WO2021251179A1 - 非接触給電システム及びそのコイルユニット - Google Patents

非接触給電システム及びそのコイルユニット Download PDF

Info

Publication number
WO2021251179A1
WO2021251179A1 PCT/JP2021/020396 JP2021020396W WO2021251179A1 WO 2021251179 A1 WO2021251179 A1 WO 2021251179A1 JP 2021020396 W JP2021020396 W JP 2021020396W WO 2021251179 A1 WO2021251179 A1 WO 2021251179A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic flux
coils
power transmission
coil unit
Prior art date
Application number
PCT/JP2021/020396
Other languages
English (en)
French (fr)
Inventor
満 柴沼
将也 ▲高▼橋
英介 高橋
宜久 山口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP21821614.1A priority Critical patent/EP4166372A4/en
Priority to CN202180040986.3A priority patent/CN115917922A/zh
Publication of WO2021251179A1 publication Critical patent/WO2021251179A1/ja
Priority to US18/078,306 priority patent/US20230110224A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/32Driving direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This disclosure relates to a non-contact power supply system and its coil unit.
  • Japanese Unexamined Patent Publication No. 2011-234996 discloses a non-contact power supply system that is installed outdoors and powers a parked vehicle in a non-contact manner.
  • a resonance coil feeding coil or power transmission coil
  • the plurality of coils are adjacent to each other on a plane parallel to a plane for transmitting and receiving power. It is arranged so as to do.
  • the directions of the electromagnetic fields generated in the adjacent coils are opposite to each other with respect to the plane.
  • the non-contact power supply system described in Japanese Patent Application Laid-Open No. 2011-234996 supplies power to a plurality of coils arranged at a parking position in order to supply power to a parked vehicle.
  • a non-contact power supply system that supplies power to a moving vehicle, a large number of coils are arranged along the road, power is supplied to the coil at a position corresponding to the position of the vehicle, and other coils are supplied with power. Does not supply power.
  • the coil at the position corresponding to the position of the vehicle and the other coil are electromagnetically coupled, an induced current flows through the other coil and a power supply loss occurs.
  • a coil unit used in a non-contact power feeding system includes a first coil and a second coil adjacent to the first coil in a predetermined direction, and a plurality of coils used for power transfer and the first coil are used.
  • the first coil provides the second coil with a magnetic flux reducing structure that reduces the magnetic flux that causes an induced voltage or an induced current when the power is transferred.
  • the magnetic flux passing through the first coil and passing through the second coil can be reduced, the electric power supplied to the first coil can be prevented from leaking to the second coil. That is, the loss of power supply can be suppressed.
  • the second coil is less likely to be electromagnetically coupled to the first coil, the influence of the second coil on the impedance of the first coil is suppressed.
  • FIG. 1 is an explanatory diagram showing a non-contact power feeding system during traveling.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of a power transmission section.
  • FIG. 3A is an explanatory diagram showing the power transmission coil unit of the first embodiment.
  • FIG. 3B is an explanatory diagram showing the power transmission coil unit of the first embodiment.
  • FIG. 4 is an explanatory diagram showing the configuration of the coil.
  • FIG. 5A is an explanatory diagram showing the power transmission coil unit of the second embodiment.
  • FIG. 5B is an explanatory diagram showing the power transmission coil unit of the second embodiment.
  • FIG. 6 is an explanatory diagram showing the power transmission coil unit of the third embodiment.
  • FIG. 7A is an explanatory diagram showing the power transmission coil unit of the fourth embodiment.
  • FIG. 7B is an explanatory diagram showing the power transmission coil unit of the fourth embodiment.
  • FIG. 8 is an explanatory diagram showing a power transmission coil unit according to the fifth embodiment.
  • FIG. 9A is an explanatory diagram showing a power transmission coil unit according to the sixth embodiment.
  • FIG. 9B is an explanatory diagram showing the configuration of the coil.
  • FIG. 10 is an explanatory diagram showing a power transmission coil unit according to the seventh embodiment.
  • FIG. 11A is an explanatory diagram showing a power transmission coil unit according to the eighth embodiment.
  • FIG. 11B is an explanatory diagram showing a power transmission coil unit according to the eighth embodiment.
  • FIG. 11A is an explanatory diagram showing a power transmission coil unit according to the eighth embodiment.
  • FIG. 11B is an explanatory diagram showing a power transmission coil unit according to
  • FIG. 12 is an explanatory diagram showing a power transmission coil unit according to the ninth embodiment.
  • FIG. 13 is an explanatory diagram showing a power transmission coil unit according to the tenth embodiment.
  • FIG. 14 is an explanatory diagram showing a power transmission coil unit according to the eleventh embodiment.
  • FIG. 15 is an explanatory diagram showing a power transmission coil unit according to the twelfth embodiment.
  • FIG. 16A is an explanatory diagram showing a power transmission coil unit according to the thirteenth embodiment.
  • FIG. 16B is an explanatory diagram showing a power transmission coil unit according to the thirteenth embodiment.
  • FIG. 17 is an explanatory diagram showing a power transmission coil unit according to the 14th embodiment.
  • FIG. 18 is a graph showing the relationship between the coil position and the magnetic flux in the 14th embodiment.
  • FIG. 19 is an explanatory diagram showing a power transmission coil unit according to the fifteenth embodiment.
  • FIG. 20 is a view of the power transmission coil unit according to the fifteenth embodiment as viewed from the + x direction.
  • FIG. 21 is an explanatory diagram showing a power transmission coil unit according to the fifteenth embodiment.
  • FIG. 22 is a view of the power transmission coil unit according to the fifteenth embodiment as viewed from the ⁇ x direction.
  • FIG. 23 is a view of the power transmission coil unit according to the fifteenth embodiment rotated by 45 ° and viewed from the + x direction.
  • the traveling power supply system 300 includes a power supply device 100 provided on a road 105, which is an area where a moving vehicle 202 or the like can move, and a power receiving device 200 on the 202 side.
  • the traveling power supply system 300 is a system capable of supplying power to the vehicle 202 from the power supply device 100 while the vehicle 202 is traveling.
  • the vehicle 202 is configured as, for example, an electric vehicle or a hybrid vehicle.
  • the + x direction indicates the traveling direction of the vehicle 202
  • the + y direction indicates the right direction when viewed from the front of the vehicle 202
  • the + z direction indicates the vertically upward direction.
  • the power supply device 100 on the road 105 side is a plurality of power transmission circuits 30 that supply an AC voltage to each of the plurality of power transmission coil units 40U (hereinafter, also referred to as “power transmission coil unit 40U”) and the plurality of power transmission coil units 40U.
  • a plurality of vehicle position detection units 20 provided corresponding to the power transmission circuit 30 or the power transmission coil unit 40U, a power supply circuit 10 for supplying a DC voltage to the plurality of power transmission circuits 30, a power supply side control unit 16, and power supply. It is provided with a side communication unit 22.
  • a plurality of power transmission coil units 40U are installed along the x direction at a predetermined depth from the ground surface of the road 105.
  • the power transmission coil unit 40U includes a plurality of coils. The configuration of this coil will be described in detail later.
  • the transmission circuit 30 is a circuit that converts a DC voltage supplied from the power supply circuit 10 into a high-frequency AC voltage and applies it to the transmission coil unit 40U, and includes an inverter circuit and a resonance circuit.
  • a filter circuit may be provided in addition to the inverter circuit and the resonance circuit.
  • the power transmission coil unit 40U and the power transmission circuit 30 are collectively referred to as a "power supply segment SG". It may be simply referred to as "segment SG”.
  • the power supply segment SG may include a plurality of power transmission coil units and power transmission circuits.
  • the power supply circuit 10 is a circuit that supplies DC power to the power transmission circuit 30.
  • the power supply circuit 10 is configured as an AC / DC converter circuit that rectifies alternating current supplied from a commercial power source and outputs direct current.
  • the direct current output by the power supply circuit 10 does not have to be a complete direct current, and may include some fluctuation (ripple).
  • the vehicle position detection unit 20 detects the position of the vehicle 202.
  • the vehicle position detection unit 20 can detect the position of the vehicle 202 by measuring the impedance of the coil of the power transmission coil unit 40U. The calculation of impedance will be described later in the description of FIG.
  • the vehicle position detection unit 20 communicates with, for example, the vehicle side position sensor 225 provided in the vehicle 202, and detects whether or not the vehicle 202 exists on the segment SG by using the communication strength. You may.
  • the plurality of power transmission circuits 30 execute power transmission using one or more power transmission coil units 40U close to the vehicle 202 according to the position of the vehicle 202 detected by the vehicle position detection unit 20.
  • the power supply side control unit 16 controls the power supply from the segment SG.
  • the vehicle position detection unit 20 may use another method such as detecting the position of the vehicle 202 by using a camera, a search coil, or a laser.
  • the power supply side communication unit 22 communicates with the power reception side communication unit 222 provided in the vehicle 202.
  • This communication includes, for example, a power supply instruction and a main power supply instruction.
  • the vehicle 202 includes a battery 210, an auxiliary battery 215, a power receiving side control unit 220, a power receiving side control unit 222, a vehicle side position sensor 225, a power receiving circuit 230, a power receiving coil unit 240U, and a DC / DC converter. It includes a circuit 260, an inverter circuit 270, a motor generator 280, and an auxiliary machine 290.
  • the power receiving coil unit 240U is connected to the power receiving circuit 230, and the battery 210, the high voltage side of the DC / DC converter circuit 260, and the inverter circuit 270 are connected to the output of the power receiving circuit 230.
  • An auxiliary battery 215 and an auxiliary 290 are connected to the low voltage side of the DC / DC converter circuit 260.
  • a motor generator 280 is connected to the inverter circuit 270.
  • the power receiving coil unit 240U is a device that couples with the power transmission coil unit 40U and generates an induced current by electromagnetic induction.
  • the power receiving circuit 230 includes a rectifying circuit that converts the AC voltage output from the power receiving coil unit 240U into a DC voltage, and a DC / DC converter that converts the DC voltage generated by the rectifying circuit into a voltage suitable for charging the battery 210. Includes the circuit.
  • the DC voltage output from the power receiving circuit 230 can be used for charging the battery 210 and driving the motor generator 280 via the inverter circuit 270, and can be stepped down by using the DC / DC converter circuit 260. It can also be used to charge the auxiliary battery 215 and drive the auxiliary battery 290.
  • a plurality of power receiving coil units 240U may be installed. By installing a plurality of power receiving coil units 240U, it is possible to perform a robust optimum design against the positional deviation of the vehicle 202. Further, when a plurality of power receiving coil units 240U are installed, a power receiving circuit 230 may be provided for each power receiving coil unit 240U.
  • the battery 210 is a secondary battery that outputs a higher DC voltage than the auxiliary battery for driving the motor generator 280.
  • the battery 210 is configured to be capable of outputting a high voltage, for example, a voltage exceeding 200 V by connecting a large number of batteries having a low voltage per cell in series.
  • the motor generator 280 operates as a three-phase AC motor and generates a driving force for traveling the vehicle 202.
  • the motor generator 280 operates as a generator when the vehicle 202 is decelerated, and regenerates electric power.
  • the inverter circuit 270 converts the electric power of the battery 210 into three-phase alternating current and supplies it to the motor generator 280.
  • the inverter circuit 270 converts the three-phase alternating current regenerated by the motor generator 280 into direct current and supplies it to the battery 210.
  • the DC / DC converter circuit 260 converts the output of the battery 210 into a voltage lower than the output voltage of the battery 210 and supplies it to the auxiliary battery 215 and the auxiliary 290.
  • the auxiliary battery 215 is a secondary battery for driving the auxiliary battery 290, and its voltage is lower than that of the battery 210, for example, a battery such as 12V, 24V, 48V.
  • the auxiliary machine 290 includes an air conditioner for the vehicle 202, an electric power steering device, peripheral devices such as headlights, winkers, and wipers, and various accessories for the vehicle 202.
  • the power receiving side control unit 220 controls each unit such as the inverter 270 in the vehicle 202.
  • the power receiving side control unit 220 controls the power receiving circuit 230 to receive power when receiving non-contact power supply during traveling.
  • the power feeding device 100 includes a power transmission circuit 30 and a power transmission coil unit 40U.
  • the power transmission circuit 30 includes an inverter circuit 32 and a resonance circuit 36.
  • the inverter circuit 32 is a circuit that converts direct current into alternating current, and includes four switching transistors Tr1 to Tr4, a capacitor C3, and four protection diodes D1 to D4.
  • the four switching transistors Tr1 to Tr4 form an H-bridge circuit.
  • the switching transistors Tr1 and Tr3 are connected in series, and the switching transistors Tr2 and Tr4 are connected in series.
  • the switching transistors Tr1 and Tr2 are connected to the positive power supply line V +, and the switching transistors Tr3 and Tr4 are connected to the negative power supply line V ⁇ .
  • the intermediate node N1 of the switching transistors Tr1 and Tr3 and the intermediate node N2 of the switching transistors Tr2 and Tr4 are connected to the power transmission coil unit 40U via the resonance circuit 36. Protection diodes D1 to D4 are connected in parallel to each of the switching transistors Tr1 to Tr4, respectively.
  • the capacitor C3 is a smoothing capacitor provided between the positive power supply line V + and the negative power supply line V ⁇ .
  • the power feeding side control unit 16 turns on the switching transistors Tr1 and Tr4 of the inverter circuit 32 to turn off the switching transistors Tr2 and Tr3, and turns on the switching transistors Tr2 and Tr3 to turn off the switching transistors Tr1 and Tr4. By periodically switching between the second state and the second state, the inverter circuit 32 is used to convert DC to AC.
  • the resonance circuit 36 is formed by a capacitor C1 inserted in series between the power transmission coil unit 40U and the inverter circuit 32. Therefore, in this embodiment, the resonant circuit 36 forms a series resonant circuit. Instead of the series resonant circuit, the capacitor C1 may be configured to form a parallel resonant circuit connected in parallel with the power transmission coil unit 40U. A filter circuit may be provided between the inverter circuit 32 and the resonance circuit 36.
  • the power receiving device 200 on the vehicle side includes a power receiving circuit 230 and a power receiving coil unit 240U.
  • the power receiving circuit 230 includes a resonance circuit 236, a rectifier circuit 232, and a DC-DC converter circuit 238.
  • the resonance circuit 236 is formed by a capacitor C21 connected in series with the power receiving coil 240. Therefore, in this embodiment, the resonant circuit 236 is a series resonant circuit. Instead of the series resonant circuit, a parallel resonant circuit in which the capacitor C21 is connected in parallel with the power receiving coil 240 may be used.
  • a filter circuit may be provided between the resonance circuit 236 and the rectifier circuit 232.
  • the rectifier circuit 232 is a bridge rectifier circuit and includes four rectifier diodes D21 to D24 and a smoothing capacitor C23.
  • the rectifying diodes D21 and D23 are connected in series, and the capacitor C21 of the resonance circuit 236 is connected to the intermediate node N3 thereof.
  • the diode rectifiers D22 and D24 are connected in series, and the power receiving coil 240 is connected to the intermediate node N4 thereof.
  • the cathode of the rectifying diode D21 and the cathode of D22 are connected to the node Np, and the anode of the rectifying diode D23 and the anode of D24 are connected to the node Nn.
  • the smoothing capacitor C23 is connected to the node Np and the node Nn.
  • the DC-DC converter circuit 238 is a circuit that boosts or steps down the DC voltage rectified by the rectifier circuit 232 and supplies it to the battery 210.
  • the DC-DC converter circuit 238 includes four switching transistors Tr25 to Tr28, an inductor L28, a protection diode D25 to D28, and a smoothing capacitor C28.
  • the switching transistors Tr25 and Tr27 are connected in series between the node Np and the node Nn, and the switching transistors Tr26 and Tr28 are connected in series.
  • the inductor L28 is connected to the intermediate node N5 of the switching transistors Tr25 and Tr27 and the intermediate node N6 of the switching transistors Tr26 and Tr28.
  • Protection diodes D25 to D28 are connected in parallel to each switching transistor Tr25 to Tr28.
  • the smoothing capacitor C28 is provided on the battery 210 side of the four switching transistors Tr25 to Tr28.
  • the power receiving side control unit 220 controls the voltage conversion of the DC-DC converter circuit 238 by controlling the on / off of the Tr 28 from the four switching transistors Tr 25 of the DC-DC converter circuit 238.
  • a motor generator 280 is connected to the battery 210 via an inverter circuit 270.
  • the impedance Z of can be calculated by the following formula.
  • kc is a coupling coefficient and is determined by the relative position between the coil of the power transmission coil unit 40U and the coil of the power reception coil unit 240U. That is, the value of the impedance Z changes depending on the relative position between the coil of the power transmission coil unit 40U and the coil of the power reception coil unit 240U. Therefore, the vehicle position detection unit 20 can determine the relative position between the power transmission coil unit 40U and the power reception coil unit 240U, that is, the position of the vehicle 202, using the impedance Z.
  • the power transmission coil unit 40U has a plurality of coils.
  • the configuration of a plurality of coils of the power transmission coil unit 40U will be described.
  • the power transmission coil unit 40U (x) has a coil 40AA (x), a coil 40AB (x), and a coil 40B (x).
  • x in (x) is a number indicating a position in the x direction along the traveling direction of the vehicle 202. If it is not necessary to distinguish the positions, (x) may be omitted.
  • the power transmission coil units 40U (x) are arranged along the x direction, which is the traveling direction of the vehicle 202, at predetermined intervals.
  • the coil 40AA (x) and the coil 40AB (x) have the same shape when viewed from the z direction, the same number of turns, and are arranged side by side in the y direction on the xy plane. It is symmetric with a certain plane S40A as a plane of symmetry. Here, symmetry means that the approximate shape and placement position of the coil are symmetric.
  • the coil 40B (x) is arranged on the xy plane and in the + x direction of the coil 40AA and the coil 40AB, and the coil 40B (x) is symmetrical with the surface S40A as a plane of symmetry.
  • the coil 40B (x) may be arranged on the opposite side of the coil 40AA (x) and the coil 40AB (x), that is, in the ⁇ x direction.
  • the magnetic flux B40AA (x) and the magnetic flux B40AB (x) indicate the magnetic flux generated when a current is passed through the coil 40AA (x) and the coil 40AB (x). The same applies to the other figures below.
  • the coil 40AA has a substrate 41, a core 42, and a winding 43.
  • the substrate 41 is made of a paramagnetic material such as aluminum.
  • the core 42 is arranged on the substrate 41 and is made of a ferromagnet, for example, ferrite.
  • the winding 43 is wound on the surface of the core 42 opposite to the substrate 41.
  • the coil 40AB and the coil 40B also have the same configuration as the coil 40AA.
  • an AC voltage is applied to the coil unit 40U (x) so that a reverse current flows through the coil 40AA (x) and the coil 40AB (x).
  • the power transmission circuit 30 passes a clockwise current through the coil 40AA (x) when viewed from the + z direction
  • the power transmission circuit 30 applies a counterclockwise current through the coil 40AB (x) when viewed from the + z direction. Shed.
  • a magnetic flux B40AA (x) is generated inside the coil 40AA (x) from the + z direction to the ⁇ z direction.
  • a part of the magnetic flux B40AA (x) tends to penetrate the inside of the coil 40B (x) from the ⁇ z direction to the + z direction in the ⁇ y direction with respect to the surface S40A of the coil 40B (x).
  • a magnetic flux B40AB (x) is generated from the ⁇ z direction to the + z direction.
  • a part of the magnetic flux B40AB (x) tends to penetrate the inside of the coil 40B (x) from the + z direction to the ⁇ z direction in the + y direction from the surface S40A of the coil 40B (x).
  • the magnetic flux B40AA (x) in the + z direction and the magnetic flux B40AB (x) in the ⁇ z direction try to penetrate the coil 40B (x).
  • the directions of the magnetic flux B40AA (x) to penetrate and the magnetic flux B40AB (x) are opposite, so that it is difficult for either magnetic flux to pass through.
  • the transmission circuit 30 passes a counterclockwise current through the coil 40AA (x) when viewed from the + z direction and a clockwise current through the coil 40AB (x) when viewed from the + z direction, as shown in FIG. 3B.
  • the direction of the magnetic flux is opposite to that shown in FIG. 3A, but it is difficult for any magnetic flux to pass through.
  • the direction in which the magnetic flux B40AA (x) tries to penetrate the coil 40B (x) is opposite to the direction in which the magnetic flux B40AB (x) tries to penetrate the coil 40B (x). Therefore, the magnetic flux passing through the inside of the coil 40B (x) becomes almost zero as a result of the magnetic flux B40AA (x) and the magnetic flux B40AB (x) repelling or canceling each other in opposite directions. Further, since the power transmission circuit 30 applies a voltage so that the current flowing through the coil 40AA (x) and the current flowing through the coil 40AB (x) are synchronized, the magnetic flux B40AA (x) and the magnetic flux B40AB (x) are large. Sa changes in the same way. Therefore, the magnetic flux penetrating the coil 40B (x) hardly changes.
  • the direction of the induced current at this time is the direction in which the magnetic flux generated by the induced current hinders the change of the magnetic flux penetrating the coil 40B (x). That is, when the magnetic flux penetrating the coil 40B (x) decreases, the magnetic flux generated by the induced current of the coil 40B (x) increases, and when the magnetic flux penetrating the coil 40B (x) increases. , The magnetic flux generated by the induced current of the coil 40B (x) is reduced.
  • the magnetic flux penetrating the coil 40B (x) is almost zero, and even if the power transmission circuit 30 applies an AC voltage to the coil 40AA (x) and the coil 40AB (x), the coil 40B (x) is generated.
  • the penetrating magnetic flux remains almost zero and does not change. Therefore, almost no induced current is generated in the coil 40B (x).
  • the coil 40AA (x) and the coil 40AB (x) apply an induced current to the coil 40B (x). It functions as a magnetic flux reduction structure (MRS) that reduces the generated magnetic flux.
  • MFS magnetic flux reduction structure
  • the coil 40B (x) has the impedance of the coil 40AA (x) and the coil 40AB (x). Hard to influence.
  • a plurality of power transmission coil units 40UA (x) arranged along the x direction are provided.
  • x in (x) is a number indicating a position in the x direction, as in the first embodiment.
  • the three power transmission coil units 40UA (x-1), 40UA (x), and 40UA (x + 1) shown in FIG. 5A are arranged in this order from the ⁇ x direction to the + x direction. Since the 40UA (x-1), 40UA (x), and 40UA (x + 1) have the same configuration, the configuration will be described using the power transmission coil unit 40UA (x).
  • the power transmission coil unit 40UA (x) includes a coil 40A (x) arranged on an xy plane and coils 44A (x, 1) and 44A (x, 2).
  • the three coils are arranged in the order of coil 44A (x, 1), coil 40A (x), and coil 44A (x, 2) from the ⁇ y direction to the + y direction when viewed from the + z direction. ..
  • the coil 44A (x, 1) and the coil 44A (x, 2) have the same shape when viewed from the + z direction, the same number of turns, and are symmetric with the plane S40A, which is a zx plane, as a plane of symmetry. ..
  • the power transmission circuit 30 applies an AC voltage to the power transmission coil unit 40UA (x).
  • the transmission circuit 30 passes a counterclockwise current through the coil 40A (x) when viewed from the + z direction
  • the coil 44A (x, 1) and the coil 44A (x, 2) Passes a clockwise current when viewed from the + z direction.
  • a magnetic flux B40A (x) in the ⁇ z direction to the + z direction is generated inside the coil 40A (x), and a part of the magnetic flux B40A (x) is formed in the coils 44A (x, 1) and 44A (x, 2).
  • a magnetic flux B44A (x, 2) in the + z direction to the ⁇ z direction is generated inside the coil 44A (x, 2), and a part of the magnetic flux B44A (x, 2) penetrates the coil 40A (x).
  • coil 40A (x + 1) tries to penetrate the + y side from the surface S40A from the ⁇ z direction to the + z direction.
  • the power transmission circuit 30 passes a clockwise current through the coil 40A (x) when viewed from the + z direction, the coil 44A (x, 1) and the coil 44A (x, 2) are counterclockwise when viewed from the + z direction. Pass the current. At this time, the direction of the magnetic flux generated in each coil is opposite to the direction of the magnetic flux shown in FIG. 5A, as shown in FIG. 5B.
  • the coil 44A (x, 1) and the coil 44A (x, 2) are adjacent to the coil 40A (x, 2).
  • x-1 it functions as a magnetic flux reduction structure that reduces the magnetic flux that causes an induced current in the coil 40A (x + 1).
  • almost no induced current is generated in the coil 40A (x-1) and the coil 40A (x + 1). That is, since the electric power supplied to the coil 40A (x) is unlikely to leak to the coil 40A (x-1) and the coil 40A (x + 1), the loss of the electric power supply can be suppressed.
  • the coil 40A (x) is difficult to be electromagnetically coupled to the coil 40A (x-1) and the coil 40A (x + 1), the coil 40A (x-1) and the coil 40A (x + 1) are the coil 40A (x + 1). ) Is unlikely to affect the impedance.
  • the power transmission coil unit 40UB includes a plurality of power transmission coil units 40UB (x) arranged along the x direction.
  • the power transmission coil unit 40UB (x) includes a coil 40B (x) and coils 44B (x, 1), 44B (x, 2), 44B (x + 1,1), 44B (x + 1,2).
  • x is a number indicating the position of the power transmission coil unit 40UB (x).
  • the coils 44B (x, 1), 44B (x, 2), 44B (x + 1,1), 44B (x + 1, 2) surround the coil 40B (x) in the xy plane in which the coil 40B (x) is arranged. It is arranged like this.
  • the coil 44B (x, 1) is arranged in the ⁇ x ⁇ y direction of the coil 40B (x), the coil 44B (x, 2) is arranged in the ⁇ x + y direction of the coil 40B (x), and the coil 44B (x + 1) is arranged.
  • 1) are arranged in the + xy direction of the coil 40B (x)
  • the coils 44B (x + 1 and 2) are arranged in the + x + y direction of the coil 40B (x).
  • the coil 44B (x, 1) and the coil 44B (x, 2) are symmetrical with each other with the surface S40B as a plane of symmetry.
  • the coil 44B (x + 1,1) and the coil 44B (x + 1,2) are symmetrical with each other with the surface S40B as a plane of symmetry.
  • the coils 44B (x, 1) and 44B (x, 2) constitute a power transmission coil unit 40UB (x-1) as a coil surrounding the coil 40B (x-1). That is, the coils 44B (x, 1) and 44B (x, 2) are coils belonging to both the power transmission coil unit 40UB (x) and the power transmission coil unit 40UB (x-1). Similarly, the coils 44B (x + 1, 1) and 44B (x + 1, 2) are coils belonging to both the power transmission coil unit 40UB (x) and the power transmission coil unit 40UB (x + 1).
  • the power transmission circuit 30 applies an AC voltage to the power transmission coil unit 40UB (x).
  • the transmission circuit 30 surrounds the coil 40B (x) with four coils 44B (x, 1). ), 44B (x, 2), 44B (x + 1,1), 44B (x + 1,2), a clockwise current is passed when viewed from the + z direction.
  • a magnetic flux B40B (x) heading from the ⁇ z direction to the + z direction is generated inside the coil 40B (x), and a part of the magnetic flux B40B (x) is inside the coil 40B (x-1) and inside the coil 40B (x-1).
  • Attempts to penetrate the inside of the coil 40B (x + 1) from the + z direction to the ⁇ z direction Attempts to penetrate the inside of the coil 40B (x + 1) from the + z direction to the ⁇ z direction.
  • the magnetic flux B44B (x, 1), B44B (x, 2), B44B (x + 1, 2), B44B (x + 1, 2) are generated.
  • a part of the magnetic flux B44B (x, 1) and a part of the magnetic flux B44B (x, 2) try to penetrate the inside of the coil 40B (x-1) from the ⁇ z direction to the + z direction.
  • a part of the magnetic flux B44B (x + 1,1) and a part of the magnetic flux B44B (x + 1, 2) try to penetrate the inside of the coil 40B (x + 1) from the ⁇ z direction to the + z direction.
  • the transmission circuit 30 passes a clockwise current through the coil 40B (x) when viewed from the + z direction, and four coils 44B (x, 1), 44B (x, 2), 44B (x + 1) surrounding the coil 40B (x).
  • a counterclockwise current is passed through, 1) and 44B (x + 1, 2) when viewed from the + z direction, the state shown in FIG. 6 and the direction of the magnetic flux are opposite, but the same is true.
  • the coils 44B (x + 1, 1) and 44B (x + 1, 2) function as a magnetic flux reduction structure that reduces the magnetic flux that causes an induced current in the coil 40B (x + 1) when the electric power is transferred using the coil 40B (x). do.
  • the electric power supplied to the coil 40B (x) is unlikely to leak to the coils 40B (x-1) and 40B (x + 1), so that the loss of the electric power supply can be suppressed. Further, since the coils 40B (x-1) and 40B (x + 1) are difficult to be electromagnetically coupled to the coil 40B (x), the coils 40B (x-1) and 40B (x + 1) are of the coil 40B (x). It does not easily affect the impedance.
  • a plurality of power transmission coil units 40UC are arranged two-dimensionally on the xy plane.
  • x and y of (x, y) are numbers indicating positions in the x direction and the y direction, respectively.
  • the configuration is such that power can be supplied even when the vehicle 202 is displaced in the width direction (y direction) of the road 105.
  • the power transmission coil unit 40UC (x, y) includes the coil 40C (x, y) arranged on the xy plane and the coils 44C (x, y), 45C (x, y), 44C (x, y + 1), 45C ( It is provided with x + 1, y). Seen from the coil 40C (x, y), the coil 44C (x, y) is in the ⁇ y direction, the coil 45C (x, y) is in the ⁇ x direction, the coil 44C (x, y + 1) is in the + y direction, and the coil. 45C (x + 1, y) is arranged in the + x direction.
  • the coil 44C (x, y) belongs to the power transmission coil unit 40UC (x, y-1) and the power transmission coil unit 40UC (x, y), and the coil 45C (x, y) belongs to the power transmission coil unit 40UC (x-1, y).
  • Y) and the power transmission coil unit 40UC (x, y) the coil 44C (x + 1, y) belongs to the power transmission coil unit 40UC (x, y) and the power transmission coil unit 40UC (x, y + 1)
  • the coil 45C ( x + 1, y) belongs to the power transmission coil unit 40UC (x-1, y) and the power transmission coil unit 40UC (x + 1, y).
  • the power transmission circuit 30 applies an AC voltage to the power transmission coil unit 40UC (x, y).
  • the power transmission circuit 30 has four coils 44C (x, y) and 45C (x) when a counterclockwise current is passed through the coils 40C (x, x) when viewed from the + z direction.
  • Y 44C (x, y + 1), 45C (x + 1, y), a clockwise current is passed when viewed from the + z direction.
  • a magnetic flux B40C (x, y) is generated from the ⁇ z direction to the + z direction, and four coils 44C (x, y), 45C (x, y), 44C (x) are generated.
  • Y occurs.
  • a part of the magnetic flux B40C (x, y) is in the + z direction inside the coil 40C (x, y-1), the coil 40C (x-1, y), 40C (x, y + 1), and 40C (x + 1, y). Attempts to penetrate in the -z direction.
  • the magnetic flux B45C (x, y) tries to penetrate the inside of the 40C (x, y) in the + z direction from the ⁇ z direction and the inside of the coil 40C (x-1, y) in the + z direction from the ⁇ z direction. ..
  • the magnetic flux B45C (x + 1, y) penetrates the inside of the 40C (x, y) in the + z direction from the ⁇ z direction, and tries to penetrate the inside of the coil 40C (x + 1, y) in the + z direction from the ⁇ z direction.
  • the magnetic flux B44C (x, y) tries to penetrate the inside of the 40C (x, y) from the + z direction to the ⁇ z direction and the inside of the coil 40C (x, y-1) from the + z direction to the ⁇ z direction. ..
  • the magnetic flux B44C (x, y + 1) tries to penetrate the inside of the 40C (x, y) from the + z direction to the ⁇ z direction, and the inside of the coil 40C (x, y + 1) from the + z direction to the ⁇ z direction.
  • the transmission circuit 30 causes the coil 40C (x, y) to pass a clockwise current when viewed from the + z direction, and the four coils 44C (x, y), 45C (x, y), 44C (x, y + 1), 45C.
  • a counterclockwise current is passed through (x + 1, y) when viewed from the + z direction, the direction of the magnetic flux is opposite to that shown in FIGS. 7A and 7B, but the same applies.
  • the coil 45C (x, y) has a magnetic flux reduction structure that reduces the magnetic flux that causes an induced current in the coil 40C (x-1, y) when the electric power is transferred using the coil 40C (x, y). Function. As a result, almost no induced current is generated in the coil 40C (x-1, y). Since the coil 40C (x-1, y) is difficult to be electromagnetically coupled to the coil 40C (x, y), the coil 40C (x-1, y) affects the impedance of the coil 40C (x, y). hard.
  • the coil 45C (x + 1, y) functions as a magnetic flux reduction structure that reduces the magnetic flux that causes an induced current in the coil 40C (x + 1, y) when power is transferred using the coil 40C (x, y).
  • the coil 44C (x, x) has a magnetic flux reduction structure that reduces the magnetic flux that causes an induced current in the coil 40C (x, y-1) when power is transferred using the coil 40C (x, x).
  • the coil 44C (x, y + 1) functions as a magnetic flux reduction structure that reduces the magnetic flux that causes an induced current in the coil 40C (x, y + 1) when power is transferred using the coil 40C (x, y). do.
  • the coils 40C (x + 1, y), 40C (x, y-1), and 40C (x, y + 1) are difficult to be electromagnetically coupled to the coil 40C (x, x), the coils 40C (x + 1, y), 40C. (X, y-1) and 40C (x, y + 1) are unlikely to affect the impedance of the coil 40C (x, x).
  • the electric power supplied to the coil 40C (x, y) is the coil 40C (x-1, y), 40C (x + 1, y), 40C (x, y-). 1) Since it is difficult to leak to 40C (x, y + 1), the loss of power supply can be suppressed. Further, the coils 40C (x-1, y), 40C (x + 1, y), 40C (x, y-1), and 40C (x, y + 1) are difficult to be electromagnetically coupled to the coil 40C (x, y).
  • the coils 40C (x-1, y), 40C (x + 1, y), 40C (x, y-1), and 40C (x, y + 1) are unlikely to affect the impedance of the coil 40C (x, y). ..
  • the power transmission circuit 30 has four coils 44C (x, y), 45C (x, y), 44C (x, y + 1), 45C (x + 1, y) in addition to the coil 40C (x, y). ) Is also applied with a voltage to pass a current, but the first cycle in which the coils 40C (x, y) and 45C (x, y), 45C (x + 1, y) voltages are applied and a current is passed, and the coil A second cycle in which a voltage is applied to the 40C (x, y) and the coils 44C (x, y), 44C (x, y + 1) and a current is passed may be alternately executed in a time division. In the first cycle, the effect is obtained when the vehicle 202 moves in the x direction as in the second embodiment, and in the second cycle, when the vehicle 202 moves in the y direction according to the principle as in the second embodiment. It is effective for.
  • the power transmission coil unit 40UB (x, y) of the fifth embodiment has a configuration in which the third embodiment is expanded two-dimensionally, and the vehicle 202 is in the width direction of the road 105. It is configured so that power can be supplied even if it shifts in the (y direction).
  • the electric power supplied to the coil 40B (x) does not easily leak to the coils 40B (x-1) and 40B (x + 1) in the x direction. It was explained that the coils 40B (x-1) and 40B (x + 1) are unlikely to affect the impedance of the coils 40B (x). The same can be said for the y direction.
  • the electric power supplied to the coil 40B (x, y) is not only the coil 40B (x-1, y), 40B (x + 1, y) but also the coil 40B (x, y-1), 40B. It is hard to leak to (x, y + 1). Further, not only the coils 40B (x-1, y) and 40B (x + 1, y) but also the coils 40B (x, y-1) and 40B (x, y + 1) have the impedance of the coil 40B (x, y). Hard to influence.
  • the electric power supplied to the coil 40B (x, y) is the coil 40B (x-1, y), 40B (x + 1, y), 40B (x, y-). 1) Since it is difficult to leak to 40B (x, y + 1), the loss of power supply can be suppressed. Further, the coils 40B (x-1, y), 40B (x + 1, y), 40B (x, y-1), 40B (x, y + 1) are difficult to be electromagnetically coupled to the coil 40B (x, y). Therefore, the coils 40B (x-1, y), 40B (x + 1, y), 40B (x, y-1), and 40B (x, y + 1) are unlikely to affect the impedance of the coil 40B (x).
  • FIG. 9A is an explanatory diagram showing a power transmission coil unit 40UD according to the sixth embodiment.
  • the power transmission coil unit 40UD includes four coils 40D1, 40D2, 40D3, 40D4.
  • the coils 40D1 and 40D2 are arranged in the xy plane, and the coils 40D2 are arranged in the + x direction of the coils 40D1.
  • the coils 40D3 and 40D4 are arranged in the yz plane including the boundary of the coils 40D1 and 40D2, the coil 40D3 is arranged in the ⁇ z direction of the boundary of the coils 40D1 and 40D2, and the coil 40D4 is arranged in the + z direction.
  • the winding 43 of the coils 40D1 and 40D2 is wound on the surface of the core 42 opposite to the substrate 41.
  • the winding 43 of the coils 40D3 and 40D4 is configured to be wound around the core 42 as a core. Since the substrate 41 of the coil coil 40D1, 40D2, 40D3, 40D4 can be installed so as to be substantially parallel to the surface of the road 105, the coil coil 40D1, 40D2, 40D3, 40D4 can be installed on the road 105 without digging deeply in the road. ..
  • the power transmission circuit 30 applies an AC voltage to the coils 40D1 and the coils 40D3 and 40D4. At this time, when the power transmission circuit 30 causes a counterclockwise current to flow through the coil 40D1 when viewed from the + z direction, the power transmission circuit 30 causes a counterclockwise current to flow through the coil 40D3 when viewed from the + x direction, and + x with respect to the coil 4040D4. A clockwise current flows when viewed from the direction.
  • the transmission circuit 30 When the transmission circuit 30 passes a counterclockwise current through the coil 40D1 when viewed from the + z direction, it penetrates the inside of the coil 40D1 from the ⁇ z direction to the + z direction and advances the outside of the coil 40D1 from the + z direction to the ⁇ z direction. , Again, a closed magnetic flux B40D1 is generated that penetrates the inside of the coil 40D1 from the ⁇ z direction to the + z direction.
  • the transmission circuit 30 passes a counterclockwise current through the coil 40D3 when viewed from the + x direction, it penetrates the inside of the coil 40D3 from the ⁇ x direction to the + x direction and travels the outside of the coil 40D3 from the + x direction to the ⁇ x direction.
  • a closed magnetic flux B40D3 that penetrates the inside of the coil 40D3 from the ⁇ x direction to the + x direction is about to be generated again.
  • the transmission circuit 30 passes a clockwise current through the coil 40D4 when viewed from the + x direction, it penetrates the inside of the coil 40D4 from the + x direction to the ⁇ x direction, travels the outside of the coil 40D4 from the ⁇ x direction to the + x direction, and again.
  • a closed magnetic flux B40D4 that penetrates the inside of the coil 40D4 from the + x direction to the ⁇ x direction is about to be generated.
  • the direction of the magnetic flux B40D1 that tends to pass inside the coils 40D3 and 40D4 is opposite to the direction of the magnetic flux B40D3 that tends to occur inside the coil 40D3, and the direction of the magnetic flux B40D4 that tends to occur inside the coil 40D4. It is the opposite of the direction of. Therefore, the magnetic flux B40D1 repels the magnetic fluxes B40D3 and B40D4, and it is difficult to penetrate the coils 40D3 and 40D4. Therefore, it is difficult for the magnetic flux B40D1 to penetrate the coil 40D2.
  • the power transmission circuit 30 causes the coil 40D1 to carry a clockwise current when viewed from the + z direction
  • the power transmission circuit 30 causes the coil 40D3 to flow a clockwise current when viewed from the + x direction and the coil 40D4 when viewed from the + x direction. Pass a counterclockwise current.
  • the direction of the magnetic flux generated at this time is opposite to that shown in FIG. 9A, but is the same.
  • the coils 40D3 and 40D4 generate a magnetic flux that causes an induced current in the adjacent coil 40D2 when the electric power is transferred by using the coil 40D1. It functions as a magnetic flux reduction structure that reduces magnetic flux. As a result, the magnetic flux B40D1 hardly causes an induced current in the coil 40D2.
  • the electric power supplied to the coil 40D1 is unlikely to leak to the coil 40D2, so that the loss of the electric power supply can be suppressed. Further, since the coil 40D2 is difficult to be electromagnetically coupled to the coil 40D1, the coil 40D2 is unlikely to affect the impedance of the coil 40D1.
  • the seventh embodiment includes a plurality of power transmission coil units 40UE (x) arranged in the x direction.
  • X in (x) is a number indicating a position in the x direction.
  • the coil 40UE (x) includes a coil 48E (x) and a coil 40E (x).
  • the coil 48E (x) includes a first coil portion 48Ea (x) and a second coil portion 48Eb (x), and the first coil portion 48Ea (x) and the second coil portion 48Eb (x) are + z. Seen from the direction, it is wound in the opposite direction.
  • the second coil portion 48Eb (x) is in the + y direction of the first coil portion 48Ea (x), and the first coil portion 48Ea (x) and the second coil portion 48Eb (x) are planes on a zx plane. It is symmetric with S40E as the plane of symmetry.
  • the coil 40E (x) is arranged in the + x direction with respect to the coil 48E (x) on the xy plane.
  • the coil 40E (x) is also symmetrical with the surface S40E as the plane of symmetry.
  • a coil 48E (x + 1) is arranged in the + x direction of the coil 40E (x).
  • the coil 48E (x) is composed of two coil portions 48Ea (x) and 48Eb (x) connected by a continuous conducting wire, and is a winding wound around the two coil portions 48Ea (x) and 48Eb (x). One is clockwise when viewed from the + z direction, and the other is counterclockwise when viewed from the + z direction.
  • the coil 48E (x) one coil portion 48Ea (x) is wound once, and then the other coil 48Eb (x) is wound once in the opposite direction, that is, the Arabic numeral "8" is drawn.
  • the transmission circuit 30 has the first coil as shown in FIG.
  • a clockwise current flows through the portion 48Ea (x) when viewed from the + z direction
  • a counterclockwise current flows through the second coil portion 48Eb (x) when viewed from the + z direction.
  • a magnetic flux B48Ea (x) from the + z direction to the ⁇ z direction is generated inside the first coil portion 48Ea (x), and + z from the ⁇ z direction inside the second coil portion 48Eb (x).
  • a magnetic flux B48Eb (2) toward the direction is generated.
  • the magnetic flux B48Ea (x) and the magnetic flux B48Eb (2) form a closed magnetic flux along the yz plane.
  • a part of the magnetic flux B48Ea (x) tries to penetrate from the ⁇ y direction to the + z direction from the inner surface S40E of the coil 40E (x-1) and the coil 40E (x) in the ⁇ y direction, and the magnetic flux B48Eb (x).
  • a part of the coil 40E (x-1) tries to penetrate from the + z direction to the ⁇ z direction in the + y direction from the inner surface S40E of the coil 40E (x).
  • the power transmission circuit 30 causes a current in the opposite direction to that shown in FIG. 10, that is, counterclockwise when viewed from the + z direction in the first coil portion 48Ea (x), and flows in the second coil portion 48Eb (x) in the + z direction.
  • a clockwise current is applied, the direction of the magnetic flux is reversed, but the same magnetic flux is generated.
  • the magnetic flux that penetrates the inside of the coil 40E (x) is the magnetic flux B48Ea ( As a result of the repulsion or cancellation of x) and the magnetic flux B48Eb (x), the size becomes smaller.
  • the magnetic flux penetrating the coil 40E (x-1) That is, the first coil portion 48Ea (x) and the second coil portion 48Eb (x) mutually use the coil 40E (x-1) or the coil 40E (x) when the electric power is transferred using the coil 48E (x).
  • the electric power supplied to the coil 48E (x) is unlikely to leak, so that the loss of the electric power supply can be suppressed.
  • the eighth embodiment includes a plurality of power transmission coil units 40UF (x) arranged in the x direction.
  • the difference from the transmission coil unit 40UE (x) of the seventh embodiment shown in FIG. 10 is that the coil 48F2 (x) has two coil portions, that is, the third coil portion 48F2a (x), similarly to the coil 48F1 (x). ) And the fourth coil portion 48F2b (x), and the windings of the third coil portion 48F2a (x) and the fourth coil portion 48F2b (x) on the xy plane are opposite when viewed from the + z direction. It is a point that is wound in the direction.
  • the coil 48F2 (x) is arranged so as to be rotated by 90 ° with respect to the coil 48F1 (x) when viewed from the z direction. That is, when viewed from the coil 48F1 (x), the third coil portion 48F2a (x) of the coil 48F2 (x) is arranged in the + x direction, and the coil 48F2 (x) is further arranged in the + x direction of the third coil portion 48F2a (x).
  • the fourth coil portion 48F2b (x) of the above is arranged.
  • the direction in which (x) is lined up has an intersecting relationship.
  • the direction in which the third coil portion 48F2a (x) and the fourth coil portion 48F2b (x) of the coil 48F2 (x) are lined up may have a twisting relationship.
  • the power transmission circuit 30 applies an AC voltage to the coil 48F1 (x). Since the first coil portion 48F1a (x) and the second coil portion 48F1b (x) are wound in opposite directions when viewed from the + z direction, for example, as shown in FIG. 11A, the transmission circuit 30 is the first. When a clockwise current flows through the coil portion 48F1a (x) when viewed from the + z direction, a counterclockwise current flows through the second coil portion 48F1b (x) when viewed from the + z direction.
  • a magnetic flux B48F1a (x) is generated inside the first coil portion 48F1a (x) from the + z direction to the ⁇ z direction, and inside the second coil portion 48F1b (x) is directed from the ⁇ z direction to the + z direction.
  • a magnetic flux B48F1b (x) is generated.
  • a part of the magnetic flux B48F1a (x) tries to penetrate from the ⁇ z direction to the + z direction inside the ⁇ y direction from the surface S40F of the third coil portions 48F2a (x) and 48F2a (x-1), and the magnetic flux B48F1b (x) Part of the third coil portion 48F2a (x) 48F2a (x-1) tries to penetrate the inside of the surface S40F in the + y direction from the + z direction to the ⁇ z direction.
  • the transmission circuit 30 causes a counterclockwise current to flow through the first coil portion 48F1a (x) when viewed from the + z direction and a clockwise current when viewed from the + z direction through the second coil portion 48F1b (x).
  • the direction of the magnetic flux is opposite to that shown in FIG. 11A, but the magnetic flux is generated in the same manner.
  • the third coil portion 48F2a (The magnetic flux penetrating the inside of x) becomes smaller as a result of the magnetic flux B48F1a (x) and the magnetic flux B48F1b (x) repelling or canceling each other. The same applies to the third coil portion 48F2a (x-1) of the coil 48F2 (x-1).
  • the first coil portion 48F1a (x) and the second coil portion 48F1b (x) are attached to the coil 48F2 (x-1) and the coil 48F2 (x), respectively, when the electric current is transferred by using the coil 48F1 (x). It functions as a magnetic flux reduction structure that reduces the magnetic flux that causes an induced current. As a result, almost no induced current is generated in the coil 48F2 (x-1) or the coil 48F2 (x). That is, the electric power supplied to the coil 48F1 (x) is unlikely to leak to the coil 48F2 (x-1) and the coil 48F2 (x).
  • the coil 48F2 (x-1) and the coil 48F2 (x) are difficult to be electromagnetically coupled to the coil 48F1 (x), the coil 48F2 (x-1) and the coil 48F2 (x) are of the coil 48F1 (x). It does not easily affect the impedance.
  • the power transmission circuit 30 applies the coil 48F2 AC voltage.
  • FIG. 11B when the power transmission circuit 30 passes a clockwise current through the third coil portion 48F2a (x) when viewed from the + z direction, the fourth coil portion 48F2b (x) is viewed from the + z direction.
  • a counterclockwise current flows.
  • a magnetic flux B48F2a (x) is generated inside the third coil portion 48F2a (x) from the + z direction to the ⁇ z direction, and inside the fourth coil portion 48F2b (x) is directed from the ⁇ z direction to the + z direction.
  • a magnetic flux B48F2b (x) is generated.
  • a part of the magnetic flux B48F2a (x) tries to penetrate from the ⁇ z direction to the + z direction in the first coil portion 48F1a (x) of the coil 48F1 (x), and from the ⁇ z direction to the + z direction in the second coil portion 48F1b (x). Try to penetrate. Further, a part of the magnetic flux B48F2b (x) tries to penetrate from the + z direction to the ⁇ z direction in the first coil portion 48F1a (x + 1) of the coil 48F1 (x + 1), and from the + z direction in the second coil portion 48F1b (x). Try to penetrate in the z direction.
  • the eighth embodiment when a clockwise induced current is about to be generated in the first coil portion 48F1a (x) due to a change in the magnetic flux B48F2a (x), the second coil portion 48F1b (x) ), A counterclockwise induced current is about to occur.
  • the direction of the induced current to be generated in the first coil portion 48F1a (x) and the direction of the induced current to be generated in the second coil portion 48F1b (x) are opposite to each other when viewed from the entire coil 48F1 (x). Yes, they cancel each other out. Therefore, almost no induced current is generated in the coil 48F1 (x). Similarly, almost no induced current flows in the coil 48F1 (x + 1).
  • the coil 48F2 (x) functions as a magnetic flux reducing structure that reduces the magnetic flux that causes an induced current in the coils 48F1 (x) and 48F1 (x + 1) when the electric power is transferred using the coil 48F2 (x). Therefore, the electric power supplied to the coil 48F2 (x) is unlikely to leak to the coils 48F1 (x) and 48F1 (x + 1). Further, since the coils 48F1 (x) and 48F1 (x + 1) are difficult to be electromagnetically coupled to the coils 48F2 (x), the coils 48F1 (x) and 48F1 (x + 1) affect the impedance of the coils 48F2 (x). Hard to give.
  • the coil 48F2 (x-1) and the coil 48F2 (x) are difficult to be electromagnetically coupled to the coil 48F1 (x), and the coil 48F1 (x) and the coil 48F1 (x + 1) are electromagnetically connected to the coil 48F2 (x).
  • the impedance of the coils 48F1 (x) and 48F2 (x) is not easily affected by other coils because it is difficult to couple to.
  • the coil unit 40UF of the ninth embodiment shown in FIG. 12 is different from the eighth embodiment in that the shield 47 is provided on the outside of the coils 48F1 (x) and 48F2 (x) when viewed from the z direction. do.
  • the shield 47 is made of, for example, a ferromagnet.
  • the height of the shield 47 in the z direction is equal to or greater than the thickness of the coils 48F1 (x) and 48F2 (x) in the z direction.
  • the magnetic fluxes 48F1a (x) and 48F1b (x) generated by applying an AC voltage to the coil 48F1 (x) are unlikely to leak to the outside of the shield 47. Therefore, it is difficult for the magnetic fluxes 48F1a (x) and 48F1b (x) to penetrate the third coil portion 48F2a (x), and it is difficult for the coil 48F2 to be electromagnetically coupled to the coil 48F1. Further, the magnetic fluxes 48F2a (x) and 48F2b (x) generated by applying an AC voltage to the coil 48F2 (x) do not easily penetrate the first coil portion 48F1 (a) and the second coil portion 48F1b (x).
  • the coil 48F1 (x) is difficult to electromagnetically couple with the coil 48F2 (x). Further, in the ninth embodiment, even if the magnetic fluxes 48F1a (x) and 48F1b (x) leak to the outside of the shield 47, the same effect as that of the eighth embodiment is obtained. According to the ninth embodiment, the loss in the power supply can be further suppressed as compared with the eighth embodiment.
  • shields 47 are provided on both the outside of the coil 48F1 (x) and the outside of the coil 48F2 (x), but a shield 47 may be provided on only one of them. Either the magnetic flux emitted from the coil 48F1 (x) or the coil 48F2 (x), the magnetic flux entering the coil 48F1 (x), or the coil 48F2 (x) can be cut off or reduced.
  • the power transmission coil unit 40UG of the tenth embodiment includes a plurality of power transmission coil units 40UG (x).
  • the power transmission coil unit 40UG (x) includes coils 40UG1 (x), 40UG2 (x), and a shield 47.
  • the coil 40UG1 (x) and the coil 40UG2 (x) are arranged in the xy plane, and the coil 40UG2 (x) is arranged in the + y direction of the coil 40UG1 (x).
  • the coil 40UG1 (x) and the coil 40UG2 (x) have the same outer shape and the number of turns, and are plane-symmetrical with the surface S40G (x) as a plane of symmetry.
  • the shield 47 surrounds the outer periphery of the coil 40UG1 (x) and the coil 40UG2 (x), and suppresses the magnetic flux from leaking to the outside of the shield 47.
  • the power transmission coil unit 40UG (x-1) also has a similar configuration.
  • the planes of symmetry S40G (x-1) of the coil 40UG1 (x-1) and the coil 40UG2 (x-1) are different.
  • the plane S40G (x) and the plane of symmetry S40G (x-1) may be the same plane.
  • the power transmission circuit 30 applies an AC voltage to the power transmission coil unit 40UG (x). Since the magnetic fluxes B40UG1 (x) and B40UG2 (x) generated in the coils 40UG1 (x) and 40UG2 (x) are cut off by the shield 47, the coil 40UG1 (x-1) of the power transmission coil unit 40UG (x-1) , 40UG2 (x-2) is difficult to penetrate. Therefore, it is difficult for an induced current to flow from the power transmission coil unit 40UG (x) to the power transmission coil unit 40UG (x-1).
  • the coils 40UG1 (x-1) and 40UG2 (x-1) are difficult to be electromagnetically coupled to the coils 40UG1 (x) and 40UG2 (x), the coils 40UG1 (x-1) and 40UG2 (x-1) are difficult to bond. ) Is unlikely to affect the impedance of the coils 40UG1 (x) and 40UG2 (x).
  • the loss of power supply can be suppressed.
  • 11th Embodiment As shown in FIG. 14, in the eleventh embodiment, power transmission is performed so that the coils 48F1 (x) and 48F2 (x) constituting the power transmission coil unit 40UF (x) of the ninth embodiment form a checker pattern on the xy plane. It has a configuration in which the coil unit 40UF (x) is arranged two-dimensionally.
  • the power transmission circuit 30 applies an AC voltage to the coil 48F1 (x, y).
  • the magnetic flux that tries to penetrate the coil 48F1 (x, y) is generated in the coils 48F2 (x-1, y), 48F2 (x, y), and 48F2 (x, y + 1). It becomes smaller.
  • the electric power supplied to the coil 48F1 (x, y) is unlikely to leak to the coils 48F2 (x-1, y), 48F2 (x, y), and 48F2 (x, y + 1).
  • the coils 48F2 (x-1, y), 48F2 (x, y) and 48F2 (x, y + 1) are difficult to be electromagnetically coupled to the coil 48F1 (x, y), the coil 48F1 (x, y) It is hard to affect the impedance of.
  • the coils 48F1 (x-1, y + 1), 48F1 (x, y + 1), 48F1 (x + 1, y), 48F2 (x + 1, y + 1) are arranged apart from the coils 48F1 (x), and the shield. Due to the shielding effect of 47, the magnetic flux of the coil 48F1 (x) is difficult to penetrate the coils 48F1 (x-1, y + 1), 48F1 (x, y + 1), 48F1 (x + 1, y), 48F2 (x + 1, y + 1).
  • the transmission circuit 30 has coils 48F1 (x-1, y + 1), 48F2 (x-1, y), 48F2 (x, y + 1), 48F2 (x, y), 48F1 (x, y + 1) other than the coil 48F1 (x). The same applies when an AC voltage is applied to 48F1 (x + 1, y) and 48F2 (x + 1, y + 1).
  • the electric power supplied to the coil 48F1 (x) is unlikely to leak to other coils, so that the loss of the electric power supply can be suppressed.
  • the shield 47 may not be provided.
  • the power receiving coil unit 240UF on the vehicle 202 side is added to the power transmission coil unit 40UF (x, y) of the eleventh embodiment.
  • the power transmission coil unit 40UF (x, y) is not provided with the shield 47, but the shield 47 may be provided.
  • the power receiving coil unit 240U on the vehicle 202 side includes coils 248F1, 248F2 having the same configuration as the coils 48F1 (x, y) and 48F2 (x, y) of the power transmission coil unit 40UF (x).
  • the coil 248F2 is arranged adjacent to the coil 248F1 in the + x direction.
  • the vehicle 202 may include a plurality of power receiving coil units 240UF.
  • the electric power supplied to the coil 48F1 (x) is unlikely to leak to other coils, so that the loss of the electric power supply can be suppressed.
  • the twelfth embodiment it is possible to suppress the electromagnetic coupling between the power receiving coil unit 240U and the coils 248F1,248F1. That is, the electric power supplied to the 248F1 can be prevented from leaking to the coil 248F2. Further, when the regenerative power in the vehicle 202 is transmitted to the power transmission coil unit 40UF (x, y) by using the power receiving coil unit 240U, the power supplied to the 248F1 can be prevented from leaking to the coil 248F2.
  • the thirteenth embodiment includes a plurality of power transmission coil units 40UH (x) arranged in the x direction.
  • the power transmission coil unit 40UH (x) has coils 40H1 (x), 40H2 (x), 40H3 (x), and 40H4 (x).
  • the coils 40H1 (x), 40H2 (x), 40H3 (x), 40H4 (x) are arranged on the xy plane, and the coils 40H1 (x), 40H2 (x), 40H3 (x), 40H4 (x) are They are arranged in the ⁇ x direction, the + y direction, the + x direction, and the ⁇ y direction, respectively, when viewed from the center of the four coils.
  • the power transmission coil unit 40UH (x + 1) has coils 40H1 (x + 1), 40H2 (x + 1), 40H3 (x + 1), 40H4 (x + 1), and coils 40H1 (x + 1), 40H2 (x + 1), 40H3 (x + 1), 40H4.
  • (X + 1) is arranged in the xy plane, and the coils 40H1 (x + 1), 40H2 (x + 1), 40H3 (x + 1), and 40H4 (x + 1) are in the ⁇ x direction and the + y direction, respectively, when viewed from the center of the four coils. , + X direction, -y direction.
  • the coil 40H3 (x) and the coil 40H1 (x + 1) belong to different power transmission coil units 40UH (x) and 40UH (x + 1), but are the same coil.
  • a plurality of codes are assigned in association with the codes of the power transmission coil units.
  • the power receiving coil unit 240UH has coils 240H1,240H2, 240H3, 240H4.
  • the coils 240H1,240H2, 240H3, 240H4 are arranged in the xy plane, and the coils 240H1,240H2, 240H3, 240H4 are in the ⁇ x direction, the + y direction, the + x direction, and the ⁇ y, respectively, when viewed from the center of the four coils. Arranged in the direction.
  • the size and shape of the coil of the power receiving coil unit 240HF may be different from the size and shape of the power transmission coil unit 40H (x).
  • the vehicle 202 may include a plurality of power receiving coil units 240UF.
  • the power transmission circuit 30 applies the AC voltage of the power transmission coil unit 40UH (x).
  • the power transmission circuit 30 is connected to the coils 40H2 (x) and 40H4 (x) when a clockwise current is passed through the coils 40H1 (x) and 40H3 (x) when viewed from the + z direction.
  • a counterclockwise current flows when viewed from the + z direction.
  • Magnetic fluxes B40H1 (x) and B40H3 (x) from the + z direction to the ⁇ z direction are generated inside the coils 40H1 (x) and 40H3 (x), and inside the + in the coils 40H2 (x) and 40H4 (x).
  • B40H2 (x) and V40H4 (x) are generated in the magnetic fluxes B40H2 (x) and V40H4 (x) from the ⁇ z direction to the + z direction, forming a closed magnetic flux as shown in FIG. 16B. Since these closed magnetic fluxes do not easily penetrate other coils, it is difficult for an induced current to flow in the power transmission coil unit 40UH (x + 1).
  • the electric power supplied to the power transmission coil unit 40UH (x) is unlikely to leak to other coil units, so that the loss of the electric power supply can be suppressed.
  • the power transmission coil unit 40UH may be arranged two-dimensionally on the xy plane.
  • FIG. 17 is an explanatory diagram showing the 14th embodiment.
  • the power transmission coil unit 40UJ (x) of the 14th embodiment includes a coil 40J1 (x) and a coil 40J2 (x). Assuming that the size of the coil 40J1 (x) and the coil 40J2 (x) in the x direction is Da, the coil 40J2 (x) is arranged at a position shifted in the x direction by Da / 2 with respect to the coil 40J1 (x). ing.
  • FIG. 18 is a graph showing the position in the x direction and the magnetic fluxes B40J1 (x) and B40J2 (x) of the coil 40J1 (x) and the coil 40J2 (x) in the 14th embodiment.
  • the graph showing the magnetic flux B40J1 (x) of the coil 40J1 (x) and the graph showing the magnetic flux B40J2 (x) of the coil 40J2 (x) are shifted by ⁇ / 2 in terms of the electric angle. That is, when the magnetic flux B40J1 (x) of the coil 40J1 (x) is maximum or minimum, the magnetic flux B40J2 (x) of the coil 40J2 (x) is almost zero, and the magnetic flux B40J2 (x) of the coil 40J2 (x).
  • the magnetic flux B40J1 (x) of the coil 40J1 (x) is almost zero. Therefore, when the power transmission circuit 30 feeds the coil 40J1 (x), the magnetic flux B40J1 penetrating the coil 40J2 (x) waiting for power supply is almost zero, and when the power transmission circuit 30 feeds the coil 40J2 (x). In addition, the magnetic flux B40J2 penetrating the coil 40J1 (x) in standby for power supply is almost zero. Therefore, the electric power supplied to the coil 40J1 (x) is unlikely to leak to the coil 40J2 (x), and the electric power supplied to the coil 40J2 (x) is unlikely to leak to the coil 40J1 (x). Further, since the coil 40J1 (x) and the coil 40J2 (x) are difficult to be electromagnetically coupled to each other, they do not affect the impedance of each other.
  • the loss of power supply can be suppressed.
  • the coil unit 40UK of the 14th embodiment includes coils 40K1 and 40K2.
  • the coil 40K1 is arranged along the xy plane, and the coil 40K2 is located in the + x direction of the coil 40K1 and is arranged along the zx plane.
  • the power transmission circuit 30 applies an AC voltage to the coil 40K1.
  • the generated magnetic flux B40K1 penetrates the inside of the coil 40K1 from the + z direction to the ⁇ z direction, and outside the coil 40K1 is ⁇ z. It is a closed magnetic flux from the direction to the + z direction.
  • the transmission circuit 30 flows a counterclockwise current when viewed from the + z direction, the generated magnetic flux B40K1 is a magnetic flux in the direction opposite to that in FIG. 19, and penetrates the inside of the coil 40K1 from the ⁇ z direction to the + z direction, and the coil 40K1.
  • the magnetic flux B40K1 is parallel to the zx plane in the + x direction of the coil 40K1. That is, the magnetic flux B40K1 generated at the existing position of the coil 40K2 by the coil 40K1 when the electric power is transferred intersects with the central axis direction of the coil 40K2 at 90 °. Therefore, it is difficult for the magnetic flux B40K1 to penetrate the coil 40K2. Therefore, even if the power transmission circuit 30 applies an AC voltage to the coil 40K1, almost no induced current is generated in the coil 40K2, and the power supplied to the coil 40K1 is unlikely to leak to the coil 40K2.
  • the maximum angle formed by the magnetic flux B40K1 and the coil 40K2 in the central axis direction is preferably 90 °, but it may intersect at an angle inclined by 45 ° or more, for example.
  • the power transmission circuit 30 applies an AC voltage to the coil 40K2.
  • the generated magnetic flux B40K2 penetrates the inside of the coil 40K2 from the + y direction to the ⁇ y direction, and outside the coil 40K1 is ⁇ y. It is a closed magnetic flux from the direction to the + y direction.
  • the transmission circuit 30 flows a counterclockwise current when viewed from the + y direction, the generated magnetic flux B40K2 is a magnetic flux in the direction opposite to that in FIG. 21, and penetrates the inside of the coil 40K2 from the ⁇ y direction to the + y direction, and the coil 40K1.
  • the magnetic flux B40K2 is parallel to the xy plane as shown in FIG. 22 in the ⁇ x direction of the coil 40K2. That is, the magnetic flux B40K2 generated at the existing position of the coil 40K1 by the coil 40K2 when the electric power is transferred intersects with the central axis direction of the coil 40K1 at 90 °. Therefore, it is difficult for the magnetic flux B40K2 to penetrate the coil 40K1. Therefore, even if the power transmission circuit 30 applies an AC voltage to the coil 40K2, almost no induced current is generated in the coil 40K1, and the power supplied to the coil 40K2 is unlikely to leak to the coil 40K1.
  • the maximum angle formed by the magnetic flux B40K2 and the coil 40K1 in the central axis direction is preferably 90 °, but it may intersect at an angle inclined by 45 ° or more, for example.
  • the loss of power supply can be suppressed.
  • the coil 40K1 is arranged along the xy plane and the coil 40K2 is arranged along the zx plane, that is, the direction of the normal vector of the coil 40K1 is (0, 0, 1), and the method of the coil 40K2 is performed.
  • the direction of the line vector is (0,1,0), but as shown in FIG. 23, the coils 40K1, 40K2 are rotated by 45 ° around the x-axis, and the direction of the normal vector of the coil 40K1 is (0,1). , 1),
  • the direction of the normal vector of the coil 40K2 may be (0,1, -1).
  • the present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose.
  • the technical features of the embodiments corresponding to the technical features in each embodiment described in the column of the outline of the invention are for solving a part or all of the above-mentioned problems, or a part of the above-mentioned effects. Or, in order to achieve all of them, it is possible to replace or combine them as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

非接触給電システム(100)に用いられるコイルユニット(40U)は,第1コイル(40(x))と,前記第1コイルに対して予め定められた方向に隣接する第2コイル(40(x+1))とを含み,電力の移動に用いられる複数のコイルと,前記第1コイルを用いた前記電力の移動の際に前記第1コイルが前記第2コイルに、誘起電圧、もしくは誘導電流を生じさせる磁束(B40)を低減する磁束低減構造(MRS)と,を備える。

Description

非接触給電システム及びそのコイルユニット 関連出願の相互参照
 本願は、2020年6月10日に出願された出願番号2020-100608号の日本出願に基づく優先権を主張し、その開示の全てが参照により本願に組み込まれる。
 本開示は,非接触給電システム及びそのコイルユニットに関する。
 特開2011-234496号公報には,屋外に設置され,駐車中の車両に非接触で電力を給電する非接触給電システムが開示されている。この非接触給電システムは,共振コイル(給電コイルあるいは送電コイル)を,直列に接続された複数のコイルで形成し,複数のコイルを送電,受電を行う面に対して平行な平面上の互いに隣接するように配置している。隣接するコイルに発生する電磁界の向きは,平面に対し互いに逆方向である。
 特開2011-234496号公報に記載の非接触給電システムは,駐車中の車両に給電するため,駐車位置に配置されている複数のコイルに電力を給電している。これに対し,走行中の車両に給電する非接触給電システムでは,道路に沿って多数のコイルを配置し,車両の位置に対応した位置にあるコイルに対して電力を給電し,他のコイルには,電力を給電しない。しかし,車両の位置に対応した位置にあるコイルと他のコイルとが電磁的に結合すると,他のコイルに誘導電流が流れ,電力供給の損失が発生する。
 本開示の一形態によれば,非接触給電システムに用いられるコイルユニットが提供される。このコイルユニットは,第1コイルと,前記第1コイルに対して予め定められた方向に隣接する第2コイルとを含み,電力の移動に用いられる複数のコイルと,前記第1コイルを用いた前記電力の移動の際に前記第1コイルが前記第2コイルに、誘起電圧、もしくは誘導電流を生じさせる磁束を低減する磁束低減構造と,を備える。この形態によれば,第1コイルを通り,かつ第2コイルを通る磁束を低減できるので,第1コイルに供給された電力が第2コイルに漏れ難くできる。すなわち,電力供給の損失を抑制できる。また,第2コイルは,第1コイルと電磁的に結合し難くなるため,第1コイルのインピーダンスに対する第2コイルの影響が抑制される。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、走行中非接触給電システムを示す説明図であり、 図2は、送電セクションの概略構成を示す説明図であり、 図3Aは、第1実施形態の送電コイルユニットを示す説明図であり、 図3Bは、第1実施形態の送電コイルユニットを示す説明図であり、 図4は、コイルの構成を示す説明図であり、 図5Aは、第2実施形態の送電コイルユニットを示す説明図であり、 図5Bは、第2実施形態の送電コイルユニットを示す説明図であり、 図6は、第3実施形態の送電コイルユニットを示す説明図であり、 図7Aは、第4実施形態の送電コイルユニットを示す説明図であり、 図7Bは、第4実施形態の送電コイルユニットを示す説明図であり、 図8は、第5実施形態の送電コイルユニットを示す説明図であり、 図9Aは、第6実施形態における送電コイルユニットを示す説明図であり、 図9Bは、コイルの構成を示す説明図であり、 図10は、第7実施形態における送電コイルユニットを示す説明図であり、 図11Aは、第8実施形態における送電コイルユニットを示す説明図であり、 図11Bは、第8実施形態における送電コイルユニットを示す説明図であり、 図12は、第9実施形態における送電コイルユニットを示す説明図であり、 図13は、第10実施形態における送電コイルユニットを示す説明図であり、 図14は、第11実施形態における送電コイルユニットを示す説明図であり、 図15は、第12実施形態における送電コイルユニットを示す説明図であり、 図16Aは、第13実施形態における送電コイルユニットを示す説明図であり、 図16Bは、第13実施形態における送電コイルユニットを示す説明図であり、 図17は、第14実施形態における送電コイルユニットを示す説明図であり、 図18は、第14実施形態におけるコイルの位置と磁束との関係を示すグラフであり、 図19は、第15実施形態における送電コイルユニットを示す説明図であり、 図20は、第15実施形態における送電コイルユニットを+x方向から見た図であり、 図21は、第15実施形態における送電コイルユニットを示す説明図であり、 図22は、第15実施形態における送電コイルユニットを-x方向から見た図であり、 図23は,第15実施形態における送電コイルユニットを45°回転させて+x方向から見た図である。
・走行中非接触給電システムの概略構成:
 図1に示すように,走行中給電システム300は,移動体である車両202などが移動可能なエリアである道路105に設けられた給電装置100と,202側の受電装置200とを備える。走行中給電システム300は,車両202の走行中に給電装置100から車両202に給電することが可能なシステムである。車両202は,例えば,電気自動車やハイブリッド車として構成される。図1において,+x方向は車両202の進行方向を示し,+y方向は車両202の正面から見て右方向を示し,+z方向は鉛直上方向を示す。
 道路105側の給電装置100は,複数の送電用のコイルユニット40U(以下「送電コイルユニット40U」とも呼ぶ。)と,複数の送電コイルユニット40Uのそれぞれに交流電圧を供給する複数の送電回路30と,送電回路30あるいは送電コイルユニット40Uに対応して設けられた複数の車両位置検出部20と,複数の送電回路30に直流電圧を供給する電源回路10と,給電側制御部16と,給電側通信部22と,を備えている。
 複数の送電コイルユニット40Uは,道路105の地表から所定の深さに,x方向に沿って設置されている。送電コイルユニット40Uは,複数のコイルを備えている。このコイルの構成については,後で詳しく説明する。送電回路30は,電源回路10から供給される直流電圧を高周波の交流電圧に変換して送電コイルユニット40Uに印加する回路であり,インバータ回路,共振回路を含んでいる。なお,インバータ回路と共振回路に加え,フィルタ回路を備えても良い。送電コイルユニット40Uと送電回路30とを合わせて「電力供給セグメントSG」と呼ぶ。なお,単に「セグメントSG」と称する場合もある。電力供給セグメントSGは、複数の送電コイルユニット、送電回路を備えても良い。電源回路10は,直流の電力を送電回路30に供給する回路である。例えば,電源回路10は,商用電源から供給される交流を整流して直流を出力するAC/DCコンバータ回路として構成される。なお,電源回路10が出力する直流は,完全な直流でなくてもよく,ある程度の変動(リップル)を含んでいても良い。
 車両位置検出部20は,車両202の位置を検出する。車両202が移動して送電コイルユニット40Uの鉛直上方に車両202の受電コイルユニット240Uが位置すると,送電コイルユニット40Uのコイルと受電コイルユニット240Uのコイルとが電磁的に結合し,送電コイルユニット40Uのコイルのインピーダンスが変わる。車両位置検出部20は,送電コイルユニット40Uのコイルのインピーダンスを測定することで,車両202の位置を検出できる。インピーダンスの算出については,後述する図2の説明の中で説明する。なお,車両位置検出部20は,例えば,車両202に設けられた車両側位置センサ225と通信し,その通信強度を用いて,車両202が,セグメントSGの上に存在するか否かを検出してもよい。複数の送電回路30は,車両位置検出部20で検出された車両202の位置に応じて,車両202に近い1つ以上の送電コイルユニット40Uを用いて送電を実行する。給電側制御部16は,セグメントSGからの給電を制御する。なお,車両位置検出部20は,カメラやサーチコイル,レーザを用いて,車両202の位置を検出するなど,他の手法を用いても良い。
 給電側通信部22は,車両202に設けられた受電側通信部222と,通信を行う。この通信は,例えば,給電指示,本給電指示が含まれる。
 車両202は,バッテリ210と,補機バッテリ215と,受電側制御部220と,受電側制御部222と,車両側位置センサ225と,受電回路230と,受電コイルユニット240Uと,DC/DCコンバータ回路260と,インバータ回路270と,モータジェネレータ280と,補機290と,を備えている。受電コイルユニット240Uは,受電回路230に接続されており,受電回路230の出力には,バッテリ210と,DC/DCコンバータ回路260の高圧側と,インバータ回路270と,が接続されている。DC/DCコンバータ回路260の低圧側には,補機バッテリ215と,補機290とが接続されている。インバータ回路270には,モータジェネレータ280が接続されている。
 受電コイルユニット240Uは,送電コイルユニット40Uとカップリングし,電磁誘導によって誘導電流を生じる装置である。受電回路230は,受電コイルユニット240Uから出力される交流電圧を直流電圧に変換する整流回路と,整流回路にて生成した直流の電圧をバッテリ210の充電に適した電圧に変換するDC/DCコンバータ回路と,を含んでいる。受電回路230から出力される直流電圧は,バッテリ210の充電や,インバータ回路270を介したモータジェネレータ280の駆動に利用することができ,また,DC/DCコンバータ回路260を用いて降圧することで,補機バッテリ215の充電や,補機290の駆動にも利用可能である。また,受電コイルユニット240Uを複数個,設置する構成であってもよい。受電コイルユニット240Uを複数設置することで,車両202の位置ずれに対し,ロバストな最適設計が可能になる。また,受電コイルユニット240Uを複数設置した際は,受電コイルユニット240Uごとに受電回路230を設けても良い。
 バッテリ210は,モータジェネレータ280を駆動するための補機バッテリより高い直流電圧を出力する2次電池である。バッテリ210は,1セル当たりの電圧の低いバッテリを直列に多数接続することで,高電圧,例えば200Vを超える電圧を出力可能に構成されている。モータジェネレータ280は,3相交流モータとして動作し,車両202の走行のための駆動力を発生する。モータジェネレータ280は,車両202の減速時にはジェネレータとして動作し,電力を回生する。インバータ回路270は,モータジェネレータ280がモータとして動作するとき,バッテリ210の電力を3相交流に変換してモータジェネレータ280に供給する。インバータ回路270は,モータジェネレータ280がジェネレータとして動作するとき,モータジェネレータ280が回生した3相交流を直流に変換してバッテリ210に供給する。
 DC/DCコンバータ回路260は,バッテリ210の出力を,バッテリ210の出力電圧より低い電圧に変換して補機バッテリ215及び補機290に供給する。補機バッテリ215は,補機290を駆動するための2次電池であり,その電圧はバッテリ210より低く,例えば,12V,24V,48Vなどのバッテリである。補機290は,車両202の空調装置や電動パワーステアリング装置,ヘッドライト,ウインカ,ワイパー等の周辺装置や車両202の様々なアクセサリーを含む。
 受電側制御部220は,車両202内のインバータ270他,各部を制御する。受電側制御部220は,走行中非接触給電を受ける際には,受電回路230を制御して受電を実行する。
 図2に示すように,給電装置100は,送電回路30と,送電コイルユニット40Uとを備える。送電回路30は,インバータ回路32と,共振回路36と,を備える。インバータ回路32は,直流を交流に変換する回路であり,4つのスイッチングトランジスタTr1からTr4と,コンデンサC3と,4つの保護ダイオードD1からD4と,を備える。4つのスイッチングトランジスタTr1からTr4は,Hブリッジ回路を構成している。スイッチングトランジスタTr1とTr3が直列に接続され,スイッチングトランジスタTr2とTr4が直列に接続されている。スイッチングトランジスタTr1,Tr2は,プラス側電源ラインV+に接続され,スイッチングトランジスタTr3,Tr4は,マイナス側電源ラインV-に接続されている。スイッチングトランジスタTr1とTr3の中間ノードN1と,スイッチングトランジスタTr2とTr4の中間ノードN2は,共振回路36とを介して送電コイルユニット40Uに接続されている。各スイッチングトランジスタTr1からTr4には,それぞれ並列に保護ダイオードD1からD4が接続されている。コンデンサC3は,プラス側電源ラインV+とマイナス側電源ラインV-との間に設けられた平滑コンデンサである。給電側制御部16は,インバータ回路32のスイッチングトランジスタTr1とTr4をオンにしてスイッチングトランジスタTr2とTr3をオフにする第1状態と,スイッチングトランジスタTr2とTr3をオンにしてスイッチングトランジスタTr1とTr4をオフする第2状態と,を周期的に切り替えることで,インバータ回路32を用いて,直流を交流に変換する。
 共振回路36は,送電コイルユニット40Uと,インバータ回路32との間に直列に挿入されたコンデンサC1により形成されている。従って,本実施形態では,共振回路36は,直列共振回路を形成している。なお,直列共振回路の代わりに,コンデンサC1が送電コイルユニット40Uと並列に接続される並列共振回路を形成するように構成しても良い。インバータ回路32と,共振回路36との間にフィルタ回路を設けても良い。
 車両側の受電装置200は、受電回路230と、受電コイルユニット240Uとを備える。受電回路230は、共振回路236と、整流回路232と、DC-DCコンバータ回路238と、を備える。共振回路236は、受電コイル240と直列に接続されたコンデンサC21により形成されている。したがって、本実施形態では、共振回路236は、直列共振回路である。なお、直列共振回路の代わりに、コンデンサC21が受電コイル240と並列に接続される並列共振回路を用いても良い。共振回路236と、整流回路232との間に、フィルタ回路を設けても良い。
 整流回路232は、ブリッジ整流回路であり、4つの整流ダイオードD21~D24と平滑コンデンサC23とを備える。整流ダイオードD21とD23とが直列に接続され、その中間ノードN3に共振回路236のコンデンサC21が接続されている。ダイオード整流D22とD24とが直列に接続され、その中間ノードN4に受電コイル240が接続されている。整流ダイオードD21のカソードとD22のカソードはノードNpに接続され、整流ダイオードD23のアノードとD24のアノードはノードNnに接続されている。平滑コンデンサC23は、ノードNpとノードNnに接続されている。
 DC-DCコンバータ回路238は、整流回路232により整流された直流の電圧を昇圧または降圧してバッテリ210に供給する回路である。DC-DCコンバータ回路238は、4つのスイッチングトランジスタTr25からTr28と、インダクタL28と、保護ダイオードD25からD28と、平滑コンデンサC28と、を備える。ノードNpとノードNnの間で、スイッチングトランジスタTr25とTr27が直列に接続され、また、スイッチングトランジスタTr26とTr28が直列に接続されている。インダクタL28は、スイッチングトランジスタTr25とTr27の中間ノードN5と、スイッチングトランジスタTr26とTr28の中間ノードN6とに接続されている。各スイッチングトランジスタTr25からTr28には、それぞれ並列に保護ダイオードD25からD28が接続されている。平滑コンデンサC28は、4つのスイッチングトランジスタTr25からTr28よりもバッテリ210側に設けられている。受電側制御部220は,DC-DCコンバータ回路238の4つのスイッチングトランジスタTr25からTr28のオン・オフを制御することで,DC-DCコンバータ回路238の電圧変換を制御する。
 バッテリ210には、インバータ回路270を介して、モータジェネレータ280が接続されている。
 送電コイルユニット40UのコイルのインダクタンスをL1,コイル及び配線の電気抵抗をR1,共振回路36のコンデンサC1の容量をC1,受電コイルユニット240UのコイルのインダクタンスをL2とすると,送電コイルユニット40UのコイルのインピーダンスZは,以下の式により算出できる。
 Z=R1+R+j(ω1・Lc-1/(ω1・C1))
 Lc=L1+L2±2Mc=L1+L2±2kc(L1・L2)1/2
 ここで,kcは,結合係数であり,送電コイルユニット40Uのコイルと受電コイルユニット240Uのコイルとの相対的位置により定まる。すなわち,インピーダンスZは,送電コイルユニット40Uのコイルと受電コイルユニット240Uのコイルとの相対的位置により値が変化する。したがって車両位置検出部20は,インピーダンスZを用いて,送電コイルユニット40Uと受電コイルユニット240Uとの間の相対的位置,すなわち,車両202の位置を判断できる。
 上述したように,送電コイルユニット40Uは,複数のコイルを有する。以下,送電コイルユニット40Uの複数のコイルの構成について,説明する。
・第1実施形態:
 図3A,図3Bに示すように,第1実施形態では,送電コイルユニット40U(x)は,コイル40AA(x)と,コイル40AB(x)と,コイル40B(x)を有する。ここで(x)のxは,車両202の進行方向に沿ったx方向の位置を示す番号である。なお,位置を区別する必要がない場合には(x)を省略する場合がある。送電コイルユニット40U(x)は,予め定められた間隔で,車両202の進行方向であるx方向に沿って配置されている。コイル40AA(x)とコイル40AB(x)とは,z方向から見たときの形状が同じで,巻き数も同じであり,xy平面上にy方向に並んで配置されており,zx平面である面S40Aを対称面として対称である。ここで対称とは,コイルの概略形状及び配置位置が対称という程度の意味である。コイル40B(x)は,xy平面上,かつ,コイル40AAとコイル40ABの+x方向に配置されており,コイル40B(x)は,面S40Aを対称面として対称である。なお,コイル40B(x)を,コイル40AA(x)とコイル40AB(x)に対して反対側,つまり-x方向に配置してもよい。磁束B40AA(x)と磁束B40AB(x)は,コイル40AA(x)とコイル40AB(x)に電流を流したときに生じる磁束を示している。以下,他の図についても同様である。
 図4に示すように,コイル40AAは,基板41と,コア42と,巻き線43とを有する。基板41は,例えば,アルミニウムのような,常磁性体で形成されている。コア42は,基板41の上に配置され,例えば,フェライトのような,強磁性体で形成されている。巻き線43は,コア42の基板41と反対側の面の上に巻かれている。コイル40AB,コイル40Bも,コイル40AAと同様の構成を備える。
 送電回路30が,z方向から見たときに,コイル40AA(x)及びコイル40AB(x)に逆向き電流が流れるように,コイルユニット40U(x)に交流電圧を印加する。例えば,送電回路30は,図3Aに示すように,コイル40AA(x)に+z方向から見て時計回りの電流を流すときには,コイル40AB(x)に+z方向から見て反時計回りの電流を流す。このとき,コイル40AA(x)の内側には,+z方向から-z方向に向かう磁束B40AA(x)が生じる。磁束B40AA(x)の一部は,コイル40B(x)の面S40Aよりも-y方向において,コイル40B(x)の内側を-z方向から+z方向に貫こうとする。コイル40AB(x)の内側には,-z方向から+z方向に向かう磁束B40AB(x)が生じる。磁束B40AB(x)の一部は,コイル40B(x)の面S40Aよりも+y方向において,コイル40B(x)の内側を+z方向から-z方向に貫こうとする。すなわち,コイル40B(x)には,+z方向の磁束B40AA(x)と,-z方向の磁束B40AB(x)とが貫こうとする。しかし,コイル40B(x)の内側では,貫こうとする磁束B40AA(x)と磁束B40AB(x)の向きが逆なので,いずれの磁束も通り難い。
 送電回路30が,コイル40AA(x)に+z方向から見て反時計回りの電流を流し,コイル40AB(x)に+z方向から見て時計回りの電流を流すときは,図3Bに示すように,磁束の向きが図3Aに示す状態と逆になるが,同様にいずれの磁束も通り難い。
 磁束B40AA(x)がコイル40B(x)を貫こうとする向きと,磁束B40AB(x)がコイル40B(x)を貫こうとする向きとは,逆である。そのため,コイル40B(x)の内側を通過する磁束は,互いに逆向きの磁束B40AA(x)と,磁束B40AB(x)とが反発,あるいは打ち消し合う結果,ほぼゼロになっている。また,送電回路30は,コイル40AA(x)に流す電流と,コイル40AB(x)に流す電流とが同期するように電圧を印加するので,磁束B40AA(x)と磁束B40AB(x)の大きさは同じように変化する。したがって,コイル40B(x)を貫く磁束は,ほとんど変化しない。
 ところで,コイル40B(x)を貫いている磁束の大きさが変化すると,コイル40B(x)に誘起電圧、もしくは、誘導電流が生じる。以下、「誘起電圧、もしくは、誘導電流」を「誘導電流」と呼ぶ。このときの誘導電流の向きは,誘導電流により生じる磁束がコイル40B(x)を貫いている磁束の変化を妨げる方向である向きである。すなわち,コイル40B(x)を貫いている磁束が減少する場合には,コイル40B(x)の誘導電流により生じる磁束は増大し,コイル40B(x)を貫いている磁束が増大する場合には,コイル40B(x)の誘導電流により生じる磁束は減少する。上述したように,コイル40B(x)を貫く磁束はほぼゼロであり,送電回路30が,コイル40AA(x)及びコイル40AB(x)に交流電圧を印加しても,コイル40B(x)を貫く磁束は,ほぼゼロのまま変化しない。したがって,コイル40B(x)に誘導電流はほとんど生じない。
 以上,説明したように,コイル40AA(x)とコイル40AB(x)を用いた電力の移動の際に,コイル40AA(x)とコイル40AB(x)は,コイル40B(x)に誘導電流を生じさせる磁束を低減する磁束低減構造(MRS)として機能する。その結果,コイル40B(x)に誘導電流をほとんど生じさせない。すなわち,コイル40AA(x)とコイル40AB(x)に供給された電力が,コイル40B(x)に漏れ難いので,電力供給の損失を抑制できる。また,コイル40AA(x)とコイル40AB(x)は,コイル40B(x)と電磁的に結合し難いため,コイル40B(x)は,コイル40AA(x)とコイル40AB(x)のインピーダンスに影響を与え難い。
・第2実施形態:
 第2実施形態では,図5A,図5Bに示すように,x方向に沿って配置された複数の送電コイルユニット40UA(x)を備える。ここで,(x)のxは,第1実施形態と同様に,x方向の位置を示す番号である。図5Aに示す3つの送電コイルユニット40UA(x-1),40UA(x),40UA(x+1)は,この順に-x方向から+x方向に並んでいる。40UA(x-1),40UA(x),40UA(x+1)は,同じ構成を有しているので,送電コイルユニット40UA(x)を用いて,構成を説明する。
 送電コイルユニット40UA(x)は,xy平面に配置されたコイル40A(x)と,コイル44A(x,1),44A(x,2)とを備える。3つのコイルは,+z方向から見たときに,-y方向から+y方向に向けて,コイル44A(x,1),コイル40A(x),コイル44A(x,2)の順に配置されている。コイル44A(x,1)とコイル44A(x,2)とは,+z方向から見たときの形状が同じで,巻き数も同じであり,zx平面である面S40Aを対称面として対称である。
 送電回路30が送電コイルユニット40UA(x)に交流電圧を印加する。このとき,図5Aに示すように,送電回路30は,コイル40A(x)に+z方向から見て反時計回りの電流を流すときには,コイル44A(x,1),コイル44A(x,2)には,+z方向から見て時計回りの電流を流す。コイル40A(x)の内側には,-z方向から+z方向の磁束B40A(x)が生じ,磁束B40A(x)の一部は,コイル44A(x,1),44A(x,2)に加え,隣接するコイル40A(x-1),コイル40A(x+1)を+z方向から-z方向に貫こうとする。コイル44A(x,1)の内側には,+z方向から-z方向の磁束B44A(x,1)が生じ,磁束B44A(x,1)の一部は,コイル40A(x)を貫くとともに,コイル40A(x-1),コイル40A(x+1)の内側の面S40Aよりも-y側を-z方向から+z方向に貫こうとする。また,コイル44A(x,2)の内側には,+z方向から-z方向の磁束B44A(x,2)が生じ磁束B44A(x,2)の一部は,コイル40A(x)を貫くとともに,コイル40A(x-1),コイル40A(x+1)の面S40Aよりも+y側を-z方向から+z方向に貫こうとする。
 送電回路30が,コイル40A(x)に+z方向から見て時計回りの電流を流すときには,コイル44A(x,1),コイル44A(x,2)には,+z方向から見て反時計回りの電流を流す。このとき,各コイルに生じる磁束の向きは,図5Bに示すように,図5Aに示す磁束の向きと逆向きである。
 磁束B40A(x)がコイル40A(x-1)を貫こうとする向きと,磁束B44A(x,1),磁束B44A(x,2)がコイル40A(x-1)を貫こうとする向きとは,逆である。そのため,コイル40A(x-1)の内側を通過する磁束は,互いに逆向きの磁束B40A(x)と,磁束B44A(x,1),磁束B44A(x,2)とが反発,あるいは打ち消し合う結果,ほぼゼロになる。したがって,第1実施形態と同様に,コイル40A(x-1)には,誘導電流は,ほとんど生じない。コイル40A(x+1)についても同様である。送電回路30が,他の送電コイルユニット40UA(x-1),送電コイルユニット40UA(x+1)に交流電圧を印加するときも同様である。
 以上,説明したように,第2実施形態では,コイル40A(x)を用いた電力の移動の際に,コイル44A(x,1),コイル44A(x,2)は,隣接するコイル40A(x-1),コイル40A(x+1)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。その結果,コイル40A(x-1),コイル40A(x+1)に誘導電流をほとんど生じさせない。すなわち,コイル40A(x)に供給された電力が,コイル40A(x-1),コイル40A(x+1)に漏れ難いので,電力供給の損失を抑制できる。また,コイル40A(x)は,コイル40A(x-1),コイル40A(x+1)と電磁的に結合し難いため,コイル40A(x-1),コイル40A(x+1)は,コイル40A(x)のインピーダンスに影響を与え難い。
・第3実施形態:
 図6に示すように,第3実施形態では,送電コイルユニット40UBは,x方向に沿って配置された複数の送電コイルユニット40UB(x)を備える。送電コイルユニット40UB(x)は,コイル40B(x)と,コイル44B(x,1),44B(x,2),44B(x+1,1),44B(x+1,2)を備える。ここで,xは,送電コイルユニット40UB(x)の位置を示す番号である。コイル44B(x,1),44B(x,2),44B(x+1,1),44B(x+1,2)は,コイル40B(x)が配置されたxy平面において,コイル40B(x)を囲うように配置されている。コイル44B(x,1)は,コイル40B(x)の-x-y方向に配置され,コイル44B(x,2)は,コイル40B(x)の-x+y方向に配置され,コイル44B(x+1,1)は,コイル40B(x)の+x-y方向に配置され,コイル44B(x+1,2)は,コイル40B(x)の+x+y方向に配置されている。
 コイル44B(x,1)とコイル44B(x,2)とは,面S40Bを対称面として互いに対称である。コイル44B(x+1,1)とコイル44B(x+1,2)とは,面S40Bを対称面として互いに対称である。
 コイル44B(x,1),44B(x,2)は,コイル40B(x-1)を囲うコイルとして,送電コイルユニット40UB(x-1)を構成している。すなわち,コイル44B(x,1),44B(x,2)は,送電コイルユニット40UB(x),送電コイルユニット40UB(x-1)の両方に属するコイルである。同様に,コイル44B(x+1,1),44B(x+1,2)は,送電コイルユニット40UB(x),送電コイルユニット40UB(x+1)の両方に属するコイルである。
 送電回路30が送電コイルユニット40UB(x)に交流電圧を印加する。例えば,送電回路30は,図6に示すように,コイル40B(x)に,+z方向から見て反時計回りの電流を流すときには,コイル40B(x)を囲う4つのコイル44B(x,1),44B(x,2),44B(x+1,1),44B(x+1,2)には,+z方向から見て時計回りの電流を流す。このとき,コイル40B(x)の内側には,-z方向から+z方向に向かう磁束B40B(x)が生じ,磁束B40B(x)の一部は,コイル40B(x-1)の内側,及び,コイル40B(x+1)の内側を,+z方向から-z方向に貫こうとする。4つのコイル44B(x,1),44B(x,2),44B(x+1,1),44B(x+1,2)の内側には,それぞれ,+z砲から-z方向に向かう磁束B44B(x,1),B44B(x,2),B44B(x+1,2),B44B(x+1,2)が生じる。磁束B44B(x,1)の一部と磁束B44B(x,2)の一部は,コイル40B(x-1)の内側を-z方向から+z方向に貫こうとする。同様に,磁束B44B(x+1,1)の一部と磁束B44B(x+1,2)の一部は,コイル40B(x+1)の内側を-z方向から+z方向に貫こうとする。
 送電回路30がコイル40B(x)に,+z方向から見て時計回りの電流を流し,コイル40B(x)を囲う4つのコイル44B(x,1),44B(x,2),44B(x+1,1),44B(x+1,2)に,+z方向から見て反時計回りの電流を流す場合は,図6に示す状態と磁束の向きが逆になるが,同様である。
 磁束B40B(x)がコイル40B(x-1)の内側を貫こうとする向きと,磁束B44B(x,1),磁束B45B(x,2)がコイル40B(x-1)の内側を貫こうとする向きとは,逆であるため,コイル40B(x-1)の内側を貫く磁束は,反発し,あるいは相殺して小さくなる。すなわち,コイル44B(x,1),44B(x,2)は,コイル40B(x)を用いた電力の移動の際にコイル40B(x-1)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。その結果,コイル40B(x-1)に誘導電流がほとんど生じない。コイル40B(x-1)はコイル40B(x)と電磁的に結合し難いため,コイル40B(x-1)は,コイル40B(x)のインピーダンスに影響を与え難い。
 同様に,磁束B40B(x)がコイル40B(x+1)の内側を貫こうとする向きと,磁束B44B(x+1,1),磁束B44B(x+1,2)がコイル40B(x+1)の内側を貫こうとする向きとは,逆であるため,コイル40B(x+1)の内側を貫く磁束は,同様に,小さくなる。コイル44B(x+1,1),44B(x+1,2)は,コイル40B(x)を用いた電力の移動の際にコイル40B(x+1)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。その結果,コイル40B(x+1)に誘導電流がほとんど生じない。コイル40B(x+1)はコイル40B(x)と電磁的に結合し難いため,コイル40B(x+1)は,コイル40B(x)のインピーダンスに影響を与え難い。
 以上説明したように,第3実施形態によれば,コイル40B(x)に供給した電力が,コイル40B(x-1),40B(x+1)に漏れ難いので,電力供給の損失を抑制できる。また,コイル40B(x-1),40B(x+1)は,コイル40B(x)と電磁的に結合し難いため,コイル40B(x-1),40B(x+1)は,コイル40B(x)のインピーダンスに影響を与え難い。
・第4実施形態:
 図7A,図7Bに示すように,第4実施形態では,複数の送電コイルユニット40UC(x,y)がxy平面に2次元に配置されている。ここで,(x,y)のx,yは,それぞれx方向,y方向の位置を示す番号である。図5Aに示す第2実施形態と比較すると,車両202が,道路105の幅方向(y方向)にずれた場合にも給電できるように対応した構成である。
 送電コイルユニット40UC(x,y)は,xy平面に配置されたコイル40C(x,y)と,コイル44C(x,y),45C(x,y),44C(x,y+1),45C(x+1,y)とを,備える。コイル40C(x,y)から見て,コイル44C(x,y)は,-y方向,コイル45C(x,y)は,-x方向,コイル44C(x,y+1)は,+y方向,コイル45C(x+1,y)は,+x方向に配置されている。
 コイル44C(x,y)は,送電コイルユニット40UC(x,y-1)と送電コイルユニット40UC(x,y)に属し,コイル45C(x,y)は,送電コイルユニット40UC(x-1,y)と送電コイルユニット40UC(x,y)に属し,コイル44C(x+1,y)は,送電コイルユニット40UC(x,y)と送電コイルユニット40UC(x,y+1)に属し,コイル45C(x+1,y)は,送電コイルユニット40UC(x-1,y)と送電コイルユニット40UC(x+1,y)に属している。
 送電回路30が送電コイルユニット40UC(x,y)に交流電圧を印加するとする。図7A,図7Bに示すように,送電回路30は,コイル40C(x,x)に+z方向から見て反時計回りの電流を流すときには,4つのコイル44C(x,y),45C(x,y),44C(x,y+1),45C(x+1,y)に,+z方向から見て時計回りの電流を流す。コイル40C(x,y)の内側には,-z方向から+z方向に向かう磁束B40C(x,y)が生じ,4つのコイル44C(x,y),45C(x,y),44C(x,y+1),45C(x+1,y)の内側には,それぞれ,+z方向から-z方向に向かう磁束B44C(x,x),B45C(x,x),B44C(x,y+1),B45C(x+1,y)が生じる。
 磁束B40C(x,y)の一部は,コイル40C(x,y-1),コイル40C(x-1,y),40C(x,y+1),40C(x+1,y)の内側を+z方向から-z方向に貫こうとする。磁束B45C(x,y)は,40C(x,y)の内側を-z方向から+z方向に貫き,コイル40C(x-1,y)の内側を-z方向から+z方向に貫こうとする。磁束B45C(x+1,y)は,40C(x,y)の内側を-z方向から+z方向に貫き,コイル40C(x+1,y)の内側を-z方向から+z方向に貫こうとする。磁束B44C(x,y)は,40C(x,y)の内側を+z方向から-z方向に貫き,コイル40C(x,y-1)の内側を+z方向から-z方向に貫こうとする。磁束B44C(x,y+1)は,40C(x,y)の内側を+z方向から-z方向に貫き,コイル40C(x,y+1)の内側を+z方向から-z方向に貫こうとする。
 送電回路30が,コイル40C(x,y)に+z方向から見て時計回りの電流を流し,4つのコイル44C(x,y),45C(x,y),44C(x,y+1),45C(x+1,y)に,+z方向から見て反時計回りの電流を流すときは,磁束の向きが,図7A,図7Bに示す状態と逆になるが,同様である。
 磁束B40C(x,y)がコイル40C(x-1,y)を貫こうとする向きと,磁束B45C(x,y)がコイル40C(x-1,y)を貫こうとする向きとは,逆である。そのため,コイル40C(x-1,y)の内側を通過する磁束は,互いに逆向きの磁束B40C(x,y)と,磁束B45C(x,y)とが反発し,あるいは打ち消し合う結果,ほぼゼロになっている。すなわち,コイル45C(x,y)は,コイル40C(x,y)を用いた電力の移動の際にコイル40C(x-1,y)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。その結果,コイル40C(x-1,y)に誘導電流がほとんど生じない。コイル40C(x-1,y)はコイル40C(x,y)と電磁的に結合し難いため,コイル40C(x-1,y)は,コイル40C(x,y)のインピーダンスに影響を与え難い。
 同様に,コイル45C(x+1,y)は,コイル40C(x,y)を用いた電力の移動の際にコイル40C(x+1,y)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能し,コイル44C(x,x)は,コイル40C(x,x)を用いた電力の移動の際にコイル40C(x,y-1)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能し,コイル44C(x,y+1)は,コイル40C(x,y)を用いた電力の移動の際にコイル40C(x,y+1)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。コイル40C(x+1,y),40C(x,y-1),40C(x,y+1)は,コイル40C(x,x)と電磁的に結合し難いため,コイル40C(x+1,y),40C(x,y-1),40C(x,y+1)は,コイル40C(x,x)のインピーダンスに影響を与え難い。
 以上説明したように,第4実施形態によれば,コイル40C(x,y)に供給した電力は,コイル40C(x-1,y),40C(x+1,y),40C(x,y-1),40C(x,y+1)に漏れ難いので,電力供給の損失を抑制できる。また,コイル40C(x-1,y),40C(x+1,y),40C(x,y-1),40C(x,y+1)は,コイル40C(x,y)と電磁的に結合し難いため,コイル40C(x-1,y),40C(x+1,y),40C(x,y-1),40C(x,y+1)は,コイル40C(x,y)のインピーダンスに影響を与え難い。
 第4実施形態では,送電回路30は,コイル40C(x,y)に加え,4つのコイル44C(x,y),45C(x,y),44C(x,y+1),45C(x+1,y)にも電圧を印加し,電流を流しているが,コイル40C(x,y)と45C(x,y),45C(x+1,y)電圧を印加し,電流を流す第1サイクルと,コイル40C(x,y)とコイル44C(x,y),44C(x,y+1)に電圧を印加し,電流を流す第2サイクルと,を時分割で交互に実行しても良い。第1サイクルでは,第2実施形態と同様に車両202がx方向に移動するときに効果を奏し,第2サイクルでは,第2実施形態と同様に原理により,車両202がy方向に移動するときに効果を奏する。
・第5実施形態:
 第5実施形態の送電コイルユニット40UB(x,y)は,図8に示すように,第3実施形態を,2次元に拡張した構成を有しており,車両202が,道路105の幅方向(y方向)にずれた場合にも給電できるように対応した構成である。第3実施形態では,コイル40B(x)に交流電圧を印加したときに,x方向について,コイル40B(x)に供給した電力がコイル40B(x-1),40B(x+1)に漏れ難く,コイル40B(x-1),40B(x+1)は,コイル40B(x)のインピーダンスに影響を与え難いことを説明した。y方向についても同様のことが言える。すなわち,y方向について,コイル40B(x,y)に供給した電力が,コイル40B(x-1,y),40B(x+1,y)だけでなく,コイル40B(x,y-1),40B(x,y+1)にも漏れ難い。また,コイル40B(x-1,y),40B(x+1,y)だけでなく,コイル40B(x,y-1),40B(x,y+1)も,コイル40B(x,y)のインピーダンスに影響を与え難い。
 以上説明したように,第5実施形態によれば,コイル40B(x,y)に供給した電力は,コイル40B(x-1,y),40B(x+1,y),40B(x,y-1),40B(x,y+1)に漏れ難いので,電力供給の損失を抑制できる。また,コイル40B(x-1,y),40B(x+1,y),40B(x,y-1),40B(x,y+1)は,コイル40B(x,y)と電磁的に結合し難いため,コイル40B(x-1,y),40B(x+1,y),40B(x,y-1),40B(x,y+1)は,コイル40B(x)のインピーダンスに影響を与え難い。
・第6実施形態:
 図9Aは,第6実施形態における送電コイルユニット40UDを示す説明図である。送電コイルユニット40UDは,4つのコイル40D1,40D2,40D3,40D4を備える。コイル40D1,40D2は,xy平面に配置され,コイル40D2は,コイル40D1の+x方向に配置されている。コイル40D3,40D4は,コイル40D1,40D2の境界を含むyz平面に配置され,コイル40D1,40D2の境界の-z方向にコイル40D3が配置され,+z方向にコイル40D4が配置されている。
 コイル40D1,40D2の巻き線43は,図4に示すように,コア42の基板41と反対側の面の上に巻かれている。コイル40D3,40D4の巻き線43は,図9Bに示すように,コア42を芯として,巻かれるように構成されている。コイルコイル40D1,40D2,40D3,40D4の基板41を道路105の表面とほぼ平行になるように設置できるので,道路を深く掘らなくてもコイルコイル40D1,40D2,40D3,40D4を道路105に設置できる。
 送電回路30は,コイル40D1及びコイル40D3,40D4に対し,交流電圧を印加する。このとき,送電回路30がコイル40D1に,+z方向から見て反時計回りの電流を流すときには,送電回路30はコイル40D3に対し+x方向からみて反時計回りの電流を流し,コイル4040D4に対し+x方向からみて時計回りの電流を流す。
 送電回路30が,コイル40D1に+z方向から見て反時計回りの電流を流すと,コイル40D1の内側を,-z方向から+z方向に貫き,コイル40D1の外側を+z方向から-z方向に進み,再びコイル40D1の内側を,-z方向から+z方向に貫く閉じた磁束B40D1が生じる。送電回路30がコイル40D3に対し+x方向からみて反時計回りの電流を流すと,コイル40D3の内側を,-x方向から+x方向に貫き,コイル40D3の外側を+x方向から-x方向に進み,再びコイル40D3の内側を,-x方向から+x方向に貫く閉じた磁束B40D3が生じようとする。送電回路30がコイル40D4に対し+x方向からみて時計回りの電流を流すと,コイル40D4の内側を,+x方向から-x方向に貫き,コイル40D4の外側を-x方向から+x方向に進み,再びコイル40D4の内側を,+x方向から-x方向に貫く閉じた磁束B40D4が生じようとする。磁束B40D1のうち,コイル40D3,40D4の内側を通ろうとする磁束B40D1の向きは,コイル40D3の内側において生じようとする磁束B40D3の向きと逆であり,コイル40D4の内側において生じようとする磁束B40D4の向きと逆である。そのため,磁束B40D1は,磁束B40D3,B40D4と反発し,コイル40D3,40D4を貫き難い。したがって,磁束B40D1は,コイル40D2を貫き難い。
 送電回路30が,コイル40D1に,+z方向から見て時計回りの電流を流すときには,送電回路30は,コイル40D3に対し+x方向からみて時計回りの電流を流し,コイル40D4に対し+x方向からみて反時計回りの電流を流す。このときに生じる磁束の向きは,図9Aに示す場合と逆になるが,同様である。
 以上説明したように,コイル40D1の磁束B40D1は,コイル40D2を貫き難いため,コイル40D3,40D4は,コイル40D1を用いた電力の移動の際に,隣接するコイル40D2に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。その結果,磁束B40D1は,コイル40D2に誘導電流をほとんど生じさせない。
 以上,第6実施形態によれば,コイル40D1に供給した電力は,コイル40D2に漏れ難いので,電力供給の損失を抑制できる。また,コイル40D2は,コイル40D1と電磁的に結合し難いため,コイル40D2は,コイル40D1のインピーダンスに影響を与え難い。
 ・第7実施形態:
 図10に示すように,第7実施形態は,x方向に並べられた複数の送電コイルユニット40UE(x)を備える。(x)のxは,x方向の位置を示す番号である。コイル40UE(x)は,コイル48E(x)と,コイル40E(x)とを備える。コイル48E(x)は,第1コイル部48Ea(x)と,第2コイル部48Eb(x)とを備え,第1コイル部48Ea(x)と,第2コイル部48Eb(x)は,+z方向から見て,反対向きに巻かれている。第2コイル部48Eb(x)は,第1コイル部48Ea(x)の+y方向にあり,第1コイル部48Ea(x)と,第2コイル部48Eb(x)とは,zx平面である面S40Eを対称面として対称である。コイル40E(x)は,xy平面上において,コイル48E(x)よりも+x方向に配置されている。コイル40E(x)も面S40Eを対称面として対称である。コイル40E(x)のさらに+x方向には,コイル48E(x+1)が配置されている。
 送電回路30が,コイル48E(x)に交流電圧を印加するとする。コイル48E(x)は,2つのコイル部48Ea(x),48Eb(x)を連続した導線で構成されており,2つのコイル部48Ea(x),48Eb(x)を巻いている巻き線の向きは,一方が+z方向からみて時計回りであり,他方が+z方向からみて反時計回りである。コイル48E(x)は,一方のコイル部48Ea(x)を1回巻いてから,他方のコイル48Eb(x)を反対方向に1回巻くように,すなわち,アラビア数字の「8」を描くように巻いてもよく,一方のコイル部48Ea(x)をすべて巻いてから,他方のコイル48Eb(x)をすべて巻くようにしてもよい。また,一方のコイル部48Ea(x)をn回巻いてから,他方のコイル48Eb(x)を反対方向にn回巻いてもよい。2つのコイル部48Ea(x),48Eb(x)の巻き線は,+z方向から見て,反対向きに巻かれているので,例えば,送電回路30が,図10に示すように,第1コイル部48Ea(x)に+z方向から見て時計回りの電流を流すときには,第2コイル部48Eb(x)には,+z方向から見て反時計回りの電流が流れる。このとき,第1コイル部48Ea(x)の内側には,+z方向から-z方向に向かう磁束B48Ea(x)が生じ,第2コイル部48Eb(x)の内側には,-z方向から+z方向に向かう磁束B48Eb(2)が生じる。磁束B48Ea(x)と磁束B48Eb(2)は,yz平面に沿った閉じた磁束を形成する。磁束B48Ea(x)の一部は,コイル40E(x-1),コイル40E(x)の内側の面S40Eより-y方向において,-z方向から+z方向に貫こうとし,磁束B48Eb(x)の一部は,コイル40E(x-1),コイル40E(x)の内側の面S40Eより+y方向において,+z方向から-z方向に貫こうとする。送電回路30が,図10に示すときと逆向き,すなわち,第1コイル部48Ea(x)に+z方向から見て反時計回りの電流を流し,第2コイル部48Eb(x)に,+z方向から見て時計回りの電流を流すときは,磁束の向きは逆になるが,同様の磁束が生じる。
 コイル40E(x)の内側を貫こうとする磁束B48Ea(x)の向きと,磁束B48Eb(x)の向きは,逆であるため,コイル40E(x)の内側を貫く磁束は,磁束B48Ea(x)と,磁束B48Eb(x)とが反発し,あるいは,打ち消し合う結果,小さくなる。コイル40E(x-1)を貫く磁束についても同様である。すなわち,第1コイル部48Ea(x),第2コイル部48Eb(x)は,コイル48E(x)を用いた電力の移動の際に,互いに,コイル40E(x-1)あるいはコイル40E(x)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。その結果,コイル40E(x-1)あるいはコイル40E(x)に誘導電流がほとんど生じず,コイル40E(x)に供給された電力は,コイル40E(x-1),コイル40E(x)に漏れ難い。コイル40E(x-1),コイル40E(x)は,コイル48E(x)と電磁的に結合し難いため,コイル40E(x-1)あるいはコイル40E(x)は,コイル48E(x)のインピーダンスに影響を与え難い。
 以上,第7実施形態によれば,コイル48E(x)に供給された電力は,漏れ難いので,電力供給の損失を抑制できる。
・第8実施形態:
 図11A,図11Bに示すように,第8実施形態は,x方向に並べられた複数の送電コイルユニット40UF(x)を備える。図10に示す第7実施形態の送電コイルユニット40UE(x)との違いは,コイル48F2(x)がコイル48F1(x)と同様に,2つのコイル部,すなわち,第3コイル部48F2a(x)と,第4コイル部48F2b(x)とを備え,xy平面上に,第3コイル部48F2a(x)と,第4コイル部48F2b(x)の巻き線は,+z方向から見て,反対向きに巻かれている点である。なお,コイル48F2(x)は,コイル48F1(x)に対し,z方向から見て90°回転して配置されている。すなわち,コイル48F1(x)から見て,+x方向にコイル48F2(x)の第3コイル部48F2a(x)が配置され,第3コイル部48F2a(x)のさらに+x方向にコイル48F2(x)の第4コイル部48F2b(x)が配置されている。すなわち,コイル48F1(x)の第1コイル部48F1a(x)と第2コイル部48F1b(x)が並ぶ向きと,コイル48F2(x)の第3コイル部48F2a(x)と第4コイル部48F2b(x)が並ぶ向きとは,交差する関係にある。なお,コイル48F1(x)とコイル48F2(x)とが同一平面にない場合には,コイル48F1(x)の第1コイル部48F1a(x)と第2コイル部48F1b(x)が並ぶ向きと,コイル48F2(x)の第3コイル部48F2a(x)と第4コイル部48F2b(x)が並ぶ向きとは,ねじれの関係にあってもよい。
 送電回路30が,コイル48F1(x)に交流電圧を印加するとする。第1コイル部48F1a(x)と第2コイル部48F1b(x)は,+z方向から見て,反対向きに巻かれているので,例えば,図11Aに示すように,送電回路30が,第1コイル部48F1a(x)に+z方向から見て時計回りの電流を流すときには,第2コイル部48F1b(x)には,+z方向から見て反時計回りの電流が流れる。第1コイル部48F1a(x)の内側には,+z方向から-z方向に向かう磁束B48F1a(x)が生じ,第2コイル部48F1b(x)の内側には,-z方向から+z方向に向かう磁束B48F1b(x)が生じる。磁束B48F1a(x)の一部は,第3コイル部48F2a(x),48F2a(x-1)の面S40Fより-y方向の内側において-z方向から+z方向に貫こうとし,磁束B48F1b(x)の一部は,第3コイル部48F2a(x)48F2a(x-1)の面S40Fより+y方向の内側においてを+z方向から-z方向に貫こうとする。送電回路30が,第1コイル部48F1a(x)に+z方向から見て反時計回りの電流を流し,第2コイル部48F1b(x)に,+z方向から見て時計回りの電流を流すときは,図11Aに示す状態と磁束の向きは逆になるが,同様に磁束が生じる。
 コイル48F2(x)の第3コイル部48F2a(x)の内側を貫こうとする2つの磁束B48F1a(x),磁束B48F1b(x)の向きは,互いに逆であるため,第3コイル部48F2a(x)の内側を貫く磁束は,磁束B48F1a(x)と,磁束B48F1b(x)とが反発し,あるいは打ち消し合う結果,小さくなる。コイル48F2(x-1)の第3コイル部48F2a(x-1)についても同様である。第1コイル部48F1a(x),第2コイル部48F1b(x)は,コイル48F1(x)を用いた電力の移動の際に,互いに,コイル48F2(x-1),コイル48F2(x)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。その結果,コイル48F2(x-1)あるいはコイル48F2(x)に誘導電流がほとんど生じない。すなわち,コイル48F1(x)に供給された電力は,コイル48F2(x-1),コイル48F2(x)に漏れ難い。コイル48F2(x-1),コイル48F2(x)は,コイル48F1(x)と電磁的に結合し難いため,コイル48F2(x-1),コイル48F2(x)は,コイル48F1(x)のインピーダンスに影響を与え難い。
 送電回路30が,コイル48F2交流電圧を印加する場合について説明する。図11Bに示すように,送電回路30が,第3コイル部48F2a(x)に+z方向から見て時計回りの電流を流すときには,第4コイル部48F2b(x)には,+z方向から見て反時計回りの電流が流れる。第3コイル部48F2a(x)の内側には,+z方向から-z方向に向かう磁束B48F2a(x)が生じ,第4コイル部48F2b(x)の内側には,-z方向から+z方向に向かう磁束B48F2b(x)が生じる。磁束B48F2a(x)の一部は,コイル48F1(x)の第1コイル部48F1a(x)において-z方向から+z方向に貫こうとし,第2コイル部48F1b(x)において-z方向から+z方向に貫こうとする。また,磁束B48F2b(x)の一部は,コイル48F1(x+1)の第1コイル部48F1a(x+1)において+z方向から-z方向に貫こうとし,第2コイル部48F1b(x)において+z方向から-z方向に貫こうとする。
 第1実施形態同様に,第8実施形態では,磁束B48F2a(x)の変化により第1コイル部48F1a(x)に時計回りの誘導電流が生じようとするときは,第2コイル部48F1b(x)には,反時計回りの誘導電流が生じようとする。第1コイル部48F1a(x)に生じようとする誘導電流の向きと,第2コイル部48F1b(x)に生じようとする誘導電流の向きは,コイル48F1(x)全体から見れば逆方向であり,打ち消し合う。そのため,コイル48F1(x)には誘導電流がほとんど生じない。コイル48F1(x+1)についても同様に誘導電流はほとんど流れない。送電回路30が,第3コイル部48F2a(x)に+z方向から見て反時計回りの電流を流し,第4コイル部48F2b(x)に,+z方向から見て時計回りの電流を流すときは,図11Bに示す状態と磁束の向きは逆になるが,同様である。
 コイル48F2(x)は,コイル48F2(x)を用いた電力の移動の際に,コイル48F1(x),48F1(x+1)に誘導電流を生じさせる磁束を低減する磁束低減構造として機能する。従って,コイル48F2(x)に供給された電力は,コイル48F1(x),48F1(x+1)に漏れ難い。また,コイル48F1(x),48F1(x+1)は,コイル48F2(x)と電磁的に結合し難いため,コイル48F1(x),48F1(x+1)は,コイル48F2(x)のインピーダンスに影響を与え難い。
 以上,第8実施形態によれば,コイル48F1(x)の第1コイル部48F1a(x)と第2コイル部48F1b(x)が並ぶ向きと,コイル48F2の第3コイル部48F2a(x)と第4コイル部48F2b(x)が並ぶ向きとは,交差する関係にあるので,コイル48F1(x)に供給された電力は,コイル48F2(x-1),コイル48F2(x)に漏れず,コイル48F2(x)に供給された電力は,コイル48F1(x),コイル48F1(x+1)に漏れ難いので,電力供給の損失を抑制できる。さらにコイル48F2(x-1),コイル48F2(x)は,コイル48F1(x)と電磁的に結合し難く,コイル48F1(x),コイル48F1(x+1)は,コイル48F2(x)と電磁的に結合し難いので,コイル48F1(x),48F2(x)のインピーダンスは,他のコイルの影響を受け難い。
・第9実施形態:
 図12に示す第9実施形態のコイルユニット40UFは,第8実施形態と比較すると,z方向から見たときに,コイル48F1(x),48F2(x)の外側にシールド47を備える点が相違する。シールド47は,例えば,強磁性体で形成されている。シールド47のz方向の高さは,コイル48F1(x),48F2(x)のz方向の厚さ以上である。
 第9実施形態では,コイル48F1(x)に交流電圧を印加することで生じた磁束48F1a(x),48F1b(x)は,シールド47の外側には漏れ難い。したがって,磁束48F1a(x),48F1b(x)は,第3コイル部48F2a(x)を貫き難く,コイル48F2は,コイル48F1と電磁的に結合し難い。また,コイル48F2(x)に交流電圧を印加することで生じた磁束48F2a(x),48F2b(x)は,第1コイル部48F1(a),第2コイル部48F1b(x)を貫き難く,コイル48F1(x)は,コイル48F2(x)と電磁的に結合し難い。また,第9実施形態において,仮に,磁束48F1a(x),48F1b(x)がシールド47の外側に漏れた場合であっても,第8実施形態と同様の効果を有する。第9実施形態によれば,第8実施形態よりもさらに,電力供給における損失を抑制できる。
 図12に示す例では,コイル48F1(x)の外側,コイル48F2(x)の外側の両方にシールド47を設けているが,いずれか一方のみにシールド47を備える構成であってもよい。コイル48F1(x),あるいは,コイル48F2(x)から出る磁束,コイル48F1(x),あるいは,コイル48F2(x)に入る磁束のいずれかを遮断または低減できる。
・第10実施形態:
 図13に示すように,第10実施形態の送電コイルユニット40UGは,複数の送電コイルユニット40UG(x)を備える。送電コイルユニット40UG(x)は,コイル40UG1(x),40UG2(x)と,シールド47を備える。コイル40UG1(x)とコイル40UG2(x)は,xy平面に配置され,コイル40UG2(x)は,コイル40UG1(x)の+y方向に配置されている。コイル40UG1(x)とコイル40UG2(x)は,外形,巻き数が同じであり,面S40G(x)を対称面として面対称である。シールド47は,コイル40UG1(x)とコイル40UG2(x)の外周を囲っており,磁束がシールド47の外側に漏れるのを抑制する。送電コイルユニット40UG(x-1)も同様の構成を備える。なお,図13に示す例では,コイル40UG1(x-1)とコイル40UG2(x-1)の対称面S40G(x-1)は,異なる。ただし,面S40G(x)と対称面S40G(x-1)は,同一の面であってもよい。
 送電回路30が送電コイルユニット40UG(x)に交流電圧を印加するとする。コイル40UG1(x),40UG2(x)に生じた磁束B40UG1(x),B40UG2(x)は,シールド47に遮断されるため,送電コイルユニット40UG(x-1)のコイル40UG1(x-1),40UG2(x-2)を貫き難い。従って,送電コイルユニット40UG(x)から送電コイルユニット40UG(x-1)に誘導電流流れ難い。また,コイル40UG1(x-1),40UG2(x-1)は,コイル40UG1(x),40UG2(x)と電磁的に結合し難いので,コイル40UG1(x-1),40UG2(x-1)は,コイル40UG1(x),40UG2(x)のインピーダンスに影響を与え難い。
 以上第10実施形態によれば,電力供給の損失を抑制できる。
・第11実施形態:
 図14に示すように,第11実施形態は,第9実施形態の送電コイルユニット40UF(x)を構成するコイル48F1(x),48F2(x)がxy平面においてチェッカー模様を為すように,送電コイルユニット40UF(x)を二次元に配置した構成を備える。
 送電回路30がコイル48F1(x,y)に交流電圧を印加するとする。第9実施形態と同様の理由により,コイル48F1(x,y)を貫こうとする磁束は,コイル48F2(x-1,y),48F2(x,y),48F2(x,y+1)において,小さくなる。その結果,コイル48F1(x,y)に供給された電力は,コイル48F2(x-1,y),48F2(x,y),48F2(x,y+1)に漏れ難い。また,コイル48F2(x-1,y),48F2(x,y),48F2(x,y+1)は,コイル48F1(x,y)と電磁的に結合し難いので,コイル48F1(x,y)のインピーダンスに影響を与え難い。
 コイル48F1(x-1,y+1),48F1(x,y+1),48F1(x+1,y),48F2(x+1,y+1)が,コイル48F1(x)から離間して配置されていること,及び,シールド47のシールド効果により,コイル48F1(x)の磁束は,コイル48F1(x-1,y+1),48F1(x,y+1),48F1(x+1,y),48F2(x+1,y+1)を貫き難い。その結果,コイル48F1(x)に供給された電力は,コイル48F1(x-1,y+1),48F1(x,y+1),48F1(x+1,y),48F2(x+1,y+1)に漏れ難い。コイル48F1(x-1,y+1),48F1(x,y+1),48F1(x+1,y),48F2(x+1,y+1)は,コイル48F1(x,y)と電磁的に結合し難いので,コイル48F1(x,y)のインピーダンスに影響を与え難い。
 送電回路30がコイル48F1(x)以外のコイル48F1(x-1,y+1),48F2(x-1,y),48F2(x,y+1),48F2(x,y),48F1(x,y+1),48F1(x+1,y),48F2(x+1,y+1)に交流電圧を印加するときも同様である。
 以上,第11実施形態によれば,コイル48F1(x)に供給された電力は,他のコイルに漏れ難いので,電力供給の損失を抑制できる。なお,シールド47は,なくても良い。
・第12実施形態:
 図15に示す第12実施形態は,第11実施形態の送電コイルユニット40UF(x,y)に,車両202側の受電コイルユニット240UFを加えている。なお,図15に示す第12実施形態では,送電コイルユニット40UF(x,y)にシールド47を設けていないが,シールド47を設けてもよい。車両202側の受電コイルユニット240Uは,送電コイルユニット40UF(x)のコイル48F1(x,y),48F2(x,y)と同様の構成であるコイル248F1,248F2を備える。コイル248F2は,コイル248F1の+x方向に隣接して配置されている。なお、受電コイルユニット240UFのコイル248F1,248F2の大きさ、形状は、送電コイルユニット40UF(x)のコイル48F1(x,y),48F2(x,y)の大きさ、形状と異なっていても良い。車両202は、受電コイルユニット240UFを複数備えていても良い。
 第12実施形態によれば,第11実施形態と同様に,コイル48F1(x)に供給された電力は他のコイルに漏れ難いので,電力供給の損失を抑制できる。
 また,第12実施形態によれば,受電コイルユニット240Uのコイル248F1,248F1との間の電磁的な結合を抑制できる。すなわち,248F1に給電された電力を,コイル248F2に漏れ難くできる。また,受電コイルユニット240Uを用いて車両202における回生電力を送電コイルユニット40UF(x,y)に送電する場合にも,同様に,248F1に給電された電力を,コイル248F2に漏れ難くできる。
 第12実施形態によれば,車両202の移動に伴い,受電コイルユニット240UFがx方向に移動しても,連続的に,給電できる。両202の移動に伴い,受電コイルユニット240UFがy方向に移動する場合も同様である。
・第13実施形態:
 図16A,図16Bに示すように,第13実施形態は,x方向に配置された複数の送電コイルユニット40UH(x)を備える。送電コイルユニット40UH(x)は,コイル40H1(x),40H2(x),40H3(x),40H4(x)を有する。コイル40H1(x),40H2(x),40H3(x),40H4(x)は,xy平面に配置され,コイル40H1(x),40H2(x),40H3(x),40H4(x)は,それぞれ,4つのコイルの中心から見て,それぞれ-x方向,+y方向,+x方向,-y方向に配置されている。送電コイルユニット40UH(x+1)は,コイル40H1(x+1),40H2(x+1),40H3(x+1),40H4(x+1)を有し,コイル40H1(x+1),40H2(x+1),40H3(x+1),40H4(x+1)は,xy平面に配置され,コイル40H1(x+1),40H2(x+1),40H3(x+1),40H4(x+1)は,それぞれ,4つのコイルの中心から見て,-x方向,+y方向,+x方向,-y方向に配置されている。ここで,コイル40H3(x)と,コイル40H1(x+1)は,異なる送電コイルユニット40UH(x),40UH(x+1)に属するが,同一のコイルである。このような2つのコイルユニットに属するコイルについては,送電コイルユニットの符号に対応づけて複数の符号を付している。
 受電コイルユニット240UHは,コイル240H1,240H2,240H3,240H4を有する。コイル240H1,240H2,240H3,240H4は,xy平面に配置され,コイル240H1,240H2,240H3,240H4は,それぞれ,4つのコイルの中心から見て,それぞれ-x方向,+y方向,+x方向,-y方向に配置されている。なお、受電コイルユニット240HFのコイルの大きさ、形状は、送電コイルユニット40H(x)の大きさ、形状と異なっていても良い。車両202は、受電コイルユニット240UFを複数備えていても良い。
 送電回路30が送電コイルユニット40UH(x)の交流電圧を印加するとする。送電回路30は,図16A,図16Bに示すように,コイル40H1(x),40H3(x)に+z方向から見て時計周りの電流を流すときには,コイル40H2(x),40H4(x)に+z方向から見て反時計周りの電流を流す。コイル40H1(x),40H3(x)の内部には,+z方向から-z方向に向かう磁束B40H1(x),B40H3(x)が生じ,コイル40H2(x),40H4(x)に+の内部には,-z方向から+z方向に向かう磁束B40H2(x),V40H4(x)が生じ,図16Bに示すような閉じた磁束を形成する。これらの閉じた磁束は,他のコイルを貫き難いので,送電コイルユニット40UH(x+1)に誘導電流が流れ難い。また,他のコイル40H2(x+1),40H3(x+1),40H4(+1x)は,コイル40H1(x),40H2(x),40H3(x),40H4(x)と電磁的に結合し難いので,コイル40H1(x),40H2(x),40H3(x),40H4(x)のインピーダンスは,他のコイル40H2(x+1),40H3(x+1),40H4(+1x)の影響を受け難い。
 以上,第13実施形態によれば,送電コイルユニット40UH(x)に供給された電力は,他のコイルユニットに漏れ難いので,電力供給の損失を抑制できる。
 第13実施形態において,送電コイルユニット40UHをxy平面に2次元に配置してもよい。
・第14実施形態:
 図17は,第14実施形態を示す説明図である。第14実施形態の送電コイルユニット40UJ(x)は,コイル40J1(x)とコイル40J2(x)とを備える。コイル40J1(x),コイル40J2(x)のx方向の大きさをDaとすると,コイル40J2(x)は,コイル40J1(x)に対し,Da/2だけx方向にシフトした位置に配置されている。
 図18は,第14実施形態におけるx方向の位置とコイル40J1(x),コイル40J2(x)の磁束B40J1(x),B40J2(x)を示すグラフである。コイル40J1(x)の磁束B40J1(x)を示すグラフと,コイル40J2(x)の磁束B40J2(x)を示すグラフとは,電気角でπ/2シフトしている。すなわち,コイル40J1(x)の磁束B40J1(x)が,極大または極小のときに,コイル40J2(x)の磁束B40J2(x)はほぼゼロであり,コイル40J2(x)の磁束B40J2(x)が極大または極小のときに,コイル40J1(x)の磁束B40J1(x)はほぼゼロである。そのため,送電回路30がコイル40J1(x)に給電するときに,給電待機中のコイル40J2(x)を貫く磁束B40J1は,ほぼゼロであり,送電回路30がコイル40J2(x)に給電するときに,給電待機中のコイル40J1(x)を貫く磁束B40J2はほぼゼロである。従って,コイル40J1(x)に供給された電力は,コイル40J2(x)に漏れ難く,コイル40J2(x)に供給された電力は,コイル40J1(x)に漏れ難い。また,コイル40J1(x)とコイル40J2(x)は,電磁的に結合し難いので,互いのインピーダンスに影響を与えない。
 以上,第14実施形態によれば,電力供給の損失を抑制できる。
・第15実施形態:
 図19から図22に示すように,第14実施形態のコイルユニット40UKは,コイル40K1,40K2を備える。コイル40K1は,xy平面に沿って配置されており,コイル40K2は,コイル40K1の+x方向にあり,zx平面に沿って配置されている。
 送電回路30がコイル40K1に交流電圧を印加したとする。図19に示すように,送電回路30が+z方向から見て時計回りの電流を流すときには,生じる磁束B40K1は,コイル40K1の内側を+z方向から-z方向に貫き,コイル40K1の外側では-z方向から+z方向に向かう閉じた磁束である。送電回路30が+z方向から見て反時計回りの電流を流すときには,生じる磁束B40K1は,図19とは逆向きの磁束であり,コイル40K1の内側を-z方向から+z方向に貫き,コイル40K1の外側では+z方向から-z方向に向かう閉じた磁束である。磁束B40K1は,図20に示すように,コイル40K1の+x方向では,zx平面に平行である。すなわち,電力の移動の際にコイル40K1によりコイル40K2の存在位置に生じる磁束B40K1がコイル40K2の中心軸方向に対して90°で交差する。そのため,磁束B40K1は,コイル40K2を貫き難い。従って,送電回路30がコイル40K1に交流電圧を印加しても,コイル40K2に誘導電流はほとんど生じず,コイル40K1に供給された電力は,コイル40K2に漏れ難い。また,コイル40K2は,コイル40K1と電磁的に結合し難いので,コイル40K2は,コイル40K1のインピーダンスに影響を与え難い。なお,磁束B40K1とコイル40K2の中心軸方向との為す角は,最大である90°が好ましいが,例えば45°以上傾いた角度で交差すれば良い。
 同様に,送電回路30がコイル40K2に交流電圧を印加したとする。図21に示すように,送電回路30が+y方向から見て時計回りの電流を流すときには,生じる磁束B40K2は,コイル40K2の内側を+y方向から-y方向に貫き,コイル40K1の外側では-y方向から+y方向に向かう閉じた磁束である。送電回路30が+y方向から見て反時計回りの電流を流すときには,生じる磁束B40K2は,図21とは逆向きの磁束であり,コイル40K2の内側を-y方向から+y方向に貫き,コイル40K1の外側では+y方向から-y方向に向かう閉じた磁束である。磁束B40K2は,コイル40K2の-x方向では,図22に示すようにxy平面に平行である。すなわち,電力の移動の際にコイル40K2によりコイル40K1の存在位置に生じる磁束B40K2がコイル40K1の中心軸方向に対して90°で交差する。そのため,磁束B40K2は,コイル40K1を貫き難い。従って,送電回路30がコイル40K2に交流電圧を印加しても,コイル40K1に誘導電流はほとんど生じず,コイル40K2に供給された電力は,コイル40K1に漏れ難い。また,コイル40K1は,コイル40K2と電磁的に結合し難いので,コイル40K1は,コイル40K2のインピーダンスに影響を与えない。なお,磁束B40K2とコイル40K1の中心軸方向との為す角は,最大である90°が好ましいが,例えば45°以上傾いた角度で交差すれば良い。
 以上,第15実施形態によれば,電力供給の損失を抑制できる。
 第15実施形態では,コイル40K1をxy平面に沿って配置し,コイル40K2をzx平面に沿って配置,すなわち,コイル40K1の法線ベクトルの方向を(0,0,1),コイル40K2の法線ベクトルの方向を(0,1,0)としているが,図23に示すように,コイル40K1,40K2をx軸周りに45°回転させ,コイル40K1の法線ベクトルの方向を(0,1,1),コイル40K2の法線ベクトルの方向を(0,1,-1)としてもよい。
 本開示は,上述の実施形態に限られるものではなく,その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば,発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は,上述の課題の一部又は全部を解決するために,あるいは,上述の効果の一部又は全部を達成するために,適宜,差し替えや,組み合わせを行うことが可能である。また,その技術的特徴が本明細書中に必須なものとして説明されていなければ,適宜,削除することが可能である。

Claims (13)

  1.  非接触給電システム(100)に用いられるコイルユニット(40U)であって,
     第1コイル(40(x))と,前記第1コイルに対して予め定められた方向に隣接する第2コイル(40(x+1))とを含み,電力の移動に用いられる複数のコイルと,
     前記第1コイルを用いた前記電力の移動の際に前記第1コイルが前記第2コイルに、誘起電圧、もしくは誘導電流を生じさせる磁束(B40)を低減する磁束低減構造(MRS)と,
     を備える,コイルユニット。
  2.  請求項1に記載のコイルユニットであって,
     前記第1コイル(48)は,前記電力の移動の際に異なる方向の複数の磁束を発生させる複数のコイル部を含み,
     前記磁束低減構造は,前記第1コイルの前記複数のコイル部が前記第2コイルの存在位置にそれぞれ生じさせる磁束の少なくとも一部が打ち消し合うように,前記第1コイルと前記第2コイルとが配置されている構造を含む,コイルユニット。
  3.  請求項2に記載のコイルユニットであって,
     前記磁束低減構造として,前記第1コイルは,前記複数のコイル部として,第1方向の磁束を発生する第1コイル部と,前記第1方向と逆方向である第2方向の磁束を発生させる第2コイル部とを有する,コイルユニット。
  4.  請求項3に記載のコイルユニットであって,
     前記磁束低減構造は,前記第1コイル部の形状及び巻き数と,前記第2コイル部の形状及び巻き数とは同じである構造を含む,コイルユニット。
  5.  請求項4に記載のコイルユニットであって,
     前記第1コイル部と前記第2コイル部とは,直列に接続されている,コイルユニット。
  6.  請求項3から請求項5のいずれか一項に記載のコイルユニットであって,
     前記磁束低減構造として前記第2コイルは,前記電力の移動の際に異なる方向の複数の磁束を発生させる複数のコイル部を含み
     前記第2コイルは,前記複数のコイル部として,第3方向の磁束を発生する第3コイル部と,前記第3方向と逆方向である第4方向の磁束を発生させる第4コイル部とを有する,コイルユニット。
  7.  請求項6に記載のコイルユニットであって,
     前記磁束低減構造としての前記第2コイルは,前記第3コイル部の形状及び巻き数と,前記第4コイル部の形状及び巻き数とは同じである構造を含む,コイルユニット。
  8.  請求項7に記載のコイルユニットであって,
     前記第3コイル部と前記第4コイル部とは,直列に接続されている,コイルユニット。
  9.  請求項6から請求項8のいずれか一項に記載のコイルユニットであって,
     前記第1コイルの前記第1コイル部と前記第2コイル部が並ぶ向きと,前記第2コイルの前記第3コイル部と前記第4コイル部が並ぶ向きとは,交差またはねじれの関係にある,コイルユニット。
  10.  請求項2から請求項9のうちのいずれか一項に記載のコイルユニットであって,
     前記第1コイルと前記第2コイルの少なくとも一方は,前記第1コイルの外側または前記第2コイルの外側に配置されたシールド(47)を備える,コイルユニット。
  11.  請求項7から請求項9のうちのいずれか一項に記載のコイルユニットであって,
     前記第1コイルと前記第2コイルの外側を囲むようにコイル外側に配置されたシールド(47)を備える,コイルユニット。
  12.  請求項1に記載のコイルユニットであって,
     前記磁束低減構造は,前記電力の移動の際に前記第1コイルにより前記第2コイルの存在位置に生じる磁束が前記第2コイルの中心軸方向に対して予め定められた以上傾いた角度で交差するように前記第1コイルと前記第2コイルとが配置とされている構造を含む,コイルユニット。
  13.  非接触給電システム(100)であって,
     移動体(202)と,
     前記移動体が移動するエリアに設けられた請求項1から請求項11のいずれか一項に設けられた複数のコイルユニット(40U)と,
     前記コイルユニットを用いて前記移動体との間で前記電力の移動を行なう送電回路(30)と,
     を備え,
     前記移動体は,複数の前記コイルユニットの少なくとも1つの前記第1コイルとカップリングして前記第1コイルとの間で前記電力の移動を行う受電コイルユニット(240U)を備える,非接触給電システム。
PCT/JP2021/020396 2020-06-10 2021-05-28 非接触給電システム及びそのコイルユニット WO2021251179A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21821614.1A EP4166372A4 (en) 2020-06-10 2021-05-28 CONTACTLESS POWER SUPPLY SYSTEM AND ASSOCIATED COIL UNIT
CN202180040986.3A CN115917922A (zh) 2020-06-10 2021-05-28 非接触供电系统及其线圈单元
US18/078,306 US20230110224A1 (en) 2020-06-10 2022-12-09 Contactless power supply system and coil unit thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100608 2020-06-10
JP2020100608A JP2021197754A (ja) 2020-06-10 2020-06-10 非接触給電システム及びそのコイルユニット

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/078,306 Continuation US20230110224A1 (en) 2020-06-10 2022-12-09 Contactless power supply system and coil unit thereof

Publications (1)

Publication Number Publication Date
WO2021251179A1 true WO2021251179A1 (ja) 2021-12-16

Family

ID=78845609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020396 WO2021251179A1 (ja) 2020-06-10 2021-05-28 非接触給電システム及びそのコイルユニット

Country Status (5)

Country Link
US (1) US20230110224A1 (ja)
EP (1) EP4166372A4 (ja)
JP (1) JP2021197754A (ja)
CN (1) CN115917922A (ja)
WO (1) WO2021251179A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234496A (ja) 2010-04-27 2011-11-17 Nippon Soken Inc コイルユニット、非接触送電装置、非接触受電装置、非接触給電システムおよび車両
JP2020022340A (ja) * 2018-07-18 2020-02-06 株式会社デンソー 非接触給電装置及び非接触給電システム
JP2020100608A (ja) 2018-12-25 2020-07-02 株式会社日本電医研 栄養補助剤、及び当該栄養補助剤を含む医薬品又は飲食品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9672975B2 (en) * 2012-09-11 2017-06-06 Qualcomm Incorporated Wireless power transfer system coil arrangements and method of operation
US9469207B2 (en) * 2014-04-18 2016-10-18 Qualcomm Incorporated Base magnetics and sequence design for dynamic systems
JP6460373B2 (ja) * 2014-07-14 2019-01-30 Tdk株式会社 コイルユニットおよびワイヤレス電力伝送装置
US11031826B2 (en) * 2014-09-11 2021-06-08 Auckland Uniservices Limited Magnetic flux coupling structures with controlled flux cancellation
JP2020009972A (ja) * 2018-07-11 2020-01-16 株式会社東芝 インダクタユニット、非接触給電システムおよび電動車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234496A (ja) 2010-04-27 2011-11-17 Nippon Soken Inc コイルユニット、非接触送電装置、非接触受電装置、非接触給電システムおよび車両
JP2020022340A (ja) * 2018-07-18 2020-02-06 株式会社デンソー 非接触給電装置及び非接触給電システム
JP2020100608A (ja) 2018-12-25 2020-07-02 株式会社日本電医研 栄養補助剤、及び当該栄養補助剤を含む医薬品又は飲食品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4166372A4

Also Published As

Publication number Publication date
JP2021197754A (ja) 2021-12-27
EP4166372A1 (en) 2023-04-19
US20230110224A1 (en) 2023-04-13
CN115917922A (zh) 2023-04-04
EP4166372A4 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP6217518B2 (ja) ワイヤレス給電システムおよびワイヤレス電力伝送システム
US10014105B2 (en) Coil unit and wireless power transmission device
US10002708B2 (en) Coil unit and wireless power transmission device
KR101934018B1 (ko) 수전 장치 및 송전 장치
JP6003565B2 (ja) 非接触給電装置
US10836261B2 (en) Inductor unit, wireless power transmission device, and electric vehicle
US11056927B2 (en) Inductor device, non-contact power charging/supplying system and electric vehicle
JP2020022340A (ja) 非接触給電装置及び非接触給電システム
JP6460373B2 (ja) コイルユニットおよびワイヤレス電力伝送装置
JP6022267B2 (ja) 移動給電式の非接触給電装置
WO2021251179A1 (ja) 非接触給電システム及びそのコイルユニット
JP5930182B2 (ja) アンテナ
CN111725899B (zh) 线圈单元、无线供电装置、无线受电装置及无线电力传输系统
JP7331394B2 (ja) 走行中給電システム
WO2013080860A1 (ja) 非接触給電装置
JP2017107896A (ja) 非接触給電システム
JP2016021795A (ja) コイルユニットおよびワイヤレス電力伝送装置
JP2020150776A (ja) 送電装置、受電装置および非接触電力伝送システム
WO2024090013A1 (ja) 電力伝送装置
JP7435304B2 (ja) 非接触給電装置
JP7225491B2 (ja) 誘導走行車両
JP2024081965A (ja) 受電装置及び非接触給電システム
WO2020017146A1 (ja) 非接触給電装置及び非接触給電システム
JP2023037037A (ja) 非接触給電設備
JP2023126018A (ja) 非接触給電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821614

Country of ref document: EP

Effective date: 20230110