • the reflective film 82B When viewed from above, the reflective film 82B is formed so that its center point P2 is located at a position different from the center of the individual antenna base 70B in the x-direction and the y-direction. When viewed from above, the reflective film 82B is formed so that its center point P2 is closer to the first base side surface 73 than the center of the individual antenna base 70B in the x direction in the x direction. When viewed from above, the reflective film 82B is formed so that its center point P2 is at the center of the individual antenna base 70B in the y direction in the y direction.
  • the center point P2 of the reflective film 82B and the center point of the antenna surface 81B coincide with each other, and the shape of the reflective film 82B and the shape of the antenna surface 81B are substantially the same.
  • the antenna surface 81B is formed so that the center point of the antenna surface 81B is different from the center of the individual antenna base 70B in the x-direction and the y-direction.
  • the portion of the arc-shaped outer peripheral edge of the reflective film 82B that connects both ends of the reflective film 82B and the reflective film 82A in the first direction which is the arrangement direction of the reflective film 82B, has an arc-shaped central angle of less than 180 °. It is formed.
  • the portion of the arcuate outer peripheral edge of the reflective film 82B connecting both end edges in the first direction is a circle having a central angle ⁇ b1 of less than 180 ° when viewed from above. It is formed in an arc shape.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82B that connects both end edges in the fourth direction which is the arrangement direction of the reflective film 82B and the reflective film 82E, has an arc-shaped central angle of less than 180 °. It is formed.
  • both ends of the arcuate outer peripheral edge of the reflective film 82B are connected in the fourth direction (in the present embodiment, the direction orthogonal to the direction in which the base side surface portion 74a extends when viewed from above).
  • the portion is formed in an arc shape having a central angle ⁇ b2 of less than 180 °.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82B that connects both end edges in the third direction which is the arrangement direction of the reflective film 82B and the reflective film 82F, has an arc-shaped central angle of less than 180 °. It is formed.
  • both ends of the arcuate outer peripheral edge of the reflective film 82B when viewed from above are connected in the third direction (in the present embodiment, the direction orthogonal to the direction in which the base side surface portion 74b extends when viewed from above).
  • the portion is formed in an arc shape having a central angle ⁇ b3 of less than 180 °.
  • the antenna surface 81B and the antenna surface 81A are arranged in the first direction among the arcuate outer peripheral edges of the antenna surface 81B.
  • the portion connecting both ends is formed in an arc shape having a central angle of less than 180 °.
  • the portion connecting both ends of the antenna surface 81B and the antenna surface 81E in the fourth direction is formed in an arc shape having a central angle of less than 180 °.
  • the portion connecting both ends of the antenna surface 81B and the antenna surface 81F in the third direction is formed in an arc shape having a central angle of less than 180 °.
  • the length LR6 of the perpendicular line passing through the center point P2 of the reflective film 82B among the perpendicular lines to the opening end 82Ba of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the length LR7 of the perpendicular line to the opening end 82Bb of the reflective film 82B passing through the center point P2 of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the length LR8 of the perpendicular line to the opening end 82Bc of the reflective film 82B passing through the center point P2 of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the length LR9 of the perpendicular line to the opening end 82Bd of the reflective film 82B passing through the center point P2 of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the radius RB of the reflective film 82B is equal to the radius RA of the reflective film 82A.
  • the perpendicular line passing through the center point P2 of the reflective film 82B and the perpendicular line to the opening end 82Bd of the reflective film 82B passing through the center point P2 of the reflective film 82B is a straight line extending along the y direction.
  • the total length of these perpendicular lines LR8 and LR9 (LR8 + LR9) is equal to the length of the individual antenna base 70B in the y direction. Therefore, the length of the individual antenna base 70B in the y direction is smaller than the diameter of the reflective film 82B.
  • the length LR7 can be said to be a length along the third direction
  • the length LR6 can be said to be a length along the fourth direction. Therefore, the length of the reflective film 82B (LR7 + RB) in the third direction is shorter than the diameter of the reflective film 82B, and the length of the reflective film 82B (LR6 + RB) in the fourth direction is shorter than the diameter of the reflective film 82B.
  • the size of the reflective film 82B along the first direction which is the direction in which the reflective films 82A to 82D (see FIG. 37) are arranged when viewed from above, is along the second direction different from the first direction. It can be said that it is smaller than the size of the reflective film 82B.
  • the second direction is a direction orthogonal to the first direction (x direction in the present embodiment) when viewed from above.
  • the size of the reflective film 82B along the third direction which is the direction in which the reflective films 82B and 82F are arranged, is smaller than the size of the reflective film 82B along the second direction.
  • the size of the reflective film 82B along the fourth direction which is the direction in which the reflective films 82E and 82B are arranged, is smaller than the size of the reflective film 82B along the second direction.
  • the reflective film 82B and the antenna surface 81B have substantially the same shape when viewed from above, the length of the perpendicular line passing through the center point of the antenna surface 81B and the antenna surface among the perpendicular lines of the opening ends 81Ba to 81Bd of the antenna surface 81B.
  • the relationship with the radius of 81B is the same as the relationship between the lengths LR6 to LR9 of the reflective film 82B and the radius RB of the reflective film 82B.
  • the portion connecting both ends of the reflective film 82B in the y direction is , Its central angle is formed in an arc shape of less than 180 °.
  • the portion connecting both ends of the reflective film 82B in the third direction is the portion thereof. It is formed in an arc shape with a central angle of less than 180 °.
  • the portion connecting both ends of the reflective film 82B in the fourth direction is the portion thereof. It is formed in an arc shape with a central angle of less than 180 °.
  • the portion connecting both ends of the antenna surface 81B in the y direction is Its central angle is formed in an arc shape of less than 180 °.
  • the portion connecting both ends of the antenna surface 81B in the third direction is the center thereof. It is formed in an arc shape with an angle of less than 180 °.
  • the portion connecting both ends of the antenna surface 81B in the fourth direction is the center thereof. It is formed in an arc shape with an angle of less than 180 °.
  • the individual antenna base 70B has a peripheral wall portion 78B that surrounds a portion of the opening of the antenna recess 80B other than the portion where a part of the opening is missing.
  • the peripheral wall portion 78B constitutes the base main surface 71 of the individual antenna base 70B.
  • the antenna surface 81G and the antenna surface 81H of the antenna recess 80H of the individual antenna base 70H each have the same shape as the antenna surface 81B of the antenna recess 80B.
  • the reflective film 82C, the reflective film 82D, the reflective film 82F, the reflective film 82G, and the reflective film 82H each have the same shape as the reflective film 82B.
  • the base side surface portion 74b of the individual antenna base 70A and the base side surface portion 73a of the individual antenna base 70E are in contact with each other. That is, the individual antenna base 70A and the individual antenna base 70E are arranged in the third direction.
  • the base side surface portion 74b of the individual antenna base 70B and the base side surface portion 74b of the individual antenna base 70F are in contact with each other, and the base side surface portion 74b of the individual antenna base 70C and the base side surface portion 74b of the individual antenna base 70G are in contact with each other.
  • the base side surface portion 74b of the individual antenna base 70D and the base side surface portion 74b of the individual antenna base 70H are in contact with each other.
  • the individual antenna base 70B and the individual antenna base 70F are arranged in the third direction
  • the individual antenna base 70C and the individual antenna base 70G are arranged in the third direction
  • the individual antenna base 70D and the individual antenna base are arranged.
  • 70H is arranged in the third direction.
  • the base side surface portion 74a of the individual antenna base 70B and the base side surface portion 73b of the individual antenna base 70E are in contact with each other. That is, the individual antenna base 70B and the individual antenna base 70E are arranged in the fourth direction. Similarly, the base side surface portion 74a of the individual antenna base 70C and the base side surface portion 74a of the individual antenna base 70F are in contact with each other, and the base side surface portion 74a of the individual antenna base 70D and the base side surface portion 74a of the individual antenna base 70G are in contact with each other. ing. That is, the individual antenna base 70C and the individual antenna base 70F are arranged in the fourth direction, and the individual antenna base 70D and the individual antenna base 70G are arranged in the fourth direction.
  • the gas space 92 is partitioned by the dielectric main surface 51 and the antenna surface 81, as in the first embodiment. Specifically, the opening of the antenna recess 80 is covered with the dielectric main surface 51. Specifically, the openings of the antenna recesses 80A to 80H are each covered with the dielectric main surface 51.
  • the gas space 92 communicates with the outside of the device at the antenna recesses 80D and 80H of the individual antenna bases 70D and 70H. That is, the gas space 92 of this embodiment is not sealed.
  • the gas space 92 may be sealed by changing the configuration of the individual antenna base 70H to the configuration of the individual antenna base 70A and changing the configuration of the individual antenna base 70D to the configuration of the individual antenna base 70E.
  • the gas space 92 is partitioned by the dielectric main surface 51 and the antenna surface 81, which is the inner surface of the antenna recess 80. More specifically, the gas space 92 is partitioned by a dielectric main surface 51 and antenna surfaces 81A to 81H. The reflective films 82A to 82H are provided in the gas space 92, respectively.
  • the gas space 92 includes a plurality of gas spaces 92 partitioned by each of the antenna recesses 80A to 80H and the dielectric main surface 51. In the present embodiment, the gas spaces corresponding to the adjacent individual antenna bases among the individual antenna bases 70A to 70H communicate with each other. In one example, as shown in FIGS.
  • the gas space 92E communicates with the gas space 92B partitioned by the dielectric main surface 51 and the antenna surface 81B.
  • the gas space 92B and the gas space 92E communicate with each other in the fourth direction, which is the arrangement direction of the reflective film 82B and the reflective film 82E.
  • the gas space 92G communicates with the gas space 92C partitioned by the dielectric main surface 51 and the antenna surface 81C. That is, the gas space 92C and the gas space 92G communicate with each other in the third direction, which is the arrangement direction of the reflective film 82C and the reflective film 82G. Since the gas exists in the gas space 92, the relationship between the refractive index of the dielectric 50, the gas space 92, and the terahertz element 20 and the propagation path of the electromagnetic wave are the same as those in the first embodiment.
  • the gas spaces 92 corresponding to the individual antenna bases 70A to 70H are arranged in the first direction (y direction in the present embodiment), and the gas spaces 92 of the individual antenna bases communicate with each other in the first direction.
  • the gas spaces 92 between the individual antenna bases arranged in the third direction communicate with each other in the third direction, and the gas spaces 92 between the individual antenna bases arranged in the fourth direction communicate with each other in the fourth direction. ..
  • the terahertz device 10 includes a first electrode 101 and a second electrode 102, and a first conductive portion 110 and a second conductive portion 120, as in the first embodiment.
  • both electrodes 101 and 102 are individually provided according to the terahertz elements 20A to 20H.
  • the configurations of both electrodes 101 and 102 and both conductive portions 110 and 120 are the same as those in the first embodiment.
  • Both the conductive portions 110 and 120 are sealed in the dielectric 50 as in the first embodiment.
  • the first electrode 101 and the second electrode 102 corresponding to the terahertz elements 20A to 20H are set to the first electrodes 101A to 101H and the second electrodes 102A to 102H, respectively, and the first conductive portion 110 corresponding to the terahertz elements 20A to 20H and the first conductive portion 110
  • the second conductive portion 120 is referred to as a first conductive portion 110A to 110H and a second conductive portion 120A to 120H.
  • the first electrode 101A and the second electrode 102A connected to the first conductive portion 110A and the second conductive portion 120A, and the first electrode 101B and the second electrode 102B connected to the first conductive portion 110B and the second conductive portion 120B.
  • the second electrode 102D and the second electrode 102D are provided on the first protruding portion 61, respectively.
  • the two conductive portions 110A to 110D and 120A to 120D connected to the terahertz elements 20A to 20D arranged corresponding to the individual antenna bases 70A to 70D closer to the first protrusion 61 of the antenna base 70 are individual antennas. It extends toward the first protrusion 61, which is closer to the bases 70A to 70D than the second protrusion 62. Both electrodes 101A to 101D and 102A to 102D are provided in the first protruding portion 61 closer to the second protruding portion 62 with respect to the individual antenna bases 70A to 70D.
  • Both electrodes 101A to 101D and 102A to 102D are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • Both conductive portions 110A to 110D and 120A to 120D are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • the first electrode 101E and the second electrode 102E connected to the first conductive portion 110E and the second conductive portion 120E, and the first electrode 101F and the second electrode 102E connected to the first conductive portion 110F and the second conductive portion 120F.
  • the second electrode 102H and the second electrode 102H are provided on the second protruding portion 62, respectively.
  • both the conductive portions 110E to 110H and 120E to 120H connected to the terahertz elements 20E to 20H arranged corresponding to the individual antenna bases 70E to 70H closer to the second protrusion 62 of the antenna base 70 are individually. It extends toward the second protrusion 62, which is closer to the antenna bases 70E to 70H than the first protrusion 61. Both electrodes 101E to 101H and 102E to 102H are provided on the second protruding portion 62, which is closer to the first protruding portion 61 with respect to the individual antenna bases 70E to 70H.
  • Both electrodes 101E to 101H and 102E to 102H are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • Both conductive portions 110E to 110H and 120E to 120H are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • Each of the reflective films 82A to 82H of this embodiment is electrically in a floating state. More specifically, the reflective film 82A is electrically insulated from both electrodes 101A and 102A and both conductive portions 110A and 120A.
  • the reflective film 82B is electrically insulated from both electrodes 101B and 102B and both conductive portions 110B and 120B.
  • the reflective film 82C is electrically insulated from both electrodes 101C and 102C and both conductive portions 110C and 120C.
  • the reflective film 82D is electrically insulated from both electrodes 101D and 102D and both conductive portions 110D and 120D.
  • the reflective film 82E is electrically insulated from both electrodes 101E and 102E and both conductive portions 110E and 120E.
  • the reflective film 82F is electrically insulated from both electrodes 101F and 102F and both conductive portions 110F and 120F.
  • the reflective film 82G is electrically insulated from both electrodes 101G and 102G and both conductive portions 110G and 120G.
  • the reflective film 82H is electrically insulated from both electrodes 101H and 102H and both conductive portions 110H and 120H.
  • FIG. 45 is an enlarged view of the individual antenna bases 70B, 70C, 70E to 70G and their surroundings.
  • the receiving point P1 of the terahertz element 20E and the receiving point P1 of the terahertz element 20F is smaller than the diameter of the reflective film 82E (radius RE ⁇ 2 of the reflective film 82E). Further, the inter-element distance Leaf is smaller than the diameter of the reflective film 82F (radius RF ⁇ 2 of the reflective film 82F).
  • the inter-element distance Lbe which is the distance between the receiving point P1 of the terahertz element 20E and the receiving point P1 of the terahertz element 20B, is the inter-element distance Lbe of the reflective film 82E. Smaller than the diameter. Further, the inter-element distance Lbe is smaller than the diameter of the reflective film 82B (radius RB ⁇ 2 of the reflective film 82B).
  • the inter-element distance Lbf which is the distance between the receiving point P1 of the terahertz element 20B and the receiving point P1 of the terahertz element 20F, is the inter-element distance Lbf of the reflective film 82B. Smaller than the diameter. Further, the inter-element distance Lbf is smaller than the diameter of the reflective film 82F.
  • the inter-element distance Lbc which is the distance between the receiving point P1 of the terahertz element 20B and the receiving point P1 of the terahertz element 20C is the inter-element distance Lbc of the reflective film 82B. Smaller than the diameter. Further, the inter-element distance Lbc is smaller than the diameter of the reflective film 82C (radius RC ⁇ 2 of the reflective film 82C).
  • the inter-element distance Lcf which is the distance between the receiving point P1 of the terahertz element 20C and the receiving point P1 of the terahertz element 20F, is the inter-element distance Lcf of the reflective film 82C. Smaller than the diameter. Further, the inter-element distance Lcf is smaller than the diameter of the reflective film 82F.
  • the inter-element distance Lfg which is the distance between the receiving point P1 of the terahertz element 20F and the receiving point P1 of the terahertz element 20G is the inter-element distance Lfg of the reflective film 82F. Smaller than the diameter. Further, the inter-element distance Lfg is smaller than the diameter of the reflective film 82G (radius RG ⁇ 2 of the reflective film 82G).
  • the inter-element distance Lcg which is the distance between the receiving point P1 of the terahertz element 20C and the receiving point P1 of the terahertz element 20G, is the inter-element distance Lcg of the reflective film 82C. Smaller than the diameter. Further, the distance Lcg between the elements is smaller than the diameter of the reflective film 82G.
  • the inter-element distances of the terahertz elements 20A, 20B and 20C, the inter-element distances of the terahertz elements 20C, 20D and 20G, and the inter-element distances of the terahertz elements 20D, 20G and 20H are also described above. This is the same as the distance between the terahertz elements 20B, 20C, 20E to 20G.
  • the inter-element distance which is the distance connecting the receiving points P1 of the adjacent terahertz elements 20, is smaller than the diameter of the reflective films 82. Therefore, the terahertz elements 20 adjacent to each other in the arrangement direction can be brought close to each other.
  • effect According to the terahertz device 10 of the present embodiment, the following effects can be obtained in addition to the effects according to the first embodiment.
  • the rows of terahertz elements 20A to 20D and the rows of terahertz elements 20E to 20H are arranged so as to be offset in the y direction. That is, from the third base side surface 75T of the antenna base 70 to the fourth base side surface 76T in the y direction, the terahertz element 20A, the terahertz element 20E, the terahertz element 20B, the terahertz element 20F, the terahertz element 20C, the terahertz element 20G, and the terahertz element. 20D and terahertz element 20H are arranged in this order.
  • the element 20E and the terahertz element 20B can be brought close to each other, the terahertz element 20F and the terahertz element 20C can be brought close to each other, and the terahertz element 20G and the terahertz element 20D can be brought close to each other.
  • the terahertz element 20A and the terahertz element 20E can be brought close to each other
  • the terahertz element 20B and the terahertz element 20F can be brought close to each other
  • the terahertz element 20C and the terahertz element 20G can be brought close to each other.
  • the terahertz element 20D and the terahertz element 20H can be brought close to each other. Therefore, the resolution in the detection range of the terahertz device 10 can be improved.
  • the size of the reflective film 82B along the fourth direction which is the arrangement direction of the reflective film 82E and the reflective film 82B, and the arrangement direction of the reflective film 82F and the reflective film 82B. Both the sizes of the reflective film 82B along a certain third direction are smaller than the size of the reflective film 82B along the second direction (x direction in this embodiment). The same applies to the other reflective films 82A, 82C, 82D, 82F to 82G.
  • the terahertz elements 20 adjacent to each other in the third direction and the fourth direction can be brought close to each other. Therefore, the resolution in the detection range of the terahertz device 10 can be improved.
  • the lengths LR6 and LR7 of the reflective film 82B are shorter than the radius RB of the reflective film 82B while maintaining the spherical shape formed by the reflective film 82B with a constant curvature. 82B can be formed.
  • the reflective films 82A, 82C to 82H also have a portion connecting both end edges in the third direction and a portion connecting both end edges in the fourth direction for each of the reflective films 82A, 82C to 82H, respectively. It is formed in an arc shape with a central angle of less than 180 °. According to this configuration, the reflective films 82A, 82C to 82H maintain a spherical shape formed with a constant curvature, respectively, while the lengths of the reflective films 82A, 82C to 82H in the third direction and the fourth direction respectively. It is possible to form the reflective films 82A, 82C to 82H having a length shorter than the radius of the reflective films 82A, 82C to 82H.
  • the boundary between the two, the boundary between the reflective film 82C and the reflective film 82G, the boundary between the reflective film 82D and the reflective film 82G, and the boundary between the reflective film 82D and the reflective film 82H are formed linearly.
  • the reflective films 82A to 82H each maintain a spherical shape formed with a constant curvature, while the reflective films 82A to 82H reflect the lengths in the third direction and the lengths in the fourth direction, respectively.
  • Reflective films 82A to 82H having a relationship shorter than the radius of the films 82A to 82H can be formed, respectively.
  • the gas space 92B partitioned by the antenna surface 81B and the dielectric 50 and the gas space 92E partitioned by the antenna surface 81E and the dielectric 50 are reflected by the reflective film 82B (antenna surface 81B). It is connected in the third direction at the boundary with the film 82E (antenna surface 81E).
  • the gas space 92C partitioned by the antenna surface 81C and the dielectric 50 and the gas space 92F partitioned by the antenna surface 81F and the dielectric 50 are a reflective film 82C (antenna surface 81C) and a reflective film 82F (antenna surface). It is connected to the third direction at the boundary with 81F).
  • the gas space partitioned by the antenna surface 81D and the dielectric 50 and the gas space partitioned by the antenna surface 81G and the dielectric 50 are a reflective film 82D (antenna surface 81D) and a reflective film 82G (antenna surface 81G). It is connected in the third direction at the boundary with. According to this configuration, the effect according to the above (2-3) can be obtained.
  • the antenna base 70 is cut at a plane along the third direction and the z direction, which are the arrangement directions of the reflective film 82B and the reflective film 82E, passing through the central point P2 of the reflective film 82B and the central point P2 of the reflective film 82E.
  • the portion connecting both end edges of the reflective film 82B in the third direction and the portion connecting both end edges of the reflective film 82E in the third direction are each formed in an arc shape having a central angle of less than 180 °.
  • the length of the reflective film 82B in the third direction and the length of the reflective film 82E in the third direction are maintained while the reflective film 82B and the reflective film 82E each maintain a spherical shape formed with a constant curvature. It is possible to form the reflective film 82B and the reflective film 82E, each of which has a shorter relationship than the radius of the reflective film 82B and the radius of the reflective film 82E.
  • the relationship between the reflective film 82C and the reflective film 82F and the reflective film 82D and the reflective film 82G is the same as the relationship between the reflective film 82B and the reflective film 82E. Therefore, the same effect as the above can be obtained for each of the reflective film 82C and the reflective film 82F, and the reflective film 82D and the reflective film 82G.
  • the gas space partitioned by the antenna surface 81A and the dielectric 50 and the gas space 92E partitioned by the antenna surface 81E and the dielectric 50 are a reflective film 82A (antenna surface 81A) and a reflective film. It is connected in the fourth direction at the boundary with 82E (antenna surface 81E).
  • the gas space 92B partitioned by the antenna surface 81B and the dielectric 50 and the gas space 92F partitioned by the antenna surface 81F and the dielectric 50 are a reflective film 82B (antenna surface 81B) and a reflective film 82F (antenna surface). It is connected in the fourth direction at the boundary with 81F).
  • the gas space 92C partitioned by the antenna surface 81C and the dielectric 50 and the gas space partitioned by the antenna surface 81G and the dielectric 50 are a reflective film 82C (antenna surface 81C) and a reflective film 82G (antenna surface 81G). ) Is connected in the fourth direction.
  • the gas space partitioned by the antenna surface 81D and the dielectric 50 and the gas space partitioned by the antenna surface 81H and the dielectric 50 are a reflective film 82D (antenna surface 81D) and a reflective film 82H (antenna surface 81H). It is connected in the fourth direction at the boundary with. According to this configuration, the effect according to the above (2-3) can be obtained.
  • the antenna base 70 is cut at a plane along the third direction and the z direction, which are the arrangement directions of the reflective film 82B and the reflective film 82F, passing through the central point P2 of the reflective film 82B and the central point P2 of the reflective film 82F.
  • the portion connecting both end edges of the reflective film 82B in the third direction and the portion connecting both end edges of the reflective film 82F in the third direction are each formed in an arc shape having a central angle of less than 180 °.
  • the length of the reflective film 82B in the third direction and the length of the reflective film 82F in the third direction are maintained while the reflective film 82B and the reflective film 82F each maintain a spherical shape formed with a constant curvature. It is possible to form the reflective film 82B and the reflective film 82F, each of which has a shorter relationship than the radius of the reflective film 82B and the radius of the reflective film 82F, respectively.
  • the relationship between the reflective film 82A and the reflective film 82E, the reflective film 82C and the reflective film 82G, and the reflective film 82D and the reflective film 82H is the same as the relationship between the reflective film 82B and the reflective film 82F. Therefore, the same effect as the above can be obtained for each of the reflective film 82A and the reflective film 82E, the reflective film 82C and the reflective film 82G, and the reflective film 82D and the reflective film 82H.
  • the terahertz device 10 of the third embodiment will be described with reference to FIGS. 46 to 56.
  • the terahertz device 10 of the present embodiment is mainly different from the terahertz device 10 of the first embodiment in the configuration of the antenna base 70.
  • components common to the terahertz device 10 of the first embodiment may be designated by the same reference numerals, and the description thereof may be omitted.
  • the configuration of the antenna base 70 is different from that of the antenna base 70 of the first embodiment, a plurality of individual antenna bases are sequentially designated as 70A, 70B, 70C ... For identification.
  • the terahertz device 10 includes a plurality of terahertz elements 20, a dielectric 50 as an example of a holding member, an antenna base 70, a reflective film 82, and a gas space 92. ing.
  • the plurality of terahertz elements 20 include a terahertz element 20A, a terahertz element 20B, a terahertz element 20C, a terahertz element 20D, a terahertz element 20E, a terahertz element 20F, a terahertz element 20G, a terahertz element 20H, and a terahertz element 20I.
  • the terahertz elements 20A to 20I have the same configuration as each other, and have the same configuration as the terahertz element 20 of the first embodiment.
  • the dielectric 50 surrounds each of the plurality of terahertz elements 20.
  • the dielectric 50 surrounds the entire terahertz element 20E and covers the element main surface 21, the element back surface 22, and the element side surfaces 23 to 26 of the terahertz element 20E. ..
  • the dielectric 50 surrounds the entire terahertz elements 20A to 20D and 20F to 20I, and the element main surface 21, the element back surface 22 and the element side surface 23 of each terahertz element 20A to 20D, 20F to 20I. It covers ⁇ 26.
  • each terahertz element 20A to 20I are in contact with the dielectric 50. That is, the dielectric 50 of the present embodiment surrounds the terahertz elements 20A to 20I so that no gap is formed between the dielectric 50 and the terahertz elements 20A to 20I, as in the first embodiment. In other words, the dielectric 50 seals each terahertz element 20A to 20I.
  • the dielectric 50 is formed in a plate shape having, for example, the z direction as the thickness direction.
  • the dielectric 50 has a square plate shape in which the length in the x direction and the length in the y direction are equal to each other.
  • the dielectric 50 is formed in a square shape that is one size larger than the antenna base 70. That is, the dielectric 50 projects on both sides in the x direction with respect to the antenna base 70, and protrudes on both sides in the y direction with respect to the antenna base 70.
  • the dielectric 50 has a dielectric main surface 51 and a dielectric back surface 52 as surfaces intersecting in the z direction.
  • the dielectric main surface 51 and the dielectric back surface 52 are orthogonal to each other, for example, in the z direction.
  • the dielectric main surface 51 faces downward.
  • the dielectric back surface 52 is a surface opposite to the dielectric main surface 51 and faces upward. In this embodiment, the dielectric back surface 52 constitutes the device main surface 11.
  • the dielectric 50 includes a first dielectric side surface 53 and a second dielectric side surface 54 which are end faces in the x direction, and a third dielectric side surface 55 and a fourth dielectric side surface 56 which are end faces in the y direction. have.
  • Each dielectric side surface 53 to 56 constitutes a part of the device side surface 13 to 16.
  • the first dielectric side surface 53 and the second dielectric side surface 54 are orthogonal to the third dielectric side surface 55 and the fourth dielectric side surface 56.
  • the terahertz element 20 is provided in the dielectric 50 with the element main surface 21 facing the dielectric main surface 51, as in the first embodiment.
  • the terahertz elements 20B, 20D to 20F, and 20H are arranged between the dielectric main surface 51 and the dielectric back surface 52, respectively.
  • the terahertz elements 20A, 20C, 20G, and 20I are also arranged between the dielectric main surface 51 and the dielectric back surface 52, respectively.
  • the dielectric thickness D2 which is the length of the dielectric 50 in the z direction, is set so as to satisfy the resonance condition of the electromagnetic wave received by the terahertz element 20.
  • the terahertz elements 20A to 20I are arranged in a grid pattern when viewed from the z direction. More specifically, the terahertz elements 20A to 20C are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction. The terahertz elements 20D to 20F are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction. The terahertz elements 20G to 20I are arranged so as to be aligned with each other in the x direction and separated from each other in the y direction.
  • the rows of the terahertz elements 20A to 20C, the rows of the terahertz elements 20D to 20F, and the rows of the terahertz elements 20G to 20I are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction. That is, the terahertz element 20A, the terahertz element 20D, and the terahertz element 20G are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction.
  • the terahertz element 20B, the terahertz element 20E, and the terahertz element 20H are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction.
  • the terahertz element 20C, the terahertz element 20F, and the terahertz element 20I are arranged so as to be aligned with each other in the y direction and separated from each other in the x direction.
  • the pitches (distances between elements) of adjacent terahertz elements 20 in the x-direction and the y-direction are equal to each other.
  • the maximum deviation amount of the adjacent terahertz elements 20 in the x-direction and the y-direction is within 5% of the average value of the pitches of the adjacent terahertz elements 20 in the x-direction and the y-direction, for example, the x-direction and the y-direction. It can be said that the pitches (distances between elements) of the adjacent terahertz elements 20 are equal to each other.
  • the pitch (distance between elements) in the x direction is the distance connecting the receiving points P1 of the terahertz elements 20 adjacent to each other in the x direction
  • the pitch (distance between elements) in the y direction is the terahertz element adjacent to each other in the y direction. It is the distance connecting the 20 receiving points P1 to each other.
  • the shape of the antenna base 70 when viewed from above is a square. More specifically, the first base side surface 73T and the second base side surface 74T face each other in the x direction and extend along the y direction. The third base side surface 75T and the fourth base side surface 76T face each other in the y direction and extend along the x direction. Further, the material of the antenna base 70 is the same as the material of the antenna base 70 of the first embodiment.
  • the antenna base 70 of this embodiment is composed of a combination of a plurality of individual antenna bases 70A, 70B, 70C, 70D, 70E, 70F, 70G, 70H, and 70I (nine in this embodiment). More specifically, the antenna base 70 has a row of individual antenna bases 70A, 70B, 70C, a row of individual antenna bases 70D, 70E, 70F, and a row of individual antenna bases 70G, 70H, 70I. There is. The rows of these individual antenna bases 70A to 70C, 70D to 70F, and 70G to 70I extend in the y direction.
  • the individual antenna bases 70A to 70C constitute the first base side surface 73T
  • the individual antenna bases 70G to 70I constitute the second base side surface 74T
  • the individual antenna bases 70A, 70D, and 70G form the third base.
  • the side surface 75T constitutes
  • the individual antenna bases 70C, 70F, 70I constitute the fourth base side surface 76T. That is, the individual antenna bases 70A, 70C, 70G, and 70H constitute the four corners of the antenna base 70.
  • the individual antenna base 70B is sandwiched between the individual antenna base 70A and the individual antenna base 70C in the y direction.
  • the individual antenna base 70E is sandwiched between the individual antenna base 70D and the individual antenna base 70F in the y direction.
  • the individual antenna base 70H is sandwiched between the individual antenna base 70G and the individual antenna base 70I in the y direction.
  • the individual antenna base 70D is sandwiched between the individual antenna base 70A and the individual antenna base 70G in the x direction.
  • the individual antenna base 70E is sandwiched between the individual antenna base 70B and the individual antenna base 70H in the x direction.
  • the individual antenna base 70F is sandwiched between the individual antenna base 70C and the individual antenna base 70I in the x direction.
  • the individual antenna base 70A is arranged so as to face the terahertz element 20A in the thickness direction (z direction) of the terahertz element 20A.
  • the individual antenna base 70B is arranged so as to face the terahertz element 20B in the thickness direction (z direction) of the terahertz element 20B.
  • the individual antenna base 70C is arranged so as to face the terahertz element 20C in the thickness direction (z direction) of the terahertz element 20C.
  • the individual antenna base 70D is arranged so as to face the terahertz element 20D in the thickness direction (z direction) of the terahertz element 20D.
  • the individual antenna base 70E is arranged so as to face the terahertz element 20E in the thickness direction (z direction) of the terahertz element 20E.
  • the individual antenna base 70F is arranged so as to face the terahertz element 20F in the thickness direction (z direction) of the terahertz element 20F.
  • the individual antenna base 70G is arranged so as to face the terahertz element 20G in the thickness direction (z direction) of the terahertz element 20G.
  • the individual antenna base 70H is arranged so as to face the terahertz element 20H in the thickness direction (z direction) of the terahertz element 20H.
  • the individual antenna base 70I is arranged so as to face the terahertz element 20I in the thickness direction (z direction) of the terahertz element 20I.
  • the individual antenna bases 70A to 70I are arranged below the terahertz elements 20A to 20I, respectively.
  • the antenna base 70 has an antenna recess 80 recessed from the base main surface 71T toward the base back surface 72T, as in the first embodiment.
  • the individual antenna base 70A has an antenna recess 80A
  • the individual antenna base 70B has an antenna recess 80B
  • the individual antenna has an individual antenna.
  • the base 70C has an antenna recess 80C
  • the individual antenna base 70D has an antenna recess 80D
  • the individual antenna base 70E has an antenna recess 80E
  • the individual antenna base 70F has an antenna recess 80F.
  • the individual antenna base 70G has an antenna recess 80G
  • the individual antenna base 70H has an antenna recess 80H
  • the individual antenna base 70I has an antenna recess 80I.
  • the antenna recess 80 has an antenna surface 81 facing the terahertz element 20 via the dielectric 50 and the gas space 92, as in the first embodiment.
  • the antenna recess 80A has an antenna surface 81A
  • the antenna recess 80B has an antenna surface 81B
  • the antenna recess 80C has an antenna surface 81B.
  • the antenna surface 81C is provided
  • the antenna recess 80D has an antenna surface 81D.
  • the antenna recess 80E has an antenna surface 81E
  • the antenna recess 80F has an antenna surface 81F
  • the antenna recess 80G has an antenna surface 81G
  • the antenna recess 80H has an antenna surface 81H.
  • the antenna recess 80I has an antenna surface 81I.
  • the reflective film 82 is formed on the antenna surface 81 as in the first embodiment.
  • the reflective film 82 is formed over the entire antenna surface 81.
  • the reflective film 82 is not formed on the base main surface 71T. That is, the reflective film 82 has substantially the same shape as the antenna surface 81.
  • the reflective film 82 is made of the same material as the reflective film 82 of the first embodiment.
  • the reflective film 82 includes a reflective film 82A formed on the antenna surface 81A, a reflective film 82B formed on the antenna surface 81B, and a reflection formed on the antenna surface 81C.
  • the reflective films 82A to 82I are a single component integrally formed.
  • the reflective film 82A has substantially the same shape as the antenna surface 81A
  • the reflective film 82B has substantially the same shape as the antenna surface 81B
  • the reflective film 82C has substantially the same shape as the antenna surface 81C.
  • the 82D has substantially the same shape as the antenna surface 81D
  • the reflective film 82E has substantially the same shape as the antenna surface 81E
  • the reflective film 82F has substantially the same shape as the antenna surface 81F
  • the reflective film 82G has a substantially same shape. It has substantially the same shape as the antenna surface 81G
  • the reflective film 82H has substantially the same shape as the antenna surface 81H
  • the reflective film 82I has substantially the same shape as the antenna surface 81I.
  • the reflective films 82A to 82I are rotating parabolic mirrors, respectively, and are curved in a mortar shape.
  • Each of the reflective films 82A to 82I has a circular shape with a part missing when viewed from above.
  • Each of the reflective films 82A to 82I is curved so as to be convex toward the back surface 12 of the device (the back surface 72 of the base).
  • the reflective films 82A to 82I each open in one direction (upward in this embodiment).
  • the reflective films 82A to 82I and the dielectric 50 face each other in the z direction.
  • the reflective films 82A to 82I are provided at positions facing the dielectric 50.
  • the electromagnetic wave reflected by the reflective film 82 is output toward the receiving point P1.
  • the electromagnetic wave reflected by the reflective film 82D is output toward the receiving point P1 of the terahertz element 20D.
  • the electromagnetic wave reflected by the reflective film 82E is output toward the receiving point P1 of the terahertz element 20E.
  • the electromagnetic wave reflected by the reflective film 82F is output toward the receiving point P1 of the terahertz element 20F.
  • the electromagnetic wave reflected by the reflective film 82B is output toward the receiving point P1 of the terahertz element 20B.
  • the electromagnetic wave reflected by the reflective film 82H is output toward the receiving point P1 of the terahertz element 20H.
  • the electromagnetic wave reflected by the reflective film 82A is output toward the receiving point P1 of the terahertz element 20A.
  • the electromagnetic wave reflected by the reflective film 82C is output toward the receiving point P1 of the terahertz element 20C.
  • the electromagnetic wave reflected by the reflective film 82G is output toward the receiving point P1 of the terahertz element 20G.
  • the electromagnetic wave reflected by the reflective film 82I is output toward the receiving point P1 of the terahertz element 20I.
  • the arrangement relationship between the reflective film 82 and the terahertz element 20 is the same as in the first embodiment. Further, the size relationship between the reflective film 82 and the terahertz element 20 is the same as in the first embodiment. That is, when viewed from above, the reflective films 82A to 82I are formed larger than the terahertz elements 20A to 20I, respectively.
  • the antenna base 70 and the dielectric 50 are fixed via the adhesive layer 91 as in the first embodiment.
  • the adhesive layer 91 is configured so as not to protrude inward from the reflective film 82 (in other words, on the terahertz element 20 side).
  • the individual antenna base 70G has a base main surface 71 and a base back surface 72 as surfaces intersecting in the z direction.
  • the base main surface 71 and the base back surface 72 are planes that intersect with each other in the z direction, and are orthogonal to the z direction in the present embodiment.
  • the shapes of the base main surface 71 and the base back surface 72 when viewed from the z direction are square, respectively.
  • the base main surface 71 and the base back surface 72 have, for example, the same shape. However, the shape is not limited to this, and the base main surface 71 and the base back surface 72 may have different shapes.
  • the individual antenna base 70G has a first base side surface 73, a second base side surface 74, a third base side surface 75, and a fourth base side surface 76 as four base side surfaces.
  • These base side surfaces 73 to 76 are surfaces facing sideways in the terahertz device 10 (antenna base 70).
  • Each of the base side surfaces 73 to 76 is a surface in a direction orthogonal to the facing direction between the base main surface 71 and the base back surface 72, and connects the base main surface 71 and the base back surface 72.
  • the first base side surface 73 and the second base side surface 74 are surfaces facing each other in the x direction. When viewed from the z direction, the side surfaces 73 and 74 of each base extend along the y direction.
  • the second base side surface 74 constitutes a part of the second base side surface 74T (see FIG. 48) of the antenna base 70.
  • the third base side surface 75 and the fourth base side surface 76 are surfaces facing each other in the y direction. When viewed from the z direction, the side surfaces 75 and 76 of each base extend along the x direction.
  • the third base side surface 75 constitutes a part of the third base side surface 75T of the antenna base 70.
  • the antenna surface 81G of the antenna recess 80G is recessed from the base main surface 71 of the individual antenna base 70G toward the base back surface 72.
  • the antenna surface 81G is recessed in a substantially spherical shape.
  • the antenna surface 81G is curved so as to be convex toward the back surface 72 of the base.
  • the antenna surface 81G is curved so as to be convex toward the back surface 72 of the base.
  • the antenna surface 81G is open on the base main surface 71. That is, the antenna surface 81G is open upward.
  • the opening of the antenna surface 81G is a circular shape with a part missing when viewed from above. Specifically, the opening of the antenna surface 81G is formed at the opening end 81Ga, which is the end of the antenna surface 81G on the 73 side of the first base side surface, and the opening end 81Gb, which is the end of the fourth base side surface 76 side. Missing. These open ends 81Ga and 81Gb are each formed in a straight line when viewed from above.
  • the opening end 81Ga of the antenna surface 81G is formed at a position overlapping the first base side surface 73, and the opening end 81Gb is formed at a position overlapping the fourth base side surface 76.
  • the reflective film 82G is formed on the antenna surface 81G.
  • the reflective film 82G is formed over the entire antenna surface 81G.
  • the reflective film 82G is not formed on the base main surface 71.
  • the opening of the reflective film 82G has the same shape as the opening of the antenna surface 81G. That is, when viewed from above, the opening of the reflective film 82G has an opening end 82Ga at a position overlapping with the opening end 81Ga of the antenna surface 81G and an opening end 82Gb at a position overlapping with the opening end 81Gb of the antenna surface 81G. There is. When viewed from above, both end ends 81Ga and 81Gb are formed in a straight line.
  • the reflective film 82G is formed so that its center point P2 is different from the center of the individual antenna base 70G in the x-direction and the y-direction.
  • the reflective film 82G when viewed from above, is arranged closer to the first base side surface 73 and the fourth base side surface 76 with respect to the center of the individual antenna base 70G in the x-direction and the y-direction. More specifically, when viewed from above, the reflective film 82G is formed so that its center point P2 is closer to the first base side surface 73 than the center of the individual antenna base 70G in the x direction in the x direction. Further, when viewed from above, the reflective film 82G is formed so that its center point P2 is closer to the fourth base side surface 76 than the center of the individual antenna base 70G in the y direction in the y direction.
  • the center point P2 of the reflective film 82G and the center point of the antenna surface 81E coincide with each other, and the shape of the reflective film 82G and the shape of the antenna surface 81G are substantially the same.
  • the antenna surface 81G is formed so that the center point of the antenna surface 81G is different from the center of the individual antenna base 70G in the x-direction and the y-direction.
  • the portion connecting both ends of the reflective film 82G and the reflective film 82H in the first direction which is the arrangement direction of the reflective film 82G, has an arc-shaped central angle of less than 180 °. It is formed.
  • the portion of the arcuate outer peripheral edge of the reflective film 82G connecting both end edges in the first direction (y direction in the present embodiment) when viewed from above is a circle having a central angle ⁇ g1 of less than 180 °. It is formed in an arc shape.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82G that connects both end edges in the second direction which is the arrangement direction of the reflective film 82G and the reflective film 82D, has an arc-shaped central angle of less than 180 °. It is formed.
  • the portion of the arcuate outer peripheral edge of the reflective film 82G connecting both end edges in the second direction is a circle having a central angle ⁇ g2 of less than 180 ° when viewed from above. It is formed in an arc shape.
  • the reflective film 82G and the antenna surface 81G have substantially the same shape, so that the antenna surface 81G and the antenna surface 81H are arranged in the arcuate outer peripheral edge of the antenna surface 81G, similarly to the reflective film 82G.
  • the portion connecting both end edges in a certain first direction is formed in an arc shape having a central angle of less than 180 °.
  • the portion of the arcuate outer peripheral edge of the antenna surface 81G that connects both end edges in the second direction (x direction in this embodiment), which is the arrangement direction of the antenna surface 81G and the antenna surface 81D is the central angle thereof. Is formed in an arc shape of less than 180 °.
  • the length LS1 of the perpendicular line passing through the center point P2 of the reflective film 82G among the perpendicular lines to the opening end 82Ga of the reflective film 82G is smaller than the radius RG of the reflective film 82G.
  • the length LS2 of the perpendicular line passing through the center point P2 of the reflective film 82G among the perpendicular lines to the opening end 82Gb of the reflective film 82G is smaller than the radius RG of the reflective film 82G.
  • the perpendicular line of the reflective film 82G with respect to the opening end 82Ga is a straight line extending along the x direction
  • the perpendicular line of the reflective film 82G with respect to the opening end 82Gb is a straight line extending along the y direction.
  • the length LS1 is a length along the second direction (x direction in the present embodiment)
  • the length LS2 is a length along the first direction (y direction in the present embodiment).
  • the length of the reflective film 82G (LS1 + RG) in the first direction is shorter than the diameter of the reflective film 82G (RG ⁇ 2), and the length of the reflective film 82G (LS2 + RG) in the second direction is the diameter of the reflective film 82G. Shorter than.
  • the size of the reflective film 82G along the first direction which is the direction in which the reflective films 82G to 82I (see FIG. 37) are arranged when viewed from above, is such that the reflective films 82G, 82D, 82A are arranged. It can be said that it is smaller than the size of the reflective film 82G along the third direction, which is different from the second direction, which is the direction, and the first direction.
  • the third direction is a direction that intersects both the first direction and the second direction when viewed from above. Further, when viewed from above, it can be said that the size of the reflective film 82G along the second direction is smaller than the size of the reflective film 82G along the third direction.
  • the reflective film 82G and the antenna surface 81G have the same shape when viewed from above, the length of the perpendicular line passing through the center point of the antenna surface 81G and the antenna surface 81G among the perpendicular lines of the opening ends 81Ga and 81Gb of the antenna surface 81G.
  • the relationship with the radius of the reflective film 82G is the same as the relationship between the lengths LS1 and LS2 of the reflective film 82G and the radius RG of the reflective film 82G.
  • the portion connecting both ends of the reflective film 82G in the y direction is , Its central angle is formed in an arc shape of less than 180 °.
  • the portion connecting both ends of the reflective film 82G in the x-direction is the central angle thereof. Is formed in an arc shape of less than 180 °.
  • the portion connecting both ends of the antenna surface 81G in the y direction is Its central angle is formed in an arc shape of less than 180 °.
  • the central angle of the portion connecting both ends of the antenna surface 81G in the x-direction is It is formed in an arc shape of less than 180 °.
  • the individual antenna base 70G has a peripheral wall portion 78G that surrounds a portion of the opening of the antenna recess 80G other than the portion where a part of the opening is missing.
  • the peripheral wall portion 78G constitutes the base main surface 71 of the individual antenna base 70G.
  • the individual antenna bases 70A, 70D, 70H, and 70I have the same shape as each other. Therefore, as an example, the configuration of the individual antenna base 70H shown in FIG. 50 will be described, and the description of the configuration of the individual antenna bases 70A, 70D, and 70I will be omitted.
  • the individual antenna base 70H has a base main surface 71 and a base back surface 72 as surfaces intersecting in the z direction, similarly to the individual antenna base 70G.
  • the shapes of the base main surface 71 and the base back surface 72 when viewed from the z direction are rectangular, respectively.
  • the base main surface 71 and the base back surface 72 have, for example, the same shape.
  • the shape is not limited to this, and the base main surface 71 and the base back surface 72 may have different shapes.
  • the individual antenna base 70H has a first base side surface 73, a second base side surface 74, a third base side surface 75, and a fourth base side surface 76 as four base side surfaces.
  • These base side surfaces 73 to 76 are surfaces facing sideways in the terahertz device 10 (antenna base 70).
  • Each of the base side surfaces 73 to 76 is a surface in a direction orthogonal to the facing direction between the base main surface 71 and the base back surface 72.
  • the base side surfaces 73 to 76 connect the base main surface 71 and the base back surface 72.
  • the first base side surface 73 and the second base side surface 74 are surfaces facing each other in the x direction. When viewed from the z direction, the side surfaces 73 and 74 of each base extend along the y direction. The length of each base side surface 73, 74 of the individual antenna base 70H in the y direction is shorter than the length of each base side surface 73, 74 of the individual antenna base 70G in the y direction.
  • the third base side surface 75 and the fourth base side surface 76 are surfaces facing each other in the y direction. When viewed from the z direction, the side surfaces 75 and 76 of each base extend along the x direction. The length of each base side surface 75,76 of the individual antenna base 70H in the x direction is equal to the length of each base side surface 75,76 of the individual antenna base 70G in the x direction.
  • the antenna surface 81H of the antenna recess 80H is recessed from the base main surface 71 toward the base back surface 72.
  • the antenna surface 81H is recessed in a substantially spherical shape.
  • the antenna surface 81H is curved so as to be convex toward the back surface 72 of the base.
  • the antenna surface 81H is curved so as to be convex toward the back surface 72 of the base.
  • the antenna surface 81H is open on the base main surface 71. That is, the antenna surface 81H is open upward.
  • the opening of the antenna surface 81H has a circular shape with a part missing when viewed from above.
  • the opening of the antenna surface 81H includes an opening end 81Ha on the first base side surface 73 side, an opening end 81Hb on the third base side surface 75 side, and an opening on the fourth base side surface 76 side. It is missing at the end 81Hc.
  • the opening ends 81Ha to 81Hc are each formed in a straight line.
  • the opening end 81Ha of the antenna surface 81H is formed at a position overlapping the first base side surface 73
  • the opening end 81Hb is formed at a position overlapping the third base side surface 75
  • the opening end 81Hc is the first. 4 It is formed at a position overlapping with the base side surface 76.
  • the reflective film 82H is formed on the antenna surface 81H.
  • the reflective film 82H is formed over the entire antenna surface 81H.
  • the reflective film 82H is not formed on the base main surface 71 of the individual antenna base 70H.
  • the opening of the reflective film 82H has the same shape as the opening of the antenna surface 81H. That is, when viewed from above, the opening of the reflective film 82H has an opening end 82Ha at a position overlapping the opening end 81Ha of the antenna surface 81H, an opening end 82Hb at a position overlapping the opening end 81Hb of the antenna surface 81H, and an antenna surface 81H. It has an opening end 82Hc at a position overlapping the opening end 81Hc of the above. When viewed from above, the opening ends 82Ha to 82Hc are each formed in a straight line.
  • the reflective film 82H When viewed from above, the reflective film 82H is formed so that its center point P2 is at a position different from the center of the individual antenna base 70H in the x direction. In the present embodiment, the reflective film 82H is formed so that the center point P2 thereof is closer to the side surface 73 of the first base in the x direction than the center of the individual antenna base 70H in the x direction when viewed from above. When viewed from above, the reflective film 82H is formed so that its center point P2 is at the center of the individual antenna base 70H in the y direction in the y direction.
  • the center point P2 of the reflective film 82H and the center point of the antenna surface 81H coincide with each other, and the shape of the reflective film 82H and the shape of the antenna surface 81H are substantially the same.
  • the antenna surface 81H is formed so that its center point is different from the center of the individual antenna base 70H in the x direction.
  • the portion of the outer peripheral edge of the arc-shaped outer peripheral edge of the reflective film 82H that connects both end edges in the first direction which is the arrangement direction of the reflective film 82H and the reflective film 82G, has an arc-shaped central angle of less than 180 °. It is formed.
  • the portion of the outer peripheral edge of the arcuate shape of the reflective film 82H connecting both end edges in the first direction (y direction in the present embodiment) when viewed from above is a circle having a central angle ⁇ h of less than 180 °. It is formed in an arc shape.
  • the central angle ⁇ h is preferably less than 90 °.
  • the antenna surface 81H and the antenna surface 81G are arranged in the arcuate outer peripheral edge of the antenna surface 81H, similarly to the reflective film 82H.
  • the portion connecting both end edges in the first direction (y direction in the present embodiment) is formed in an arc shape having a central angle of less than 180 °.
  • the length LS3 of the perpendicular line passing through the center point P2 of the reflective film 82H among the perpendicular lines to the opening end 82Ha of the reflective film 82H is smaller than the radius RH of the reflective film 82H.
  • the length LS4 of the perpendicular line passing through the center point P2 of the reflective film 82H among the perpendicular lines to the opening end 82Hb of the reflective film 82H is smaller than the radius RH of the reflective film 82H.
  • the length LS5 of the perpendicular line passing through the center point P2 of the reflective film 82H among the perpendicular lines with respect to the open end 82Hc of the reflective film 82H is smaller than the radius RH of the reflective film 82H.
  • the vertical line of the reflective film 82H with respect to the open end 82Ha is a straight line extending along the x direction
  • the vertical line of the reflective film 82H with respect to the open end 82Hb and the vertical line of the reflective film 82H with respect to the open end 82Hc are along the y direction, respectively. It is a straight line that extends.
  • the length LS3 is a length along a second direction orthogonal to the first direction, and the lengths LS4 and LS5 are lengths along the first direction, respectively. Therefore, the length (LS3 + RH) of the reflective film 82H in the second direction is shorter than the diameter (RH ⁇ 2) of the reflective film 82H. Further, the length (LS4 + LS5) of the reflective film 82H in the first direction is shorter than the diameter of the reflective film 82H. In this way, the size of the reflective film 82H along the first direction, which is the direction in which the reflective films 82G to 82I (see FIG. 37) are arranged when viewed from above, is such that the reflective films 82H, 82E, 82B are arranged.
  • the third direction is a direction that intersects both the first direction and the second direction when viewed from above. More specifically, the third direction is within the range of the central angle ⁇ h and is a direction excluding the second direction. Further, when viewed from above, it can be said that the size of the reflective film 82H along the second direction is smaller than the size of the reflective film 82H along the third direction.
  • the reflective film 82H and the antenna surface 81H have substantially the same shape when viewed from above, the length of the perpendicular line passing through the center point of the antenna surface 81H and the antenna surface among the perpendicular lines of the opening ends 81Ha to 81Hc of the antenna surface 81H.
  • the relationship with the radius of 81H is the same as the relationship between the lengths LR3 to LR5 of the reflective film 82H and the radius RH of the reflective film 82H.
  • a portion connecting both ends of the reflective film 82H in the x direction in a cross-sectional view in which the individual antenna base 70H is cut in a plane along the x direction and the z direction through the center point P2 of the reflective film 82H. Is formed in an arc shape having a central angle of less than 180 °.
  • both ends of the reflective film 82H in the y direction are connected in a cross-sectional view in which the individual antenna base 70H is cut in a plane along the y direction and the z direction through the center point P2 of the reflective film 82H.
  • the portion is formed in an arc shape having a central angle of less than 180 °.
  • the portion connecting both ends of the antenna surface 81H in the x-direction is ,
  • the central angle is formed in an arc shape of less than 180 °.
  • a portion connecting both ends of the antenna surface 81H in the y direction in a cross-sectional view of the individual antenna base 70H cut in a plane along the y direction and the z direction through the center point of the antenna surface 81H. Is formed in an arc shape having a central angle of less than 180 °.
  • the individual antenna base 70H has a peripheral wall portion 78H that surrounds a portion of the opening of the antenna recess 80H other than the portion where a part of the opening is missing.
  • the peripheral wall portion 78H constitutes the base main surface 71 of the individual antenna base 70H.
  • the antenna surface 81A of the antenna recess 80A of the individual antenna base 70A, the antenna surface 81D of the antenna recess 80D of the individual antenna base 70D, and the antenna surface 81I of the antenna recess 80I of the individual antenna base 70I each have the same shape as the antenna surface 81H. Is. Further, the reflective films 82A, 82D, and 82I have the same shape as the reflective film 82H, respectively.
  • the individual antenna bases 70I are arranged in the same direction as the individual antenna bases 70H, and the individual antenna bases 70A and 70D are arranged in different directions from the individual antenna bases 70H.
  • the second base side surfaces of the individual antenna bases 70A and 70D each constitute the third base side surface 75T of the antenna base 70, and the second base side surfaces of the individual antenna bases 70H and 70I are the second base side surfaces 74T of the antenna base 70, respectively. Consists of.
  • the third base side surface of the individual antenna base 70A constitutes the first base side surface 73T of the antenna base 70.
  • the fourth base side surface of the individual antenna base 70H constitutes the fourth base side surface 76T of the antenna base 70.
  • the individual antenna bases 70B, 70C, 70E, and 70F have the same shape as each other. Therefore, as an example, the configuration of the individual antenna base 70B shown in FIG. 51 will be described, and the description of the configuration of the individual antenna bases 70C, 70E, 70F will be omitted.
  • the individual antenna base 70B has a base back surface 72 as a surface intersecting in the z direction.
  • the individual antenna base 70B does not have a base main surface.
  • the back surface 72 of the base is a surface that intersects the z direction, and is orthogonal to the z direction in the present embodiment.
  • the shape of the back surface 72 of the base when viewed from the z direction is square.
  • the individual antenna base 70B has a first base side surface 73, a second base side surface 74, a third base side surface 75, and a fourth base side surface 76 as four base side surfaces. These base side surfaces 73 to 76 are surfaces facing sideways in the terahertz device 10 (antenna base 70). Each base side surface 73 to 76 is a surface in a direction orthogonal to the base back surface 72.
  • the first base side surface 73 and the second base side surface 74 are surfaces facing each other in the x direction. When viewed from the z direction, the side surfaces 73 and 74 of each base extend along the y direction.
  • the length of each base side surface 73, 74 of the individual antenna base 70B in the y direction is shorter than the length of each base side surface 73, 74 of the individual antenna base 70G in the y direction. Further, the length of each base side surface 73, 74 of the individual antenna base 70B in the y direction is equal to the length of each base side surface 73, 74 of the individual antenna base 70H in the y direction.
  • the third base side surface 75 and the fourth base side surface 76 are surfaces facing each other in the y direction. When viewed from the z direction, the side surfaces 75 and 76 of each base extend along the x direction. The length of each base side surface 75,76 of the individual antenna base 70B in the x direction is shorter than the length of each base side surface 75,76 of the individual antenna bases 70G, 70H in the x direction.
  • the antenna surface 81B of the antenna recess 80B is recessed in a substantially spherical shape.
  • the antenna surface 81B is curved so as to be convex toward the back surface 72 of the base.
  • the antenna surface 81B is curved so as to be convex toward the back surface 72 of the base in a cross-sectional view in which the individual antenna base 70B is cut in a plane along the y direction and the z direction.
  • the antenna surface 81B is open upward.
  • the opening of the antenna surface 81B is square when viewed from above.
  • the opening of the antenna surface 81B includes an opening end 81Ba which is an end on the first base side surface 73 side and an opening end 81Bb which is an end on the second base side surface 74 side.
  • the opening end 81Bc, which is the end on the side surface 75 of the third base, and the opening end 81Bd, which is the end on the side surface 76 of the fourth base, are missing.
  • Each of these open ends 81Ba to 81Bd is formed in a straight line when viewed from above.
  • the opening end 81Ba of the antenna surface 81B is formed at a position overlapping the first base side surface 73
  • the opening end 81Bb is formed at a position overlapping the second base side surface 74
  • the opening end 81Bc is the first. 3 It is formed at a position overlapping with the base side surface 75
  • the opening end 81Bd is formed at a position overlapping with the fourth base side surface 76.
  • the reflective film 82B is formed on the antenna surface 81B.
  • the reflective film 82B is formed over the entire antenna surface 81B.
  • the reflective film 82B is not formed on the base main surface 71 of the individual antenna base 70B.
  • the opening of the reflective film 82B has the same shape as the opening of the antenna surface 81B. That is, when viewed from above, the opening of the reflective film 82B has an opening end 82Ba at a position overlapping the opening end 81Ba of the antenna surface 81B, an opening end 82Bb at a position overlapping the opening end 81Bb of the antenna surface 81B, and an antenna surface 81B. It has an opening end 82Bc at a position overlapping with the opening end 81Bc and an opening end 82Bd at a position overlapping with the opening end 81Bd of the antenna surface 81B. These open ends 82Ba to Bd are formed in a straight line when viewed from above.
  • the reflective film 82B When viewed from above, the reflective film 82B is provided so that its center point P2 coincides with the center of the individual antenna base 70B in the x-direction and the y-direction. When viewed from above, the center point P2 of the reflective film 82B coincides with the center point of the antenna surface 81B. Therefore, when viewed from above, the center point of the antenna surface 81B is the x direction and y of the individual antenna base 70B. It is provided so as to coincide with the center of the direction.
  • the length LS6 of the perpendicular line passing through the center point P2 of the reflective film 82B among the perpendicular lines to the opening end 82Ba of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the length LS7 of the perpendicular line passing through the center point P2 of the reflective film 82B among the perpendicular lines to the opening end 82Bb of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the length LS8 of the perpendicular line passing through the center point P2 of the reflective film 82B among the perpendicular lines to the opening end 82Bc of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the length LS9 of the perpendicular line passing through the center point P2 of the reflective film 82B among the perpendicular lines to the opening end 82Bd of the reflective film 82B is smaller than the radius RB of the reflective film 82B.
  • the radius RB of the reflective film 82B indicates the radius when the reflective film 82B is circular without a notch, as shown by the two-dot chain line in FIG. 51 when viewed from above.
  • the vertical line of the reflective film 82B with respect to the open end 82Ba and the vertical line of the reflective film 82B with respect to the open end 82Bb are straight lines extending along the x direction, respectively, and the vertical line with respect to the open end 82Bc of the reflective film 82B and the open end of the reflective film 82B.
  • Each perpendicular to 82Bd is a straight line extending along the y direction.
  • the lengths LS6 and LS7 are lengths along a second direction (x direction in the present embodiment) orthogonal to the first direction (y direction in the present embodiment). Therefore, the length (LS6 + LS7) of the reflective film 82B in the second direction is smaller than the diameter (RB ⁇ 2) of the reflective film 82B. Further, the lengths LS8 and LS9 are lengths along the first direction. Therefore, the length (LS8 + LS9) of the reflective film 82B in the first direction is smaller than the diameter of the reflective film 82B. In this way, the size of the reflective film 82B along the first direction, which is the direction in which the reflective films 82A to 82C (see FIG.
  • the reflective films 82H, 82E, 82B are arranged when viewed from above, is such that the reflective films 82H, 82E, 82B are arranged. It can be said that it is smaller than the size of the reflective film 82B along the third direction, which is different from the second direction, which is the direction, and the first direction.
  • the third direction is a direction that intersects both the first direction and the second direction when viewed from above. Further, when viewed from above, it can be said that the size of the reflective film 82B along the second direction is smaller than the size of the reflective film 82B along the third direction.
  • the relationship with the radius of 81B is the same as the relationship between the lengths LR6 to LR9 of the reflective film 82B and the radius RB of the reflective film 82B.
  • the radius of the antenna surface 81B indicates the radius when the antenna surface 81B is a circle without a notch when viewed from above.
  • a portion connecting both ends of the reflective film 82B in the x direction in a cross-sectional view in which the individual antenna base 70B is cut in a plane along the x direction and the z direction through the center point P2 of the reflective film 82B. Is formed in an arc shape having a central angle of less than 180 °.
  • both ends of the reflective film 82B in the y direction are connected in a cross-sectional view in which the individual antenna base 70B is cut in a plane along the y direction and the z direction through the center point P2 of the reflective film 82B.
  • the portion is formed in an arc shape having a central angle of less than 180 °.
  • the portion connecting both ends of the antenna surface 81B in the x-direction is ,
  • the central angle is formed in an arc shape of less than 180 °.
  • a portion connecting both ends of the antenna surface 81B in the y direction in a cross-sectional view of the individual antenna base 70B cut in a plane along the y direction and the z direction through the center point of the antenna surface 81B. Is formed in an arc shape having a central angle of less than 180 °.
  • the antenna surface 81C of the antenna recess 80C of the individual antenna base 70C, the antenna surface 81E of the antenna recess 80E of the individual antenna base 70E, and the antenna surface 81F of the antenna recess 80F of the individual antenna base 70F each have the same shape as the antenna surface 81B. Is. Further, the reflective films 82C, 82E, and 82F each have the same shape as the reflective film 82B.
  • the first base side surfaces of the individual antenna bases 70B and 70C each constitute the first base side surface 73T of the antenna base 70.
  • the fourth base side surfaces of the individual antenna bases 70C and 70F each constitute the fourth base side surface 76T of the antenna base 70.
  • the gas space 92 is partitioned by the dielectric main surface 51 and the antenna surface 81, as in the first embodiment. Specifically, the opening of the antenna recess 80 is covered with the dielectric main surface 51. As a result, the gas space 92 is partitioned by the dielectric main surface 51 and the antenna surface 81, which is the inner surface of the antenna recess 80. More specifically, the gas space 92 is partitioned by a dielectric main surface 51 and antenna surfaces 81A to 81I. Specifically, the openings of the antenna recesses 80A to 80I are each covered with the dielectric main surface 51.
  • the adhesive layer 91 is provided along the peripheral edge of each opening of the antenna recesses 80A, 80D, 80G, 80H, and 80I.
  • the reflective films 82A to 82I are provided in the gas space 92, respectively.
  • the gas space 92 includes a plurality of gas spaces 92 partitioned by each of the antenna recesses 80A to 80I and the dielectric main surface 51.
  • the gas spaces corresponding to the adjacent individual antenna bases among the individual antenna bases 70A to 70I communicate with each other. In one example, as shown in FIG.
  • the gas space 92E partitioned by the dielectric main surface 51 and the antenna surface 81E has the gas space 92D partitioned by the dielectric main surface 51 and the antenna surface 81D and the dielectric main surface 51. It communicates with the gas space 92F partitioned by the antenna surface 81F and the antenna surface 81F. That is, the adjacent gas spaces 92D to 92F communicate with each other in the first direction (y direction in the present embodiment), which is the arrangement direction of the reflective films 82D to 82F. As shown in FIG.
  • the gas space 92E communicates with the gas space 92B partitioned by the dielectric main surface 51 and the antenna surface 81B and the gas space 92H partitioned by the dielectric main surface 51 and the antenna surface 81H.
  • the adjacent gas spaces 92B, 92E, 92H communicate with each other in the second direction (x direction in the present embodiment), which is the arrangement direction of the reflective films 82B, 82E, 82H.
  • the gas space 92 Since the gas exists in the gas space 92, the relationship between the refractive index of the dielectric 50, the gas space 92, and the terahertz element 20 and the propagation path of the electromagnetic wave are the same as those in the first embodiment.
  • the gas space 92 corresponding to the antenna surfaces 81A to 81C, 81F, 81H communicates with the outside of the antenna base 70 (outside of the terahertz device 10).
  • the terahertz device 10 includes a first electrode 101 and a second electrode 102, and a first conductive portion 110 and a second conductive portion 120, as in the first embodiment.
  • both the electrodes 101 and 102 and the conductive portions 110 and 120 are provided as common electrodes for the individual antenna bases 70A to 70I.
  • the first electrode 101 is arranged near the first dielectric side surface 53 and the third dielectric side surface 55.
  • the first electrode 101 is provided closer to the first dielectric side surface 53 than the first base side surface 73T of the antenna base 70.
  • the shape of the first electrode 101 viewed from the z direction is a rectangular shape in which the y direction is the long side direction and the x direction is the short side direction.
  • the second electrode 102 is arranged near the second dielectric side surface 54 and the fourth dielectric side surface 56.
  • the second electrode 102 is provided closer to the second dielectric side surface 54 than the second base side surface 74T of the antenna base 70.
  • the shape of the second electrode 102 as viewed from the z direction is a rectangular shape in which the y direction is the long side direction and the x direction is the short side direction.
  • the first conductive section 110 includes the first common wiring section 116A and the second common wiring section 116B, the first wiring section 117A, the second wiring section 117B, the third wiring section 117C, the fourth wiring section 117D, and the fifth wiring section. It has 117E, a sixth wiring unit 117F, a seventh wiring unit 117G, an eighth wiring unit 117H, a ninth wiring unit 117I, and a wiring base portion 118.
  • the wiring base 118 is a wiring portion connected to the first electrode 101, and is arranged at a position overlapping the first electrode 101 when viewed from the z direction.
  • the shape of the wiring base 118 viewed from the z direction is a strip extending in the y direction.
  • a part of the wiring base 118 has a portion protruding closer to the third dielectric side surface 55 than the third base side surface 75T of the antenna base 70.
  • the first conductive portion 110 has a first pillar portion 115 that connects the wiring base portion 118 and the first electrode 101.
  • the first pillar portion 115 is arranged at a position where both the wiring base portion 118 and the first electrode 101 are overlapped with each other when viewed from the z direction.
  • the first pillar portion 115 is arranged between the wiring base portion 118 and the first electrode 101 in the z direction, and connects the wiring base portion 118 and the first electrode 101.
  • the first common wiring portion 116A is a wiring portion connected to the wiring base portion 118, and is arranged closer to the third dielectric side surface 55 than the third base side surface 75T of the antenna base 70.
  • the first common wiring portion 116A extends along the x direction. When viewed from the y direction, the first common wiring portion 116A extends so as to overlap the terahertz element 20A, the terahertz element 20D, and the terahertz element 20G.
  • the first wiring unit 117A, the fourth wiring unit 117D, and the seventh wiring unit 117G are connected to the first common wiring unit 116A.
  • the first wiring unit 117A is a wiring unit that connects the first common wiring unit 116A and the terahertz element 20A.
  • the first wiring portion 117A extends from the first common wiring portion 116A toward the terahertz element 20A along the y direction.
  • the fourth wiring unit 117D is a wiring unit that connects the first common wiring unit 116A and the terahertz element 20D.
  • the fourth wiring portion 117D extends from the first common wiring portion 116A toward the terahertz element 20D along the y direction.
  • the 7th wiring unit 117G is a wiring unit that connects the 1st common wiring unit 116A and the terahertz element 20G.
  • the seventh wiring portion 117G extends from the first common wiring portion 116A toward the terahertz element 20G along the y direction.
  • the second common wiring portion 116B is a wiring portion connected to the wiring base portion 118, and is arranged closer to the fourth base side surface 76T than the center of the antenna base 70 in the y direction. Specifically, the second common wiring unit 116B is between the terahertz element 20B and the terahertz element 20C, between the terahertz element 20E and the terahertz element 20F, and between the terahertz element 20H and the terahertz element 20I in the y direction. It is placed in between.
  • the second common wiring unit 116B is the boundary between the individual antenna base 70B and the individual antenna base 70C, the boundary between the individual antenna base 70E and the individual antenna base 70F, and the individual antenna base 70H and the individual antenna base 70H. It is arranged at a position overlapping each of the boundaries with the antenna base 70I.
  • the second common wiring unit 116B is connected to the second wiring unit 117B, the third wiring unit 117C, the fifth wiring unit 117E, the sixth wiring unit 117F, the eighth wiring unit 117H, and the ninth wiring unit 117I.
  • the second wiring unit 117B is a wiring unit that connects the second common wiring unit 116B and the terahertz element 20B.
  • the second wiring portion 117B extends from the second common wiring portion 116B toward the terahertz element 20B along the y direction.
  • the third wiring unit 117C is a wiring unit that connects the second common wiring unit 116B and the terahertz element 20C.
  • the third wiring portion 117C extends from the second common wiring portion 116B toward the terahertz element 20C along the y direction.
  • the fifth wiring unit 117E is a wiring unit that connects the second common wiring unit 116B and the terahertz element 20E.
  • the fifth wiring unit 117E extends from the second common wiring unit 116B toward the terahertz element 20E along the y direction.
  • the sixth wiring unit 117F is a wiring unit that connects the second common wiring unit 116B and the terahertz element 20F.
  • the sixth wiring portion 117F extends from the second common wiring portion 116B toward the terahertz element 20F along the y direction.
  • the eighth wiring unit 117H is a wiring unit that connects the second common wiring unit 116B and the terahertz element 20H.
  • the eighth wiring portion 117H extends from the second common wiring portion 116B toward the terahertz element 20H along the y direction.
  • the ninth wiring unit 117I is a wiring unit that connects the second common wiring unit 116B and the terahertz element 20I.
  • the ninth wiring portion 117I extends from the second common wiring portion 116B toward the terahertz element 20I along the y direction.
  • the second conductive section 120 includes the first common wiring section 126A and the second common wiring section 126B, the first wiring section 127A, the second wiring section 127B, the third wiring section 127C, the fourth wiring section 127D, and the fifth wiring section. It has 127E, a sixth wiring unit 127F, a seventh wiring unit 127G, an eighth wiring unit 127H, a ninth wiring unit 127I, and a wiring base portion 128.
  • the wiring base portion 128 is a wiring portion connected to the second electrode 102, and is provided at a position overlapping the second electrode 102 when viewed from the z direction.
  • the shape of the wiring base 128 viewed from the z direction is a strip extending in the y direction.
  • a part of the wiring base 118 has a portion protruding closer to the second dielectric side surface 54 than the second base side surface 74T of the antenna base 70.
  • the second conductive portion 120 has a second pillar portion 125 that connects the wiring base portion 128 and the second electrode 102.
  • the second pillar portion 125 is arranged at a position where both the wiring base portion 128 and the second electrode 102 are overlapped with each other when viewed from the z direction.
  • the second pillar portion 125 is arranged between the wiring base portion 128 and the second electrode 102 in the z direction, and connects the wiring base portion 128 and the second electrode 102.
  • the first common wiring portion 126A is a wiring portion connected to the wiring base portion 128, and is arranged closer to the fourth dielectric side surface 56 than the fourth base side surface 76T of the antenna base 70.
  • the first common wiring portion 126A extends along the x direction. When viewed from the y direction, the first common wiring portion 126A extends so as to overlap the terahertz element 20I, the terahertz element 20F, and the terahertz element 20C.
  • a third wiring unit 127C, a sixth wiring unit 127F, and a ninth wiring unit 127I are connected to the first common wiring unit 126A.
  • the third wiring unit 127C is a wiring unit that connects the first common wiring unit 126A and the terahertz element 20C.
  • the third wiring unit 127C extends from the first common wiring unit 126A toward the terahertz element 20C along the y direction.
  • the sixth wiring unit 127F is a wiring unit that connects the first common wiring unit 126A and the terahertz element 20F.
  • the sixth wiring unit 127F extends from the first common wiring unit 126A toward the terahertz element 20F along the y direction.
  • the ninth wiring unit 127I is a wiring unit that connects the first common wiring unit 126A and the terahertz element 20I.
  • the ninth wiring portion 127I extends from the first common wiring portion 126A toward the terahertz element 20I along the y direction.
  • the second common wiring portion 126B is a wiring portion connected to the second electrode 102, and is arranged closer to the side surface 75T of the third base than the center of the antenna base 70 in the y direction. Specifically, the second common wiring unit 126B is between the terahertz element 20G and the terahertz element 20H, between the terahertz element 20D and the terahertz element 20E, and between the terahertz element 20A and the terahertz element 20B in the y direction. It is placed in between.
  • the second common wiring unit 126B is the boundary between the individual antenna base 70G and the individual antenna base 70H, the boundary between the individual antenna base 70D and the individual antenna base 70E, and the individual antenna base 70A and the individual. It is arranged at a position overlapping each of the boundaries with the antenna base 70B.
  • the first wiring unit 127A, the second wiring unit 127B, the fourth wiring unit 127D, the fifth wiring unit 127E, the seventh wiring unit 127G, and the eighth wiring unit 127H are connected to the second common wiring unit 126B.
  • the first wiring unit 127A is a wiring unit that connects the second common wiring unit 126B and the terahertz element 20A.
  • the first wiring unit 127A extends from the second common wiring unit 126B toward the terahertz element 20A along the y direction.
  • the second wiring unit 127B is a wiring unit that connects the second common wiring unit 126B and the terahertz element 20B.
  • the second wiring portion 127B extends from the second common wiring portion 126B toward the terahertz element 20B along the y direction.
  • the fourth wiring unit 127D is a wiring unit that connects the second common wiring unit 126B and the terahertz element 20D.
  • the fourth wiring unit 127D extends from the second common wiring unit 126B toward the terahertz element 20D along the y direction.
  • the fifth wiring unit 127E is a wiring unit that connects the second common wiring unit 126B and the terahertz element 20E.
  • the fifth wiring unit 127E extends from the second common wiring unit 126B toward the terahertz element 20E along the y direction.
  • the 7th wiring unit 127G is a wiring unit that connects the 2nd common wiring unit 126B and the terahertz element 20G.
  • the seventh wiring portion 127G extends from the second common wiring portion 126B toward the terahertz element 20G along the y direction.
  • the eighth wiring unit 127H is a wiring unit that connects the second common wiring unit 126B and the terahertz element 20H.
  • the eighth wiring portion 127H extends from the second common wiring portion 126B toward the terahertz element 20H along the y direction.
  • connection structure with the terahertz element 20 in each wiring unit 117A to 117I and 127A to 127I will be described. Since this connection structure is common to the wiring units 117A to 117I and 127A to 127I, the configuration of the first wiring units 117A and 127A will be described, and the configurations of the wiring units 117B to 117I and 127B to 127I will be described. Omit.
  • the first wiring portion 117A includes a first element facing portion 111 facing the first pad 33a of the terahertz element 20A in the z direction, a first element facing portion 111, and a first common wiring portion.
  • a first connection portion 113 for connecting to the 116A is provided.
  • the first element facing portion 111 constitutes the tip portion of the first wiring portion 117A.
  • the first element facing portion 111 is provided between the terahertz element 20A and the reflective film 82A, and is formed so that at least a part thereof overlaps with the first pad 33a when viewed from the z direction.
  • the first element facing portion 111 faces the reflective film 82A in the z direction.
  • the first element facing portion 111 extends in the x direction in correspondence with the first pad 33a extending in the x direction.
  • the first element facing portion 111 is formed in a rectangular shape with the x direction as the long side direction and the y direction as the short side direction.
  • the first wiring portion 117A includes a first bump 114 provided between the first element facing portion 111 and the first pad 33a.
  • the terahertz element 20A is flip-chip mounted on the first element facing portion 111 via the first bump 114.
  • the first pad 33a and the first element facing portion 111 are electrically connected by the first bump 114.
  • a plurality of first bumps 114 are provided.
  • a plurality of first bumps 114 (two in the present embodiment) are arranged in the x direction so that the first pad 33a and the first element facing portion 111 extend in the x direction.
  • the first element facing portion 111 and the first bump 114 are arranged at positions that do not overlap with the receiving point P1 when viewed from the z direction.
  • the shape of the first bump 114 is, for example, a square columnar shape. However, the shape of the first bump 114 is not limited to this and is arbitrary.
  • the first bump 114 may have a single-layer structure or a plurality of laminated structures.
  • the first bump 114 may have a laminated structure of a metal layer containing Cu, a metal layer containing Ti, and an alloy layer containing Sn.
  • the alloy layer containing Sn is, for example, a Sn—Sb-based alloy layer or a Sn—Ag-based alloy layer.
  • a first insulating layer surrounding the first bump 114 may be formed on the first element facing portion 111.
  • the first insulating layer is formed in a frame shape that opens upward, and it is preferable that the first bump 114 is housed in the first insulating layer. As a result, it is possible to prevent the first bump 114 from sagging laterally.
  • the first insulating layer is not essential.
  • the first connection portion 113 is provided between the first element facing portion 111 and the first common wiring portion 116A, and extends in the y direction with the x direction as the width direction. A part of the first connecting portion 113 faces the reflective film 82A in the z direction. That is, a part of the first connecting portion 113 is provided at a position overlapping with the reflective film 82A. In other words, the first connecting portion 113 has a portion that overlaps with the reflective film 82A and a portion that does not overlap with the reflective film 82A when viewed from the z direction.
  • the first connection portion 113 of the present embodiment is formed to be narrower than the first element facing portion 111. Specifically, the width (length in the x direction) of the first connecting portion 113 is set shorter than the width (length in the x direction) of the first element facing portion 111.
  • the first connection portion 113 is located near the first element facing portion 111 in the longitudinal direction of the first connection main body portion 113a formed narrower than the first element facing portion 111 and the first connection main body portion 113a.
  • a tapered portion 113b on the first element side is provided.
  • the first connection main body portion 113a extends in the y direction as the longitudinal direction and has a constant width in the x direction.
  • the first connection main body portion 113a overlaps with the reflective film 82A when viewed from the z direction. It can be said that the first connection main body portion 113a connects the first element facing portion 111 and the first common wiring portion 116A.
  • the width W1 of the first connection main body portion 113a is shorter than the width W2 of the first element facing portion 111.
  • the first element side taper portion 113b connects the first connection main body portion 113a and the first element facing portion 111.
  • the taper portion 113b on the first element side is formed at a position adjacent to the terahertz element 20A in the x direction when viewed from the z direction, and overlaps with the reflective film 82A when viewed from the z direction, for example.
  • the taper portion 113b on the first element side is gradually formed wider toward the first element facing portion 111 from the first connection main body portion 113a.
  • the first element-side tapered portion 113b has a pair of first element-side inclined surfaces 113ba that are inclined so as to gradually separate from each other toward the first element facing portion 111 from the first connection main body portion 113a. ing.
  • the first pad 33a and the first electrode 101 of the terahertz element 20A are the first bump 114, the first element facing portion 111, the first connection portion 113, the first common wiring portion 116A, and the wiring base portion 118. And are electrically connected via the first pillar portion 115.
  • the first wiring unit 127A constitutes a part of the conductive path that electrically connects the terahertz element 20A and the second electrode 102.
  • the first wiring unit 117A and the first wiring unit 127A are formed at positions shifted by 180 ° from each other when viewed from the z direction, and face each other in the y direction. It can be said that both the wiring portions 117A and 127A extend from the terahertz element 20A in the radial direction of the reflective film 82A when viewed from the z direction.
  • both wiring portions 117A and 127A of the present embodiment extend in a direction away from the terahertz element 20A when viewed from the z direction.
  • the first wiring unit 117A extends in the y direction from the terahertz element 20A when viewed from the z direction toward the third dielectric side surface 55
  • the first wiring unit 127A extends in the y direction when viewed from the z direction. It extends in the y direction from 20A toward the fourth dielectric side surface 56.
  • the first wiring portion 127A connects the second element facing portion 121 facing the second pad 34a of the terahertz element 20A in the z direction, the second element facing portion 121, and the second common wiring portion 126B. It is provided with a connection unit 123.
  • the second element facing portion 121 constitutes the tip portion of the first wiring portion 127A.
  • the second element facing portion 121 is provided between the terahertz element 20A and the reflective film 82A, and is formed so that at least a part thereof overlaps with the second pad 34a when viewed from the z direction.
  • the second element facing portion 121 faces the reflective film 82A in the z direction.
  • the second element facing portion 121 extends in the x direction in correspondence with the second pad 34a extending in the x direction.
  • the second element facing portion 121 is formed in a rectangular shape with the x direction as the longitudinal direction and the y direction as the lateral direction.
  • both element facing portions 111 and 121 are arranged to face each other in the y direction in correspondence with the pads 33a and 34a being separated in the y direction.
  • a dielectric 50 exists between the two element facing portions 111 and 121, and is insulated by the dielectric 50.
  • both wiring portions 117A and 127A extend in a direction away from each other from the element facing portions 111 and 121 arranged apart from each other.
  • both wiring portions 117A and 127A are arranged symmetrically in the y direction with respect to the receiving point P1. As a result, the influence on the radiation mode due to the asymmetry of both wiring portions 117A and 127A can be suppressed. Both wiring portions 117A and 127A may be arranged symmetrically in the x direction with respect to the receiving point P1.
  • the first wiring portion 127A includes a second bump 124 provided between the second element facing portion 121 and the second pad 34a.
  • the terahertz element 20A is flip-chip mounted on the second element facing portion 121 via the second bump 124.
  • the second pad 34a and the second element facing portion 121 are electrically connected by the second bump 124.
  • a plurality of second bumps 124 are provided.
  • a plurality of second bumps 124 (two in the present embodiment) are arranged in the x direction in correspondence with the second pad 34a and the second element facing portion 121 extending in the x direction.
  • the second element facing portion 121 and the second bump 124 are arranged at positions that do not overlap with the receiving point P1 when viewed from the z direction.
  • the first bump 114 and the second bump 124 are arranged so as to face each other so as to be separated from each other in the x direction, and are aligned in the y direction.
  • the present invention is not limited to this, and the first bump 114 and the second bump 124 may be arranged so as to be offset in the y direction.
  • the second connection portion 123 is provided between the second element facing portion 121 and the second common wiring portion 126B, and extends in the y direction with the x direction as the width direction. A part of the second connecting portion 123 faces the reflective film 82A in the z direction. That is, a part of the second connecting portion 123 is provided at a position overlapping with the reflective film 82A. In other words, the second connecting portion 123 has a portion that overlaps with the reflective film 82A and a portion that does not overlap with the reflective film 82A when viewed from the z direction.
  • the second connection portion 123 of the present embodiment is formed to be narrower than the second element facing portion 121. Specifically, the width (length in the x direction) of the second connecting portion 123 is set shorter than the width (length in the x direction) of the second element facing portion 121.
  • the second connection portion 123 is located near the second connection main body portion 123a formed narrower than the second element facing portion 121 and the second element facing portion 121 in the longitudinal direction of the second connection main body portion 123a.
  • the second element side tapered portion 123b is provided.
  • the second connection main body portion 123a extends in the y direction as the longitudinal direction and has a constant width in the x direction.
  • the second connection main body portion 123a overlaps with the reflective film 82A when viewed from the z direction. It can be said that the second connection main body portion 123a connects the second element facing portion 121 and the second common wiring portion 126B.
  • the width W3 of the second connection main body portion 123a is shorter than the width W4 of the second element facing portion 121.
  • the second element side tapered portion 123b is gradually formed wider toward the second element facing portion 121 from the second connection main body portion 123a.
  • the second element-side tapered portion 123b has a pair of second element-side inclined surfaces 123ba that are inclined so as to gradually separate from each other toward the second element facing portion 121 from the second connection main body portion 123a. ing.
  • the second pad 34a and the second electrode 102 of the terahertz element 20A are the second bump 124, the second element facing portion 121, the second connecting portion 123, the second common wiring portion 126B, and the wiring base portion 128. And are electrically connected via the second pillar portion 125.
  • Each of the reflective films 82A to 82I of this embodiment is electrically in a floating state. More specifically, the reflective films 82A to 82I are electrically insulated from both the electrodes 101 and 102 and the conductive portions 110 and 120, respectively.
  • FIG. 56 is an enlarged view of the individual antenna bases 70D, 70E, 70G, 70H and their surroundings.
  • the receiving point P1 of the terahertz element 20D and the receiving point P1 of the terahertz element 20E The inter-element distance Lde, which is the distance between the elements, is smaller than the diameter of the reflective film 82D (radius RD ⁇ 2 of the reflective film 82D). Although not shown, the inter-element distance Lde is smaller than the diameter of the reflective film 82E.
  • the reflective film 82E since the reflective film 82E has the same shape as the reflective film 82B, it can be said that the diameter of the reflective film 82E is the radius RB of the reflective film 82B (see FIG. 51) ⁇ 2.
  • the distance Ldg is smaller than the diameter of the reflective film 82D. Further, the inter-element distance Ldg is smaller than the diameter of the reflective film 82G (radius RG ⁇ 2 of the reflective film 82G).
  • the distance Lgh is smaller than the diameter of the reflective film 82G. Further, the inter-element distance Lgh is smaller than the diameter of the reflective film 82H (radius RH ⁇ 2 of the reflective film 82H).
  • the distance Leh is smaller than the diameter of the reflective film 82G. Further, the distance between elements Leh is smaller than the diameter of the reflective film 82E.
  • the distances between the elements in the first direction and the second direction regarding the terahertz elements 20A, 20B, 20C, 20F, and 20I are also the first of the above-mentioned terahertz elements 20D, 20E, 20G, and 20H. It is the same as the distance between elements in the direction and the second direction.
  • the inter-element distance which is the distance connecting the receiving points P1 of the adjacent terahertz elements 20 in the arrangement directions (first direction and second direction) of the plurality of individual antenna bases, is larger than the diameter of the reflective film 82. Also becomes smaller. Therefore, the terahertz elements 20 adjacent to each other in the arrangement direction can be brought close to each other.
  • effect According to the terahertz device 10 of the present embodiment, the following effects can be obtained in addition to the effects according to the first embodiment.
  • the arranged rows of terahertz elements 20G to 20I are arranged apart from each other in the x direction. According to this configuration, the detection range of the terahertz device 10 in the x direction can be expanded.
  • the second direction (in the present embodiment) which is the arrangement direction of the reflective film 82A of the individual antenna base 70A, the reflective film 82D of the individual antenna base 70D, and the reflective film 82G of the individual antenna base 70G when viewed from the z direction.
  • the size of the reflective films 82A, 82D, 82G along the x direction) is smaller than the diameter of the reflective films 82A, 82D, 82G.
  • adjacent terahertz elements 20 can be brought close to each other in the second direction. Therefore, the resolution in the detection range of the terahertz device 10 can be improved.
  • the length of the reflective film 82A, the length of the reflective film 82D, and the length of the reflective film 82G are maintained while each of the reflective films 82A, 82D, and 82G maintains a spherical shape formed with a constant curvature. It is possible to form the reflective films 82A, 82D, 82G having a relationship in which each of the lengths LS1 is shorter than the radius of the reflective films 82A, 82D, 82G. Since the reflective film 82D has the same shape as the reflective film 82A, the length of the reflective film 82D is equal to the length LS3 of the reflective film 82A.
  • the boundaries of the adjacent reflective films 82 among the reflective films 82A to 82I are each formed in a straight line.
  • the reflective films 82A to 82I each maintain a spherical shape formed with a constant curvature, while the reflective films 82A to 82I reflect the lengths in the first direction and the lengths in the second direction, respectively.
  • Reflective films 82A to 82I having a relationship shorter than the radius of the films 82A to 82I can be formed, respectively.
  • the gas space 92G is defined at both the boundary between the reflective film 82A (antenna surface 81A) and the reflective film 82D (antenna surface 81D) and the boundary between the reflective film 82D (antenna surface 81D) and the reflective film 82G (antenna surface 81G). It is connected in the second direction.
  • the gas space partitioned by the antenna surface 81C and the dielectric 50, the gas space partitioned by the antenna surface 81F and the dielectric 50, and the gas space partitioned by the antenna surface 81I and the dielectric 50. Is the same. According to this configuration, the effect according to the above (3-2) can be obtained.
  • Each of the above embodiments is an example of possible embodiments of the terahertz device according to the present disclosure, and is not intended to limit the embodiments.
  • the terahertz device according to the present disclosure may take a form different from the form exemplified in each of the above-described embodiments.
  • One example thereof is a form in which a part of the configuration of each of the above embodiments is replaced, changed, or omitted, or a new configuration is added to each of the above embodiments.
  • the following modifications can be combined with each other as long as there is no technical conflict.
  • the following modification is basically described using the first embodiment, but can be applied to other embodiments as long as there is no technical contradiction.
  • At least one of the taper portion 113b on the first element side and the taper portion 113c on the first electrode side may be omitted.
  • at least one of the second element side tapered portion 123b and the second electrode side tapered portion 123c may be omitted.
  • the taper portion 113b on the first element side may be omitted.
  • the second element side tapered portion 123b may be omitted.
  • a part of the connecting portions 113 and 123 may have the same width as the element facing portions 111 and 121. That is, at least a part of the connecting portions 113 and 123 may be narrower than the element facing portions 111 and 121.
  • the widths W1 and W3 of the connection main body portions 113a and 123a and the widths W2 and W4 of the element facing portions 111 and 121 may be the same. That is, the connecting portions 113 and 123 and the element facing portions 111 and 121 may have the same width. Further, in the first and second embodiments, the widths W1 and W3 of the connection main body portions 113a and 123a and the widths of the electrode facing portions 112 and 122 may be the same. The widths W2 and W4 of the element facing portions 111 and 121 and the widths of the electrode facing portions 112 and 122 may be the same or different.
  • the specific shapes of the element facing portions 111, 121 and the electrode facing portions 112, 122 are arbitrary, and may be circular or elliptical when viewed from the z direction.
  • the specific shapes of the element facing portions 111 and 121 are arbitrary, and may be circular or elliptical when viewed from the z direction.
  • the electrodes 101 and 102 may be formed at a position overlapping with the reflective film 82 when viewed from the z direction.
  • the first electrode 101 and the conductive portion 110 and the second electrode 102 and the conductive portion 120 may be arranged with a deviation of 180 ° around the receiving point P1 of the terahertz element 20. .. In other words, even if the first electrode 101 and the conductive portion 110 and the second electrode 102 and the conductive portion 120 are arranged to face each other in a direction orthogonal to the arrangement direction of the individual antenna bases 70A to 70C when viewed from above. good.
  • the first electrode 101A and the conductive portion 110A and the second electrode 102A and the conductive portion 120A are arranged so as to face each other in the x direction, and the first electrode 101B and the conductive portion 110B are arranged.
  • the second electrode 102B and the conductive portion 120B are arranged to face each other in the x direction, and the first electrode 101C and the conductive portion 110C and the second electrode 102C and the conductive portion 120C are arranged to face each other in the x direction.
  • the first electrodes 101A to 101C are provided on the first protrusion 61 of the dielectric 50
  • the second electrodes 102A to 102C are provided on the second protrusion 62 of the dielectric 50. ..
  • both conductive portions 110A to 110C and 120A to 120C are substantially the same as the shapes of both conductive portions 110A to 110C and 120A to 120C of the first embodiment.
  • the arrangement and shape of the first element facing portion 111 in the conductive portions 1110A to 110C is different from the arrangement and shape of the first element facing portion 111 of the first embodiment, and the arrangement and shape of the second element facing portion 121 in the conductive portions 120A to 120C. Is different from the second element facing portion 121 of the first embodiment.
  • the conductive portion 110A is arranged near the element side surface 23 of the terahertz element 20A, and the conductive portion 120A is arranged near the element side surface 24 of the terahertz element 20B.
  • both the conductive portions 110A and 120A are arranged in the center of the terahertz element 20A.
  • the width (length in the y direction) of the first element facing portion 111 of the conductive portion 110A is larger than the width of the first element facing portion 111 of the conductive portion 110A of the first embodiment, and the width of the conductive portion 120A faces the second element.
  • the width (length in the y direction) of the portion 121 is larger than the width of the second element facing portion 121 of the conductive portion 120A of the first embodiment. The same applies to the element facing portions 111 and 121 of the conductive portions 110B and 120B and the element facing portions 111 and 121 of the conductive portions 110C and 120C.
  • both electrodes 101 and 102 are opposite to the dielectric side surface of the first dielectric side surface 53 and the second dielectric side surface 54 of the dielectric 50 near the terahertz element 20 in the x direction. It may be arranged on the side dielectric side surface.
  • both electrodes 101A to 101D and 102A to 102D corresponding to the terahertz elements 20A to 20D arranged near the first dielectric side surface 53 are arranged near the second dielectric side surface 54.
  • both electrodes 101A to 101D and 102A to 102D are provided on the second protruding portion 62 of the dielectric 50, respectively. Therefore, when viewed from above, both the conductive portions 110A to 110D and 120A to 120D extend so as to straddle the individual antenna bases 70E to 70H in the x direction.
  • the conductive portion 110A is arranged at a position overlapping the peripheral wall portion 78E of the individual antenna base 70E.
  • the conductive portion 120A is arranged at a position overlapping the ends of the antenna surface 81E of the individual antenna base 70E in the y direction, whichever is closer to the third dielectric side surface 55.
  • both the conductive portions 110B and 120B are arranged at positions overlapping the vicinity of the boundary between the individual antenna base 70E and the individual antenna base 70F.
  • both the conductive portions 110C and 120C are arranged at positions overlapping the vicinity of the boundary between the individual antenna base 70F and the individual antenna base 70G.
  • both the conductive portions 110D and 120D are arranged at positions overlapping the vicinity of the boundary between the individual antenna base 70G and the individual antenna base 70H.
  • both electrodes 101E to 101H and 102E to 102H corresponding to the terahertz elements 20E to 20H arranged near the second dielectric side surface 54 are arranged near the first dielectric side surface 53.
  • both electrodes 101E to 101H and 102E to 102H are provided on the first protruding portion 61 of the dielectric 50, respectively. Therefore, when viewed from above, both the conductive portions 110E to 110H and 120E to 120H extend so as to straddle the individual antenna bases 70A to 70D in the x direction.
  • both the conductive portions 110E and 120E are arranged at positions overlapping the vicinity of the boundary between the individual antenna base 70A and the individual antenna base 70B.
  • both the conductive portions 110F and 120F are arranged at positions overlapping the vicinity of the boundary between the individual antenna base 70B and the individual antenna base 70C.
  • both the conductive portions 110G and 120G are arranged at positions overlapping the vicinity of the boundary between the individual antenna base 70C and the individual antenna base 70D.
  • the conductive portion 110H When viewed from above, the conductive portion 110H is arranged at a position overlapping the ends of the reflective film 82D of the individual antenna base 70D in the y direction, whichever is closer to the fourth dielectric side surface 56. When viewed from above, the conductive portion 120H is arranged closer to the fourth dielectric side surface 56 than the reflective film 82D. Since the reflective film 82D is located below the base main surface 71, both the conductive portions 110H and 120H are arranged apart from each other above the reflective film 82D in the z direction. In addition, since both the conductive portions 110H and 120H are sealed by the dielectric 50, both the conductive portions 110H and 120H are not in contact with the reflective film 82D.
  • the shapes of the two conductive portions 110A to 110H and 120A to 120H are the boundaries of the individual antenna bases in which the two conductive portions 110B to 110G and 120B to 120G are adjacent to each other in the x direction as shown in FIG. 59, for example. It may be changed so that it is placed closer to the position. That is, when viewed from above, both the conductive portions 110A to 110H and 120A to 120H may be arranged at positions adjacent to the third base side surface 75 or the fourth base side surface 76 of the individual antenna base in the y direction, respectively.
  • the conductive portion 110A when viewed from above, is arranged closer to the third dielectric side surface 55 than the reflective film 82E, and the conductive portions 120A are both ends of the reflective film 82E in the y direction. It is arranged at a position overlapping with the end portion of the portion closer to the third dielectric side surface 55.
  • the conductive portions 110B are arranged at positions that overlap with the ends of the reflective film 82E in the y direction that are closer to the reflective film 82F, and the conductive portions 120B are located at both ends of the reflective film 82F in the y direction. It is arranged at a position overlapping the end portion of the portion closer to the reflective film 82E.
  • the conductive portions 110C are arranged at positions that overlap with the ends of the reflective film 82F in the y direction that are closer to the reflective film 82G, and the conductive portions 120C are both ends of the reflective film 82G in the y direction. It is arranged at a position overlapping the end portion of the portion closer to the reflective film 82F.
  • the conductive portion 110D is arranged at a position overlapping with the end portion of the reflective film 82G in the y direction that is closer to the reflective film 82H, and the conductive portion 120D is arranged at both ends of the reflective film 82H in the y direction. It is arranged at a position overlapping the end portion of the portion closer to the reflective film 82G.
  • the conductive portions 110E are arranged at positions that overlap with the ends of the reflective film 82A in the y direction that are closer to the reflective film 82B, and the conductive portions 120E are located at both ends of the reflective film 82B in the y direction. It is arranged at a position overlapping the end portion of the portion closer to the reflective film 82A.
  • the conductive portion 110F is arranged at a position overlapping the ends of the reflective film 82B in the y direction that are closer to the reflective film 82C, and the conductive portions 120F are located at both ends of the reflective film 82C in the y direction. It is arranged at a position overlapping the end portion of the portion closer to the reflective film 82B.
  • the conductive portion 110G is arranged at a position overlapping the ends of the reflective film 82C in the y direction that are closer to the reflective film 82D, and the conductive portion 120G is located at both ends of the reflective film 82D in the y direction. It is arranged at a position overlapping the end portion of the portion closer to the reflective film 82C.
  • the conductive portion 110H is arranged at a position overlapping with the end portion of the reflective film 82D in the y direction closer to the fourth dielectric side surface 56, and the conductive portion 120H is located at a position higher than that of the reflective film 82D. 4 It is arranged near the dielectric side surface 56.
  • both conductive portions 110 and 120 When viewed from above, the portion of both conductive portions 110 and 120 that overlaps with the reflective film 82 is located above the reflective film 82, and both conductive portions 110 and 120 are sealed by the dielectric 50. Both the conductive portions 110 and 120 are not in contact with the reflective film 82.
  • the first electrode 101 and the conductive portion 110 and the second electrode 102 and the conductive portion 120 may be arranged with a deviation of 180 ° around the receiving point P1 of the terahertz element 20. ..
  • the first electrode 101 and the conductive portion 110, and the second electrode 102 and the conductive portion 120 are arranged in the arrangement direction of the individual antenna bases 70A to 70D (the arrangement direction of the individual antenna bases 70E to 70H). They may be arranged so as to face each other in orthogonal directions.
  • the first electrode 101A and the conductive portion 110A and the second electrode 102A and the conductive portion 120A are arranged so as to face each other in the x direction, and the first electrode 101B and the conductive portion 110B are arranged.
  • the second electrode 102B and the conductive portion 120B are arranged to face each other in the x direction, and the first electrode 101C and the conductive portion 110C and the second electrode 102C and the conductive portion 120C are arranged to face each other in the x direction.
  • the first electrode 101D and the conductive portion 110D and the second electrode 102D and the conductive portion 120D are arranged so as to face each other in the x direction.
  • first electrode 101E and the conductive portion 110E, the second electrode 102E and the conductive portion 120E are arranged so as to face each other in the x direction, and the first electrode 101F and the conductive portion 110F, the second electrode 102F and the conductive portion are arranged.
  • the 120F is arranged to face each other in the x direction
  • the first electrode 101G and the conductive portion 110G, and the second electrode 102G and the conductive portion 120G are arranged to face each other in the x direction
  • the first electrode 101H and the conductive portion 120G are arranged to face each other.
  • the conductive portion 110H, the second electrode 102H, and the conductive portion 120H are arranged so as to face each other in the x direction.
  • the first electrodes 101A to 101H are provided on the first protruding portion 61 of the dielectric 50, and the second electrodes 102A to 102H are provided on the second protruding portion 62 of the dielectric 50. ..
  • the arrangement relationship between the conductive portions 110A to 110H, 120A to 120H and the terahertz elements 20A to 20H is the same as the modification of FIG. 57. Further, the shapes of the element facing portions 111 and 121 are the same as those of the modification of FIG. 57.
  • the conductive portion 110E is arranged at a position overlapping the boundary between the reflective film 82A and the reflective film 82B, and the conductive portion 110F is arranged at a position overlapping the boundary between the reflective film 82B and the reflective film 82C.
  • the conductive portion 110G is arranged at a position overlapping the boundary between the reflective film 82C and the reflective film 82D, and the conductive portion 110H is an opening of the reflective film 82D which is closer to the fourth dielectric side surface 56 among both open ends in the y direction. It is placed so that it overlaps the edge.
  • the open ends closer to the side surface 56 are located below the base main surface 71T, and the conductive portions 110E to 110H are sealed by the dielectric 50. Therefore, the conductive portions 110E to 110H are reflective films. Not in contact with 82A-82D.
  • the conductive portion 120B is arranged at a position overlapping the boundary between the reflective film 82E and the reflective film 82F
  • the conductive portion 120C is arranged at a position overlapping the boundary between the reflective film 82F and the reflective film 82G
  • the conductive portion 120D is arranged at a position overlapping the boundary between the reflective film 82G and the reflective film 82H.
  • the boundary between the reflective film 82E and the reflective film 82F, the boundary between the reflective film 82F and the reflective film 82G in the conductive portion 120C, and the boundary between the reflective film 82G and the reflective film 82H in the conductive portion 120D are from the base main surface 71T, respectively.
  • the conductive portions 120B to 120D are sealed by the dielectric 50, so that the conductive portions 120B to 120D are not in contact with the reflective films 82F to 82H.
  • the conductive portions 110E to 110H and 120B to 120D are arranged at positions of the antenna surfaces 81A to 81H overlapping the boundary of the antenna surfaces 81 adjacent to each other in the y direction.
  • blocking caused by the overlap of the conductive portions 110E to 110H, 120B to 120D and the antenna surfaces 81A to 81H can be reduced.
  • the conductive portions 120A to 120H may be configured as a continuous conductive portion 140.
  • the conductive portion 140 includes a common wiring portion 141, a first wiring portion 142A, a second wiring portion 142B, a third wiring portion 142C, a fourth wiring portion 142D, and a fifth wiring portion 142E. It has a sixth wiring portion 142F, a seventh wiring portion 142G, an eighth wiring portion 142H, and an electrode facing portion 143.
  • the conductive portion 140 is a single component in which the common wiring portion 141, the wiring portions 142A to 142H, and the electrode facing portion 143 are integrally formed.
  • the electrode facing portion 143 is arranged at a position overlapping the second electrode 102 when viewed from above, and is connected to the second electrode 102 via a pillar portion (not shown). When viewed from above, the pillar portion is arranged at a position where both the electrode facing portion 143 and the second electrode 102 overlap. The pillar portion is connected to both the electrode facing portion 143 and the second electrode 102 in the z direction.
  • the common wiring portion 141 is arranged at the center of the antenna base 70 in the x direction. More specifically, when viewed from above, the common wiring portion 141 is a boundary between the reflective films 82 adjacent to each other in the third and fourth directions, which are different directions from both the x direction and the y direction among the reflective films 82A to 82H. It is placed in a position that overlaps with.
  • the third direction is, for example, the direction in which the reflective film 82A and the reflective film 82E are arranged.
  • the fourth direction is, for example, the direction in which the reflective film 82B and the reflective film 82E are arranged.
  • the common wiring portion 141 is the boundary between the reflective film 82A and the reflective film 82E, the boundary between the reflective film 82E and the reflective film 82B, and the boundary between the reflective film 82B and the reflective film 82F.
  • Each wiring unit 142A to 142H is a wiring unit extending from the common wiring unit 141 along the x direction. More specifically, the wiring portions 142A to 142D extend from the common wiring portion 141 toward the first dielectric side surface 53 along the x direction, and the wiring portions 142E to 142H extend from the common wiring portion 141 to the second dielectric side surface. It extends along the x direction towards 54.
  • the first wiring unit 142A is a wiring unit that connects the common wiring unit 141 and the terahertz element 20A.
  • the first wiring portion 142A extends from the common wiring portion 141 toward the terahertz element 20A along the x direction.
  • the second wiring unit 142B is a wiring unit that connects the common wiring unit 141 and the terahertz element 20B.
  • the second wiring portion 142B extends from the common wiring portion 141 toward the terahertz element 20B along the x direction.
  • the third wiring unit 142C is a wiring unit that connects the common wiring unit 141 and the terahertz element 20C.
  • the third wiring portion 142C extends from the common wiring portion 141 toward the terahertz element 20C along the x direction.
  • the fourth wiring unit 142D is a wiring unit that connects the common wiring unit 141 and the terahertz element 20D.
  • the fourth wiring portion 142D extends from the common wiring portion 141 toward the terahertz element 20D along the x direction.
  • the fifth wiring unit 142E is a wiring unit that connects the common wiring unit 141 and the terahertz element 20E.
  • the fifth wiring portion 142E extends from the common wiring portion 141 toward the terahertz element 20E along the x direction.
  • the sixth wiring unit 142F is a wiring unit that connects the common wiring unit 141 and the terahertz element 20F.
  • the sixth wiring portion 142F extends from the common wiring portion 141 toward the terahertz element 20F along the x direction.
  • the 7th wiring unit 142G is a wiring unit that connects the common wiring unit 141 and the terahertz element 20G.
  • the seventh wiring portion 142G extends from the common wiring portion 141 toward the terahertz element 20G along the x direction.
  • the eighth wiring unit 142H is a wiring unit that connects the common wiring unit 141 and the terahertz element 20H.
  • the eighth wiring portion 142H extends from the common wiring portion 141 toward the terahertz element 20H along the x direction.
  • the common wiring portion 141 is arranged at a position overlapping the boundary between the reflective films 82A to 82H in the third direction and the fourth direction, the common wiring portion 141 and the reflective film are viewed from above. Blocking due to overlapping of 82A to 82H can be reduced.
  • the terahertz device 10 includes a plurality of protection diodes 160 and 170 as an example of specific elements individually electrically connected to the terahertz elements 20A to 20C. May be good.
  • the protection diodes 160 and 170 are connected in parallel to each terahertz element 20A to 20C. Both protection diodes 160 and 170 are connected to the terahertz elements 20A to 20C so as to be opposite to each other.
  • the protection diodes 160 and 170 may be Zener diodes, Schottky diodes, or light emitting diodes in addition to ordinary diodes.
  • both protection diodes 160 and 170 are provided in the dielectric 50. That is, the dielectric 50 seals both protection diodes 160 and 170, both conductive portions 110 and 120, and a plurality of terahertz elements 20. Note that FIG. 63 shows the relationship between the individual antenna base 70A, the terahertz element 20A, both electrodes 101A and 102A, both conductive portions 110A and 120A, and both protection diodes 160 and 170.
  • Both protection diodes 160 and 170 are arranged at positions that do not overlap with the reflective film 82A (antenna surface 81A) when viewed from the z direction.
  • the protection diodes 160 and 170 are provided in the protrusions 61 and 62 that project laterally from the antenna base 70 in the dielectric 50.
  • the protection diodes 160, 170 are provided in the first protrusion 61.
  • the protection diodes 160, 170 are arranged spaced apart from each other in the x direction.
  • the protection diodes 160 and 170 are connected to both conductive portions 110A and 120A, respectively. More specifically, the protection diodes 160 and 170 are connected between the element facing portions 111 and 121 and the electrode facing portions 112 and 122, in other words, each of the connecting portions 113 and 123, respectively.
  • the anode electrode of the protection diode 160 is connected to the first connection portion 113, and the cathode electrode is connected to the second connection portion 123.
  • the anode electrode of the protection diode 170 is connected to the second connection portion 123, and the cathode electrode is connected to the first connection portion 113.
  • the protection diodes 160 and 170 are electrically connected to both electrodes 101A and 102A, respectively.
  • the protection diode 160 is arranged inside the first electrode 101A, and the protection diode 170 is arranged inside the second electrode 102A.
  • the protection diodes 160 and 170 and the electrodes 101A and 102A are arranged in the direction away from the terahertz element 20A in the x direction.
  • the protection diodes 160 and 170 are sealed in the dielectric 50, the protection diodes 160 and 170 do not come into contact with the electrodes 101A and 102A.
  • each terahertz element 20A to 20C due to, for example, static electricity by the protection diodes 160 and 170, a current is applied via the protection diodes 160 and 170. It becomes possible to flow. As a result, it is possible to suppress an excessive current from flowing through each of the terahertz elements 20A to 20C, so that the terahertz elements 20A to 20C can be protected.
  • each terahertz element 20A is connected even when a high voltage in either direction is generated. ⁇ 20C can be protected.
  • the terahertz device 10 is a plurality of protection diodes 160 as an example of specific elements electrically connected individually to the terahertz elements 20A to 20H.
  • 170 may be provided.
  • the protection diodes 160 and 170 connected to the above are provided in the second protrusion 62 of the dielectric 50, respectively.
  • the protection diodes 160 and 170 connected to both the conductive portions 110B and 120B and the protection diodes 160 and 170 connected to both the conductive portions 110C and 120C are provided on the first protruding portion 61 of the dielectric 50, respectively.
  • the protection diodes 160 and 170 connected to both the conductive portions 110H and 120H are provided on the second protruding portion 62 of the dielectric 50.
  • the protection diodes 160 and 170 connected to both the conductive portions 110A and 120A and the protection diodes 160 and 170 connected to both the conductive portions 110D and 120D are provided on the first protruding portion 61 of the dielectric 50, respectively.
  • the terahertz device 10 has a plurality of protection diodes as an example of specific elements individually electrically connected to the terahertz elements 20A to 20H. 160, 170 may be provided.
  • the protection diodes 160 and 170 connected to both the conductive portions 110B and 120B are the base main surface 71 of the individual antenna base 70E and the base main surface of the individual antenna base 70F.
  • the protection diodes 160 and 170 which are arranged at positions overlapping with both of the 71 and connected to both the conductive portions 110C and 120C, are the base main surface 71 of the individual antenna base 70F and the base main surface 71 of the individual antenna base 70G. It is placed in a position that overlaps with both of them. More specifically, when viewed from above, the protection diodes 160 and 170 connected to both the conductive portions 110B and 120B are located between the reflective film 82E (antenna surface 81E) and the reflective film 82F (antenna surface 81F) in the y direction. It is provided in. When viewed from above, the protection diodes 160 and 170 connected to both the conductive portions 110C and 120C are provided between the antenna surface 81F and the antenna surface 81G in the y direction.
  • the protection diodes 160 and 170 connected to both the conductive portions 110E and 120E are arranged at positions where both the base main surface 71 of the individual antenna base 70A and the base main surface 71 of the individual antenna base 70B overlap.
  • the protection diodes 160 and 170 connected to both the conductive portions 110F and 120F are arranged at positions where both the base main surface 71 of the individual antenna base 70B and the base main surface 71 of the individual antenna base 70C overlap.
  • the protection diodes 160 and 170 connected to both the conductive portions 110G and 120G are arranged at positions where both the base main surface 71 of the individual antenna base 70C and the base main surface 71 of the individual antenna base 70D overlap each other.
  • the protection diodes 160 and 170 connected to both the conductive portions 110E and 120E are located between the reflective film 82A (antenna surface 81A) and the reflective film 82B (antenna surface 81B) in the y direction. It is provided in.
  • the protection diodes 160 and 170 connected to both the conductive portions 110F and 120F are provided between the reflective film 82B (antenna surface 81B) and the reflective film 82C (antenna surface 81C) in the y direction. ..
  • the protection diodes 160 and 170 connected to both the conductive portions 110G and 120G are provided between the reflective film 82C (antenna surface 81C) and the reflective film 82D (antenna surface 81D) in the y direction. ..
  • the protection diodes 160 and 170 connected to both conductive portions 110A and 120A are arranged at positions overlapping the base main surface 71 of the individual antenna base 70E and are connected to both conductive portions 110D and 120D.
  • the protection diodes 160 and 170 are arranged between the antenna surface 81G and the antenna surface 81H in the y direction. Further, the protection diodes 160 and 170 connected to both the conductive portions 110H and 120H are arranged at positions overlapping with the base main surface 71 of the individual antenna base 70D.
  • the plurality of conductive portions 110 and 120 may be formed outside the dielectric 50.
  • the plurality of conductive portions 110 and 120 may be formed on the dielectric main surface 51 or the dielectric back surface 52 in a state of being individually electrically connected to the plurality of terahertz elements 20.
  • the conductive portions 110 and 120 are provided in the dielectric 50.
  • At least one terahertz element 20 among the plurality of terahertz elements 20 may be arranged at a position where the receiving point P1 is deviated from the center point P2 of the reflective film 82 when viewed from the z direction. That is, the focal point of the reflective film 82 does not have to coincide with the receiving point P1 when viewed from the z direction.
  • both pads 33a and 34a in the terahertz element 20 can be arbitrarily changed.
  • both pads 33a and 34a do not have to be arranged facing each other in the x direction or the y direction via the receiving point P1 (oscillation point P1), and are collectively arranged at the end portion of the element main surface 21 in the x direction. You may be.
  • both pads 33a and 34a may be insulated from each other.
  • a part of the conductive layers 33 and 34 of both elements may form a dipole antenna. That is, the antenna may be integrated on the element main surface 21 side of the terahertz element 20.
  • the specific configuration of the antenna is not limited to the dipole antenna, and may be any other antenna such as a slot antenna, a bow tie antenna, or a ring antenna.
  • the terahertz element 20 may have a MIM (Metal Insulator Metal) reflector 280.
  • the MIM reflector 280 is configured by a part of the first element conductive layer 33 and a part of the second element conductive layer 34 sandwiching an insulator in the z direction.
  • the MIM reflector 280 short-circuits a part of the first element conductive layer 33 and a part of the second element conductive layer 34 at a high frequency.
  • the MIM reflector 280 can reflect high frequency electromagnetic waves.
  • each terahertz element 20 may be an element that generates an electromagnetic wave.
  • each terahertz element 20 may be configured such that the receiving point P1 is an oscillation point for oscillating an electromagnetic wave.
  • the electromagnetic wave generated from each terahertz element 20 is emitted upward by the reflective film 82 formed on the antenna surface 81 facing the terahertz element 20 in the z direction.
  • Each terahertz element 20 may irradiate electromagnetic waves radially over a range of an opening angle from an oscillation point, for example. That is, the electromagnetic wave generated from each terahertz element 20 may have directivity.
  • the opening angle is preferably in a range that can be reflected by the reflecting surface facing the terahertz element, and is, for example, about 120 ° to 150 °.
  • the reflective film 82 reflects the electromagnetic wave from the terahertz element 20 in one direction (upward in each embodiment).
  • the reflective film 82A reflects the electromagnetic wave from the terahertz element 20A in one direction (upward)
  • the reflective film 82B reflects the electromagnetic wave from the terahertz element 20B in one direction.
  • the reflective film 82C reflects the electromagnetic wave from the terahertz element 20C in one direction.
  • the specific material of the dielectric 50 is arbitrary as long as it transmits an electromagnetic wave and the dielectric refractive index n2 is higher than the gas refractive index n3 and lower than the element refractive index n1. Can be changed to.
  • the constituent material of the element substrate 31 may be a semiconductor other than InP. Since the element refractive index n1 is the refractive index of the element substrate 31, the element refractive index n1 is also changed when the constituent material of the element substrate 31 is changed. Therefore, the element substrate 31 may be made of a material having a refractive index higher than that of the dielectric refractive index n2.
  • the shape of the dielectric 50 viewed from the z direction can be arbitrarily changed.
  • the protrusions 61, 62 which are not provided with both electrodes 101, 102 may be omitted.
  • the third dielectric side surface 55 of the dielectric 50 may be formed so as to overlap with the third base side surface 75 of the individual antenna base 70A when viewed from the z direction. Further, in one example, in the second embodiment, the third dielectric side surface 55 is positioned so as to overlap the third base side surface 75T of the antenna base 70 when viewed from the z direction, and has the same shape as the third base side surface 75T. It may be formed. Further, in one example, in the second embodiment, the fourth dielectric side surface 56 of the dielectric 50 may be formed so as to overlap with the fourth base side surface of the individual antenna base 70H when viewed from the z direction.
  • the fourth dielectric side surface 56 is located at a position overlapping the fourth base side surface 76T of the antenna base 70 when viewed from the z direction, and has the same shape as the fourth base side surface 76T. It may be formed.
  • the electrodes 101 and 102 are provided on the dielectric main surface 51, but the present invention is not limited to this, and the electrodes 101 and 102 may be provided on the dielectric back surface 52.
  • the pillar portions 115 and 125 extend from the conductive portions 110 and 120 toward the dielectric back surface 52.
  • the antenna base 70 may be made of metal.
  • the reflective film 82 may be omitted.
  • electromagnetic waves are reflected by the antenna surface 81. That is, when the antenna base 70 is made of metal, the reflective surface that reflects the electromagnetic wave is the antenna surface.
  • the individual antenna base has a first portion including the antenna surface 81 made of metal, and a second portion provided outside the first portion is made of an electrically insulating material. good.
  • An example of an electrically insulating material is an epoxy resin.
  • the second portion constitutes a base side surface other than the base side surface corresponding to the portion of the individual antenna base in which a part of the antenna surface 81 is cut out.
  • the individual antenna base 70A has a first portion 181A including an antenna surface 81A and a periphery other than the opening end 81Aa of the antenna surface 81A when viewed from above. It has a second portion 182A, which covers the above.
  • the second portion 182A constitutes the peripheral wall portion 78A.
  • the individual antenna base 70B has a first portion 181B including an antenna surface 81B, and a second portion 182B that covers the periphery of the antenna surface 81B other than both open ends 81Ba and 81Bb when viewed from above.
  • the second portion 182B constitutes the peripheral wall portion 78B.
  • the individual antenna base 70C has a first portion 181C including an antenna surface 81C and a second portion 182C that covers the periphery of the antenna surface 81C other than the opening end 81Ca when viewed from above.
  • the second portion 182C constitutes the peripheral wall portion 78C.
  • These second portions 182A to 182C are made of an electrically insulating material, for example, an epoxy resin.
  • a plurality of individual antenna bases may be integrally formed.
  • the individual antenna base 70A and the individual antenna base 70B may be integrally formed of a single component, or the individual antenna base 70A and the individual antenna base 70C may be integrally formed. It may be composed of a single component.
  • the individual antenna base 70B, the individual antenna base 70C, and the individual antenna base 70E may be integrally formed of a single component.
  • the individual antenna base 70A, the individual antenna base 70B, the individual antenna base 70D, and the individual antenna base 70E may be integrally formed of a single component.
  • the antenna base 70 may be composed of a single component. That is, the antenna base 70 may have a plurality of antenna surfaces 81. Specifically, in the first embodiment, the antenna base 70 has antenna surfaces 81A to 81C. In the second embodiment, the antenna base 70 has antenna surfaces 81A to 81H. In the third embodiment, the antenna base 70 has antenna surfaces 81A to 81I.
  • a partition wall may be provided at the boundary of adjacent antenna surfaces 81 in the first direction (y direction in the first embodiment), which is the arrangement direction of the individual antenna bases.
  • the partition wall is in contact with the dielectric 50 to partition the gas space for each antenna surface 81.
  • a first partition wall 191 is provided at the boundary between the antenna surface 81A and the antenna surface 81B, and a second partition wall 191 is provided at the boundary between the antenna surface 81B and the antenna surface 81C.
  • a partition wall 192 is provided.
  • the partition walls 191, 192 extend from each boundary toward the dielectric 50 along the z direction.
  • the partition walls 191, 192 are in contact with the dielectric main surface 51 of the dielectric 50.
  • the gas space 92A, the gas space 92B, and the gas space 92C are separated from each other. That is, the gas spaces 92A to 92C do not communicate with each other.
  • the gas space 92A is sealed by the dielectric 50 and the reflective film 82A
  • the gas space 92B is sealed by the dielectric 50 and the reflective film 82B
  • the gas space 92C is sealed by the dielectric 50 and the reflective film 82C.
  • the reflective film 82 is formed on the side surface of each of the partition walls 191 and 192 in contact with the gas space 92.
  • a partition wall may be provided at the boundary of the antenna surfaces 81 adjacent to each other in the first direction, the third direction, and the fourth direction, which are the arrangement directions of the individual antenna bases.
  • the antenna surfaces adjacent to each other in the first direction are the boundary between the antenna surface 81A and the antenna surface 81B, the boundary between the antenna surface 81B and the antenna surface 81C, and the antenna surface 81C and the antenna surface 81D.
  • a first partition wall 191 is provided at the boundary between the antenna surface 81E and the antenna surface 81F, the boundary between the antenna surface 81F and the antenna surface 81G, and the boundary between the antenna surface 81G and the antenna surface 81H.
  • a second partition wall 192 is provided at each boundary with the surface 81H.
  • a third is formed at the boundary between the antenna surface 81B and the antenna surface 81E, the boundary between the antenna surface 81C and the antenna surface 81F, and the boundary between the antenna surface 81D and the antenna surface 81G.
  • a partition wall 193 is provided.
  • each partition wall 191 to 193 extends from each boundary toward the dielectric 50 along the z direction and is in contact with the dielectric main surface 51 of the dielectric 50.
  • the plurality of gas spaces corresponding to the reflective films 82A to 82H are sealed by the reflective films 82A to 82H and the dielectric 50, respectively.
  • the reflective film 82 is formed on the side surface of each of the partition walls 191 to 193 in contact with the gas space 92.
  • a partition wall may be provided at the boundary between the antenna surfaces 81 adjacent to each other in the first direction and the second direction, which are the arrangement directions of the individual antenna bases.
  • the antenna surfaces adjacent to each other in the first direction are the boundary between the antenna surface 81A and the antenna surface 81B, the boundary between the antenna surface 81B and the antenna surface 81C, and the antenna surface 81D and the antenna surface 81E.
  • a partition wall 194 is provided at the boundary between the antenna surface 81E and the antenna surface 81F, the boundary between the antenna surface 81G and the antenna surface 81H, and the boundary between the antenna surface 81H and the antenna surface 81I, respectively.
  • a partition wall 195 is provided at the boundary between the antenna surface 81H and the antenna surface 81E, and the boundary between the antenna surface 81I and the antenna surface 81F.
  • a reflective film 82 is formed on the side surface of the partition walls 194 and 195 in contact with the gas space 92.
  • the portion of the partition wall 194 provided at the boundary between the antenna surface 81A and the antenna surface 81B is "a first reflecting surface and a second reflecting surface.
  • the "first partition wall that partitions” is configured, and the portion provided at the boundary between the antenna surface 81D and the antenna surface 81E constitutes the "fourth partition wall that partitions the third reflective surface and the fourth reflective surface".
  • the portion of the partition wall 195 provided at the boundary between the antenna surface 81A and the antenna surface 81D constitutes a "second partition wall that separates the first reflection surface and the third reflection surface", and constitutes the antenna surface 81B.
  • the portion provided at the boundary between the antenna surface 81E and the antenna surface 81E constitutes a "third partition wall that separates the second reflecting surface and the fourth reflecting surface".
  • the configuration of the antenna base 70 can be arbitrarily changed. Specifically, the number and types of individual antenna bases constituting the antenna base 70 can be arbitrarily changed.
  • the antenna base 70 may be composed of a plurality of individual antenna bases 70B. Further, the antenna base 70 may be composed of an individual antenna base 70A and one or a plurality of individual antenna bases 70B. Further, the antenna base 70 may be composed of an individual antenna base 70C and one or a plurality of individual antenna bases 70B. It may be composed of an individual antenna base 70A and an individual antenna base 70C. In one example, the antenna base 70 may be composed of individual antenna bases 70A and 70C and a plurality of individual antenna bases 70B.
  • the configuration of the antenna base 70 can be arbitrarily changed. Specifically, the number and types of individual antenna bases constituting the antenna base 70 can be arbitrarily changed.
  • the antenna base 70 may be composed of three or more individual antenna bases 70B. Further, the antenna base 70 may be composed of an individual antenna base 70A, an individual antenna base 70E, and an individual antenna base 70B.
  • the configuration of the antenna base 70 can be arbitrarily changed. Specifically, the number and types of individual antenna bases constituting the antenna base 70 can be arbitrarily changed.
  • the antenna base 70 may be composed of individual antenna bases 70B, 70C, 70E, 70F. In one example, the antenna base 70 may be composed of a plurality of (four or more) individual antenna bases 70E.
  • the antenna base 70 may be configured by an individual antenna base having a shape other than the individual antenna base of each embodiment.
  • the antenna base 70 includes individual antenna bases 70A-70G.
  • the antenna base 70 has a configuration in which six individual antenna bases 70A, 70B, 70C, 70E, 70F, and 70G are arranged so as to surround the hexagonal individual antenna base 70D when viewed from the z direction.
  • the individual antenna base 70C has a peripheral wall portion 78C
  • the individual antenna base 70F has a peripheral wall portion 78F.
  • the individual antenna base 70G has the same shape as the individual antenna base 70G of the second embodiment.
  • the individual antenna bases 70A, 70B, 70D, and 70E each do not have a peripheral wall portion.
  • the individual antenna bases 70A, 70B, and 70E have the same shape as the individual antenna base 70D.
  • the individual antenna bases 70A and 70B are arranged in the first direction (y direction in the illustrated example), the individual antenna bases 70C to 70E are arranged in the first direction, and the individual antenna bases 70F and 70G are arranged in the first direction. They are arranged in one direction.
  • the individual antenna bases 70A and 70D are arranged in a third direction different from the first direction and the second direction (x direction in the illustrated example), and the individual antenna bases 70B and 70E are arranged in the third direction.
  • the individual antenna bases 70C and 70F are arranged in the third direction, and the individual antenna bases 70D and 70G are arranged in the third direction.
  • the individual antenna bases 70A and 70C are arranged in a fourth direction different from the first direction, the second direction and the third direction, and the individual antenna bases 70B and 70D are arranged in the fourth direction and the individual antenna bases 70D are arranged.
  • 70F are arranged in the fourth direction
  • the individual antenna bases 70E, 70G are arranged in the fourth direction.
  • Each antenna recess 80A to 80G is formed in a spherical concave shape that is recessed downward.
  • the antenna surfaces 81A, 81B, 81D, 81F of each antenna recess 80A, 80B, 80D, 80F have both opening ends in the first direction, both opening ends in the third direction, and both opening ends in the fourth direction. Is formed in a hexagonal shape with a notch.
  • the antenna surface 81C is formed in a shape in which one opening end in the first direction, both opening ends in the third direction, and one opening end in the fourth direction are cut out.
  • the antenna surface 81C is formed in an arc shape in which the other opening end in the first direction and the other opening end in the fourth direction are connected.
  • the antenna surface 81F is formed in a shape in which one opening end in the first direction, one opening end in the third direction, and one opening end in the fourth direction are cut out.
  • the antenna surface 81F is formed in an arc shape in which the other opening end in the first direction, the other opening end in the third direction, and the other opening end in the fourth direction are connected.
  • the antenna surface 81G is formed in a shape in which both open ends in the first direction, one open end in the third direction, and one open end in the fourth direction are cut out.
  • the antenna surface 81G is formed in an arc shape in which the other opening end in the third direction and the other opening end in the fourth direction are connected.
  • Reflective films 82A, 82B, 82D, 82F are formed on each antenna surface 81A, 81B, 81D, 81F.
  • the reflective films 82A, 82B, 82D, 82F have substantially the same shape as the antenna surfaces 81A, 81B, 81D, 81F.
  • the reflective film 82A (antenna surface 81A) and the reflective film 82B (antenna surface 81B) are arranged adjacent to each other in the first direction, and the reflective film 82A (Antenna surface 81A) and the reflective film 82D (antenna surface 81D) are arranged adjacent to each other in the third direction, and the reflective film 82B (antenna surface 81B) and the reflective film 82D (antenna surface 81D) are arranged in the fourth direction. It can be said that they are arranged adjacent to each other.
  • the terahertz device 10 includes a plurality of terahertz elements 20A to 20G and a dielectric 50 holding the terahertz elements 20A to 20G.
  • the reflective film 82A (antenna surface 81A) faces the terahertz element 20A.
  • the reflective films 82B to 82G (antenna surfaces 81B to 81G) are the terahertz elements 20B to 20G in the thickness direction (z direction) of the terahertz elements 20B to 20G. Facing.
  • the reflective film 82A (antenna surface 81A) is formed larger than the terahertz element 20A. That is, the size of the reflective film 82A (antenna surface 81A) in both the x-direction and the y-direction is larger than the size of the terahertz element 20A in both the x-direction and the y-direction.
  • the reflective films 82B to 82G (each antenna surface 81B to 81G) are formed larger than the respective terahertz elements 20B to 20G.
  • the shapes of the antenna surface 81 of the individual antenna base and the reflective film 82 formed on the antenna surface 81 when viewed from above can be arbitrarily changed.
  • the shapes of the antenna surface 81A and the reflective film 82A of the individual antenna base 70A viewed from above may be circular without any chipping.
  • the shapes of the antenna surface 81B and the reflective film 82B of the individual antenna base 70B viewed from above are circular shapes in which a part is missing, it is the arrangement direction of the reflective film 82A and the reflective film 82B.
  • the distance between the terahertz element 20A and the terahertz element 20B in one direction can be reduced. Therefore, the resolution of the terahertz device 10 can be improved.
  • the shapes of the antenna surface 81B and the reflective film 82B of the individual antenna base 70B viewed from above may be circular without any chipping. Also in this case, since the shapes of the antenna surface 81F and the reflective film 82F of the individual antenna base 70F viewed from above are circular shapes in which a part is missing, the second is the arrangement direction of the reflective film 82B and the reflective film 82F. The distance between the terahertz element 20B and the terahertz element 20F in the three directions can be reduced.
  • each of the antenna surface 81E and the reflective film 82E of the individual antenna base 70E viewed from above is a circular shape in which a part is missing, terahertz in the fourth direction which is the arrangement direction of the reflective film 82B and the reflective film 82E.
  • the distance between the elements 20B and the terahertz element 20E can be reduced.
  • the shape of each of the antenna surface 81A and the reflective film 82A of the individual antenna base 70A viewed from above is a circular shape in which a part is missing, terahertz in the first direction which is the arrangement direction of the reflective film 82A and the reflective film 82B.
  • the distance between the elements 20A and the terahertz element 20B can be reduced. Therefore, the resolution of the terahertz device 10 can be improved.
  • the shapes of the antenna surface 81E and the reflective film 82E of the individual antenna base 70E viewed from above may be circular without any chipping. Also in this case, since the shapes of the antenna surface 81D and the reflective film 82D of the individual antenna base 70D viewed from above are circular shapes in which a part is missing, it is the arrangement direction of the reflective film 82D and the reflective film 82E. The distance between the terahertz element 20D and the terahertz element 20E in one direction can be reduced.
  • the shapes of the antenna surface 81B and the reflective film 82B of the individual antenna base 70B viewed from above are circular shapes in which a part is missing, terahertz in the second direction which is the arrangement direction of the reflective film 82B and the reflective film 82E.
  • the distance between the elements 20B and the terahertz element 20E can be reduced. Therefore, the resolution of the terahertz device 10 can be improved.
  • the shape of the individual antenna base can be changed arbitrarily.
  • the individual antenna base may have a shape in which the outer peripheral portion of the back surface 72 of the base is cut out, or the lightening portion may be formed on the back surface 72 side of the base.
  • the terahertz device 10 may include a flat plate-shaped substrate instead of the dielectric 50.
  • a plurality of terahertz elements 20 are mounted on the substrate.
  • a substrate is used instead of the dielectric 50 in the terahertz device 10 of the first embodiment will be described with reference to FIG. 75.
  • the substrate 200 has a substrate main surface 201 and a substrate back surface 202 facing opposite sides in the thickness direction (z direction in the illustrated example).
  • the substrate main surface 201 faces downward, and the substrate back surface 202 faces upward. That is, the main surface 201 of the substrate faces the antenna base 70 side.
  • the substrate 200 is fixed to the base main surface 71T of the antenna base 70 via the adhesive layer 91. Both the shape of the substrate 200 as seen from the z direction and the length in the x direction and the length in the y direction are equal to the dielectric 50 of the first embodiment.
  • the length (thickness) of the substrate 200 in the z direction is thinner than the length (thickness) of the dielectric 50 in the z direction.
  • the substrate 200 is a printed circuit board made of, for example, a glass epoxy resin.
  • Each terahertz element 20A to 20C is mounted on the main surface 201 of the substrate. Specifically, both conductive portions 110A to 110C and 120A to 120C and both electrodes 101A to 101C and 102A to 102C, which are not shown, are formed on the main surface 201 of the substrate. Each terahertz element 20A to 20C is mounted on both conductive portions 110A to 110C and 120A to 120C as in each embodiment.
  • each terahertz element 20A to 20C is located closer to the base back surface 72T than the base main surface 71T of the antenna base 70 in the z direction.
  • the terahertz elements 20A to 20C are arranged so that the element main surface 21 faces the reflective film 82 (antenna surface 81), as in each embodiment.
  • the terahertz elements 20A to 20C are not limited to the flip chip mounting on the substrate 200 as shown in FIG. 75, and may be mounted on the substrate 200 by another method.
  • each terahertz element 20A to 20C may be die-bonded to the substrate main surface 201 of the substrate 200 with the element back surface 22 side facing downward.
  • the element back surface 22 of each terahertz element 20A to 20C may be bonded to the substrate main surface 201 with a conductive bonding material such as Ag paste or solder.
  • the element conductive layers 33 and 34 of the element main surfaces 21 of the terahertz elements 20A to 20C are connected to the conductive portions 110 and 120 by bonding wires.
  • the bonding structure between the terahertz elements 20A to 20C and the substrate 200 can be arbitrarily changed.
  • the element back surface 22 of each terahertz element 20A to 20C may be bonded to the substrate main surface 201 with an adhesive.
  • an adhesive for example, an adhesive containing an epoxy resin as a main component is used.
  • the gas existing in the gas space 92 is not limited to air, and can be arbitrarily changed as long as it is a gas having a refractive index lower than the dielectric refractive index n2.
  • the terahertz device 10 may include a control IC (for example, an ASIC) as a control unit.
  • the control IC may, for example, detect the current flowing through the plurality of terahertz elements 20, supply power to the plurality of terahertz elements 20, or perform signal processing and the like.
  • An antenna base having a plurality of antenna surfaces facing the terahertz element in the thickness direction of each of the plurality of terahertz elements, and the plurality of antenna surfaces face each other in the thickness direction of the terahertz element. It is open toward the terahertz element and is curved so as to be recessed in a direction away from the facing terahertz element, and the plurality of antenna surfaces are arranged when viewed from the thickness direction of the antenna base.
  • An antenna base in which the size of the antenna surface along the arrangement direction is smaller than the size of the antenna surface in a direction different from the arrangement direction.
  • the distance between the first terahertz element and the second terahertz element adjacent to each other in the arrangement direction of the plurality of antenna surfaces can be reduced. Therefore, by using this antenna base in a terahertz device, if each terahertz element receives an electromagnetic wave, the resolution in the electromagnetic wave detection range of the terahertz device can be improved. Further, since this antenna base has antenna surfaces facing each other of a plurality of terahertz elements, if each terahertz element generates an electromagnetic wave by using the antenna base in the terahertz device, the height of the terahertz device is high. Output can be achieved.
  • Appendix A2 A plurality of terahertz elements including a first terahertz element and a second terahertz element that receive electromagnetic waves, and the first terahertz element facing the first terahertz element in the thickness direction of the first terahertz element, and incident electromagnetic waves. Is opposed to the second terahertz element in the thickness direction of the first terahertz element and the first terahertz element, and the incident electromagnetic wave is directed toward the second terahertz element.
  • a terahertz device including a plurality of terahertz surfaces including a second terahertz surface to be reflected, wherein the first terahertz surface is open toward the first terahertz element and the first terahertz element is provided.
  • the second reflective surface is curved so as to be recessed in a direction away from the second terahertz element, and is curved so as to be recessed in a direction away from the second terahertz element. Assuming that the direction parallel to the thickness direction of both terahertz elements is the height direction of the terahertz device, the first reflecting surface and the second reflecting surface are in the first direction intersecting the height direction of the terahertz device.
  • the inter-element distance which is the distance between the receiving point of the first terahertz element and the receiving point of the second terahertz element, which are arranged adjacent to each other, is the distance between the first reflecting surface and the second reflecting surface, respectively.
  • a terahertz device that is less than or equal to the diameter of.
  • a plurality of terahertz elements including a first terahertz element and a second terahertz element that generate electromagnetic waves are opposed to the first terahertz element in the thickness direction of the first terahertz element, and the first terahertz element is opposed to the first terahertz element.
  • the first reflecting surface that reflects the electromagnetic waves generated from the element in one direction and the second terahertz element facing the second terahertz element in the thickness direction of the second terahertz element, and the electromagnetic waves generated from the second terahertz element.
  • a terahertz device including a plurality of terahertz surfaces including a second terahertz surface that reflects in one direction, wherein the first terahertz surface is open toward the first terahertz element and said. It is curved so as to be recessed in a direction away from the first terahertz element, and the second reflecting surface is open toward the second terahertz element and is curved so as to be recessed in a direction away from the second terahertz element. Assuming that the direction parallel to the thickness direction of both terahertz elements is the height direction of the terahertz device, the first terahertz surface and the second terahertz surface intersect with the height direction of the terahertz device.
  • the inter-element distance which is the distance between the oscillation point of the first terahertz element and the oscillation point of the second terahertz element, which are arranged adjacent to each other in the first direction, is the first reflecting surface and the second terahertz element.
  • a terahertz device that is less than or equal to the diameter of each of the reflective surfaces.
  • Supplementary note A4 The terahertz device according to Supplementary note A2 or A3, wherein the distance between the elements is smaller than both the diameter of the first reflecting surface and the diameter of the second reflecting surface.
  • Appendix A5 When viewed from the height direction of the terahertz device, the receiving point of the first terahertz element coincides with the center point of the first reflecting surface, and the receiving point of the second terahertz element is the above.
  • Appendix B2 An antenna having a first antenna surface facing the first terahertz element in the height direction of the terahertz device and a second antenna surface facing the second terahertz element in the height direction of the terahertz device.
  • a claim comprising a base, wherein the first reflective surface is made of a reflective film formed on the first antenna surface, and the second reflective surface is made of a reflective film formed on the second antenna surface.
  • Appendix B3 An antenna having a first antenna surface facing the first terahertz element in the height direction of the terahertz device and a second antenna surface facing the second terahertz element in the height direction of the terahertz device. 2. And the terahertz apparatus according to any one of Annex B1.
  • the antenna base includes a first antenna base having the first antenna surface and a second antenna base having the second antenna surface, and is viewed from the height direction of the Terra Hertz device. , The opening end on the second antenna surface side of both opening ends of the first antenna surface in the first direction, and the second antenna base side of the base side surface facing the first direction in the first antenna base. It is formed at a position where it overlaps with the side surface of the base facing toward the surface, and is the opening end on the first antenna surface side of both opening ends of the second antenna surface in the first direction when viewed from the height direction of the terahertz device.
  • the second antenna base is formed at a position where the side surface of the base facing the first direction overlaps the side surface of the base facing the first antenna base side, and the first antenna base and the second antenna base are formed.
  • the holding member includes a holding member for holding the first terahertz element and the second terahertz element, respectively, and the holding member has the first reflective surface and the second reflection.
  • the terahertz device according to any one of Supplementary note B2 to 4, which covers a surface.
  • the second reflective surface is made of a reflective film formed on the second antenna surface
  • the third reflective surface is made of a reflective film formed on the third antenna surface.
  • An antenna base having a third antenna surface facing the third terahertz element in the height direction of the device is provided, the antenna base is made of metal, and the first reflection surface is made of the first antenna surface.
  • the antenna base includes a first antenna base having the first antenna surface, a second antenna base having the second antenna surface, and a third antenna base having the third antenna surface.
  • the opening end on the second antenna surface side of both opening ends of the first antenna surface in the first direction and the first antenna base is formed at a position where the side surface of the base facing in the direction overlaps with the side surface of the base facing the second antenna base side, and both of the second antenna surface in the first direction when viewed from the height direction of the terahertz device.
  • the terahertz device When viewed from the height direction of the terahertz device, of the opening ends of the third antenna surface in the first direction, the opening end on the second antenna surface side and the third antenna base in the first direction.
  • the side surface of the base facing the third antenna is formed at a position where the side surface of the base facing the base side overlaps, and the first antenna base and the second antenna base are arranged adjacent to each other, and the second antenna is arranged.
  • the terahertz device according to annex B8 or B9, wherein the second antenna base and the third antenna base are arranged adjacent to each other on the side opposite to the first antenna base side with respect to the base.
  • the holding member includes a holding member for holding the first terahertz element, the second terahertz element, and the third terahertz element, respectively, and the holding member is the first reflection.
  • the terahertz device according to any one of Supplementary Provisions B8 to B10, which covers a surface, the second reflecting surface, and the third reflecting surface.
  • the first reflecting surface along the third direction is smaller than the first reflecting surface along the second direction, and the second reflecting surface along the fourth direction.
  • the size of each of the reflecting surfaces is smaller than the size of the second reflecting surface along the second direction, and the first reflecting surface and the third reflecting surface are viewed from the height direction of the Terra Hertz device.
  • the second reflective surface is made of a reflective film formed on the second antenna surface
  • the third reflective surface is made of a reflective film formed on the third antenna surface.
  • An antenna base having a third antenna surface facing the third terahertz element in the height direction of the device is provided, the antenna base is made of metal, and the first reflection surface is made of the first antenna surface.
  • the antenna base includes a first antenna base having the first antenna surface, a second antenna base having the second antenna surface, and a third antenna base having the third antenna surface.
  • the opening end on the second antenna surface side of both opening ends of the first antenna surface in the first direction and the first antenna base is formed at a position where the side surface of the base facing in the direction overlaps with the side surface of the base facing the second antenna base side, and both of the second antenna surface in the first direction when viewed from the height direction of the terahertz device.
  • the opening end on the second antenna surface side and the third antenna base in the first direction It is formed at a position where the side surface of the base facing the third antenna base side of the side surface of the facing base overlaps, and the first antenna base and the second antenna base are arranged adjacent to each other in the first direction.
  • the first antenna base and the third antenna base are arranged adjacent to each other in the third direction, and the second antenna base and the third antenna base are arranged adjacent to each other in the fourth direction.
  • the terahertz device according to Appendix B14 or B15.
  • the holding member includes a holding member for holding the first terahertz element, the second terahertz element, and the third terahertz element, respectively, and the holding member is the first reflection.
  • the terahertz device according to any one of Supplementary Provisions B14 to B16, which covers a surface, the second reflecting surface, and the third reflecting surface.
  • a first partition wall that separates the first reflecting surface and the second reflecting surface by contacting with the holding member is provided at the boundary between the second reflecting surface and the third reflecting surface.
  • a second partition wall that separates the second reflecting surface and the third reflecting surface by contacting with the holding member is provided at the boundary between the second reflecting surface and the third reflecting surface.
  • the boundary between the first reflecting surface and the third reflecting surface has a third partition wall that separates the first reflecting surface from the third reflecting surface by coming into contact with the holding member.
  • the sizes of the third reflecting surface and the fourth reflecting surface along the second direction are the third reflecting surfaces along the third direction. And smaller than the respective sizes of the fourth reflecting surface, the boundary between the first reflecting surface and the third reflecting surface, and the second reflecting surface and the second reflecting surface when viewed from the height direction of the terahertz device. 4. The terahertz device according to claim 11 or 12, wherein the boundaries with the reflecting surface are formed in a straight line, respectively.
  • the first reflective surface is made of a reflective film formed on the first antenna surface
  • the second reflective surface is made of a reflective film formed on the second antenna surface
  • the third reflective surface is the third reflective surface.
  • the fourth reflective surface is made of a reflective film formed on the fourth antenna surface. ..
  • the antenna is provided with an antenna base having a third antenna surface facing the third terahertz element in the height direction and a fourth antenna surface facing the fourth terahertz element in the height direction of the terahertz device.
  • the base is made of metal
  • the first reflecting surface is made of the first antenna surface
  • the second reflecting surface is made of the second antenna surface
  • the third reflecting surface is from the third antenna surface.
  • the antenna base includes a first antenna base having the first antenna surface, a second antenna base having the second antenna surface, a third antenna base having the third antenna surface, and the first antenna base.
  • a fourth antenna base having four antenna surfaces is provided, and when viewed from the height direction of the terahertz device, the second antenna surface side of both open ends of the first antenna surface in the first direction is provided. The open end is formed at a position where the side surface of the base facing the first direction of the first antenna base overlaps with the side surface of the base facing the second antenna base side, and the first antenna surface is formed.
  • the antenna is formed, and when viewed from the height direction of the terahertz device, the opening end on the first antenna surface side of both opening ends of the second antenna surface in the first direction and the second antenna base are said to be the same.
  • the second antenna surface of the second antenna surface is formed at a position where the side surface of the base facing the first direction overlaps with the side surface of the base facing the first antenna base side and is viewed from the height direction of the terahertz device.
  • the opening end on the fourth antenna surface side of both opening ends in two directions and the base side surface facing the fourth antenna base side of the base side surface facing the first direction in the second antenna base overlap. It is formed, and when viewed from the height direction of the terahertz device, the opening end on the fourth antenna surface side of both opening ends of the third antenna surface in the first direction and the third antenna base are said to be the same. It is formed at a position where the side surface of the base facing the first direction overlaps with the side surface of the base facing the fourth antenna base side, and the first of the two opening ends of the third antenna surface in the second direction.
  • the first antenna base and the second antenna base are in contact with each other in the first direction, the third antenna base and the fourth antenna base are in contact with each other, and the second antenna base is in contact with the second antenna base.
  • the holding member is attached to the antenna base and holds the first terahertz element, the second terahertz element, the third terahertz element, and the fourth terahertz element, respectively.
  • the terahertz device according to any one of Supplementary Provisions B20 to B22, which covers the first reflecting surface, the second reflecting surface, the third reflecting surface, and the fourth reflecting surface.
  • a first partition wall that separates the first reflecting surface and the second reflecting surface by contacting with the holding member is provided.
  • a second partition wall is provided which separates the first reflecting surface from the third reflecting surface by coming into contact with the holding member.
  • a third partition wall is provided which separates the second reflecting surface from the fourth reflecting surface by coming into contact with the holding member. 3.
  • the boundary between the reflective surface and the fourth reflective surface is provided with a fourth partition wall that separates the third reflective surface from the fourth reflective surface by coming into contact with the holding member, according to Appendix B23. Terra Hertz device.
  • a plurality of terahertz elements including a first terahertz element and a second terahertz element that receive electromagnetic waves, a holding member that holds the first terahertz element and the second terahertz element, respectively, and a gas space in which a gas exists.
  • a first reflecting surface that faces the first terahertz element in the thickness direction of the first terahertz element through the gas space and reflects the incident electromagnetic wave toward the first terahertz element
  • a plurality of surfaces including a second reflecting surface that faces the second terahertz element in the thickness direction of the second terahertz element through the gas space and reflects the incident electromagnetic wave toward the second terahertz element.
  • a terahertz device including a terahertz device, wherein the first terahertz surface is open toward the first terahertz element and is curved so as to be recessed in a direction away from the first terahertz element.
  • the second reflective surface is open toward the second terahertz element and is curved so as to be recessed in a direction away from the second terahertz element, and is parallel to the thickness direction of both terahertz elements.
  • the first reflecting surface and the second reflecting surface are arranged adjacent to each other in the first direction intersecting the height direction of the terahertz device, and the gas.
  • the space includes a first gas space partitioned by the first reflecting surface and the holding member, and a second gas space partitioned by the second reflecting surface and the holding member, and the first gas.
  • a terahertz device in which a space and the second gas space are connected in the first direction at a boundary between the first reflecting surface and the second reflecting surface.
  • the first reflecting surface and the second reflecting surface are formed so that the first gas space and the second gas space are connected in the first direction, so that the first reflecting surface and the first reflecting surface are formed in the first direction. It can be brought close to the second reflecting surface. Therefore, the distance between the first terahertz element and the second terahertz element adjacent to each other in the first direction can be reduced. Therefore, it is possible to improve the resolution in the detection range of the electromagnetic wave of the terahertz device.
  • the first reflecting surface and the second reflecting surface each have a spherical shape, pass through the center point of the first reflecting surface, and follow the first direction and the height direction of the terahertz device.
  • the portion of the first reflective surface connecting both ends in the first direction and the portion of the second reflective surface connecting both ends in the first direction are The terahertz device according to Appendix C1, each of which is formed in an arc shape having a central angle of less than 180 °.
  • the plurality of terahertz elements include a third terahertz element held by the holding member, and the plurality of reflective surfaces face the third terahertz element in the height direction of the terahertz device and A third reflecting surface that reflects incident electromagnetic waves toward the third terahertz element is included, and the third reflecting surface is open toward the third terahertz element and is separated from the third terahertz element. It is curved so as to be recessed in the direction, and when viewed from the height direction of the Terra Hertz device, the third reflecting surface is on the side opposite to the second reflecting surface and the first reflecting surface in the first direction.
  • the gas space is arranged adjacent to the second reflection surface, and the gas space includes a third gas space composed of the third reflection surface and the holding member, and the second gas space and the third gas space are The terahertz device according to Appendix C1 or C2, which is connected in the first direction at the boundary between the second reflecting surface and the third reflecting surface.
  • the third reflecting surface has a spherical shape, and the reflecting surface is cut at a plane passing through the center point of the third reflecting surface and along the first direction and the height direction of the terahertz device.
  • the terahertz device according to Appendix C3 wherein the portion of the third reflective surface connecting both end edges in the first direction is formed in an arc shape having a central angle of less than 180 ° in a cross-sectional view.
  • the terahertz device according to Supplementary note C4, wherein the boundary between the second reflecting surface and the third reflecting surface is formed in a straight line when viewed from the height of the terahertz device.
  • the plurality of terahertz elements include a third terahertz element held by the holding member, and the plurality of reflecting surfaces face the third terahertz element in the height direction of the terahertz device and It has a third reflecting surface that reflects the incident electromagnetic wave toward the third terahertz element, and the third reflecting surface is open toward the third terahertz element and the third terahertz.
  • the terahertz device is curved so as to be recessed in a direction away from the element, and a direction that intersects the height direction of the terahertz device and is different from the first direction and the second direction is defined as the third direction. Assuming that the direction intersecting the height direction of the terahertz device and different from the first direction, the second direction, and the third direction is the fourth direction, the terahertz device can be viewed from the height direction of the terahertz device.
  • the three reflecting surfaces are arranged adjacent to the first reflecting surface in the third direction and adjacent to the second reflecting surface in the fourth direction, and the gas space is arranged adjacent to the second reflecting surface.
  • the third gas space including the reflecting surface and the holding member is included, and the first gas space and the third gas space are in the third direction at the boundary between the first reflecting surface and the third reflecting surface.
  • the third terahertz element is positioned at a position deviated from the first terahertz element and the second terahertz element in the second direction, and when viewed from the second direction, the first terahertz element and the said.
  • the plurality of terahertz elements include a third terahertz element and a fourth terahertz element, and the plurality of reflective surfaces face the third terahertz element in the height direction of the terahertz device and are incident on the third terahertz element.
  • a third reflective surface that reflects the electromagnetic waves toward the third terahertz element and the fourth terahertz element facing the fourth terahertz element in the height direction of the terahertz device, and the incident electromagnetic waves are directed toward the fourth terahertz element.
  • the third reflecting surface includes a fourth reflecting surface to be reflected, and the third reflecting surface is open toward the third terahertz element and is curved so as to be recessed in a direction away from the third terahertz element.
  • the fourth reflective surface is open toward the fourth terahertz element and is curved so as to be recessed in a direction away from the fourth terahertz element, and the second direction is the height direction of the terahertz device.
  • the gas space is a direction orthogonal to the first direction when viewed from the above, and the gas space includes a third gas space partitioned by the third reflecting surface and the holding member, and the fourth reflecting surface and the holding member.
  • the third reflective surface is aligned adjacent to the first reflective surface in the second direction and includes the fourth gas space partitioned by The four reflecting surfaces are arranged adjacent to the second reflecting surface in the second direction, and the third reflecting surface and the fourth reflecting surface are arranged adjacent to each other in the first direction.
  • the first gas space and the third gas space are connected in the second direction at the boundary between the first reflection surface and the third reflection surface, and the second gas space and the fourth gas space are The terahertz device according to Appendix C1 or C2, which is connected in the second direction at the boundary between the second reflecting surface and the fourth reflecting surface.
  • Appendix C10 When viewed from the height direction of the terahertz device, at least one of the size of the third reflecting surface and the size of the fourth reflecting surface along the second direction is the first direction and the said.
  • the terahertz device according to Appendix C9 which is smaller than the size of the third reflecting surface and the size of the fourth reflecting surface along a third direction different from the second direction.
  • the third reflecting surface and the fourth reflecting surface each have a spherical shape, and when viewed from the height direction of the terahertz device, the second of the outer peripheral edges of the third reflecting surface. Note that at least one of the portion connecting both end edges in the direction and the outer peripheral edge of the fourth reflecting surface connecting both end edges in the second direction is formed in an arc shape having a central angle of less than 180 °.
  • the sizes of the third reflecting surface and the fourth reflecting surface along the second direction are the third reflecting surfaces along the third direction. And smaller than the respective sizes of the fourth reflecting surface, the boundary between the first reflecting surface and the third reflecting surface, and the second reflecting surface and the second reflecting surface when viewed from the height direction of the terahertz device. 4.
  • the first reflecting surface and the second reflecting surface each have a spherical shape, and the first of the outer peripheral edges of the first reflecting surface when viewed from the height direction of the terahertz device. Claimed that at least one of the portion connecting both end edges in the direction and the portion connecting both end edges in the first direction of the outer peripheral edge of the second reflecting surface is formed in an arc shape having a central angle of less than 180 °.
  • Item 14 The terahertz device according to Item 14.
  • An antenna having a first antenna surface facing the first terahertz element in the height direction of the terahertz device and a second antenna surface facing the second terahertz element in the height direction of the terahertz device.
  • a claim comprising a base, wherein the first reflective surface is made of a reflective film formed on the first antenna surface, and the second reflective surface is made of a reflective film formed on the second antenna surface. 14. The terahertz device according to any one of Supplementary note D1 and D2.
  • An antenna having a first antenna surface facing the first terahertz element in the height direction of the terahertz device and a second antenna surface facing the second terahertz element in the height direction of the terahertz device. 14.
  • the antenna base is made of metal
  • the first reflecting surface is made of the first antenna surface
  • the second reflecting surface is made of the second antenna surface.
  • the antenna base includes a first antenna base having the first antenna surface and a second antenna base having the second antenna surface, and is viewed from the height direction of the Terra Hertz device. , The opening end on the second antenna surface side of both opening ends of the first antenna surface in the first direction, and the second antenna base side of the base side surface facing the first direction in the first antenna base. It is formed at a position where it overlaps with the side surface of the base facing toward the surface, and is the opening end on the first antenna surface side of both opening ends of the second antenna surface in the first direction when viewed from the height direction of the terahertz device.
  • the second antenna base is formed at a position where the side surface of the base facing the first direction overlaps the side surface of the base facing the first antenna base side, and the first antenna base and the second antenna base are formed.
  • the holding member includes a holding member for holding the first terahertz element and the second terahertz element, respectively, and the holding member has the first reflective surface and the second reflection.
  • the terahertz device according to any one of the appendices D3 to D5, which covers the surface.
  • the plurality of terahertz elements include a third terahertz element, and the plurality of reflecting surfaces face the third terahertz element in the height direction of the terahertz device and are from the third terahertz element.
  • a third reflecting surface that reflects electromagnetic waves in one direction is included, and the third reflecting surface is open toward the third terahertz element and curved so as to be recessed in a direction away from the third terahertz element.
  • the third reflecting surface is arranged adjacent to the second reflecting surface on the side opposite to the first reflecting surface in the first direction. 14.
  • the size of the third reflecting surface along the first direction is smaller than the size of the third reflecting surface along the second direction when viewed from the height direction of the terahertz device, 14.
  • the terahertz device according to any one of Supplementary Provisions D1 and D2.
  • the third reflecting surface has a spherical shape, and is a portion of the outer peripheral edge of the third reflecting surface connecting both end edges in the first direction when viewed from the height direction of the terahertz device.
  • the terahertz device according to Appendix D8 which is formed in an arc shape having a central angle of less than 180 °.
  • the second reflecting surface has a spherical shape, and is a portion of the outer peripheral edge of the second reflecting surface connecting both ends in the first direction when viewed from the height direction of the terahertz device.
  • the terahertz device according to Appendix D8 or D9 which is formed in an arc shape having a central angle of less than 90 °.
  • the size of the second reflecting surface along the first direction when viewed from the height direction of the terahertz device is the second reflection along the second direction which is a direction different from the first direction.
  • Any one of Supplementary note D8 to D10, which is smaller than the size of the surface and the boundary between the second reflecting surface and the third reflecting surface is formed in a straight line when viewed from the height direction of the terahertz device.
  • the two reflective surfaces are formed of a reflective film formed on the second antenna surface, and the third reflective surface is formed on any one of the appendices D8 to D11, which is composed of a reflective film formed on the third antenna surface.
  • the terahertz according to any one of Supplementary note D8 to C11, which comprises a first antenna surface, the second reflecting surface thereof is composed of the second antenna surface, and the third reflecting surface is composed of the third antenna surface.
  • the antenna base includes a first antenna base having the first antenna surface, a second antenna base having the second antenna surface, and a third antenna base having the third antenna surface.
  • the opening end on the second antenna surface side of both opening ends of the first antenna surface in the first direction and the first antenna base is formed at a position where the side surface of the base facing in the direction overlaps with the side surface of the base facing the second antenna base side, and both of the second antenna surface in the first direction when viewed from the height direction of the terahertz device.
  • the terahertz device When viewed from the height direction of the terahertz device, of the opening ends of the third antenna surface in the first direction, the opening end on the second antenna surface side and the third antenna base in the first direction.
  • the side surface of the base facing the third antenna is formed at a position where the side surface of the base facing the base side overlaps, and the first antenna base and the second antenna base are arranged adjacent to each other, and the second antenna is arranged.
  • the terahertz device according to annex D12 or D13, wherein the second antenna base and the third antenna base are arranged adjacent to each other on the side opposite to the first antenna base side with respect to the base.
  • the holding member includes a holding member for holding the first terahertz element, the second terahertz element, and the third terahertz element, respectively, and the holding member is the first reflection.
  • the terahertz device according to any one of the appendices D12 to D14, which covers the surface, the second reflecting surface, and the third reflecting surface.
  • the plurality of terahertz elements include a third terahertz element, and the plurality of reflecting surfaces face the third terahertz element in the height direction of the terahertz device and are from the third terahertz element.
  • a third reflecting surface that reflects electromagnetic waves in one direction is included, and the third reflecting surface is open toward the third terahertz element and curved so as to be recessed in a direction away from the third terahertz element.
  • the direction different from the first direction and the second direction is set as the third direction, and the direction intersects the height direction of the terahertz device.
  • the third reflective surface is the third direction when viewed from the height direction of the terahertz device.
  • at least one of the size of the third reflecting surface and the size of the third reflecting surface along the fourth direction is smaller than the size of the third reflecting surface along the second direction.
  • the third terahertz element is a position different from the first terahertz element and the second terahertz element in the second direction, and the first terahertz element and the second terahertz element in the first direction.
  • the third reflecting surface has a spherical shape, and is a portion of the outer peripheral edge of the third reflecting surface connecting both end edges in the third direction when viewed from the height direction of the terahertz device.
  • Appendix D20 When viewed from the height direction of the terahertz device, the size of the first reflecting surface along the third direction is smaller than the size of the first reflecting surface along the second direction, Appendix D17 to The terahertz device according to any one of D19.
  • Appendix D21 When viewed from the height direction of the terahertz device, the size of the second reflecting surface along the fourth direction is smaller than the size of the second reflecting surface along the second direction, Appendix D17 to The terahertz device according to any one of D20.
  • the first reflecting surface along the third direction is smaller than the first reflecting surface along the second direction, and the second reflecting surface along the fourth direction.
  • the size of each of the reflecting surfaces is smaller than the size of the second reflecting surface along the second direction, and the first reflecting surface and the third reflecting surface are viewed from the height direction of the Terra Hertz device.
  • the terahertz apparatus according to annex D17 or D18, wherein the boundary and the boundary between the second reflecting surface and the third reflecting surface are formed linearly, respectively.
  • the two reflective surfaces are formed of a reflective film formed on the second antenna surface, and the third reflective surface is formed on any one of the appendices D17 to D22, which is composed of a reflective film formed on the third antenna surface.
  • the terahertz according to any one of Supplementary note D17 to D22, wherein the second reflecting surface is composed of a first antenna surface, the second reflecting surface is composed of the second antenna surface, and the third reflecting surface is composed of the third antenna surface.
  • the antenna base includes a first antenna base having the first antenna surface, a second antenna base having the second antenna surface, and a third antenna base having the third antenna surface.
  • the opening end on the second antenna surface side of both opening ends of the first antenna surface in the first direction and the first antenna base is formed at a position where the side surface of the base facing in the direction overlaps with the side surface of the base facing the second antenna base side, and both of the second antenna surface in the first direction when viewed from the height direction of the terahertz device.
  • the opening end on the second antenna surface side and the third antenna base in the first direction It is formed at a position where the side surface of the base facing the third antenna base side of the side surface of the facing base overlaps, and the first antenna base and the second antenna base are arranged adjacent to each other in the first direction.
  • the first antenna base and the third antenna base are arranged adjacent to each other in the third direction, and the second antenna base and the third antenna base are arranged adjacent to each other in the fourth direction.
  • the terahertz device according to Appendix D23 or D24.
  • the holding member includes a holding member for holding the first terahertz element, the second terahertz element, and the third terahertz element, respectively, and the holding member is the first reflection.
  • the terahertz device according to any one of the appendices D23 to D25, which covers the surface, the second reflecting surface, and the third reflecting surface.
  • a first partition wall that separates the first reflecting surface and the second reflecting surface by contacting with the holding member is provided at the boundary between the second reflecting surface and the third reflecting surface.
  • a second partition wall that separates the second reflecting surface and the third reflecting surface by contacting with the holding member is provided at the boundary between the second reflecting surface and the third reflecting surface.
  • the boundary between the first reflecting surface and the third reflecting surface has a third partition wall that separates the first reflecting surface from the third reflecting surface by coming into contact with the holding member.
  • the plurality of terahertz elements include a third terahertz element and a fourth terahertz element, and the plurality of reflecting surfaces face the third terahertz element in the height direction of the terahertz device and the first terahertz element.
  • the third reflecting surface that reflects the electromagnetic wave from the 3 terahertz element in one direction faces the fourth terahertz element in the height direction of the terahertz device, and the electromagnetic wave from the fourth terahertz element is unidirectionally opposed to the fourth terahertz element.
  • the third reflecting surface includes a fourth reflecting surface to be reflected toward the third terahertz element, and the third reflecting surface is open toward the third terahertz element and is curved so as to be recessed in a direction away from the third terahertz element.
  • the fourth reflective surface is open toward the fourth terahertz element and is curved so as to be recessed in a direction away from the fourth terahertz element, and the second direction is the height of the terahertz device.
  • the direction is orthogonal to the first direction, and when viewed from the height direction of the terahertz device, the third reflecting surface is arranged adjacent to the first reflecting surface in the second direction.
  • the fourth reflecting surface is arranged adjacent to the second reflecting surface in the second direction, and the third reflecting surface and the fourth reflecting surface are arranged adjacent to each other in the first direction.
  • at least one of the size of the third reflecting surface and the size of the fourth reflecting surface along the first direction is the first direction and the first.
  • appendices D1 and D2 which is smaller than the size of the third reflecting surface and the size of the fourth reflecting surface along a third direction different from the two directions. Device.
  • Appendix D29 When viewed from the height direction of the terahertz device, at least one of the size of the third reflecting surface and the size of the fourth reflecting surface along the second direction is the first direction and the said.
  • the terahertz device according to Appendix D28 which is smaller than the size of the third reflecting surface and the size of the fourth reflecting surface along a third direction different from the second direction.
  • the third reflecting surface and the fourth reflecting surface each have a spherical shape, and when viewed from the height direction of the terahertz device, the second of the outer peripheral edges of the third reflecting surface. Note that at least one of the portion connecting both end edges in the direction and the outer peripheral edge of the fourth reflecting surface connecting both end edges in the second direction is formed in an arc shape having a central angle of less than 180 °.
  • the terahertz device according to D28 or D29.
  • the sizes of the third reflecting surface and the fourth reflecting surface along the second direction are the third reflecting surfaces along the third direction. And smaller than the respective sizes of the fourth reflecting surface, the boundary between the first reflecting surface and the third reflecting surface, and the second reflecting surface and the second reflecting surface when viewed from the height direction of the terahertz device. 4.
  • the antenna base has a third antenna surface facing the third terahertz element and a fourth antenna surface facing the fourth terahertz element in the height direction of the terahertz device, and the first reflecting surface is provided.
  • the second reflective surface is formed of a reflective film formed on the second antenna surface
  • the third reflective surface is formed on the third antenna surface.
  • the antenna is provided with an antenna base having a third antenna surface facing the third terahertz element in the height direction and a fourth antenna surface facing the fourth terahertz element in the height direction of the terahertz device.
  • the base is made of metal
  • the first reflecting surface is made of the first antenna surface
  • the second reflecting surface is made of the second antenna surface
  • the third reflecting surface is from the third antenna surface.
  • the terahertz device according to any one of the appendices D28 to D31, wherein the fourth reflecting surface comprises the fourth antenna surface.
  • the antenna base includes a first antenna base having the first antenna surface, a second antenna base having the second antenna surface, a third antenna base having the third antenna surface, and the first antenna base.
  • a fourth antenna base having four antenna surfaces is provided, and when viewed from the height direction of the terahertz device, the second antenna surface side of both open ends of the first antenna surface in the first direction is provided. The open end is formed at a position where the side surface of the base facing the first direction of the first antenna base overlaps with the side surface of the base facing the second antenna base side, and the first antenna surface is formed.
  • the antenna is formed, and when viewed from the height direction of the terahertz device, the opening end on the first antenna surface side of both opening ends of the second antenna surface in the first direction and the second antenna base are said to be the same.
  • the second antenna surface of the second antenna surface is formed at a position where the side surface of the base facing the first direction overlaps with the side surface of the base facing the first antenna base side and is viewed from the height direction of the terahertz device.
  • the opening end on the fourth antenna surface side of both opening ends in two directions and the base side surface facing the fourth antenna base side of the base side surface facing the first direction in the second antenna base overlap. It is formed, and when viewed from the height direction of the terahertz device, the opening end on the fourth antenna surface side of both opening ends of the third antenna surface in the first direction and the third antenna base are said to be the same. It is formed at a position where the side surface of the base facing the first direction overlaps with the side surface of the base facing the fourth antenna base side, and the first of the two opening ends of the third antenna surface in the second direction.
  • the first antenna base and the second antenna base are in contact with each other in the first direction, the third antenna base and the fourth antenna base are in contact with each other, and the second antenna base is in contact with the second antenna base.
  • the holding member is attached to the antenna base and holds the first terahertz element, the second terahertz element, the third terahertz element, and the fourth terahertz element, respectively.
  • the terahertz apparatus according to any one of Supplementary note D32 to D34, which covers the first reflecting surface, the second reflecting surface, the third reflecting surface, and the fourth reflecting surface.
  • a first partition wall that separates the first reflecting surface and the second reflecting surface by contacting with the holding member is provided.
  • a second partition wall is provided which separates the first reflecting surface from the third reflecting surface by coming into contact with the holding member.
  • a third partition wall is provided which separates the second reflecting surface from the fourth reflecting surface by coming into contact with the holding member. 3.
  • the boundary between the reflective surface and the fourth reflective surface is provided with a fourth partition wall that separates the third reflective surface from the fourth reflective surface by coming into contact with the holding member, according to Appendix D35.
  • Terra Hertz device is provided at the boundary between the first reflecting surface and the second reflecting surface.
  • a plurality of terahertz elements including a first terahertz element and a second terahertz element that generate electromagnetic waves, a holding member that holds the first terahertz element and the second terahertz element, respectively, and a gas space in which a gas exists.
  • a first reflecting surface that faces the first terahertz element in the thickness direction of the first terahertz element through the gas space and reflects electromagnetic waves from the first terahertz element in one direction.
  • a second reflective surface that faces the second terahertz element in the thickness direction of the second terahertz element through the gas space and reflects electromagnetic waves from the second terahertz element in one direction.
  • a terahertz device including a plurality of terahertz surfaces, wherein the first terahertz surface is open toward the first terahertz element and is curved so as to be recessed in a direction away from the first terahertz element.
  • the second reflective surface is open toward the second terahertz element and is curved so as to be recessed in a direction away from the second terahertz element, and the thickness direction of both terahertz elements.
  • the direction parallel to the terahertz device is the height direction of the terahertz device
  • the first reflecting surface and the second reflecting surface are arranged adjacent to each other in the first direction intersecting the height direction of the terahertz device.
  • the gas space includes a first gas space partitioned by the first reflecting surface and the holding member, and a second gas space partitioned by the second reflecting surface and the holding member.
  • a terahertz device in which a gas space and the second gas space are connected in the first direction at a boundary between the first reflecting surface and the second reflecting surface.
  • the terahertz device by providing a plurality of terahertz elements, it is possible to increase the output of the light source when the terahertz device is used as a light source for outputting electromagnetic waves in the terahertz band.
  • the first reflecting surface and the second reflecting surface are formed so that the first gas space and the second gas space are connected in the first direction, so that the first reflecting surface and the second reflecting surface are formed in the first direction. You can bring it closer to the surface. Therefore, the distance between the first terahertz element and the second terahertz element adjacent to each other in the first direction can be reduced.
  • the plurality of electromagnetic waves output from the plurality of terahertz elements in one direction through the plurality of reflective surfaces do not have a gap in the first direction, or the spacing can be reduced, so that the terahertz device outputs.
  • the electromagnetic wave to be generated can be made uniform in the first direction.
  • the first reflecting surface and the second reflecting surface each have a spherical shape, pass through the center point of the first reflecting surface, and follow the first direction and the height direction of the terahertz device.
  • the portion of the first reflective surface connecting both ends in the first direction and the portion of the second reflective surface connecting both ends in the first direction are The terahertz device according to Appendix D37, each of which is formed in an arc shape having a central angle of less than 180 °.
  • the plurality of terahertz elements include a third terahertz element held by the holding member, and the plurality of reflective surfaces face the third terahertz element in the height direction of the terahertz device and A third reflecting surface that reflects electromagnetic waves from the third terahertz element in one direction is included, and the third reflecting surface is open toward the third terahertz element and from the third terahertz element. It is curved so as to be recessed in the direction away from each other, and when viewed from the height direction of the Terra Hertz device, the third reflecting surface is on the side opposite to the second reflecting surface and the first reflecting surface in the first direction.
  • the gas space is arranged adjacent to the second reflecting surface, and the gas space includes a third gas space composed of the third reflecting surface and the holding member, and includes the second gas space and the third gas space.
  • the terahertz device according to Appendix D37 or D38 which is connected in the first direction at the boundary between the second reflecting surface and the third reflecting surface.
  • the third reflecting surface has a spherical shape, and the reflecting surface is cut by a plane passing through the center point of the third reflecting surface and along the first direction and the height direction of the terahertz device.
  • the terahertz device according to Appendix D39, wherein the boundary between the second reflecting surface and the third reflecting surface is formed in a straight line when viewed from the height of the terahertz device.
  • the plurality of terahertz elements include a third terahertz element held by the holding member, and the plurality of reflecting surfaces face the third terahertz element in the height direction of the terahertz device and A third reflecting surface that reflects electromagnetic waves from the third terahertz element in one direction is included, and the third reflecting surface is open toward the third terahertz element and is from the third terahertz element.
  • the height of the terahertz device is curved so as to be recessed in a distant direction, and the direction that intersects the height direction of the terahertz device and is different from the first direction and the second direction is the third direction. Assuming that the direction intersecting the vertical direction and different from the first direction, the second direction, and the third direction is the fourth direction, the third reflection is viewed from the height direction of the terahertz device.
  • the surfaces are arranged adjacent to the first reflecting surface in the third direction and adjacent to the second reflecting surface in the fourth direction, and the gas space is the third reflecting surface.
  • a third gas space including the holding member and the holding member, and the first gas space and the third gas space are connected in the third direction at the boundary between the first reflecting surface and the third reflecting surface.
  • the terahertz device according to Appendix D37 or D38, wherein the second gas space and the third gas space are connected in the fourth direction at the boundary between the second reflecting surface and the third reflecting surface.
  • the third terahertz element is positioned at a position deviated from the first terahertz element and the second terahertz element in the second direction, and when viewed from the second direction, the first terahertz element and the said.
  • the terahertz device according to Appendix D42 which is arranged at a position overlapping both of the second terahertz elements.
  • the plurality of terahertz elements include a third terahertz element and a fourth terahertz element, and the plurality of reflective surfaces face the third terahertz element in the height direction of the terahertz device, and the first terahertz element is used.
  • the third reflecting surface that reflects the electromagnetic wave from the 3 terahertz element in one direction faces the fourth terahertz element in the height direction of the terahertz device, and the electromagnetic wave from the fourth terahertz element is unidirectionally opposed to the fourth terahertz element.
  • the third reflecting surface includes a fourth reflecting surface that is directed toward the third reflecting surface, and the third reflecting surface is open toward the third terahertz element and is curved so as to be recessed in a direction away from the third terahertz element.
  • the fourth reflective surface is open toward the fourth terahertz element and is curved so as to be recessed in a direction away from the fourth terahertz element, and the second direction is the height of the terahertz device.
  • the gas space is a direction orthogonal to the first direction when viewed from the vertical direction, and the gas space is a third gas space partitioned by the third reflecting surface and the holding member, and the fourth reflecting surface and the holding member.
  • the third reflective surface is arranged adjacent to the first reflective surface in the second direction, including a fourth gas space partitioned by the member and viewed from the height direction of the Terra Hertz device.
  • the fourth reflecting surface is arranged adjacent to the second reflecting surface in the second direction, and the third reflecting surface and the fourth reflecting surface are arranged adjacent to each other in the first direction.
  • the first gas space and the third gas space are connected in the second direction at the boundary between the first reflecting surface and the third reflecting surface, and the second gas space and the fourth gas space are connected to each other.
  • the terahertz device according to the appendix D37 or D38, which is connected in the second direction at the boundary between the second reflecting surface and the fourth reflecting surface.
  • Appendix D46 When viewed from the height direction of the terahertz device, at least one of the size of the third reflecting surface and the size of the fourth reflecting surface along the second direction is the first direction and the said.
  • the terahertz device according to Appendix D45 which is smaller than the size of the third reflecting surface and the size of the fourth reflecting surface along a third direction different from the second direction.
  • the third reflecting surface and the fourth reflecting surface each have a spherical shape, and when viewed from the height direction of the terahertz device, the second of the outer peripheral edges of the third reflecting surface. Note that at least one of the portion connecting both end edges in the direction and the outer peripheral edge of the fourth reflecting surface connecting both end edges in the second direction is formed in an arc shape having a central angle of less than 180 °.
  • the terahertz device according to D45 or D46.
  • the sizes of the third reflecting surface and the fourth reflecting surface along the second direction are the third reflecting surfaces along the third direction. And smaller than the respective sizes of the fourth reflecting surface, the boundary between the first reflecting surface and the third reflecting surface, and the second reflecting surface and the second reflecting surface when viewed from the height direction of the terahertz device. 4.
  • a terahertz device including a holding member for holding a plurality of terahertz elements, the holding member provided with a plurality of conductive portions individually electrically connected to the plurality of terahertz elements. ..
  • Each of the plurality of terahertz elements has a pad, and the plurality of conductive portions each have an element facing portion facing the pad in the thickness direction of the terahertz element and the pad.
  • the terahertz according to Appendix E1 which comprises a bump provided between the element facing portion and the plurality of terahertz elements, each of which is flip-chip mounted on the element facing portion via the bump. Device.
  • the plurality of conductive portions include a first conductive portion and a second conductive portion, respectively, and the first conductive portion and the second conductive portion are the same when viewed from the height direction of the terahertz device.
  • the terahertz device according to Appendix E1 or E2 which extends toward one side of the second direction with respect to each of the plurality of terahertz elements in a state of being arranged in the first direction.
  • the plurality of terahertz elements include a first terahertz element, a second terahertz element, and a third terahertz element, and the direction parallel to the thickness direction of the terahertz element is defined as the height direction of the terahertz device.
  • a plurality of terahertz devices including a first reflecting surface facing the first terahertz element, a second reflecting surface facing the second terahertz element, and a third reflecting surface facing the third terahertz element in the height direction of the terahertz device.
  • the first reflecting surface and the second reflecting surface are arranged adjacent to each other in the first direction intersecting the height direction of the terahertz device, and the first reflecting surface and the third reflecting surface are arranged adjacent to each other.
  • the reflective surfaces are arranged adjacent to each other in a third direction that intersects the height direction of the terahertz device and is different from the first direction when viewed from the height direction of the terahertz device.
  • the second reflecting surface and the third reflecting surface are in a direction intersecting the height direction of the terahertz device when viewed from the height direction of the terahertz device, and are different from the first direction and the third direction.
  • the holding members are arranged adjacent to each other in the direction, and the holding member is provided with a plurality of conductive portions individually electrically connected to the plurality of terahertz elements, and the plurality of conductive portions are each first.
  • the first conductive portion and the second conductive portion, including the conductive portion and the second conductive portion and connected to the third terahertz element, are the first reflective surface and the said, respectively, when viewed from the height direction of the terahertz device.
  • a terahertz device located at a position overlapping the boundary with the second reflecting surface.
  • the holding member for holding the plurality of terahertz elements is provided, and the holding member is made of a dielectric material and is a dielectric surrounding each of the plurality of terahertz elements.
  • the terahertz device according to any one of 18 to 18.
  • Appendix E10 The terahertz device according to Appendix E9, wherein the plurality of protection diodes are provided at positions that do not overlap with the plurality of reflective surfaces when viewed from the height direction of the terahertz device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

反射膜(82A,82B)を含むアンテナベース(70)を備えたテラヘルツ装置であって、反射膜(82A,82B)は、凹むように湾曲しており、反射膜(82Aおよび反射膜82B)は、y方向において隣接して並べられており、z方向から視て、x方向に沿う反射膜(82A)および反射膜(82B)のそれぞれの大きさは、y方向に沿う反射膜(82A)および反射膜(82B)のそれぞれの大きさよりも小さい。

Description

テラヘルツ装置
 本開示は、テラヘルツ装置に関する。
 近年、トランジスタなどの電子デバイスの微細化が進み、電子デバイスの大きさがナノサイズになってきたため、量子効果と呼ばれる現象が観測されるようになっている。そして、この量子効果を利用した超高速デバイスや新機能デバイスの実現を目指した開発が進められている。
 そのような環境の中で、特に、周波数が0.1THz~10THzであるテラヘルツ帯と呼ばれる周波数領域の電磁波を利用して大容量通信や情報処理、あるいはイメージングや計測などを行う試みが行われている。この周波数領域は、光と電波との両方の特性を兼ね備えており、この周波数帯で動作するデバイスが実現されれば、上述したイメージング、大容量通信・情報処理のほか、物性、天文、生物などの様々な分野における計測など、多くの用途に利用されうる。
 テラヘルツ帯の周波数の電磁波を発生または受信する素子としては、たとえば共鳴トンネルダイオードと微細スロットアンテナを集積する構造のものが知られている(たとえば特許文献1参照)。
特開2016-111542号公報
 ところで、テラヘルツ装置は、テラヘルツ帯の周波数の電磁波を出力する光源、テラヘルツ帯の周波数の電磁波を検出する検出器として用いられる。このようなテラヘルツ装置においては、高出力化や分解能の向上が望まれている。
 本開示の目的は、高出力化または分解能の向上を図ることができるテラヘルツ装置を提供することにある。
 上記課題を解決するテラヘルツ装置は、電磁波を受信する第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、入射された電磁波を前記第1テラヘルツ素子に向けて反射させる第1反射面、および前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、入射された電磁波を前記第2テラヘルツ素子に向けて反射させる第2反射面を含む複数の反射面と、を備えたテラヘルツ装置であって、前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第1反射面および前記第2反射面は、第1方向において隣接して並べられており、前記第1テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさの少なくとも一方は、前記第1方向とは異なる方向である第2方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさよりも小さい。
 この構成によれば、第1方向において隣り合う第1テラヘルツ素子と第2テラヘルツ素子との間の距離を小さくすることができる。したがって、テラヘルツ装置の電磁波の検出範囲における分解能の向上を図ることができる。
 上記課題を解決するテラヘルツ装置は、電磁波を発生させる第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、前記第1テラヘルツ素子から発生した電磁波を一方向に向けて反射させる第1反射面、および前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、前記第2テラヘルツ素子から発生した電磁波を一方向に向けて反射させる第2反射面を含む複数の反射面と、を備えたテラヘルツ装置であって、前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第1反射面および前記第2反射面は、第1方向において隣接して並べられており、前記第1テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさの少なくとも一方は、前記第1方向とは異なる方向である第2方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさよりも小さい。
 この構成によれば、複数のテラヘルツ素子を備えることによって、テラヘルツ装置がテラヘルツ帯の電磁波を出力する光源として用いられた場合に光源の高出力化を図ることができる。加えて、第1方向における第1テラヘルツ素子と第2テラヘルツ素子との間の距離を小さくすることができるため、複数のテラヘルツ素子から複数の反射面を介して一方向に出力される複数の電磁波が第1方向において間隔をあけることがなくなる、または間隔を小さくすることができるため、テラヘルツ装置が出力する電磁波を第1方向において均一にすることができる。
 上記テラヘルツ装置によれば、高出力化または分解能の向上を図ることができる。
第1実施形態のテラヘルツ装置を上方側から視た斜視図。 図1のテラヘルツ装置を下方側から視た斜視図。 図1のテラヘルツ装置の裏面図。 図3のテラヘルツ装置の4-4線の端面図。 図3のテラヘルツ装置の5-5線の端面図。 テラヘルツ素子の正面図。 能動素子およびその周辺を模式的に示す端面図。 図7の部分拡大図。 図1のテラヘルツ装置のアンテナベースを上方側から視た斜視図。 図9のアンテナベースの平面図。 図10のアンテナベースの11-11線の断面図。 図3のテラヘルツ装置の12-12線の断面図。 図12のテラヘルツ装置の13-13線の断面図。 図13の導電部およびその周辺の部分拡大図。 図14の導電部およびその周辺の部分拡大図。 第1実施形態のテラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 図16の支持基板およびその周辺の17-17線の断面図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 (a)図18の支持基板およびその周辺の19-19線の断面図、(b)(a)の部分拡大図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 図20の支持基板およびその周辺の21-21線の断面図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 図22の支持基板およびその周辺の23-23線の断面図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 テラヘルツ装置の製造方法の一工程の一例を説明するための説明図。 (a)気体に囲まれたテラヘルツ素子の模式図、(b)(a)の場合の屈折率の変化を示すグラフ。 (a)誘電体および気体に囲まれたテラヘルツ素子の模式図、(b)(a)の場合の屈折率の変化を示すグラフ。 比較例のテラヘルツ装置について、隣り合うテラヘルツ素子の素子間距離を示す模式的な断面図。 第1実施形態のテラヘルツ装置について、隣り合うテラヘルツ素子の素子間距離を示す模式的な断面図。 第2実施形態のテラヘルツ装置の平面図。 図35のテラヘルツ装置のアンテナベースを上方から視た斜視図。 図36のアンテナベースの平面図。 図37のアンテナベースを構成する個別アンテナベースの一種類を示す平面図。 図37のアンテナベースを構成する別の種類の個別アンテナベースの平面図。 図37のアンテナベースを構成するさらに別の種類の個別アンテナベースの平面図。 図35のテラヘルツ装置の41-41線の断面図。 図35のテラヘルツ装置の42-42線の断面図。 図35のテラヘルツ装置の43-43線の断面図。 図35のテラヘルツ装置の導電部の配置関係を説明するための断面図。 アンテナベースの部分拡大図。 第3実施形態のテラヘルツ装置の平面図。 図46のテラヘルツ装置のアンテナベースを上方から視た斜視図。 図47のアンテナベースの平面図。 図48のアンテナベースを構成する個別アンテナベースの一種類を示す平面図。 図48のアンテナベースを構成する別の種類の個別アンテナベースの平面図。 図48のアンテナベースを構成するさらに別の種類の個別アンテナベースの平面図。 図46のテラヘルツ装置の52-52線の断面図。 図46のテラヘルツ装置の53-53線の断面図。 図46のテラヘルツ装置の導電部の配置関係を説明するための断面図。 図54の導電部の部分拡大図。 アンテナベースの部分拡大図。 第1実施形態のテラヘルツ装置の変更例を示す断面図。 第2実施形態のテラヘルツ装置の変更例を示す断面図。 第2実施形態のテラヘルツ装置の変更例を示す断面図。 第2実施形態のテラヘルツ装置の変更例を示す断面図。 第2実施形態のテラヘルツ装置の変更例を示す断面図。 第1実施形態のテラヘルツ装置の変更例の概要を示す回路図。 第1実施形態のテラヘルツ装置の変更例を示す一部分を拡大した断面図。 第2実施形態のテラヘルツ装置の変更例を示す一部分を拡大した断面図。 第2実施形態のテラヘルツ装置の変更例を示す一部分を拡大した断面図。 変更例のテラヘルツ素子を模式的に示す正面図。 第1実施形態のテラヘルツ装置の変更例について、アンテナベースの平面図。 図67のアンテナベースの68-68線の断面図。 第1実施形態のテラヘルツ装置の変更例について、アンテナベースの平面図。 図69のアンテナベースの70-70線の断面図。 第2実施形態のテラヘルツ装置の変更例について、アンテナベースの平面図。 第3実施形態のテラヘルツ装置の変更例について、アンテナベースの平面図。 変更例のテラヘルツ装置について、アンテナベースの平面図。 図73のアンテナベースを備える変更例のテラヘルツ装置の平面図。 第1実施形態のテラヘルツ装置の変更例の断面図。
 以下、テラヘルツ装置の実施形態について図面を参照して説明する。以下に示す各実施形態は、技術的思想を具体化するための構成や方法を例示するものであり、各構成部品の材質、形状、構造、配置、寸法等を下記のものに限定するものではない。以下の各実施形態は、種々の変更を加えることができる。また、図面については、図示の都合上、一部模式的に示している。
 本開示において、「AがB上に形成されている」とは、特段の断りのない限り、AがB上に直接形成されている構成と、AとBとの間に設けられた介在物を介して、AがB上に形成されている構成とを含む。同様に、「AがB上に配置されている」とは、特段の断りのない限り、AがB上に直接配置されている構成と、AとBとの間に設けられた介在物を介して、AがB上に配置されている構成とを含む。また、「ある方向から視て、AがBと重なる」とは、特段の断りのない限り、Aの全てがBに重なっている構成と、Aの一部がBに重なっている構成とを含む。
 [第1実施形態]
 (テラヘルツ装置の構成)
 図1~図15を参照して、本開示の第1実施形態にかかるテラヘルツ装置10の構成について説明する。
 図1および図2に示すように、本実施形態のテラヘルツ装置10は、全体として細長の直方体形状に形成されている。テラヘルツ装置10は、装置主面11と、装置主面11とは反対側の面である装置裏面12と、4つの装置側面13~16と、を有している。装置主面11は、互いに直交する長手方向および短手方向を有する細長の長方形である。本実施形態のテラヘルツ装置10は、装置外部からの電磁波を受信する。なお、電磁波とは、光および電波のいずれか一方あるいは両方の概念を含むものとする。
 説明の便宜上、本実施形態では、装置主面11の長手方向をx方向とし、装置主面11の短手方向をy方向とする。そして、x方向およびy方向の双方に直交する方向をz方向とする。z方向は、テラヘルツ装置10の高さ方向ともいえる。
 装置主面11および装置裏面12はそれぞれ、z方向に対して交差する面であり、本実施形態ではz方向に対して直交している。装置裏面12は、z方向において装置主面11とは反対側を向く面である。つまり、装置主面11および装置裏面12は、テラヘルツ装置10の高さ方向の両端面といえる。
 説明の便宜上、z方向のうち装置裏面12から装置主面11に向かう方向を「上方」という。上方は、装置主面11と直交する方向であって装置主面11から装置裏面12とは反対側に離れる方向ともいえる。また、4つの装置側面13~16を、第1装置側面13、第2装置側面14、第3装置側面15および第4装置側面16と称する場合もある。
 第1装置側面13および第2装置側面14は、テラヘルツ装置10におけるx方向の両端面であり、x方向に対して交差している。本実施形態の第1装置側面13および第2装置側面14はそれぞれ、x方向に対して直交しており、y方向およびz方向に沿って延びている。本実施形態では、第1装置側面13および第2装置側面14はそれぞれ、段差状に形成されている。この点については後述する。
 第3装置側面15および第4装置側面16は、テラヘルツ装置10におけるy方向の両端面であり、y方向に対して交差している。本実施形態の第3装置側面15および第4装置側面16はそれぞれ、y方向に対して直交しており、x方向およびz方向に沿って延びている。
 図3に示すように、テラヘルツ装置10は、複数のテラヘルツ素子20を備えている。複数のテラヘルツ素子20は、テラヘルツ素子20A、テラヘルツ素子20Bおよびテラヘルツ素子20Cを含む。各テラヘルツ素子20A~20Cは互いに同一構成である。本実施形態では、各テラヘルツ素子20A~20Cは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。テラヘルツ素子20Aはy方向においてテラヘルツ装置10の中央よりも第3装置側面15の近くに配置されており、テラヘルツ素子20Cはy方向においてテラヘルツ装置10の中央よりも第4装置側面16の近くに配置されている。テラヘルツ素子20Bは、y方向においてテラヘルツ素子20Aとテラヘルツ素子20Cとの間に配置されている。本実施形態では、テラヘルツ素子20Bは、テラヘルツ装置10のy方向の中央に配置されている。本実施形態では、各テラヘルツ素子20A~20Cは、テラヘルツ装置10のx方向の中央に配置されている。
 以下、説明の便宜上、各テラヘルツ素子20A~20Cに対して共通して説明する場合は、単にテラヘルツ素子20として説明する。また、各テラヘルツ素子20A~20Cを区別する必要がない場合、複数のテラヘルツ素子20として説明する。
 テラヘルツ素子20は、テラヘルツ帯の電磁波と電気エネルギーとの変換を行う素子である。テラヘルツ素子20は、テラヘルツ帯の電磁波(換言すればテラヘルツ波)を受信する。このようなテラヘルツ帯の電磁波の周波数は、たとえば、0.1Thz~10Thzである。
 図4~図6に示すように、テラヘルツ素子20は、z方向を厚さ方向とする板状である。本実施形態では、テラヘルツ素子20は、全体として矩形板状である。本実施形態では、図6に示すように、テラヘルツ素子20は、z方向から視て、正方形である。なお、z方向から視たテラヘルツ素子20の形状は、正方形に限定されず、矩形状、円形状、楕円形状あるいは多角形状であってもよい。ちなみに、z方向とテラヘルツ素子20の厚さ方向とが一致している点に着目すれば、「z方向から視て」とは、「テラヘルツ素子20の厚さ方向から視て」ともいえる。また、z方向がテラヘルツ装置10の高さ方向といえることから、「z方向から視て」とは、「テラヘルツ装置10の高さ方向から視て」ともいえる。
 図4および図5に示すように、テラヘルツ素子20のz方向の寸法である素子厚さD1は、たとえば受信する電磁波の周波数に基づいて設定されている。一例としては、素子厚さD1は、電磁波の周波数が高いほど薄く、電磁波の周波数が低いほど厚くなっているとよい。
 テラヘルツ素子20は、テラヘルツ素子20の厚さ方向に対して交差する面として素子主面21および素子裏面22を有している。素子主面21および素子裏面22はそれぞれ、z方向に対して交差する面であり、本実施形態ではz方向に対して直交している。このため、z方向とは、素子主面21に直交する方向ともいえる。
 素子主面21および素子裏面22はそれぞれ、z方向から視て矩形状であり、たとえば正方形状である。ただし、z方向から視た素子主面21および素子裏面22の形状は、これに限定されず、任意に変更可能である。
 図4および図5に示すように、本実施形態のテラヘルツ素子20は、素子裏面22が上方を向いた状態(換言すれば、素子主面21が下方を向いた状態)で配置されている。素子主面21は、素子裏面22よりも装置裏面12の近くに配置されており、素子裏面22は、素子主面21よりも装置主面11の近くに配置されている。
 図6に示すように、テラヘルツ素子20は、x方向の両端面である第1素子側面23および第2素子側面24と、y方向の両端面である第3素子側面25および第4素子側面26と、を有している。第1素子側面23および第2素子側面24はそれぞれ、x方向に対して交差する面であり、本実施形態では、x方向に対して直交している。第3素子側面25および第4素子側面26はそれぞれ、y方向に対して交差する面であり、本実施形態ではy方向に対して直交している。第1素子側面23および第2素子側面24と、第3素子側面25および第4素子側面26とは互いに直交している。
 図4~図6に示すように、電磁波の受信を行う受信点P1を有している。この受信点P1は、テラヘルツ帯の電磁波と共振する共振点であるともいえる。本実施形態では、受信点P1は電磁波を受信する点(換言すれば領域)である。受信点P1は、素子主面21に形成されている。受信点P1がある素子主面21が、電磁波の受信を行う能動面を構成している。z方向(換言すればテラヘルツ素子20の厚さ方向またはテラヘルツ装置10の高さ方向)とは、受信点P1が設けられている面に対して直交する方向ともいえる。
 本実施形態の受信点P1は、素子主面21の中心に配置されている。ただし、受信点P1の位置は、素子主面21の中心に限られず、任意である。
 図6に示すように、本実施形態において、第2素子側面24(または第1素子側面23)と受信点P1との第1垂直距離x1は、たとえば(λ´InP/2)+((λ´InP/2)×N)であるとよい(Nは0以上の整数:N=0,1,2,・・・)。
 ここで、λ´InPは、テラヘルツ素子20の内部を伝搬する電磁波の実効的な波長である。テラヘルツ素子20の屈折率である素子屈折率をn1、cを光速、fcを電磁波の中心周波数としたとき、λ´InPは、(1/n1)×(c/fc)である。fcは、テラヘルツ素子20の目標周波数ともいえる。また、fcは、テラヘルツ素子20が受信する電磁波のうち最も出力が大きい周波数でもよい。
 詳細は後述するが、素子屈折率n1は、テラヘルツ素子20を囲んでいる誘電体50の屈折率である誘電屈折率n2よりも高いため、テラヘルツ素子20が受信する電磁波は、第2素子側面24で自由端反射する。よって、第1垂直距離x1を上記のように設定することによって、テラヘルツ素子20自体が、テラヘルツ装置10における共振器(1次共振器)として設計されている。
 同様に、第4素子側面26(または第3素子側面25)と受信点P1との第2垂直距離y1は、たとえば(λ´InP/2)+((λ´InP/2)×N)であるとよい(Nは0以上の整数:N=0,1,2,・・・)。
 なお、垂直距離x1,y1は、各々が上記計算式によって算出される値であれば、素子側面23,24,25,26ごとに異なる値であってもよい。たとえば、第2素子側面24と受信点P1との第1垂直距離x1と、第1素子側面23と受信点P1との第1垂直距離とが異なっていてもよい。同様に、第4素子側面26と受信点P1との第2垂直距離y1と、第3素子側面25と受信点P1との第2垂直距離とが異なっていてもよい。
 図7および図8に示すように、テラヘルツ素子20は、素子基板31と、能動素子32と、第1素子導電層33と、第2素子導電層34と、を備えている。
 素子基板31は、半導体からなり、半絶縁性を有している。素子基板31を構成する半導体は、たとえば、InP(リン化インジウム)である。
 素子屈折率n1は、素子基板31の屈折率(絶対屈折率)である。素子基板31がInPである場合、素子屈折率n1は、約3.4である。
 本実施形態では、素子基板31は矩形板状であり、たとえばz方向から視て正方形状である。素子主面21および素子裏面22は素子基板31の主面および裏面であり、両素子側面23~26は素子基板31の側面である。
 能動素子32は、テラヘルツ帯の電磁波と電気エネルギーとの変換を行う。能動素子32は、素子基板31に形成されている。本実施形態では、能動素子32は、素子主面21の中心に設けられている。受信点P1は、能動素子32が設けられている位置ともいえる。
 能動素子32は、典型的には共鳴トンネルダイオード(RTD:Resonant Tunneling Diode)である。ただし、これに限られず、能動素子32としては、たとえば、タンネット(TUNNETT:Tunnel injection Transit Time)ダイオード、インパット(IMPATT:Impact Ionization Avalanche Transit Time)ダイオード、GaAs系電界効果トランジスタ(FET:Field Effect Transistor)、GAN系FET、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)、あるいは、ヘテロ接合バイポーラトランジスタ(HBT:Hetero junction Bipolar Transistor)であってもよい。
 能動素子32を実現するための一例を説明する。
 図8に示すように、素子基板31上には、半導体層41aが形成されている。半導体層41aは、たとえばGaInAsによって形成されている。半導体層41aには、n型不純物が高濃度にドープされている。
 半導体層41a上には、GaInAs層42aが積層されている。GaInAs層42aには、n型不純物がドープされている。たとえば、GaInAs層42aの不純物濃度は、半導体層41aの不純物濃度よりも低い。
 GaInAs層42a上にはGaInAs層43aが積層されている。GaInAs層43aには、不純物がドープされていない。
 GaInAs層43a上には、AlAs層44aが積層されており、AlAs層44a上にはInGaAs層45が積層されており、InGaAs層45上にはAlAs層44bが積層されている。これらAlAs層44aとInGaAs層45とAlAs層44bとによってRTD部が構成されている。
 AlAs層44b上には、不純物がドープされていないGaInAs層43bが積層されている。GaInAs層43b上には、n型不純物がドープされているGaInAs層42bが積層されている。GaInAs層42b上には、GaInAs層41bが積層されている。GaInAs層41bには、n型不純物が高濃度にドープされている。たとえば、GaInAs層41bの不純物濃度は、GaInAs層42bの不純物濃度よりも高い。
 なお、能動素子32の具体的構成は、電磁波を受信(あるいは発生およびその両方)可能なものであれば任意である。換言すれば、能動素子32は、テラヘルツ帯の電磁波に対して受信するものであればよいともいえる。
 図4および図5に示すように、本実施形態の素子裏面22には、電磁波を反射する素子反射層35が形成されている。テラヘルツ素子20のうち受信点P1(能動素子32)よりも上方部分に入射された電磁波は、素子反射層35に反射されて下方に向かう。
 ここで、素子厚さD1は、電磁波の共振条件が成立するように設定されていてもよい。具体的には、素子反射層35が形成されている場合は、素子裏面22と素子反射層35との界面において、電磁波が固定端反射するので、位相がπずれる。この点を考慮して、本実施形態の素子厚さD1は、(λ´InP/4)+(λ´InP/4)×N(Nは0以上の整数:N=0,1,2,・・・)。に設定されているとよい。上記のように素子厚さD1を設定することによって、定在波をテラヘルツ素子20の内部で励起させることができる。ただし、素子厚さD1は、上記に限られず任意に変更可能である。
 図7に示すように、第1素子導電層33および第2素子導電層34はそれぞれ、素子主面21上に形成されている。第1素子導電層33および第2素子導電層34はそれぞれ、金属の積層構造を有している。第1素子導電層33および第2素子導電層34の各々の積層構造は、たとえばAu(金)、Pd(パラジウム)およびTi(チタン)が積層された構造である。あるいは、第1素子導電層33および第2素子導電層34の各々の積層構造は、AuおよびTiが積層された構造である。第1素子導電層33および第2素子導電層34はいずれも、真空蒸着法あるいはスパッタリング法などによって形成される。
 図6に示すように、素子導電層33,34は、受信点P1(能動素子32)を介して所定方向(本実施形態ではy方向)に離間して対向配置されたパッド33a,34aと、パッド33a,34aから能動素子32に向けて延びた素子導通部33b,34bと、を備えている。以降の説明において、パッド33aを第1パッド33a、パッド34aを第2パッド34a、素子導通部33bを第1素子導通部33b、素子導通部34bを第2素子導通部34bと称する場合がある。
 パッド33a,34aは、たとえば両パッド33a,34aの対向方向と直交する方向(本実施形態ではx方向)に延びている。パッド33a,34aはそれぞれ、たとえばz方向から視て、長手方向および短手方向を有する矩形状である。具体的には、パッド33a,34aはそれぞれ、x方向を長手方向とし、y方向を短手方向とする矩形状である。
 パッド33a,34aは、z方向から視て、受信点P1と重ならない位置に配置されている。たとえば、パッド33a,34aは、受信点P1(換言すれば能動素子32)に対してy方向の両側に配置されており、本実施形態では受信点P1よりも素子側面25,26の近くに配置されている。
 素子導通部33b,34bはそれぞれ、たとえばy方向に延びた細長形状である。素子導通部33b,33bのx方向の長さは、パッド33a,34aのx方向の長さよりも短い。
 図8に示すように、素子導通部33b,34bの先端部33ba,34baは、z方向から視て能動素子32と重なっており、能動素子32と電気的に接続されている。具体的には、第1素子導通部33bの先端部33baは、GaInAs層41b上に位置しており、GaInAs層41bに接している。
 また、半導体層41aは、GaInAs層42a等の他の層よりも第2パッド34a(図6参照)に向けてy方向に延びている。第2素子導通部34bの先端部34baは、半導体層41aのうちGaInAs層42a等が積層されていない部分に積層されている。これにより、能動素子32が両素子導電層33,34(換言すれば両パッド33a,34a)に導通している。なお、第2素子導通部34bとGaInAs層42a等の他の層とはx方向に離間している。
 図示は省略するが、図8とは異なり、n型不純物を高濃度にドープされたGaInAs層が、GaInAs層41bと第1素子導通部33bの先端部33baとの間に介在していてもよい。これにより、第1素子導電層33とGaInAs層41bとのコンタクトが良好になりうる。
 図4および図5に示すように、テラヘルツ装置10は、保持部材の一例である誘電体50と、アンテナベース70と、反射部の一例である反射膜82と、気体空間92と、を備えている。
 誘電体50は、テラヘルツ素子20が受信する電磁波が透過する材料である誘電体材料で構成されている。本実施形態では、誘電体50は、樹脂材料によって構成されており、一例としてはエポキシ樹脂(たとえばガラスエポキシ樹脂)によって構成されている。誘電体50は、絶縁性を有している。なお、誘電体50の色は、黒色など任意である。
 誘電体50の屈折率(絶対屈折率)である誘電屈折率n2は、素子屈折率n1よりも低い。たとえば、誘電屈折率n2は、1.55である。なお、誘電体50は、1層構造でもよいし、多層構造でもよい。すなわち、誘電体50内に界面が1または複数形成されていてもよい。
 図3~図5に示すように、誘電体50は、複数のテラヘルツ素子20のそれぞれを囲っている。本実施形態では、誘電体50は、各テラヘルツ素子20A,20B,20Cの全体を囲んでおり、各テラヘルツ素子20A,20B,20Cの素子主面21、素子裏面22および素子側面23~26(図6参照)を覆っている。
 各テラヘルツ素子20A,20B,20Cの素子主面21、素子裏面22、各素子側面23~26は、誘電体50と接している。すなわち、本実施形態の誘電体50は、当該誘電体50と各テラヘルツ素子20A,20B,20Cとの間に隙間が生じないように各テラヘルツ素子20A,20B,20Cを囲んでいる。換言すれば、誘電体50は、各テラヘルツ素子20A,20B,20Cを封止している。
 誘電体50は、たとえばz方向を厚さ方向とする板状に形成されている。具体的には、図3に示すように、誘電体50は、y方向を長手方向とし、x方向を短手方向とする矩形板状である。
 図4および図5に示すように、誘電体50は、z方向に交差する面として、誘電主面51および誘電裏面52を有している。誘電主面51および誘電裏面52はそれぞれ、たとえばz方向に対して直交している。誘電主面51は、下方を向いている。誘電裏面52は、誘電主面51の反対側の面であり、上方を向いている。本実施形態では、誘電裏面52が装置主面11を構成している。
 図3に示すように、誘電体50は、x方向の両端面である第1誘電側面53および第2誘電側面54と、y方向の両端面である第3誘電側面55および第4誘電側面56と、を有している。各誘電側面53~56は、装置側面13~16の一部を構成している。本実施形態では、第1誘電側面53および第2誘電側面54と、第3誘電側面55および第4誘電側面56とは直交している。
 図4および図5に示すように、テラヘルツ素子20は、素子主面21が誘電主面51を向いた状態で誘電体50内に設けられている。テラヘルツ素子20は、誘電主面51および誘電裏面52の間に配置されている。本実施形態では、誘電体50のz方向の長さである誘電厚さD2は、テラヘルツ素子20が受信する電磁波の共振条件を満たすように設定されている。より詳細には、誘電厚さD2は、(λ′/2)+(λ′/2)×N(Nは0以上の整数:N=0,1,2,・・・)であるとよい。λ′とは、誘電体50を伝搬する電磁波の実効的な波長であり、たとえば(1/n2)×(c/fc)である。なお、誘電厚さD2は、z方向における誘電主面51および誘電裏面52間の距離ともいえる。
 本実施形態では、誘電体50とアンテナベース70とは別体である。換言すると、誘電体50とアンテナベース70とは個別に形成されている。アンテナベース70は、誘電体50と同一材料で構成されていてもよいし、別材料で構成されていてもよい。
 図4および図5に示すように、アンテナベース70は、誘電体50における誘電主面51側に設けられている。アンテナベース70は、誘電体50に対してz方向に対向する位置に設けられている。z方向は、アンテナベース70と誘電体50との対向方向ともいえる。
 ここで、誘電体50は、z方向から視て、アンテナベース70よりも側方に突出した突出部61,62を備えている。具体的には、本実施形態の誘電体50は、アンテナベース70よりもx方向に長く形成されている。このため、突出部61,62は、アンテナベース70に対してx方向の両側に突出している。両突出部61,62は、z方向から視て、アンテナベース70に対してx方向の両側に設けられており、x方向に離間している。テラヘルツ素子20は、両突出部61,62の間に配置されている。
 本実施形態では、誘電体50のy方向の長さとアンテナベース70のy方向の長さとは、同一に設定されている。すなわち、誘電体50は、アンテナベース70に対してy方向に突出していない。また、アンテナベース70のz方向の長さは、誘電厚さD2よりも長く設定されている。
 次に、アンテナベース70について説明する。
 図9に示すように、本実施形態のアンテナベース70は、たとえば全体として細長状の直方体形状である。アンテナベース70の長手方向はテラヘルツ装置10の長手方向と同じ方向であり、アンテナベース70の短手方向はテラヘルツ装置10の短手方向と同じである。
 アンテナベース70は、たとえば絶縁性材料で形成されている。具体的には、アンテナベース70は、誘電体で形成されており、たとえばエポキシ樹脂などの合成樹脂によって形成されている。エポキシ樹脂としては、たとえばガラスエポキシ樹脂である。ただし、アンテナベース70の材料はこれに限られず任意であり、たとえばSi、テフロン(登録商標)、ガラスなどでもよい。なお、アンテナベース70の色は黒色など任意である。
 アンテナベース70は、ベース主面71Tと、ベース主面71Tと反対側の面であるベース裏面72Tと、4つのベース側面73T~76Tと、を有している。ベース主面71Tおよびベース裏面72Tはそれぞれ、互いに直交する長手方向および短手方向を有する細長の長方形である。本実施形態では、アンテナベース70は、ベース主面71Tおよびベース裏面72Tの長手方向がy方向に沿い、短手方向がx方向に沿うように配置されている。ここで、4つのベース側面73T~76Tを、第1ベース側面73T、第2ベース側面74T、第3ベース側面75Tおよび第4ベース側面76Tと称する場合がある。
 ベース主面71Tおよびベース裏面72Tはそれぞれ、z方向に対して交差する面であり、本実施形態ではz方向に対して直交している。ベース裏面72Tは、z方向においてベース主面71Tとは反対側を向く面である。図4および図5に示すように、ベース主面71Tは装置主面11と同じ側を向く面であり、ベース裏面72Tは装置裏面12と同じ側を向く面である。ベース主面71Tは、誘電主面51に対して対向している。ベース裏面72Tは装置裏面12を構成している。本実施形態では、ベース主面71Tおよびベース裏面72Tは、たとえば同一形状である。ただし、これに限られず、ベース主面71Tとベース裏面72Tとは異なる形状であってもよい。
 図4および図5に示すように、ベース主面71Tには、誘電体50が載置されている。つまり、ベース主面71Tは、誘電体50の誘電主面51と対面する面であり、誘電体50が載置される面であるともいえる。ベース主面71Tは、誘電主面51に対してx方向に小さく形成されている。このため、誘電主面51の一部は、ベース主面71Tよりもx方向にはみ出している。一方、ベース主面71Tのy方向の長さと、誘電主面51のy方向の長さとは同一に設定されている。
 第1ベース側面73Tおよび第2ベース側面74Tは、x方向の両端面である。第1ベース側面73Tおよび第2ベース側面74Tはそれぞれ、x方向に対して交差する面であり、本実施形態ではx方向に対して直交している。
 第1ベース側面73Tは、第1装置側面13を構成している。具体的には、第1装置側面13は、第1誘電側面53と第1ベース側面73Tとによって構成されている。第1誘電側面53は、第1ベース側面73Tよりも側方、換言すれば、テラヘルツ素子20から離れる方向に配置されている。このため、第1装置側面13は段差状となっており、第1誘電側面53と第1ベース側面73Tとの間には段差面として誘電主面51の一部が露出している。すなわち、誘電主面51は、アンテナベース70(換言すれば第1ベース側面73T)よりも側方にはみ出した第1はみ出し面51aを有している。第1はみ出し面51aは、誘電主面51における第1突出部61に対応する部分である。
 第2ベース側面74Tは、第2装置側面14を構成している。具体的には、第2装置側面14は、第2誘電側面54と第2ベース側面74Tとによって構成されている。第2誘電側面54は、第2ベース側面74Tよりも側方、換言すれば、テラヘルツ素子20から離れる方向に配置されている。このため、第2装置側面14は段差状となっており、第2誘電側面54と第2ベース側面74Tとの間には段差面として誘電主面51の一部が露出している。すなわち、誘電主面51は、アンテナベース70(換言すれば第2ベース側面74T)よりも側方にはみ出した第2はみ出し面51bを有している。第2はみ出し面51bは、誘電主面51における第2突出部62に対応する部分である。
 図9および図10に示すように、第3ベース側面75Tおよび第4ベース側面76Tは、y方向の両端面である。第3ベース側面75Tおよび第4ベース側面76Tはそれぞれ、y方向に対して交差する面であり、本実施形態ではy方向に対して直交している。
 図12に示すように、第3ベース側面75Tは、第3装置側面15を構成している。具体的には、第3装置側面15は、第3誘電側面55と第3ベース側面75Tとによって構成されている。本実施形態では、第3誘電側面55と第3ベース側面75Tとは面一となっている。このため、第3装置側面15は、段差が形成されていない平坦面となっている。
 第4ベース側面76Tは、第4装置側面16を構成している。具体的には、第4装置側面16は、第4誘電側面56と第4ベース側面76Tとによって構成されている。本実施形態では、第4誘電側面56と第4ベース側面76Tとは面一となっている。このため、第4装置側面16は、段差が形成されていない平坦面となっている。
 図9および図10に示すように、アンテナベース70は、複数の個別アンテナベースが組み合わせられることによって構成されている。本実施形態のアンテナベース70は、3個の個別アンテナベース70A,70B,70Cが互いに組み合わせられることによって構成されている。本実施形態では、図9および図10に示すとおり、個別アンテナベース70A,70B,70Cは、y方向において1列となるように組み合わせられている。また図10に示すとおり、個別アンテナベース70Aおよび個別アンテナベース70Cが同一構成であり、個別アンテナベース70Bは個別アンテナベース70A,70Cと異なる構成である。つまり、アンテナベース70は、2種類の構成のアンテナベースの組み合わせからなる。
 図12に示すように、個別アンテナベース70Aは、テラヘルツ素子20Aの厚さ方向(z方向)においてテラヘルツ素子20Aと対向するように配置されている。個別アンテナベース70Bは、テラヘルツ素子20Bの厚さ方向(z方向)においてテラヘルツ素子20Bと対向するように配置されている。個別アンテナベース70Cは、テラヘルツ素子20Cの厚さ方向(z方向)においてテラヘルツ素子20Cと対向するように配置されている。本実施形態では、各個別アンテナベース70A~70Cは、各テラヘルツ素子20A~20Cよりも下方に配置されている。
 図9に示すように、個別アンテナベース70A~70Cはそれぞれ、z方向に交差する面として、ベース主面71およびベース裏面72を有している。ベース主面71およびベース裏面72はそれぞれ、z方向に対して交差する面であり、本実施形態ではz方向に対して直交している。ベース主面71およびベース裏面72はそれぞれ、たとえば矩形状(たとえば正方形状)である。個別アンテナベース70A~70Cが組み合わせられた状態では、個別アンテナベース70A~70Cのベース主面71およびベース裏面72は、アンテナベース70のベース主面71Tおよびベース裏面72Tを構成している。また本実施形態では、ベース主面71およびベース裏面72は、たとえば同一形状である。ただし、これに限られず、ベース主面71とベース裏面72とは異なる形状であってもよい。
 図10に示すように、個別アンテナベース70A~70Cはそれぞれ、第1ベース側面73、第2ベース側面74、第3ベース側面75および第4ベース側面76を有している。これらベース側面73~76は、テラヘルツ装置10(アンテナベース70)において側方を向く面である。各ベース側面73~76は、ベース主面71とベース裏面72との対向方向に対して直交する方向の面である。各ベース側面73~76は、ベース主面71とベース裏面72(図9参照)とを繋いでいる。なお、個別アンテナベース70A~70Cのベース側面73~76は、個別アンテナベース70A~70Cが組み合わせられた状態におけるアンテナベース70のベース側面73T~76Tに対応して決めている。つまり、個別アンテナベース70Aと個別アンテナベース70Cとは同じ形状であるが、ベース側面73,74の位置が逆向きであり、ベース側面75,76の位置が逆向きである。
 個別アンテナベース70A~70Cの第1ベース側面73および第2ベース側面74はそれぞれ、個別アンテナベース70A~70Cのx方向の両端面である。これら第1ベース側面73および第2ベース側面74はそれぞれ、x方向に対して交差する面であり、本実施形態ではx方向に対して直交している。個別アンテナベース70A~70Cのそれぞれの第1ベース側面73および第2ベース側面74は、アンテナベース70の第1ベース側面73Tおよび第2ベース側面74Tを構成している。
 個別アンテナベース70A~70Cの第3ベース側面75および第4ベース側面76はそれぞれ、個別アンテナベース70A~70Cのy方向の両端面である。これら第3ベース側面75および第4ベース側面76はそれぞれ、y方向に対して交差する面であり、本実施形態ではy方向に対して直交している。
 個別アンテナベース70A~70Cは、z方向から視て、長手方向および短手方向を有する矩形状からなる。個別アンテナベース70A~70Cはそれぞれ、長手方向がx方向に沿い、短手方向がy方向に沿うように配置されている。本実施形態では、個別アンテナベース70A~70Cのx方向の長さは互いに等しい。個別アンテナベース70Bのy方向の長さは個別アンテナベース70A,70Bのy方向の長さよりも短い。
 本実施形態では、y方向において個別アンテナベース70Aの第4ベース側面76と個別アンテナベース70Bの第3ベース側面75とが対面し、個別アンテナベース70Bの第4ベース側面76と個別アンテナベース70Cの第3ベース側面75とが対面するように、個別アンテナベース70A~70Cが配置されている。つまり、個別アンテナベース70Aの第3ベース側面75および個別アンテナベース70Cの第4ベース側面76がアンテナベース70におけるy方向の両端面を構成している。換言すると、個別アンテナベース70Aの第3ベース側面75はアンテナベース70の第3ベース側面75Tを構成しており、個別アンテナベース70Cの第4ベース側面76はアンテナベース70の第4ベース側面76Tを構成している。本実施形態では、個別アンテナベース70A,70Bがたとえば接着剤によって固定されており、個別アンテナベース70B,70Cがたとえば接着剤によって固定されている。つまり、個別アンテナベース70Aの第4ベース側面76と個別アンテナベース70Bの第3ベース側面75とは接着剤によって接合されており、個別アンテナベース70Bの第4ベース側面76と個別アンテナベース70Cの第3ベース側面75とは接着剤によって接合されている。
 図9に示すように、アンテナベース70は、複数のアンテナ凹部80を有している。本実施形態では、個別アンテナベース70Aはアンテナ凹部80Aを有しており、個別アンテナベース70Bはアンテナ凹部80Bを有しており、個別アンテナベース70Cはアンテナ凹部80Cを有している。つまり、アンテナベース70は、個別アンテナベースごとに1つのアンテナ凹部80を有している。図9から分かるとおり、アンテナ凹部80A,80Cの形状とアンテナ凹部80Bの形状は互いに異なっている。なお、以降の説明において、アンテナ凹部80A,80B,80Cに共通する事項の説明、つまりアンテナ凹部80A,80B,80Cの区別が不要な場合の説明では、アンテナ凹部80を用いて説明する。
 図4および図5に示すように、アンテナ凹部80は、ベース主面71Tからベース裏面72Tに向かう方向、すなわち下方に凹んでいる。換言すれば、アンテナ凹部80は、ベース主面71Tから、誘電体50(または誘電主面51)から離れる方向に凹んでいるともいえるし、テラヘルツ素子20から離れる方向に凹んでいるともいえる。図4および図5に示すとおり、本実施形態では、x方向およびz方向に沿う平面でアンテナベース70を切った断面視において、アンテナ凹部80は、装置裏面12に向けて凸となるように湾曲している。アンテナ凹部80は、上方に向けて開口している。
 図4および図5に示すように、アンテナ凹部80は、誘電体50および気体空間92を介してテラヘルツ素子20と対向するアンテナ面81を有している。本実施形態では、図11に示すように、アンテナ凹部80Aはアンテナ面81Aを有しており、アンテナ凹部80Bはアンテナ面81Bを有しており、アンテナ凹部80Cはアンテナ面81Cを有している。アンテナ面81A~81Cはそれぞれ、アンテナ形状に対応させて形成されている。具体的には、図12に示すように、アンテナ面81Aはテラヘルツ素子20Aから離れる方向に凹むように湾曲しており、アンテナ面81Bはテラヘルツ素子20Bから離れる方向に凹むように湾曲しており、アンテナ面81Cはテラヘルツ素子20Cから離れる方向に凹むように湾曲している。図9に示すように、アンテナ面81A~81Cはそれぞれ、たとえばすり鉢状に湾曲しており、一例としてはパラボラアンテナ形状の一部を構成するように湾曲している。なお、以降の説明において、アンテナ面81A~81Cに共通する事項の説明、つまりアンテナ面81A~81Cの区別が不要な場合の説明では、アンテナ面81を用いて説明する。
 図10に示すように、アンテナ凹部80A~80Cの開口部はそれぞれ、上方から視て、一部が欠けた円形状である。つまり、アンテナ面81A~81Cの開口部はそれぞれ、上方から視て、一部が欠けた円形状である。より詳細には、本実施形態では、アンテナ面81A~81Cの開口部はそれぞれ、アンテナ面81A~81Cの配列方向において、アンテナ面81A~81Cのそれぞれの両開口端のうち少なくとも一方が欠けた円形状である。
 上方から視て、アンテナ面81Aの開口部は、そのy方向の両開口端のうち第4ベース側面76の近くの開口端81Aaが欠けている。上方から視て、開口端81Aaは、個別アンテナベース70Aの第4ベース側面76と同じ位置に形成されている。上方から視て、開口端81Aaは、x方向に沿って延びる直線状である。
 上方から視て、アンテナ面81Bの開口部は、そのy方向の両開口端81Ba,81Bbの双方が欠けている。開口端81Baはアンテナ面81Bの開口部のy方向の両端部のうち第3ベース側面75の近くの端部であり、開口端81Bbはアンテナ面81Bの開口部のy方向の両端部のうち第4ベース側面76の近くの端部である。上方から視て、開口端81Baは個別アンテナベース70Bの第3ベース側面75と同じ位置に形成されており、開口端81Bbは個別アンテナベース70Bの第4ベース側面76と同じ位置に形成されている。上方から視て、両開口端81Ba,81Bbは、x方向に沿って延びる直線状である。
 上方から視て、アンテナ面81Cの開口部は、そのy方向の両開口端のうち第3ベース側面75の近くの開口端81Caが欠けている。上方から視て、開口端81Caは、個別アンテナベース70Cの第3ベース側面75と同じ位置に形成されている。上方から視て、開口端81Caは、x方向に沿って延びる直線状である。
 図10に示すとおり、上方から視て、アンテナ面81Aの直径とアンテナ面81Bの直径とアンテナ面81Cの直径とは互いに等しい。
 アンテナ面81Aの開口端81Aaとアンテナ面81Bの開口端81Baとが繋がっており、アンテナ面81Bの開口端81Bbとアンテナ面81Cの開口端81Caとが繋がっている。本実施形態では、開口端81Aaのx方向の長さが開口端81Baのx方向の長さと等しく、開口端81Bbのx方向の長さが開口端81Caのx方向の長さと等しい。また開口端81Baのx方向の長さと開口端81Bbのx方向の長さとは互いに等しい。つまり、本実施形態では、開口端81Aaのx方向の長さと開口端81Caのx方向の長さとは互いに等しい。
 図11に示すとおり、アンテナ面81Aの開口端81Aaは、個別アンテナベース70Aのベース主面71(アンテナベース70のベース主面71T)よりも下方に位置している。z方向において、アンテナ面81Aの開口端81Aaは、アンテナ面81Bの開口端81Baと揃っている。アンテナ面81Cの開口端81Caは、個別アンテナベース70Cのベース主面71(アンテナベース70のベース主面71T)よりも下方に位置している。z方向において、アンテナ面81Cの開口端81Caは、アンテナ面81Bの開口端81Bbと揃っている。また、z方向において、アンテナ面81Bの開口端81Baは、開口端81Bbと揃っている。つまり、z方向において、アンテナ面81Aの開口端81Aaは、アンテナ面81Cの開口端81Caと揃っている。
 次に、反射膜82について説明する。
 反射膜82は、アンテナ凹部80に伝搬した電磁波を、アンテナ凹部80に対応するテラヘルツ素子20に向けて反射させるものである。
 図11に示すように、反射膜82は、アンテナ面81上に形成されている。反射膜82は、電磁波を反射する材料で形成されており、たとえばCuなどの金属または合金で形成されている。反射膜82は、一層構造でもよいし、多層構造でもよい。本実施形態では、反射膜82は、アンテナ面81の全体にわたって形成されている。一方、反射膜82は、ベース主面71Tには形成されていない。
 本実施形態では、反射膜82は、アンテナ面81A上に形成された反射膜82Aと、アンテナ面81B上に形成された反射膜82Bと、アンテナ面81C上に形成された反射膜82Cと、を有している。本実施形態では、反射膜82A~82Cは、一体に形成された単一部品である。なお、以降の説明において、反射膜82A~82Cに共通する事項の説明、つまり反射膜82A~82Cの区別が不要な場合の説明では、反射膜82を用いて説明する。
 本実施形態では、アンテナ面81上に反射膜82が形成されるため、反射膜82は、アンテナ面81と略同一形状となっている。つまり、反射膜82Aはアンテナ面81Aと略同一形状となっており、反射膜82Bはアンテナ面81Bと略同一形状となっており、反射膜82Cはアンテナ面81Cと略同一形状となっている。換言すれば、反射膜82A~82Cはそれぞれ、回転放物面鏡となっており、すり鉢状に湾曲している。本実施形態では、反射膜82Aのうちアンテナ面81Aに接する面とは反対側の面、つまり反射膜82Aのうちテラヘルツ素子20Aに向かう面が「第1反射面」に対応する。反射膜82Bのうちアンテナ面81Bに接する面とは反対側の面、つまり反射膜82Bのうちテラヘルツ素子20Bに向かう面が「第2反射面」に対応する。反射膜82Cのうちアンテナ面81Cに接する面とは反対側の面、つまり反射膜82Cのうちテラヘルツ素子20Cに向かう面が「第3反射面」に対応する。
 反射膜82A~82Cはそれぞれ、装置裏面12(個別アンテナベース70A~70Cのベース裏面72)に向けて凸となるように湾曲している。反射膜82A~82Cはそれぞれ、一方向(本実施形態では上方)に向けて開口している。
 図12に示すように、反射膜82と誘電体50とはz方向において対向している。換言すれば、反射膜82は、誘電体50に対して対向する位置に設けられている。反射膜82によって反射された電磁波は、受信点P1に向けて出力される。具体的には、反射膜82Aによって反射された電磁波は、テラヘルツ素子20Aの受信点P1に向けて出力される。反射膜82Bによって反射された電磁波は、テラヘルツ素子20Bの受信点P1に向けて出力される。反射膜82Cによって反射された電磁波は、テラヘルツ素子20Cの受信点P1に向けて出力される。
 反射膜82は、素子裏面22ではなく、受信点P1が存在する素子主面21側に配置されており、テラヘルツ素子20(本実施形態では素子主面21)と対向している。換言すれば、テラヘルツ素子20は、素子主面21が反射膜82と対向した状態で誘電体50内に配置されている。なお、パッド33a,34aと反射膜82との位置関係に着目すれば、パッド33a,34aは反射膜82の方を向いているともいえる。
 反射膜82は、たとえば当該反射膜82の焦点が受信点P1となるように配置されている。より詳細には、図12に示すように、複数のテラヘルツ素子20は、アンテナ面81A~81C(反射膜82A~82C)に対応して配置されている。テラヘルツ素子20Aはアンテナ面81A(反射膜82A)に対応して配置されており、テラヘルツ素子20Bはアンテナ面81B(反射膜82B)に対応して配置されており、テラヘルツ素子20Cはアンテナ面81C(反射膜82C)に対応して配置されている。この場合、反射膜82Aは、当該反射膜82Aの焦点がテラヘルツ素子20Aの受信点P1となるように配置されている。反射膜82Bは、当該反射膜82Bの焦点がテラヘルツ素子20Bの受信点P1となるように配置されている。反射膜82Cは、当該反射膜82Cの焦点がテラヘルツ素子20Cの受信点P1となるように配置されている。本実施形態では、z方向から視て、反射膜82Aの中心点P2とテラヘルツ素子20Aの受信点P1とは一致しており、反射膜82Bの中心点P2とテラヘルツ素子20Bの受信点P1とは一致しており、反射膜82Cの中心点P2とテラヘルツ素子20Cの受信点P1とは一致している。本実施形態では、テラヘルツ素子20A~20Cの受信点P1がz方向において揃っているため、反射膜82A~82Cの中心点P2はz方向において揃っている。
 また、受信点P1から反射膜82までの垂直距離を規定距離z1とし、反射膜82のz方向の座標をZとし、反射膜82のx方向の位置をXとすると、Z=(1/(4z1))Xの条件を満たすように反射膜82が湾曲しているとよい。なお、Xは中心点P2において「0」とする。反射膜82のy方向の位置についても同様である。ただし、反射膜82の湾曲態様はこれに限られず、任意に変更可能である。
 z方向は、反射膜82とテラヘルツ素子20(素子主面21)との対向方向ともいえる。また、z方向は、反射膜82の中心点P2と受信点P1との対向方向ともいえる。規定距離z1は、受信点P1と反射膜82のうち中心点P2に対応する位置との間の距離ともいえる。
 また、反射膜82は、テラヘルツ素子20が受信する電磁波が共振するように、当該電磁波の周波数に対応する位置に配置されていてもよい。具体的には、規定距離z1は、テラヘルツ素子20が受信する電磁波の共振条件を満たすように設定されていてもよい。
 図10に示すように、上方から視て、反射膜82A~82Cの開口部は、アンテナ面81A~81Cの開口部と同一形状である。つまり、上方から視て、反射膜82A~82Cの開口部は、反射膜82A~82Cの配列方向において、反射膜82A~82Cの両開口端のうち少なくとも一方が欠けた円形状である。
 上方から視て、反射膜82Aの開口部は、アンテナ面81Aの開口端81Aaと重なる位置の開口端82Aaが欠けている。上方から視て、開口端82Aaは、x方向に沿って延びる直線状である。
 上方から視て、反射膜82Bの開口部は、アンテナ面81Bの両開口端81Ba,81Bbと重なる位置の開口端82Ba,82Bbが欠けている。上方から視て、両開口端82Ba,82Bbはそれぞれ、x方向に沿って延びる直線状である。
 上方から視て、反射膜82Cの開口部は、アンテナ面81Cの開口端81Caと重なる位置の開口端82Caが欠けている。上方から視て、開口端82Caは、x方向に沿って延びる直線状である。
 アンテナ面81A~81Cと同様に、上方から視て、反射膜82Aの直径と反射膜82Bの直径と反射膜82Cの直径とは互いに等しい。
 反射膜82Aの開口端82Aaと反射膜82Bの開口端82Baとが繋がっており、反射膜82Bの開口端82Bbと反射膜82Cの開口端82Caとが繋がっている。本実施形態では、開口端82Aaのx方向の長さが開口端82Baのx方向の長さと等しい。また開口端82Baのx方向の長さが開口端82Caのx方向の長さと等しい。また開口端82Baのx方向の長さと開口端82Bbのx方向の長さとが互いに等しい。つまり、本実施形態では、開口端81Aaのx方向の長さと開口端82Caのx方向の長さとが互いに等しい。
 図11に示すように、反射膜82Aの開口端82Aaは、個別アンテナベース70Aのベース主面71(アンテナベース70のベース主面71T)よりも下方に位置している。反射膜82Aの開口端82Aaのz方向の位置は、反射膜82Bの開口端82Baのz方向の位置と揃っている。反射膜82Cの開口端82Caは、個別アンテナベース70Cのベース主面71(アンテナベース70のベース主面71T)よりも下方に位置している。z方向において、反射膜82Cの開口端82Caは、反射膜82Bの開口端82Bbと揃っている。また、z方向において、反射膜82Bの開口端82Baは、開口端82Bbと揃っている。つまり、z方向において、反射膜82Aの開口端82Aaは、反射膜82Cの開口端82Caと揃っている。
 図10に示すように、上方から視て、反射膜82Aは、その中心点P2が個別アンテナベース70Aの中央と異なる位置となるように形成されている。本実施形態では、反射膜82Aの中心点P2は、上方から視て、一部が欠けた円形の反射膜82Aの中心であり、アンテナ面81Aの中心点と一致している。より詳細には、上方から視て、反射膜82Aは、その中心点P2がx方向において個別アンテナベース70Aの中央となるように形成されている。上方から視て、反射膜82Aは、その中心点P2がy方向において個別アンテナベース70Aの第4ベース側面76寄りとなるように形成されている。換言すると、上方から視て、反射膜82Aの中心点P2は、個別アンテナベース70Aのy方向の中央よりも個別アンテナベース70Bの近くに位置している。
 上方から視て、反射膜82Aの中心点P2とアンテナ面81Aの中心点とが一致し、かつ反射膜82Aの形状とアンテナ面81Aの形状とが略同一形状であるため、上方から視て、アンテナ面81Aは、反射膜82Aと同様に、アンテナ面81Aの中心点が個別アンテナベース70Aの中央と異なる位置となるように形成されている。
 上方から視て、反射膜82Aの円弧状の外周縁のうち反射膜82A~82Cが配列される方向である第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角が180°未満となる円弧状である。ここで、第1方向は、テラヘルツ装置10の高さ方向(z方向)と交差する方向である。本実施形態では、第1方向は、テラヘルツ装置10の高さ方向と直交する方向である。本実施形態では、反射膜82Aの円弧状の外周縁のうちy方向における第3ベース側面75の近くの端縁と、開口端82Aaのx方向の両端縁のうち第1ベース側面73に近い方の端縁とを結ぶ部分は、その中心角θa1が180°未満となる円弧状である。反射膜82Aの円弧状の外周縁のうちy方向における第3ベース側面75の近くの端縁と、開口端82Aaのx方向の両端縁のうち第2ベース側面74に近い方の端縁とを結ぶ部分は、その中心角θa2が180°未満となる円弧状である。中心角θa1および中心角θa2は、互いに等しい。上方から視て、反射膜82Aとアンテナ面81Aとが略同一形状であるため、反射膜82Aと同様に、アンテナ面81Aの円弧状の外周縁のうちアンテナ面81A~81Cが配列される方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満となる円弧状である。
 上方から視て、反射膜82A~82Cが配列される方向である第1方向に沿う反射膜82Aの大きさは、第1方向とは異なる第2方向に沿う反射膜82Aの大きさよりも小さい。より詳細には、上方から視て、上記第1方向(本実施形態ではy方向)における中心点P2を通る反射膜82Aの長さは、上記第2方向における中心点P2を通る反射膜82Aの長さよりも短い。ここで、第2方向は、たとえば上方から視て第1方向と直交する方向(本実施形態ではx方向)である。本実施形態では、上方から視て、中心点P2を通る反射膜82Aのy方向の長さLAYは、中心点P2を通る反射膜82Aのy方向の長さLAXよりも短い。ここで、中心点P2を通る反射膜82Aの長さLAXは、上方から視た反射膜82Aの直径ともいえる。
 なお、上方から視て、反射膜82Aとアンテナ面81Aとが略同一形状であるため、アンテナ面81Aのx方向の長さおよびy方向の長さの関係は、上述の反射膜82Aの長さの関係と同じである。つまり、上方から視て、アンテナ面81A~81Cが配列される方向である第1方向におけるアンテナ面81Aの中心点を通るアンテナ面81Aの長さは、第1方向とは異なる第2方向におけるアンテナ面81Aの中心点を通るアンテナ面81Aの長さよりも短い。ここで、第2方向は、たとえば上方から視て第1方向と直交する方向(本実施形態ではx方向)である。この場合、第2方向におけるアンテナ面81Aの中心点を通るアンテナ面81Aの長さは、上方から視たアンテナ面81Aの直径ともいえる。
 図11に示すように、反射膜82Aの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、反射膜82Aの両端縁を結んだ部分は、その中心角θz1が180°未満の円弧状に形成されている。アンテナ面81Aも同様に、アンテナ面81Aの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、アンテナ面81Aの両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図10に示すように、上方から視て、反射膜82Bは、その中心点P2が個別アンテナベース70Bの中央と揃った位置となるように形成されている。本実施形態では、反射膜82Bの中心点P2は、上方から視て、一部が欠けた円形の反射膜82Bの中心であり、アンテナ面81Bの中心点と一致している。
 上方から視て、反射膜82Bの中心点P2とアンテナ面81Bの中心点とが一致し、かつ反射膜82Bの形状とアンテナ面81Bの形状とが略同一形状であるため、上方から視て、アンテナ面81Bは、反射膜82Bと同様に、アンテナ面81Bの中心点が個別アンテナベース70Bの中央と揃った位置となるように形成されている。
 上方から視て、反射膜82Bの円弧状の外周縁のうち反射膜82A~82Cが配列される方向である第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角が180°未満となる円弧状である。本実施形態では、反射膜82Bの円弧状の外周縁において、開口端82Baのx方向の両端縁のうち第1ベース側面73に近い方の端縁と、開口端82Bbのx方向の両端縁のうち第1ベース側面73に近い方の端縁とを結ぶ部分は、その中心角θb1が180°未満となる円弧状である。反射膜82Bの円弧状の外周縁において、開口端82Baのx方向の両端縁のうち第2ベース側面74に近い方の端縁と、開口端82Bbのx方向の両端縁のうち第2ベース側面74に近い方の端縁とを結ぶ部分は、その中心角θb2が180°未満となる円弧状である。中心角θb1,θb2は、互いに等しい。また中心角θb1,θb2は、中心角θa1,θa2よりも小さい。上方から視て、反射膜82Bとアンテナ面81Bとが略同一形状であるため、反射膜82Bと同様に、アンテナ面81Aの円弧状の外周縁のうちアンテナ面81A~81Cが配列される方向である第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角が180°未満となる円弧状である。
 上方から視て、反射膜82A~82Cが配列される方向である第1方向に沿う反射膜82Bの大きさは、第1方向とは異なる方向である第2方向に沿う反射膜82Bの大きさよりも小さい。より詳細には、上方から視て、上記第1方向(本実施形態ではy方向)における中心点P2を通る反射膜82Bの長さは、上記第2方向における中心点P2を通る反射膜82Bの長さよりも短い。ここで、第2方向は、たとえば上方から視て第1方向と直交する方向(本実施形態ではx方向)である。本実施形態では、上方から視て、中心点P2を通る反射膜82Bのy方向の長さLBYは、中心点P2を通る反射膜82Bのy方向の長さLBXよりも短い。ここで、中心点P2を通る反射膜82Bの長さLBXは、上方から視た反射膜82Aの直径ともいえる。つまり、上方から視て、中心点P2を通る反射膜82Bの長さLBXは、中心点P2を通る反射膜82Aの長さLAXと等しい。
 なお、上方から視て、反射膜82Bとアンテナ面81Bとが略同一形状であるため、アンテナ面81Bのx方向の長さおよびy方向の長さの関係は、上述の反射膜82Bの長さの関係と同じである。つまり、上方から視て、アンテナ面81A~81Cが配列される方向である第1方向(本実施形態ではy方向)におけるアンテナ面81Bの中心点を通るアンテナ面81Bの長さは、第1方向とは異なる第2方向におけるアンテナ面81Bの中心点を通るアンテナ面81Bの長さよりも短い。ここで、第2方向は、たとえば上方から視て第1方向と直交する方向(本実施形態ではx方向)である。この場合、第2方向におけるアンテナ面81Bの中心点を通るアンテナ面81Bの長さは、上方から視たアンテナ面81Bの直径ともいえる。つまり、上方から視て、アンテナ面81Bの中心点を通るアンテナ面81Bの第2方向の長さは、アンテナ面81Aの中心点を通るアンテナ面81Aの第2方向の長さと等しい。
 図11に示すように、反射膜82Bの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、反射膜82Bの両端縁を結んだ部分は、その中心角θz2が180°未満の円弧状に形成されている。本実施形態では、中心角θz2は、反射膜82Aの中心角θz1よりも小さい。アンテナ面81Bも同様に、アンテナ面81Bの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bの両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図10に示すように、上方から視て、反射膜82Cは、その中心点P2が個別アンテナベース70Cの中央と異なる位置となるように形成されている。本実施形態では、反射膜82Cの中心点P2は、上方から視て、一部が欠けた円形の反射膜82Cの中心であり、アンテナ面81Cの中心点と一致している。より詳細には、上方から視て、反射膜82Cは、その中心点P2がx方向において個別アンテナベース70Cの中央となるように形成されている。上方から視て、反射膜82Cは、その中心点P2がy方向において個別アンテナベース70Cの第3ベース側面75寄りとなるように形成されている。換言すると、上方から視て、反射膜82Cの中心点P2は、個別アンテナベース70Cのy方向の中央よりも個別アンテナベース70Bの近くに位置している。
 上方から視て、反射膜82Cの中心点P2とアンテナ面81Cの中心点とが一致し、かつ反射膜82Cの形状とアンテナ面81Cの形状とが略同一形状であるため、上方から視て、アンテナ面81Cは、反射膜82Cと同様に、アンテナ面81Cの中心点が個別アンテナベース70Cの中央と異なる位置となるように形成されている。
 上方から視て、反射膜82Cの円弧状の外周縁のうち反射膜82A~82Cが配列される方向である第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角が180°未満となる円弧状である。本実施形態では、反射膜82Cの円弧状の外周縁のうちy方向における第4ベース側面76の近くの端縁と、開口端82Caのx方向の両端縁のうち第1ベース側面73に近い方の端縁とを結ぶ部分は、その中心角θc1が180°未満となる円弧状である。反射膜82Cの円弧状の外周縁のうちy方向における第4ベース側面76の近くの端縁と、開口端82Caのx方向の両端縁のうち第2ベース側面74に近い方の端縁とを結ぶ部分は、その中心角θc2が180°未満となる円弧状である。中心角θc1および中心角θc2は、互いに等しい。本実施形態では、中心角θc1,θc2は、反射膜82Aの中心角θa1,θa2と等しい。上方から視て、反射膜82Cとアンテナ面81Cとが略同一形状であるため、反射膜82Cと同様に、アンテナ面81Cの円弧状の外周縁のうちアンテナ面81A~81Cが配列される方向である第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角が180°未満となる円弧状である。
 上方から視て、反射膜82A~82Cが配列される方向である第1方向に沿う反射膜82Cの大きさは、第1方向とは異なる第2方向に沿う反射膜82Bの大きさよりも小さい。より詳細には、上方から視て、上記第1方向における中心点P2を通る反射膜82Cの長さは、上記第2方向における中心点P2を通る反射膜82Cの長さよりも短い。ここで、第2方向は、たとえば上方から視て第1方向と直交する方向(本実施形態ではx方向)である。本実施形態では、上方から視て、中心点P2を通る反射膜82Cのy方向の長さLCYは、中心点P2を通る反射膜82Cのx方向の長さLCXよりも短い。ここで、中心点P2を通る反射膜82Cの長さLCXは、上方から視た反射膜82Cの直径ともいえる。つまり、中心点P2を通る反射膜82Cの長さLCXは、中心点P2を通る反射膜82Aの長さLAXと等しい。また、反射膜82Cの長さLCYは、反射膜82Bの長さLBYよりも長い。つまり、反射膜82Bの長さLBYは、反射膜82Aの長さLAYおよび反射膜82Bの長さLCYの双方よりも短い。
 このように、反射膜82A~82Cの長さLAY~LCYが反射膜82A~82Cの長さLAX~LCXよりも短い。このため、第1方向に沿う反射膜82A~82Cの大きさは、第2方向に沿う反射膜82A~82Cの大きさよりも小さいともいえる。
 なお、上方から視て、反射膜82Cとアンテナ面81Cとが略同一形状であるため、アンテナ面81Cのx方向の長さおよびy方向の長さの関係は、上述の反射膜82Cの長さの関係と同じである。つまり、上方から視て、アンテナ面81A~81Cが配列される方向である第1方向(本実施形態ではy方向)におけるアンテナ面81Cの中心点を通るアンテナ面81Cの長さは、第1方向とは異なる第2方向におけるアンテナ面81Cの中心点を通るアンテナ面81Cの長さよりも短い。ここで、第2方向は、たとえば上方から視て第1方向と直交する方向(本実施形態ではx方向)である。この場合、第2方向におけるアンテナ面81Cの中心点を通るアンテナ面81Cの長さは、上方から視たアンテナ面81Cの直径ともいえる。つまり、第2方向におけるアンテナ面81Cの中心点を通るアンテナ面81Cの長さは、第2方向におけるアンテナ面81Aの中心点を通るアンテナ面81Aの長さと等しい。
 図11に示すように、反射膜82Cの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Cを切った断面視において、反射膜82Cの両端縁を結んだ部分は、その中心角θz3が180°未満の円弧状に形成されている。本実施形態では、中心角θz3は、個別アンテナベース70Aの中心角θz1と等しい。アンテナ面81Cも同様に、アンテナ面81Cの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Cを切った断面視において、アンテナ面81Cの両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図3および図12に示すように、反射膜82Aは、z方向から視て、テラヘルツ素子20Aよりも大きく形成されている。具体的には、反射膜82Aは、テラヘルツ素子20Aよりもx方向およびy方向の双方に大きく形成されている。反射膜82Aの長さLAXはテラヘルツ素子20Aのx方向の長さよりも長く、反射膜82Aの長さLAYはテラヘルツ素子20Aのy方向の長さよりも長く設定されている。
 反射膜82Bは、z方向から視て、テラヘルツ素子20Bよりも大きく形成されている。具体的には、反射膜82Bは、テラヘルツ素子20Bよりもx方向およびy方向の双方に大きく形成されている。反射膜82Bの長さLBXはテラヘルツ素子20Bのx方向の長さよりも長く、反射膜82Bの長さLBYはテラヘルツ素子20Bのy方向の長さよりも長く設定されている。
 反射膜82Cは、z方向から視て、テラヘルツ素子20Cよりも大きく形成されている。具体的には、反射膜82Cは、テラヘルツ素子20Cよりもx方向およびy方向の双方に大きく形成されている。反射膜82Cの長さLCXはテラヘルツ素子20Cのx方向の長さよりも長く、反射膜82Cの長さLCYはテラヘルツ素子20Cのy方向の長さよりも長く設定されている。
 図10に示すように、上方から視て、個別アンテナベース70Aは、アンテナ凹部80Aの開口部のうちアンテナ凹部80Bと接する一部が欠けた部分以外の部分を取り囲む周壁部78Aを有している。上方から視て、個別アンテナベース70Bは、アンテナ凹部80Bの開口部のうちアンテナ凹部80A,80Cのそれぞれと接する一部が欠けた部分以外の部分を取り囲む周壁部78Bを有している。上方から視て、個別アンテナベース70Cは、アンテナ凹部80Cの開口部のうちアンテナ凹部80Bのそれぞれと接する一部が欠けた部分以外の部分を取り囲む周壁部78Cを有している。
 このため、図3に示すように、y方向におけるテラヘルツ素子20Aの受信点P1とテラヘルツ素子20Bの受信点P1との間の距離である素子間距離DE1は、アンテナ面81Aおよびアンテナ面81Bにおけるx方向に沿う直径である長さLAX,LBXよりも小さい。また、y方向におけるテラヘルツ素子20Bの受信点P1とテラヘルツ素子20Cの受信点P1との間の距離である素子間距離DE2は、アンテナ面81Bおよびアンテナ面81Cにおけるx方向に沿う直径である長さLBX,LCXよりも小さい。
 図4、図5および図12に示すように、本実施形態では、アンテナベース70と誘電体50とは、別体であってz方向に組み付けられて固定されている。具体的には、テラヘルツ装置10は、誘電体50とアンテナベース70とを固定する固定部としての接着層91を備えている。接着層91は、たとえば絶縁性材料で形成されており、たとえば樹脂系の接着剤で構成されている。接着層91は、ベース主面71Tと誘電主面51との間に設けられており、アンテナ凹部80Aの開口部の周縁とアンテナ凹部80Bの開口部の周縁とアンテナ凹部80Cの開口部の周縁のそれぞれに沿って設けられている。
 接着層91は、誘電体50とアンテナベース70とを接着固定している。すなわち、誘電体50とアンテナベース70とは、接着層91を介してz方向から組み付けられている。これにより、誘電体50とアンテナベース70とがユニット化されている。これにより、z方向と直交する方向における誘電体50とアンテナベース70との位置ずれが接着層91によって規制されているため、誘電体50内にあるテラヘルツ素子20A,20B,20Cとアンテナベース70の反射膜82A,82B,82Cとの相対位置がずれにくくなる。
 特に、本実施形態では、接着層91の内周端は、反射膜82の表面と面一となる位置に配置されており、ベース主面71Tと反射膜82との端とに跨って形成されている。つまり、接着層91は、反射膜82よりも内側(換言すれば、テラヘルツ素子20側)に向けてはみ出さないように構成されている。
 接着層91の内周端とは、接着層91におけるテラヘルツ素子20側の端といえる。つまり、個別アンテナベース70Aのベース主面71に形成された接着層91の内周端は、接着層91におけるテラヘルツ素子20A側の端といえる。この接着層91の内周端は、たとえばアンテナ凹部80Aに対応させてz方向から視て一部が欠けた円形状となっている。個別アンテナベース70Bのベース主面71に形成された接着層91の内周端は、接着層91におけるテラヘルツ素子20B側の端といえる。この接着層91の内周端は、たとえばアンテナ凹部80Bに対応させてz方向から視て一部が欠けた円形状となっている。個別アンテナベース70Cのベース主面71に形成された接着層91の内周端は、接着層91におけるテラヘルツ素子20C側の端といえる。この接着層91の内周端は、たとえばアンテナ凹部80Cに対応させてz方向から視て一部が欠けた円形状となっている。ただし、これら接着層91の内周端の形状は任意に変更可能である。
 次に、気体空間92について説明する。
 図4、図5および図12に示すように、本実施形態の気体空間92は、誘電主面51とアンテナ面81とによって区画されている。具体的には、アンテナ凹部80の開口部が誘電主面51によって塞がれている。これにより、誘電主面51とアンテナ凹部80の内面であるアンテナ面81とによって、気体空間92が区画されている。より詳細には、気体空間92は、誘電主面51とアンテナ面81A~81Cとによって区画されている。具体的には、アンテナ凹部80A~80Cの開口部がそれぞれ誘電主面51によって塞がれている。本実施形態では、接着層91がアンテナ凹部80A~80Cのそれぞれの開口部の周縁に沿って設けられているため、気体空間92は密閉されている。すなわち、気体空間92は、接着層91によって密閉されている。反射膜82A~82Cはそれぞれ、気体空間92内に設けられている。
 図12に示すように、気体空間92は、アンテナ凹部80Aと誘電主面51とによって区画された気体空間92Aと、アンテナ凹部80Bと誘電主面51とによって区画された気体空間92Bと、アンテナ凹部80Cと誘電主面51とによって区画された気体空間92Cと、を有している。本実施形態では、気体空間92Aと気体空間92Bと気体空間92Cとは、連通している。より詳細には、気体空間92Aと気体空間92Bとは、アンテナ面81Aの開口端81Aa(反射膜82Aの開口端82Aa)およびアンテナ面81Bの開口端81Ba(反射膜82Bの開口端82Ba)において連通している。気体空間92Bと気体空間92Cとは、アンテナ面81Bの開口端81Bb(反射膜82Bの開口端82Bb)およびアンテナ面81Cの開口端81Ca(反射膜82Cの開口端82Ca)において連通している。
 気体空間92A~92Cはそれぞれ、略半球状に形成されている。気体空間92Aは、z方向から視て、テラヘルツ素子20Aよりもz方向と直交する方向において大きく形成されている。z方向から視て、気体空間92Aのx方向の長さはテラヘルツ素子20Aのx方向の長さよりも長く、気体空間92Aのy方向の長さはテラヘルツ素子20Aのy方向の長さよりも長い。気体空間92Bは、z方向から視て、テラヘルツ素子20Bよりもz方向と直交する方向において大きく形成されている。z方向から視て、気体空間92Bのx方向の長さはテラヘルツ素子20Bのx方向の長さよりも長く、気体空間92Bのy方向の長さはテラヘルツ素子20Bのy方向の長さよりも長い。気体空間92Cは、z方向から視て、テラヘルツ素子20Cよりもz方向と直交する方向において大きく形成されている。z方向から視て、気体空間92Cのx方向の長さはテラヘルツ素子20Cのx方向の長さよりも長く、気体空間92Cのy方向の長さはテラヘルツ素子20Cのy方向の長さよりも長い。
 気体空間92A~92C内にはそれぞれ、気体が存在する。気体空間92A~92C内にそれぞれ存在する気体の屈折率である気体屈折率n3は、誘電屈折率n2よりも低く設定されている。すなわち、気体空間92A~92C内のそれぞれには、誘電屈折率n2よりも低い屈折率の気体が存在する。たとえば、気体空間92A~92C内のそれぞれに存在する気体は空気である。この場合、気体屈折率n3はそれぞれ1程度である。なお、気体空間92A~92C内のそれぞれに存在する気体は、空気に限られず、誘電屈折率n2よりも低いものであれば任意である。
 反射膜82Aは、誘電体50および気体空間92Aを介してテラヘルツ素子20Aと対向している部分を有している。本実施形態では、反射膜82Aの全体が、誘電体50および気体空間92Aを介してテラヘルツ素子20Aと対向している。
 本実施形態では、反射膜82Aは、誘電体50を透過し、気体空間92Aを介して伝搬された電磁波を、テラヘルツ素子20Aの受信点P1に向けて反射させる。換言すれば、反射膜82Aは、誘電体50を透過し、気体空間92Aを介して伝搬された電磁波を、テラヘルツ素子20Aの受信点P1に向けてガイドするものともいえる。
 反射膜82Bは、誘電体50および気体空間92Bを介してテラヘルツ素子20Bと対向している部分を有している。本実施形態では、反射膜82Bの全体が、誘電体50および気体空間92Bを介してテラヘルツ素子20Bと対向している。
 本実施形態では、反射膜82Bは、誘電体50を透過し、気体空間92Bを介して伝搬された電磁波を、テラヘルツ素子20Bの受信点P1に向けて反射させる。換言すれば、反射膜82Bは、誘電体50を透過し、気体空間92Bを介して伝搬された電磁波を、テラヘルツ素子20Bの受信点P1に向けてガイドするものともいえる。
 反射膜82Cは、誘電体50および気体空間92Cを介してテラヘルツ素子20Cと対向している部分を有している。本実施形態では、反射膜82Cの全体が、誘電体50および気体空間92Cを介してテラヘルツ素子20Cと対向している。
 本実施形態では、反射膜82Cは、誘電体50を透過し、気体空間92Cを介して伝搬された電磁波を、テラヘルツ素子20Cの受信点P1に向けて反射させる。換言すれば、反射膜82Cは、誘電体50を透過し、気体空間92Cを介して伝搬された電磁波を、テラヘルツ素子20Cの受信点P1に向けてガイドするものともいえる。
 図13に示すように、テラヘルツ装置10は、外部との電気的接続に用いられる第1電極101および第2電極102と、誘電体50内に設けられており、テラヘルツ素子20と電気的に接続された第1導電部110および第2導電部120と、を備えている。本実施形態では、両電極101,102は、個別アンテナベース70A~70Cに応じて個別に設けられている。つまり、両電極101,102は、個別アンテナベース70Aに設けられた第1電極101Aおよび第2電極102Aと、個別アンテナベース70Bに設けられた第1電極101Bおよび第2電極102Bと、個別アンテナベース70Cに設けられた第1電極101Cおよび第2電極102Cと、を有している。また本実施形態では、両導電部110,120は、テラヘルツ素子20A~20Cに応じて個別に設けられている。つまり、両導電部110,120は、テラヘルツ素子20Aに電気的に接続された第1導電部110Aおよび第2導電部120Aと、テラヘルツ素子20Bに電気的に接続された第1導電部110Bおよび第2導電部120Bと、テラヘルツ素子20Cに電気的に接続された第1導電部110Cおよび第2導電部120Cと、を有している。
 本実施形態の両電極101A,102Aは、z方向から視て、誘電体50のうち反射膜82Aとは重ならない部分、かつx方向から視て、誘電体50のうち反射膜82Aと重なる部分に形成されている。換言すると、両電極101A,102Aは、誘電体50のうち反射膜82Aに対してx方向の片側の部分に配置されている。
 本実施形態の両電極101A,102Aは、アンテナベース70(個別アンテナベース70A)に対して側方に設けられている。具体的には、両電極101A,102Aは、誘電主面51における第1突出部61に対応する部分、すなわち第1はみ出し面51a(図4および図5参照)に形成されている。両電極101A,102Aは、x方向において互いに揃った状態でy方向に並んで配置されている。両電極101A,102Aは、下方を向いている。
 本実施形態の両電極101B,102Bは、z方向から視て、誘電体50のうち反射膜82Bとは重ならない部分、かつx方向から視て、誘電体50のうち反射膜82Bと重なる部分に形成されている。換言すると、両電極101B,102Bは、誘電体50のうち反射膜82Bに対してx方向の片側の部分に配置されている。
 本実施形態の両電極101B,102Bは、アンテナベース70(個別アンテナベース70B)に対して側方に設けられている。具体的には、両電極101B,102Bは、誘電主面51における第1突出部61に対応する部分、すなわち第1はみ出し面51aに形成されている。両電極101B,102Bは、x方向において互いに揃った状態でy方向に並んで配置されている。両電極101B,102Bは、下方を向いている。
 本実施形態の両電極101C,102Cは、z方向から視て、誘電体50のうち反射膜82Cとは重ならない部分、かつx方向から視て、誘電体50のうち反射膜82Cと重なる部分に形成されている。換言すると、両電極101C,102Cは、誘電体50のうち反射膜82Cに対してx方向の片側の部分に配置されている。
 本実施形態の両電極101C,102Cは、アンテナベース70(個別アンテナベース70C)に対して側方に設けられている。具体的には、両電極101C,102Cは、誘電主面51における第1突出部61に対応する部分、すなわち第1はみ出し面51aに形成されている。両電極101C,102Cは、x方向において互いに揃った状態でy方向に並んで配置されている。両電極101C,102Cは、下方を向いている。
 本実施形態では、両電極101A,102Aと、両電極101B,102Bと、両電極101C,102Cとは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。
 本実施形態では、各電極101A,102A,101B,102B,101C,102Cはそれぞれ、たとえばNi層およびAu層を含む積層構造を有している。ただし、各電極101A,102A,101B,102B,101C,102Cのそれぞれの構造はこれに限られず、任意であり、たとえばPd層を含む構成でもよいし、Sn層を含む構成でもよい。また、z方向から視た各電極101A,102A,101B,102B,101C,102Cのそれぞれの形状は任意であるが、たとえばy方向を長辺方向とし、x方向を短辺方向とする矩形状である。なお、z方向から視た両電極101A,102Aの形状と、z方向から視た両電極101B,102Bの形状と、z方向から視た両電極101C,102Cの形状とは互いに異なってもよい。
 ちなみに、図12に示すように、アンテナベース70(個別アンテナベース70A,70B,70C)のz方向の長さは、誘電体50の厚さよりも大きい。このため、各電極101A,102A,101B,102B,101C,102Cはそれぞれ、テラヘルツ装置10のz方向の中央よりも上方(換言すれば、装置主面11側)に偏って配置されている。
 各導電部110A,110B,110C,120A,120B,120Cはそれぞれ、その全体が誘電体50内に設けられている。すなわち、誘電体50は、各導電部110A,110B,110C,120A,120B,120Cごとテラヘルツ素子20A~20Cを封止している。これにより、誘電体50内にある各導電部110A,110B,110C,120A,120B,120Cと、誘電体50外にある反射膜82A~82Cとが接触しないようになっている。すなわち、誘電体50は、各導電部110A,110B,110C,120A,120B,120Cと反射膜82A~82Cとを絶縁するものとして機能している。
 図13に示すように、両導電部110A,120Aは、z方向から視て、テラヘルツ素子20Aと電極101A,102Aとの双方と重なるように第1突出部61の突出方向であるx方向に延びている。両導電部110B,120Bは、z方向から視て、テラヘルツ素子20Bと電極101B,102Bとの双方と重なるようにx方向に延びている。両導電部110C,120Cは、z方向から視て、テラヘルツ素子20Cと電極101C,102Cとの双方と重なるようにx方向に延びている。
 本実施形態では、各導電部110A,120A,110B,120B,110C,120Cはそれぞれ、y方向を幅方向としてx方向に延びた帯状である。
 本実施形態の各導電部110A,120A,110B,120B,110C,120Cはそれぞれ、z方向を厚さ方向とする薄膜状である。ただし、各導電部110A,120A,110B,120B,110C,120Cの具体的な形状は任意にであり、所定の厚さを有する板状であってもよい。本実施形態では、テラヘルツ素子20Aは両導電部110A,120Aにフリップチップ実装されており、テラヘルツ素子20Bは両導電部110B,120Bにフリップチップ実装されており、テラヘルツ素子20Cは両導電部110C,120Cにフリップチップ実装されている。
 図14に示すように、第1導電部110Aは、テラヘルツ素子20Aと第1電極101Aとを電気的に接続するものである。第1導電部110Aは、テラヘルツ素子20Aの第1パッド33aと第1電極101Aとの双方と対向するように第1突出部61の突出方向であるx方向に延びている。
 図4に示すように、第1導電部110Aは、テラヘルツ素子20Aの第1パッド33aに対してz方向に対向する第1素子対向部111と、第1電極101Aに対してz方向に対向する第1電極対向部112と、第1素子対向部111と第1電極対向部112とを接続する第1接続部113と、第1電極対向部112と第1電極101Aとを接続する第1柱部115と、を備えている。本実施形態では、第1素子対向部111および第1電極対向部112が第1導電部110Aのx方向の両端部を構成している。
 図14および図15に示すように、第1素子対向部111は、テラヘルツ素子20Aと反射膜82Aとのz方向の間に設けられており、z方向から視て、その少なくとも一部がテラヘルツ素子20Aの第1パッド33aと重なるように形成されている。第1素子対向部111は、反射膜82Aとz方向に対向している。テラヘルツ素子20Aの第1パッド33aがx方向に延びていることに対応させて、第1素子対向部111はx方向に延びている。たとえば、z方向から視た第1素子対向部111の形状は、x方向を長辺方向とし、y方向を短辺方向とする矩形状である。
 第1導電部110Aは、第1素子対向部111とテラヘルツ素子20Aの第1パッド33aとの間に設けられた第1バンプ114を備えている。テラヘルツ素子20Aは、第1バンプ114を介して第1素子対向部111にフリップチップ実装されている。第1パッド33aと第1素子対向部111とは、第1バンプ114によって電気的に接続されている。
 本実施形態では、第1バンプ114は複数設けられている。たとえば、テラヘルツ素子20Aの第1パッド33aおよび第1素子対向部111がx方向に延びていることに対応させて、第1バンプ114はx方向に複数(本実施形態では2つ)配列されている。第1素子対向部111および第1バンプ114は、z方向から視て、受信点P1と重ならない位置に配置されている。第1バンプ114の形状はたとえば四角柱状である。ただし、第1バンプ114の形状はこれに限られず任意である。
 第1バンプ114は、単層構造でもよいし、複数の積層構造でもよい。一例としては、第1バンプ114は、Cuを含む金属層と、Tiを含む金属層と、Snを含む合金層との積層構造でもよい。Snを含む合金層とは、たとえばSn-Sb系合金層またはSn-Ag系合金層である。
 なお、第1素子対向部111上に、第1バンプ114を囲む第1絶縁層が形成されていてもよい。第1絶縁層は、上方に開口した枠状に形成されており、第1絶縁層内に第1バンプ114が収容されているとよい。これにより、第1バンプ114が側方にダレることを抑制できる。ただし、第1絶縁層は必須ではない。
 第1電極対向部112は、z方向から視て、その少なくとも一部が第1電極101Aと重なるように形成されている。たとえば、第1電極対向部112は、アンテナベース70(個別アンテナベース70A)から側方に突出した位置に形成されており、具体的には第1突出部61内に形成されている。このため、第1電極対向部112は、z方向から視て、反射膜82Aとは重ならない位置に配置されている。
 本実施形態の第1電極対向部112は、z方向から視て、x方向およびy方向に延びる矩形状である。第1電極101Aは、z方向から視て、第1電極対向部112よりも広く形成されている。ただし、第1電極101Aの形状や大きさは、これに限られず、第1電極対向部112よりも小さく形成されていてもよいし、同一形状でもよい。
 図13および図14に示すように、第1接続部113は、第1素子対向部111と第1電極対向部112との間に設けられており、y方向を幅方向としてx方向に延びている。第1接続部113の一部は、反射膜82Aに対してz方向に対向している。すなわち、第1接続部113の一部は、反射膜82Aと重なる位置に設けられている。換言すれば、第1接続部113は、z方向から視て、反射膜82Aと重なる部分と、反射膜82Aと重ならない部分とを有している。
 本実施形態の第1接続部113は、第1素子対向部111よりも幅狭に形成されている。具体的には、第1接続部113の幅(y方向の長さ)は、第1素子対向部111の幅(y方向の長さ)よりも短く設定されている。本実施形態の第1接続部113は、たとえば第1電極対向部112よりも幅狭に形成されている。換言すれば、第1電極対向部112は、第1接続部113よりもy方向に長く延びている。
 第1接続部113は、第1素子対向部111および第1電極対向部112よりも幅狭に形成された第1接続本体部113aと、第1接続本体部113aの長手方向の両側にある第1素子側テーパ部113bおよび第1電極側テーパ部113cと、を有している。
 第1接続本体部113aは、x方向を長手方向として延びており、y方向に一定幅を有している。第1接続本体部113aは、z方向から視て、反射膜82Aと重なっている。第1接続本体部113aは、第1素子対向部111と第1電極対向部112とを繋いでいるものともいえる。図15に示すように、第1接続本体部113aの幅W1は、第1素子対向部111の幅W2よりも短い。
 第1素子側テーパ部113bは、第1接続本体部113aと第1素子対向部111とを繋いでいる。第1素子側テーパ部113bは、たとえばz方向から視て、テラヘルツ素子20Aに対してx方向に隣接する位置に形成されており、z方向から視て、反射膜82Aと重なっている。
 第1素子側テーパ部113bは、第1接続本体部113aから第1素子対向部111に向かうにつれて徐々に幅広に形成されている。本実施形態では、第1素子側テーパ部113bは、第1接続本体部113aから第1素子対向部111に向かうにつれて徐々に互いに離れるように傾斜した一対の第1素子側傾斜面113baを有している。
 図13に示すように、第1電極側テーパ部113cは、第1接続本体部113aと第1電極対向部112とを繋いでいる。第1電極側テーパ部113cは、たとえばz方向から視て、反射膜82Aと重ならない部分に形成されており、たとえば第1突出部61内に形成されている。
 第1電極側テーパ部113cは、第1接続本体部113aから第1電極対向部112に向かうにつれて徐々に幅広に形成されている。本実施形態では、第1電極側テーパ部113cは、第1接続本体部113aから第1電極対向部112に向かうにつれて徐々に互いに離れるように傾斜した一対の第1電極側傾斜面113caを有している。
 図4に示すように、第1柱部115は、第1電極101Aと第1電極対向部112との間に設けられている。第1柱部115は、z方向を高さ方向として延びており、第1電極101Aと第1電極対向部112とに繋がっている。
 第1柱部115は、たとえば円柱状に形成されている。ただし、第1柱部115の具体的な形状は任意であり、たとえば角柱状でもよい。本実施形態では、第1電極対向部112における第1柱部115と重なる位置には第1窪み112aが形成されている。なお、第1窪み112aは、なくてもよい。
 この構成によれば、テラヘルツ素子20Aの第1パッド33aと第1電極101Aとは、第1バンプ114、第1素子対向部111、第1接続部113、第1電極対向部112および第1柱部115を介して電気的に接続されている。
 なお、z方向から視た第1導電部110B,110Cの形状は、z方向から視た第1導電部110Aの形状と同じである。つまり、第1導電部110B,110Cは、第1導電部110Aと同様に、第1素子対向部111、第1電極対向部112、第1接続部113、第1バンプ114および第1柱部115を備えている。このため、テラヘルツ素子20Bの第1パッド33aと第1電極101Bとは、第1導電部110Bの第1バンプ114、第1素子対向部111、第1接続部113、第1電極対向部112および第1柱部115を介して電気的に接続されている。このため、第1導電部110Bは、テラヘルツ素子20Bと第1電極101Bとを電気的に接続するものであるといえる。また、テラヘルツ素子20Cの第1パッド33aと第1電極101Cとは、第1導電部110Cの第1バンプ114、第1素子対向部111、第1接続部113、第1電極対向部112および第1柱部115を介して電気的に接続されている。このため、第1導電部110Cは、テラヘルツ素子20Cと第1電極101Cとを電気的に接続するものであるといえる。
 図5および図13に示すように、第2導電部120Aは、テラヘルツ素子20Aと第2電極102Aとを電気的に接続するものである。図13および図14に示すように、本実施形態では、第1導電部110Aと第2導電部120Aとは、z方向から視て、y方向に並んで設けられている。両導電部110A,120Aは、z方向から視て、テラヘルツ素子20Aから反射膜82Aの径方向のうちの一方向に向けて延びているともいえる。
 特に、本実施形態の両導電部110A,120Aは、z方向から視て、テラヘルツ素子20Aから離れる方向に延びているといえる。具体的には、両導電部110A,120Aは、z方向から視て、テラヘルツ素子20Aから第1突出部61に向けてx方向に延びている。
 図5に示すように、第2導電部120Aは、テラヘルツ素子20Aの第2パッド34aに対してz方向に対向する第2素子対向部121と、第2電極102Aに対してz方向に対向する第2電極対向部122と、第2素子対向部121と第2電極102Aとを接続する第2柱部125と、を有している。本実施形態では、第2素子対向部121および第2電極対向部122が第2導電部120Aのx方向の両端部を構成している。
 第2素子対向部121は、テラヘルツ素子20Aと反射膜82Aとのz方向の間に設けられており、z方向から視て、その少なくとも一部がテラヘルツ素子20Aの第2パッド34aと重なるように形成されている。第2素子対向部121は、反射膜82Aとz方向に対向している。テラヘルツ素子20Aの第2パッド34aがx方向に延びていることに対応させて、第2素子対向部121はx方向に延びている。たとえば、第2素子対向部121は、x方向を長手方向とし、y方向を短手方向とする矩形状に形成されている。
 本実施形態では、テラヘルツ素子20Aの両パッド33a,34aがy方向に離間していることに対応させて、両素子対向部111,121は、y方向において並んで配置されている。両素子対向部111,121の間には誘電体50が存在しており、誘電体50によって絶縁されている。
 第2導電部120Aは、第2素子対向部121とテラヘルツ素子20Aの第2パッド34aとの間に設けられた第2バンプ124を備えている。テラヘルツ素子20Aは、第2バンプ124を介して第2素子対向部121にフリップチップ実装されている。テラヘルツ素子20Aの第2パッド34aと第2素子対向部121とは、第2バンプ124によって電気的に接続されている。
 図14および図15に示すように、本実施形態では、第2バンプ124は複数設けられている。たとえば、テラヘルツ素子20Aの第2パッド34aおよび第2素子対向部121がx方向に延びていることに対応させて、第2バンプ124はx方向に複数(本実施形態では2つ)配列されている。第2素子対向部121および第2バンプ124は、z方向から視て受信点P1と重ならない位置に配置されている。第1バンプ114と第2バンプ124とはy方向に離間して対向配置されており、x方向においては揃っている。ただし、第1バンプ114と第2バンプ124との配置態様は、これに限られず、たとえば第1バンプ114と第2バンプ124とがy方向にずれて配置されていてもよい。
 図14に示すように、第2電極対向部122は、z方向から視て、その少なくとも一部が第2電極102Aと重なるように形成されている。たとえば、第2電極対向部122は、アンテナベース70(個別アンテナベース70A)から側方に突出した位置に形成されており、具体的には第2突出部62内に形成されている。このため、第2電極対向部122は、z方向から視て、反射膜82Aとは重ならない位置に配置されている。
 本実施形態の第2電極対向部122は、z方向から視て、x方向およびy方向に延びる矩形状である。第2電極102Aは、z方向から視て、第2電極対向部122よりも広く形成されている。ただし、第2電極102Aの大きさや形状は、これに限られず、第2電極対向部122よりも小さく形成されていてもよいし、同一形状であってもよい。
 第2接続部123は、第2素子対向部121と第2電極対向部122との間に設けられており、y方向を幅方向としてx方向に延びている。第2接続部123の一部は、反射膜82Aに対してz方向に対向している。すなわち、第2接続部123の一部は、反射膜82Aと重なる位置に設けられている。換言すれば、第2接続部123は、z方向から視て、反射膜82Aと重なる部分と、反射膜82Aと重ならない部分とを有している。
 本実施形態の第2接続部123は、第2素子対向部121よりも幅狭に形成されている。具体的には、第2接続部123の幅(y方向の長さ)は、第2素子対向部121の幅(y方向の長さ)よりも短く設定されている。本実施形態の第2接続部123は、たとえば第2電極対向部122よりも幅狭に形成されている。換言すれば、第2電極対向部122は、第2接続部123よりもy方向に長く延びている。
 第2接続部123は、第2素子対向部121および第2電極対向部122よりも幅狭に形成された第2接続本体部123aと、第2接続本体部123aの長手方向の両端にある第2素子側テーパ部123bおよび第2電極側テーパ部123cと、を有している。
 第2接続本体部123aは、x方向を長手方向として延びており、y方向に一定幅を有している。第2接続本体部123aは、z方向から視て、反射膜82Aと重なっている。第2接続本体部123aは、第2素子対向部121と第2電極対向部122とを繋いでいるものともいえる。図15に示すように、第2接続本体部123aの幅W3は、第2素子対向部121の幅W4よりも短い。
 第2素子側テーパ部123bは、第2接続本体部123aと第2素子対向部121とを繋いでいる。第2素子側テーパ部123bは、たとえばz方向から視て、テラヘルツ素子20Aに対してx方向に隣接する位置に形成されており、z方向から視て、反射膜82Aと重なっている。
 図15に示すように、第2素子側テーパ部123bは、第2接続本体部123aから第2素子対向部121に向かうにつれて徐々に幅広に形成されている。本実施形態では、第2素子側テーパ部123bは、第2接続本体部123aから第2素子対向部121に向かうにつれて徐々に互いに離れるように傾斜した一対の第2素子側傾斜面123baを有している。
 図14に示すように、第2電極側テーパ部123cは、第2接続本体部123aと第2電極対向部122とを繋いでいる。第2電極側テーパ部123cは、たとえばz方向から視て、反射膜82Aと重ならない部分に形成されており、たとえば第2突出部62内に形成されている。
 第2電極側テーパ部123cは、第2接続本体部123aから第2電極対向部122に向かうにつれて徐々に幅広に形成されている。本実施形態では、第2電極側テーパ部123cは、第2接続本体部123aから第2電極対向部122に向かうにつれて徐々に互いに離れるように傾斜した一対の第2電極側傾斜面123caを有している。
 図5に示すように、第2柱部125は、第2電極102Aと第2電極対向部122との間に設けられている。第2柱部125は、z方向を高さ方向として延びており、第2電極102Aと第2電極対向部122とに繋がっている。
 第2柱部125はたとえば円柱状に形成されている。ただし、第2柱部125の具体的な形状は任意に変更可能であり、たとえば角柱状でもよい。本実施形態では、第2電極対向部122における第2柱部125と重なる部分には、第2窪み122aが形成されている。なお、第2窪み122aは、なくてもよい。
 この構成によれば、テラヘルツ素子20Aの第2パッド34aと第2電極102Aとは、第2バンプ124、第2素子対向部121、第2接続部123、第2電極対向部122および第2柱部125を介して電気的に接続されている。
 なお、z方向から視た第2導電部120B,120Cの形状は、z方向から視た第2導電部120Aの形状と同じである。つまり、第2導電部120B,120Cは、第2導電部120Aと同様に、第2素子対向部121、第2電極対向部122、第2接続部123、第2バンプ124および第2柱部125を備えている。このため、テラヘルツ素子20Bの第2パッド34aと第2電極102Bとは、第2導電部120Bの第2バンプ124、第2素子対向部121、第2接続部123、第2電極対向部122および第2柱部125を介して電気的に接続されている。このため、第2導電部120Bは、テラヘルツ素子20Bと第2電極102Bとを電気的に接続するものであるといえる。また、テラヘルツ素子20Cの第2パッド34aと第2電極102Cとは、第2導電部120Cの第2バンプ124、第2素子対向部121、第2接続部123、第2電極対向部122および第2柱部125を介して電気的に接続されている。このため、第2導電部120Cは、テラヘルツ素子20Cと第2電極102Cとを電気的に接続するものであるといえる。
 また、図13に示すように、本実施形態では、第1導電部110Bと第2導電部120Bとは、z方向から視て、y方向に並んで形成されている。両導電部110B,120Bは、z方向から視て、テラヘルツ素子20Bから反射膜82Bの径方向のうち一方向に向けて延びているともいえる。
 特に、本実施形態の両導電部110B,120Bは、z方向から視て、テラヘルツ素子20Bから離れる方向に延びているといえる。具体的には、両導電部110B,120Bは、z方向から視て、テラヘルツ素子20Bから第1突出部61に向けてx方向に延びている。
 また、本実施形態では、第1導電部110Cと第2導電部120Cとは、z方向から視て、y方向に並んで形成されている。両導電部110C,120Cは、z方向から視て、テラヘルツ素子20Cから反射膜82Cの径方向のうち一方向に向けて延びているともいえる。
 特に、本実施形態の両導電部110C,120Cは、z方向から視て、テラヘルツ素子20Cから離れる方向に延びているといえる。具体的には、両導電部110C,120Cは、z方向から視て、テラヘルツ素子20Cから第1突出部61に向けてx方向に延びている。
 図13に示すとおり、本実施形態では、両導電部110A,120Aと、両導電部110B,120Bと、両導電部110C,120Cとは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。
 本実施形態の反射膜82Aは、電気的にフローティング状態である。具体的には、反射膜82Aが形成されている個別アンテナベース70Aは、絶縁性を有している。両導電部110A,120Aは誘電体50内に設けられているため、反射膜82Aと両導電部110A,120Aとは絶縁されている。また、反射膜82Aと両電極101A,102Aとは離間しているとともに、両者の間には個別アンテナベース70Aが介在している。このため、反射膜82Aと両電極101A,102Aとは絶縁されている。これにより、反射膜82Aのフローティング状態が維持される。なお、反射膜82B,82Cについても、反射膜82Aと同様に、電気的にフローティング状態である。
 (テラヘルツ装置の製造方法)
 次に、図16~図30を用いて、本実施形態のテラヘルツ装置10の製造方法について説明する。説明の便宜上、1つのテラヘルツ装置10の製造方法について説明する。
 テラヘルツ装置10の製造方法は、大別して、テラヘルツ素子20等を封止した誘電体50を形成する工程と、アンテナベース70を形成する工程と、誘電体50とアンテナベース70とを組み付ける工程と、を備えている。
 まず、図16~図26を用いて、テラヘルツ素子20等を封止した誘電体50を形成する工程について説明する。
 図16および図17に示すように、テラヘルツ装置10の製造方法は、支持基板130上に柱部115,125を形成する工程を備えている。
 支持基板130は、単結晶材料である半導体材料からなり、本実施形態においては、Siの単結晶材料である。本実施形態における支持基板130の厚さは、たとえば725~775μm程度である。なお、支持基板130は、Siウェハに限定されず、たとえば、ガラス基板であってもよい。
 柱部115,125を形成する工程は、たとえば支持基板130上に下地層を形成する工程を含んでいる。この下地層は、スパッタリング法によって形成される。本実施形態においては、下地層として、支持基板130上にTi層を形成した後、Ti層に接するCu層を形成する。つまり、下地層は、互いに積層されたTi層およびCu層から形成される。本実施形態においては、Ti層の厚さは10~30μm程度であり、Cu層の厚さは200~800μm程度である。なお、下地層の構成材料および厚さは先述のものに限定されない。
 続いて、下地層に接するめっき層を形成する。めっき層は、フォトリソグラフィによるレジストパターンの形成および電解めっきによって形成される。具体的には、下地層の全面を覆うように、感光性レジストを塗布し、この感光性レジストに対して露光・現像を行う。これにより、パターニングされたレジスト層(以下、「レジストパターン」という)を形成する。感光性レジストは、たとえばスピンコータを用いて塗布されるが、これに限定されない。このとき、レジストパターンから下地層の一部が露出する。続いて、下地層を導電経路として電解めっきを行う。これにより、レジストパターンから露出した下地層にめっき層が積層される。本実施形態にかかるめっき層の構成材料は、たとえばCuである。めっき層を形成した後は、レジストパターンを除去する。以上の工程によって、柱部115,125が形成される。柱部115,125は、支持基板130から上方に向けて起立している。
 図16および図17に示すように、テラヘルツ装置10の製造方法は、柱部115,125を覆う第1誘電層131を形成する第1封止工程を備えている。第1封止工程では、たとえばモールド成型によって第1誘電層131を形成する。本実施形態においては、第1誘電層131は、電気絶縁性を有しており、たとえばエポキシ樹脂を主剤とした合成樹脂である。第1誘電層131は、誘電体50の一部を構成している。
 第1誘電層131を形成するための具体的な工程は任意であるが、たとえば柱部115,125よりも高く第1誘電層131を形成し、その後、第1誘電層131を研磨することによって柱部115,125の先端面を露出させる工程が考えられる。この場合、第1誘電層131の上面には、研磨の痕跡である研磨痕が形成される。
 また、第1誘電層131の研磨の際に柱部115,125の先端面が研磨される場合がある。この場合、柱部115,125の先端面にバリが生じ得る。このため、テラヘルツ装置10の製造方法は、柱部115,125のバリを除去する工程を備えていてもよい。この場合、図17に示すように、柱部115,125の先端面は、第1誘電層131の上面よりも若干凹んだ位置になる。
 図18および図19(a)に示すように、テラヘルツ装置10の製造方法は、両導電部110A,120Aを形成する工程、両導電部110B,120Bを形成する工程、および、両導電部110C,120Cを形成する工程、を備えている。これら導電部を形成する工程は、共通した工程であるため、両導電部110A,120Aを形成する工程について説明し、両導電部110B,120Bを形成する工程および両導電部110C,120Cを形成する工程の説明を省略する。
 図18に示すように、両導電部110A,120Aを形成する工程は、素子対向部111,121、電極対向部112,122および接続部113,123を形成する工程を含んでいる。当該工程では、第1誘電層131上のパターニングによって、素子対向部111,121、電極対向部112,122および接続部113,123を形成する。なお、素子対向部111,121、電極対向部112,122および接続部113,123は、下地層とめっき層とから構成されてもよい。
 ここで、図19(b)に示すように、両導電部110A,120Aにおいて、柱部115,125の先端面が第1誘電層131の上面よりも凹んでいる関係上、柱部115,125の先端面上に形成される電極対向部112,122には窪み112a,122aが形成される。なお、両導電部110B,120B,110C,120Cについても、両導電部110A,120Aと同様に、電極対向部112,122には窪み112a,122aが形成される。
 図20~図23に示すように、テラヘルツ装置10の製造方法は、テラヘルツ素子20A、テラヘルツ素子20Bおよびテラヘルツ素子20Cをそれぞれ実装する素子実装工程を備えている。素子実装工程は、たとえばフリップチップボンディングによって行われる。
 図20および図21に示すように、素子実装工程は、導電部110A,120A,110B,120B,110C,120Cにバンプ114,124を形成する工程を含んでいる。このバンプ114,124を形成する工程は、たとえばバンプ114,124を形成するバンプ形成領域以外にレジスト層を形成する工程と、バンプ形成領域にバンプ114,124を構成する導電層を積層する工程と、レジスト層を除去する工程と、を含んでいる。レジスト層は、たとえば感光性レジストなどで形成されており、露光・現像によってパターニングされるものである。
 なお、導電部110A,120A,110B,120B,110C,120Cの形成工程において、不要な下地層が形成されている場合には、テラヘルツ装置10の製造方法は、不要な下地層を除去する工程を備えていてもよい。不要な下地層は、たとえばHSO(硫酸)およびH(過酸化水素)の混合溶液が用いられたウェットエッチングによって除去されるとよい。
 図22および図23に示すように、素子実装工程は、バンプ114,124を用いてテラヘルツ素子20Aを導電部110A,120Aに接合する工程と、バンプ114,124を用いてテラヘルツ素子20Bを導電部110B,120Bに接合する工程と、バンプ114,124を用いてテラヘルツ素子20Cを導電部110C,120Cに接合する工程と、を含んでいる。これにより、テラヘルツ素子20Aが両導電部110A,120Aにフリップチップ実装されるため、テラヘルツ素子20Aと両導電部110A,120Aとが導通する。テラヘルツ素子20Bが両導電部110B,120Bにフリップ実装されるため、テラヘルツ素子20Bと両導電部110B,120Bとが導通する。テラヘルツ素子20Cが両導電部110C,120Cにフリップ実装されるため、テラヘルツ素子20Cと両導電部110C,120Cとが導通する。
 図24に示すように、テラヘルツ装置10の製造方法は、各導電部110A,120A,110B,120B,110C,120Cおよび各テラヘルツ素子20A~20Cを封止する第2誘電層132を形成する第2封止工程を備えている。第2誘電層132は、第1誘電層131に積層される。本実施形態においては、第2誘電層132は、第1誘電層131と同一材料によって形成される。すなわち、第2誘電層132は、電気絶縁性を有しており、たとえばエポキシ樹脂を主剤とした合成樹脂である。誘電体50は、第1誘電層131および第2誘電層132によって構成されており、第1誘電層131の下面が誘電主面51を構成し、第2誘電層132の上面が誘電裏面52を構成する。各テラヘルツ素子20A~20Cおよび両導電部110A,120A,110B,120B,110C,120Cは、両誘電層131,132によって封止されている。
 なお、第2誘電層132を形成する前に、各テラヘルツ素子20A~20Cの下方(テラヘルツ素子20Aと第1誘電層131または両導電部110A,120Aとの間、テラヘルツ素子20Bと第1誘電層131または両導電部110B,120Bとの間、および、テラヘルツ素子20Cと第1誘電層131または両導電部110C,120Cとの間)に、たとえばエポキシ樹脂を主剤としたアンダーフィルを充填させておいてもよい。
 ちなみに、本実施形態では、第1誘電層131と第2誘電層132との間に界面133が形成されてもよい。ただし、両誘電層131,132が完全に一体化されて、界面133が形成されなくてもよい。
 図25に示すように、テラヘルツ装置10の製造方法は、支持基板130を除去して、誘電体50の誘電主面51および柱部115,125の基端面を露出させる工程を備えている。支持基板130を除去する工程は、たとえば機械研削盤を用いる。ただし、支持基板130の除去方法は、機械研削盤を用いた構成に限定されない。
 図26に示すように、テラヘルツ装置10の製造方法は、両電極101A,102A,101B,102B,101C,102Cを形成する工程を備えている。両電極101A,102A,101B,102B,101C,102Cを形成する工程は、たとえば無電解めっきによって行う。本実施形態においては、たとえば無電解めっきによって、Ni層、Pd層およびAu層の順に各々を積層させることによって、両電極101A,102A,101B,102B,101C,102Cを形成する。
 なお、両電極101A,102A,101B,102B,101C,102Cを形成方法は、これに限定されず、Ni層およびAu層を順に積層させてもよいし、Au層のみを積層させてもよいし、Snのみを形成してもよいし、Ni層上にSnを形成してもよい。
 次に、図27~図30を用いて、アンテナベース70を形成する工程について説明する。
 テラヘルツ装置10の製造方法は、個別アンテナベース70Aにおけるアンテナ凹部80Aを形成する工程、個別アンテナベース70Bにおけるアンテナ凹部80Bを形成する工程、および、個別アンテナベース70Cにおけるアンテナ凹部80Cを形成する工程を備えている。本実施形態では、個別アンテナベース70A,70Cは同一形状であるため、個別アンテナベース70Aの形成方法および個別アンテナベース70Bの形成方法を併せて説明する。
 図27に示すように、アンテナ凹部80A,80Cを形成する工程では、アンテナ面81A,81Cに対応させて形成された金型DUA,DLAを用いてアンテナ面81Aを有するアンテナ凹部80Aおよびアンテナ面81Cを有するアンテナ凹部80Cを形成する。また、アンテナ凹部80Bを形成する工程では、アンテナ面81Bに対応させて形成された金型DUB,DLBを用いてアンテナ面81Bを有するアンテナ凹部80Bを形成する。
 テラヘルツ装置10の製造方法は、反射膜82A,82B,82Cを構成する金属膜134A,134B,134Cを形成する工程を備えている。この工程は、各アンテナ凹部80A~80Cが形成された後に実施される。
 図28に示すように、当該工程では、個別アンテナベース70A,70Cのベース主面71およびアンテナ面81A,81Cの双方に対して金属膜134A,134Cを形成する。また個別アンテナベース70Bのベース主面71およびアンテナ面81Bの双方に対して金属膜134Bを形成する。
 続いて、図29に示すように、個別アンテナベース70A,70Cのベース主面71に形成された金属膜134A,134Cと、個別アンテナベース70Bのベース主面71に形成された金属膜134Bとを除去する。各ベース主面71に形成された金属膜134A~134Cを除去する具体的手法は任意であるが、たとえばパターニングによって除去する手法でもよいし、研磨によって除去する手法でもよい。これにより、アンテナ面81Aにのみ反射膜82Aが形成され、アンテナ面81Bにのみ反射膜82Bが形成され、アンテナ面81Cにのみ反射膜82Cが形成される。
 なお、反射膜82A~82Cを形成する工程としては、上記の工程に限られない。たとえば、テラヘルツ装置10の製造方法は、個別アンテナベース70A~70Cのベース主面71をマスキングする工程と、電子ビームを用いた蒸着等によって反射膜82A~82Cをアンテナ面81A~81Cに形成する工程と、を備える構成でもよい。この場合、各ベース主面71に形成された反射膜82A~82Cを除去する工程が不要となる。
 図30に示すように、テラヘルツ装置10の製造方法は、個別アンテナベース70A~70Cが形成された後、個別アンテナベース70Aと個別アンテナベース70Bとを組み付け、個別アンテナベース70Bと個別アンテナベース70Cとを組み付ける工程を備えている。具体的には、当該工程では、接着層を用いて個別アンテナベース70Aと個別アンテナベース70Bとを接着させ、個別アンテナベース70Bと個別アンテナベース70Cとを接着させる。
 次に、誘電体50とアンテナベース70とを組み付ける工程について説明する。
 図示していないが、テラヘルツ装置10の製造方法は、誘電体50と、反射膜82A,82B,82Cが形成されたアンテナベース70とを組み付ける工程を備えている。当該工程では、接着層91を用いてアンテナベース70と誘電体50とを接着させる。以上の工程を経て、テラヘルツ装置10が製造される。
 (作用)
 次に、図31~図34を用いて、本実施形態のテラヘルツ装置10の作用について説明する。
 図31(a)は気体に囲まれたテラヘルツ素子20を模式的に示し、図31(b)は図31(a)の場合の屈折率の変化を示すグラフである。図32(a)は気体および誘電体50に囲まれたテラヘルツ素子20を模式的に示し、図32(b)は図32(a)の場合の屈折率の変化を示すグラフである。
 本実施形態では、テラヘルツ装置10に向けて伝搬する電磁波は、誘電体50と気体空間92とを通って反射膜82に伝搬し、この反射膜82によってテラヘルツ素子20(好ましくは受信点P1)に向けて反射される。これにより、テラヘルツ素子20は電磁波を受信する。本構成においては、装置主面11は電磁波が入射される入射面ともいえ、反射膜82の内面は、装置主面11から入射された電磁波をテラヘルツ素子20に向けて反射させる反射面といえる。また、装置主面11は、電磁波が入力される入力面ともいえ、テラヘルツ装置10は、装置主面11から入力される電磁波を受信するものともいえる。
 ここで、仮に誘電体50を介することなく反射膜82からテラヘルツ素子20に向けて電磁波が伝搬される場合と、誘電体50を介して反射膜82からテラヘルツ素子20に向けて電磁波が伝搬される場合とを比較して説明する。
 図31(a)および図31(b)に示すように、仮に誘電体50がなく、テラヘルツ素子20が気体に囲まれている場合、屈折率は、テラヘルツ素子20の内外の境界、具体的にはテラヘルツ素子20と気体との境界において大きく変化する。この場合、テラヘルツ素子20の内外の境界において電磁波の反射が生じやすくなるため、電磁波がテラヘルツ素子20内に閉じ込められやすい。その結果、テラヘルツ素子20内において多数の共振モードが発生しやすくなる。このため、目標の周波数以外の周波数の電磁波がテラヘルツ素子20内で発生し、その電磁波を受信するおそれがある。
 この点、本実施形態では、図32(a)および図32(b)に示すように、テラヘルツ素子20が、素子屈折率n1よりも低くかつ気体屈折率n3よりも高い誘電屈折率n2を有する誘電体50によって囲まれている場合、テラヘルツ素子20から離れるにつれて段階的に屈折率が小さくなっている。このため、テラヘルツ素子20の内外の境界、具体的にはテラヘルツ素子20と誘電体50との境界における屈折率の変化が小さくなっている。これにより、テラヘルツ素子20の内外の境界における電磁波の反射をある程度抑えることができるため、多数の共振モードが発生しにくくなる。
 図33は比較例のテラヘルツ装置10Xの断面構造を模式的に示し、図34は本実施形態のテラヘルツ装置10の断面構造を模式的に示している。図33および図34は、アンテナベース70(70X)の配列方向とテラヘルツ装置10(10X)の高さ方向に沿う平面でテラヘルツ素子20が配置されている位置で切った断面構造である。
 図33に示すように、比較例のテラヘルツ装置10Xは、アンテナベース70Xを備えている。アンテナベース70Xは、個別アンテナベース70Pと、個別アンテナベース70Qと、個別アンテナベース70Rとを一列に組み合わせることによって構成されている。図33に示すアンテナベース70Xでは、個別アンテナベース70Qが個別アンテナベース70Pと個別アンテナベース70Rとによって挟み込まれている。
 これら個別アンテナベース70P,70Q,70Rは同一形状であり、略半球状のアンテナ凹部80Xが設けられている。アンテナ凹部80Xは、個別アンテナベース70P,70Q,70Rのそれぞれのベース主面71Xからベース裏面72Xに向けて凹んでおり、ベース主面71Xにおいて開口している。つまり、個別アンテナベース70P,70Q,70Rはそれぞれ、アンテナ凹部80Xの開口端がその全周にわたりベース主面71Xによって囲まれている。このため、個別アンテナベース70P,70Q,70Rのそれぞれには、アンテナ凹部80Xの開口端の全周にわたりベース主面71Xを含む周壁部78Xが形成されている。
 図33に示すように、個別アンテナベース70Pのアンテナ凹部80Xと個別アンテナベース70Qのアンテナ凹部80Xとの間には、個別アンテナベース70Pの周壁部78Xと個別アンテナベース70Qの周壁部78Xとが介在している。また、個別アンテナベース70Qのアンテナ凹部80Xと個別アンテナベース70Rのアンテナ凹部80Xとの間には、個別アンテナベース70Qの周壁部78Xと個別アンテナベース70Rの周壁部78Xとが介在している。
 この点、本実施形態では、図34に示すように、個別アンテナベース70Aと個別アンテナベース70Bとの間に上記周壁部78Xが設けられず、個別アンテナベース70Bと個別アンテナベース70Cとの間に上記周壁部78Xが設けられていない。つまり、個別アンテナベース70A,70Bの配列方向(y方向)において隣り合うアンテナ凹部80A,80Bが接しており、個別アンテナベース70B,70Cの配列方向(y方向)において隣り合うアンテナ凹部80B,80Cが接している。加えて、各アンテナ凹部80A~80Cのアンテナ面81A~81Cの一部が、個別アンテナベース70A~70Cの配列方向(本実施形態ではy方向)において切り欠かれた形状となる。このような構成によって、図33および図34に示すように、本実施形態のテラヘルツ素子20Aの受信点P1とテラヘルツ素子20Bの受信点P1との間の距離である素子間距離DE1は、比較例のテラヘルツ素子20Aとテラヘルツ素子20Bとの素子間距離DEX1よりも小さくなる。また本実施形態のテラヘルツ素子20Bの受信点P1とテラヘルツ素子20Cの受信点P1との素子間距離DE2は、比較例のテラヘルツ素子20Bとテラヘルツ素子20Cとの素子間距離DEX2よりも小さくなる。つまり、本実施形態のテラヘルツ装置10は、比較例のテラヘルツ装置10Xと比較して、隣り合うテラヘルツ素子20A,20Bを互いに近づけることができ、隣り合うテラヘルツ素子20B,20Cを互いに近づけることができる。
 (効果)
 本実施形態のテラヘルツ装置10によれば、以下の効果が得られる。
 (1-1)z方向から視て、アンテナ面81A~81Cの配列方向、換言すれば反射膜82A~82Cの配列方向である第1方向に沿う反射膜82Aおよび反射膜82Bのそれぞれの大きさは、z方向から視て、第1方向とは異なる方向である第2方向に沿う反射膜82Aおよび反射膜82Bの大きさよりも小さい。本実施形態では、反射膜82A~82Cの配列方向であるy方向における反射膜82Aの長さLAYおよび反射膜82Bの長さLBYはそれぞれ、y方向とは異なる方向であるx方向における反射膜82Aの長さLAXおよび反射膜82Bの長さLBXのそれぞれよりも短い。
 この構成によれば、反射膜82Aの長さLAYおよび反射膜82Bの長さLBYのそれぞれが反射膜82Aの長さLAXおよび反射膜82Bの長さLBXのそれぞれと等しい場合と比較して、第1方向(本実施形態ではy方向)において隣り合うテラヘルツ素子20Aの受信点P1とテラヘルツ素子20Bの受信点P1との間の距離である素子間距離DE1を小さくすることができる。したがって、テラヘルツ装置10の電磁波を検出する検出範囲における分解能を向上させることができる。
 (1-2)上方から視て、反射膜82Aの円弧状の外周縁のうち第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角θa1,θa2が180°未満の円弧状に形成されている。上方から視て、反射膜82Bの円弧状の外周縁のうち第1方向の両端縁を結ぶ部分はそれぞれ、その中心角θb1,θb2が180°未満の円弧状に形成されている。
 この構成によれば、反射膜82Aおよび反射膜82Bが一定の曲率で形成された球面状を維持しつつ、反射膜82Aの長さLAYおよび反射膜82Bの長さLBYのそれぞれが反射膜82Aの長さLAXおよび反射膜82Bの長さLBYのそれぞれよりも短い関係となる反射膜82Aおよび反射膜82Bを形成することができる。
 (1-3)アンテナ面81Aと誘電体50とによって区画された気体空間92Aと、アンテナ面81Bと誘電体50とによって区画された気体空間92Bとは、反射膜82A(アンテナ面81A)と反射膜82B(アンテナ面81B)との境界において第1方向(本実施形態ではy方向)に繋がっている。この構成によれば、上記(1-1)の効果を得ることができる。
 (1-4)反射膜82Aの中心点P2および反射膜82Bの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、反射膜82Aのy方向の両端縁を結ぶ部分および反射膜82Bのy方向の両端縁を結ぶ部分はそれぞれ、中心角θz1,θz2が180°未満の円弧状に形成されている。
 この構成によれば、反射膜82Aおよび反射膜82Bがそれぞれ一定の曲率で形成された球面状を維持しつつ、反射膜82Aの長さLAYおよび反射膜82Bの長さLBYのそれぞれが反射膜82Aの長さLAXおよび反射膜82Bの長さLBYのそれぞれよりも短い関係となる反射膜82Aおよび反射膜82Bを形成することができる。
 (1-5)z方向から視て、反射膜82Aと反射膜82Bとの境界である反射膜82Aの開口端82Aaおよび反射膜82Bの開口端82Baはそれぞれ、直線状に形成されている。
 この構成によれば、反射膜82Aおよび反射膜82Bがそれぞれ一定の曲率で形成された球面状を維持しつつ、反射膜82Aの長さLAYおよび反射膜82Bの長さLBYのそれぞれが反射膜82Aの長さLAXおよび反射膜82Bの長さLBYのそれぞれよりも短い関係となる反射膜82Aおよび反射膜82Bを形成することができる。
 (1-6)z方向から視て、第1方向に沿う反射膜82Bおよび反射膜82Cの大きさは、第2方向に沿う反射膜82Bおよび反射膜82Cの大きさよりも小さい。本実施形態では、反射膜82A~82Cの配列方向であるy方向における反射膜82Bの長さLBYおよび反射膜82Cの長さLCYはそれぞれ、y方向とは異なる方向であるx方向における反射膜82Bの長さLBXおよび反射膜82Cの長さLCXのそれぞれよりも短い。
 この構成によれば、反射膜82Bの長さLBYおよび反射膜82Cの長さLCYのそれぞれが反射膜82Bの長さLBXおよび反射膜82Cの長さLCXのそれぞれと等しい場合と比較して、第1方向(本実施形態ではy方向)において隣り合うテラヘルツ素子20Bの受信点P1とテラヘルツ素子20Cの受信点P1との間の距離である素子間距離DE2を小さくすることができる。したがって、テラヘルツ装置10の電磁波を検出する検出範囲における分解能を向上させることができる。
 (1-7)反射膜82Cの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Cを切った断面視において、反射膜82Cのうちy方向の両端縁を結ぶ部分は、その中心角θz3が180°未満の円弧状に形成されている。
 この構成によれば、反射膜82Cが一定の曲率で形成された球面状を維持しつつ、反射膜82Cの長さLCYが反射膜82Cの長さLCXよりも短い関係となる反射膜82Cを形成することができる。
 (1-8)z方向から視て、反射膜82Bと反射膜82Cとの境界である反射膜82Bの開口端82Bbおよび反射膜82Cの開口端82Caはそれぞれ、直線状に形成されている。
 この構成によれば、反射膜82Cが一定の曲率で形成された球面状を維持しつつ、反射膜82Cの長さLCYが反射膜82Cの長さLCXよりも短い関係となる反射膜82Cを形成することができる。
 (1-9)テラヘルツ装置10は、個別アンテナベース70A~70Cのベース主面71に取り付けられた保持部材としての誘電体50を備えている。誘電体50は、各テラヘルツ素子20A~20Cを保持している。
 この構成によれば、各テラヘルツ素子20A~20Cに対して共通の保持部材である誘電体50によって保持されているため、各テラヘルツ素子20A~20Cに対して個別の保持部材である誘電体が設けられた構成と比較して、誘電体50とアンテナベース70との組み付け工程の工数を減らすことができる。
 (1-10)テラヘルツ装置10は、電磁波を受信する複数のテラヘルツ素子20A~20Cと、誘電材料で構成され、各テラヘルツ素子20A~20Cを囲む誘電体50と、気体が存在する気体空間92A~92Cと、第1反射面~第3反射面を構成する反射膜82A~82Cと、を備えている。反射膜82Aは、誘電体50および気体空間92Aを介してテラヘルツ素子20Aと対向している部分を有し、誘電体50および気体空間92Aを伝搬した電磁波をテラヘルツ素子20Aの受信点P1に向けて反射するものである。反射膜82Bは、誘電体50および気体空間92Bを介してテラヘルツ素子20Bと対向している部分を有し、誘電体50および気体空間92Bを伝搬した電磁波をテラヘルツ素子20Bの受信点P1に向けて反射するものである。反射膜82Cは、誘電体50および気体空間92Cを介してテラヘルツ素子20Cと対向している部分を有し、誘電体50および気体空間92Cを伝搬した電磁波をテラヘルツ素子20Cの受信点P1に向けて反射するものである。そして、各テラヘルツ素子20A~20Cの屈折率を素子屈折率n1とし、気体空間92A~92C内にある気体の屈折率を気体屈折率n3とし、誘電体50の屈折率を誘電屈折率n2とすると、n1>n2>n3となっている。
 この構成によれば、素子屈折率n1と気体屈折率n3との間の屈折率を有する誘電体50によってテラヘルツ素子20A~20Cが囲まれているため、テラヘルツ素子20A~20Cの内外の境界における屈折率の変化を小さくすることができる。これにより、テラヘルツ素子20A~20Cの内外の境界における過度な電磁波の反射を抑制でき、それを通じてテラヘルツ素子20A~20C内で多数の共振モードが発生することを抑制できる。したがって、目標の周波数以外の周波数の電磁波が発生することを抑制できる。
 (1-11)誘電体50は、反射膜82A~82Cと対向する誘電主面51と、誘電主面51とは反対側の誘電裏面52と、を有している。テラヘルツ装置10は、テラヘルツ素子20Aから離れる方向に凹むように湾曲したアンテナ面81Aを有する個別アンテナベース70Aと、テラヘルツ素子20Bから離れる方向に凹むように湾曲したアンテナ面81Bを有する個別アンテナベース70Bと、テラヘルツ素子20Cから離れる方向に凹むように湾曲したアンテナ面81Cを有する個別アンテナベース70Cと、を有している。反射膜82A~82Cは、アンテナ面81A~81Cに形成された膜であり、気体空間92A~92Cは、誘電主面51とアンテナ面81A~81Cとによって区画されている。
 この構成によれば、気体空間92A~92Cが誘電主面51とアンテナ面81A~81Cとによって区画されているため、誘電主面51から出た電磁波は、気体空間92A~92Cを通って反射膜82A~82Cに到達する。これにより、(1-10)の効果を得ることができる。
 (1-12)誘電体50とアンテナベース70とは別体であり、テラヘルツ装置10は、誘電体50とアンテナベース70とを固定する固定部としての接着層91を備えている。この構成によれば、接着層91によって誘電体50とアンテナベース70との位置ずれを抑制できるため、テラヘルツ素子20Aと反射膜82Aとの位置ずれ、テラヘルツ素子20Bと反射膜82Bとの位置ずれ、および、テラヘルツ素子20Cと反射膜82Cとの位置ずれをそれぞれ抑制できる。
 (1-13)反射膜82Aは、アンテナ面81Aに形成されている一方、個別アンテナベース70Aのベース主面71に形成されていない。反射膜82Bは、アンテナ面81Bに形成されている一方、個別アンテナベース70Bのベース主面71に形成されていない。反射膜82Cは、アンテナ面81Cに形成されている一方、個別アンテナベース70Cのベース主面71に形成されていない。
 この構成によれば、個別アンテナベース70A~70Cのベース主面71に形成される反射膜82A~82Cによって電磁波が反射されることを回避できる。これにより、不要な反射波に起因する不都合、たとえば不要な定在波の発生を抑制できる。
 (1-14)反射膜82A~82Cはそれぞれパラボラアンテナ形状である。この構成によれば、電磁波を好適にテラヘルツ素子20A~20Cの受信点P1に向けて反射させることができる。
 (1-15)反射膜82A~82Cはそれぞれ、電気的にフローティング状態である。この構成によれば、反射膜82A~82Cによって電磁波が吸収されるなどといった不都合を抑制できる。
 (1-16)個別アンテナベース70A~70Cはそれぞれ絶縁性材料によって形成されている。この構成によれば、個別アンテナベース70A~70Cを介して反射膜82A~82Cが何らかの部材と電気的に接続されることを抑制できる。
 (1-17)テラヘルツ装置10は、誘電体50内に設けられ、かつ各テラヘルツ素子20と電気的に接続された導電部110A,120A,110B,120B,110C,120Cを備えている。この構成によれば、導電部110A,120A,110B,120B,110C,120Cと、誘電体50外にある反射膜82A~82Cとが接触しにくい。これにより、導電部110A,120A,110B,120B,110C,120Cと反射膜82A~82Cとの電気的接続を抑制できる。
 (1-18)誘電体50は、z方向から視て、アンテナベース70よりも側方に突出した突出部61,62を有している。誘電主面51における突出部61,62に対応する部分であるはみ出し面51a,51bには、導電部110A,120A,110B,120B,110C,120Cと電気的に接続された電極101A,102A,101B,102B,101C,102Cが形成されている。この構成によれば、電極101A,102A,101B,102B,101C,102Cおよび導電部110A,120A,110B,120B,110C,120Cを用いて、テラヘルツ素子20A~20Cと外部との電気的接続を実現できる。
 (1-19)テラヘルツ素子20A~20Cはそれぞれ、素子主面21に形成されたパッド33a,34aを備えている。導電部110A,120A,110B,120B,110C,120Cは、z方向から視て、テラヘルツ素子20A~20Cと電極101A,102A,101B,102B,101C,102Cとの双方と重なるように突出部61,62の突出方向であるx方向に延びており、パッド33a,34aに対してz方向に対向する素子対向部111,121を備えている。テラヘルツ素子20A~20Cは、パッド33a,34aと導電部110A,120A,110B,120B,110C,120Cの素子対向部111,121との間に設けられたバンプ114,124を介して素子対向部111,121にフリップチップ実装されている。これにより、テラヘルツ素子20A~20Cと両電極101A,102A,101B,102B,101C,102Cとを電気的に接続することができる。
 特に、テラヘルツ素子20A~20Cの実装態様としてフリップチップ実装が採用されているため、ワイヤボンディングによる実装と比較して、信号伝送の高速化を図ることができる。すなわち、テラヘルツ帯の電磁波という高周波帯域においてワイヤボンディングによる実装では、信号の伝送速度がワイヤによって律速されるという不都合が懸念される。この点、ワイヤを用いないフリップチップ実装であれば、上記不都合を生じない。これにより、信号伝送の高速化を図ることができる。
 (1-20)導電部110A,120Aは、電極101A,102Aと対向する電極対向部112,122と、素子対向部111,121と電極対向部112,122とを接続するものであってx方向に延びた接続部113,123と、を備えている。導電部110A,120Aにおけるy方向を幅方向とすると、接続部113,123の少なくとも一部は、素子対向部111,121よりも幅狭に形成されている。この構成によれば、接続部113,123の一部または全部が反射膜82Aと重なることによるため、接続部113,123による電磁波の遮断(以下、ブロッキングという。)が懸念される。
 この点、本実施形態では、接続部113,123の少なくとも一部が素子対向部111,121よりも幅狭に形成されているため、ブロッキングされる面積を小さくすることができる。これにより、ブロッキングを軽減できる。
 また、素子対向部111,121が接続部113,123よりも幅広になっているため、コンタクト面積を大きくできる。これにより、バンプ114,124を用いたパッド33a,34aと素子対向部111,121との電気的接続を好適に行うことができる。
 また、導電部110B,120B,110C,120Cも導電部110A,120Aと同様に、電極対向部112,122と、接続部113,123とを備えている。これにより、導電部110A,120Aと同様に、ブロッキングを軽減でき、バンプ114,124を用いたパッド33a,34aと素子対向部111,121との電気的接続を好適に行うことができる。
 (1-21)導電部110A,120Aの電極対向部112,122は、接続部113,123よりも幅広に形成されている。この構成によれば、コンタクト面積を大きくできるため、電極対向部112,122と電極101A,102Aとの電気的接続を好適に行うことができる。また、導電部110B,120B,110C,120Cの電極対向部112,122も接続部113,123よりも幅広に形成されているため、上記の効果を得ることができる。
 (1-22)第1接続部113は、第1素子対向部111よりも幅狭に形成された第1接続本体部113aと、第1接続本体部113aと第1素子対向部111とを繋ぐ第1素子側テーパ部113bと、を有している。第1素子側テーパ部113bは、第1接続本体部113aから第1素子対向部111に向かうにつれて徐々に幅広に形成されている。この構成によれば、第1導電部110A~110C内にて発生する反射波を低減できる。第2接続部123についても同様である。
 (1-23)第1接続本体部113aは、第1電極対向部112よりも幅狭に形成されている。第1接続部113は、第1接続本体部113aと第1電極対向部112とを繋ぐ第1電極側テーパ部113cを備え、第1電極側テーパ部113cは、第1接続本体部113aから第1電極対向部112に向かうにつれて徐々に幅広に形成されている。この構成によれば、第1導電部110A~110C内にて発生する反射波を低減できる。第2接続部123についても同様である。
 (1-24)第1パッド33aおよび第1素子対向部111はx方向に延びており、第1バンプ114はx方向に複数配列されている。同様に、第2パッド34aおよび第2素子対向部121はx方向に延びており、第2バンプ124はx方向に複数配列されている。これにより、コンタクト面積を大きくすることができ、コンタクト抵抗の低減を図ることができる。
 ここで、両パッド33a,34aがy方向に離間して設けられている構成において、仮に両パッド33a,34aをy方向に延ばすと、両パッド33a,34aの離間距離が短くなり、短絡の恐れが生じたり、受信点P1と両パッド33a,34aとの干渉によって電磁波の伝搬が阻害されたりする不都合が懸念される。この点、本実施形態では、両パッド33a,34aの対向方向とは直交する方向であるx方向に延びているため、上記不都合を抑制できる。
 [第2実施形態]
 図35~図45を参照して、第2実施形態のテラヘルツ装置10について説明する。本実施形態のテラヘルツ装置10は、第1実施形態のテラヘルツ装置10と比較して、アンテナベース70の構成が主に異なる。以下の説明において、第1実施形態のテラヘルツ装置10と共通する構成要素には同一符号を付し、その説明を省略する場合がある。また、本実施形態では、アンテナベース70の構成が第1実施形態のアンテナベース70と異なるものの、複数の個別アンテナベースを順に70A,70B,70C…と付して識別する。
 図35および図41に示すように、テラヘルツ装置10は、複数(本実施形態では8つ)のテラヘルツ素子20と、保持部材の一例である誘電体50と、アンテナベース70と、反射膜82と、気体空間92と、を備えている。
 図35に示すように、複数のテラヘルツ素子20は、テラヘルツ素子20A、テラヘルツ素子20B、テラヘルツ素子20C、テラヘルツ素子20D、テラヘルツ素子20E、テラヘルツ素子20F、テラヘルツ素子20Gおよびテラヘルツ素子20Hを含む。各テラヘルツ素子20A~20Hは、互いに同一構成であり、第1実施形態のテラヘルツ素子20と同一構成である。
 誘電体50は、複数のテラヘルツ素子20のそれぞれを囲っている。図41および図42に示すように、誘電体50は、テラヘルツ素子20Eの全体を囲んでおり、テラヘルツ素子20Eの素子主面21、素子裏面22および素子側面23~26を覆っている。
 テラヘルツ素子20Eの素子主面21、素子裏面22、各素子側面23~26は、誘電体50と接している。すなわち、本実施形態の誘電体50は、第1実施形態と同様に、誘電体50とテラヘルツ素子20Eとの間に隙間が生じないようにテラヘルツ素子20Eを囲んでいる。換言すれば、誘電体50は、テラヘルツ素子20Eを封止している。
 なお、図示していないが、誘電体50は、テラヘルツ素子20Eと同様に、各テラヘルツ素子20A~20D,20F~20Hの全体を囲んでおり、各テラヘルツ素子20A~20D,20F~20Hのそれぞれの素子主面21、素子裏面22および素子側面23~26を覆っている。つまり、誘電体50は、各テラヘルツ素子20A~20D,20F~20Hのそれぞれを封止している。
 図35に示すように、誘電体50は、たとえばz方向を厚さ方向とする板状に形成されている。具体的には、誘電体50は、y方向を長手方向とし、x方向を短手方向とする矩形板状である。誘電体50は、上方からアンテナベース70の全体を覆うように構成されている。本実施形態では、誘電体50は、x方向においてアンテナベース70の両側から突出し、y方向においてアンテナベース70の両側から突出した構成である。
 図41および図42に示すように、誘電体50は、z方向に交差する面として、誘電主面51および誘電裏面52を有している。誘電主面51および誘電裏面52はそれぞれ、たとえばz方向に対して直交している。誘電主面51は、下方を向いている。誘電裏面52は、誘電主面51の反対側の面であり、上方を向いている。本実施形態では、誘電裏面52が装置主面11を構成している。
 図35に示すように、誘電体50は、x方向の端面である第1誘電側面53および第2誘電側面54と、y方向の端面である第3誘電側面55および第4誘電側面56と、を有している。各誘電側面53~56は、装置側面13~16の一部を構成している。本実施形態では、第1誘電側面53および第2誘電側面54と、第3誘電側面55および第4誘電側面56とは直交している。
 図41および図42に示すように、テラヘルツ素子20Eは、第1実施形態と同様に、素子主面21が誘電主面51を向いた状態で誘電体50内に設けられている。テラヘルツ素子20Eは、誘電主面51および誘電裏面52の間に配置されている。本実施形態では、第1実施形態と同様に、誘電体50のz方向の長さである誘電厚さD2は、テラヘルツ素子20Eが受信する電磁波の共振条件を満たすように設定されている。なお、テラヘルツ素子20A~20D,20F~20Hについても、テラヘルツ素子20Eと同様に、誘電体50内に設けられている。
 図35に示すように、テラヘルツ素子20A、テラヘルツ素子20B、テラヘルツ素子20Cおよびテラヘルツ素子20Dは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。
 テラヘルツ素子20E、テラヘルツ素子20F、テラヘルツ素子20Gおよびテラヘルツ素子20Hは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。本実施形態では、各テラヘルツ素子20E~20Hのy方向におけるピッチ(素子間距離)は、各テラヘルツ素子20A~20Dのy方向におけるピッチ(素子間距離)と等しい。ここで、たとえば各テラヘルツ素子20E~20Hのy方向におけるピッチの平均値と各テラヘルツ素子20A~20Dのy方向におけるピッチの平均値と差が、各テラヘルツ素子20A~20Dのy方向におけるピッチの平均値の5%以内であれば、各テラヘルツ素子20E~20Hのy方向におけるピッチは、各テラヘルツ素子20A~20Dのy方向におけるピッチと等しいといえる。ここで、y方向におけるピッチ(素子間距離)は、y方向において隣り合うテラヘルツ素子20の受信点P1同士を結んだ距離である。
 各テラヘルツ素子20A~20Dと、各テラヘルツ素子20E~20Hとは、x方向において離間して配置されている。本実施形態では、各テラヘルツ素子20A~20Dは、各テラヘルツ素子20E~20Hよりも第1誘電側面53の近くに配置されている。
 各テラヘルツ素子20A~20Dと、各テラヘルツ素子20E~20Hとは、y方向においてずれた状態でx方向において離間して配置されている。本実施形態では、上方から視て、各テラヘルツ素子20A~20Dと、各テラヘルツ素子20E~20Hとは、y方向において交互に配置されている。各テラヘルツ素子20A~20Dは、各テラヘルツ素子20E~20Hに対して第3誘電側面55寄りに配置されている。より詳細には、テラヘルツ素子20Aは、y方向においてテラヘルツ素子20Eよりも第3誘電側面55の近くに配置されている。テラヘルツ素子20Bは、y方向においてテラヘルツ素子20Eとテラヘルツ素子20Fとの間に配置されている。テラヘルツ素子20Cは、y方向においてテラヘルツ素子20Fとテラヘルツ素子20Gとの間に配置されている。テラヘルツ素子20Dは、y方向においてテラヘルツ素子20Gとテラヘルツ素子20Hとの間に配置されている。
 図36および図37に示すように、本実施形態では、上方から視たアンテナベース70の形状は、y方向が長辺方向となり、x方向が短辺方向となる略長方形状である。より詳細には、アンテナベース70のy方向の両端部には、第1段差部79Aおよび第2段差部79Bが個別に設けられている。第1段差部79Aはアンテナベース70の第3ベース側面75Tに設けられており、第2段差部79Bはアンテナベース70の第4ベース側面76Tに設けられている。第1段差部79Aは、第3ベース側面75Tのうち第1ベース側面73T寄りの部分が第2ベース側面74T寄りの部分よりも誘電体50の第1誘電側面53の近くになるように設けられている。第2段差部79Bは、第4ベース側面76Tのうち第1ベース側面73T寄りの部分が第2ベース側面74T寄りの部分よりも第1誘電側面53の近くになるように設けられている。このため、アンテナベース70の第1ベース側面73Tは、第2ベース側面74Tに対してy方向において第1誘電側面53寄りにずれて形成されている。
 本実施形態のアンテナベース70は、第1実施形態のアンテナベース70と同様に、たとえば絶縁性材料で形成されている。具体的には、アンテナベース70は、誘電体で形成されており、たとえばエポキシ樹脂などの合成樹脂によって形成されている。エポキシ樹脂としては、たとえばガラスエポキシ樹脂である。ただし、アンテナベース70の材料はこれに限られず任意であり、たとえばSi、テフロン、ガラスなどでもよい。なお、アンテナベース70の色は黒色など任意である。
 本実施形態のアンテナベース70は、複数(本実施形態では8個)の個別アンテナベース70A~70Hの組み合わせからなる。より詳細には、アンテナベース70は、個別アンテナベース70A~70Dの列と、個別アンテナベース70E~70Hの列とを有している。
 個別アンテナベース70A~70Dは、第1ベース側面73Tを構成するものであり、y方向に沿って配列されている。個別アンテナベース70Aは第3ベース側面75Tを構成するものであり、個別アンテナベース70Dは第4ベース側面76Tを構成するものである。個別アンテナベース70Bは、個別アンテナベース70Aと個別アンテナベース70Cとに隣接している。つまり、個別アンテナベース70Bは、個別アンテナベース70Aと個別アンテナベース70Cとに挟み込まれている。個別アンテナベース70Cは、個別アンテナベース70Bと個別アンテナベース70Dとに隣接している。つまり、個別アンテナベース70Cは、個別アンテナベース70Bと個別アンテナベース70Dとに挟み込まれている。
 個別アンテナベース70E~70Hは、第2ベース側面74Tを構成するものであり、y方向に沿って配列されている。個別アンテナベース70Eは、第3ベース側面75Tを構成するものである。つまり、第3ベース側面75Tは、個別アンテナベース70Aおよび個別アンテナベース70Eから構成されている。個別アンテナベース70Hは、第4ベース側面76Tを構成している。つまり、第4ベース側面76Tは、個別アンテナベース70Dおよび個別アンテナベース70Hから構成されている。個別アンテナベース70Fは、個別アンテナベース70Eと個別アンテナベース70Gとに隣接している。つまり、個別アンテナベース70Fは、個別アンテナベース70Eと個別アンテナベース70Gとに挟み込まれている。個別アンテナベース70Gは、個別アンテナベース70Fと個別アンテナベース70Hとに隣接している。つまり、個別アンテナベース70Gは、個別アンテナベース70Fと個別アンテナベース70Hとに挟み込まれている。
 本実施形態では、個別アンテナベース70A~70Dと、個別アンテナベース70E~70Hとは、y方向においてずれて配置されている。より詳細には、x方向から視て、個別アンテナベース70Aが個別アンテナベース70E,70Fの双方と重なり、個別アンテナベース70Bが個別アンテナベース70F,70Gの双方と重なり、個別アンテナベース70Cが個別アンテナベース70G,70Hの双方と重なるように配置されている。具体的には、y方向において、個別アンテナベース70Aは、個別アンテナベース70Eに対して第3ベース側面75T寄りかつ個別アンテナベース70Fに対して第4ベース側面76T寄りに配置されている。個別アンテナベース70Aは、個別アンテナベース70Eと接している。個別アンテナベース70Bは、個別アンテナベース70Fに対して第3ベース側面75T寄りかつ個別アンテナベース70Gに対して第4ベース側面76T寄りに配置されている。個別アンテナベース70Bは、個別アンテナベース70E,70Fの双方と接している。個別アンテナベース70Cは、個別アンテナベース70Gに対して第3ベース側面75T寄りかつ個別アンテナベース70Hに対して第4ベース側面76T寄りに配置されている。個別アンテナベース70Cは、個別アンテナベース70F,70Gの双方と接している。個別アンテナベース70Hは、個別アンテナベース70Dに対して第3ベース側面75T寄りに配置されている。個別アンテナベース70Dは、個別アンテナベース70G,70Hの双方と接している。
 図35に示すように、個別アンテナベース70Aは、テラヘルツ素子20Aの厚さ方向(z方向)においてテラヘルツ素子20Aと対向するように配置されている。個別アンテナベース70Bは、テラヘルツ素子20Bの厚さ方向(z方向)においてテラヘルツ素子20Bと対向するように配置されている。個別アンテナベース70Cは、テラヘルツ素子20Cの厚さ方向(z方向)においてテラヘルツ素子20Cと対向するように配置されている。個別アンテナベース70Dは、テラヘルツ素子20Dの厚さ方向(z方向)においてテラヘルツ素子20Dと対向するように配置されている。個別アンテナベース70Eは、テラヘルツ素子20Eの厚さ方向(z方向)においてテラヘルツ素子20Eと対向するように配置されている。個別アンテナベース70Fは、テラヘルツ素子20Fの厚さ方向(z方向)においてテラヘルツ素子20Fと対向するように配置されている。個別アンテナベース70Gは、テラヘルツ素子20Gの厚さ方向(z方向)においてテラヘルツ素子20Gと対向するように配置されている。個別アンテナベース70Hは、テラヘルツ素子20Hの厚さ方向(z方向)においてテラヘルツ素子20Hと対向するように配置されている。本実施形態では、個別アンテナベース70A~70Hはそれぞれ、各テラヘルツ素子20A~20Hよりも下方に配置されている。
 図41~図43に示すように、アンテナベース70は、第1実施形態と同様に、ベース主面71Tからベース裏面72Tに向けて凹む複数のアンテナ凹部80を有している。具体的には、図36および図37に示すように、本実施形態では、個別アンテナベース70Aはアンテナ凹部80Aを有しており、個別アンテナベース70Bはアンテナ凹部80Bを有しており、個別アンテナベース70Cはアンテナ凹部80Cを有しており、個別アンテナベース70Dはアンテナ凹部80Dを有しており、個別アンテナベース70Eはアンテナ凹部80Eを有しており、個別アンテナベース70Fはアンテナ凹部80Fを有しており、個別アンテナベース70Gはアンテナ凹部80Gを有しており、個別アンテナベース70Hはアンテナ凹部80Hを有している。つまり、アンテナベース70は、個別アンテナベースごとに1つのアンテナ凹部80を有している。
 図41~図43に示すように、アンテナ凹部80は、第1実施形態と同様に、誘電体50および気体空間92を介してテラヘルツ素子20と対向するアンテナ面81を有している。具体的には、図36および図37に示すように、本実施形態では、アンテナ凹部80Aはアンテナ面81Aを有しており、アンテナ凹部80Bはアンテナ面81Bを有しており、アンテナ凹部80Cはアンテナ面81Cを有しており、アンテナ凹部80Dはアンテナ面81Dを有している。また、アンテナ凹部80Eはアンテナ面81Eを有しており、アンテナ凹部80Fはアンテナ面81Fを有しており、アンテナ凹部80Gはアンテナ面81Gを有しており、アンテナ凹部80Hはアンテナ面81Hを有している。これらアンテナ面81A~81Hは、上方から視て、対応するアンテナ凹部80A~80Hの開口部と同一形状である。
 図41~図43に示すように、第1実施形態と同様に、反射膜82は、アンテナ面81上に形成されている。反射膜82は、アンテナ面81の全体にわたって形成されている。一方、反射膜82は、ベース主面71Tには形成されていない。つまり、反射膜82は、アンテナ面81と略同一形状となっている。反射膜82は、第1実施形態の反射膜82と同一の材料で形成されている。
 反射膜82は、アンテナ面81A上に形成された反射膜82Aと、アンテナ面81B上に形成された反射膜82Bと、アンテナ面81C上に形成された反射膜82Cと、アンテナ面81D上に形成された反射膜82Dと、アンテナ面81E上に形成された反射膜82Eと、アンテナ面81F上に形成された反射膜82Fと、アンテナ面81G上に形成された反射膜82Gと、アンテナ面81H上に形成された反射膜82Hと、を有している。本実施形態では、反射膜82A~82Hは、一体に形成された単一部品である。
 反射膜82Aはアンテナ面81Aと略同一形状となっており、反射膜82Bはアンテナ面81Bと略同一形状となっており、反射膜82Cはアンテナ面81Cと略同一形状となっており、反射膜82Dはアンテナ面81Dと略同一形状となっており、反射膜82Eはアンテナ面81Eと略同一形状となっており、反射膜82Fはアンテナ面81Fと略同一形状となっており、反射膜82Gはアンテナ面81Gと略同一形状となっており、反射膜82Hはアンテナ面81Hと略同一形状となっている。換言すれば、反射膜82A~82Hはそれぞれ、回転放物面鏡となっており、すり鉢状に湾曲している。反射膜82A~82Hはそれぞれ、上方から視て一部が欠けた円形状となっている。反射膜82A~82Hはそれぞれ、装置裏面12に向けて凸となるように湾曲している。反射膜82は、一方向(本実施形態では上方)に向けて開口している。
 図41~図43に示すように、反射膜82と誘電体50とはz方向において対向している。換言すれば、反射膜82は、誘電体50に対して対向する位置に設けられている。
 反射膜82によって反射された電磁波は、受信点P1に向けて出力される。具体的には、反射膜82Aによって反射された電磁波は、テラヘルツ素子20Aの受信点P1に向けて出力される。反射膜82Bによって反射された電磁波は、テラヘルツ素子20Bの受信点P1に向けて出力される。反射膜82Cによって反射された電磁波は、テラヘルツ素子20Cの受信点P1に向けて出力される。反射膜82Dによって反射された電磁波は、テラヘルツ素子20Dの受信点P1に向けて出力される。反射膜82Eによって反射された電磁波は、テラヘルツ素子20Eの受信点P1に向けて出力される。反射膜82Fによって反射された電磁波は、テラヘルツ素子20Fの受信点P1に向けて出力される。反射膜82Gによって反射された電磁波は、テラヘルツ素子20Gの受信点P1に向けて出力される。反射膜82Hによって反射された電磁波は、テラヘルツ素子20Hの受信点P1に向けて出力される。
 反射膜82とテラヘルツ素子20との配置関係は、第1実施形態と同様である。また、反射膜82とテラヘルツ素子20とのサイズの関係も第1実施形態と同様である。つまり、上方から視て、反射膜82A~82Hはそれぞれ、各テラヘルツ素子20A~20Hよりも大きく形成されている。
 アンテナベース70と誘電体50とは、第1実施形態と同様に、接着層91を介して固定されている。接着層91は、反射膜82よりも内側(換言すれば、テラヘルツ素子20側)に向けてはみ出さないように構成されている。
 図38~図40に示すように、本実施形態では、アンテナベース70は、3種類の個別アンテナベースが用いられている。
 図38に示すように、個別アンテナベース70Eは、z方向に交差する面として、ベース主面71およびベース裏面72を有している。ベース主面71およびベース裏面72はそれぞれ、z方向に対して交差する面であり、本実施形態ではz方向に対して直交している。z方向から視たベース主面71およびベース裏面72の形状はそれぞれ、五角形状である。また本実施形態では、ベース主面71およびベース裏面72は、たとえば同一形状である。ただし、これに限られず、ベース主面71とベース裏面72とは異なる形状であってもよい。
 個別アンテナベース70Eは、ベース側面として、第1ベース側面73、第2ベース側面74、第3ベース側面75、および第4ベース側面76を有している。これらベース側面73~76は、テラヘルツ装置10(アンテナベース70)において側方を向く面である。各ベース側面73~76は、ベース主面71とベース裏面72との対向方向に対して直交する方向の面である。各ベース側面73~76は、ベース主面71とベース裏面72とを繋いでいる。
 第3ベース側面75および第4ベース側面76はそれぞれ、個別アンテナベース70Eのy方向の両端面である。第3ベース側面75は、アンテナベース70の第3ベース側面75Tの一部を構成している。z方向から視て、第3ベース側面75および第4ベース側面76はそれぞれ、x方向に沿って延びている。
 第1ベース側面73と第2ベース側面74とはそれぞれ、個別アンテナベース70Eのx方向の両端面である。
 第1ベース側面73は、個別アンテナベース70Eのうちアンテナベース70の第1ベース側面73T(図37参照)の近くの面であり、z方向から視て、x方向およびy方向の双方と交差する方向に延びている。具体的には、上方から視て、第1ベース側面73は、V字状に形成されている。第1ベース側面73は、第1ベース側面73のうち第3ベース側面75寄りの部分であるベース側面部73aと、第1ベース側面73のうち第4ベース側面76寄りの部分であるベース側面部73bと、を有している。ベース側面部73aは、第2ベース側面74に向かうにつれて第3ベース側面75に向けて傾斜する面である。ベース側面部73bは、第2ベース側面74に向かうにつれて第4ベース側面76に向けて傾斜する面である。
 第2ベース側面74は、アンテナベース70の第2ベース側面74Tの一部を構成している。z方向から視て、第2ベース側面74は、y方向に沿って延びている。
 アンテナ凹部80Eのアンテナ面81Eは、個別アンテナベース70Eのベース主面71からベース裏面72に向けて凹んでいる。本実施形態では、x方向およびz方向に沿う平面で個別アンテナベース70Eを切った断面視において、アンテナ面81Eは、ベース裏面72に向けて凸となるように湾曲している。アンテナ面81Eは、ベース主面71において開口している。つまり、アンテナ面81Eは、上方に向けて開口している。
 アンテナ面81Eの開口部は、上方から視て、一部が欠けた円形状である。具体的には、アンテナ面81Eの開口部は、アンテナ面81Eの開口部のうちベース側面部73a側の端部である開口端81Eaと、ベース側面部73b側の端部である開口端81Ebと、第4ベース側面76側の端部である開口端81Ecとにおいて欠けている。これら開口端81Ea~81Ecはそれぞれ、上方から視て、直線状に形成されている。
 上方から視て、アンテナ面81Eの開口端81Eaはベース側面部73aと重なる位置に形成されており、開口端81Ebはベース側面部73bと重なる位置に形成されており、開口端81Ecは第4ベース側面76と重なる位置に形成されている。
 反射膜82Eは、アンテナ面81E上に形成されている。反射膜82Eは、アンテナ面81Eの全体にわたって形成されている。一方、反射膜82Eは、個別アンテナベース70Eのベース主面71に形成されていない。
 上方から視て、反射膜82Eの開口部は、アンテナ面81Eの開口部と同一形状である。つまり、上方から視て、反射膜82Eの開口部は、アンテナ面81Eの開口端81Eaと重なる位置の開口端82Eaと、アンテナ面81Eの開口端81Ebと重なる位置の開口端82Ebと、アンテナ面81Eの開口端81Ecと重なる位置の開口端82Ecとを有している。上方から視て、開口端82Ea~82Ecはそれぞれ、直線状に形成されている。
 上方から視て、反射膜82Eは、その中心点P2が個別アンテナベース70Eのx方向およびy方向の中央とは異なる位置となるように形成されている。本実施形態では、上方から視て、反射膜82Eは、その中心点P2がx方向において個別アンテナベース70Eのx方向の中央よりも第1ベース側面73寄りとなるように形成されている。上方から視て、反射膜82Eは、その中心点P2がy方向において個別アンテナベース70Eのy方向の中央よりも第4ベース側面76寄りとなるように形成されている。
 上方から視て、反射膜82Eの中心点P2とアンテナ面81Eの中心点とが一致し、かつ反射膜82Eの形状とアンテナ面81Eの形状とが略同一形状であるため、上方から視て、アンテナ面81Eは、反射膜82Eと同様に、アンテナ面81Eの中心点が個別アンテナベース70Eのx方向およびy方向の中央とは異なる位置となるように形成されている。
 上方から視て、反射膜82Eの円弧状の外周縁のうち反射膜82Eおよび反射膜82Fの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Eの円弧状の外周縁のうち第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角θe1が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Eの円弧状の外周縁のうち反射膜82Eおよび反射膜82Aの配列方向である第3方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。ここで、第3方向は、z方向から視て、x方向およびy方向の両方向に対して異なる方向である。一例では、第3方向は、z方向から視て、x方向およびy方向の両方向に対して交差する方向である。本実施形態では、第3方向は、アンテナベース70のベース側面73Tからベース側面74Tに向かうにつれてベース側面75Tからベース側面76Tに向けて斜めに向かう方向である。
 本実施形態では、上方から視て、反射膜82Eの円弧状の外周縁のうち第3方向(本実施形態では上方から視てベース側面部73aが延びる方向と直交する方向)の両端縁を結ぶ部分は、その中心角θe2が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Eの円弧状の外周縁のうち反射膜82Eおよび反射膜82Bの配列方向である第4方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。ここで、第4方向は、z方向から視て、x方向、y方向および上記第3方向とは異なる方向である。一例では、第4方向は、z方向から視て、x方向、y方向および第3方向のそれぞれに対して交差する方向である。本実施形態では、第4方向は、アンテナベース70のベース側面73Tからベース側面74Tに向かうにつれてベース側面76Tからベース側面75Tに向けて斜めに向かう方向である。
 本実施形態では、上方から視て、反射膜82Eの円弧状の外周縁のうち第4方向(本実施形態では上方から視てベース側面部73bが延びる方向と直交する方向)の両端縁を結ぶ部分は、その中心角θe3が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Eとアンテナ面81Eとが略同一形状であるため、反射膜82Eと同様に、アンテナ面81Eの円弧状の外周縁のうちアンテナ面81Eおよびアンテナ面81Fの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。アンテナ面81Eの円弧状の外周縁のうちアンテナ面81Eおよびアンテナ面81Aの配列方向である第3方向(本実施形態では上方から視てベース側面部73aが延びる方向と直交する方向)の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。アンテナ面81Eの円弧状の外周縁のうちアンテナ面81Eおよびアンテナ面81Bの配列方向である第4方向(本実施形態では上方から視てベース側面部73bが延びる方向と直交する方向)の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Eの開口端82Eaに対する垂線のうち反射膜82Eの中心点P2を通る垂線の長さLR1は、反射膜82Eの半径REよりも小さい。上方から視て、反射膜82Eの開口端82Ebに対する垂線のうち反射膜82Eの中心点P2を通る垂線の長さLR2は、反射膜82Eの半径REよりも小さい。上方から視て、反射膜82Eの開口端82Ecに対する垂線のうち反射膜82Eの中心点P2を通る垂線の長さLR3は、反射膜82Eの半径REよりも小さい。なお、上方から視て、反射膜82Eの開口端82Ecに対する垂線のうち反射膜82Eの中心点P2を通る垂線は、y方向に沿って延びる直線である。また、長さLR1は第3方向に沿う長さともいえ、長さLR2は第4方向に沿う長さともいえる。このため、第3方向における反射膜82Eの長さ(LR1+RE)は反射膜82Eの直径よりも短く、第4方向における反射膜82Eの長さ(LR2+RE)は反射膜82Eの直径よりも短い。また、第1方向における反射膜82Eの長さ(LR3+RE)は反射膜82Eの直径よりも短い。このように、上方から視て、反射膜82E~82H(図37参照)が配列される方向である第1方向に沿う反射膜82Eの大きさは、第1方向とは異なる第2方向に沿う反射膜82Eの大きさよりも小さいともいえる。ここで、第2方向は、上方から視て、第1方向と直交する方向(本実施形態ではx方向)である。また、上方から視て、反射膜82E,82Aが配列される方向である第3方向に沿う反射膜82Eの大きさは、上記第2方向に沿う反射膜82Eの大きさよりも小さいといえる。また、上方から視て、反射膜82E,82Bが配列される方向である第4方向に沿う反射膜82Eの大きさは、上記第2方向に沿う反射膜82Eの大きさよりも小さいといえる。
 なお、上方から視て、反射膜82Eとアンテナ面81Eとが略同一形状であるため、アンテナ面81Eの開口端81Ea~81Ecの垂線のうちアンテナ面81Eの中心点を通る垂線の長さとアンテナ面81Eの半径との関係は、反射膜82Eの長さLR1~LR3と反射膜82Eの半径REとの関係と同じである。
 図41に示すように、反射膜82Eの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Eを切った断面視において、反射膜82Eのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、反射膜82Eの中心点P2を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Eを切った断面視において、反射膜82Eの第3方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、反射膜82Eの中心点P2を通り、第4方向およびz方向に沿う平面で個別アンテナベース70Eを切った断面視において、反射膜82Eの第4方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図41に示すように、アンテナ面81Eの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Eを切った断面視において、アンテナ面81Eのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、アンテナ面81Eの中心点を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Eを切った断面視において、アンテナ面81Eの第3方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、アンテナ面81Eの中心点を通り、第4方向およびz方向に沿う平面で個別アンテナベース70Eを切った断面視において、アンテナ面81Eの第4方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、個別アンテナベース70Eは、アンテナ凹部80Eの開口部のうち開口部の一部が欠けた部分以外の部分を取り囲む周壁部78Eを有している。周壁部78Eは、個別アンテナベース70Eのベース主面71を構成している。
 図39に示すように、個別アンテナベース70Aは、個別アンテナベース70Eと同様に、z方向に交差する面として、ベース主面71およびベース裏面72を有している。z方向から視たベース主面71およびベース裏面72の形状はそれぞれ、四辺のうち一辺がx方向およびy方向の双方に交差する方向に延びる略四角形状である。また本実施形態では、ベース主面71およびベース裏面72は、たとえば同一形状である。ただし、これに限られず、ベース主面71とベース裏面72とは異なる形状であってもよい。
 個別アンテナベース70Aは、4つのベース側面として、第1ベース側面73、第2ベース側面74、第3ベース側面75および第4ベース側面76を有している。これらベース側面73~76は、テラヘルツ装置10(アンテナベース70)において側方を向く面である。各ベース側面73~76は、ベース主面71とベース裏面72との対向方向に対して直交する方向の面であり、ベース主面71とベース裏面72とを繋いでいる。
 第3ベース側面75および第4ベース側面76は、個別アンテナベース70Aのy方向の両端面を構成している。第3ベース側面75は、アンテナベース70のうち第3ベース側面75Tの一部を構成している。第3ベース側面75および第4ベース側面76はそれぞれ、上方から視て、x方向に沿って延びている。z方向から視て、第4ベース側面76のx方向の長さは、第3ベース側面75のx方向の長さよりも短い。
 第1ベース側面73および第2ベース側面74は、個別アンテナベース70Aのx方向の両端面を構成している。
 第1ベース側面73は、アンテナベース70のうち第1ベース側面73Tの一部を構成している。上方から視て、第1ベース側面73は、y方向に沿って延びている。
 第2ベース側面74は、個別アンテナベース70Aのうちアンテナベース70の第2ベース側面74Tの近くの側面であり、上方から視て、x方向およびy方向の双方と交差する方向に延びている。具体的には、第2ベース側面74は、第3ベース側面75寄りの部分であるベース側面部74aと、第4ベース側面76寄りの部分であるベース側面部74bとを有している。z方向から視て、ベース側面部74aは、y方向に沿って延びている。z方向から視て、ベース側面部74bは、第4ベース側面76に向かうにつれて第1ベース側面73に向けて傾斜する傾斜面である。
 アンテナ凹部80Aのアンテナ面81Aは、個別アンテナベース70Aのベース主面71からベース裏面72に向けて凹んでいる。本実施形態では、x方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、アンテナ面81Aは、ベース裏面72に向けて凸となるように湾曲している。アンテナ面81Aは、ベース主面71において開口している。つまり、アンテナ面81Aは、上方に向けて開口している。
 アンテナ面81Aの開口部は、上方から視て、一部が欠けた円形状である。具体的には、アンテナ面81Aの開口部のうち第2ベース側面74側の開口端81Aaと、第4ベース側面76側の開口端81Abとにおいて欠けている。つまり、これら開口端81Aa,81Abはそれぞれ、上方から視て、直線状に形成されている。上方から視て、開口端81Aaはベース側面部74bと重なる位置に形成されており、開口端81Abは第4ベース側面76と重なる位置に形成されている。
 上方から視て、反射膜82Aは、その中心点P2が個別アンテナベース70Aのx方向およびy方向の中央とは異なる位置となるように形成されている。本実施形態では、反射膜82Aは、その中心点P2がx方向において個別アンテナベース70Aのx方向の中央よりもベース側面部74b寄りとなるように形成されている。上方から視て、反射膜82Aは、その中心点P2がy方向において個別アンテナベース70Aのy方向の中央よりも第4ベース側面76寄りとなるように形成されている。
 上方から視て、反射膜82Aの中心点P2とアンテナ面81Aの中心点とが一致し、かつ反射膜82Aの形状とアンテナ面81Aの形状とが略同一形状であるため、上方から視て、アンテナ面81Aは、反射膜82Aと同様に、アンテナ面81Aの中心点が個別アンテナベース70Aのx方向およびy方向の中央とは異なる位置となるように形成されている。
 上方から視て、反射膜82Aの円弧状の外周縁のうち反射膜82Aおよび反射膜82Bの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Aの円弧状の外周縁のうち第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角θa1が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Aの円弧状の外周縁のうち反射膜82Aおよび反射膜82Eの配列方向である第3方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Aの円弧状の外周縁のうち第3方向(本実施形態では上方から視てベース側面部74bが延びる方向と直交する方向)の両端縁を結ぶ部分は、その中心角θa2が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Aとアンテナ面81Aとが略同一形状であるため、反射膜82Aと同様に、アンテナ面81Aの円弧状の外周縁のうちアンテナ面81Aおよびアンテナ面81Bの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。上方から視て、アンテナ面81Aの円弧状の外周縁のうちアンテナ面81Aおよびアンテナ面81Eの配列方向である第3方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Aの開口端82Aaに対する垂線のうち反射膜82Aの中心点P2を通る垂線の長さLR4は、反射膜82Aの半径RAよりも小さい。上方から視て、反射膜82Aの開口端82Abに対する垂線のうち反射膜82Aの中心点P2を通る垂線の長さLR5は、反射膜82Aの半径RAよりも小さい。ここで、本実施形態では、反射膜82Aの半径RAは、反射膜82Eの半径REと等しい。また、反射膜82Aの開口端82Abに対する垂線のうち反射膜82Aの中心点P2を通る垂線は、y方向に沿って延びる直線である。また、長さLR4は第3方向に沿う長さともいる。このため、第3方向における反射膜82Aの長さ(LR3+RA)は反射膜82Aの直径よりも短い。また、第1方向における反射膜82Aの長さ(LR5+RA)は反射膜82Aの直径よりも短い。このように、上方から視て、反射膜82A~82D(図37参照)が配列される方向である第1方向に沿う反射膜82Aの大きさは、第1方向とは異なる第2方向に沿う反射膜82Aの大きさよりも小さいともいえる。ここで、第2方向は、上方から視て、第1方向と直交する方向(本実施形態ではx方向)である。また、上方から視て、反射膜82E,82Aが配列される方向である第3方向に沿う反射膜82Aの大きさは、上記第2方向に沿う反射膜82Aの大きさよりも小さいといえる。
 なお、上方から視て、反射膜82Aとアンテナ面81Aとが略同一形状であるため、アンテナ面81Aの開口端81Aa,81Abの垂線のうちアンテナ面81Aの中心点を通る垂線の長さとアンテナ面81Aの半径との関係は、反射膜82Aの長さLR4,LR5と反射膜82Aの半径RAとの関係と同じである。
 図示していないが、反射膜82Aの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、反射膜82Aのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、反射膜82Aの中心点P2を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、反射膜82Aの第3方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図示していないが、アンテナ面81Aの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、アンテナ面81Aのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、アンテナ面81Aの中心点を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Aを切った断面視において、アンテナ面81Aの第3方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 個別アンテナベース70B,70C,70D,70F,70G,70Hは、互いに同一形状である。このため、一例として、図40に示す個別アンテナベース70Bの構成について説明し、個別アンテナベース70C,70D,70F~70Hの構成の説明を省略する。
 図40に示すように、個別アンテナベース70Bは、個別アンテナベース70Aと同様に、z方向に交差する面として、ベース主面71およびベース裏面72を有している。z方向から視たベース主面71およびベース裏面72の形状はそれぞれ、五角形状である。また本実施形態では、ベース主面71およびベース裏面72は、たとえば同一形状である。ただし、これに限られず、ベース主面71とベース裏面72とは異なる形状であってもよい。
 個別アンテナベース70Bは、ベース側面として、第1ベース側面73、第2ベース側面74、第3ベース側面75、および第4ベース側面76を有している。これらベース側面73~76は、テラヘルツ装置10(アンテナベース70)において側方を向く面である。各ベース側面73~76は、ベース主面71とベース裏面72との対向方向に対して直交する方向の面であり、ベース主面71とベース裏面72とを繋いでいる。
 第3ベース側面75および第4ベース側面76はそれぞれ、個別アンテナベース70Bのy方向の両端面である。z方向から視て、第3ベース側面75および第4ベース側面76はそれぞれ、x方向に沿って延びている。
 第1ベース側面73と第2ベース側面74とはそれぞれ、個別アンテナベース70Bのx方向の両端面である。
 上方から視て、第1ベース側面73は、y方向に沿って延びている。
 上方から視て、第2ベース側面74は、x方向およびy方向に交差する方向に延びている。具体的には、上方から視て、第2ベース側面74は、V字状に形成されている。第2ベース側面74は、第3ベース側面75寄りの部分であるベース側面部74aと、第4ベース側面76寄りの部分であるベース側面部74bとを有している。ベース側面部74aは、第1ベース側面73に向かうにつれて第3ベース側面75に向けて傾斜する面である。ベース側面部74bは、第1ベース側面73に向かうにつれて第4ベース側面76に向けて傾斜する面である。
 アンテナ凹部80Bのアンテナ面81Bは、個別アンテナベース70Bのベース主面71からベース裏面72に向けて凹んでいる。本実施形態では、x方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bは、ベース裏面72に向けて凸となるように湾曲している。アンテナ面81Bは、ベース主面71において開口している。つまり、アンテナ面81Bは、上方に向けて開口している。
 アンテナ面81Bの開口部は、上方から視て、一部が欠けた円形状である。具体的には、アンテナ面81Bの開口部のうちベース側面部74a側の開口端81Baと、ベース側面部74b側の開口端81Bbと、第3ベース側面75側の開口端81Bcと、第4ベース側面76側の開口端81Bdとにおいて欠けている。これら開口端81Ba~81Bdはそれぞれ、上方から視て、直線状に形成されている。
 上方から視て、開口端81Baはベース側面部74aと重なる位置に形成されており、開口端81Bbはベース側面部74bと重なる位置に形成されており、開口端81Bcは第3ベース側面75と重なる位置に形成されており、開口端81Bdは第4ベース側面76と重なる位置に形成されている。
 上方から視て、反射膜82Bの開口部は、アンテナ面81Bの開口部と同一形状である。つまり、上方から視て、反射膜82Bの開口部は、アンテナ面81Bの開口端81Baと重なる位置の開口端82Baと、アンテナ面81Bの開口端81Bbと重なる位置の開口端82Bbと、アンテナ面81Bの開口端81Bcと重なる位置の開口端82Bcと、アンテナ面81Bの開口端81Bdと重なる位置の開口端82Bdと、を有している。上方から視て、開口端82Ba~82Bdはそれぞれ、直線状に形成されている。
 上方から視て、反射膜82Bは、その中心点P2が個別アンテナベース70Bのx方向およびy方向の中央とは異なる位置となるように形成されている。上方から視て、反射膜82Bは、その中心点P2がx方向において個別アンテナベース70Bのx方向の中央よりも第1ベース側面73寄りとなるように形成されている。上方から視て、反射膜82Bは、その中心点P2がy方向において個別アンテナベース70Bのy方向の中央となるように形成されている。
 上方から視て、反射膜82Bの中心点P2とアンテナ面81Bの中心点とが一致し、かつ反射膜82Bの形状とアンテナ面81Bの形状とが略同一形状であるため、上方から視て、アンテナ面81Bは、反射膜82Bと同様に、アンテナ面81Bの中心点が個別アンテナベース70Bのx方向およびy方向の中央とは異なる位置となるように形成されている。
 上方から視て、反射膜82Bの円弧状の外周縁のうち反射膜82Bおよび反射膜82Aの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Bの円弧状の外周縁のうち第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角θb1が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Bの円弧状の外周縁のうち反射膜82Bおよび反射膜82Eの配列方向である第4方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Bの円弧状の外周縁のうち第4方向(本実施形態では上方から視てベース側面部74aが延びる方向と直交する方向)の両端縁を結ぶ部分は、その中心角θb2が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Bの円弧状の外周縁のうち反射膜82Bおよび反射膜82Fの配列方向である第3方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Bの円弧状の外周縁のうち第3方向(本実施形態では上方から視てベース側面部74bが延びる方向と直交する方向)の両端縁を結ぶ部分は、その中心角θb3が180°未満の円弧状に形成されている。
 なお、上方から視て、反射膜82Bとアンテナ面81Bとが略同一形状であるため、アンテナ面81Bの円弧状の外周縁のうちアンテナ面81Bおよびアンテナ面81Aの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。アンテナ面81Bの円弧状の外周縁のうちアンテナ面81Bおよびアンテナ面81Eの配列方向である第4方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。アンテナ面81Bの円弧状の外周縁のうちアンテナ面81Bおよびアンテナ面81Fの配列方向である第3方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Bの開口端82Baに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLR6は、反射膜82Bの半径RBよりも小さい。上方から視て、反射膜82Bの開口端82Bbに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLR7は、反射膜82Bの半径RBよりも小さい。上方から視て、反射膜82Bの開口端82Bcに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLR8は、反射膜82Bの半径RBよりも小さい。上方から視て、反射膜82Bの開口端82Bdに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLR9は、反射膜82Bの半径RBよりも小さい。ここで、本実施形態では、反射膜82Bの半径RBは、反射膜82Aの半径RAと等しい。また、反射膜82Bの開口端82Bcに対する垂線のうち反射膜82Bの中心点P2を通る垂線と、反射膜82Bの開口端82Bdに対する垂線のうち反射膜82Bの中心点P2を通る垂線とはそれぞれ、y方向に沿って延びる直線である。これら垂線の長さLR8,LR9の合計(LR8+LR9)は、個別アンテナベース70Bのy方向の長さと等しい。このため、個別アンテナベース70Bのy方向の長さは、反射膜82Bの直径よりも小さい。また、長さLR7は第3方向に沿う長さともいえ、長さLR6は第4方向に沿う長さともいえる。このため、第3方向における反射膜82Bの長さ(LR7+RB)は反射膜82Bの直径よりも短く、第4方向における反射膜82Bの長さ(LR6+RB)は反射膜82Bの直径よりも短い。このように、上方から視て、反射膜82A~82D(図37参照)が配列される方向である第1方向に沿う反射膜82Bの大きさは、第1方向とは異なる第2方向に沿う反射膜82Bの大きさよりも小さいともいえる。ここで、第2方向は、上方から視て、第1方向と直交する方向(本実施形態ではx方向)である。また、上方から視て、反射膜82B,82Fが配列される方向である第3方向に沿う反射膜82Bの大きさは、上記第2方向に沿う反射膜82Bの大きさよりも小さいといえる。また、上方から視て、反射膜82E,82Bが配列される方向である第4方向に沿う反射膜82Bの大きさは、上記第2方向に沿う反射膜82Bの大きさよりも小さいといえる。
 なお、上方から視て、反射膜82Bとアンテナ面81Bとが略同一形状であるため、アンテナ面81Bの開口端81Ba~81Bdの垂線のうちアンテナ面81Bの中心点を通る垂線の長さとアンテナ面81Bの半径との関係は、反射膜82Bの長さLR6~LR9と反射膜82Bの半径RBとの関係と同じである。
 図示していないが、反射膜82Bの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、反射膜82Bのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、反射膜82Bの中心点P2を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、反射膜82Bの第3方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、反射膜82Bの中心点P2を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、反射膜82Bの第4方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図示していないが、アンテナ面81Bの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、アンテナ面81Bの中心点を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bの第3方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、アンテナ面81Bの中心点を通り、第3方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bの第4方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、個別アンテナベース70Bは、アンテナ凹部80Bの開口部のうち開口部の一部が欠けた部分以外の部分を取り囲む周壁部78Bを有している。周壁部78Bは、個別アンテナベース70Bのベース主面71を構成している。
 なお、個別アンテナベース70Cのアンテナ凹部80Cのアンテナ面81C、個別アンテナベース70Dのアンテナ凹部80Dのアンテナ面81D、個別アンテナベース70Fのアンテナ凹部80Fのアンテナ面81F、個別アンテナベース70Gのアンテナ凹部80Gのアンテナ面81G、および個別アンテナベース70Hのアンテナ凹部80Hのアンテナ面81Hはそれぞれ、アンテナ凹部80Bのアンテナ面81Bと同じ形状である。また反射膜82C、反射膜82D、反射膜82F、反射膜82G、および反射膜82Hはそれぞれ、反射膜82Bと同じ形状である。
 図37に示すように、個別アンテナベース70Aのベース側面部74bと個別アンテナベース70Eのベース側面部73aとが接している。つまり、個別アンテナベース70Aと個別アンテナベース70Eとは、第3方向において配列されている。同様に、個別アンテナベース70Bのベース側面部74bと個別アンテナベース70Fのベース側面部74bとが接しており、個別アンテナベース70Cのベース側面部74bと個別アンテナベース70Gのベース側面部74bとが接しており、個別アンテナベース70Dのベース側面部74bと個別アンテナベース70Hのベース側面部74bとが接している。つまり、個別アンテナベース70Bと個別アンテナベース70Fとは第3方向において配列されており、個別アンテナベース70Cと個別アンテナベース70Gとは第3方向において配列されており、個別アンテナベース70Dと個別アンテナベース70Hとは第3方向において配列されている。
 個別アンテナベース70Bのベース側面部74aと個別アンテナベース70Eのベース側面部73bとが接している。つまり、個別アンテナベース70Bと個別アンテナベース70Eとは、第4方向において配列されている。同様に、個別アンテナベース70Cのベース側面部74aと個別アンテナベース70Fのベース側面部74aとが接しており、個別アンテナベース70Dのベース側面部74aと個別アンテナベース70Gのベース側面部74aとが接している。つまり、個別アンテナベース70Cと個別アンテナベース70Fとは第4方向において配列されており、個別アンテナベース70Dと個別アンテナベース70Gとは第4方向において配列されている。
 次に、気体空間92について説明する。
 図41~図43に示すように、気体空間92は、第1実施形態と同様に、誘電主面51とアンテナ面81とによって区画されている。具体的には、アンテナ凹部80の開口部が誘電主面51によって覆われている。具体的には、アンテナ凹部80A~80Hの開口部がそれぞれ誘電主面51によって覆われている。本実施形態では、気体空間92は、個別アンテナベース70D,70Hのアンテナ凹部80D,80Hにおいて装置外部と連通している。つまり、本実施形態の気体空間92は、密閉されていない。なお、個別アンテナベース70Hの構成を個別アンテナベース70Aの構成に変更し、個別アンテナベース70Dの構成を個別アンテナベース70Eの構成に変更することによって、気体空間92を密閉してもよい。
 誘電主面51とアンテナ凹部80の内面であるアンテナ面81とによって、気体空間92が区画されている。より詳細には、気体空間92は、誘電主面51とアンテナ面81A~81Hとによって区画されている。反射膜82A~82Hはそれぞれ、気体空間92内に設けられている。気体空間92は、アンテナ凹部80A~80Hのそれぞれと誘電主面51とによって区画された複数の気体空間92を含む。本実施形態では、個別アンテナベース70A~70Hのうち隣り合う個別アンテナベースに対応する気体空間は、互いに連通している。一例では、図41および図42に示すように、誘電主面51とアンテナ面81Eとによって区画された気体空間92Eと、誘電主面51とアンテナ面81Fとによって区画された気体空間92Fと、誘電主面51とアンテナ面81Gとによって区画された気体空間92Gとは、反射膜82Fと反射膜82Gとの配列方向である第1方向(本実施形態ではy方向)において互いに連通している。図42に示すように、気体空間92Eは、誘電主面51とアンテナ面81Bとによって区画された気体空間92Bと連通している。つまり、気体空間92Bと気体空間92Eとは、反射膜82Bと反射膜82Eとの配列方向である第4方向において互いに連通している。図43に示すように、気体空間92Gは、誘電主面51とアンテナ面81Cとによって区画された気体空間92Cと連通している。つまり、気体空間92Cと気体空間92Gとは、反射膜82Cと反射膜82Gとの配列方向である第3方向において互いに連通している。気体空間92内には、気体が存在するため、誘電体50、気体空間92、テラヘルツ素子20の屈折率の関係および電磁波の伝搬経路はそれぞれ、第1実施形態と同様である。このように、個別アンテナベース70A~70Hに対応する気体空間92は、第1方向(本実施形態ではy方向)において配列される個別アンテナベースの気体空間92は第1方向に連通しており、第3方向において配列される個別アンテナベース同士の気体空間92は第3方向に連通しており、第4方向において配列されている個別アンテナベース同士の気体空間92は第4方向に連通している。
 図44に示すように、テラヘルツ装置10は、第1実施形態と同様に、第1電極101および第2電極102と、第1導電部110および第2導電部120と、を備えている。本実施形態では、両電極101,102は、テラヘルツ素子20A~20Hに応じて個別に設けられている。両電極101,102および両導電部110,120の構成は、第1実施形態と同様である。両導電部110,120は、第1実施形態と同様に、誘電体50に封止されている。便宜上、テラヘルツ素子20A~20Hに対応する第1電極101および第2電極102をそれぞれ第1電極101A~101Hおよび第2電極102A~102Hとし、テラヘルツ素子20A~20Hに対応する第1導電部110および第2導電部120を第1導電部110A~110Hおよび第2導電部120A~120Hとする。
 テラヘルツ素子20Aに接続される第1導電部110Aおよび第2導電部120Aと、テラヘルツ素子20Bに接続される第1導電部110Bおよび第2導電部120Bと、テラヘルツ素子20Cに接続される第1導電部110Cおよび第2導電部120Cと、テラヘルツ素子20Dに接続される第1導電部110Dおよび第2導電部120Dとはそれぞれ、第1突出部61に向けてx方向に延びている。このため、第1導電部110Aおよび第2導電部120Aに接続される第1電極101Aおよび第2電極102Aと、第1導電部110Bおよび第2導電部120Bに接続される第1電極101Bおよび第2電極102Bと、第1導電部110Cおよび第2導電部120Cに接続される第1電極101Cおよび第2電極102Cと、第1導電部110Dおよび第2導電部120Dに接続される第1電極101Dおよび第2電極102Dとはそれぞれ、第1突出部61に設けられている。つまり、アンテナベース70のうち第1突出部61寄りの個別アンテナベース70A~70Dに対応して配置されるテラヘルツ素子20A~20Dに接続された両導電部110A~110D,120A~120Dは、個別アンテナベース70A~70Dに対して第2突出部62よりも近い第1突出部61に向けて延びている。両電極101A~101D,102A~102Dは、個別アンテナベース70A~70Dに対して第2突出部62よりも近い第1突出部61に設けられている。
 両電極101A~101D,102A~102Dは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。両導電部110A~110D,120A~120Dは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。
 テラヘルツ素子20Eに接続される第1導電部110Eおよび第2導電部120Eと、テラヘルツ素子20Fに接続される第1導電部110Fおよび第2導電部120Fと、テラヘルツ素子20Gに接続される第1導電部110Gおよび第2導電部120Gと、テラヘルツ素子20Hに接続される第1導電部110Hおよび第2導電部120Hとはそれぞれ、第2突出部62に向けてx方向に延びている。このため、第1導電部110Eおよび第2導電部120Eに接続される第1電極101Eおよび第2電極102Eと、第1導電部110Fおよび第2導電部120Fに接続される第1電極101Fおよび第2電極102Fと、第1導電部110Gおよび第2導電部120Gに接続される第1電極101Gおよび第2電極102Gと、第1導電部110Hおよび第2導電部120Hに接続される第1電極101Hおよび第2電極102Hとはそれぞれ、第2突出部62に設けられている。つまり、アンテナベース70のうち第2突出部62寄りの個別アンテナベース70E~70Hに対応して配置される各テラヘルツ素子20E~20Hに接続された両導電部110E~110H,120E~120Hは、個別アンテナベース70E~70Hに対して第1突出部61よりも近い第2突出部62に向けて延びている。両電極101E~101H,102E~102Hは、個別アンテナベース70E~70Hに対して第1突出部61よりも近い第2突出部62に設けられている。
 両電極101E~101H,102E~102Hは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。両導電部110E~110H,120E~120Hは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。
 本実施形態の反射膜82A~82Hはそれぞれ、電気的にフローティング状態である。より詳細には、反射膜82Aは、両電極101A,102Aおよび両導電部110A,120Aと電気的に絶縁されている。反射膜82Bは、両電極101B,102Bおよび両導電部110B,120Bと電気的に絶縁されている。反射膜82Cは、両電極101C,102Cおよび両導電部110C,120Cと電気的に絶縁されている。反射膜82Dは、両電極101D,102Dおよび両導電部110D,120Dと電気的に絶縁されている。反射膜82Eは、両電極101E,102Eおよび両導電部110E,120Eと電気的に絶縁されている。反射膜82Fは、両電極101F,102Fおよび両導電部110F,120Fと電気的に絶縁されている。反射膜82Gは、両電極101G,102Gおよび両導電部110G,120Gと電気的に絶縁されている。反射膜82Hは、両電極101H,102Hおよび両導電部110H,120Hと電気的に絶縁されている。
 (作用)
 図45を参照して、本実施形態のテラヘルツ装置10の作用について説明する。
 図45は、個別アンテナベース70B,70C,70E~70Gおよびその周辺の拡大図である。
 図45に示すように、反射膜82Eと反射膜82Fとの配列方向である第1方向(本実施形態ではy方向)において、テラヘルツ素子20Eの受信点P1とテラヘルツ素子20Fの受信点P1との間の距離である素子間距離Lefは、反射膜82Eの直径(反射膜82Eの半径RE×2)よりも小さい。また素子間距離Lefは、反射膜82Fの直径(反射膜82Fの半径RF×2)よりも小さい。
 反射膜82Eと反射膜82Bとの配列方向である第4方向において、テラヘルツ素子20Eの受信点P1とテラヘルツ素子20Bの受信点P1との間の距離である素子間距離Lbeは、反射膜82Eの直径よりも小さい。また素子間距離Lbeは、反射膜82Bの直径(反射膜82Bの半径RB×2)よりも小さい。
 反射膜82Bと反射膜82Fとの配列方向である第3方向において、テラヘルツ素子20Bの受信点P1とテラヘルツ素子20Fの受信点P1との間の距離である素子間距離Lbfは、反射膜82Bの直径よりも小さい。また素子間距離Lbfは、反射膜82Fの直径よりも小さい。
 反射膜82Bと反射膜82Cとの配列方向である第1方向において、テラヘルツ素子20Bの受信点P1とテラヘルツ素子20Cの受信点P1との間の距離である素子間距離Lbcは、反射膜82Bの直径よりも小さい。また素子間距離Lbcは、反射膜82Cの直径(反射膜82Cの半径RC×2)よりも小さい。
 反射膜82Cと反射膜82Fとの配列方向である第4方向において、テラヘルツ素子20Cの受信点P1とテラヘルツ素子20Fの受信点P1との間の距離である素子間距離Lcfは、反射膜82Cの直径よりも小さい。また素子間距離Lcfは、反射膜82Fの直径よりも小さい。
 反射膜82Fと反射膜82Gとの配列方向である第1方向において、テラヘルツ素子20Fの受信点P1とテラヘルツ素子20Gの受信点P1との間の距離である素子間距離Lfgは、反射膜82Fの直径よりも小さい。また素子間距離Lfgは、反射膜82Gの直径(反射膜82Gの半径RG×2)よりも小さい。
 反射膜82Cと反射膜82Gとの配列方向である第3方向において、テラヘルツ素子20Cの受信点P1とテラヘルツ素子20Gの受信点P1との間の距離である素子間距離Lcgは、反射膜82Cの直径よりも小さい。また素子間距離Lcgは、反射膜82Gの直径よりも小さい。
 なお、図示していないが、テラヘルツ素子20A,20B,20Cの素子間距離、テラヘルツ素子20C,20D,20Gの素子間距離、テラヘルツ素子20D,20G,20Hの素子間距離のそれぞれについても、上述のテラヘルツ素子20B,20C,20E~20Gの素子間距離と同様である。
 このように、複数の反射膜82の配列方向において、隣り合うテラヘルツ素子20の受信点P1同士を結んだ距離である素子間距離は、反射膜82の直径よりも小さくなる。したがって、上記配列方向において隣り合うテラヘルツ素子20を互いに近づけることができる。
 (効果)
 本実施形態のテラヘルツ装置10によれば、第1実施形態に準じた効果に加え、以下の効果が得られる。
 (2-1)z方向から視て、y方向に一列に並べられたテラヘルツ素子20A~20Dの列と、y方向に一列に並べられたテラヘルツ素子20E~20Hの列とは、x方向において離間して配置されている。この構成によれば、テラヘルツ装置10のx方向における検出範囲を広げることができる。
 (2-2)z方向から視て、テラヘルツ素子20A~20Dの列と、テラヘルツ素子20E~20Hの列とは、y方向においてずれて配置されている。つまり、y方向においてアンテナベース70の第3ベース側面75Tから第4ベース側面76Tに向けて、テラヘルツ素子20A、テラヘルツ素子20E、テラヘルツ素子20B、テラヘルツ素子20F、テラヘルツ素子20C、テラヘルツ素子20G、テラヘルツ素子20Dおよびテラヘルツ素子20Hの順に配置されている。
 この構成によれば、反射膜82Eと反射膜82Bとの配列方向、反射膜82Fと反射膜82Cとの配列方向、および反射膜82Gと反射膜82Dとの配列方向である第4方向において、テラヘルツ素子20Eとテラヘルツ素子20Bとを互いに近づけることができ、テラヘルツ素子20Fとテラヘルツ素子20Cとを互いに近づけることができ、テラヘルツ素子20Gとテラヘルツ素子20Dとを互いに近づけることができる。
 また、反射膜82Aと反射膜82Eとの配列方向、反射膜82Bと反射膜82Fとの配列方向、反射膜82Cと反射膜82Gとの配列方向、および反射膜82Dと反射膜82Hとの配列方向である第3方向において、テラヘルツ素子20Aとテラヘルツ素子20Eとを互いに近づけることができ、テラヘルツ素子20Bとテラヘルツ素子20Fとを互いに近づけることができ、テラヘルツ素子20Cとテラヘルツ素子20Gとを互いに近づけることができ、テラヘルツ素子20Dとテラヘルツ素子20Hとを互いに近づけることができる。したがって、テラヘルツ装置10の検出範囲における分解能を向上させることができる。
 (2-3)z方向から視て、反射膜82Eと反射膜82Bとの配列方向である第4方向に沿う反射膜82Bの大きさ、および、反射膜82Fと反射膜82Bとの配列方向である第3方向に沿う反射膜82Bの大きさの双方は、第2方向(本実施形態ではx方向)に沿う反射膜82Bの大きさよりも小さい。また、他の反射膜82A,82C,82D,82F~82Gについても同様である。
 この構成によれば、第3方向および第4方向において隣り合うテラヘルツ素子20を互いに近づけることができる。したがって、テラヘルツ装置10の検出範囲における分解能を向上させることができる。
 (2-4)上方から視て、反射膜82Bの円弧状の外周縁のうち、反射膜82Eと反射膜82Bとの配列方向である第4方向の両端縁を結ぶ部分、および、反射膜82Fと反射膜82Bとの配列方向である第3方向の両端縁を結ぶ部分はそれぞれ、中心角が180°未満の円弧状に形成されている。
 この構成によれば、反射膜82Bが一定の曲率で形成された球面状を維持しつつ、反射膜82Bの長さLR6,LR7のそれぞれが反射膜82Bの半径RBよりも短い関係となる反射膜82Bを形成することができる。
 なお、反射膜82A,82C~82Hも反射膜82Bと同様に、反射膜82A,82C~82Hのそれぞれについて、第3方向の両端縁を結ぶ部分および第4方向の両端縁を結ぶ部分はそれぞれ、中心角が180°未満の円弧状に形成されている。この構成によれば、反射膜82A,82C~82Hがそれぞれ一定の曲率で形成された球面状を維持しつつ、反射膜82A,82C~82Hのそれぞれの第3方向の長さおよび第4方向の長さが反射膜82A,82C~82Hの半径よりも短い関係となる反射膜82A,82C~82Hを形成することができる。
 (2-5)上方から視て、反射膜82Aと反射膜82Eとの境界、反射膜82Bと反射膜82Eとの境界、反射膜82Bと反射膜82Fとの境界、反射膜82Cと反射膜82Fとの境界、反射膜82Cと反射膜82Gとの境界、反射膜82Dと反射膜82Gとの境界、および反射膜82Dと反射膜82Hの境界はそれぞれ、直線状に形成されている。
 この構成によれば、反射膜82A~82Hがそれぞれ一定の曲率で形成された球面状を維持しつつ、反射膜82A~82Hがそれぞれの第3方向の長さおよび第4方向の長さが反射膜82A~82Hの半径よりも短い関係となる反射膜82A~82Hをそれぞれ形成することができる。
 (2-6)アンテナ面81Bと誘電体50とによって区画された気体空間92Bと、アンテナ面81Eと誘電体50とによって区画された気体空間92Eとは、反射膜82B(アンテナ面81B)と反射膜82E(アンテナ面81E)との境界において第3方向に繋がっている。アンテナ面81Cと誘電体50とによって区画された気体空間92Cと、アンテナ面81Fと誘電体50とによって区画された気体空間92Fとは、反射膜82C(アンテナ面81C)と反射膜82F(アンテナ面81F)との境界において第3方向に繋がっている。アンテナ面81Dと誘電体50とによって区画された気体空間と、アンテナ面81Gと誘電体50とによって区画された気体空間とは、反射膜82D(アンテナ面81D)と反射膜82G(アンテナ面81G)との境界において第3方向に繋がっている。この構成によれば、上記(2-3)に準じた効果を得ることができる。
 (2-7)反射膜82Bの中心点P2および反射膜82Eの中心点P2を通り、反射膜82Bと反射膜82Eの配列方向である第3方向およびz方向に沿う平面でアンテナベース70を切った断面視において、反射膜82Bの第3方向の両端縁を結ぶ部分および反射膜82Eの第3方向の両端縁を結ぶ部分はそれぞれ、中心角が180°未満の円弧状に形成されている。
 この構成によれば、反射膜82Bおよび反射膜82Eがそれぞれ一定の曲率で形成された球面状を維持しつつ、反射膜82Bの第3方向の長さおよび反射膜82Eの第3方向の長さのそれぞれが反射膜82Bの半径および反射膜82Eの半径のそれぞれよりも短い関係となる反射膜82Bおよび反射膜82Eを形成することができる。
 なお、反射膜82Cおよび反射膜82Fと、反射膜82Dおよび反射膜82Gとの関係も、反射膜82Bおよび反射膜82Eの関係と同様である。したがって、反射膜82Cおよび反射膜82Fと、反射膜82Dおよび反射膜82Gとのそれぞれについても、上記効果と同様の効果を得ることができる。
 (2-10)アンテナ面81Aと誘電体50とによって区画された気体空間と、アンテナ面81Eと誘電体50とによって区画された気体空間92Eとは、反射膜82A(アンテナ面81A)と反射膜82E(アンテナ面81E)との境界において第4方向に繋がっている。アンテナ面81Bと誘電体50とによって区画された気体空間92Bと、アンテナ面81Fと誘電体50とによって区画された気体空間92Fとは、反射膜82B(アンテナ面81B)と反射膜82F(アンテナ面81F)との境界において第4方向に繋がっている。アンテナ面81Cと誘電体50とによって区画された気体空間92Cと、アンテナ面81Gと誘電体50とによって区画された気体空間とは、反射膜82C(アンテナ面81C)と反射膜82G(アンテナ面81G)との境界において第4方向に繋がっている。アンテナ面81Dと誘電体50とによって区画された気体空間と、アンテナ面81Hと誘電体50とによって区画された気体空間とは、反射膜82D(アンテナ面81D)と反射膜82H(アンテナ面81H)との境界において第4方向に繋がっている。この構成によれば、上記(2-3)に準じた効果を得ることができる。
 (2-11)反射膜82Bの中心点P2および反射膜82Fの中心点P2を通り、反射膜82Bと反射膜82Fの配列方向である第3方向およびz方向に沿う平面でアンテナベース70を切った断面視において、反射膜82Bの第3方向の両端縁を結ぶ部分および反射膜82Fの第3方向の両端縁を結ぶ部分はそれぞれ、中心角が180°未満の円弧状に形成されている。
 この構成によれば、反射膜82Bおよび反射膜82Fがそれぞれ一定の曲率で形成された球面状を維持しつつ、反射膜82Bの第3方向の長さおよび反射膜82Fの第3方向の長さのそれぞれが反射膜82Bの半径および反射膜82Fの半径のそれぞれよりも短い関係となる反射膜82Bおよび反射膜82Fを形成することができる。
 なお、反射膜82Aおよび反射膜82Eと、反射膜82Cおよび反射膜82Gと、反射膜82Dおよび反射膜82Hとの関係も、反射膜82Bおよび反射膜82Fの関係と同様である。したがって、反射膜82Aおよび反射膜82Eと、反射膜82Cおよび反射膜82Gと、反射膜82Dおよび反射膜82Hとのそれぞれについても、上記効果と同様の効果を得ることができる。
 [第3実施形態]
 図46~図56を参照して、第3実施形態のテラヘルツ装置10について説明する。本実施形態のテラヘルツ装置10は、第1実施形態のテラヘルツ装置10と比較して、アンテナベース70の構成が主に異なる。以下の説明において、第1実施形態のテラヘルツ装置10と共通する構成要素には同一符号を付し、その説明を省略する場合がある。また、本実施形態では、アンテナベース70の構成が第1実施形態のアンテナベース70と異なるものの、複数の個別アンテナベースを順に70A,70B,70C…と付して識別する。
 図46および図52に示すように、テラヘルツ装置10は、複数のテラヘルツ素子20と、保持部材の一例である誘電体50と、アンテナベース70と、反射膜82と、気体空間92と、を備えている。
 図46に示すように、複数のテラヘルツ素子20は、テラヘルツ素子20A、テラヘルツ素子20B、テラヘルツ素子20C、テラヘルツ素子20D、テラヘルツ素子20E、テラヘルツ素子20F、テラヘルツ素子20G、テラヘルツ素子20Hおよびテラヘルツ素子20Iを含む。テラヘルツ素子20A~20Iは、互いに同一構成であり、第1実施形態のテラヘルツ素子20と同一構成である。
 誘電体50は、複数のテラヘルツ素子20のそれぞれを囲っている。一例では、図52および図53に示すように、誘電体50は、テラヘルツ素子20Eの全体を囲んでおり、テラヘルツ素子20Eの素子主面21、素子裏面22および素子側面23~26を覆っている。なお、誘電体50は、同様に、各テラヘルツ素子20A~20D,20F~20Iの全体を囲んでおり、各テラヘルツ素子20A~20D,20F~20Iの素子主面21、素子裏面22および素子側面23~26を覆っている。
 各テラヘルツ素子20A~20Iの素子主面21、素子裏面22、各素子側面23~26は、誘電体50と接している。すなわち、本実施形態の誘電体50は、第1実施形態と同様に、誘電体50と各テラヘルツ素子20A~20Iとの間に隙間が生じないように各テラヘルツ素子20A~20Iを囲んでいる。換言すれば、誘電体50は、各テラヘルツ素子20A~20Iを封止している。
 図46に示すように、誘電体50は、たとえばz方向を厚さ方向とする板状に形成されている。具体的には、誘電体50は、x方向の長さとy方向の長さとが等しい正方板状である。z方向から視て、誘電体50は、アンテナベース70よりも一回り大きい正方形状に形成されている。つまり、誘電体50は、アンテナベース70に対してx方向の両側に突出しており、アンテナベース70に対してy方向の両側に突出している。
 図52および図53に示すように、誘電体50は、z方向に交差する面として、誘電主面51および誘電裏面52を有している。誘電主面51および誘電裏面52はそれぞれ、たとえばz方向に対して直交している。誘電主面51は、下方を向いている。誘電裏面52は、誘電主面51の反対側の面であり、上方を向いている。本実施形態では、誘電裏面52が装置主面11を構成している。
 図46に示すように、誘電体50は、x方向の端面である第1誘電側面53および第2誘電側面54と、y方向の端面である第3誘電側面55および第4誘電側面56と、を有している。各誘電側面53~56は、装置側面13~16の一部を構成している。本実施形態では、第1誘電側面53および第2誘電側面54と、第3誘電側面55および第4誘電側面56とは直交している。
 テラヘルツ素子20は、第1実施形態と同様に、素子主面21が誘電主面51を向いた状態で誘電体50内に設けられている。一例では、図52および図53に示すように、テラヘルツ素子20B,20D~20F,20Hはそれぞれ、誘電主面51および誘電裏面52の間に配置されている。なお、図示していないが、テラヘルツ素子20A,20C,20G,20Iもそれぞれ、誘電主面51および誘電裏面52の間に配置されている。本実施形態では、第1実施形態と同様に、誘電体50のz方向の長さである誘電厚さD2は、テラヘルツ素子20が受信する電磁波の共振条件を満たすように設定されている。
 図46に示すように、z方向から視て、各テラヘルツ素子20A~20Iは、格子状に配列されている。より詳細には、各テラヘルツ素子20A~20Cは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。各テラヘルツ素子20D~20Fは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。各テラヘルツ素子20G~20Iは、x方向において互いに揃った状態でy方向において互いに離間して配列されている。各テラヘルツ素子20A~20Cの列、各テラヘルツ素子20D~20Fの列、各テラヘルツ素子20G~20Iの列は、y方向において互いに揃った状態でx方向において互いに離間して配置されている。つまり、テラヘルツ素子20A、テラヘルツ素子20Dおよびテラヘルツ素子20Gは、y方向において互いに揃った状態でx方向において互いに離間して配置されている。テラヘルツ素子20B、テラヘルツ素子20Eおよびテラヘルツ素子20Hは、y方向において互いに揃った状態でx方向において互いに離間して配列されている。テラヘルツ素子20C、テラヘルツ素子20Fおよびテラヘルツ素子20Iは、y方向において互いに揃った状態でx方向において互いに離間して配列されている。本実施形態では、x方向およびy方向において隣り合うテラヘルツ素子20のピッチ(素子間距離)は互いに等しい。ここで、x方向およびy方向において隣り合うテラヘルツ素子20の最大のずれ量がたとえばx方向およびy方向において隣り合うテラヘルツ素子20のピッチの平均値の5%以内であれば、x方向およびy方向において隣り合うテラヘルツ素子20のピッチ(素子間距離)は互いに等しいといえる。ここで、x方向におけるピッチ(素子間距離)はx方向において隣り合うテラヘルツ素子20の受信点P1同士を結んだ距離であり、y方向におけるピッチ(素子間距離)はy方向において隣り合うテラヘルツ素子20の受信点P1同士を結んだ距離である。
 図46~図48に示すように、本実施形態では、上方から視たアンテナベース70の形状は、正方形である。より詳細には、第1ベース側面73Tおよび第2ベース側面74Tは、x方向において互いに対向しており、かつy方向に沿って延びている。第3ベース側面75Tおよび第4ベース側面76Tは、y方向において互いに対向しており、かつx方向に沿って延びている。また、アンテナベース70の材料は、第1実施形態のアンテナベース70の材料と同様である。
 本実施形態のアンテナベース70は、複数(本実施形態では9個)の個別アンテナベース70A,70B,70C,70D,70E,70F,70G,70H,70Iの組み合わせからなる。より詳細には、アンテナベース70は、個別アンテナベース70A,70B,70Cの列と、個別アンテナベース70D,70E,70Fの列と、個別アンテナベース70G,70H,70Iの列と、を有している。これら個別アンテナベース70A~70C,70D~70F,70G~70Iの列は、y方向に沿って延びている。
 個別アンテナベース70A~70Cは第1ベース側面73Tを構成するものであり、個別アンテナベース70G~70Iは第2ベース側面74Tを構成するものであり、個別アンテナベース70A,70D,70Gは第3ベース側面75Tを構成するものであり、個別アンテナベース70C,70F,70Iは第4ベース側面76Tを構成するものである。つまり、個別アンテナベース70A,70C,70G,70Hは、アンテナベース70の四隅を構成している。
 本実施形態では、個別アンテナベース70Bは、y方向において個別アンテナベース70Aと個別アンテナベース70Cとに挟み込まれている。個別アンテナベース70Eは、y方向において個別アンテナベース70Dと個別アンテナベース70Fとに挟み込まれている。個別アンテナベース70Hは、y方向において個別アンテナベース70Gと個別アンテナベース70Iとに挟み込まれている。個別アンテナベース70Dは、x方向において個別アンテナベース70Aと個別アンテナベース70Gとに挟み込まれている。個別アンテナベース70Eは、x方向において個別アンテナベース70Bと個別アンテナベース70Hとに挟み込まれている。個別アンテナベース70Fは、x方向において個別アンテナベース70Cと個別アンテナベース70Iとに挟み込まれている。
 図46に示すように、個別アンテナベース70Aは、テラヘルツ素子20Aの厚さ方向(z方向)においてテラヘルツ素子20Aと対向するように配置されている。個別アンテナベース70Bは、テラヘルツ素子20Bの厚さ方向(z方向)においてテラヘルツ素子20Bと対向するように配置されている。個別アンテナベース70Cは、テラヘルツ素子20Cの厚さ方向(z方向)においてテラヘルツ素子20Cと対向するように配置されている。個別アンテナベース70Dは、テラヘルツ素子20Dの厚さ方向(z方向)においてテラヘルツ素子20Dと対向するように配置されている。個別アンテナベース70Eは、テラヘルツ素子20Eの厚さ方向(z方向)においてテラヘルツ素子20Eと対向するように配置されている。個別アンテナベース70Fは、テラヘルツ素子20Fの厚さ方向(z方向)においてテラヘルツ素子20Fと対向するように配置されている。個別アンテナベース70Gは、テラヘルツ素子20Gの厚さ方向(z方向)においてテラヘルツ素子20Gと対向するように配置されている。個別アンテナベース70Hは、テラヘルツ素子20Hの厚さ方向(z方向)においてテラヘルツ素子20Hと対向するように配置されている。個別アンテナベース70Iは、テラヘルツ素子20Iの厚さ方向(z方向)においてテラヘルツ素子20Iと対向するように配置されている。本実施形態では、個別アンテナベース70A~70Iはそれぞれ、各テラヘルツ素子20A~20Iよりも下方に配置されている。
 図47に示すように、アンテナベース70は、第1実施形態と同様に、ベース主面71Tからベース裏面72Tに向けて凹むアンテナ凹部80を有している。具体的には、図47および図48に示すように、本実施形態では、個別アンテナベース70Aはアンテナ凹部80Aを有しており、個別アンテナベース70Bはアンテナ凹部80Bを有しており、個別アンテナベース70Cはアンテナ凹部80Cを有しており、個別アンテナベース70Dはアンテナ凹部80Dを有しており、個別アンテナベース70Eはアンテナ凹部80Eを有しており、個別アンテナベース70Fはアンテナ凹部80Fを有しており、個別アンテナベース70Gはアンテナ凹部80Gを有しており、個別アンテナベース70Hはアンテナ凹部80Hを有しており、個別アンテナベース70Iはアンテナ凹部80Iを有している。
 図52および図53に示すように、アンテナ凹部80は、第1実施形態と同様に、誘電体50および気体空間92を介してテラヘルツ素子20と対向するアンテナ面81を有している。具体的には、図47および図48に示すように、本実施形態では、アンテナ凹部80Aはアンテナ面81Aを有しており、アンテナ凹部80Bはアンテナ面81Bを有しており、アンテナ凹部80Cはアンテナ面81Cを有しており、アンテナ凹部80Dはアンテナ面81Dを有している。また、アンテナ凹部80Eはアンテナ面81Eを有しており、アンテナ凹部80Fはアンテナ面81Fを有しており、アンテナ凹部80Gはアンテナ面81Gを有しており、アンテナ凹部80Hはアンテナ面81Hを有しており、アンテナ凹部80Iはアンテナ面81Iを有している。これらアンテナ面81A~81Iは、上方から視て、対応するアンテナ凹部80A~80Iの開口部と同一形状である。
 図52および図53に示すように、第1実施形態と同様に、反射膜82は、アンテナ面81上に形成されている。反射膜82は、アンテナ面81の全体にわたって形成されている。一方、反射膜82は、ベース主面71Tには形成されていない。つまり、反射膜82は、アンテナ面81と略同一形状となっている。反射膜82は、第1実施形態の反射膜82と同一の材料で形成されている。
 図47および図48に示すように、反射膜82は、アンテナ面81A上に形成された反射膜82Aと、アンテナ面81B上に形成された反射膜82Bと、アンテナ面81C上に形成された反射膜82Cと、アンテナ面81D上に形成された反射膜82Dと、アンテナ面81E上に形成された反射膜82Eと、アンテナ面81F上に形成された反射膜82Fと、アンテナ面81G上に形成された反射膜82Gと、アンテナ面81H上に形成された反射膜82Hと、アンテナ面81I上に形成された反射膜82Iと、を有している。本実施形態では、反射膜82A~82Iは、一体に形成された単一部品である。
 反射膜82Aはアンテナ面81Aと略同一形状となっており、反射膜82Bはアンテナ面81Bと略同一形状となっており、反射膜82Cはアンテナ面81Cと略同一形状となっており、反射膜82Dはアンテナ面81Dと略同一形状となっており、反射膜82Eはアンテナ面81Eと略同一形状となっており、反射膜82Fはアンテナ面81Fと略同一形状となっており、反射膜82Gはアンテナ面81Gと略同一形状となっており、反射膜82Hはアンテナ面81Hと略同一形状となっており、反射膜82Iはアンテナ面81Iと略同一形状となっている。換言すれば、反射膜82A~82Iはそれぞれ、回転放物面鏡となっており、すり鉢状に湾曲している。反射膜82A~82Iはそれぞれ、上方から視て一部が欠けた円形状となっている。反射膜82A~82Iはそれぞれ、装置裏面12(ベース裏面72)に向けて凸となるように湾曲している。反射膜82A~82Iはそれぞれ、一方向(本実施形態では上方)に向けて開口している。
 図52および図53に示すように、反射膜82A~82Iと誘電体50とはz方向において対向している。換言すれば、反射膜82A~82Iは、誘電体50に対して対向する位置に設けられている。
 反射膜82によって反射された電磁波は、受信点P1に向けて出力される。一例では、図52に示すように、反射膜82Dによって反射された電磁波は、テラヘルツ素子20Dの受信点P1に向けて出力される。反射膜82Eによって反射された電磁波は、テラヘルツ素子20Eの受信点P1に向けて出力される。反射膜82Fによって反射された電磁波は、テラヘルツ素子20Fの受信点P1に向けて出力される。図53に示すように、反射膜82Bによって反射された電磁波は、テラヘルツ素子20Bの受信点P1に向けて出力される。反射膜82Hによって反射された電磁波は、テラヘルツ素子20Hの受信点P1に向けて出力される。図示していないが、反射膜82Aによって反射された電磁波は、テラヘルツ素子20Aの受信点P1に向けて出力される。反射膜82Cによって反射された電磁波は、テラヘルツ素子20Cの受信点P1に向けて出力される。反射膜82Gによって反射された電磁波は、テラヘルツ素子20Gの受信点P1に向けて出力される。反射膜82Iによって反射された電磁波は、テラヘルツ素子20Iの受信点P1に向けて出力される。
 反射膜82とテラヘルツ素子20との配置関係は、第1実施形態と同様である。また、反射膜82とテラヘルツ素子20とのサイズの関係も第1実施形態と同様である。つまり、上方から視て、反射膜82A~82Iはそれぞれ、テラヘルツ素子20A~20Iよりも大きく形成されている。
 図52および図53に示すように、アンテナベース70と誘電体50とは、第1実施形態と同様に、接着層91を介して固定されている。接着層91は、反射膜82よりも内側(換言すれば、テラヘルツ素子20側)に向けてはみ出さないように構成されている。
 図49~図51に示すように、本実施形態では、アンテナベース70は、3種類の個別アンテナベースが用いられている。
 図49に示すように、個別アンテナベース70Gは、z方向に交差する面として、ベース主面71およびベース裏面72を有している。ベース主面71およびベース裏面72はそれぞれ、z方向に対して交差する面であり、本実施形態ではz方向に対して直交している。z方向から視たベース主面71およびベース裏面72の形状はそれぞれ、正方形状である。また本実施形態では、ベース主面71およびベース裏面72は、たとえば同一形状である。ただし、これに限られず、ベース主面71とベース裏面72とは異なる形状であってもよい。
 個別アンテナベース70Gは、4つのベース側面として、第1ベース側面73、第2ベース側面74、第3ベース側面75および第4ベース側面76を有している。これらベース側面73~76は、テラヘルツ装置10(アンテナベース70)において側方を向く面である。各ベース側面73~76は、ベース主面71とベース裏面72との対向方向に対して直交する方向の面であり、ベース主面71とベース裏面72とを繋いでいる。
 第1ベース側面73および第2ベース側面74は、x方向において互いに対向する面である。z方向から視て、各ベース側面73,74は、y方向に沿って延びている。第2ベース側面74は、アンテナベース70の第2ベース側面74T(図48参照)の一部を構成している。
 第3ベース側面75および第4ベース側面76は、y方向において互いに対向する面である。z方向から視て、各ベース側面75,76は、x方向に沿って延びている。第3ベース側面75は、アンテナベース70の第3ベース側面75Tの一部を構成している。
 アンテナ凹部80Gのアンテナ面81Gは、個別アンテナベース70Gのベース主面71からベース裏面72に向けて凹んでいる。本実施形態では、アンテナ面81Gは、略球面状に凹んでいる。x方向およびz方向に沿う平面で個別アンテナベース70Gを切った断面視において、アンテナ面81Gは、ベース裏面72に向けて凸となるように湾曲している。y方向およびz方向に沿う平面で個別アンテナベース70Gを切った断面視において、アンテナ面81Gは、ベース裏面72に向けて凸となるように湾曲している。アンテナ面81Gは、ベース主面71において開口している。つまり、アンテナ面81Gは、上方に向けて開口している。
 アンテナ面81Gの開口部は、上方から視て、一部が欠けた円形状である。具体的には、アンテナ面81Gの開口部は、アンテナ面81Gのうち第1ベース側面73側の端部である開口端81Gaと、第4ベース側面76側の端部である開口端81Gbとにおいて欠けている。これら開口端81Ga,81Gbはそれぞれ、上方から視て、直線状に形成されている。
 上方から視て、アンテナ面81Gの開口端81Gaは第1ベース側面73と重なる位置に形成されており、開口端81Gbは第4ベース側面76と重なる位置に形成されている。
 反射膜82Gは、アンテナ面81G上に形成されている。反射膜82Gは、アンテナ面81Gの全体にわたって形成されている。一方、反射膜82Gは、ベース主面71に形成されていない。
 上方から視て、反射膜82Gの開口部は、アンテナ面81Gの開口部と同一形状である。つまり、上方から視て、反射膜82Gの開口部は、アンテナ面81Gの開口端81Gaと重なる位置の開口端82Gaと、アンテナ面81Gの開口端81Gbと重なる位置の開口端82Gbとを有している。上方から視て、両開口端81Ga,81Gbは、直線状に形成されている。
 上方から視て、反射膜82Gは、その中心点P2が個別アンテナベース70Gのx方向およびy方向の中央とは異なるように形成されている。本実施形態では、上方から視て、反射膜82Gは、個別アンテナベース70Gのx方向およびy方向の中央に対して第1ベース側面73および第4ベース側面76寄りに配置されている。より詳細には、上方から視て、反射膜82Gは、その中心点P2がx方向において個別アンテナベース70Gのx方向の中央よりも第1ベース側面73寄りとなるように形成されている。また、上方から視て、反射膜82Gは、その中心点P2がy方向において個別アンテナベース70Gのy方向の中央よりも第4ベース側面76寄りとなるように形成されている。
 上方から視て、反射膜82Gの中心点P2とアンテナ面81Eの中心点とが一致し、かつ反射膜82Gの形状とアンテナ面81Gの形状とが略同一形状であるため、上方から視て、アンテナ面81Gは、反射膜82Gと同様に、アンテナ面81Gの中心点が個別アンテナベース70Gのx方向およびy方向の中央とは異なる位置となるように形成されている。
 上方から視て、反射膜82Gの円弧状の外周縁のうち反射膜82Gおよび反射膜82Hの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Gの円弧状の外周縁のうち第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角θg1が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Gの円弧状の外周縁のうち反射膜82Gおよび反射膜82Dの配列方向である第2方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Gの円弧状の外周縁のうち第2方向(本実施形態ではx方向)の両端縁を結ぶ部分は、その中心角θg2が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Gとアンテナ面81Gとが略同一形状であるため、反射膜82Gと同様に、アンテナ面81Gの円弧状の外周縁のうちアンテナ面81Gおよびアンテナ面81Hの配列方向である第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。上方から視て、アンテナ面81Gの円弧状の外周縁のうちアンテナ面81Gおよびアンテナ面81Dの配列方向である第2方向(本実施形態ではx方向)の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Gの開口端82Gaに対する垂線のうち反射膜82Gの中心点P2を通る垂線の長さLS1は、反射膜82Gの半径RGよりも小さい。上方から視て、反射膜82Gの開口端82Gbに対する垂線のうち反射膜82Gの中心点P2を通る垂線の長さLS2は、反射膜82Gの半径RGよりも小さい。なお、上方から視て、反射膜82Gの開口端82Gaに対する垂線は、x方向に沿って延びる直線であり、反射膜82Gの開口端82Gbに対する垂線は、y方向に沿って延びる直線である。また、長さLS1は第2方向(本実施形態ではx方向)に沿う長さであり、長さLS2は第1方向(本実施形態ではy方向)に沿う長さである。このため、第1方向における反射膜82Gの長さ(LS1+RG)は反射膜82Gの直径(RG×2)よりも短い、第2方向における反射膜82Gの長さ(LS2+RG)は反射膜82Gの直径よりも短い。このように、上方から視て、反射膜82G~82I(図37参照)が配列される方向である第1方向に沿う反射膜82Gの大きさは、反射膜82G,82D,82Aが配列される方向である第2方向と上記第1方向との両方向に対して異なる第3方向に沿う反射膜82Gの大きさよりも小さいともいえる。ここで、第3方向は、上方から視て、第1方向および第2方向の両方向と交差する方向である。また、上方から視て、上記第2方向に沿う反射膜82Gの大きさは、上記第3方向に沿う反射膜82Gの大きさよりも小さいといえる。
 なお、上方から視て、反射膜82Gとアンテナ面81Gとが同一形状であるため、アンテナ面81Gの開口端81Ga,81Gbの垂線のうちアンテナ面81Gの中心点を通る垂線の長さとアンテナ面81Gの半径との関係は、反射膜82Gの長さLS1,LS2と反射膜82Gの半径RGとの関係と同じである。
 図示していないが、反射膜82Gの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Gを切った断面視において、反射膜82Gのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、反射膜82Gの中心点P2を通り、x方向およびz方向に沿う平面で個別アンテナベース70Gを切った断面視において、反射膜82Gのx方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図示していないが、アンテナ面81Gの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Gを切った断面視において、アンテナ面81Gのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、アンテナ面81Gの中心点を通り、x方向およびz方向に沿う平面で個別アンテナベース70Gを切った断面視において、アンテナ面81Gのx方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、個別アンテナベース70Gは、アンテナ凹部80Gの開口部のうち開口部の一部が欠けた部分以外の部分を取り囲む周壁部78Gを有している。周壁部78Gは、個別アンテナベース70Gのベース主面71を構成している。
 図48に示すように、個別アンテナベース70A,70D,70H,70Iは、互いに同一形状である。このため、一例として、図50に示す個別アンテナベース70Hの構成について説明し、個別アンテナベース70A,70D,70Iの構成の説明を省略する。
 図50に示すように、個別アンテナベース70Hは、個別アンテナベース70Gと同様に、z方向に交差する面として、ベース主面71およびベース裏面72を有している。z方向から視たベース主面71およびベース裏面72の形状はそれぞれ、長方形状である。また本実施形態では、ベース主面71およびベース裏面72は、たとえば同一形状である。ただし、これに限られず、ベース主面71とベース裏面72とは異なる形状であってもよい。
 個別アンテナベース70Hは、4つのベース側面として、第1ベース側面73、第2ベース側面74、第3ベース側面75および第4ベース側面76を有している。これらベース側面73~76は、テラヘルツ装置10(アンテナベース70)において側方を向く面である。各ベース側面73~76は、ベース主面71とベース裏面72との対向方向に対して直交する方向の面である。各ベース側面73~76は、ベース主面71とベース裏面72とを繋いでいる。
 第1ベース側面73および第2ベース側面74は、x方向において互いに対向する面である。z方向から視て、各ベース側面73,74は、y方向に沿って延びている。個別アンテナベース70Hの各ベース側面73,74のy方向の長さは、個別アンテナベース70Gの各ベース側面73,74のy方向の長さよりも短い。
 第3ベース側面75および第4ベース側面76は、y方向において互いに対向する面である。z方向から視て、各ベース側面75,76は、x方向に沿って延びている。個別アンテナベース70Hの各ベース側面75,76のx方向の長さは、個別アンテナベース70Gの各ベース側面75,76のx方向の長さと等しい。
 アンテナ凹部80Hのアンテナ面81Hは、ベース主面71からベース裏面72に向けて凹んでいる。本実施形態では、アンテナ面81Hは、略球面状に凹んでいる。x方向およびz方向に沿う平面で個別アンテナベース70Hを切った断面視において、アンテナ面81Hは、ベース裏面72に向けて凸となるように湾曲している。y方向およびz方向に沿う平面で個別アンテナベース70Hを切った断面視において、アンテナ面81Hは、ベース裏面72に向けて凸となるように湾曲している。アンテナ面81Hは、ベース主面71において開口している。つまり、アンテナ面81Hは、上方に向けて開口している。
 アンテナ面81Hの開口部は、上方から視て、一部が欠けた円形状である。具体的には、アンテナ面81Hの開口部は、その開口部のうち第1ベース側面73側の開口端81Haと、第3ベース側面75側の開口端81Hbと、第4ベース側面76側の開口端81Hcとにおいて欠けている。上方から視て、開口端81Ha~81Hcはそれぞれ、直線状に形成されている。
 上方から視て、アンテナ面81Hの開口端81Haは第1ベース側面73と重なる位置に形成されており、開口端81Hbは第3ベース側面75と重なる位置に形成されており、開口端81Hcは第4ベース側面76と重なる位置に形成されている。
 反射膜82Hは、アンテナ面81H上に形成されている。反射膜82Hは、アンテナ面81Hの全体にわたって形成されている。一方、反射膜82Hは、個別アンテナベース70Hのベース主面71に形成されていない。
 上方から視て、反射膜82Hの開口部は、アンテナ面81Hの開口部と同一形状である。つまり、上方から視て、反射膜82Hの開口部は、アンテナ面81Hの開口端81Haと重なる位置の開口端82Haと、アンテナ面81Hの開口端81Hbと重なる位置の開口端82Hbと、アンテナ面81Hの開口端81Hcと重なる位置の開口端82Hcとを有している。上方から視て、開口端82Ha~82Hcはそれぞれ、直線状に形成されている。
 上方から視て、反射膜82Hは、その中心点P2が個別アンテナベース70Hのx方向の中央とは異なる位置となるように形成されている。本実施形態では、上方から視て、反射膜82Hは、その中心点P2がx方向において個別アンテナベース70Hのx方向の中央よりも第1ベース側面73寄りとなるように形成されている。上方から視て、反射膜82Hは、その中心点P2がy方向において個別アンテナベース70Hのy方向の中央となるように形成されている。
 上方から視て、反射膜82Hの中心点P2とアンテナ面81Hの中心点とが一致し、かつ反射膜82Hの形状とアンテナ面81Hの形状とが略同一形状であるため、上方から視て、アンテナ面81Hは、その中心点が個別アンテナベース70Hのx方向の中央とは異なる位置となるように形成されている。
 上方から視て、反射膜82Hの円弧状の外周縁のうち反射膜82Hおよび反射膜82Gの配列方向である第1方向の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。本実施形態では、上方から視て、反射膜82Hの円弧状の外周縁のうち第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角θhが180°未満の円弧状に形成されている。中心角θhは、90°未満であることが好ましい。
 上方から視て、反射膜82Hとアンテナ面81Hとが同一形状であるため、反射膜82Hと同様に、アンテナ面81Hの円弧状の外周縁のうちアンテナ面81Hおよびアンテナ面81Gの配列方向である第1方向(本実施形態ではy方向)の両端縁を結ぶ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、反射膜82Hの開口端82Haに対する垂線のうち反射膜82Hの中心点P2を通る垂線の長さLS3は、反射膜82Hの半径RHよりも小さい。上方から視て、反射膜82Hの開口端82Hbに対する垂線のうち反射膜82Hの中心点P2を通る垂線の長さLS4は、反射膜82Hの半径RHよりも小さい。上方から視て、反射膜82Hの開口端82Hcに対する垂線のうち反射膜82Hの中心点P2を通る垂線の長さLS5は、反射膜82Hの半径RHよりも小さい。なお、反射膜82Hの開口端82Haに対する垂線は、x方向に沿って延びる直線であり、反射膜82Hの開口端82Hbに対する垂線および反射膜82Hの開口端82Hcに対する垂線はそれぞれ、y方向に沿って延びる直線である。また、長さLS3は第1方向と直交する第2方向に沿う長さであり、長さLS4,LS5はそれぞれ第1方向に沿う長さである。このため、第2方向における反射膜82Hの長さ(LS3+RH)は反射膜82Hの直径(RH×2)よりも短い。また第1方向における反射膜82Hの長さ(LS4+LS5)は反射膜82Hの直径よりも短い。このように、上方から視て、反射膜82G~82I(図37参照)が配列される方向である第1方向に沿う反射膜82Hの大きさは、反射膜82H,82E,82Bが配列される方向である第2方向と上記第1方向との両方向に対して異なる第3方向に沿う反射膜82Hの大きさよりも小さいともいえる。ここで、第3方向は、上方から視て、第1方向および第2方向の両方向と交差する方向である。より具体的には、第3方向は、中心角θhの範囲内であって、第2方向を除く方向である。また、上方から視て、上記第2方向に沿う反射膜82Hの大きさは、上記第3方向に沿う反射膜82Hの大きさよりも小さいといえる。
 なお、上方から視て、反射膜82Hとアンテナ面81Hとが略同一形状であるため、アンテナ面81Hの開口端81Ha~81Hcの垂線のうちアンテナ面81Hの中心点を通る垂線の長さとアンテナ面81Hの半径との関係は、反射膜82Hの長さLR3~LR5と反射膜82Hの半径RHとの関係と同じである。
 図53に示すように、反射膜82Hの中心点P2を通り、x方向およびz方向に沿う平面で個別アンテナベース70Hを切った断面視において、反射膜82Hのx方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、反射膜82Hの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Hを切った断面視において、反射膜82Hのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図53に示すように、アンテナ面81Hの中心点を通り、x方向およびz方向に沿う平面で個別アンテナベース70Hを切った断面視において、アンテナ面81Hのx方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、アンテナ面81Hの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Hを切った断面視において、アンテナ面81Hのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 上方から視て、個別アンテナベース70Hは、アンテナ凹部80Hの開口部のうち開口部の一部が欠けた部分以外の部分を取り囲む周壁部78Hを有している。周壁部78Hは、個別アンテナベース70Hのベース主面71を構成している。
 なお、個別アンテナベース70Aのアンテナ凹部80Aのアンテナ面81A、個別アンテナベース70Dのアンテナ凹部80Dのアンテナ面81D、および個別アンテナベース70Iのアンテナ凹部80Iのアンテナ面81Iはそれぞれ、アンテナ面81Hと同じ形状である。また反射膜82A,82D,82Iはそれぞれ、反射膜82Hと同じ形状である。
 また、図48に示すように、個別アンテナベース70Iは、個別アンテナベース70Hと同じ向きに配置されており、個別アンテナベース70A,70Dは個別アンテナベース70Hと異なる向きに配置されている。個別アンテナベース70A,70Dの第2ベース側面はそれぞれアンテナベース70の第3ベース側面75Tを構成しており、個別アンテナベース70H,70Iの第2ベース側面はそれぞれアンテナベース70の第2ベース側面74Tを構成している。個別アンテナベース70Aの第3ベース側面はアンテナベース70の第1ベース側面73Tを構成している。個別アンテナベース70Hの第4ベース側面はアンテナベース70の第4ベース側面76Tを構成している。
 図48に示すように、個別アンテナベース70B,70C,70E,70Fは、互いに同一形状である。このため、一例として、図51に示す個別アンテナベース70Bの構成について説明し、個別アンテナベース70C,70E,70Fの構成の説明を省略する。
 図51に示すように、個別アンテナベース70Bは、z方向に交差する面として、ベース裏面72を有している。換言すると、個別アンテナベース70Bは、ベース主面を有していない。ベース裏面72は、z方向に対して交差する面であり、本実施形態ではz方向に対して直交している。z方向から視たベース裏面72の形状は正方形状である。
 個別アンテナベース70Bは、4つのベース側面として、第1ベース側面73、第2ベース側面74、第3ベース側面75および第4ベース側面76を有している。これらベース側面73~76は、テラヘルツ装置10(アンテナベース70)において側方を向く面である。各ベース側面73~76は、ベース裏面72に対して直交する方向の面である。
 第1ベース側面73および第2ベース側面74は、x方向において互いに対向する面である。z方向から視て、各ベース側面73,74は、y方向に沿って延びている。個別アンテナベース70Bの各ベース側面73,74のy方向の長さは、個別アンテナベース70Gの各ベース側面73,74のy方向の長さよりも短い。また個別アンテナベース70Bの各ベース側面73,74のy方向の長さは、個別アンテナベース70Hの各ベース側面73,74のy方向の長さと等しい。
 第3ベース側面75および第4ベース側面76は、y方向において互いに対向する面である。z方向から視て、各ベース側面75,76は、x方向に沿って延びている。個別アンテナベース70Bの各ベース側面75,76のx方向の長さは、個別アンテナベース70G,70Hの各ベース側面75,76のx方向の長さよりも短い。
 本実施形態では、アンテナ凹部80Bのアンテナ面81Bは、略球面状に凹んでいる。図53に示すように、x方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bは、ベース裏面72に向けて凸なるように湾曲している。また図示していないが、y方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bは、ベース裏面72に向けて凸となるように湾曲している。アンテナ面81Bは、上方に向けて開口している。
 アンテナ面81Bの開口部は、上方から視て、正方形である。具体的には、アンテナ面81Bの開口部は、その開口部のうち第1ベース側面73側の端部である開口端81Baと、第2ベース側面74側の端部である開口端81Bbと、第3ベース側面75側の端部である開口端81Bcと、第4ベース側面76側の端部である開口端81Bdとが欠けている。これら開口端81Ba~81Bdはそれぞれ、上方から視て、直線状に形成されている。
 上方から視て、アンテナ面81Bの開口端81Baは第1ベース側面73と重なる位置に形成されており、開口端81Bbは第2ベース側面74と重なる位置に形成されており、開口端81Bcは第3ベース側面75と重なる位置に形成されており、開口端81Bdは第4ベース側面76と重なる位置に形成されている。
 反射膜82Bは、アンテナ面81B上に形成されている。反射膜82Bは、アンテナ面81Bの全体にわたって形成されている。一方、反射膜82Bは、個別アンテナベース70Bのベース主面71に形成されていない。
 上方から視て、反射膜82Bの開口部は、アンテナ面81Bの開口部と同一形状である。つまり、上方から視て、反射膜82Bの開口部は、アンテナ面81Bの開口端81Baと重なる位置の開口端82Baと、アンテナ面81Bの開口端81Bbと重なる位置の開口端82Bbと、アンテナ面81Bの開口端81Bcと重なる位置の開口端82Bcと、アンテナ面81Bの開口端81Bdと重なる位置の開口端82Bdとを有している。これら開口端82Ba~Bdは、上方から視て、直線状に形成されている。
 上方から視て、反射膜82Bは、その中心点P2が個別アンテナベース70Bのx方向およびy方向の中央と一致するように設けられている。上方から視て、反射膜82Bの中心点P2とアンテナ面81Bの中心点とが一致しているため、上方から視て、アンテナ面81Bは、その中心点が個別アンテナベース70Bのx方向およびy方向の中央と一致するように設けられている。
 上方から視て、反射膜82Bの開口端82Baに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLS6は、反射膜82Bの半径RBよりも小さい。上方から視て、反射膜82Bの開口端82Bbに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLS7は、反射膜82Bの半径RBよりも小さい。上方から視て、反射膜82Bの開口端82Bcに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLS8は、反射膜82Bの半径RBよりも小さい。上方から視て、反射膜82Bの開口端82Bdに対する垂線のうち反射膜82Bの中心点P2を通る垂線の長さLS9は、反射膜82Bの半径RBよりも小さい。
 ここで、反射膜82Bの半径RBとは、上方から視て、図51の二点鎖線で示すように、反射膜82Bが切欠の無い円形とした場合の半径を示している。なお、反射膜82Bの開口端82Baに対する垂線および反射膜82Bの開口端82Bbに対する垂線はそれぞれ、x方向に沿って延びる直線であり、反射膜82Bの開口端82Bcに対する垂線および反射膜82Bの開口端82Bdに対する垂線はそれぞれ、y方向に沿って延びる直線である。また、長さLS6,LS7は第1方向(本実施形態ではy方向)に直交する第2方向(本実施形態ではx方向)に沿う長さである。このため、第2方向における反射膜82Bの長さ(LS6+LS7)は、反射膜82Bの直径(RB×2)よりも小さい。また、長さLS8,LS9は第1方向に沿う長さである。このため、第1方向における反射膜82Bの長さ(LS8+LS9)は、反射膜82Bの直径よりも小さい。このように、上方から視て、反射膜82A~82C(図37参照)が配列される方向である第1方向に沿う反射膜82Bの大きさは、反射膜82H,82E,82Bが配列される方向である第2方向と上記第1方向との両方向に対して異なる第3方向に沿う反射膜82Bの大きさよりも小さいともいえる。ここで、第3方向は、上方から視て、第1方向および第2方向の両方向と交差する方向である。また、上方から視て、上記第2方向に沿う反射膜82Bの大きさは、上記第3方向に沿う反射膜82Bの大きさよりも小さいといえる。
 なお、上方から視て、反射膜82Bとアンテナ面81Bとが略同一形状であるため、アンテナ面81Bの開口端81Ba~81Bdの垂線のうちアンテナ面81Bの中心点を通る垂線の長さとアンテナ面81Bの半径との関係は、反射膜82Bの長さLR6~LR9と反射膜82Bの半径RBとの関係と同じである。また、アンテナ面81Bの半径とは、上方から視て、アンテナ面81Bが切欠の無い円形とした場合の半径を示している。
 図53に示すように、反射膜82Bの中心点P2を通り、x方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、反射膜82Bのx方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、反射膜82Bの中心点P2を通り、y方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、反射膜82Bのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 図53に示すように、アンテナ面81Bの中心点を通り、x方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bのx方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。また、図示していないが、アンテナ面81Bの中心点を通り、y方向およびz方向に沿う平面で個別アンテナベース70Bを切った断面視において、アンテナ面81Bのy方向の両端縁を結んだ部分は、その中心角が180°未満の円弧状に形成されている。
 なお、個別アンテナベース70Cのアンテナ凹部80Cのアンテナ面81C、個別アンテナベース70Eのアンテナ凹部80Eのアンテナ面81E、および個別アンテナベース70Fのアンテナ凹部80Fのアンテナ面81Fはそれぞれ、アンテナ面81Bと同じ形状である。また反射膜82C,82E,82Fはそれぞれ、反射膜82Bと同じ形状である。
 また、図48に示すように、個別アンテナベース70B,70Cの第1ベース側面はそれぞれアンテナベース70の第1ベース側面73Tを構成している。個別アンテナベース70C,70Fの第4ベース側面はそれぞれアンテナベース70の第4ベース側面76Tを構成している。
 次に、気体空間92について説明する。
 気体空間92は、第1実施形態と同様に、誘電主面51とアンテナ面81とによって区画されている。具体的には、アンテナ凹部80の開口部が誘電主面51によって覆われている。これにより、誘電主面51とアンテナ凹部80の内面であるアンテナ面81とによって、気体空間92が区画されている。より詳細には、気体空間92は、誘電主面51とアンテナ面81A~81Iとによって区画されている。具体的には、アンテナ凹部80A~80Iの開口部がそれぞれ誘電主面51によって覆われている。本実施形態では、接着層91がアンテナ凹部80A,80D,80G,80H,80Iのそれぞれの開口部の周縁に沿って設けられている。反射膜82A~82Iはそれぞれ、気体空間92内に設けられている。気体空間92は、アンテナ凹部80A~80Iのそれぞれと誘電主面51とによって区画された複数の気体空間92を含む。本実施形態では、個別アンテナベース70A~70Iのうち隣り合う個別アンテナベースに対応する気体空間は、互いに連通している。一例では、図52に示すように、誘電主面51とアンテナ面81Eとによって区画された気体空間92Eは、誘電主面51とアンテナ面81Dとによって区画された気体空間92Dと、誘電主面51とアンテナ面81Fとによって区画された気体空間92Fとに連通している。つまり、反射膜82D~82Fの配列方向である第1方向(本実施形態ではy方向)において隣り合う気体空間92D~92Fは第1方向において互いに連通している。図53に示すように、気体空間92Eは、誘電主面51とアンテナ面81Bによって区画された気体空間92Bと、誘電主面51とアンテナ面81Hとによって区画された気体空間92Hとに連通している。つまり、反射膜82B,82E,82Hの配列方向である第2方向(本実施形態ではx方向)において隣り合う気体空間92B,92E,92Hは第2方向において互いに連通している。
 気体空間92内には、気体が存在するため、誘電体50、気体空間92、テラヘルツ素子20の屈折率の関係および電磁波の伝搬経路はそれぞれ、第1実施形態と同様である。なお、本実施形態では、アンテナ面81A~81C、81F,81Hに対応する気体空間92は、アンテナベース70の外部(テラヘルツ装置10の外部)と連通している。
 図54に示すように、テラヘルツ装置10は、第1実施形態と同様に、第1電極101および第2電極102と、第1導電部110および第2導電部120と、を備えている。本実施形態では、両電極101,102および両導電部110,120は、個別アンテナベース70A~70Iに対して共通の電極として設けられている。
 第1電極101は、第1誘電側面53および第3誘電側面55の近くに配置されている。第1電極101は、アンテナベース70の第1ベース側面73Tよりも第1誘電側面53の近くに設けられている。z方向から視た第1電極101の形状は、y方向が長辺方向となり、x方向が短辺方向となる矩形状である。
 第2電極102は、第2誘電側面54および第4誘電側面56の近くに配置されている。第2電極102は、アンテナベース70の第2ベース側面74Tよりも第2誘電側面54の近くに設けられている。z方向から視た第2電極102の形状は、y方向が長辺方向となり、x方向が短辺方向となる矩形状である。
 第1導電部110は、第1共通配線部116Aおよび第2共通配線部116Bと、第1配線部117A、第2配線部117B、第3配線部117C、第4配線部117D、第5配線部117E、第6配線部117F、第7配線部117G、第8配線部117Hおよび第9配線部117Iと、配線基部118と、を有している。
 配線基部118は、第1電極101に繋がっている配線部であり、z方向から視て、第1電極101と重なる位置に配置されている。z方向から視た配線基部118の形状は、y方向に延びる細帯状である。配線基部118の一部は、アンテナベース70の第3ベース側面75Tよりも第3誘電側面55の近くに突出した部分を有している。第1導電部110は、配線基部118と第1電極101とを接続する第1柱部115を有している。第1柱部115は、z方向から視て、配線基部118と第1電極101との双方と重なる位置に配置されている。第1柱部115は、配線基部118と第1電極101とのz方向の間に配置されており、配線基部118と第1電極101とを繋いでいる。
 第1共通配線部116Aは、配線基部118に繋がっている配線部であり、アンテナベース70の第3ベース側面75Tよりも第3誘電側面55の近くに配置されている。第1共通配線部116Aは、x方向に沿って延びている。y方向から視て、第1共通配線部116Aは、テラヘルツ素子20A、テラヘルツ素子20Dおよびテラヘルツ素子20Gと重なるように延びている。第1共通配線部116Aには、第1配線部117A、第4配線部117D、第7配線部117Gが繋がっている。
 第1配線部117Aは、第1共通配線部116Aとテラヘルツ素子20Aとを接続する配線部である。第1配線部117Aは、第1共通配線部116Aからテラヘルツ素子20Aに向けてy方向に沿って延びている。
 第4配線部117Dは、第1共通配線部116Aとテラヘルツ素子20Dとを接続する配線部である。第4配線部117Dは、第1共通配線部116Aからテラヘルツ素子20Dに向けてy方向に沿って延びている。
 第7配線部117Gは、第1共通配線部116Aとテラヘルツ素子20Gとを接続する配線部である。第7配線部117Gは、第1共通配線部116Aからテラヘルツ素子20Gに向けてy方向に沿って延びている。
 第2共通配線部116Bは、配線基部118に繋がっている配線部であり、アンテナベース70のy方向の中央よりも第4ベース側面76Tの近くに配置されている。具体的には、第2共通配線部116Bは、y方向において、テラヘルツ素子20Bとテラヘルツ素子20Cとの間、テラヘルツ素子20Eとテラヘルツ素子20Fとの間、および、テラヘルツ素子20Hとテラヘルツ素子20Iとの間に配置されている。より詳細には、上方から視て、第2共通配線部116Bは、個別アンテナベース70Bと個別アンテナベース70Cとの境界、個別アンテナベース70Eと個別アンテナベース70Fとの境界、個別アンテナベース70Hと個別アンテナベース70Iとの境界のそれぞれと重なる位置に配置されている。第2共通配線部116Bには、第2配線部117B、第3配線部117C、第5配線部117E、第6配線部117F、第8配線部117Hおよび第9配線部117Iが繋がっている。
 第2配線部117Bは、第2共通配線部116Bとテラヘルツ素子20Bとを接続する配線部である。第2配線部117Bは、第2共通配線部116Bからテラヘルツ素子20Bに向けてy方向に沿って延びている。
 第3配線部117Cは、第2共通配線部116Bとテラヘルツ素子20Cとを接続する配線部である。第3配線部117Cは、第2共通配線部116Bからテラヘルツ素子20Cに向けてy方向に沿って延びている。
 第5配線部117Eは、第2共通配線部116Bとテラヘルツ素子20Eとを接続する配線部である。第5配線部117Eは、第2共通配線部116Bからテラヘルツ素子20Eに向けてy方向に沿って延びている。
 第6配線部117Fは、第2共通配線部116Bとテラヘルツ素子20Fとを接続する配線部である。第6配線部117Fは、第2共通配線部116Bからテラヘルツ素子20Fに向けてy方向に沿って延びている。
 第8配線部117Hは、第2共通配線部116Bとテラヘルツ素子20Hとを接続する配線部である。第8配線部117Hは、第2共通配線部116Bからテラヘルツ素子20Hに向けてy方向に沿って延びている。
 第9配線部117Iは、第2共通配線部116Bとテラヘルツ素子20Iとを接続する配線部である。第9配線部117Iは、第2共通配線部116Bからテラヘルツ素子20Iに向けてy方向に沿って延びている。
 第2導電部120は、第1共通配線部126Aおよび第2共通配線部126Bと、第1配線部127A、第2配線部127B、第3配線部127C、第4配線部127D、第5配線部127E、第6配線部127F、第7配線部127G、第8配線部127Hおよび第9配線部127Iと、配線基部128と、を有している。
 配線基部128は、第2電極102に繋がっている配線部であり、z方向から視て、第2電極102と重なる位置に設けられている。z方向から視た配線基部128の形状は、y方向に延びる細帯状である。配線基部118の一部は、アンテナベース70の第2ベース側面74Tよりも第2誘電側面54の近くに突出した部分を有している。第2導電部120は、配線基部128と第2電極102とを接続する第2柱部125を有している。第2柱部125は、z方向から視て、配線基部128と第2電極102との双方と重なる位置に配置されている。第2柱部125は、配線基部128と第2電極102とのz方向の間に配置されており、配線基部128と第2電極102とを繋いでいる。
 第1共通配線部126Aは、配線基部128に繋がっている配線部であり、アンテナベース70の第4ベース側面76Tよりも第4誘電側面56の近くに配置されている。第1共通配線部126Aは、x方向に沿って延びている。y方向から視て、第1共通配線部126Aは、テラヘルツ素子20I、テラヘルツ素子20Fおよびテラヘルツ素子20Cと重なるように延びている。第1共通配線部126Aには、第3配線部127C、第6配線部127F、第9配線部127Iが繋がっている。
 第3配線部127Cは、第1共通配線部126Aとテラヘルツ素子20Cとを接続する配線部である。第3配線部127Cは、第1共通配線部126Aからテラヘルツ素子20Cに向けてy方向に沿って延びている。
 第6配線部127Fは、第1共通配線部126Aとテラヘルツ素子20Fとを接続する配線部である。第6配線部127Fは、第1共通配線部126Aからテラヘルツ素子20Fに向けてy方向に沿って延びている。
 第9配線部127Iは、第1共通配線部126Aとテラヘルツ素子20Iとを接続する配線部である。第9配線部127Iは、第1共通配線部126Aからテラヘルツ素子20Iに向けてy方向に沿って延びている。
 第2共通配線部126Bは、第2電極102に繋がっている配線部であり、アンテナベース70のy方向の中央よりも第3ベース側面75Tの近くに配置されている。具体的には、第2共通配線部126Bは、y方向において、テラヘルツ素子20Gとテラヘルツ素子20Hとの間、テラヘルツ素子20Dとテラヘルツ素子20Eとの間、および、テラヘルツ素子20Aとテラヘルツ素子20Bとの間に配置されている。より詳細には、上方から視て、第2共通配線部126Bは、個別アンテナベース70Gと個別アンテナベース70Hとの境界、個別アンテナベース70Dと個別アンテナベース70Eとの境界、個別アンテナベース70Aと個別アンテナベース70Bとの境界のそれぞれと重なる位置に配置されている。第2共通配線部126Bには、第1配線部127A、第2配線部127B、第4配線部127D、第5配線部127E、第7配線部127Gおよび第8配線部127Hが繋がっている。
 第1配線部127Aは、第2共通配線部126Bとテラヘルツ素子20Aとを接続する配線部である。第1配線部127Aは、第2共通配線部126Bからテラヘルツ素子20Aに向けてy方向に沿って延びている。
 第2配線部127Bは、第2共通配線部126Bとテラヘルツ素子20Bとを接続する配線部である。第2配線部127Bは、第2共通配線部126Bからテラヘルツ素子20Bに向けてy方向に沿って延びている。
 第4配線部127Dは、第2共通配線部126Bとテラヘルツ素子20Dとを接続する配線部である。第4配線部127Dは、第2共通配線部126Bからテラヘルツ素子20Dに向けてy方向に沿って延びている。
 第5配線部127Eは、第2共通配線部126Bとテラヘルツ素子20Eとを接続する配線部である。第5配線部127Eは、第2共通配線部126Bからテラヘルツ素子20Eに向けてy方向に沿って延びている。
 第7配線部127Gは、第2共通配線部126Bとテラヘルツ素子20Gとを接続する配線部である。第7配線部127Gは、第2共通配線部126Bからテラヘルツ素子20Gに向けてy方向に沿って延びている。
 第8配線部127Hは、第2共通配線部126Bとテラヘルツ素子20Hとを接続する配線部である。第8配線部127Hは、第2共通配線部126Bからテラヘルツ素子20Hに向けてy方向に沿って延びている。
 次に、各配線部117A~117I,127A~127Iにおけるテラヘルツ素子20との接続構造について説明する。なお、この接続構造は、各配線部117A~117I,127A~127Iにおいて共通するため、第1配線部117A,127Aの構成について説明し、各配線部117B~117I,127B~127Iの構成の説明を省略する。
 図55に示すように、第1配線部117Aは、テラヘルツ素子20Aの第1パッド33aに対してz方向に対向する第1素子対向部111と、第1素子対向部111と第1共通配線部116Aとを接続する第1接続部113と、を備えている。第1素子対向部111は、第1配線部117Aの先端部を構成している。
 第1素子対向部111は、テラヘルツ素子20Aと反射膜82Aとの間に設けられており、z方向から視て、その少なくとも一部が第1パッド33aと重なるように形成されている。第1素子対向部111は、反射膜82Aとz方向に対向している。第1パッド33aがx方向に延びていることに対応させて、第1素子対向部111はx方向に延びている。たとえば、第1素子対向部111は、x方向を長辺方向とし、y方向を短辺方向とする矩形状に形成されている。
 第1配線部117Aは、第1素子対向部111と第1パッド33aとの間に設けられた第1バンプ114を備えている。テラヘルツ素子20Aは、第1バンプ114を介して第1素子対向部111にフリップチップ実装されている。第1パッド33aと第1素子対向部111とは、第1バンプ114によって電気的に接続されている。
 本実施形態では、第1バンプ114は複数設けられている。たとえば、第1パッド33aおよび第1素子対向部111がx方向に延びていることに対応させて、第1バンプ114はx方向に複数(本実施形態では2つ)配列されている。第1素子対向部111および第1バンプ114は、z方向から視て受信点P1と重ならない位置に配置されている。第1バンプ114の形状はたとえば四角柱状である。ただし、第1バンプ114の形状はこれに限られず任意である。
 第1バンプ114は、単層構造でもよいし、複数の積層構造であってもよい。一例としては、第1バンプ114は、Cuを含む金属層と、Tiを含む金属層と、Snを含む合金層との積層構造でもよい。Snを含む合金層とは、たとえばSn-Sb系合金層またはSn-Ag系合金層である。
 なお、第1素子対向部111上に、第1バンプ114を囲む第1絶縁層が形成されていてもよい。第1絶縁層は、上方に開口した枠状に形成されており、第1絶縁層内に第1バンプ114が収容されているとよい。これにより、第1バンプ114が側方にダレることを抑制できる。ただし、第1絶縁層は必須ではない。
 第1接続部113は、第1素子対向部111と第1共通配線部116Aとの間に設けられており、x方向を幅方向としてy方向に延びている。第1接続部113の一部は、反射膜82Aに対してz方向に対向している。すなわち、第1接続部113の一部は、反射膜82Aと重なる位置に設けられている。換言すれば、第1接続部113は、z方向から視て、反射膜82Aと重なる部分と、反射膜82Aと重ならない部分とを有している。
 本実施形態の第1接続部113は、第1素子対向部111よりも幅狭に形成されている。具体的には、第1接続部113の幅(x方向の長さ)は、第1素子対向部111の幅(x方向の長さ)よりも短く設定されている。
 第1接続部113は、第1素子対向部111よりも幅狭に形成された第1接続本体部113aと、第1接続本体部113aの長手方向のうち第1素子対向部111の近くにある第1素子側テーパ部113bと、を備えている。
 第1接続本体部113aは、y方向を長手方向として延びており、x方向に一定幅を有している。第1接続本体部113aは、z方向から視て反射膜82Aと重なっている。第1接続本体部113aは、第1素子対向部111と第1共通配線部116Aとを繋いでいるものともいえる。第1接続本体部113aの幅W1は、第1素子対向部111の幅W2よりも短い。
 第1素子側テーパ部113bは、第1接続本体部113aと第1素子対向部111とを繋いでいる。第1素子側テーパ部113bは、たとえばz方向から視てテラヘルツ素子20Aに対してx方向に隣接する位置に形成されており、z方向から視て反射膜82Aと重なっている。
 第1素子側テーパ部113bは、第1接続本体部113aから第1素子対向部111に向かうにつれて徐々に幅広に形成されている。本実施形態では、第1素子側テーパ部113bは、第1接続本体部113aから第1素子対向部111に向かうにつれて徐々に互いに離れるように傾斜した一対の第1素子側傾斜面113baを有している。
 この構成によれば、テラヘルツ素子20Aの第1パッド33aと第1電極101とは、第1バンプ114、第1素子対向部111、第1接続部113、第1共通配線部116A、配線基部118および第1柱部115を介して電気的に接続されている。
 第1配線部127Aは、テラヘルツ素子20Aと第2電極102とを電気的に接続する導電経路の一部を構成するものである。本実施形態では、第1配線部117Aと第1配線部127Aとは、z方向から視て互いに180°ずれた位置に形成されており、y方向に対向している。両配線部117A,127Aは、z方向から視てテラヘルツ素子20Aから反射膜82Aの径方向に向けて延びているともいえる。
 特に、本実施形態の両配線部117A,127Aは、z方向から視てテラヘルツ素子20Aから互いに離れる方向に延びているといえる。具体的には、第1配線部117Aは、z方向から視てテラヘルツ素子20Aから第3誘電側面55に向けてy方向に延びており、第1配線部127Aは、z方向から視てテラヘルツ素子20Aから第4誘電側面56に向けてy方向に延びている。
 第1配線部127Aは、テラヘルツ素子20Aの第2パッド34aに対してz方向に対向する第2素子対向部121と、第2素子対向部121と第2共通配線部126Bとを接続する第2接続部123と、を備えている。本実施形態では、第2素子対向部121が第1配線部127Aの先端部を構成している。
 第2素子対向部121は、テラヘルツ素子20Aと反射膜82Aとの間に設けられており、z方向から視て、その少なくとも一部が第2パッド34aと重なるようにう形成されている。第2素子対向部121は、反射膜82Aとz方向に対向している。第2パッド34aがx方向に延びていることに対応させて、第2素子対向部121はx方向に延びている。たとえば、第2素子対向部121は、x方向を長手方向とし、y方向を短手方向とする矩形状に形成されている。
 本実施形態では、両パッド33a,34aがy方向に離間していることに対応させて、両素子対向部111,121は、y方向に対向配置されている。そして、両素子対向部111,121の間には誘電体50が存在しており、誘電体50によって絶縁されている。換言すれば、両配線部117A,127Aは、互いに離間して配置されている素子対向部111,121から互いに離れる方向に向けて延びているともいえる。
 本実施形態では、両配線部117A,127Aは、受信点P1に対してy方向に対称配置されている。これにより、両配線部117A,127Aが非対称性であることに起因する放射モードへの影響を抑制できる。なお、両配線部117A,127Aは、受信点P1に対してx方向に対称配置されていてもよい。
 第1配線部127Aは、第2素子対向部121と第2パッド34aとの間に設けられた第2バンプ124を備えている。テラヘルツ素子20Aは、第2バンプ124を介して第2素子対向部121にフリップチップ実装されている。第2パッド34aと第2素子対向部121とは、第2バンプ124によって電気的に接続されている。
 本実施形態では、第2バンプ124は複数設けられている。たとえば、第2パッド34aおよび第2素子対向部121がx方向に延びていることに対応させて、第2バンプ124は、x方向に複数(本実施形態では2つ)配列されている。第2素子対向部121および第2バンプ124は、z方向から視て受信点P1と重ならない位置に配置されている。第1バンプ114と第2バンプ124とは、x方向に離間して対向配置されており、y方向においては揃っている。ただし、これに限られず、第1バンプ114と第2バンプ124とは、y方向にずれて配置されていてもよい。
 第2接続部123は、第2素子対向部121と第2共通配線部126Bとの間に設けられており、x方向を幅方向としてy方向に延びている。第2接続部123の一部は、反射膜82Aに対してz方向に対向している。すなわち、第2接続部123の一部は、反射膜82Aと重なる位置に設けられている。換言すれば、第2接続部123は、z方向から視て、反射膜82Aと重なる部分と、反射膜82Aと重ならない部分とを有している。
 本実施形態の第2接続部123は、第2素子対向部121よりも幅狭に形成されている。具体的には、第2接続部123の幅(x方向の長さ)は、第2素子対向部121の幅(x方向の長さ)よりも短く設定されている。
 第2接続部123は、第2素子対向部121よりも幅狭に形成された第2接続本体部123aと、第2接続本体部123aの長手方向のうち第2素子対向部121の近くにある第2素子側テーパ部123bと、を備えている。
 第2接続本体部123aは、y方向を長手方向として延びており、x方向に一定幅を有している。第2接続本体部123aは、z方向から視て反射膜82Aと重なっている。第2接続本体部123aは、第2素子対向部121と第2共通配線部126Bとを繋いでいるものともいえる。第2接続本体部123aの幅W3は、第2素子対向部121の幅W4よりも短い。
 第2素子側テーパ部123bは、第2接続本体部123aから第2素子対向部121に向かうにつれて徐々に幅広に形成されている。本実施形態では、第2素子側テーパ部123bは、第2接続本体部123aから第2素子対向部121に向かうにつれて徐々に互いに離れるように傾斜した一対の第2素子側傾斜面123baを有している。
 この構成によれば、テラヘルツ素子20Aの第2パッド34aと第2電極102とは、第2バンプ124、第2素子対向部121、第2接続部123、第2共通配線部126B、配線基部128および第2柱部125を介して電気的に接続されている。
 本実施形態の反射膜82A~82Iはそれぞれ、電気的にフローティング状態である。より詳細には、反射膜82A~82Iはそれぞれ、両電極101,102および両導電部110,120と電気的に絶縁されている。
 (作用)
 図56を参照して、本実施形態のテラヘルツ装置10の作用について説明する。
 図56は、個別アンテナベース70D,70E,70G,70Hおよびその周辺を拡大した拡大図である。
 図56に示すように、反射膜82Dと反射膜82Eとの配列方向である第1方向(本実施形態ではy方向)において、テラヘルツ素子20Dの受信点P1とテラヘルツ素子20Eの受信点P1との間の距離である素子間距離Ldeは、反射膜82Dの直径(反射膜82Dの半径RD×2)よりも小さい。また図示していないが、素子間距離Ldeは、反射膜82Eの直径よりも小さい。ここで、反射膜82Eが反射膜82Bと同一形状であるため、反射膜82Eの直径は、反射膜82Bの半径RB(図51参照)×2であるともいえる。
 反射膜82Eと反射膜82Gとの配列方向である第2方向(本実施形態ではx方向)において、テラヘルツ素子20Dの受信点P1とテラヘルツ素子20Gの受信点P1との間の距離である素子間距離Ldgは、反射膜82Dの直径よりも小さい。また素子間距離Ldgは、反射膜82Gの直径(反射膜82Gの半径RG×2)よりも小さい。
 反射膜82Hと反射膜82Gとの配列方向である第1方向(本実施形態ではy方向)において、テラヘルツ素子20Hの受信点P1とテラヘルツ素子20Gの受信点P1との間の距離である素子間距離Lghは、反射膜82Gの直径よりも小さい。また、素子間距離Lghは、反射膜82Hの直径(反射膜82Hの半径RH×2)よりも小さい。
 反射膜82Hと反射膜82Eとの配列方向である第2方向(本実施形態ではx方向)において、テラヘルツ素子20Hの受信点P1とテラヘルツ素子20Eの受信点P1との間の距離である素子間距離Lehは、反射膜82Gの直径よりも小さい。また、素子間距離Lehは、反射膜82Eの直径よりも小さい。
 なお、図示していないが、テラヘルツ素子20A,20B,20C,20F,20Iに関する第1方向および第2方向の素子間距離のそれぞれについても、上述のテラヘルツ素子20D,20E,20G,20Hの第1方向および第2方向の素子間距離と同様である。
 このように、複数の個別アンテナベースの配列方向(第1方向および第2方向)において、隣り合うテラヘルツ素子20の受信点P1同士を結んだ距離である素子間距離は、反射膜82の直径よりも小さくなる。したがって、上記配列方向において隣り合うテラヘルツ素子20を互いに近づけることができる。
 (効果)
 本実施形態のテラヘルツ装置10によれば、第1実施形態に準じた効果に加え、以下の効果が得られる。
 (3-1)z方向から視て、y方向に一列に並べられたテラヘルツ素子20A~20Cの列と、y方向に一列に並べられたテラヘルツ素子20D~20Fの列と、y方向に一列に並べられたテラヘルツ素子20G~20Iの列とが、x方向において互いに離間して配置されている。この構成によれば、テラヘルツ装置10のx方向における検出範囲を広げることができる。
 (3-2)z方向から視て、個別アンテナベース70Aの反射膜82Aと個別アンテナベース70Dの反射膜82Dと個別アンテナベース70Gの反射膜82Gの配列方向である第2方向(本実施形態ではx方向)に沿う反射膜82A,82D,82Gの大きさは、反射膜82A,82D,82Gの直径よりも小さい。また、他の反射膜82B,82E,82Hおよび反射膜82C,82F,82Iの双方についても同様である。
 この構成によれば、第2方向において隣り合うテラヘルツ素子20を互いに近づけることができる。したがって、テラヘルツ装置10の検出範囲における分解能を向上させることができる。
 (3-3)上方から視て、反射膜82A,82D,82Gの円弧状の外周縁のうち、反射膜82A,82D,82Gの配列方向である第2方向の両端縁を結ぶ部分はそれぞれ、中心角が180°未満の円弧状に形成されている。
 この構成によれば、反射膜82A,82D,82Gのそれぞれが一定の曲率で形成された球面状を維持しつつ、反射膜82Aの長さLS3、反射膜82Dの長さ、および反射膜82Gの長さLS1のそれぞれが反射膜82A,82D,82Gの半径よりも短い関係となる反射膜82A,82D,82Gを形成することができる。なお、反射膜82Dが反射膜82Aと同じ形状であるため、反射膜82Dの長さは反射膜82Aの長さLS3と等しい。
 (3-4)上方から視て、反射膜82A~82Iのうち隣り合う反射膜82の境界はそれぞれ、直線状に形成されている。この構成によれば、反射膜82A~82Iがそれぞれ一定の曲率で形成された球面状を維持しつつ、反射膜82A~82Iがそれぞれの第1方向の長さおよび第2方向の長さが反射膜82A~82Iの半径よりも短い関係となる反射膜82A~82Iをそれぞれ形成することができる。
 (3-5)アンテナ面81Aと誘電体50とによって区画された気体空間と、アンテナ面81Dと誘電体50とによって区画された気体空間92Dと、アンテナ面81Gと誘電体50とによって区画された気体空間92Gとは、反射膜82A(アンテナ面81A)と反射膜82D(アンテナ面81D)との境界および反射膜82D(アンテナ面81D)と反射膜82G(アンテナ面81G)との境界の双方において第2方向に繋がっている。なお、アンテナ面81Bと誘電体50とによって区画された気体空間92Bと、アンテナ面81Eと誘電体50とによって区画された気体空間92Eと、アンテナ面81Hと誘電体50とによって区画された気体空間92Hとについても同様である。また、アンテナ面81Cと誘電体50とによって区画された気体空間と、アンテナ面81Fと誘電体50とによって区画された気体空間と、アンテナ面81Iと誘電体50とによって区画された気体空間とについても同様である。この構成によれば、上記(3-2)に準じた効果を得ることができる。
 [変更例]
 上記各実施形態は本開示に関するテラヘルツ装置が取り得る形態の例示であり、その形態を制限することを意図していない。本開示に関するテラヘルツ装置は、上記各実施形態に例示された形態とは異なる形態を取り得る。その一例は、上記各実施形態の構成の一部を置換、変更、もしくは、省略した形態、または上記各実施形態に新たな構成を付加した形態である。以下の各変更例は、技術的な矛盾が生じない限り、互いに組み合わせることができる。なお、説明の便宜上、以下の変更例では、基本的には第1実施形態を用いて説明するが、技術的な矛盾が生じない限り、他の実施形態にも適用できる。
 (配線に関する変更例)
 ・第1および第2実施形態において、第1素子側テーパ部113bおよび第1電極側テーパ部113cの少なくとも一方を省略してもよい。同様に、第2素子側テーパ部123bおよび第2電極側テーパ部123cの少なくとも一方を省略してもよい。
 ・第3実施形態において、第1素子側テーパ部113bを省略してもよい。同様に、第2素子側テーパ部123bを省略してもよい。
 ・各実施形態において、接続部113,123の一部が、素子対向部111,121と同一幅となっていてもよい。すなわち、接続部113,123の少なくとも一部が、素子対向部111,121よりも幅狭となっていればよい。
 ・各実施形態において、接続本体部113a,123aの幅W1,W3と素子対向部111,121の幅W2,W4とは同一でもよい。つまり、接続部113,123と素子対向部111,121とは同一幅でもよい。また、第1および第2実施形態において、接続本体部113a,123aの幅W1,W3と電極対向部112,122の幅とは同一でもよい。素子対向部111,121の幅W2,W4と、電極対向部112,122の幅とは同一でもよいし、異なっていてもよい。
 ・第1および第2実施形態において、素子対向部111,121および電極対向部112,122の具体的な形状は任意であり、z方向から視て円形や楕円形でもよい。第3実施形態において、素子対向部111,121の具体的な形状は任意であり、z方向から視て円形や楕円形でもよい。
 ・各実施形態において、z方向から視て、電極101,102の少なくとも一部が反射膜82と重なる位置に形成されていてもよい。
 ・第1実施形態において、上方から視て、第1電極101および導電部110と、第2電極102および導電部120とがテラヘルツ素子20の受信点P1まわりで180°ずれて配置されてもよい。換言すると、上方から視て、第1電極101および導電部110と、第2電極102および導電部120とが、個別アンテナベース70A~70Cの配列方向と直交する方向において対向して配置されてもよい。
 一例では、図57に示すように、第1電極101Aおよび導電部110Aと、第2電極102Aおよび導電部120Aとがx方向において対向して配置されており、第1電極101Bおよび導電部110Bと、第2電極102Bおよび導電部120Bとがx方向において対向して配置されており、第1電極101Cおよび導電部110Cと、第2電極102Cおよび導電部120Cとがx方向において対向して配置されている。図示された例においては、第1電極101A~101Cは誘電体50の第1突出部61に設けられており、第2電極102A~102Cは誘電体50の第2突出部62に設けられている。
 両導電部110A~110C,120A~120Cの形状は、第1実施形態の両導電部110A~110C,120A~120Cの形状と概ね同じである。ただし、導電部1110A~110Cにおいて第1素子対向部111の配置および形状が第1実施形態の第1素子対向部111とは異なり、導電部120A~120Cにおいて第2素子対向部121の配置および形状が第1実施形態の第2素子対向部121とは異なる。
 図57に示すとおり、x方向において、導電部110Aは、テラヘルツ素子20Aの素子側面23の近くに配置されており、導電部120Aは、テラヘルツ素子20Bの素子側面24の近くに配置されている。y方向において、導電部110A,120Aはともに、テラヘルツ素子20Aの中央に配置されている。なお、導電部110B,120Bとテラヘルツ素子20Bとの配置関係および導電部110C,120Cとテラヘルツ素子20Cとの配置関係についても同様である。
 導電部110Aの第1素子対向部111の幅(y方向の長さ)は、第1実施形態の導電部110Aの第1素子対向部111の幅よりも大きく、導電部120Aの第2素子対向部121の幅(y方向の長さ)は、第1実施形態の導電部120Aの第2素子対向部121の幅よりも大きい。なお、導電部110B,120Bの各素子対向部111,121および導電部110C,120Cの各素子対向部111,121についても同様である。
 ・第2実施形態において、上方から視て、x方向において、両電極101,102が誘電体50の第1誘電側面53および第2誘電側面54のうちテラヘルツ素子20の近くの誘電側面とは反対側の誘電側面に配置されてもよい。
 一例では、図58に示すように、第1誘電側面53の近くに配置されたテラヘルツ素子20A~20Dに対応する両電極101A~101D,102A~102Dは第2誘電側面54の近くに配置されている。具体的には、両電極101A~101D,102A~102Dはそれぞれ、誘電体50の第2突出部62に設けられている。このため、上方から視て、両導電部110A~110D,120A~120Dは、個別アンテナベース70E~70Hをx方向に跨ぐように延びている。
 上方から視て、導電部110Aは、個別アンテナベース70Eの周壁部78Eと重なる位置に配置されている。上方から視て、導電部120Aは、個別アンテナベース70Eのアンテナ面81Eのy方向の両端部のうち第3誘電側面55に近い方の端部と重なる位置に配置されている。
 上方から視て、両導電部110B,120Bは、個別アンテナベース70Eと個別アンテナベース70Fとの境界付近と重なる位置に配置されている。上方から視て、両導電部110C,120Cは、個別アンテナベース70Fと個別アンテナベース70Gとの境界付近と重なる位置に配置されている。上方から視て、両導電部110D,120Dは、個別アンテナベース70Gと個別アンテナベース70Hとの境界付近と重なる位置に配置されている。
 また、第2誘電側面54の近くに配置されたテラヘルツ素子20E~20Hに対応する両電極101E~101H,102E~102Hは第1誘電側面53の近くに配置されている。具体的には、両電極101E~101H,102E~102Hはそれぞれ、誘電体50の第1突出部61に設けられている。このため、上方から視て、両導電部110E~110H,120E~120Hは、個別アンテナベース70A~70Dをx方向に跨ぐように延びている。
 上方から視て、両導電部110E,120Eは、個別アンテナベース70Aと個別アンテナベース70Bとの境界付近と重なる位置に配置されている。上方から視て、両導電部110F,120Fは、個別アンテナベース70Bと個別アンテナベース70Cとの境界付近と重なる位置に配置されている。上方から視て、両導電部110G,120Gは、個別アンテナベース70Cと個別アンテナベース70Dとの境界付近と重なる位置に配置されている。
 上方から視て、導電部110Hは、個別アンテナベース70Dの反射膜82Dのy方向の両端部のうち第4誘電側面56に近い方の端部と重なる位置に配置されている。上方から視て、導電部120Hは、反射膜82Dよりも第4誘電側面56の近くに配置されている。反射膜82Dがベース主面71よりも下方に位置しているため、両導電部110H,120Hは、z方向において反射膜82Dよりも上方に離間して配置されている。加えて、両導電部110H,120Hは誘電体50によって封止されているため、両導電部110H,120Hは、反射膜82Dと接していない。
 このような構成によれば、上方から視て、両導電部110A~110H,120A~120Hとアンテナ面81A~81Hとが重なることに起因するブロッキングを軽減できる。
 ・図58に示す変更例において、両導電部110A~110H,120A~120Hの形状をたとえば図59に示すように両導電部110B~110G,120B~120Gをx方向において隣り合う個別アンテナベースの境界により近づく位置に配置されるように変更してもよい。つまり、上方から視て、両導電部110A~110H,120A~120Hはそれぞれ、個別アンテナベースの第3ベース側面75または第4ベース側面76とy方向に隣り合う位置に配置されていてもよい。
 より詳細には、図59に示すとおり、上方から視て、導電部110Aは反射膜82Eよりも第3誘電側面55の近くに配置されており、導電部120Aは反射膜82Eのy方向の両端部のうち第3誘電側面55に近い方の端部と重なる位置に配置されている。上方から視て、導電部110Bは反射膜82Eのy方向の両端部のうち反射膜82Fに近い方の端部と重なる位置に配置されており、導電部120Bは反射膜82Fのy方向の両端部のうち反射膜82Eに近い方の端部と重なる位置に配置されている。上方から視て、導電部110Cは反射膜82Fのy方向の両端部のうち反射膜82Gに近い方の端部と重なる位置に配置されており、導電部120Cは反射膜82Gのy方向の両端部のうち反射膜82Fに近い方の端部と重なる位置に配置されている。上方から視て、導電部110Dは反射膜82Gのy方向の両端部のうち反射膜82Hに近い方の端部と重なる位置に配置されており、導電部120Dは反射膜82Hのy方向の両端部のうち反射膜82Gに近い方の端部と重なる位置に配置されている。
 上方から視て、導電部110Eは反射膜82Aのy方向の両端部のうち反射膜82Bに近い方の端部と重なる位置に配置されており、導電部120Eは反射膜82Bのy方向の両端部のうち反射膜82Aに近い方の端部と重なる位置に配置されている。上方から視て、導電部110Fは反射膜82Bのy方向の両端部のうち反射膜82Cに近い方の端部と重なる位置に配置されており、導電部120Fは反射膜82Cのy方向の両端部のうち反射膜82Bに近い方の端部と重なる位置に配置されている。上方から視て、導電部110Gは反射膜82Cのy方向の両端部のうち反射膜82Dに近い方の端部と重なる位置に配置されており、導電部120Gは反射膜82Dのy方向の両端部のうち反射膜82Cに近い方の端部と重なる位置に配置されている。上方から視て、導電部110Hは反射膜82Dのy方向の両端部のうち第4誘電側面56に近い方の端部と重なる位置に配置されており、導電部120Hは反射膜82Dよりも第4誘電側面56の近くに配置されている。
 上方から視て、両導電部110,120のうち反射膜82と重なる部分は、反射膜82よりも上方に位置しており、誘電体50によって両導電部110,120が封止されているため、両導電部110,120は、反射膜82と接していない。
 このような構成によれば、上方から視て、両導電部110A~110H,120A~120Hとアンテナ面81A~81Hとが重なることに起因するブロッキングを一層軽減できる。
 ・第2実施形態において、上方から視て、第1電極101および導電部110と、第2電極102および導電部120とがテラヘルツ素子20の受信点P1まわりで180°ずれて配置されてもよい。換言すると、上方から視て、第1電極101および導電部110と、第2電極102および導電部120とが、個別アンテナベース70A~70Dの配列方向(個別アンテナベース70E~70Hの配列方向)と直交する方向において対向して配置されてもよい。
 一例では、図60に示すように、第1電極101Aおよび導電部110Aと、第2電極102Aおよび導電部120Aとがx方向において対向して配置されており、第1電極101Bおよび導電部110Bと、第2電極102Bおよび導電部120Bとがx方向において対向して配置されており、第1電極101Cおよび導電部110Cと、第2電極102Cおよび導電部120Cとがx方向において対向して配置されており、第1電極101Dおよび導電部110Dと、第2電極102Dおよび導電部120Dとがx方向において対向して配置されている。また、第1電極101Eおよび導電部110Eと、第2電極102Eおよび導電部120Eとがx方向において対向して配置されており、第1電極101Fおよび導電部110Fと、第2電極102Fおよび導電部120Fとがx方向において対向して配置されており、第1電極101Gおよび導電部110Gと、第2電極102Gおよび導電部120Gとがx方向において対向して配置されており、第1電極101Hおよび導電部110Hと、第2電極102Hおよび導電部120Hとがx方向において対向して配置されている。図示された例においては、第1電極101A~101Hは誘電体50の第1突出部61に設けられており、第2電極102A~102Hは誘電体50の第2突出部62に設けられている。
 図60に示すとおり、導電部110A~110H,120A~120Hとテラヘルツ素子20A~20Hとの配置関係は、図57の変更例と同様である。また各素子対向部111,121の形状は、図57の変更例と同様である。
 上方から視て、導電部110Eは反射膜82Aと反射膜82Bとの境界と重なる位置に配置されており、導電部110Fは反射膜82Bと反射膜82Cとの境界と重なる位置に配置されており、導電部110Gは反射膜82Cと反射膜82Dとの境界と重なる位置に配置されており、導電部110Hは反射膜82Dのy方向の両開口端のうち第4誘電側面56に近い方の開口端と重なる位置に配置されている。
 反射膜82Aと反射膜82Bとの境界、反射膜82Bと反射膜82Cとの境界、反射膜82Cと反射膜82Dとの境界、および、反射膜82Dのy方向の両開口端のうち第4誘電側面56に近い方の開口端はそれぞれ、ベース主面71Tよりも下方に位置しており、誘電体50によって導電部110E~110Hが封止されているため、導電部110E~110Hは、反射膜82A~82Dと接していない。
 上方から視て、導電部120Bは反射膜82Eと反射膜82Fとの境界と重なる位置に配置されており、導電部120Cは反射膜82Fと反射膜82Gとの境界と重なる位置に配置されており、導電部120Dは反射膜82Gと反射膜82Hとの境界と重なる位置に配置されている。
 反射膜82Eと反射膜82Fとの境界、導電部120Cは反射膜82Fと反射膜82Gとの境界、および、導電部120Dは反射膜82Gと反射膜82Hとの境界はそれぞれ、ベース主面71Tよりも下方に位置しており、誘電体50によって導電部120B~120Dは封止されているため、導電部120B~120Dは、反射膜82F~82Hと接していない。
 このような構成によれば、上方から視て、導電部110E~110H,120B~120Dがアンテナ面81A~81Hのうちy方向に隣り合うアンテナ面81の境界と重なる位置に配置されているため、上方から視て、導電部110E~110H,120B~120Dとアンテナ面81A~81Hとが重なることに起因するブロッキングを軽減できる。
 ・図60の変更例において、導電部120A~120Hを一繋ぎの導電部140として構成してもよい。一例では、図61に示すように、導電部140は、共通配線部141、第1配線部142A、第2配線部142B、第3配線部142C、第4配線部142D、第5配線部142E、第6配線部142F、第7配線部142G、第8配線部142H、および、電極対向部143を有している。図示された例においては、導電部140は、共通配線部141と各配線部142A~142Hと電極対向部143とが一体に形成された単一部品である。
 電極対向部143は、上方から視て、第2電極102と重なる位置に配置されており、図示していない柱部を介して第2電極102と接続されている。上方から視て、柱部は、電極対向部143と第2電極102との双方と重なる位置に配置されている。柱部は、z方向において電極対向部143と第2電極102との双方に接続されている。
 共通配線部141は、アンテナベース70のx方向の中央に配置されている。より詳細には、上方から視て、共通配線部141は、反射膜82A~82Hのうちx方向およびy方向の双方と異なる方向である第3方向および第4方向に隣り合う反射膜82の境界と重なる位置に配置されている。ここで、第3方向とは、たとえば反射膜82Aと反射膜82Eとが配列される方向である。第4方向とは、たとえば反射膜82Bと反射膜82Eとが配列される方向である。図示された例においては、上方から視て、共通配線部141は、反射膜82Aと反射膜82Eとの境界、反射膜82Eと反射膜82Bとの境界、反射膜82Bと反射膜82Fとの境界、反射膜82Fと反射膜82Cとの境界、反射膜82Cと反射膜82Gとの境界、反射膜82Gと反射膜82Dとの境界、および、反射膜82Dと反射膜82Hとの境界のそれぞれと重なる位置に配置されている。
 各配線部142A~142Hは、共通配線部141からx方向に沿って延びる配線部である。より詳細には、各配線部142A~142Dは共通配線部141から第1誘電側面53に向けてx方向に沿って延びており、各配線部142E~142Hは共通配線部141から第2誘電側面54に向けてx方向に沿って延びている。
 第1配線部142Aは、共通配線部141とテラヘルツ素子20Aとを接続する配線部である。第1配線部142Aは、共通配線部141からテラヘルツ素子20Aに向けてx方向に沿って延びている。
 第2配線部142Bは、共通配線部141とテラヘルツ素子20Bとを接続する配線部である。第2配線部142Bは、共通配線部141からテラヘルツ素子20Bに向けてx方向に沿って延びている。
 第3配線部142Cは、共通配線部141とテラヘルツ素子20Cとを接続する配線部である。第3配線部142Cは、共通配線部141からテラヘルツ素子20Cに向けてx方向に沿って延びている。
 第4配線部142Dは、共通配線部141とテラヘルツ素子20Dとを接続する配線部である。第4配線部142Dは、共通配線部141からテラヘルツ素子20Dに向けてx方向に沿って延びている。
 第5配線部142Eは、共通配線部141とテラヘルツ素子20Eとを接続する配線部である。第5配線部142Eは、共通配線部141からテラヘルツ素子20Eに向けてx方向に沿って延びている。
 第6配線部142Fは、共通配線部141とテラヘルツ素子20Fとを接続する配線部である。第6配線部142Fは、共通配線部141からテラヘルツ素子20Fに向けてx方向に沿って延びている。
 第7配線部142Gは、共通配線部141とテラヘルツ素子20Gとを接続する配線部である。第7配線部142Gは、共通配線部141からテラヘルツ素子20Gに向けてx方向に沿って延びている。
 第8配線部142Hは、共通配線部141とテラヘルツ素子20Hとを接続する配線部である。第8配線部142Hは、共通配線部141からテラヘルツ素子20Hに向けてx方向に沿って延びている。
 このような構成によれば、共通配線部141が第3方向および第4方向における反射膜82A~82Hの境界と重なる位置に配置されているため、上方から視て、共通配線部141と反射膜82A~82Hとが重なることに起因するブロッキングを軽減できる。
 ・第1実施形態において、図62に示すように、テラヘルツ装置10は、テラヘルツ素子20A~20Cに個別に電気的に接続される特定素子の一例としての複数の保護ダイオード160,170を備えていてもよい。各保護ダイオード160,170は、各テラヘルツ素子20A~20Cに対して並列接続されている。両保護ダイオード160,170は、各テラヘルツ素子20A~20Cに対して互いに逆方向となるように接続されている。保護ダイオード160,170は、通常のダイオードの他に、ツェナーダイオード、ショットキーダイオード、または発光ダイオードであってもよい。
 図63に示すように、両保護ダイオード160,170は、誘電体50内に設けられている。すなわち、誘電体50は、両保護ダイオード160,170、両導電部110,120および複数のテラヘルツ素子20を封止している。なお、図63は、個別アンテナベース70A、テラヘルツ素子20A、両電極101A,102A、両導電部110A,120A、および両保護ダイオード160,170の関係を示している。
 両保護ダイオード160,170は、z方向から視て、反射膜82A(アンテナ面81A)とは重ならない位置に配置されている。具体的には、保護ダイオード160,170は、誘電体50におけるアンテナベース70から側方に突出した突出部61,62内に設けられている。図示された例においては、保護ダイオード160,170は、第1突出部61内に設けられている。これにより、反射膜82Aに向けて入射される電磁波が保護ダイオード160,170によって阻害されることを回避できる。図示された例においては、保護ダイオード160,170は、x方向において互いに離間して配列されている。保護ダイオード160,170はそれぞれ、両導電部110A,120Aと接続されている。より詳細には、保護ダイオード160,170は、各素子対向部111,121と各電極対向部112,122との間、換言すると各接続部113,123のそれぞれに接続されている。保護ダイオード160のアノード電極は第1接続部113に接続されており、カソード電極は第2接続部123に接続されている。保護ダイオード170のアノード電極は第2接続部123に接続されており、カソード電極は第1接続部113に接続されている。これにより、保護ダイオード160,170はそれぞれ、両電極101A,102Aと電気的に接続されている。
 図示された例においては、保護ダイオード160は第1電極101Aよりも内側に配置されており、保護ダイオード170は第2電極102Aよりも内側に配置されている。換言すれば、テラヘルツ素子20Aからx方向に離れる方向に、保護ダイオード160,170と電極101A,102Aとが配列されている。ただし、保護ダイオード160,170は誘電体50内に封止されているため、保護ダイオード160,170と電極101A,102Aとは接触しない。
 なお、個別アンテナベース70B,70C、テラヘルツ素子20B,20C、両電極101B,101C,102B,102C、両導電部110B,110C,120B,120C、および両保護ダイオード160,170の関係も同様であるため、その説明を省略する。
 このような構成によれば、保護ダイオード160,170によってたとえば静電気等に起因して各テラヘルツ素子20A~20Cの両端に高電圧が印加された場合には、保護ダイオード160,170を経由して電流を流すことが可能となる。これにより、各テラヘルツ素子20A~20Cに過度な電流が流れることを抑制できるため、テラヘルツ素子20A~20Cを保護できる。
 加えて、両保護ダイオード160,170は、各テラヘルツ素子20A~20Cに対して逆方向となるように接続されているため、いずれの方向の高電圧が発生した場合であっても各テラヘルツ素子20A~20Cを保護できる。
 ・第2実施形態において、図62および図63に示す変更例と同様に、テラヘルツ装置10は、テラヘルツ素子20A~20Hに個別に電気的に接続される特定素子の一例としての複数の保護ダイオード160,170を備えていてもよい。一例では、図64に示すように、両導電部110E,120Eに接続された保護ダイオード160,170、両導電部110F,120Fに接続された保護ダイオード160,170、および、両導電部110G,120Gに接続された保護ダイオード160,170はそれぞれ、誘電体50の第2突出部62に設けられている。両導電部110B,120Bに接続された保護ダイオード160,170および両導電部110C,120Cに接続された保護ダイオード160,170はそれぞれ、誘電体50の第1突出部61に設けられている。なお、図示していないが、両導電部110H,120Hに接続された保護ダイオード160,170は、誘電体50の第2突出部62に設けられている。両導電部110A,120Aに接続された保護ダイオード160,170および両導電部110D,120Dに接続された保護ダイオード160,170はそれぞれ、誘電体50の第1突出部61に設けられている。
 ・図58の変更例において、図62および図63に示す変更例と同様に、テラヘルツ装置10は、テラヘルツ素子20A~20Hに個別に電気的に接続される特定素子の一例としての複数の保護ダイオード160,170を備えていてもよい。一例では、図65に示すように、上方から視て、両導電部110B,120Bに接続された保護ダイオード160,170は、個別アンテナベース70Eのベース主面71と個別アンテナベース70Fのベース主面71との双方と重なる位置に配置されており、両導電部110C,120Cに接続された保護ダイオード160,170は、個別アンテナベース70Fのベース主面71と個別アンテナベース70Gのベース主面71との双方と重なる位置に配置されている。より詳細には、上方から視て、両導電部110B,120Bに接続された保護ダイオード160,170は、反射膜82E(アンテナ面81E)と反射膜82F(アンテナ面81F)とのy方向の間に設けられている。上方から視て、両導電部110C,120Cに接続された保護ダイオード160,170は、アンテナ面81Fとアンテナ面81Gとのy方向の間に設けられている。
 上方から視て、両導電部110E,120Eに接続された保護ダイオード160,170は、個別アンテナベース70Aのベース主面71と個別アンテナベース70Bのベース主面71との双方と重なる位置に配置されており、両導電部110F,120Fに接続された保護ダイオード160,170は、個別アンテナベース70Bのベース主面71と個別アンテナベース70Cのベース主面71との双方と重なる位置に配置されており、両導電部110G,120Gに接続された保護ダイオード160,170は、個別アンテナベース70Cのベース主面71と個別アンテナベース70Dのベース主面71との双方と重なる位置に配置されている。より詳細には、上方から視て、両導電部110E,120Eに接続された保護ダイオード160,170は、反射膜82A(アンテナ面81A)と反射膜82B(アンテナ面81B)とのy方向の間に設けられている。上方から視て、両導電部110F,120Fに接続された保護ダイオード160,170は、反射膜82B(アンテナ面81B)と反射膜82C(アンテナ面81C)とのy方向の間に設けられている。上方から視て、両導電部110G,120Gに接続された保護ダイオード160,170は、反射膜82C(アンテナ面81C)と反射膜82D(アンテナ面81D)とのy方向の間に設けられている。
 なお、図示していないが、両導電部110A,120Aに接続された保護ダイオード160,170は個別アンテナベース70Eのベース主面71と重なる位置に配置されており、両導電部110D,120Dに接続された保護ダイオード160,170はアンテナ面81Gとアンテナ面81Hとのy方向の間に配置されている。また、両導電部110H,120Hに接続された保護ダイオード160,170は、個別アンテナベース70Dのベース主面71と重なる位置に配置されている。
 このような構成によれば、誘電体50の突出部61,62に保護ダイオード160,170を配置するためのスペースを設ける必要がなくなるため、テラヘルツ装置10のx方向の大型化を抑制できる。
 ・複数の導電部110,120は、誘電体50外に形成されていてもよい。たとえば、複数の導電部110,120は、複数のテラヘルツ素子20と個別に電気的に接続された状態で誘電主面51または誘電裏面52に形成されていてもよい。ただし、反射膜82と各導電部110,120との短絡を抑制する点に着目すれば、各導電部110,120は誘電体50内に設けられているとよい。
 (テラヘルツ素子に関する変更例)
 ・各実施形態において、複数のテラヘルツ素子20のうち少なくとも1つのテラヘルツ素子20は、z方向から視て、受信点P1が反射膜82の中心点P2からずれた位置に配置されていてもよい。すなわち、z方向から視て、反射膜82の焦点が受信点P1と一致していなくてもよい。
 ・各実施形態において、テラヘルツ素子20における両パッド33a,34aの位置や形状は任意に変更可能である。たとえば、両パッド33a,34aは、受信点P1(発振点P1)を介してx方向またはy方向に対向配置されていなくてもよく、素子主面21のx方向の端部にまとめて配置されていてもよい。この場合、両パッド33a,34aは互いに絶縁されているとよい。
 また、両素子導電層33,34の一部が、ダイポールアンテナを構成していてもよい。すなわち、テラヘルツ素子20の素子主面21側においてアンテナが集積化されていてもよい。なお、アンテナの具体的な構成については、ダイポールアンテナに限定されず任意であり、スロットアンテナ、ボータイアンテナあるいはリングアンテナなどの他のアンテナであってもよい。
 ・各実施形態において、図66に示すように、テラヘルツ素子20は、MIM(Metal Insulator Metal)リフレクタ280を有していてもよい。MIMリフレクタ280は、第1素子導電層33の一部と第2素子導電層34の一部とが絶縁体をz方向に挟み込むことによって構成されている。MIMリフレクタ280は、第1素子導電層33の一部と第2素子導電層34の一部とを高周波的に短絡させるものである。MIMリフレクタ280は、高周波の電磁波を反射させることができる。
 ・各実施形態において、各テラヘルツ素子20は、電磁波を発生させる素子であってもよい。具体的には、各テラヘルツ素子20は、受信点P1が電磁波の発振を行う発振点となる構成であってもよい。この場合、各テラヘルツ素子20から発生した電磁波は、各テラヘルツ素子20とz方向において対向するアンテナ面81上に形成された反射膜82によって上方に向けて出射する。各テラヘルツ素子20は、たとえば発振点からの開口角度の範囲にわたって放射状に電磁波を照射するものであってもよい。すなわち、各テラヘルツ素子20から発生する電磁波は指向性を有していてもよい。上記開口角度は、テラヘルツ素子に対向する反射面で反射可能な範囲であることが好ましく、たとえば120°~150°程度である。この場合、反射膜82は、テラヘルツ素子20からの電磁波を一方向(各実施形態では上方)に向けて反射させるものである。たとえば第1実施形態においては、反射膜82Aはテラヘルツ素子20Aからの電磁波を一方向(上方)に向けて反射させるものであり、反射膜82Bはテラヘルツ素子20Bからの電磁波を一方向に向けて反射させるものであり、反射膜82Cはテラヘルツ素子20Cからの電磁波を一方向に向けて反射させるものである。
 (誘電体に関する変更例)
 ・各実施形態において、誘電体50の具体的な材料は、電磁波を透過するものであって、誘電屈折率n2が気体屈折率n3よりも高くかつ素子屈折率n1よりも低いものであれば任意に変更可能である。
 ・各実施形態において、素子基板31の構成材料は、InP以外の半導体であってもよい。素子屈折率n1は、素子基板31の屈折率であるため、素子基板31の構成材料が変更された場合、素子屈折率n1も変更される。このため、素子基板31は、誘電屈折率n2よりも高い屈折率の材料によって構成されるとよい。
 ・各実施形態において、z方向から視た誘電体50の形状は任意に変更可能である。一例では、第1実施形態において、各突出部61,62のうち両電極101,102が設けられていない突出部を省略してもよい。
 また一例では、第2実施形態において、誘電体50の第3誘電側面55は、z方向から視て個別アンテナベース70Aの第3ベース側面75と重なる位置となるように形成されてもよい。また一例では、第2実施形態において、第3誘電側面55は、z方向から視てアンテナベース70の第3ベース側面75Tと重なる位置であって、第3ベース側面75Tと同一形状となるように形成されてもよい。また一例では、第2実施形態において、誘電体50の第4誘電側面56は、z方向から視て個別アンテナベース70Hの第4ベース側面と重なる位置となるように形成されてもよい。また一例では、第2実施形態において、第4誘電側面56は、z方向から視てアンテナベース70の第4ベース側面76Tと重なる位置であって、第4ベース側面76Tと同一形状となるように形成されてもよい。
 ・各実施形態では、誘電主面51に電極101,102が設けられた構成であったが、これに限られず、誘電裏面52に電極101,102が設けられていてもよい。この場合、各柱部115,125は、各導電部110,120から誘電裏面52に向けて延びている。
 (アンテナベースに関する変更例)
 ・各実施形態において、アンテナベース70は金属によって形成されていてもよい。この場合、反射膜82を省略してもよい。この構成においては、アンテナ面81によって電磁波が反射される。つまり、アンテナベース70が金属によって形成されている場合、電磁波を反射する反射面はアンテナ面からなる。
 ・各実施形態において、個別アンテナベースは、アンテナ面81を含む第1部分が金属によって構成されており、第1部分の外方に設けられた第2部分が電気絶縁材料によって構成されていてもよい。電気絶縁材料の一例は、エポキシ樹脂である。第2部分は、個別アンテナベースのうちアンテナ面81の一部が切り欠かれた部分に対応するベース側面以外のベース側面を構成している。一例では、図67および図68に示すように、第1実施形態において、個別アンテナベース70Aは、アンテナ面81Aを含む第1部分181Aと、上方から視てアンテナ面81Aの開口端81Aa以外の周囲を覆う第2部分182Aと、を有している。第2部分182Aは、周壁部78Aを構成している。個別アンテナベース70Bは、アンテナ面81Bを含む第1部分181Bと、上方から視てアンテナ面81Bの両開口端81Ba,81Bb以外の周囲を覆う第2部分182Bと、を有している。第2部分182Bは、周壁部78Bを構成している。個別アンテナベース70Cは、アンテナ面81Cを含む第1部分181Cと、上方から視てアンテナ面81Cの開口端81Ca以外の周囲を覆う第2部分182Cと、を有している。第2部分182Cは、周壁部78Cを構成している。これら第2部分182A~182Cは、電気絶縁材料からなり、たとえばエポキシ樹脂からなる。
 ・各実施形態において、複数の個別アンテナベースが一体に形成されてもよい。一例では、第1実施形態において、個別アンテナベース70Aと個別アンテナベース70Bとが一体に形成された単一部品から構成されてもよいし、個別アンテナベース70Aと個別アンテナベース70Cとが一体に形成された単一部品から構成されてもよい。また一例では、第2実施形態において、個別アンテナベース70B、個別アンテナベース70Cおよび個別アンテナベース70Eが一体に形成された単一部品から構成されてもよい。また一例では、第3実施形態において、個別アンテナベース70A、個別アンテナベース70B、個別アンテナベース70Dおよび個別アンテナベース70Eが一体に形成された単一部品から構成されてもよい。
 ・各実施形態において、アンテナベース70は単一部品から構成されてもよい。つまり、アンテナベース70は、複数のアンテナ面81を有していてもよい。具体的には、第1実施形態において、アンテナベース70は、アンテナ面81A~81Cを有している。第2実施形態において、アンテナベース70は、アンテナ面81A~81Hを有している。第3実施形態において、アンテナベース70は、アンテナ面81A~81Iを有している。
 ・第1実施形態において、個別アンテナベースの配列方向である第1方向(第1実施形態ではy方向)において隣り合うアンテナ面81の境界に仕切壁が設けられてもよい。仕切壁は、誘電体50と接することによって気体空間をアンテナ面81ごとに区画している。一例では、図69および図70に示すように、アンテナ面81Aとアンテナ面81Bとの境界には第1仕切壁191が設けられており、アンテナ面81Bとアンテナ面81Cとの境界には第2仕切壁192が設けられている。各仕切壁191,192は、各境界から誘電体50に向けてz方向に沿って延びている。各仕切壁191,192は、誘電体50の誘電主面51に接している。これにより、気体空間92Aと気体空間92Bと気体空間92Cとが仕切られている。つまり、気体空間92A~92Cが互いに連通していない。気体空間92Aは誘電体50と反射膜82Aとによって密閉されており、気体空間92Bは誘電体50と反射膜82Bとによって密閉されており、気体空間92Cは誘電体50と反射膜82Cとによって密閉されている。なお、図示された例においては、各仕切壁191,192のうち気体空間92と接する側面には、反射膜82が形成されている。
 ・第2実施形態において、個別アンテナベースの配列方向である第1方向、第3方向および第4方向において隣り合うアンテナ面81の境界に仕切壁が設けられてもよい。一例では、図71に示すように、第1方向において隣り合うアンテナ面として、アンテナ面81Aとアンテナ面81Bとの境界、アンテナ面81Bとアンテナ面81Cとの境界、アンテナ面81Cとアンテナ面81Dとの境界、アンテナ面81Eとアンテナ面81Fとの境界、アンテナ面81Fとアンテナ面81Gとの境界、および、アンテナ面81Gとアンテナ面81Hとの境界にはそれぞれ、第1仕切壁191が設けられている。第3方向において隣り合うアンテナ面として、アンテナ面81Aとアンテナ面81Eとの境界、アンテナ面81Bとアンテナ面81Fとの境界、アンテナ面81Cとアンテナ面81Gとの境界、および、アンテナ面81Dとアンテナ面81Hとの境界にはそれぞれ、第2仕切壁192が設けられている。第4方向において隣り合うアンテナ面として、アンテナ面81Bとアンテナ面81Eとの境界、アンテナ面81Cとアンテナ面81Fとの境界、および、アンテナ面81Dとアンテナ面81Gとの境界にはそれぞれ、第3仕切壁193が設けられている。図示していないが、各仕切壁191~193は、各境界から誘電体50に向けてz方向に沿って延びており、誘電体50の誘電主面51に接している。これにより、各反射膜82A~82H(各アンテナ面81A~81H)に対応する複数の気体空間はそれぞれ、反射膜82A~82Hと誘電体50とによって密閉されている。なお、図示された例においては、各仕切壁191~193のうち気体空間92と接する側面には、反射膜82が形成されている。
 ・第3実施形態において、個別アンテナベースの配列方向である第1方向および第2方向において隣り合うアンテナ面81の境界に仕切壁が設けられてもよい。一例では、図72に示すように、第1方向において隣り合うアンテナ面として、アンテナ面81Aとアンテナ面81Bとの境界、アンテナ面81Bとアンテナ面81Cとの境界、アンテナ面81Dとアンテナ面81Eとの境界、アンテナ面81Eとアンテナ面81Fとの境界、アンテナ面81Gとアンテナ面81Hとの境界、および、アンテナ面81Hとアンテナ面81Iとの境界にはそれぞれ、仕切壁194が設けられている。第2方向において隣り合うアンテナ面として、アンテナ面81Aとアンテナ面81Dとの境界、アンテナ面81Bとアンテナ面81Eとの境界、アンテナ面81Cとアンテナ面81Fとの境界、アンテナ面81Gとアンテナ面81Dとの境界、アンテナ面81Hとアンテナ面81Eとの境界、および、アンテナ面81Iとアンテナ面81Fとの境界には、仕切壁195が設けられている。なお、仕切壁194,195のうち気体空間92と接する側面には、反射膜82が形成されている。
 ここで、たとえばアンテナ面81A,81B,81D,81Eに着目すると、仕切壁194のうちアンテナ面81Aとアンテナ面81Bとの境界に設けられた部分は「第1反射面と第2反射面とを仕切る第1仕切壁」を構成しており、アンテナ面81Dとアンテナ面81Eとの境界に設けられた部分は「第3反射面と第4反射面とを仕切る第4仕切壁」を構成している。また、仕切壁195のうちアンテナ面81Aとアンテナ面81Dとの境界に設けられた部分は「第1反射面と第3反射面とを仕切る第2仕切壁」を構成しており、アンテナ面81Bとアンテナ面81Eとの境界に設けられた部分は「第2反射面と第4反射面とを仕切る第3仕切壁」を構成している。
 ・第1実施形態において、アンテナベース70の構成は任意に変更可能である。具体的には、アンテナベース70を構成する個別アンテナベースの数および種類はそれぞれ任意に変更可能である。一例では、アンテナベース70は、複数の個別アンテナベース70Bから構成されてもよい。また、アンテナベース70は、個別アンテナベース70Aと、1または複数の個別アンテナベース70Bとから構成されてもよい。また、アンテナベース70は、個別アンテナベース70Cと、1または複数の個別アンテナベース70Bとから構成されてもよい。個別アンテナベース70Aと個別アンテナベース70Cとから構成されてもよい。一例では、アンテナベース70は、個別アンテナベース70A,70Cと、複数の個別アンテナベース70Bとから構成されてもよい。
 ・第2実施形態において、アンテナベース70の構成は任意に変更可能である。具体的には、アンテナベース70を構成する個別アンテナベースの数および種類はそれぞれ任意に変更可能である。一例では、アンテナベース70は、3つ以上の個別アンテナベース70Bから構成されてもよい。また、アンテナベース70は、個別アンテナベース70A、個別アンテナベース70E、および個別アンテナベース70Bの3つから構成されてもよい。
 ・第3実施形態において、アンテナベース70の構成は任意に変更可能である。具体的には、アンテナベース70を構成する個別アンテナベースの数および種類はそれぞれ任意に変更可能である。一例では、アンテナベース70は、個別アンテナベース70B,70C,70E,70Fから構成されてもよい。一例では、アンテナベース70は、複数(4つ以上)の個別アンテナベース70Eから構成されてもよい。
 ・アンテナベース70は、各実施形態の個別アンテナベース以外の形状の個別アンテナベースによって構成されてもよい。一例では、図73に示すように、アンテナベース70は、個別アンテナベース70A~70Gを備えている。アンテナベース70は、z方向から視て六角形の個別アンテナベース70Dの周囲を6個の個別アンテナベース70A,70B,70C,70E,70F,70Gが取り囲むように配置された構成である。
 図示された例においては、個別アンテナベース70Cは周壁部78Cを有しており、個別アンテナベース70Fは周壁部78Fを有している。個別アンテナベース70Gは第2実施形態の個別アンテナベース70Gと同一形状である。個別アンテナベース70A,70B,70D,70Eはそれぞれ周壁部を有していない。個別アンテナベース70A,70B,70Eは個別アンテナベース70Dと同一形状である。
 個別アンテナベース70A,70Bは第1方向(図示された例においてはy方向)において配列されており、個別アンテナベース70C~70Eは第1方向において配列されており、個別アンテナベース70F,70Gは第1方向において配列されている。
 個別アンテナベース70A,70Dは第1方向および第2方向(図示された例においてはx方向)とは異なる第3方向において配列されており、個別アンテナベース70B,70Eは第3方向において配列されており、個別アンテナベース70C,70Fは第3方向において配列されており、個別アンテナベース70D,70Gは第3方向において配列されている。
 個別アンテナベース70A,70Cは第1方向、第2方向および第3方向とは異なる第4方向において配列されており、個別アンテナベース70B,70Dは第4方向において配列されており、個別アンテナベース70D,70Fは第4方向において配列されており、個別アンテナベース70E,70Gは第4方向において配列されている。
 各アンテナ凹部80A~80Gは下方に向けて凹む球面凹状に形成されている。
 上方から視て、各アンテナ凹部80A,80B,80D,80Fのアンテナ面81A,81B,81D,81Fは、第1方向の両開口端、第3方向の両開口端および第4方向の両開口端が切り欠かれた六角形状に形成されている。
 上方から視て、アンテナ面81Cは、第1方向の一方の開口端、第3方向の両開口端および第4方向の一方の開口端が切り欠かれた形状に形成されている。上方から視て、アンテナ面81Cは、第1方向の他方の開口端および第4方向の他方の開口端が繋がった円弧状に形成されている。
 上方から視て、アンテナ面81Fは、第1方向の一方の開口端、第3方向の一方の開口端および第4方向の一方の開口端が切り欠かれた形状に形成されている。上方から視て、アンテナ面81Fは、第1方向の他方の開口端、第3方向の他方の開口端および第4方向の他方の開口端が繋がった円弧状に形成されている。
 上方から視て、アンテナ面81Gは、第1方向の両開口端、第3方向の一方の開口端および第4方向の一方の開口端が切り欠かれた形状に形成されている。上方から視て、アンテナ面81Gは、第3方向の他方の開口端および第4方向の他方の開口端が繋がった円弧状に形成されている。
 各アンテナ面81A,81B,81D,81F上には反射膜82A,82B,82D,82Fが形成されている。上方から視て、反射膜82A,82B,82D,82Fは、アンテナ面81A,81B,81D,81Fと略同一形状である。
 ここで、たとえば個別アンテナベース70A,70B,70Dに着目すると、反射膜82A(アンテナ面81A)と反射膜82B(アンテナ面81B)とは第1方向において隣接して配列されており、反射膜82A(アンテナ面81A)と反射膜82D(アンテナ面81D)とは第3方向において隣接して配列されており、反射膜82B(アンテナ面81B)と反射膜82D(アンテナ面81D)とは第4方向において隣接して配列されているといえる。
 図74に示すように、テラヘルツ装置10は、複数のテラヘルツ素子20A~20Gと、これらテラヘルツ素子20A~20Gを保持する誘電体50と、を備えている。
 テラヘルツ素子20Aの厚さ方向(z方向)において、反射膜82A(アンテナ面81A)はテラヘルツ素子20Aと対向している。他のテラヘルツ素子20B~20Gおよび反射膜82B~82Gも同様に、テラヘルツ素子20B~20Gの厚さ方向(z方向)において、反射膜82B~82G(アンテナ面81B~81G)はテラヘルツ素子20B~20Gと対向している。
 上方から視て、反射膜82A(アンテナ面81A)は、テラヘルツ素子20Aよりも大きく形成されている。すなわち、反射膜82A(アンテナ面81A)のx方向およびy方向の双方の大きさは、テラヘルツ素子20Aのx方向およびy方向の双方の大きさよりも大きい。他のテラヘルツ素子20B~20Gおよび反射膜82B~82Gも同様に、各反射膜82B~82G(各アンテナ面81B~81G)は各テラヘルツ素子20B~20Gよりも大きく形成されている。
 ・各実施形態において、上方から視た個別アンテナベースのアンテナ面81およびアンテナ面81上に形成される反射膜82の形状はそれぞれ、任意に変更可能である。
 一例では、第1実施形態において、上方から視た個別アンテナベース70Aのアンテナ面81Aおよび反射膜82Aの形状はそれぞれ、欠けのない円形状であってもよい。この場合においても、上方から視た個別アンテナベース70Bのアンテナ面81Bおよび反射膜82Bのそれぞれの形状が一部が欠けた円形状となるため、反射膜82Aおよび反射膜82Bの配列方向である第1方向におけるテラヘルツ素子20Aとテラヘルツ素子20Bとの素子間距離を小さくできる。したがって、テラヘルツ装置10の分解能を向上させることができる。
 また一例では、第2実施形態において、上方から視た個別アンテナベース70Bのアンテナ面81Bおよび反射膜82Bの形状はそれぞれ、欠けのない円形状であってもよい。この場合においても、上方から視た個別アンテナベース70Fのアンテナ面81Fおよび反射膜82Fのそれぞれの形状が一部が欠けた円形状となるため、反射膜82Bおよび反射膜82Fの配列方向である第3方向におけるテラヘルツ素子20Bとテラヘルツ素子20Fとの素子間距離を小さくできる。また上方から視た個別アンテナベース70Eのアンテナ面81Eおよび反射膜82Eのそれぞれの形状が一部が欠けた円形状となるため、反射膜82Bおよび反射膜82Eの配列方向である第4方向におけるテラヘルツ素子20Bとテラヘルツ素子20Eとの素子間距離を小さくできる。また上方から視た個別アンテナベース70Aのアンテナ面81Aおよび反射膜82Aのそれぞれの形状が一部が欠けた円形状となるため、反射膜82Aおよび反射膜82Bの配列方向である第1方向におけるテラヘルツ素子20Aとテラヘルツ素子20Bとの素子間距離を小さくできる。したがって、テラヘルツ装置10の分解能を向上させることができる。
 また一例では、第3実施形態において、上方から視た個別アンテナベース70Eのアンテナ面81Eおよび反射膜82Eの形状はそれぞれ、欠けのない円形状であってもよい。この場合においても、上方から視た個別アンテナベース70Dのアンテナ面81Dおよび反射膜82Dのそれぞれの形状が一部が欠けた円形状となるため、反射膜82Dおよび反射膜82Eの配列方向である第1方向におけるテラヘルツ素子20Dとテラヘルツ素子20Eとの素子間距離を小さくできる。また上方から視た個別アンテナベース70Bのアンテナ面81Bおよび反射膜82Bのそれぞれの形状が一部が欠けた円形状となるため、反射膜82Bおよび反射膜82Eの配列方向である第2方向におけるテラヘルツ素子20Bとテラヘルツ素子20Eとの素子間距離を小さくできる。したがって、テラヘルツ装置10の分解能を向上させることができる。
 ・各実施形態において、個別アンテナベースの形状は任意に変更可能である。一例では、個別アンテナベースは、ベース裏面72における外周部が切り欠かれた形状であってもよいし、ベース裏面72側に肉抜き部が形成されていてもよい。
 (テラヘルツ装置の構成に関する変更例)
 ・各実施形態において、テラヘルツ装置10は、誘電体50に代えて平板状の基板を備えていてもよい。基板には、複数のテラヘルツ素子20が実装されている。一例として、第1実施形態のテラヘルツ装置10において誘電体50に代えて基板が用いられた場合について、図75を用いて説明する。
 図75に示すように、基板200は、その厚さ方向(図示された例においてはz方向)において互いに反対側を向く基板主面201および基板裏面202を有している。基板主面201は下方を向いており、基板裏面202は上方を向いている。つまり、基板主面201はアンテナベース70側を向いている。第1実施形態と同様に、接着層91を介して基板200は、アンテナベース70のベース主面71Tに固定されている。z方向から視た基板200の形状とx方向の長さおよびy方向の長さの双方とは、第1実施形態の誘電体50と等しい。基板200のz方向の長さ(厚さ)は誘電体50のz方向の長さ(厚さ)よりも薄い。図示された例においては、基板200は、たとえばガラスエポキシ樹脂からなるプリント基板が用いられている。
 基板主面201には、各テラヘルツ素子20A~20Cが実装されている。具体的には、基板主面201には、両導電部110A~110C,120A~120Cと、図示していないが両電極101A~101C,102A~102Cとが形成されている。各テラヘルツ素子20A~20Cは、各実施形態と同様に、両導電部110A~110C,120A~120Cに実装されている。
 図75から分かるとおり、各テラヘルツ素子20A~20Cの素子主面21は、z方向においてアンテナベース70のベース主面71Tよりもベース裏面72Tの近くに位置している。各テラヘルツ素子20A~20Cは、各実施形態と同様に、素子主面21が反射膜82(アンテナ面81)と対向するように配置されている。
 なお、各テラヘルツ素子20A~20Cは、図75に示すような基板200へのフリップチップ実装に限られず、別の方式で基板200に実装されていてもよい。たとえば、各テラヘルツ素子20A~20Cは、素子主面21を下方に向けた状態で素子裏面22側を基板200の基板主面201にダイボンディングされてもよい。より詳細には、各テラヘルツ素子20A~20Cの素子裏面22を基板主面201にAgペーストやはんだ等の導電性接合材によって接合されてもよい。各テラヘルツ素子20A~20Cの素子主面21の素子導電層33,34はボンディングワイヤによって導電部110,120に接続されている。なお、各テラヘルツ素子20A~20Cと基板200との接合構造は任意に変更可能である。一例では、各テラヘルツ素子20A~20Cの素子裏面22を基板主面201に接着剤によって接合されてもよい。接着剤としては、たとえばエポキシ樹脂を主成分としたものが用いられる。
 ・第1および第2実施形態において、気体空間92内に存在する気体は空気に限られず、誘電屈折率n2よりも低い屈折率を有する気体であれば、任意に変更可能である。
 ・各実施形態において、テラヘルツ装置10は、制御部として制御IC(たとえばASIC)を備えていてもよい。制御ICは、たとえば複数のテラヘルツ素子20に流れる電流検知、複数のテラヘルツ素子20への電力供給、または信号処理などを行うものであるとよい。
 (付記)
 上記各実施形態および上記各変更例から把握できる技術的思想を以下に記載する。
 (付記A1)複数のテラヘルツ素子のそれぞれの厚さ方向において前記テラヘルツ素子と対向する複数のアンテナ面を有するアンテナベースであって、前記複数のアンテナ面はそれぞれ、前記テラヘルツ素子の厚さ方向において対向する前記テラヘルツ素子に向けて開口しており、かつ前記対向するテラヘルツ素子から離れる方向に凹むように湾曲しており、前記アンテナベースの厚さ方向から視て、前記複数のアンテナ面が配列される配列方向に沿う前記アンテナ面の大きさは、前記配列方向とは異なる方向における前記アンテナ面の大きさよりも小さい、アンテナベース。
 この構成によれば、複数のアンテナ面の配列方向において隣り合う第1テラヘルツ素子と第2テラヘルツ素子との間の距離を小さくすることができる。したがって、本アンテナベースをテラヘルツ装置に用いることによって、各テラヘルツ素子が電磁波を受信するものであれば、テラヘルツ装置の電磁波の検出範囲における分解能の向上を図ることができる。また本アンテナベースは、複数のテラヘルツ素子のそれぞれ対向するアンテナ面を有しているため、アンテナベースをテラヘルツ装置に用いることによって、各テラヘルツ素子が電磁波を発生させるものであれば、テラヘルツ装置の高出力化を図ることができる。
 (付記A2)電磁波を受信する第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、入射された電磁波を前記第1テラヘルツ素子に向けて反射させる第1反射面、および前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、入射された電磁波を前記第2テラヘルツ素子に向けて反射させる第2反射面を含む複数の反射面と、を備えたテラヘルツ装置であって、前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、前記両テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、前記第1反射面および前記第2反射面は、前記テラヘルツ装置の高さ方向と交差する第1方向において隣接して並べられており、前記第1テラヘルツ素子の受信点と前記第2テラヘルツ素子の受信点との間の距離である素子間距離は、前記第1反射面および前記第2反射面のそれぞれの直径以下である、テラヘルツ装置。
 (付記A3)電磁波を発生させる第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、前記第1テラヘルツ素子から発生した電磁波を一方向に向けて反射させる第1反射面、および前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、前記第2テラヘルツ素子から発生した電磁波を一方向に向けて反射させる第2反射面を含む複数の反射面と、を備えたテラヘルツ装置であって、前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、前記両テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、前記第1反射面および前記第2反射面は、前記テラヘルツ装置の高さ方向と交差する第1方向において隣接して並べられており、前記第1テラヘルツ素子の発振点と前記第2テラヘルツ素子の発振点との間の距離である素子間距離は、前記第1反射面および前記第2反射面のそれぞれの直径以下である、テラヘルツ装置。
 (付記A4)前記素子間距離は、前記第1反射面の直径および前記第2反射面の直径の双方よりも小さい、付記A2またはA3に記載のテラヘルツ装置。
 (付記A5)前記テラヘルツ装置の高さ方向から視て、前記第1テラヘルツ素子の受信点は、前記第1反射面の中心点と一致しており、前記第2テラヘルツ素子の受信点は、前記第2反射面の中心点と一致している、付記A2~A4のいずれか1つに記載のテラヘルツ装置。
 (付記B1)前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさは、前記第1方向とは異なる方向である第2方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第2反射面との境界は、直線状に形成されている、請求項1または2に記載のテラヘルツ装置。
 (付記B2)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなる、請求項1,2および付記B1のいずれか1つに記載のテラヘルツ装置。
 (付記B3)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなる、請求項1,2および付記B1のいずれか1つに記載のテラヘルツ装置。
 (付記B4)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1アンテナベースと前記第2アンテナベースとが隣接して配置されている、付記B2またはB3に記載のテラヘルツ装置。
 (付記B5)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子および前記第2テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面および前記第2反射面を覆っている、付記B2~4のいずれか1つに記載のテラヘルツ装置。
 (付記B6)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る仕切壁が設けられている、付記B5に記載のテラヘルツ装置。
 (付記B7)前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第2反射面の大きさは、前記第1方向とは異なる方向である第2方向に沿う前記第2反射面の大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第2反射面と前記第3反射面との境界は、直線状に形成されている、請求項3~5のいずれか一項に記載のテラヘルツ装置。
 (付記B8)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなり、前記第3反射面は、前記第3アンテナ面に形成された反射膜からなる、請求項3~5および付記B7のいずれか1つに記載のテラヘルツ装置。
 (付記B9)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなり、前記第3反射面は、前記第3アンテナ面からなる、請求項3~5および付記B7のいずれか1つに記載のテラヘルツ装置。
 (付記B10)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、前記第3アンテナ面を有する第3アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第3アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第1方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1アンテナベースと前記第2アンテナベースとが隣接して配置されており、前記第2アンテナベースに対して前記第1アンテナベース側とは反対側において前記第2アンテナベースと前記第3アンテナベースとが隣接して配置されている、付記B8またはB9に記載のテラヘルツ装置。
 (付記B11)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子、前記第2テラヘルツ素子および前記第3テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面、前記第2反射面および前記第3反射面を覆っている、付記B8~B10のいずれか1つに記載のテラヘルツ装置。
 (付記B12)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る第1仕切壁を有しており、前記第2反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第2反射面と前記第3反射面とを仕切る第2仕切壁を有している、付記B11に記載のテラヘルツ装置。
 (付記B13)前記テラヘルツ装置の高さ方向から視て、前記第3方向に沿う前記第1反射面が前記第2方向に沿う前記第1反射面よりも小さく、前記第4方向に沿う第2反射面のそれぞれの大きさは、前記第2方向に沿う前記第2反射面の大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第3反射面との境界はそれぞれ、直線状に形成されている、請求項6または7に記載のテラヘルツ装置。
 (付記B14)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなり、前記第3反射面は、前記第3アンテナ面に形成された反射膜からなる、請求項6~10および付記B13のいずれか1つに記載のテラヘルツ装置。
 (付記B15)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなり、前記第3反射面は、前記第3アンテナ面からなる、請求項6~10および付記B13のいずれか1つに記載のテラヘルツ装置。
 (付記B16)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、前記第3アンテナ面を有する第3アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第3アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第1方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1方向において前記第1アンテナベースと前記第2アンテナベースとが隣接して配置されており、前記第3方向において前記第1アンテナベースと前記第3アンテナベースとが隣接して配置されており、前記第4方向において前記第2アンテナベースと前記第3アンテナベースとが隣接して配置されている、付記B14またはB15に記載のテラヘルツ装置。
 (付記B17)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子、前記第2テラヘルツ素子および前記第3テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面、前記第2反射面および前記第3反射面を覆っている、付記B14~B16のいずれか1つに記載のテラヘルツ装置。
 (付記B18)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る第1仕切壁を有しており、前記第2反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第2反射面と前記第3反射面とを仕切る第2仕切壁を有しており、前記第1反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第3反射面とを仕切る第3仕切壁を有している、付記B17に記載のテラヘルツ装置。
 (付記B19)前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさは、前記第3方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第4反射面との境界はそれぞれ、直線状に形成されている、請求項11または12に記載のテラヘルツ装置。
 (付記B20)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第4テラヘルツ素子と対向する第4アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなり、前記第3反射面は、前記第3アンテナ面に形成された反射膜からなり、前記第4反射面は、前記第4アンテナ面に形成された反射膜からなる、請求項11~13および付記B19のいずれか1つに記載のテラヘルツ装置。
 (付記B21)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第4テラヘルツ素子と対向する第4アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなり、前記第3反射面は、前記第3アンテナ面からなり、前記第4反射面は、前記第4アンテナ面からなる、請求項11~13および付記B19のいずれか1つに記載のテラヘルツ装置。
 (付記B22)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、前記第3アンテナ面を有する第3アンテナベースと、前記第4アンテナ面を有する第4アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記第1アンテナ面の前記第2方向の両開口端のうち前記第3アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第2方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第2方向の両開口端のうち前記第4アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第4アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第3アンテナ面の前記第1方向の両開口端のうち前記第4アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第1方向に向くベース側面のうち前記第4アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記第3アンテナ面の前記第2方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第2方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第4アンテナ面の前記第1方向の両開口端のうち前記第3アンテナ面側の開口端と、前記第4アンテナベースにおいて前記第1方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記第4アンテナ面の前記第2方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第4アンテナベースにおいて前記第2方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1方向において前記第1アンテナベースと前記第2アンテナベースとが接しており、前記第3アンテナベースと前記第4アンテナベースとが接しており、前記第2方向において前記第1アンテナベースと前記第3アンテナベースとが接しており、前記第2アンテナベースと前記第4アンテナベースとが接している、付記B20またはB21に記載のテラヘルツ装置。
 (付記B23)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子、前記第2テラヘルツ素子、前記第3テラヘルツ素子および前記第4テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面、前記第2反射面、前記第3反射面および前記第4反射面を覆っている、付記B20~B22のいずれか1つに記載のテラヘルツ装置。
 (付記B24)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る第1仕切壁が設けられており、前記第1反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第3反射面とを仕切る第2仕切壁が設けられており、前記第2反射面と前記第4反射面との境界には、前記保持部材と接することによって前記第2反射面と前記第4反射面とを仕切る第3仕切壁が設けられており、前記第3反射面と前記第4反射面との境界には、前記保持部材と接することによって前記第3反射面と前記第4反射面とを仕切る第4仕切壁が設けられている、付記B23に記載のテラヘルツ装置。
 (付記C1)電磁波を受信する第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、前記第1テラヘルツ素子および前記第2テラヘルツ素子をそれぞれ保持する保持部材と、気体が存在する気体空間と、前記気体空間を介して前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、入射された電磁波を前記第1テラヘルツ素子に向けて反射させる第1反射面、および、前記気体空間を介して前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、入射された電磁波を前記第2テラヘルツ素子に向けて反射させる第2反射面を含む複数の反射面と、を備えたテラヘルツ装置であって、前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、前記両テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、前記第1反射面および前記第2反射面は、前記テラヘルツ装置の高さ方向と交差する第1方向において隣接して並べられており、前記気体空間は、前記第1反射面と前記保持部材とによって区画された第1気体空間と、前記第2反射面と前記保持部材とによって区画された第2気体空間と、を含み、前記第1気体空間と前記第2気体空間とは、前記第1反射面と前記第2反射面との境界において前記第1方向に繋がっている、テラヘルツ装置。
 この構成によれば、第1気体空間と第2気体空間とが第1方向に繋がるように第1反射面と第2反射面とが形成されることによって、第1方向において第1反射面と第2反射面とを近づけることができる。このため、第1方向において隣り合う第1テラヘルツ素子と第2テラヘルツ素子との間の距離を小さくすることができる。したがって、テラヘルツ装置の電磁波の検出範囲における分解能の向上を図ることができる。
 (付記C2)前記第1反射面および前記第2反射面はそれぞれ、球面状を有しており、前記第1反射面の中心点を通り前記第1方向および前記テラヘルツ装置の高さ方向に沿う平面で前記反射面を切った断面視において、前記第1反射面のうち前記第1方向の両端縁を結ぶ部分、および、前記第2反射面のうち前記第1方向の両端縁を結ぶ部分はそれぞれ、中心角が180°未満の円弧状に形成されている、付記C1に記載のテラヘルツ装置。
 (付記C3)前記複数のテラヘルツ素子は、前記保持部材に保持された第3テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ入射された電磁波を前記第3テラヘルツ素子に向けて反射させる第3反射面を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第1方向において前記第2反射面と前記第1反射面とは反対側に前記第2反射面と隣接して並べられており、前記気体空間は、前記第3反射面と前記保持部材とからなる第3気体空間を含み、前記第2気体空間と前記第3気体空間とは、前記第2反射面と前記第3反射面との境界において前記第1方向に繋がっている、付記C1またはC2に記載のテラヘルツ装置。
 (付記C4)前記第3反射面は、球面状を有しており、前記第3反射面の中心点を通り前記第1方向および前記テラヘルツ装置の高さ方向に沿う平面で前記反射面を切った断面視において、前記第3反射面のうち前記第1方向の両端縁を結ぶ部分は、中心角が180°未満の円弧状に形成されている、付記C3に記載のテラヘルツ装置。
 (付記C5)前記テラヘルツ装置の高さから視て、前記第2反射面と前記第3反射面との境界は、直線状に形成されている、付記C4に記載のテラヘルツ装置。
 (付記C6)前記複数のテラヘルツ素子は、前記保持部材に保持された第3テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ入射された電磁波を前記第3テラヘルツ素子に向けて反射させる第3反射面を有しており、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向および前記第2方向とは異なる方向を第3方向とし、前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向、前記第2方向および前記第3方向とは異なる方向を第4方向とすると、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第3方向において前記第1反射面に隣接して並べられ、かつ前記第4方向において前記第2反射面に隣接して並べられており、前記気体空間は、前記第3反射面と前記保持部材とからなる第3気体空間を含み、前記第1気体空間と前記第3気体空間とは、前記第1反射面と前記第3反射面との境界において前記第3方向に繋がっており、前記第2気体空間と前記第3気体空間とは、前記第2反射面と前記第3反射面との境界において前記第4方向に繋がっている、付記C1またはC2に記載のテラヘルツ装置。
 (付記C7)前記第3テラヘルツ素子は、前記第2方向において前記第1テラヘルツ素子および前記第2テラヘルツ素子に対してずれた位置、かつ前記第2方向から視て、前記第1テラヘルツ素子および前記第2テラヘルツ素子の双方に重なる位置に配置されている、付記C6に記載のテラヘルツ装置。
 (付記C8)前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第3反射面との境界はそれぞれ、直線状に形成されている、付記C6またはC7に記載のテラヘルツ装置。
 (付記C9)前記複数のテラヘルツ素子は、第3テラヘルツ素子および第4テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ入射された電磁波を前記第3テラヘルツ素子に向けて反射させる第3反射面と、前記テラヘルツ装置の高さ方向において前記第4テラヘルツ素子と対向し、かつ入射された電磁波を前記第4テラヘルツ素子に向けて反射させる第4反射面と、を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第4反射面は、前記第4テラヘルツ素子に向けて開口しており、かつ前記第4テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2方向は、前記テラヘルツ装置の高さ方向から視て、前記第1方向と直交する方向であり、前記気体空間は、前記第3反射面と前記保持部材とによって区画された第3気体空間と、前記第4反射面と前記保持部材とによって区画された第4気体空間と、を含み、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第2方向において前記第1反射面に隣接して並べられ、前記第4反射面は、前記第2方向において前記第2反射面に隣接して並べられ、前記第3反射面および前記第4反射面は、前記第1方向において互いに隣接して並べられており、前記第1気体空間と前記第3気体空間とは、前記第1反射面と前記第3反射面との境界において前記第2方向に繋がっており、前記第2気体空間と前記第4気体空間とは、前記第2反射面と前記第4反射面との境界において前記第2方向に繋がっている、付記C1またはC2に記載のテラヘルツ装置。
 (付記C10)前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのうち少なくとも一方は、前記第1方向および前記第2方向とは異なる第3方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのそれぞれよりも小さい、付記C9に記載のテラヘルツ装置。
 (付記C11)前記第3反射面および前記第4反射面はそれぞれ、球面状を有しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分および前記第4反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている、付記C9またはC10に記載のテラヘルツ装置。
 (付記C12)前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさは、前記第3方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第4反射面との境界はそれぞれ、直線状に形成されている、付記C9またはC10に記載のテラヘルツ装置。
 (付記D1)前記第1反射面および前記第2反射面はそれぞれ、球面状を有しており、前記テラヘルツ装置の高さ方向から視て、前記第1反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分および前記第2反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている、請求項14に記載のテラヘルツ装置。
 (付記D2)前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさは、前記第1方向とは異なる方向である第2方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第2反射面との境界は、直線状に形成されている、付記D1に記載のテラヘルツ装置。
 (付記D3)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなる、請求項14、付記D1およびD2のいずれか1つに記載のテラヘルツ装置。
 (付記D4)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなる、請求項14、付記D1およびD2のいずれか1つに記載のテラヘルツ装置。
 (付記D5)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1アンテナベースと前記第2アンテナベースとが隣接して配置されている、付記D3またはD4に記載のテラヘルツ装置。
 (付記D6)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子および前記第2テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面および前記第2反射面を覆っている、付記D3~D5のいずれか1つに記載のテラヘルツ装置。
 (付記D7)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る仕切壁が設けられている、付記D6に記載のテラヘルツ装置。
 (付記D8)前記複数のテラヘルツ素子は、第3テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ前記第3テラヘルツ素子からの電磁波を一方向に向けて反射させる第3反射面を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第1方向において前記第2反射面に対して前記第1反射面とは反対側に隣接して並べられており、前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第3反射面の大きさが前記第2方向に沿う前記第3反射面の大きさよりも小さい、請求項14、付記D1およびD2のいずれか1つに記載のテラヘルツ装置。
 (付記D9)前記第3反射面は、球面状を有しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分は、中心角が180°未満の円弧状に形成されている、付記D8に記載のテラヘルツ装置。
 (付記D10)前記第2反射面は、球面状を有しており、前記テラヘルツ装置の高さ方向から視て、前記第2反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分は、中心角が90°未満の円弧状に形成されている、付記D8またはD9に記載のテラヘルツ装置。
 (付記D11)前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第2反射面の大きさは、前記第1方向とは異なる方向である第2方向に沿う前記第2反射面の大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第2反射面と前記第3反射面との境界は、直線状に形成されている、付記D8~D10のいずれか1つに記載のテラヘルツ装置。
 (付記D12)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなり、前記第3反射面は、前記第3アンテナ面に形成された反射膜からなる、付記D8~D11のいずれか1つに記載のテラヘルツ装置。
 (付記D13)前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記第3テラヘルツ素子の厚さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなり、前記第3反射面は、前記第3アンテナ面からなる、付記D8~C11のいずれか1つに記載のテラヘルツ装置。
 (付記D14)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、前記第3アンテナ面を有する第3アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第3アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第1方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1アンテナベースと前記第2アンテナベースとが隣接して配置されており、前記第2アンテナベースに対して前記第1アンテナベース側とは反対側において前記第2アンテナベースと前記第3アンテナベースとが隣接して配置されている、付記D12またはD13に記載のテラヘルツ装置。
 (付記D15)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子、前記第2テラヘルツ素子および前記第3テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面、前記第2反射面および前記第3反射面を覆っている、付記D12~D14のいずれか1つに記載のテラヘルツ装置。
 (付記D16)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る第1仕切壁を有しており、前記第2反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第2反射面と前記第3反射面とを仕切る第2仕切壁を有している、付記D15に記載のテラヘルツ装置。
 (付記D17)前記複数のテラヘルツ素子は、第3テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ前記第3テラヘルツ素子からの電磁波を一方向に向けて反射させる第3反射面を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向および前記第2方向とは異なる方向を第3方向とし、前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向、前記第2方向および前記第3方向とは異なる方向を第4方向とすると、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第3方向において前記第1反射面に隣接して並べられ、かつ前記第4方向において前記第2反射面に隣接して並べられており、前記テラヘルツ装置の高さ方向から視て、前記第3方向に沿う前記第3反射面の大きさおよび前記第4方向に沿う前記第3反射面の大きさのうち少なくとも一方が前記第2方向に沿う前記第3反射面の大きさよりも小さい、請求項14、付記D1およびD2のいずれか1つに記載のテラヘルツ装置。
 (付記D18)前記第3テラヘルツ素子は、前記第2方向において前記第1テラヘルツ素子および前記第2テラヘルツ素子とは異なる位置、かつ前記第1方向において前記第1テラヘルツ素子および前記第2テラヘルツ素子との間の位置に配置されている、付記D17に記載のテラヘルツ装置。
 (付記D19)前記第3反射面は、球面状を有しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第3方向の両端縁を結ぶ部分および前記第3反射面の外周縁のうち前記第4方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている、付記D17またはD18記載のテラヘルツ装置。
 (付記D20)前記テラヘルツ装置の高さ方向から視て、前記第3方向に沿う前記第1反射面の大きさが前記第2方向に沿う前記第1反射面の大きさよりも小さい、付記D17~D19のいずれか1つに記載のテラヘルツ装置。
 (付記D21)前記テラヘルツ装置の高さ方向から視て、前記第4方向に沿う前記第2反射面の大きさが前記第2方向に沿う前記第2反射面の大きさよりも小さい、付記D17~D20のいずれか1つに記載のテラヘルツ装置。
 (付記D22)前記テラヘルツ装置の高さ方向から視て、前記第3方向に沿う前記第1反射面が前記第2方向に沿う前記第1反射面よりも小さく、前記第4方向に沿う第2反射面のそれぞれの大きさは、前記第2方向に沿う前記第2反射面の大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第3反射面との境界はそれぞれ、直線状に形成されている、付記D17またはD18に記載のテラヘルツ装置。
 (付記D23)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなり、前記第3反射面は、前記第3アンテナ面に形成された反射膜からなる、付記D17~D22のいずれか1つに記載のテラヘルツ装置。
 (付記D24)前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、および、前記第3テラヘルツ素子の厚さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなり、前記第3反射面は、前記第3アンテナ面からなる、付記D17~D22のいずれか1つに記載のテラヘルツ装置。
 (付記D25)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、前記第3アンテナ面を有する第3アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第3アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第1方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1方向において前記第1アンテナベースと前記第2アンテナベースとが隣接して配置されており、前記第3方向において前記第1アンテナベースと前記第3アンテナベースとが隣接して配置されており、前記第4方向において前記第2アンテナベースと前記第3アンテナベースとが隣接して配置されている、付記D23またはD24に記載のテラヘルツ装置。
 (付記D26)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子、前記第2テラヘルツ素子および前記第3テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面、前記第2反射面および前記第3反射面を覆っている、付記D23~D25のいずれか1つに記載のテラヘルツ装置。
 (付記D27)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る第1仕切壁を有しており、前記第2反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第2反射面と前記第3反射面とを仕切る第2仕切壁を有しており、前記第1反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第3反射面とを仕切る第3仕切壁を有している、付記D26に記載のテラヘルツ装置。
 (付記D28)前記複数のテラヘルツ素子は、第3テラヘルツ素子および第4テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ前記第3テラヘルツ素子からの電磁波を一方向に向けて反射させる第3反射面と、前記テラヘルツ装置の高さ方向において前記第4テラヘルツ素子と対向し、かつ前記第4テラヘルツ素子からの電磁波を一方向に向けて反射させる第4反射面と、を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第4反射面は、前記第4テラヘルツ素子に向けて開口しており、かつ前記第4テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2方向は、前記テラヘルツ装置の高さ方向から視て、前記第1方向と直交する方向であり、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第2方向において前記第1反射面に隣接して並べられ、前記第4反射面は、前記第2方向において前記第2反射面に隣接して並べられ、前記第3反射面および前記第4反射面は、前記第1方向において互いに隣接して並べられており、前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのうち少なくとも一方は、前記第1方向および前記第2方向とは異なる第3方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのそれぞれよりも小さい、請求項14、付記D1およびD2のいずれか1つに記載のテラヘルツ装置。
 (付記D29)前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのうち少なくとも一方は、前記第1方向および前記第2方向とは異なる第3方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのそれぞれよりも小さい、付記D28に記載のテラヘルツ装置。
 (付記D30)前記第3反射面および前記第4反射面はそれぞれ、球面状を有しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分および前記第4反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている、付記D28またはD29に記載のテラヘルツ装置。
 (付記D31)前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさは、前記第3方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第4反射面との境界はそれぞれ、直線状に形成されている、付記D28またはD29に記載のテラヘルツ装置。
 (付記D32)
 前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第4テラヘルツ素子と対向する第4アンテナ面を有するアンテナベースを備えており、前記第1反射面は、前記第1アンテナ面に形成された反射膜からなり、前記第2反射面は、前記第2アンテナ面に形成された反射膜からなり、前記第3反射面は、前記第3アンテナ面に形成された反射膜からなり、前記第4反射面は、前記第4アンテナ面に形成された反射膜からなる、付記D28~D31のいずれか1つに記載のテラヘルツ装置。
 (付記D33)前記テラヘルツ装置の高さ方向において前記第1テラヘルツ素子と対向する第1アンテナ面、前記テラヘルツ装置の高さ方向において前記第2テラヘルツ素子と対向する第2アンテナ面、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向する第3アンテナ面、および、前記テラヘルツ装置の高さ方向において前記第4テラヘルツ素子と対向する第4アンテナ面を有するアンテナベースを備えており、前記アンテナベースは、金属からなり、前記第1反射面は、前記第1アンテナ面からなり、前記第2反射面は、前記第2アンテナ面からなり、前記第3反射面は、前記第3アンテナ面からなり、前記第4反射面は、前記第4アンテナ面からなる、付記D28~D31のいずれか1つに記載のテラヘルツ装置。
 (付記D34)前記アンテナベースは、前記第1アンテナ面を有する第1アンテナベースと、前記第2アンテナ面を有する第2アンテナベースと、前記第3アンテナ面を有する第3アンテナベースと、前記第4アンテナ面を有する第4アンテナベースと、を備えており、前記テラヘルツ装置の高さ方向から視て、前記第1アンテナ面の前記第1方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第1方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記第1アンテナ面の前記第2方向の両開口端のうち前記第3アンテナ面側の開口端と、前記第1アンテナベースにおいて前記第2方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第1方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記テラヘルツ装置の高さ方向から視て、前記第2アンテナ面の前記第2方向の両開口端のうち前記第4アンテナ面側の開口端と、前記第2アンテナベースにおいて前記第1方向に向くベース側面のうち前記第4アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第3アンテナ面の前記第1方向の両開口端のうち前記第4アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第1方向に向くベース側面のうち前記第4アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記第3アンテナ面の前記第2方向の両開口端のうち前記第1アンテナ面側の開口端と、前記第3アンテナベースにおいて前記第2方向に向くベース側面のうち前記第1アンテナベース側に向くベース側面とが重なる位置に形成されており、前記テラヘルツ装置の高さ方向から視て、前記第4アンテナ面の前記第1方向の両開口端のうち前記第3アンテナ面側の開口端と、前記第4アンテナベースにおいて前記第1方向に向くベース側面のうち前記第3アンテナベース側に向くベース側面とが重なる位置に形成されており、かつ、前記第4アンテナ面の前記第2方向の両開口端のうち前記第2アンテナ面側の開口端と、前記第4アンテナベースにおいて前記第2方向に向くベース側面のうち前記第2アンテナベース側に向くベース側面とが重なる位置に形成されており、前記第1方向において前記第1アンテナベースと前記第2アンテナベースとが接しており、前記第3アンテナベースと前記第4アンテナベースとが接しており、前記第2方向において前記第1アンテナベースと前記第3アンテナベースとが接しており、前記第2アンテナベースと前記第4アンテナベースとが接している、付記D32またはD33に記載のテラヘルツ装置。
 (付記D35)前記アンテナベースに取り付けられており、前記第1テラヘルツ素子、前記第2テラヘルツ素子、前記第3テラヘルツ素子および前記第4テラヘルツ素子をそれぞれ保持する保持部材を備えており、前記保持部材は、前記第1反射面、前記第2反射面、前記第3反射面および前記第4反射面を覆っている、付記D32~D34のいずれか1つに記載のテラヘルツ装置。
 (付記D36)前記第1反射面と前記第2反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第2反射面とを仕切る第1仕切壁が設けられており、前記第1反射面と前記第3反射面との境界には、前記保持部材と接することによって前記第1反射面と前記第3反射面とを仕切る第2仕切壁が設けられており、前記第2反射面と前記第4反射面との境界には、前記保持部材と接することによって前記第2反射面と前記第4反射面とを仕切る第3仕切壁が設けられており、前記第3反射面と前記第4反射面との境界には、前記保持部材と接することによって前記第3反射面と前記第4反射面とを仕切る第4仕切壁が設けられている、付記D35に記載のテラヘルツ装置。
 (付記D37)電磁波を発生する第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、前記第1テラヘルツ素子および前記第2テラヘルツ素子をそれぞれ保持する保持部材と、気体が存在する気体空間と、前記気体空間を介して前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、前記第1テラヘルツ素子からの電磁波を一方向に向けて反射させる第1反射面、および、前記気体空間を介して前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、前記第2テラヘルツ素子からの電磁波を一方向に向けて反射させる第2反射面を含む複数の反射面と、を備えたテラヘルツ装置であって、前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、前記両テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、前記第1反射面および前記第2反射面は、前記テラヘルツ装置の高さ方向と交差する第1方向において隣接して並べられており、前記気体空間は、前記第1反射面と前記保持部材とによって区画された第1気体空間と、前記第2反射面と前記保持部材とによって区画された第2気体空間と、を含み、前記第1気体空間と前記第2気体空間とは、前記第1反射面と前記第2反射面との境界において前記第1方向に繋がっている、テラヘルツ装置。
 この構成によれば、複数のテラヘルツ素子を備えることによって、テラヘルツ装置がテラヘルツ帯の電磁波を出力する光源として用いられた場合に光源の高出力化を図ることができる。加えて、第1気体空間と第2気体空間とが第1方向に繋がるように第1反射面と第2反射面とが形成されることによって、第1方向において第1反射面と第2反射面とを近づけることができる。このため、第1方向において隣り合う第1テラヘルツ素子と第2テラヘルツ素子との間の距離を小さくすることができる。これにより、複数のテラヘルツ素子から複数の反射面を介して一方向に出力される複数の電磁波が第1方向において間隔をあけることがなくなる、または間隔を小さくすることができるため、テラヘルツ装置が出力する電磁波を第1方向において均一にすることができる。
 (付記D38)前記第1反射面および前記第2反射面はそれぞれ、球面状を有しており、前記第1反射面の中心点を通り前記第1方向および前記テラヘルツ装置の高さ方向に沿う平面で前記反射面を切った断面視において、前記第1反射面のうち前記第1方向の両端縁を結ぶ部分、および、前記第2反射面のうち前記第1方向の両端縁を結ぶ部分はそれぞれ、中心角が180°未満の円弧状に形成されている、付記D37に記載のテラヘルツ装置。
 (付記D39)前記複数のテラヘルツ素子は、前記保持部材に保持された第3テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ前記第3テラヘルツ素子からの電磁波を一方向に向けて反射させる第3反射面を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第1方向において前記第2反射面と前記第1反射面とは反対側に前記第2反射面と隣接して並べられており、前記気体空間は、前記第3反射面と前記保持部材とからなる第3気体空間を含み、前記第2気体空間と前記第3気体空間とは、前記第2反射面と前記第3反射面との境界において前記第1方向に繋がっている、付記D37またはD38に記載のテラヘルツ装置。
 (付記D40)前記第3反射面は、球面状を有しており、前記第3反射面の中心点を通り前記第1方向および前記テラヘルツ装置の高さ方向に沿う平面で前記反射面を切った断面視において、前記第3反射面のうち前記第1方向の両端縁を結ぶ部分は、中心角が180°未満の円弧状に形成されている、付記D39に記載のテラヘルツ装置。
 (付記D41)前記テラヘルツ装置の高さから視て、前記第2反射面と前記第3反射面との境界は、直線状に形成されている、付記D39に記載のテラヘルツ装置。
 (付記D42)前記複数のテラヘルツ素子は、前記保持部材に保持された第3テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ前記第3テラヘルツ素子からの電磁波を一方向に向けて反射させる第3反射面を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向および前記第2方向とは異なる方向を第3方向とし、前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向、前記第2方向および前記第3方向とは異なる方向を第4方向とすると、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第3方向において前記第1反射面に隣接して並べられ、かつ前記第4方向において前記第2反射面に隣接して並べられており、前記気体空間は、前記第3反射面と前記保持部材とからなる第3気体空間を含み、前記第1気体空間と前記第3気体空間とは、前記第1反射面と前記第3反射面との境界において前記第3方向に繋がっており、前記第2気体空間と前記第3気体空間とは、前記第2反射面と前記第3反射面との境界において前記第4方向に繋がっている、付記D37またはD38に記載のテラヘルツ装置。
 (付記D43)前記第3テラヘルツ素子は、前記第2方向において前記第1テラヘルツ素子および前記第2テラヘルツ素子に対してずれた位置、かつ前記第2方向から視て、前記第1テラヘルツ素子および前記第2テラヘルツ素子の双方に重なる位置に配置されている、付記D42に記載のテラヘルツ装置。
 (付記D44)前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第3反射面との境界はそれぞれ、直線状に形成されている、付記D42またはD43に記載のテラヘルツ装置。
 (付記D45)前記複数のテラヘルツ素子は、第3テラヘルツ素子および第4テラヘルツ素子を含み、前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ前記第3テラヘルツ素子からの電磁波を一方向に向けて反射させる第3反射面と、前記テラヘルツ装置の高さ方向において前記第4テラヘルツ素子と対向し、かつ前記第4テラヘルツ素子からの電磁波を一方向に向けて反射させる第4反射面と、を含み、前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第4反射面は、前記第4テラヘルツ素子に向けて開口しており、かつ前記第4テラヘルツ素子から離れる方向に凹むように湾曲しており、前記第2方向は、前記テラヘルツ装置の高さ方向から視て、前記第1方向と直交する方向であり、前記気体空間は、前記第3反射面と前記保持部材とによって区画された第3気体空間と、前記第4反射面と前記保持部材とによって区画された第4気体空間と、を含み、前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第2方向において前記第1反射面に隣接して並べられ、前記第4反射面は、前記第2方向において前記第2反射面に隣接して並べられ、前記第3反射面および前記第4反射面は、前記第1方向において互いに隣接して並べられており、前記第1気体空間と前記第3気体空間とは、前記第1反射面と前記第3反射面との境界において前記第2方向に繋がっており、前記第2気体空間と前記第4気体空間とは、前記第2反射面と前記第4反射面との境界において前記第2方向に繋がっている、付記D37またはD38に記載のテラヘルツ装置。
 (付記D46)前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのうち少なくとも一方は、前記第1方向および前記第2方向とは異なる第3方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのそれぞれよりも小さい、付記D45に記載のテラヘルツ装置。
 (付記D47)前記第3反射面および前記第4反射面はそれぞれ、球面状を有しており、前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分および前記第4反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている、付記D45またはD46に記載のテラヘルツ装置。
 (付記D48)前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさは、前記第3方向に沿う前記第3反射面および前記第4反射面のそれぞれの大きさよりも小さく、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第3反射面との境界、および、前記第2反射面と前記第4反射面との境界はそれぞれ、直線状に形成されている、付記D45またはD46に記載のテラヘルツ装置。
 (付記E1)複数のテラヘルツ素子を保持する保持部材を備えており、前記保持部材には、前記複数のテラヘルツ素子と個別に電気的に接続された複数の導電部が設けられている、テラヘルツ装置。
 (付記E2)前記複数のテラヘルツ素子はそれぞれ、パッドを有しており、前記複数の導電部はそれぞれ、前記パッドに対して前記テラヘルツ素子の厚さ方向に対向する素子対向部と、前記パッドと前記素子対向部との間に設けられたバンプと、を備えており、前記複数のテラヘルツ素子はそれぞれ、前記バンプを介して前記素子対向部にフリップチップ実装されている、付記E1に記載のテラヘルツ装置。
 (付記E3)前記複数の導電部はそれぞれ、第1導電部および第2導電部を含み、前記第1導電部と前記第2導電部とは、前記テラヘルツ装置の高さ方向から視て、前記第1方向に並んだ状態で前記複数のテラヘルツ素子のそれぞれに対して前記第2方向の一方側に向けて延びている、付記E1またはE2に記載のテラヘルツ装置。
 (付記E4)前記複数のテラヘルツ素子は、第1テラヘルツ素子、第2テラヘルツ素子および第3テラヘルツ素子を含み、前記テラヘルツ素子の厚さ方向と平行する方向を前記テラヘルツ装置の高さ方向とすると、前記テラヘルツ装置の高さ方向において、前記第1テラヘルツ素子と対向する第1反射面、前記第2テラヘルツ素子と対向する第2反射面および前記第3テラヘルツ素子と対向する第3反射面を含む複数の反射面を備え、前記第1反射面および前記第2反射面は、前記テラヘルツ装置の高さ方向と交差する第1方向に隣接して並べられており、前記第1反射面および前記第3反射面は、前記テラヘルツ装置の高さ方向から視て、前記テラヘルツ装置の高さ方向と交差する方向であって前記第1方向とは異なる第3方向に隣接して並べられており、前記第2反射面および前記第3反射面は、前記テラヘルツ装置の高さ方向から視て、前記テラヘルツ装置の高さ方向と交差する方向であって前記第1方向および前記第3方向とは異なる第4方向に隣接して並べられており、前記保持部材には、前記複数のテラヘルツ素子と個別に電気的に接続された複数の導電部が設けられており、前記複数の導電部はそれぞれ、第1導電部および第2導電部を含み、前記第3テラヘルツ素子に接続された第1導電部および前記第2導電部はそれぞれ、前記テラヘルツ装置の高さ方向から視て、前記第1反射面と前記第2反射面との境界と重なる位置に配置されている、テラヘルツ装置。
 (付記E5)外部との電気的接続に用いられる複数の電極と、を備えており、前記テラヘルツ装置の高さ方向から視て、前記複数の電極はそれぞれ、前記複数の反射面と重ならない位置に設けられている、請求項1~18のいずれか一項に記載のテラヘルツ装置。
 (付記E6)前記テラヘルツ装置の高さ方向から視て、前記複数の反射面はそれぞれ、前記複数のテラヘルツ素子よりも大きく形成されている、請求項1~18のいずれか一項に記載のテラヘルツ装置。
 (付記E7)前記複数のテラヘルツ素子を保持する保持部材を備えており、前記保持部材は、誘電体材料で構成されており、前記複数のテラヘルツ素子のそれぞれを囲む誘電体である、請求項1~18のいずれか一項に記載のテラヘルツ装置。
 (付記E8)前記複数の反射面はそれぞれ、電気的にフローティング状態である、請求項1~18のいずれか一項に記載のテラヘルツ装置。
 (付記E9)前記複数のテラヘルツ素子のそれぞれに対して個別に並列接続された複数の保護ダイオードを備えている、請求項1~18のいずれか一項に記載のテラヘルツ装置。
 (付記E10)前記複数の保護ダイオードは、前記テラヘルツ装置の高さ方向から視て、前記複数の反射面と重ならない位置に設けられている、付記E9に記載のテラヘルツ装置。
 10…テラヘルツ装置
 20,20A~20I…テラヘルツ素子(第1テラヘルツ素子~第4テラヘルツ素子)
 50…誘電体(保持部材)
 70…アンテナベース
 70A~70I…個別アンテナベース
 81,81A~81I…アンテナ面
 82,82A~82I…反射膜
 92…気体空間
 191…第1仕切壁
 192…第2仕切壁
 193…第3仕切壁
 P2…中心点

Claims (18)

  1.  電磁波を受信する第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、
     前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、入射された電磁波を前記第1テラヘルツ素子に向けて反射させる第1反射面、および前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、入射された電磁波を前記第2テラヘルツ素子に向けて反射させる第2反射面を含む複数の反射面と、
    を備えたテラヘルツ装置であって、
     前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記両テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、
     前記第1反射面および前記第2反射面は、前記テラヘルツ装置の高さ方向と交差する第1方向において隣接して並べられており、
     前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさの少なくとも一方は、前記第1方向とは異なる方向である第2方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさよりも小さい
     テラヘルツ装置。
  2.  前記第1反射面および前記第2反射面はそれぞれ、球面状を有しており、
     前記テラヘルツ装置の高さ方向から視て、前記第1反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分および前記第2反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている
     請求項1に記載のテラヘルツ装置。
  3.  前記複数のテラヘルツ素子は、第3テラヘルツ素子を含み、
     前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ入射された電磁波を前記第3テラヘルツ素子に向けて反射させる第3反射面を含み、
     前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第1方向において前記第2反射面に対して前記第1反射面とは反対側に隣接して並べられており、
     前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第3反射面の大きさが前記第2方向に沿う前記第3反射面の大きさよりも小さい
     請求項1または2に記載のテラヘルツ装置。
  4.  前記第3反射面は、球面状を有しており、
     前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分は、中心角が180°未満の円弧状に形成されている
     請求項3に記載のテラヘルツ装置。
  5.  前記第2反射面は、球面状を有しており、
     前記テラヘルツ装置の高さ方向から視て、前記第2反射面の外周縁のうち前記第1方向の両端縁を結ぶ部分は、中心角が90°未満の円弧状に形成されている
     請求項3または4に記載のテラヘルツ装置。
  6.  前記複数のテラヘルツ素子は、第3テラヘルツ素子を含み、
     前記複数の反射面は、前記テラヘルツ装置の高さ方向において前記第3テラヘルツ素子と対向し、かつ入射された電磁波を前記第3テラヘルツ素子に向けて反射させる第3反射面を含み、
     前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向および前記第2方向とは異なる方向を第3方向とし、前記テラヘルツ装置の高さ方向と交差する方向であって、前記第1方向、前記第2方向および前記第3方向とは異なる方向を第4方向とすると、
     前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第3方向において前記第1反射面に隣接して並べられ、かつ前記第4方向において前記第2反射面に隣接して並べられており、
     前記テラヘルツ装置の高さ方向から視て、前記第3方向に沿う前記第3反射面の大きさおよび前記第4方向に沿う前記第3反射面の大きさのうち少なくとも一方が前記第2方向に沿う前記第3反射面の大きさよりも小さい
     請求項1または2に記載のテラヘルツ装置。
  7.  前記第3テラヘルツ素子は、前記第2方向において前記第1テラヘルツ素子および前記第2テラヘルツ素子とは異なる位置、かつ前記第1方向において前記第1テラヘルツ素子および前記第2テラヘルツ素子との間の位置に配置されている
     請求項6に記載のテラヘルツ装置。
  8.  前記第3反射面は、球面状を有しており、
     前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第3方向の両端縁を結ぶ部分および前記第3反射面の外周縁のうち前記第4方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている
     請求項6または7に記載のテラヘルツ装置。
  9.  前記テラヘルツ装置の高さ方向から視て、前記第3方向に沿う前記第1反射面の大きさが前記第2方向に沿う前記第1反射面の大きさよりも小さい
     請求項6~8のいずれか一項に記載のテラヘルツ装置。
  10.  前記テラヘルツ装置の高さ方向から視て、前記第4方向に沿う前記第2反射面の大きさが前記第2方向に沿う前記第2反射面の大きさよりも小さい
     請求項6~9のいずれか一項に記載のテラヘルツ装置。
  11.  前記複数のテラヘルツ素子は、第3テラヘルツ素子および第4テラヘルツ素子を含み、
     前記複数の反射面は、
     前記第3テラヘルツ素子の厚さ方向において前記第3テラヘルツ素子と対向し、かつ入射された電磁波を前記第3テラヘルツ素子に向けて反射させる第3反射面と、
     前記第4テラヘルツ素子の厚さ方向において前記第4テラヘルツ素子と対向し、かつ入射された電磁波を前記第4テラヘルツ素子に向けて反射させる第4反射面と、
    を含み、
     前記第3反射面は、前記第3テラヘルツ素子に向けて開口しており、かつ前記第3テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記第4反射面は、前記第4テラヘルツ素子に向けて開口しており、かつ前記第4テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記第2方向は、前記テラヘルツ装置の高さ方向から視て、前記第1方向と直交する方向であり、
     前記テラヘルツ装置の高さ方向から視て、前記第3反射面は、前記第2方向において前記第1反射面に隣接して並べられ、前記第4反射面は、前記第2方向において前記第2反射面に隣接して並べられ、前記第3反射面および前記第4反射面は、前記第1方向において互いに隣接して並べられており、
     前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのうち少なくとも一方は、前記第1方向および前記第2方向とは異なる第3方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのそれぞれよりも小さい
     請求項1または2に記載のテラヘルツ装置。
  12.  前記テラヘルツ装置の高さ方向から視て、前記第2方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのうち少なくとも一方は、前記第1方向および前記第2方向とは異なる第3方向に沿う前記第3反射面の大きさおよび前記第4反射面の大きさのそれぞれよりも小さい
     請求項11に記載のテラヘルツ装置。
  13.  前記第3反射面および前記第4反射面はそれぞれ、球面状を有しており、
     前記テラヘルツ装置の高さ方向から視て、前記第3反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分および前記第4反射面の外周縁のうち前記第2方向の両端縁を結ぶ部分のうち少なくとも一方は、中心角が180°未満の円弧状に形成されている
     請求項11または12に記載のテラヘルツ装置。
  14.  電磁波を発生させる第1テラヘルツ素子および第2テラヘルツ素子を含む複数のテラヘルツ素子と、
     前記第1テラヘルツ素子の厚さ方向において前記第1テラヘルツ素子と対向しており、前記第1テラヘルツ素子から発生した電磁波を一方向に向けて反射させる第1反射面、および前記第2テラヘルツ素子の厚さ方向において前記第2テラヘルツ素子と対向しており、前記第2テラヘルツ素子から発生した電磁波を一方向に向けて反射させる第2反射面を含む複数の反射面と、
    を備えたテラヘルツ装置であって、
     前記第1反射面は、前記第1テラヘルツ素子に向けて開口しており、かつ前記第1テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記第2反射面は、前記第2テラヘルツ素子に向けて開口しており、かつ前記第2テラヘルツ素子から離れる方向に凹むように湾曲しており、
     前記両テラヘルツ素子の厚さ方向と平行な方向を前記テラヘルツ装置の高さ方向とすると、
     前記第1反射面および前記第2反射面は、前記テラヘルツ装置の高さ方向と交差する第1方向において隣接して並べられており、
     前記テラヘルツ装置の高さ方向から視て、前記第1方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさの少なくとも一方は、前記第1方向とは異なる方向である第2方向に沿う前記第1反射面および前記第2反射面のそれぞれの大きさよりも小さい
     テラヘルツ装置。
  15.  前記テラヘルツ装置の高さ方向において前記複数のテラヘルツ素子のそれぞれと対向する複数のアンテナ面を有するアンテナベースを備えており、
     前記複数の反射面は、前記複数のアンテナ面のそれぞれに形成された反射膜からなる
     請求項1~14のいずれか一項に記載のテラヘルツ装置。
  16.  前記テラヘルツ装置の高さ方向において前記複数のテラヘルツ素子のそれぞれと対向する複数のアンテナ面を有するアンテナベースを備えており、
     前記アンテナベースは、金属からなり、
     前記複数の反射面は、前記複数のアンテナ面からなる
     請求項1~14のいずれか一項に記載のテラヘルツ装置。
  17.  前記アンテナベースに取り付けられており、前記複数のテラヘルツ素子をそれぞれ保持する保持部材を備えており、
     前記保持部材は、前記複数の反射面を覆っている
     請求項15または16に記載のテラヘルツ装置。
  18.  前記複数の反射面のうち隣り合う反射面の境界には、前記保持部材と接することによって前記隣り合う反射面を仕切る仕切壁が設けられている
     請求項17に記載のテラヘルツ装置。
PCT/JP2021/021550 2020-06-09 2021-06-07 テラヘルツ装置 WO2021251333A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021002389.6T DE112021002389T5 (de) 2020-06-09 2021-06-07 Terahertz-vorrichtung
US17/998,883 US20230213442A1 (en) 2020-06-09 2021-06-07 Terahertz device
JP2022530549A JPWO2021251333A1 (ja) 2020-06-09 2021-06-07
CN202180040999.0A CN115699564A (zh) 2020-06-09 2021-06-07 太赫兹装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100133 2020-06-09
JP2020100133 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251333A1 true WO2021251333A1 (ja) 2021-12-16

Family

ID=78846255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021550 WO2021251333A1 (ja) 2020-06-09 2021-06-07 テラヘルツ装置

Country Status (5)

Country Link
US (1) US20230213442A1 (ja)
JP (1) JPWO2021251333A1 (ja)
CN (1) CN115699564A (ja)
DE (1) DE112021002389T5 (ja)
WO (1) WO2021251333A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143366A (ja) * 1987-11-30 1989-06-05 Iwasaki Electric Co Ltd Led面発光光源
JPH10335706A (ja) * 1997-05-30 1998-12-18 Toyoda Gosei Co Ltd 発光ダイオードランプ
JP2007250295A (ja) * 2006-03-15 2007-09-27 Konica Minolta Opto Inc 小型の画像投影装置
JP2009026840A (ja) * 2007-07-18 2009-02-05 C I Kasei Co Ltd 発光装置および発光装置の作製方法
JP2011203253A (ja) * 2010-03-25 2011-10-13 Goodrich Corp 多チャネル光学セル
JP2018087725A (ja) * 2016-11-28 2018-06-07 キヤノン株式会社 画像取得装置、これを用いた画像取得方法及び照射装置
US20190131704A1 (en) * 2017-11-01 2019-05-02 Searete Llc Aperture Efficiency Enhancements Using Holographic and Quasi-Optical Beam Shaping Lenses

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6220128B2 (ja) * 2013-01-08 2017-10-25 アークレイ株式会社 テラヘルツ波発生装置及びテラヘルツ波測定方法
JP6510802B2 (ja) 2014-12-08 2019-05-08 ローム株式会社 テラヘルツ素子およびその製造方法
JP7340391B2 (ja) * 2019-09-02 2023-09-07 ローム株式会社 テラヘルツ装置
DE102019135487A1 (de) * 2019-12-20 2021-06-24 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Vorrichtung zum Senden und/oder Empfangen von Terahertz-Strahlung und Verwendung hiervon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143366A (ja) * 1987-11-30 1989-06-05 Iwasaki Electric Co Ltd Led面発光光源
JPH10335706A (ja) * 1997-05-30 1998-12-18 Toyoda Gosei Co Ltd 発光ダイオードランプ
JP2007250295A (ja) * 2006-03-15 2007-09-27 Konica Minolta Opto Inc 小型の画像投影装置
JP2009026840A (ja) * 2007-07-18 2009-02-05 C I Kasei Co Ltd 発光装置および発光装置の作製方法
JP2011203253A (ja) * 2010-03-25 2011-10-13 Goodrich Corp 多チャネル光学セル
JP2018087725A (ja) * 2016-11-28 2018-06-07 キヤノン株式会社 画像取得装置、これを用いた画像取得方法及び照射装置
US20190131704A1 (en) * 2017-11-01 2019-05-02 Searete Llc Aperture Efficiency Enhancements Using Holographic and Quasi-Optical Beam Shaping Lenses

Also Published As

Publication number Publication date
JPWO2021251333A1 (ja) 2021-12-16
CN115699564A (zh) 2023-02-03
DE112021002389T5 (de) 2023-03-30
US20230213442A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
US11569184B2 (en) Terahertz device
US9847282B2 (en) Semiconductor device
CN113066832B (zh) 一种显示基板及显示装置
US8842046B2 (en) Loop antenna
US20100176476A1 (en) Optical device, solid-state imaging device, and method
US11699846B2 (en) Terahertz element and semiconductor device
JP7273062B2 (ja) テラヘルツ装置およびテラヘルツ装置の製造方法
WO2021251333A1 (ja) テラヘルツ装置
WO2021006105A1 (ja) テラヘルツ装置
CN114698276A (zh) 电子装置
WO2022024749A1 (ja) テラヘルツ装置
KR20180119660A (ko) 접속 캐리어, 광전자 부품 및 접속 캐리어 또는 광전자 부품의 제조 방법
CN116387270A (zh) 电子装置
US11243164B2 (en) Terahertz device
JP3915196B2 (ja) 半導体発光装置
TWI671923B (zh) 發光二極體封裝結構及其製作方法、平面光源模組
CN114975526A (zh) 显示装置和用于制造显示装置的方法
US10957598B2 (en) Terahertz device
JP3219833U (ja) Led発光装置
WO2023228965A1 (ja) テラヘルツ装置
JP7412945B2 (ja) 半導体レーザ装置
CN116759419A (zh) 半导体封装装置
WO2024009769A1 (ja) テラヘルツ装置
JP2007123409A (ja) 発光ダイオードチップ
US20210050493A1 (en) Optoelectronic Semiconductor Device and Method for Producing an Optoelectronic Semiconductor Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530549

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21822489

Country of ref document: EP

Kind code of ref document: A1