WO2021251321A1 - 合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法 - Google Patents

合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法 Download PDF

Info

Publication number
WO2021251321A1
WO2021251321A1 PCT/JP2021/021506 JP2021021506W WO2021251321A1 WO 2021251321 A1 WO2021251321 A1 WO 2021251321A1 JP 2021021506 W JP2021021506 W JP 2021021506W WO 2021251321 A1 WO2021251321 A1 WO 2021251321A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment agent
synthetic fibers
synthetic fiber
agent
producing
Prior art date
Application number
PCT/JP2021/021506
Other languages
English (en)
French (fr)
Inventor
啓一郎 大島
旬 伊藤
武志 西川
Original Assignee
竹本油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竹本油脂株式会社 filed Critical 竹本油脂株式会社
Priority to KR1020227033649A priority Critical patent/KR102509917B1/ko
Priority to US17/905,187 priority patent/US20230122328A1/en
Priority to DE112021001579.6T priority patent/DE112021001579T5/de
Priority to CN202180032823.0A priority patent/CN115516163B/zh
Publication of WO2021251321A1 publication Critical patent/WO2021251321A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/14Chemical after-treatment of artificial filaments or the like during manufacture of carbon with organic compounds, e.g. macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/165Ethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/35Abrasion, pilling or fibrillation resistance
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • the present invention relates to a method for producing a treatment agent for synthetic fibers, a treatment agent for synthetic fibers, a synthetic fiber, and a method for producing synthetic fibers.
  • carbon fiber is manufactured by performing a spinning step of spinning an acrylic resin or the like to produce a carbon fiber precursor which is a synthetic fiber, and a firing step of firing the synthetic fiber.
  • Patent Document 1 discloses an acrylic fiber treatment agent containing an amino-modified silicone and a polyoxyalkylene alkyl ether.
  • fluffing may occur in the fibers in the spinning process, and suppression of fluffing in the spinning process is an issue.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a treatment agent for synthetic fibers, which makes it possible to suitably suppress fluff in a spinning process. Further, the present invention provides a synthetic fiber treatment agent capable of suitably suppressing fluff in the spinning process, a synthetic fiber to which the synthetic fiber treatment agent is attached, and a method for producing a synthetic fiber using the synthetic fiber treatment agent. To do.
  • the method for producing a synthetic fiber treatment agent for solving the above problems is a method for producing a synthetic fiber treatment agent in which the content of boron detected from the non-volatile content of the synthetic fiber treatment agent by the ICP emission analysis method is 200 ppm or less.
  • an addition step of adding an alkylene oxide to an alcohol to prepare a (poly) oxyalkylene derivative, and an ICP emission analysis method are used to prepare the synthetic fiber treatment agent.
  • the gist is to have a removal step of removing the catalyst so that the content of boron detected from the non-volatile content of the above is 200 ppm or less.
  • the catalyst in the removal step, is removed so that the boron content detected from the non-volatile content of the synthetic fiber treatment agent by the ICP emission spectrometry method is 40 ppm or less. Is preferable.
  • the (poly) oxyalkylene derivative contains a compound in which an alkylene oxide having 2 to 4 carbon atoms is added in a total ratio of 1 to 30 mol to 1 mol of alcohol. It is preferable that it is a mule.
  • the alcohol has an alkyl chain having 10 to 18 carbon atoms in the molecule.
  • the alcohol has an alkyl chain having 12 to 16 carbon atoms in the molecule.
  • the alcohol is a monohydric aliphatic alcohol having a hydroxy group at the ⁇ -position of the alkyl chain.
  • the smoothing agent contains silicone.
  • the smoothing agent contains amino-modified silicone.
  • the (poly) oxyalkylene derivative is 10 to 70 parts by mass. It is preferable to mix the smoothing agent so as to contain the smoothing agent in a proportion of 90 to 30 parts by mass.
  • the synthetic fibers are carbon fiber precursors.
  • the synthetic fiber treatment agent for solving the above problems is a synthetic fiber treatment agent containing a smoothing agent and a (poly) oxyalkylene derivative, and boron detected from the non-volatile content of the treatment agent by ICP emission spectrometry.
  • the gist is that the content of is 200 ppm or less.
  • the boron content of the synthetic fiber treatment agent is preferably 40 ppm or less.
  • the (poly) oxyalkylene derivative may contain a compound in which an alkylene oxide having 2 to 4 carbon atoms is added in a total ratio of 1 to 30 mol to 1 mol of alcohol. preferable.
  • the alcohol has an alkyl chain having 10 to 18 carbon atoms in the molecule.
  • the alcohol has an alkyl chain having 12 to 16 carbon atoms in the molecule.
  • the alcohol is a monohydric aliphatic alcohol having a hydroxy group at the ⁇ -position of the alkyl chain.
  • the smoothing agent contains amino-modified silicone.
  • the total content of the (poly) oxyalkylene derivative and the smoothing agent is 100 parts by mass in the synthetic fiber treatment agent, 10 to 70 parts by mass of the (poly) oxyalkylene derivative and the smoothing agent are used. It is preferably contained in a proportion of 90 to 30 parts by mass.
  • the synthetic fibers are carbon fiber precursors.
  • the gist of the synthetic fiber for solving the above problem is that the treatment agent for the synthetic fiber is attached.
  • the gist of the method for producing synthetic fibers for solving the above-mentioned problems is to go through a step of adhering the above-mentioned processing agent for synthetic fibers to the fibers.
  • fluffing in the spinning process can be suitably suppressed.
  • the treatment agent of this embodiment contains a smoothing agent and a (poly) oxyalkylene derivative.
  • the treatment agent has a boron content of 200 ppm or less detected from the non-volatile content of the treatment agent by ICP emission spectrometry. When the content of boron in the treatment agent is 200 ppm or less, fluffing in the spinning process can be suitably suppressed.
  • the content of boron detected from the non-volatile content of the treatment agent by the ICP emission spectrometry method is preferably 40 ppm or less, more preferably 15 ppm or less.
  • the boron content is 40 ppm or less, fluffing in the spinning process can be more preferably suppressed.
  • the boron content detected from the non-volatile content of the treatment agent by ICP emission spectrometry is also, for example, 0.1 ppm or more, 0.6 ppm or more, 0.9 ppm or more, or 2 ppm or more.
  • Examples of the (poly) oxyalkylene derivative include alcohols or compounds in which an alkylene oxide is added to a carboxylic acid, an ether ester compound in which an alkylene oxide is added to an ester compound of a carboxylic acid and a polyhydric alcohol, and the like.
  • the alcohols or carboxylic acids may be aliphatic alcohols or carboxylic acids having a linear or branched chain, or aromatic alcohols or carboxylic acids. Further, it may be a saturated alcohol or a carboxylic acid, or an unsaturated alcohol or a carboxylic acid. Further, it may be a monohydric or divalent or higher alcohol or carboxylic acid.
  • Specific examples of the above (poly) oxyalkylene derivative include, for example, a compound in which 12 mol of ethylene oxide is added to 1 mol of 2-dodecanol, and 9 mol of ethylene oxide is added to 1 mol of 2-tetradecanol.
  • Examples thereof include a compound in which 9 mol of ethylene oxide is added, a compound in which 5 mol of ethylene oxide is added to 1 mol of 2-dodecanol, and the like.
  • the above (poly) oxyalkylene derivative may be used alone or in combination of two or more.
  • the above (poly) oxyalkylene derivative is not particularly limited in terms of the number of moles of alkylene oxide having 2 to 4 carbon atoms per mole of alcohol, but a total of 1 alkylene oxide having 2 to 4 carbon atoms per mole of alcohol. It preferably contains a compound added in a proportion of up to 30 mol.
  • the alcohol preferably has an alkyl chain having 10 to 18 carbon atoms in the molecule, and more preferably has an alkyl chain having 12 to 16 carbon atoms in the molecule.
  • the alcohol is preferably a monovalent aliphatic alcohol having a hydroxy group at the ⁇ -position of the alkyl chain.
  • the monohydric fatty alcohol may be a saturated fatty alcohol or an unsaturated fatty alcohol.
  • the monohydric aliphatic alcohol may be a linear aliphatic alcohol or an aliphatic alcohol having a branched chain.
  • the wettability of the treatment agent to synthetic fibers is improved as described later.
  • alkylene oxide having 2 to 4 carbon atoms examples include ethylene oxide, propylene oxide, butylene oxide and the like. Among these, ethylene oxide is preferable.
  • the polymerization sequence is not particularly limited, and may be a random adduct or a block adduct.
  • Examples of the smoothing agent contained in the treatment agent of the present embodiment include silicone, ester and the like.
  • the silicone used as a smoothing agent is not particularly limited, and is, for example, dimethyl silicone, phenyl-modified silicone, amino-modified silicone, amide-modified silicone, polyether-modified silicone, aminopolyether-modified silicone, alkyl-modified silicone, and alkyl-aralkyl-modified. Examples thereof include silicone, alkyl polyether-modified silicone, ester-modified silicone, epoxy-modified silicone, carbinol-modified silicone, and mercapto-modified silicone.
  • those containing amino-modified silicone are preferable.
  • the smoothing agent contains amino-modified silicone, the smoothness of the treatment agent can be improved as described later.
  • the ester used as a smoothing agent is not particularly limited, and examples thereof include (1) aliphatic monoalcohols and aliphatic monocarboxylic acids such as octyl palmitate, oleyl laurate, oleyl oleate, and isotetracosyl oleate. Ester compounds of (2) 1,6-hexanediol didecanate, glycerin triolate, trimethyl propantrilaurate, pentaerythritol tetraoctanate and other esters of aliphatic polyvalent alcohols and aliphatic monocarboxylic acids.
  • Ester compounds of aliphatic monoalcohol and aliphatic polyvalent carboxylic acid such as dioleyl azelate, dioleyl thiodipropionate, diisocetyl thiodipropionate, diisostearyl thiodipropionate, (4).
  • Ester compounds of aromatic monoalcohol and aliphatic monocarboxylic acid such as benzyl oleate and benzyl laurate
  • Aromatic polyvalent alcohol such as bisphenol A dilaurate and dilaurate of alkylene oxide adduct of bisphenol A.
  • Complete ester compound with aliphatic monocarboxylic acid (6)
  • Complete ester compound of aliphatic monoalcohol and aromatic polyvalent carboxylic acid such as bis2-ethylhexylphthalate, diisostearylisophthalate, trioctyl remeritate, etc.
  • Examples thereof include natural fats and oils such as coconut oil, rapeseed oil, sunflower oil, soybean oil, sunflower oil, sesame oil, fish oil and beef fat.
  • a known smoothing agent or the like used as a treatment agent for synthetic fibers may be used.
  • the smoothing agent include amino-modified silicone having a kinematic viscosity at 25 ° C. of 650 mm 2 / s and an amino equivalent of 1800 g / mol, and a kinematic viscosity at 25 ° C. of 90 mm 2 / s and an amino equivalent of 5000 g / mol.
  • An amino-modified silicone an amino-modified silicone having a kinematic viscosity at 25 ° C. of 4500 mm 2 / s and an amino equivalent of 1200 g / mol
  • the above smoothing agent may be used alone or in combination of two or more.
  • the content ratio of the above (poly) oxyalkylene derivative and smoothing agent there is no limit to the content ratio of the above (poly) oxyalkylene derivative and smoothing agent. Assuming that the total content of the (poly) oxyalkylene derivative and the smoothing agent is 100 parts by mass, the treatment agent is 10 to 70 parts by mass of the (poly) oxyalkylene derivative and 90 to 30 parts by mass of the smoothing agent. It is preferable to include it. It is more preferable that the treatment agent also contains 20 to 60 parts by mass of the (poly) oxyalkylene derivative and 80 to 40 parts by mass of the smoothing agent.
  • the method for producing the treatment agent includes an addition step of adding the above alkylene oxide to the above alcohol in the presence of a catalyst having a boron atom in the molecule to prepare a (poly) oxyalkylene derivative, and an ICP emission spectrometry method. It has a removal step of removing the catalyst so that the content of boron detected from the non-volatile content of the treatment agent is 200 ppm or less.
  • the catalyst having a boron atom in the molecule is not particularly limited, and for example, an acid catalyst composed of boron trifluoride or a complex thereof can be used.
  • an acid catalyst composed of boron trifluoride or a complex thereof is reacted with alcohol in a low molar amount, for example, 1 to 5 mol, and the catalyst is removed to obtain a low molar ethoxylate compound. ..
  • ethylene oxide is further reacted with the obtained low molar ethoxylate compound in the presence of an alkaline catalyst composed of sodium hydroxide, potassium hydroxide, sodium alkoxide and the like to remove the catalyst.
  • the method for removing the catalyst from the liquid that has undergone the addition step is not particularly limited, and a known method can be used.
  • Examples of the method for removing the catalyst include a method of filtering the liquid using diatomaceous earth to separate the catalyst, a method of adsorbing and removing the catalyst from the liquid using an inorganic synthetic adsorbent, and the like.
  • the ICP emission spectrometry method can be performed, for example, by the following procedure. First, a solution having a known boron concentration (for example, a 0, 5 ppm solution and a 1 ppm solution) is prepared in advance and subjected to an ICP emission spectrometer to prepare a calibration curve. Next, the treatment agent that has undergone the removal step is subjected to an ICP emission spectrometer, and the content of boron contained in the non-volatile content of the treatment agent is measured using the calibration curve prepared above.
  • a solution having a known boron concentration for example, a 0, 5 ppm solution and a 1 ppm solution
  • the method for producing the treatment agent of the present embodiment includes a mixing step of mixing the smoothing agent.
  • the mixing step it is preferable to mix the smoothing agent with the (poly) oxyalkylene derivative so as to have the content ratio of the (poly) oxyalkylene derivative and the smoothing agent specified in the first embodiment.
  • a third embodiment embodying the synthetic fiber according to the present invention will be described.
  • the treatment agent of the first embodiment is attached to the synthetic fiber of the present embodiment.
  • Specific examples of the synthetic fiber are not particularly limited, and are, for example, (1) polyester fibers such as polyethylene terephthalate, polypropylene terephthalate, and polylactic acid ester, (2) polyamide fibers such as nylon 6 and nylon 66, and (3) poly. Examples thereof include polyacrylic fibers such as acrylic and modal acrylic, (4) polyolefin fibers such as polyethylene and polypropylene, (5) cellulose fibers, and (6) lignin fibers.
  • the synthetic fiber a resin-made carbon fiber precursor that becomes a carbon fiber by undergoing a carbonization treatment step described later is preferable.
  • the resin constituting the carbon fiber precursor is not particularly limited, and examples thereof include acrylic resin, polyethylene resin, phenol resin, cellulose resin, lignin resin, and pitch.
  • the amount of the treatment agent of the first embodiment attached to the synthetic fiber is not particularly limited, but it is preferable to attach the treatment agent (without solvent) to the synthetic fiber in an amount of 0.1 to 2% by mass. , 0.3 to 1.2% by mass is more preferable.
  • the method for producing a synthetic fiber of the present embodiment is a step of adhering the treatment agent of the first embodiment to the fiber.
  • Examples of the form of the treatment agent for adhering the treatment agent of the first embodiment to the fiber include an organic solvent solution and an aqueous solution.
  • a method for adhering the treatment agent to the synthetic fiber for example, a known method, for example, a dipping method, a spray method, or a roller, is used by using the treatment agent of the first embodiment and an aqueous solution containing water or a further diluted aqueous solution.
  • a method of adhering by a method, a guide lubrication method using a measuring pump, or the like can be applied.
  • the method for producing carbon fiber goes through the following steps 1 to 3.
  • Step 1 A spinning step of spinning synthetic fibers and attaching the treatment agent of the first embodiment.
  • Step 2 A flame-resistant treatment step of converting the synthetic fiber obtained in the above step 1 into a flame-resistant fiber in an oxidizing atmosphere at 200 to 300 ° C, preferably 230 to 270 ° C.
  • Step 3 A carbonization treatment step in which the flame-resistant fiber obtained in the above step 2 is further carbonized in an inert atmosphere at 300 to 2000 ° C, preferably 300 to 1300 ° C.
  • the spinning step further includes a wet spinning step of dissolving the resin in a solvent and spinning, a dry densification step of drying and densifying the wet-spun synthetic fiber, and a drawing step of drawing the dry and densified synthetic fiber. It is preferable to have it.
  • the temperature of the drying and densifying step is not particularly limited, but it is preferable to heat the synthetic fiber that has undergone the wet spinning step at, for example, 70 to 200 ° C.
  • the timing at which the treatment agent is attached to the synthetic fiber is not particularly limited, but it is preferably between the wet spinning step and the dry densification step.
  • the oxidizing atmosphere in the flameproofing treatment step is not particularly limited, and for example, an air atmosphere can be adopted.
  • the inert atmosphere in the carbonization treatment step is not particularly limited, and for example, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or the like can be adopted.
  • the treatment agent of the present embodiment the method for producing the same, the synthetic fiber, and the method for producing the same, the following effects can be obtained.
  • the treatment agent of the present embodiment contains a smoothing agent and a (poly) oxyalkylene derivative, and the content of boron detected from the non-volatile content of the treatment agent by the ICP emission spectrometry method is a predetermined value. .. Therefore, the fluff of the fiber that has undergone the spinning process can be suitably suppressed. In addition, the smoothness of the fibers that have undergone the spinning process can be improved. In addition, it is possible to improve the focusing property of the flame-resistant fiber that has undergone the flame-resistant treatment step.
  • the wettability to the synthetic fiber is improved, so that the treatment agent can be more uniformly adhered to the synthetic fiber.
  • the treatment agent is attached to the synthetic fiber between the wet spinning process and the dry densification process. Therefore, among the spinning steps, fluffing can be suitably suppressed, especially in the drying and densifying step.
  • the removal step of the catalyst having a boron atom may be performed immediately after the addition step, during the addition step, or after mixing other components, the removal treatment may be performed. good.
  • the synthetic fiber may be a fiber that is not subjected to the firing step.
  • the treatment agent or aqueous liquid of the present embodiment includes stabilizers, antistatic agents, antistatic agents, binders, etc. for maintaining the quality of the treatment agent or aqueous liquid, as long as the effects of the present invention are not impaired.
  • Ingredients usually used in a treatment agent such as an antioxidant, an ultraviolet absorber, or an aqueous solution may be further added.
  • Test Category 1 (Preparation of treatment agent for synthetic fibers) (Example 1) First, as an addition step, 186 parts of 2-dodecanol and 0.5 part of boron trifluoride were added to the autoclave to replace the atmosphere with nitrogen gas, and then 132 parts of ethylene oxide was gradually added at 150 ° C. for an etherification reaction. Was done.
  • anion exchange resin was added to the liquid subjected to the etherification reaction, and the mixture was stirred at room temperature for 30 minutes. Then, it was transferred to a filter precoated with diatomaceous earth, and the anion exchange resin adsorbed with a boron trifluoride catalyst was removed to prepare a 3 mol adduct of ethylene oxide of 2-dodecanol.
  • Examples 2 to 23 and Comparative Examples 1 to 3 Each of the synthetic fiber treatment agents of Examples 2 to 23 and Comparative Examples 1 to 3 was prepared by the same method as in Example 1 using each component shown in Table 1.
  • the type and content of the (poly) oxyalkylene derivative in the treatment agent of each example, the type and content of the smoothing agent, and the content of boron in the treatment agent are described in "(A) (Poly)" in Table 1. As shown in the “Oxyalkylene derivative” column, the “(B) smoothing agent” column, and the “B content (ppm) in the treating agent” column, respectively.
  • ((Poly) oxyalkylene derivative) A-1 2-A compound in which 12 mol of ethylene oxide is added to 1 mol of dodecanol
  • A-2 A compound in which 9 mol of ethylene oxide is added to 1 mol of 2-tetradecanol
  • A-3 2- A compound in which 5 mol of ethylene oxide is added to 1 mol of dodecanol
  • A-4 2-A compound in which 9 mol of ethylene oxide is added to 1 mol of dodecanol
  • A-5 2-Antiethylene oxide to 1 mol of dodecanol A-6: A compound in which 9 mol of ethylene oxide is added to 1 mol of 2-tridecanol
  • A-7 A compound in which 12 mol of ethylene oxide is added to 1 mol of 2-tridecanol.
  • each (poly) oxyalkylene derivative the difference in the boron content of each (poly) oxyalkylene derivative is that the anion exchange resin adsorbed with the boron trifluoride catalyst is removed by the filter precoated with diatomaceous earth in the above catalyst removal step. It is based on the difference in time. That is, the longer the time for removing the anion exchange resin adsorbed with the boron trifluoride catalyst by the filter precoated with diatomaceous earth, the smaller the boron content in the (poly) oxyalkylene derivative.
  • (Smoothing agent) B-1 Amino-modified silicone having a kinematic viscosity at 25 ° C. of 650 mm 2 / s and an amino equivalent of 1800 g / mol
  • B-2 Amino having a kinematic viscosity at 25 ° C. of 90 mm 2 / s and an amino equivalent of 5000 g / mol
  • Modified Silicone B-3 Amino-modified silicone with a kinematic viscosity at 25 ° C. of 4500 mm 2 / s and an amino equivalent of 1200 g / mol
  • B-4 Amino-modified silicone with a kinematic viscosity at 25 ° C.
  • an acrylic resin was wet-spun as a synthetic fiber.
  • a copolymer having an extreme viscosity of 1.80 consisting of 95% by mass of acrylonitrile, 3.5% by mass of methyl acrylate, and 1.5% by mass of methacrylic acid is dissolved in dimethylacetamide (DMAC) to have a polymer concentration.
  • DMAC dimethylacetamide
  • a spinning stock solution having a viscosity of 21.0% by mass and a viscosity at 60 ° C. of 500 poise was prepared.
  • the undiluted spinning solution was discharged into a coagulation bath of a 70% by mass aqueous solution of DMAC kept at a spinning bath temperature of 35 ° C. from a spinneret having a pore diameter (inner diameter) of 0.075 mm and a hole number of 12,000 at a draft ratio of 0.8.
  • Acrylic fiber strands (raw material fibers) in a water-swelled state were prepared by stretching the coagulated yarn 5 times in a water washing tank at the same time as removing the solvent.
  • the synthetic fiber treatment agent prepared in Test Category 1 was lubricated with respect to the acrylic fiber strand so that the amount of solid content adhered was 1% by mass (without solvent).
  • the refueling of the synthetic fiber treatment agent was carried out by a dipping method using a 4% ion exchange aqueous solution of the synthetic fiber treatment agent.
  • the acrylic fiber strands are dried and densified with a heating roller at 130 ° C., further stretched 1.7 times between the heating rollers at 170 ° C., and then a winding device (hereinafter, also referred to as a winder). ) was used to wind it up on a thread tube.
  • a winding device hereinafter, also referred to as a winder.
  • step 2 the yarn is unwound from the wound synthetic fiber, treated in a flame-resistant furnace having a temperature gradient of 230 to 270 ° C. for 1 hour under an air atmosphere, and then wound on a yarn tube.
  • a flame-resistant yarn flame-resistant fiber was obtained.
  • step 3 the yarn is unwound from the wound flame-resistant yarn, fired in a carbonization furnace having a temperature gradient of 300 to 1300 ° C. in a nitrogen atmosphere, converted into carbon fibers, and then made into a yarn tube. Carbon fiber was obtained by winding.
  • Test category 3 (evaluation) For the treatment agents of Examples 1 to 23 and Comparative Examples 1 to 3, the fluff in the spinning process of the synthetic fiber, the focusing property of the flame-resistant fiber, the smoothness of the synthetic fiber, and the wettability to the synthetic fiber were evaluated. The procedure for each test is shown below. The test results are shown in the columns of "spinning fluff", “flame-resistant focusing property”, “smoothness”, and “wetting property” in Table 1.
  • step 1 of the test category 2 the number of fluffs per hour measured by the fluff counting device installed immediately before the winding device for winding the synthetic fiber was evaluated according to the following criteria.
  • test thread 1 one end of the synthetic fiber (hereinafter, also referred to as test thread 1) to which the treatment agent is attached is fixed to the gripping jig 2 of the autograph, and the free roller 3, the chrome-plated satin pin 4, and the chrome-plated satin pin 4. And 50 g of the weight 6 was fixed to the other end of the test thread 1 via the free roller 5 in order.
  • the diameter of the drive shaft 4a in contact with the test thread 1 is 1 cm, and the surface roughness is 2S.
  • the angle formed by the extending direction of the test thread 1 between the chrome-plated satin pin 4 and the free roller 5 with respect to the extending direction of the test thread 1 between the free roller 3 and the chrome-plated satin pin 4 is 90 °. It is arranged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本発明が解決しようとする課題は、紡糸工程における毛羽を好適に抑制することである。ICP発光分析法によって合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下である合成繊維用処理剤の製造方法は、分子中にホウ素原子を有する触媒の存在下、アルコールに対してアルキレンオキサイドを付加して(ポリ)オキシアルキレン誘導体を作製する付加工程と、ICP発光分析法によって合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下となるように触媒を除去する除去工程とを有する。

Description

合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法
 本発明は、合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法に関する。
 例えば、炭素繊維は、アクリル樹脂等を紡糸して合成繊維である炭素繊維前駆体を作製する紡糸工程、及び合成繊維を焼成する焼成工程を行なうことにより製造される。
 特許文献1には、アミノ変性シリコーンとポリオキシアルキレンアルキルエーテルを含有するアクリル繊維処理剤が開示されている。
国際公開第2017/169632号
 ところで、紡糸工程において繊維に毛羽が発生することがあり、紡糸工程における毛羽の抑制が課題として挙げられる。
 本発明は、こうした実情に鑑みてなされたものであり、その目的は、紡糸工程における毛羽を好適に抑制することを可能にした合成繊維用処理剤の製造方法を提供することにある。また、紡糸工程における毛羽を好適に抑制することを可能にした合成繊維用処理剤、この合成繊維処理剤が付着した合成繊維、及びこの合成繊維用処理剤を用いた合成繊維の製造方法を提供することにある。
 上記課題を解決するための合成繊維用処理剤の製造方法は、ICP発光分析法によって合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下である合成繊維用処理剤の製造方法であって、分子中にホウ素原子を有する触媒の存在下、アルコールに対してアルキレンオキサイドを付加して(ポリ)オキシアルキレン誘導体を作製する付加工程と、ICP発光分析法によって前記合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下となるように前記触媒を除去する除去工程とを有することを要旨とする。
 上記合成繊維用処理剤の製造方法について、前記除去工程において、ICP発光分析法によって前記合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が40ppm以下となるように前記触媒を除去することが好ましい。
 上記合成繊維用処理剤の製造方法について、前記(ポリ)オキシアルキレン誘導体が、アルコール1モルに対して炭素数2~4のアルキレンオキサイドを合計で1~30モルの割合で付加させた化合物を含むものであることが好ましい。
 上記合成繊維用処理剤の製造方法について、前記アルコールが、分子中に炭素数10~18のアルキル鎖を有するものであることが好ましい。
 上記合成繊維用処理剤の製造方法について、前記アルコールが、分子中に炭素数12~16のアルキル鎖を有するものであることが好ましい。
 上記合成繊維用処理剤の製造方法について、前記アルコールが、アルキル鎖のβ位にヒドロキシ基を有する1価脂肪族アルコールであることが好ましい。
 上記合成繊維用処理剤の製造方法について、さらに平滑剤を混合する混合工程を有することが好ましい。
 上記合成繊維用処理剤の製造方法について、前記平滑剤が、シリコーンを含有するものであることが好ましい。
 上記合成繊維用処理剤の製造方法について、前記平滑剤が、アミノ変性シリコーンを含有するものであることが好ましい。
 上記合成繊維用処理剤の製造方法について、前記混合工程において、前記(ポリ)オキシアルキレン誘導体及び前記平滑剤の含有割合の合計を100質量部とすると、前記(ポリ)オキシアルキレン誘導体を10~70質量部、及び前記平滑剤を90~30質量部の割合で含むように前記平滑剤を混合することが好ましい。
 上記合成繊維用処理剤の製造方法について、前記合成繊維が、炭素繊維前駆体であることが好ましい。
 上記課題を解決するための合成繊維用処理剤は、平滑剤と(ポリ)オキシアルキレン誘導体とを含有する合成繊維用処理剤であって、ICP発光分析法によって処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下であることを要旨とする。
 上記合成繊維用処理剤について、前記ホウ素の含有量が40ppm以下であることが好ましい。
 上記合成繊維用処理剤について、前記(ポリ)オキシアルキレン誘導体が、アルコール1モルに対して炭素数2~4のアルキレンオキサイドを合計で1~30モルの割合で付加させた化合物を含むものであることが好ましい。
 上記合成繊維用処理剤について、前記アルコールが、分子中に炭素数10~18のアルキル鎖を有するものであることが好ましい。
 上記合成繊維用処理剤について、前記アルコールが、分子中に炭素数12~16のアルキル鎖を有するものであることが好ましい。
 上記合成繊維用処理剤について、前記アルコールが、アルキル鎖のβ位にヒドロキシ基を有する1価脂肪族アルコールであることが好ましい。
 上記合成繊維用処理剤について、前記平滑剤が、アミノ変性シリコーンを含有するものであることが好ましい。
 上記合成繊維用処理剤について、前記(ポリ)オキシアルキレン誘導体及び前記平滑剤の含有割合の合計を100質量部とすると、前記(ポリ)オキシアルキレン誘導体を10~70質量部、及び前記平滑剤を90~30質量部の割合で含むことが好ましい。
 上記合成繊維用処理剤について、前記合成繊維が、炭素繊維前駆体であることが好ましい。
 上記課題を解決するための合成繊維は、上記合成繊維用処理剤が付着していることを要旨とする。
 上記課題を解決するための合成繊維の製造方法は、上記合成繊維用処理剤を繊維に付着させる工程を経ることを要旨とする。
 本発明によると、紡糸工程における毛羽を好適に抑制することができる。
平滑性を測定する装置の模式図。
 (第1実施形態)
 本発明に係る合成繊維用処理剤(以下、単に処理剤ともいう。)を具体化した第1実施形態について説明する。
 本実施形態の処理剤は、平滑剤と(ポリ)オキシアルキレン誘導体とを含有する。処理剤は、ICP発光分析法によって処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下である。処理剤におけるホウ素の含有量が200ppm以下であることにより、紡糸工程における毛羽を好適に抑制することができる。
 また、ICP発光分析法によって処理剤の不揮発分から検出されるホウ素の含有量は、40ppm以下であることが好ましく、15ppm以下であることがより好ましい。ホウ素の含有量が40ppm以下であることにより、紡糸工程における毛羽をより好適に抑制することができる。
 ICP発光分析法によって処理剤の不揮発分から検出されるホウ素の含有量はまた、例えば、0.1ppm以上、0.6ppm以上、0.9ppm以上、又は2ppm以上である。
 (ポリ)オキシアルキレン誘導体としては、例えばアルコール類又はカルボン酸類にアルキレンオキサイドを付加させた化合物、カルボン酸類と多価アルコールとのエステル化合物にアルキレンオキサイドを付加させたエーテル・エステル化合物等が挙げられる。アルコール類又はカルボン酸類としては、直鎖状又は分岐鎖を有する脂肪族系のアルコール類又はカルボン酸類であってもよく、芳香族系のアルコール類又はカルボン酸類であってもよい。また、飽和のアルコール類又はカルボン酸類であっても、不飽和のアルコール類又はカルボン酸類であってもよい。また、1価又は2価以上のアルコール類又はカルボン酸類であってもよい。
 上記(ポリ)オキシアルキレン誘導体の具体例としては、例えば、2-ドデカノール1モルに対してエチレンオキサイドを12モル付加させた化合物、2-テトラデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物、2-ドデカノール1モルに対してエチレンオキサイドを5モル付加させた化合物、2-ドデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物、2-ドデカノール1モルに対してエチレンオキサイドを30モル付加させた化合物、2-トリデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物、2-トリデカノール1モルに対してエチレンオキサイドを12モル付加させた化合物、2-デカノール1モルに対してエチレンオキサイドを9モル付加させた化合物、2-オクタデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物、2-ノナノール1モルに対してエチレンオキサイドを5モル付加させた化合物、4-ドデカノール1モルに対してエチレンオキサイドを7モル付加させた化合物、1-テトラデカノール1モルに対してエチレンオキサイドを25モル付加させた化合物、2-ペンタデカノール1モルに対してエチレンオキサイドを5モル付加させた化合物、1-オクタノール1モルに対してエチレンオキサイドを7モル付加させた化合物、1-ノナノール1モルに対してエチレンオキサイドを20モル付加させた化合物、1-ドデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物、2-ドデカノール1モルに対してエチレンオキサイドを5モル付加させた化合物等が挙げられる。
 上記の(ポリ)オキシアルキレン誘導体は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記の(ポリ)オキシアルキレン誘導体は、アルコール1モルに対する炭素数2~4のアルキレンオキサイドの付加モル数について特に限定されないが、アルコール1モルに対して炭素数2~4のアルキレンオキサイドを合計で1~30モルの割合で付加させた化合物を含むものであることが好ましい。
 上記アルコールは、分子中に炭素数10~18のアルキル鎖を有するものであることが好ましく、分子中に炭素数12~16のアルキル鎖の有するものであることがより好ましい。
 また、上記アルコールは、アルキル鎖のβ位にヒドロキシ基を有する1価脂肪族アルコールであることが好ましい。1価脂肪族アルコールとしては、飽和脂肪族アルコールであっても、不飽和脂肪族アルコールであってもよい。また、1価脂肪族アルコールとしては、直鎖脂肪族アルコールであっても、分岐鎖を有する脂肪族アルコールであってもよい。
 アルキル鎖のβ位にヒドロキシ基を有する1価脂肪族アルコールを用いることにより、後述のように、合成繊維に対する処理剤の濡れ性が向上する。
 上記炭素数2~4のアルキレンオキサイドの具体例としては、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等を挙げることができる。これらの中でも、エチレンオキサイドであることが好ましい。重合配列としては、特に限定されず、ランダム付加物であっても、ブロック付加物であってもよい。
 本実施形態の処理剤が含有する平滑剤としては、例えば、シリコーン、エステル等が挙げられる。
 平滑剤として使用されるシリコーンとしては、特に制限はなく、例えば、ジメチルシリコーン、フェニル変性シリコーン、アミノ変性シリコーン、アミド変性シリコーン、ポリエーテル変性シリコーン、アミノポリエーテル変性シリコーン、アルキル変性シリコーン、アルキルアラルキル変性シリコーン、アルキルポリエーテル変性シリコーン、エステル変性シリコーン、エポキシ変性シリコーン、カルビノール変性シリコーン、メルカプト変性シリコーン等が挙げられる。
 これらの中でも、アミノ変性シリコーンを含有するものであることが好ましい。
 平滑剤がアミノ変性シリコーンを含有するものであることにより、後述のように、処理剤の平滑性を向上させることができる。
 平滑剤として使用されるエステルとしては、特に制限はなく、例えば、(1)オクチルパルミテート、オレイルラウレート、オレイルオレート、イソテトラコシルオレート等の、脂肪族モノアルコールと脂肪族モノカルボン酸とのエステル化合物、(2)1,6-ヘキサンジオールジデカネート、グリセリントリオレート、トリメチロールプロパントリラウレート、ペンタエリスリトールテトラオクタネート等の、脂肪族多価アルコールと脂肪族モノカルボン酸とのエステル化合物、(3)ジオレイルアゼレート、チオジプロピオン酸ジオレイル、チオジプロピオン酸ジイソセチル、チオジプロピオン酸ジイソステアリル等の、脂肪族モノアルコールと脂肪族多価カルボン酸とのエステル化合物、(4)ベンジルオレート、ベンジルラウレート等の、芳香族モノアルコールと脂肪族モノカルボン酸とのエステル化合物、(5)ビスフェノールAジラウレート、ビスフェノールAのアルキレンオキサイド付加物のジラウレート等の、芳香族多価アルコールと脂肪族モノカルボン酸との完全エステル化合物、(6)ビス2-エチルヘキシルフタレート、ジイソステアリルイソフタレート、トリオクチルトリメリテート等の、脂肪族モノアルコールと芳香族多価カルボン酸との完全エステル化合物、(7)ヤシ油、ナタネ油、ヒマワリ油、大豆油、ヒマシ油、ゴマ油、魚油及び牛脂等の天然油脂等が挙げられる。その他、合成繊維用処理剤に採用されている公知の平滑剤等を使用してもよい。
 平滑剤の具体例としては、例えば25℃における動粘度が650mm/s、アミノ当量が1800g/molであるアミノ変性シリコーン、25℃における動粘度が90mm/s、アミノ当量が5000g/molであるアミノ変性シリコーン、25℃における動粘度が4500mm/s、アミノ当量が1200g/molであるアミノ変性シリコーン、25℃における動粘度が40mm/s、アミノ当量が1800g/molであるアミノ変性シリコーン、25℃における動粘度が8000mm/s、アミノ当量が1000g/molであるアミノ変性シリコーン、25℃における動粘度が500mm/s、エチレンオキサイド/プロピレンオキサイド=100/0、シリコーン/ポリエーテルの質量比=50/50のポリエーテル変性シリコーン、25℃における動粘度が1700mm/s、エチレンオキサイド/プロピレンオキサイド=40/60、シリコーン/ポリエーテルの質量比=20/80のポリエーテル変性シリコーン、25℃における動粘度が10000mm/sのジメチルシリコーン、チオジプロピオン酸ジ(n-ドデシル)エステル、ビスフェノールAのエチレンオキサイド2モル付加物のジラウリルエステル等が挙げられる。
 上記の平滑剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記(ポリ)オキシアルキレン誘導体及び平滑剤の含有割合に制限はない。(ポリ)オキシアルキレン誘導体及び平滑剤の含有割合の合計を100質量部とすると、処理剤は、(ポリ)オキシアルキレン誘導体を10~70質量部、及び平滑剤を90~30質量部の割合で含むことが好ましい。処理剤はまた、(ポリ)オキシアルキレン誘導体を20~60質量部、及び平滑剤を80~40質量部の割合で含むことがより好ましい。
 (第2実施形態)
 本発明に係る処理剤の製造方法を具体化した第2実施形態について説明する。第1実施形態との相違点を中心に説明する。
 処理剤の製造方法は、分子中にホウ素原子を有する触媒の存在下、上記のアルコールに対して上記のアルキレンオキサイドを付加して(ポリ)オキシアルキレン誘導体を作製する付加工程と、ICP発光分析法によって処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下となるように触媒を除去する除去工程とを有している。
 分子中にホウ素原子を有する触媒としては、特に制限はなく、例えば三フッ化ホウ素、又はその錯体等からなる酸触媒を用いることができる。
 付加工程の一例としては、アルコールに三フッ化ホウ素又はその錯体等からなる酸触媒を用いてエチレンオキシドを低モル、例えば1~5モル反応させ、触媒を除去して、低モルエトキシレート化合物を得る。次に、得られた低モルエトキシレート化合物に、水酸化ナトリウム、水酸化カリウム、及びナトリウムアルコキシド等からなるアルカリ触媒の存在下でさらにエチレンオキシドを反応させ、触媒を除去する。
 付加工程を経た液体から触媒を除去する方法としては、特に制限はなく、公知の方法を用いることができる。触媒を除去する方法としては、例えば珪藻土を用いて液体を濾過し、触媒を分離する方法や、無機合成吸着剤を用いて液体から触媒を吸着除去する方法等が挙げられる。
 ICP発光分析法は、例えば、以下の手順によって行うことができる。まず、予めホウ素の濃度既知の溶液(例えば、0、5ppm溶液及び1ppm溶液)を調製し、ICP発光分析装置に供して検量線を作成する。次に、除去工程を経た処理剤をICP発光分析装置に供して、上記で作成した検量線を用いて処理剤の不揮発分に含まれるホウ素の含有量を測定する。
 本実施形態の処理剤の製造方法は、上記平滑剤を混合する混合工程を有することが好ましい。混合工程では、第1実施形態で規定した(ポリ)オキシアルキレン誘導体及び平滑剤の含有割合となるように平滑剤を(ポリ)オキシアルキレン誘導体と混合することが好ましい。
 (第3実施形態)
 本発明に係る合成繊維を具体化した第3実施形態について説明する。本実施形態の合成繊維には、第1実施形態の処理剤が付着している。合成繊維の具体例としては、特に制限はなく、例えば(1)ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリ乳酸エステル等のポリエステル系繊維、(2)ナイロン6、ナイロン66等のポリアミド系繊維、(3)ポリアクリル、モダアクリル等のポリアクリル系繊維、(4)ポリエチレン、ポリプロピレン等のポリオレフィン系繊維、(5)セルロース系繊維、(6)リグニン系繊維等が挙げられる。合成繊維としては、後述する炭素化処理工程を経ることにより炭素繊維となる樹脂製の炭素繊維前駆体が好ましい。炭素繊維前駆体を構成する樹脂としては、特に限定されないが、例えば、アクリル樹脂、ポリエチレン樹脂、フェノール樹脂、セルロース樹脂、リグニン樹脂、ピッチ等を挙げることができる。
 第1実施形態の処理剤を合成繊維に付着させる量に特に制限はないが、処理剤(溶媒を含まない)を合成繊維に対し0.1~2質量%となるように付着させることが好ましく、0.3~1.2質量%となるように付着させることがより好ましい。
 (第4実施形態)
 本発明に係る合成繊維の製造方法を具体化した第4実施形態について説明する。本実施形態の合成繊維の製造方法は、第1実施形態の処理剤を繊維に付着させる工程を経るものである。
 第1実施形態の処理剤を繊維に付着させる際の処理剤の形態としては、例えば有機溶媒溶液、水性液等が挙げられる。
 処理剤を合成繊維に付着させる方法としては、例えば、第1実施形態の処理剤、及び水を含有する水性液又はさらに希釈した水溶液を用いて、公知の方法、例えば浸漬法、スプレー法、ローラー法、計量ポンプを用いたガイド給油法等によって付着させる方法を適用できる。
 本実施形態の合成繊維を用いた炭素繊維の製造方法について説明する。
 炭素繊維の製造方法は、下記の工程1~3を経ることが好ましい。
 工程1:合成繊維を紡糸するとともに、第1実施形態の処理剤を付着させる紡糸工程。
 工程2:前記工程1で得られた合成繊維を200~300℃、好ましくは230~270℃の酸化性雰囲気中で耐炎化繊維に転換する耐炎化処理工程。
 工程3:前記工程2で得られた耐炎化繊維をさらに300~2000℃、好ましくは300~1300℃の不活性雰囲気中で炭化させる炭素化処理工程。
 なお、上記工程2と工程3とによって焼成工程が構成されるものとする。
 紡糸工程は、さらに、樹脂を溶媒に溶解して紡糸する湿式紡糸工程、湿式紡糸された合成繊維を乾燥して緻密化する乾燥緻密化工程、及び乾燥緻密化した合成繊維を延伸する延伸工程を有していることが好ましい。
 乾燥緻密化工程の温度は特に限定されないが、湿式紡糸工程を経た合成繊維を、例えば、70~200℃で加熱することが好ましい。処理剤を合成繊維に付着させるタイミングは特に限定されないが、湿式紡糸工程と乾燥緻密化工程の間であることが好ましい。
 耐炎化処理工程における酸化性雰囲気は、特に限定されず、例えば、空気雰囲気を採用することができる。
 炭素化処理工程における不活性雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気、真空雰囲気等を採用することができる。
 本実施形態の処理剤、その製造方法、合成繊維、及びその製造方法によれば、以下のような効果を得ることができる。
 (1)本実施形態の処理剤は、平滑剤と(ポリ)オキシアルキレン誘導体とを含有し、ICP発光分析法によって処理剤の不揮発分から検出されるホウ素の含有量が所定の値となっている。したがって、紡糸工程を経た繊維の毛羽を好適に抑制することができる。また、紡糸工程を経た繊維の平滑性を向上させることができる。また、耐炎化処理工程を経た耐炎化繊維の集束性を向上させることができる。
 (2)本実施形態の処理剤によれば、合成繊維に対する濡れ性が向上するため、処理剤をより均一に合成繊維に付着させることができる。
 (3)湿式紡糸工程と乾燥緻密化工程の間において、処理剤を合成繊維に付着させている。したがって、紡糸工程のうち、特に乾燥緻密化工程における毛羽を好適に抑制することができる。
 上記実施形態は、以下のように変更して実施できる。上記実施形態、及び、以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施できる。
 ・本実施形態において、ホウ素原子を有する触媒の除去工程は、付加工程の直後に行ってもよく、付加工程の途中に行っても、他の成分を混合した後、除去処理を実施してもよい。
 ・本実施形態において、例えば、合成繊維が、焼成工程を行わない繊維であってもよい。
 ・本実施形態の処理剤又は水性液には、本発明の効果を阻害しない範囲内において、処理剤又は水性液の品質保持のための安定化剤や制電剤、帯電防止剤、つなぎ剤、酸化防止剤、紫外線吸収剤等の処理剤又は水性液に通常に用いられる成分をさらに配合してもよい。
 以下、本発明の構成及び効果をより具体的に説明するため、実施例等を挙げるが、本発明がこれらの実施例に限定されるというものではない。尚、以下の実施例及び比較例の説明において、部は質量部を、また%は質量%を意味する。
 試験区分1(合成繊維用処理剤の調製)
 (実施例1)
 まず、付加工程として、オートクレーブ内に2-ドデカノール186部と三フッ化ホウ素0.5部を加えて雰囲気を窒素ガスで置換した後、150℃でエチレンオキサイド132部を徐々に加えてエーテル化反応を行った。
 次に、触媒の除去工程として、エーテル化反応を行なった液体に対して、陰イオン交換樹脂を5部添加し、室温で30分間撹拌した。その後、珪藻土でプレコートした濾過機に移し、三フッ化ホウ素触媒を吸着した陰イオン交換樹脂を除去して、2-ドデカノールのエチレンオキサイド3モル付加物を調製した。
 さらに、得られた2-ドデカノールのエチレンオキサイド3モル付加物318部と水酸化ナトリウム0.5部をオートクレーブ内に加えて雰囲気を窒素ガスで置換した後、150℃でエチレンオキサイド396部を徐々に加えて、エーテル化反応を行った。
 さらに、エーテル化反応を行った液体に無機合成吸着剤を10部添加し、80℃で30分間撹拌した。その後、珪藻土でプレコートした濾過機に移し、水酸化ナトリウム触媒を吸着した無機合成吸着剤を除去して、表1に示す(ポリ)オキシアルキレン誘導体(A-1)を調製した。
 表1に示される各成分を使用し、(ポリ)オキシアルキレン誘導体(A-1)が30部、平滑剤(B-1)が70部の配合割合となるようにビーカーに加えた。これらを撹拌してよく混合した。撹拌を続けながら固形分濃度が25%となるようにイオン交換水を徐々に添加することで実施例1の合成繊維用処理剤の25%水性液を調製した。
 (実施例2~23及び比較例1~3)
 実施例2~23及び比較例1~3の各合成繊維用処理剤は、表1に示される各成分を使用し、実施例1と同様の方法にて調製した。
 なお、各例の処理剤中における(ポリ)オキシアルキレン誘導体の種類と含有量、平滑剤の種類と含有量、及び処理剤中のホウ素の含有量は、表1の「(A)(ポリ)オキシアルキレン誘導体」欄、「(B)平滑剤」欄、及び「処理剤中のB含有量(ppm)」欄にそれぞれ示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 表1の記号欄に記載するA-1~A-14、a-1~a-3、B-1~B-10の各成分の詳細は以下のとおりである。
 ((ポリ)オキシアルキレン誘導体)
 A-1:2-ドデカノール1モルに対してエチレンオキサイドを12モル付加させた化合物
 A-2:2-テトラデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物
 A-3:2-ドデカノール1モルに対してエチレンオキサイドを5モル付加させた化合物
 A-4:2-ドデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物
 A-5:2-ドデカノール1モルに対してエチレンオキサイドを30モル付加させた化合物
 A-6:2-トリデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物
 A-7:2-トリデカノール1モルに対してエチレンオキサイドを12モル付加させた化合物
 A-8:2-デカノール1モルに対してエチレンオキサイドを9モル付加させた化合物
 A-9:2-オクタデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物
 A-10:2-ノナノール1モルに対してエチレンオキサイドを5モル付加させた化合物
 A-11:4-ドデカノール1モルに対してエチレンオキサイドを7モル付加させた化合物
 A-12:1-テトラデカノール1モルに対してエチレンオキサイドを25モル付加させた化合物
 A-13:2-ペンタデカノール1モルに対してエチレンオキサイドを5モル付加させた化合物
 A-14:1-オクタノール1モルに対してエチレンオキサイドを7モル付加させた化合物
 a-1:1-ノナノール1モルに対してエチレンオキサイドを20モル付加させた化合物
 a-2:1-ドデカノール1モルに対してエチレンオキサイドを9モル付加させた化合物
 a-3:2-ドデカノール1モルに対してエチレンオキサイドを5モル付加させた化合物
 上記(ポリ)オキシアルキレン誘導体に用いられる(ポリ)オキシアルキレン誘導体の種類、アルコールの炭素数、アルキル鎖におけるヒドロキシ基の位置、及び(ポリ)オキシアルキレン誘導体のホウ素含有量について、表2の「(A)(ポリ)オキシアルキレン誘導体」欄、「1価脂肪族アルコールの炭素数」欄、「ヒドロキシ基の位置」欄、及び「B含有量(ppm)」欄にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表2において、各(ポリ)オキシアルキレン誘導体におけるホウ素含有量の差異は、上記の触媒の除去工程において、珪藻土でプレコートした濾過機で三フッ化ホウ素触媒を吸着した陰イオン交換樹脂を除去した時間の差異に基づいている。すなわち、珪藻土でプレコートした濾過機で三フッ化ホウ素触媒を吸着した陰イオン交換樹脂を除去した時間が長いほど、(ポリ)オキシアルキレン誘導体におけるホウ素含有量は小さくなる。
 (平滑剤)
 B-1:25℃における動粘度が650mm/s、アミノ当量が1800g/molであるアミノ変性シリコーン
 B-2:25℃における動粘度が90mm/s、アミノ当量が5000g/molであるアミノ変性シリコーン
 B-3:25℃における動粘度が4500mm/s、アミノ当量が1200g/molであるアミノ変性シリコーン
 B-4:25℃における動粘度が40mm/s、アミノ当量が1800g/molであるアミノ変性シリコーン
 B-5:25℃における動粘度が8000mm/s、アミノ当量が1000g/molであるアミノ変性シリコーン
 B-6:25℃における動粘度が500mm/s、エチレンオキサイド/プロピレンオキサイド=100/0、シリコーン/ポリエーテルの質量比=50/50のポリエーテル変性シリコーン
 B-7:25℃における動粘度が1700mm/s、エチレンオキサイド/プロピレンオキサイド=40/60、シリコーン/ポリエーテルの質量比=20/80のポリエーテル変性シリコーン
 B-8:25℃における動粘度が10000mm/sのジメチルシリコーン
 B-9:チオジプロピオン酸ジ(n-ドデシル)エステル
 B-10:ビスフェノールAのエチレンオキサイド2モル付加物のジラウリルエステル
 試験区分2(合成繊維、及び炭素繊維の製造)
 試験区分1で調製した合成繊維用処理剤の水性液を用いて、合成繊維、及び炭素繊維を製造した。
 まず、工程1として、合成繊維としてアクリル樹脂を湿式紡糸した。具体的には、アクリロニトリル95質量%、アクリル酸メチル3.5質量%、メタクリル酸1.5質量%からなる極限粘度1.80の共重合体を、ジメチルアセトアミド(DMAC)に溶解してポリマー濃度が21.0質量%、60℃における粘度が500ポイズの紡糸原液を作成した。紡糸原液は、紡浴温度35℃に保たれたDMACの70質量%水溶液の凝固浴中に孔径(内径)0.075mm、ホール数12,000の紡糸口金よりドラフト比0.8で吐出した。
 凝固糸を水洗槽の中で脱溶媒と同時に5倍に延伸して水膨潤状態のアクリル繊維ストランド(原料繊維)を作成した。このアクリル繊維ストランドに対して、固形分付着量が1質量%(溶媒を含まない)となるように、試験区分1で調製した合成繊維用処理剤を給油した。合成繊維用処理剤の給油は、合成繊維用処理剤の4%イオン交換水溶液を用いた浸漬法により実施した。その後、アクリル繊維ストランドに対して、130℃の加熱ローラーで乾燥緻密化処理を行い、更に170℃の加熱ローラー間で1.7倍の延伸を施した後に巻き取り装置(以下、ワインダーともいう。)を用いて糸管に巻き取った。
 次に、工程2として、巻き取られた合成繊維から糸を解舒し、230~270℃の温度勾配を有する耐炎化炉で空気雰囲気下1時間、耐炎化処理した後に糸管に巻き取ることで耐炎化糸(耐炎化繊維)を得た。
 次に、工程3として、巻き取られた耐炎化糸から糸を解舒し、窒素雰囲気下で300~1300℃の温度勾配を有する炭素化炉で焼成して炭素繊維に転換後、糸管に巻き取ることで炭素繊維を得た。
 試験区分3(評価)
 実施例1~23及び比較例1~3の処理剤について、合成繊維の紡糸工程における毛羽、耐炎化繊維の集束性、合成繊維の平滑性、及び合成繊維に対する濡れ性を評価した。各試験の手順について以下に示す。また、試験結果を表1の“紡糸毛羽”、“耐炎化集束性”、“平滑性”、“濡れ性”欄に示す。
 (紡糸毛羽)
 試験区分2の工程1において、合成繊維を巻き取る巻き取り装置の直前に設置した毛羽計数装置により測定した1時間当たりの毛羽数を以下の基準で評価した。
 ・毛羽の評価基準
 ◎◎(優れる):毛羽数が0~2個
 ◎(良好):毛羽数が3~5個
 〇(可):毛羽数が6~10個
 ×(不良):毛羽数が11個以上
 (耐炎化集束性)
 試験区分2の工程2において耐炎化処理を行った耐炎化繊維に対して、巻き取り前の耐炎化糸の集束状態を目視で観察して、以下の基準で耐炎化集束性の評価を行った。
 ・耐炎化集束性の評価基準
 ◎(良好):集束しており、トウ幅が一定である場合
 〇(可):集束しているが、トウ幅が一定ではない場合
 ×(不良):繊維束中に空間があり、集束していない場合
 (平滑性)
 平滑性を測定する装置として、島津製作所社製のオートグラフABS-1kNX(張力測定装置)を使用した。
 図1に示されるように、処理剤を付着させた合成繊維(以下、試験糸1ともいう。)の一端をオートグラフの把持治具2に固定し、フリーローラー3、クロムメッキ梨地ピン4、及びフリーローラー5を順に介して、試験糸1の他端に50gの分銅6を固定した。クロムメッキ梨地ピン4において、試験糸1が接する駆動軸4aの直径は1cmで、表面粗度は2Sである。フリーローラー3とクロムメッキ梨地ピン4との間における試験糸1の延びる方向に対する、クロムメッキ梨地ピン4とフリーローラー5との間における試験糸1の延びる方向のなす角度が90°となるように配されている。この状態で25℃で60%RHの条件下クロムメッキ梨地ピン4の駆動軸4aを周速100m/分の速度でオートグラフに張力がかかる方向に回転させた状態にしてオートグラフによる張力を0.1秒毎に30秒間測定した。この時の張力の平均値(N)を求め、次の基準で評価した。
 ◎◎(優れる):張力の平均値が2N未満
 ◎(良好):張力の平均値が2N以上、3N未満
 〇(可):張力の平均値が3N以上、4N未満
 ×(不良):張力の平均値が4N以上
 (濡れ性)
 合成繊維用処理剤の有効成分4%イオン交換水溶液(イオン交換水以外を有効成分とする)を作成し、その0.1gをアクリル板に滴下した後、1分後の最大直径(mm)を測定し、以下の基準で評価した。
 ◎(良好):最大直径が12mm以上
 ○(可):最大直径が10mm以上、12mm未満
 ×(不良):最大直径が10mm未満
 表1の結果から、本発明によれば、合成繊維の紡糸工程における毛羽を好適に抑制することができる。また、耐炎化繊維の集束性、及び合成繊維の平滑性を向上させることができる。また、本発明の処理剤によれば、合成繊維に対する濡れ性が向上する。

Claims (22)

  1.  ICP発光分析法によって合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下である合成繊維用処理剤の製造方法であって、
     分子中にホウ素原子を有する触媒の存在下、アルコールに対してアルキレンオキサイドを付加して(ポリ)オキシアルキレン誘導体を作製する付加工程と、
     ICP発光分析法によって前記合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が200ppm以下となるように前記触媒を除去する除去工程とを有することを特徴とする合成繊維用処理剤の製造方法。
  2.  前記除去工程において、ICP発光分析法によって前記合成繊維用処理剤の不揮発分から検出されるホウ素の含有量が40ppm以下となるように前記触媒を除去する請求項1に記載の合成繊維用処理剤の製造方法。
  3.  前記(ポリ)オキシアルキレン誘導体が、アルコール1モルに対して炭素数2~4のアルキレンオキサイドを合計で1~30モルの割合で付加させた化合物を含むものである請求項1又は2に記載の合成繊維用処理剤の製造方法。
  4.  前記アルコールが、分子中に炭素数10~18のアルキル鎖を有するものである請求項1~3のいずれか一項に記載の合成繊維用処理剤の製造方法。
  5.  前記アルコールが、分子中に炭素数12~16のアルキル鎖を有するものである請求項1~4のいずれか一項に記載の合成繊維用処理剤の製造方法。
  6.  前記アルコールが、アルキル鎖のβ位にヒドロキシ基を有する1価脂肪族アルコールである請求項4又は5に記載の合成繊維用処理剤の製造方法。
  7.  さらに平滑剤を混合する混合工程を有する請求項1~6のいずれか一項に記載の合成繊維用処理剤の製造方法。
  8.  前記平滑剤が、シリコーンを含有するものである請求項7に記載の合成繊維用処理剤の製造方法。
  9.  前記平滑剤が、アミノ変性シリコーンを含有するものである請求項7又は8に記載の合成繊維用処理剤の製造方法。
  10.  前記混合工程において、前記(ポリ)オキシアルキレン誘導体及び前記平滑剤の含有割合の合計を100質量部とすると、前記(ポリ)オキシアルキレン誘導体を10~70質量部、及び前記平滑剤を90~30質量部の割合で含むように前記平滑剤を混合する請求項7~9のいずれか一項に記載の合成繊維用処理剤の製造方法。
  11.  前記合成繊維が、炭素繊維前駆体である請求項1~10のいずれか一項に記載の合成繊維用処理剤の製造方法。
  12.  平滑剤と(ポリ)オキシアルキレン誘導体とを含有する合成繊維用処理剤であって、
     ICP発光分析法によって処理剤の不揮発分から検出されるホウ素の含有量が0.1ppm以上200ppm以下であることを特徴とする合成繊維用処理剤。
  13.  前記ホウ素の含有量が40ppm以下である請求項12に記載の合成繊維用処理剤。
  14.  前記(ポリ)オキシアルキレン誘導体が、アルコール1モルに対して炭素数2~4のアルキレンオキサイドを合計で1~30モルの割合で付加させた化合物を含むものである請求項12又は13に記載の合成繊維用処理剤。
  15.  前記アルコールが、分子中に炭素数10~18のアルキル鎖を有するものである請求項14に記載の合成繊維用処理剤。
  16.  前記アルコールが、分子中に炭素数12~16のアルキル鎖を有するものである請求項14又は15に記載の合成繊維用処理剤。
  17.  前記アルコールが、アルキル鎖のβ位にヒドロキシ基を有する1価脂肪族アルコールである請求項15又は16に記載の合成繊維用処理剤。
  18.  前記平滑剤が、アミノ変性シリコーンを含有するものである請求項12~17のいずれか一項に記載の合成繊維用処理剤。
  19.  前記(ポリ)オキシアルキレン誘導体及び前記平滑剤の含有割合の合計を100質量部とすると、前記(ポリ)オキシアルキレン誘導体を10~70質量部、及び前記平滑剤を90~30質量部の割合で含む請求項12~18のいずれか一項に記載の合成繊維用処理剤。
  20.  前記合成繊維が、炭素繊維前駆体である請求項12~19のいずれか一項に記載の合成繊維用処理剤。
  21.  請求項12~19のいずれか一項に記載の合成繊維用処理剤が付着していることを特徴とする合成繊維。
  22.  請求項12~19のいずれか一項に記載の合成繊維用処理剤を繊維に付着させる工程を経ることを特徴とする合成繊維の製造方法。
PCT/JP2021/021506 2020-06-12 2021-06-07 合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法 WO2021251321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227033649A KR102509917B1 (ko) 2020-06-12 2021-06-07 합성 섬유용 처리제의 제조 방법, 합성 섬유용 처리제, 합성 섬유 및 합성 섬유의 제조 방법
US17/905,187 US20230122328A1 (en) 2020-06-12 2021-06-07 Method for producing treatment agent for synthetic fibers, treatment agent for synthetic fibers, synthetic fibers, and method for producing synthetic fibers
DE112021001579.6T DE112021001579T5 (de) 2020-06-12 2021-06-07 Verfahren zur Herstellung eines Behandlungsmittels für synthetische Fasern, Behandlungsmittel für synthetische Fasern, synthetische Fasern und Verfahren zur Herstellung synthetischer Fasern
CN202180032823.0A CN115516163B (zh) 2020-06-12 2021-06-07 合成纤维用处理剂的制造方法、合成纤维用处理剂、合成纤维、及合成纤维的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020102308A JP6795238B1 (ja) 2020-06-12 2020-06-12 合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法
JP2020-102308 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251321A1 true WO2021251321A1 (ja) 2021-12-16

Family

ID=73544847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021506 WO2021251321A1 (ja) 2020-06-12 2021-06-07 合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法

Country Status (7)

Country Link
US (1) US20230122328A1 (ja)
JP (1) JP6795238B1 (ja)
KR (1) KR102509917B1 (ja)
CN (1) CN115516163B (ja)
DE (1) DE112021001579T5 (ja)
TW (1) TWI771050B (ja)
WO (1) WO2021251321A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183124A (ja) * 2002-12-02 2004-07-02 Takemoto Oil & Fat Co Ltd 抄紙用合成繊維処理剤、抄紙の製造方法及び抄紙
JP2010126465A (ja) * 2008-11-26 2010-06-10 Kao Corp ポリオキシアルキレン付加物の製造方法
WO2017169632A1 (ja) * 2016-03-30 2017-10-05 松本油脂製薬株式会社 アクリル繊維処理剤及びその用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2717456A1 (en) * 2008-03-05 2009-09-11 Panacea Biotec Limited Modified release pharmaceutical compositions comprising mycophenolate and processes thereof
CN105189856B (zh) * 2013-07-19 2017-06-20 松本油脂制药株式会社 合成纤维用处理剂及其用途
WO2017150229A1 (ja) * 2016-03-04 2017-09-08 松本油脂製薬株式会社 合成繊維用処理剤及びその用途
JP6535149B2 (ja) * 2017-03-09 2019-06-26 松本油脂製薬株式会社 アクリル繊維処理剤及びその用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183124A (ja) * 2002-12-02 2004-07-02 Takemoto Oil & Fat Co Ltd 抄紙用合成繊維処理剤、抄紙の製造方法及び抄紙
JP2010126465A (ja) * 2008-11-26 2010-06-10 Kao Corp ポリオキシアルキレン付加物の製造方法
WO2017169632A1 (ja) * 2016-03-30 2017-10-05 松本油脂製薬株式会社 アクリル繊維処理剤及びその用途

Also Published As

Publication number Publication date
US20230122328A1 (en) 2023-04-20
JP6795238B1 (ja) 2020-12-02
CN115516163A (zh) 2022-12-23
DE112021001579T5 (de) 2023-01-19
KR20220137785A (ko) 2022-10-12
TW202208720A (zh) 2022-03-01
CN115516163B (zh) 2023-06-30
KR102509917B1 (ko) 2023-03-14
JP2021195653A (ja) 2021-12-27
TWI771050B (zh) 2022-07-11

Similar Documents

Publication Publication Date Title
CN111676700B (zh) 碳纤维前体用处理剂以及碳纤维前体
WO2022065476A1 (ja) 合成繊維用処理剤、及び合成繊維
WO2021251320A1 (ja) 合成繊維用処理剤、及び合成繊維
WO2021251321A1 (ja) 合成繊維用処理剤の製造方法、合成繊維用処理剤、合成繊維、及び合成繊維の製造方法
JP6795239B1 (ja) 合成繊維用処理剤、及び合成繊維
JP2021011653A (ja) 炭素繊維前駆体用処理剤、及び炭素繊維前駆体
JP6973837B1 (ja) 炭素繊維前駆体用処理剤、及び炭素繊維前駆体
CN116234956B (zh) 丙烯酸类树脂纤维用处理剂以及丙烯酸类树脂纤维
WO2021251236A1 (ja) 炭素繊維前駆体用処理剤、炭素繊維前駆体用処理剤の水性液、炭素繊維前駆体、及び炭素繊維の製造方法
CN117377799A (zh) 合成纤维用处理剂以及合成纤维
CN108966663A (zh) 合成纤维处理剂及其应用
WO2023238500A1 (ja) 炭素繊維前駆体用処理剤及び炭素繊維前駆体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227033649

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21822058

Country of ref document: EP

Kind code of ref document: A1