WO2021251040A1 - 射出装置 - Google Patents

射出装置 Download PDF

Info

Publication number
WO2021251040A1
WO2021251040A1 PCT/JP2021/017789 JP2021017789W WO2021251040A1 WO 2021251040 A1 WO2021251040 A1 WO 2021251040A1 JP 2021017789 W JP2021017789 W JP 2021017789W WO 2021251040 A1 WO2021251040 A1 WO 2021251040A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
insulating material
injection device
unit
peripheral surface
Prior art date
Application number
PCT/JP2021/017789
Other languages
English (en)
French (fr)
Inventor
聡 常田
啓太 新井
勇一 櫻田
七重 内藤
貴大 湯本
裕幸 半田
春雄 荻原
利美 加藤
穂積 依田
Original Assignee
日精樹脂工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021052922A external-priority patent/JP7046249B2/ja
Application filed by 日精樹脂工業株式会社 filed Critical 日精樹脂工業株式会社
Publication of WO2021251040A1 publication Critical patent/WO2021251040A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/74Heating or cooling of the injection unit

Definitions

  • the present invention relates to an injection device having a heating mechanism in a heating cylinder.
  • aluminum includes an aluminum alloy.
  • Patent Document 1 (FIG. 1)
  • FIG. 14 is a diagram illustrating the structure of a conventional injection device.
  • the conventional injection device 100 includes a heating cylinder 102 having a nozzle 101 at the tip thereof, and a screw 103 housed in the heating cylinder 102 so as to be rotatable and axially movable. ..
  • thermosensor 104 to 107 are embedded in the heating cylinder 102 between the hopper 104 on the base side and the nozzle 101 at the tip, and heating mechanisms 111 to 114 are arranged corresponding to the temperature sensors 104 to 107, respectively. There is.
  • the heating mechanisms 111 to 114 each include a band heater 115 wound around the heating cylinder 102, a ventilation layer 116 wound around the band heater 115, and a heat insulating layer 117 wound around the ventilation layer 116.
  • the output of the band heater 115 is controlled so that the temperature sensor 104 reaches the set temperature.
  • the output of each band heater 115 is controlled so that the temperature sensors 105 to 107 reach the set temperature.
  • heating mechanisms 111 to 114 have been arranged in the axial direction (longitudinal direction) of the heating cylinder 102 to control the temperature of the heating cylinder 102.
  • the heating mechanism 111, the heating mechanism 112, the heating mechanism 113, and the heating mechanism have been performed.
  • 114 had the same structure as each other.
  • An object of the present invention is to provide an injection device suitable for changes in the temperature of a resin material.
  • the present inventors have examined in detail the changes in the resin material.
  • the resin material is supplied to the heating cylinder 102 via the hopper 104 in the form of pellets. Since the pellets are lumps and the lumps are in point contact with each other, the heat supplied by the heating mechanism 114 is transferred from one lump to the next with a small heat transfer area. Therefore, it was found that the heat transfer efficiency of the heating mechanism 114 is low.
  • the resin material is liquefied and the heat transfer area is increased. Therefore, it was found that the heating mechanisms 112 and 113 have high heat transfer efficiency. Further, at the tip of the heating cylinder 102, the resin material has reached a predetermined temperature, and heating is not required so much. Therefore, it was found that temperature control is important in the heating mechanism 111. Based on the above findings, we improved the structure of the injection device and were able to solve the problem.
  • the invention according to claim 1 comprises a heating cylinder having a nozzle at the tip, a screw housed in the heating cylinder so as to be rotatable and axially movable, and a heating mechanism wound around the heating cylinder.
  • the heating mechanism is arranged at a preheating portion arranged at the base of the heating cylinder, a heating portion arranged closer to the tip of the heating cylinder than the preheating portion, and a heating portion closer to the tip of the heating cylinder than the heating portion. It has a heat insulating part and The preheating portion is configured to have higher heating performance to the heating cylinder than the heating portion. The heat insulating portion is configured to have a lower heating performance to the heating cylinder than the heating portion.
  • the invention according to claim 2 is preferably the injection device according to claim 1.
  • the heating portion covers the inner case wound around the heating cylinder, the inner electric insulating material covering the outer peripheral surface of the inner case, the heating element to cover the outer peripheral surface of the inner electric insulating material, and the outer peripheral surface of the heating element. It consists of an outer electrical insulating material, an outer case that covers the outer peripheral surface of the outer electrical insulating material, and a band that covers the outer peripheral surface of the outer case.
  • the preheating section has the same structure as the heating section except that the outer electrical insulating material is thicker than the heating section. At least one of the outer case and the band is made of a material having a high thermal conductivity with respect to the heating part, and the other parts have the same structure as the heating part.
  • the invention according to claim 3 is preferably the injection device according to claim 2.
  • the outer electric insulating material of the preheating part was thickened by superimposing the outer electric insulating material of the heating part.
  • the invention according to claim 4 is preferably the injection device according to claim 1.
  • the heating portion covers the inner case wound around the heating cylinder, the inner electric insulating material covering the outer peripheral surface of the inner case, the heating element covering the outer peripheral surface of the inner electric insulating material, and the outer peripheral surface of the heating element. It consists of an outer electrical insulating material, an outer case that covers the outer peripheral surface of the outer electrical insulating material, and a band that covers the outer peripheral surface of the outer case.
  • the preheating section employs a heating element having a larger output per unit area than the heating section, and has the same configuration as the heating section except for the heating section.
  • the heat insulating unit employs a heating element having a smaller output per unit area than the heating unit, and has the same configuration as the heating unit except for the heating unit.
  • the invention according to claim 5 is preferably the injection device according to any one of claims 2 to 4.
  • the inner case, the inner electric insulating material, the heating element, the outer electric insulating material, the outer case and the band are each divided at at least one place, and the divided positions are set so that the heating cylinder can be seen from the outside. It is aligned.
  • the invention according to claim 6 is preferably the injection device according to claim 5.
  • the split in the heat insulating portion is positioned directly above the heating cylinder.
  • the invention according to claim 7 is preferably the injection device according to claim 5.
  • the split in the preheating portion is positioned directly below the heating cylinder.
  • the preheating unit since the preheating unit has a higher heating performance to the heating cylinder than the heating unit, the temperature of the pellet can be further increased. Further, since the heat insulating portion has a lower heating performance to the heating cylinder than the heating portion, the resin material is not overheated and can be easily controlled to a desired temperature. Therefore, according to claim 1, an injection device suitable for changing the temperature of the resin material is provided.
  • the preheating part is made of a thick outer electric insulating material with respect to the heating part
  • the heat insulating part is made of a material having high thermal conductivity at least one of the outer case and the band with respect to the heating part. did. That is, most of the components of the preheating section, the heating section, and the heat insulating section are common, and the ease of assembly is maintained while suppressing the procurement cost of parts.
  • the outer electric insulating material of the preheating part is a stack of the outer electric insulating material of the heating part.
  • the outer electrical insulating material can be shared by the preheating section, the heating section, and the heat insulating section.
  • the heating element is different between the preheating unit, the heating unit, and the heat insulating unit. Since the other components are common, the procurement cost of parts can be suppressed and the management of parts becomes easy.
  • the inner case, the inner electric insulating material, the heating element, the outer electric insulating material, the outer case and the band are each divided at at least one place, and the divided positions are aligned so that the heating cylinder can be seen from the outside. Has been done. By aligning the split positions, the adhesion when tightening the band is improved, the heat transfer property can be improved, and energy saving can be achieved.
  • the split in the heat insulating unit is positioned directly above the heating cylinder. Since convection heat transfer is maximized in the upward direction, heat is actively released to the atmosphere from the heat insulating part, and the temperature control performance of the heat insulating part is further enhanced.
  • the split in the preheating section is positioned directly below the heating cylinder. Since convection heat transfer is minimized downward, almost no heat is released to the atmosphere due to the preheating section. As a result, the heating performance of the preheating section is further improved and energy can be saved.
  • FIG. 3 is a sectional view taken along line 3-3 of FIG. 1 and is a sectional view of a heating portion. It is an exploded view of the 4-4 line cross section of FIG.
  • FIG. 5 is a sectional view taken along line 5-5 of FIG. 1 and is a sectional view of a preheating portion. It is an exploded view of the 6-6 line cross section of FIG.
  • FIG. 7 is a cross-sectional view taken along the line 7-7 of FIG. 1 and is a cross-sectional view of a heat insulating portion. It is an exploded view of the cross section of line 8-8 of FIG.
  • (A) is an explanatory diagram of the operation of the heat insulating portion
  • (b) is an explanatory diagram of the operation of the heating portion
  • (c) is an explanatory diagram of the operation of the preheating portion.
  • (A) is a cross-sectional view of a modified example of the band, and (b) is a view taken along the line b of (a).
  • (A)-(c) is a figure explaining the modification example of the heating element.
  • (A) is a perspective view illustrating a further modification example of the heating element
  • (b) is a sectional view taken along line bb of (a)
  • (c) is a sectional view illustrating a comparative example.
  • (A) is a diagram showing a preferable position for splitting the heat insulating portion
  • (b) is a diagram showing a preferable position for splitting the heating portion
  • (c) is a diagram showing a preferred position for splitting the preheating portion. It is a figure explaining the structure of the conventional injection apparatus.
  • the injection device 10 is wound around a heating cylinder 12 having a nozzle 11 at its tip, a screw 13 rotatably and axially movable in the heating cylinder 12, and a heating cylinder 12.
  • the heating mechanism 20 is provided, a drop port block 15 connected to the heating tube 12, and a hopper 17 attached to the drop port block 15.
  • the pellet-shaped resin material is dropped from the pad 17 into the heating cylinder 12 through the drop port 16.
  • the heating mechanism 20 includes a preheating unit 21 arranged on the base side of the heating cylinder 12, a heating unit 22 arranged closer to the tip of the heating cylinder 12 than the preheating unit 21, and a heating cylinder 12 rather than the heating unit 22. It is composed of a heat insulating portion 23 arranged near the tip of the above.
  • the structure of the heating element, which is one of the main components of the heating mechanism 20, will be described with reference to FIG.
  • the heating element 25 is formed by winding a heating wire 27 around an insulating plate 26 in a spiral shape.
  • the heating wire 27 is a bare wire. Therefore, the heating element 25 is covered from above and below with an electric insulating material described later.
  • the heating unit 22 includes an inner case 31 wound around a heating cylinder (FIG. 1, reference numeral 12), an inner electric insulating material 32 covering the outer peripheral surface of the inner case 31, and the inner electric insulating material 32.
  • a heating element 25 that covers the outer peripheral surface of the heating element 25, an outer electric insulating material 34 that covers the outer peripheral surface of the heating element 25, an outer case 35 that covers the outer peripheral surface of the outer electric insulating material 34, and an outer peripheral surface of the outer case 35. It consists of a band 36 to be covered.
  • the band 36 is preferably a one-piece band having one split, but may be a two-piece band with two splits. If it is a one-piece band or a two-piece band, the inner diameter of the band 36 can be reduced by tightening a bolt 37.
  • the split position of the inner case 31, the split position of the inner electrical insulating material 32, the split position of the heating element 25, the split position of the outer electrical insulating material 34, the split position of the outer case 35, and the split position of the band 36. match. Then, by tightening the bolt 37, the inner case 31 is brought into close contact with the heating cylinder 12, the inner electric insulating material 32 is brought into close contact with the inner case 31, the heating element 25 is brought into close contact with the inner electric insulating material 32, and the heating element 25 is brought into close contact with the heating element 25.
  • the outer electric insulating material 34 can be brought into close contact with the outer electric insulating material 34, the outer case 35 can be brought into close contact with the outer case 35, and the band 36 can be brought into close contact with the outer case 35.
  • FIG. 4 is an exploded view of the 4-4 line cross section of FIG.
  • the heating unit 22 includes an inner case 31, an inner electric insulating material 32, a heating element 25, an outer electric insulating material 34, an outer case 35, and a band 36.
  • As the inner case 31, the outer case 35 and the band 36 a thin plate of stainless steel (for example, SUS304) that does not easily rust is suitable.
  • the inner electric insulating material 32 and the outer electric insulating material 34 are, for example, mica (mica) having a thickness of 0.4 mm. Two 0.2 mm thick mica may be stacked.
  • cooling jacket 38 shown by the imaginary line inside the inner case 31. Refrigerant (water, air, etc.) is appropriately flowed through the cooling jacket 38.
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 1, is a cross-sectional view of the preheating portion 21, and
  • FIG. 6 is an exploded view of a cross-sectional view taken along line 6-6 of FIG.
  • the outer electric insulating material 34B is different from that in FIG. 4, but the other inner case 31, inner electric insulating material 32, heating element 25, outer case 35, and band 36 are shown in both form and material. Same as 4.
  • the outer electric insulating material 34B has a thickness (2 mm to 4 mm) 5 to 10 times that of the outer electric insulating material 34 shown in FIG.
  • the outer electric insulating material 34B is obtained by stacking 5 to 10 outer electric insulating materials 34 of FIG. 4.
  • FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. 1, is a cross-sectional view of the heat insulating portion 23, and FIG. 8 is an exploded view of a cross-sectional view taken along line 8-8 of FIG.
  • the material of the outer case 35B is different from that of FIG. 4, but the other inner case 31, inner electric insulating material 32, heating element 25, outer electric insulating material 34, and band 36 are formed and made of materials. Both are the same as in FIG.
  • the outer case 35B is preferably an aluminum-plated carbon steel plate (aluminum-plated steel plate).
  • Table 1 shows the materials described above and the thermal conductivity ⁇ (W / m ⁇ K) corresponding to these materials added to the heating section, preheating section, and heat insulating section.
  • the thermal conductivity ⁇ of mica is 0.5 (W / m ⁇ K), which is much smaller than the thermal conductivity ⁇ 16.3 (W / m ⁇ K) of SUS304. That is, mica has heat insulating performance in addition to electrical insulating performance.
  • the thickness of the outer electrical insulating material was increased 5 to 10 times compared to the heating part.
  • the heat transfer amount is 1/5
  • the heat transfer amount is 1/10. That is, the preheated portion is insulated by the outer electric insulating material.
  • an aluminum-plated steel plate is used for the outer case.
  • the thermal conductivity ⁇ of SUS304 is 16.3 (W / m ⁇ K)
  • the thermal conductivity ⁇ of carbon steel is 54 (W / m ⁇ K)
  • the thermal conductivity ⁇ of aluminum is Since it is 204 (W / m ⁇ K)
  • the thermal conductivity ⁇ of the aluminum-plated steel plate becomes sufficiently large. As a result, the amount of heat transferred from the outer case to the band increases, and the amount of heat dissipated from the band to the atmosphere increases.
  • the band that was SUS304 is changed to an aluminum-plated steel plate as shown in the example of changing the heat insulating portion.
  • both the outer case and the band may be made of aluminum-plated steel plate. The amount of heat released from the band to the atmosphere is further increased.
  • FIG. 9A shows the action of the heat insulating section 23
  • FIG. 9B shows the action of the heating section 22
  • FIG. 9C shows the action of the preheating section 21.
  • the heating unit 22 shown in FIG. 9B about half of the heat generated by the heating element 25 is transferred to the heating cylinder 12, and the remaining half of q2 is dissipated to the atmosphere.
  • the heat radiation q3 to the atmosphere becomes small due to the heat insulating action of the outer electric insulating material 34B, and most of the heat generated by the heating element 25 (heat transfer amount). q4 is transmitted to the heating cylinder 12.
  • the heat radiation q5 to the atmosphere increases by that amount, and the heating cylinder 12 The amount of heat transferred to q6 becomes smaller.
  • the temperature control performance of the heat retaining unit 23 is significantly better than that of the heating unit 22 and the preheating unit 21.
  • the preheating unit 21 is configured so that the heat transfer amount q4 is larger than the heat transfer amount q1, and the heat retention unit 23 is configured so that the heat transfer amount q6 is smaller than the heat transfer amount q1. That is, the preheating unit 21 has a higher heating performance to the heating cylinder 12 than the heating unit 22, and the heat insulating unit 23 has a lower heating performance to the heating cylinder 12 than the heating unit 22.
  • FIG. 10 (a) shows a cross-sectional view of the band 36B
  • FIG. 10 (b) shows a view taken along the line b of FIG. 10 (a).
  • a cooling window 39 of an appropriate size is opened in the band 36B.
  • FIG. 11B shows a heating element 25 used in the heating unit.
  • FIG. 11C shows a heating element 25 used in the preheating section. In this heating element 25, the output per unit area is increased by winding the heating wire 27 tightly as compared with the heating element 25 in the heating unit.
  • FIG. 11A shows a heating element 25 used in the heat insulating unit. In this heating element 25, the output per unit area is reduced by roughly winding the heating wire 27 as compared with the heating element 25 in the heating unit.
  • Table 2 shows an example in which such a heating element 25 is applied to a heating unit, a preheating unit, and a heat insulating unit.
  • the inner case, the inner electric insulating material, the outer electric insulating material, the outer case, and the band are common, and the thermal conductivity is common.
  • the output of the heating element of the preheating section is large and the output of the heating element of the heat insulating section is small. That is, the preheating unit 21 has a higher heating performance to the heating cylinder 12 than the heating unit 22, and the heat insulating unit 23 has a lower heating performance to the heating cylinder 12 than the heating unit 22.
  • the inner case, inner electrical insulating material, outer electrical insulating material, outer case, and band can be shared, which facilitates parts procurement.
  • the insulating plate 26 has a through hole 41.
  • the through holes 41 are provided in a staggered pattern.
  • the heating wire 27 is wound so as to pass through the through hole 41.
  • the lower surface of the insulating plate 26 is the surface on the heating cylinder side.
  • the portion indicated by the length L1 faces the heating cylinder.
  • the remaining length L2 is much shorter than the length L1.
  • L1 is approximately 70% and L2 is approximately 30%.
  • FIG. 12 (c) shows a comparative example and corresponds to the cross-sectional view of FIG.
  • the length L3 faces the heating cylinder.
  • This length L3 is approximately equal to the remaining length L4.
  • Both L3 and L4 are 50%.
  • the heating element 25 shown in FIGS. 12 (a) and 12 (b) is preferable to the heating element 25 shown in FIG.
  • FIG. 3 the division in the vicinity of the bolt 37 has been described.
  • the preferred position for this split is determined by thermal considerations. Preferred positions will be described with reference to FIG. It is known that when an object is heated by a convection phenomenon, heat escapes upward from the upper surface of the object, and almost no heat escapes from the lower surface of the object. From another point of view, the heat transfer coefficient on the upper surface of the object is much larger than the heat transfer coefficient on the side surface of the object. The heat transfer coefficient of the lower surface of the object is much smaller than the heat transfer coefficient of the side surface of the object.
  • the split position is set to the side of the heating cylinder 12. A certain degree of heating performance can be obtained while maintaining a certain degree of temperature control performance.
  • the present invention is not applied to an injection device having only one or two band heaters in the heating cylinder 12, but is applied to an injection device having three or four or more band heaters.
  • the four or more band heaters may include a preheating unit 21, a heating unit 22, and a heat insulating unit 23.
  • the present invention is suitable for an injection device provided with a preheating unit, a heating unit, and a heat insulating unit in the heating cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

射出装置の加熱筒12の基部から先端へ、予熱部21、加熱部22、保温部23が、この順で配置されている。加熱部22では、加熱筒22への伝熱量がq1である。予熱部21では、加熱筒22への伝熱量q4が伝熱量q1より大きくなるように加熱機構20が構成され、保温部23では、加熱筒22への伝熱量q6が伝熱量q1より小さくなるように加熱機構20が構成されている。

Description

射出装置
 本発明は、加熱筒に加熱機構を備えている射出装置に関する。なお、本書で、アルミニウムはアルミニウム合金を含む。
 溶融樹脂材料を、先端のノズルから射出する射出装置が、各種知られている(例えば、特許文献1(図1)参照)。
 特許文献1を次図に基づいて説明する。
 図14は従来の射出装置の構造を説明する図である。
 図14に示されるように、従来の射出装置100は、先端にノズル101を有する加熱筒102と、この加熱筒102に回転自在に且つ軸方向移動可能に収納されるスクリュー103とを備えている。
 基部側のホッパ104と先端のノズル101との間において、加熱筒102に4個の温度センサ104~107が埋設され、温度センサ104~107に対応して加熱機構111~114が各々配置されている。
 加熱機構111~114は、各々、加熱筒102に巻かれたバンドヒータ115と、このバンドヒータ115に巻かれた通気層116と、この通気層116に巻かれた断熱層117とからなる。
 温度センサ104が設定温度になるように、バンドヒータ115の出力が制御される。
 同様に、温度センサ105~107が設定温度になるように、各々のバンドヒータ115の出力が制御される。
 従来から加熱筒102の軸方向(長手方向)に、加熱機構111~114が配置され、加熱筒102の温度制御が実施されてきたが、加熱機構111と加熱機構112と加熱機構113と加熱機構114は、相互に同じ構造であった。
 同じ構造であれば、部品の調達コストが下げられると共に誤組みの心配がない。反面、樹脂材料の温度変化を考慮すると、改良の余地はある。
特許第6258250号公報
 本発明は、樹脂材料の温度変化により適合した射出装置を提供することを課題とする。
 上記課題を解決するために、本発明者らは樹脂材料の変化を詳細に検証した。
 先ず、加熱筒102の基部では、樹脂材料がペレットの形態でホッパ104を介して加熱筒102に供給される。ペレットは塊であり、塊同士が点接触するため、加熱機構114で供給した熱は、ある塊から隣の塊へ小さな伝熱面積で伝えられる。そのため、加熱機構114では伝熱効率が低いことが分かった。
 一方、加熱筒102の中間部では、樹脂材料が液状化し、伝熱面積が増大する。そのため、加熱機構112、113では伝熱効率が高いことが分かった。
 また、加熱筒102の先端では、樹脂材料が所定の温度に達しており、加熱はあまり必要でない。そのため、加熱機構111では温度制御が重要であることが分かった。
 以上の知見に基づいて、射出装置の構造を改良したところ、課題を解決することができた。
 すなわち、請求項1に係る発明は、先端にノズルを有する加熱筒と、この加熱筒に回転自在に且つ軸方向移動可能に収納されるスクリューと、前記加熱筒に巻き付けられる加熱機構とを備える射出装置において、
 前記加熱機構は、前記加熱筒の基部に配置される予熱部と、この予熱部よりも前記加熱筒の先端寄りに配置される加熱部と、この加熱部よりも前記加熱筒の先端寄りに配置される保温部とを有し、
 前記予熱部は、前記加熱部より前記加熱筒への加熱性能が高く構成され、
 前記保温部は、前記加熱部より前記加熱筒への加熱性能が低く構成されている。
 請求項2に係る発明は、好ましくは、請求項1記載の射出装置であって、
 前記加熱部は、前記加熱筒に巻く内ケースと、この内ケースの外周面に被せる内側電気絶縁材と、この内側電気絶縁材の外周面に被せる発熱体と、この発熱体の外周面に被せる外側電気絶縁材と、この外側電気絶縁材の外周面に被せる外ケースと、この外ケースの外周面に被せるバンドとからなり、
 前記予熱部は、前記加熱部に対して前記外側電気絶縁材を厚くし、その他は前記加熱部と同じ構成とし、
 前記保温部は、前記加熱部に対して前記外ケースと前記バンドの少なくとも一方は熱伝導率が高い材料で構成し、その他は前記加熱部と同じ構成とした。
 請求項3に係る発明は、好ましくは、請求項2記載の射出装置であって、
 前記予熱部の前記外側電気絶縁材は、前記加熱部の前記外側電気絶縁材を重ねることで、厚くした。
 請求項4に係る発明は、好ましくは、請求項1記載の射出装置であって、
 前記加熱部は、前記加熱筒に巻く内ケースと、この内ケースの外周面に被せる内側電気絶縁材と、この内側電気絶縁材の外周面に被せる発熱体と、この発熱体の外周面に被せる外側電気絶縁材と、この外側電気絶縁材の外周面に被せる外ケースと、この外ケースの外周面に被せるバンドとからなり、
 前記予熱部は、前記加熱部に対して単位面積当たりの出力が大きな発熱体を採用し、その他は前記加熱部と同じ構成とし、
 前記保温部は、前記加熱部に対して単位面積当たりの出力が小さな発熱体を採用し、その他は前記加熱部と同じ構成とした。
 請求項5に係る発明は、好ましくは、請求項2~4のいずれか1項記載の射出装置であって、
 前記内ケース、前記内側電気絶縁材、前記発熱体、前記外側電気絶縁材、前記外ケース及び前記バンドは、各々少なくとも1箇所で割られており、外から加熱筒が見えるように割りの位置が揃えられている。
 請求項6に係る発明は、好ましくは、請求項5記載の射出装置であって、
 前記保温部における前記割りは、前記加熱筒の真上に位置決めされている。
 請求項7に係る発明は、好ましくは、請求項5記載の射出装置であって、
 前記予熱部における前記割りは、前記加熱筒の真下に位置決めされている。
 請求項1に係る発明では、予熱部は、加熱部より加熱筒への加熱性能が高くなるようにしたので、ペレットの温度をより高めることができる。
 また、保温部は、加熱部より加熱筒への加熱性能が低くなるようにしたので、樹脂材料を加熱し過ぎることがなく、所望の温度に容易に制御することができる。
 よって、請求項1によれば、樹脂材料の温度変化により適合した射出装置が提供される。
 請求項2に係る発明では、予熱部は、加熱部に対して外側電気絶縁材を厚くし、保温部は、加熱部に対して外ケースとバンドの少なくとも一方は熱伝導率が高い材料で構成した。すなわち、予熱部と加熱部と保温部は、構成要素の大部分が共通であり、部品の調達コストを抑えつつ、組み立ての容易さが維持される。
 請求項3では、予熱部の外側電気絶縁材は、加熱部の外側電気絶縁材を重ねたものである。外側電気絶縁材の単品は、予熱部と加熱部と保温部とで共用できる。
 請求項4では、予熱部と加熱部と保温部とで発熱体を異ならせた。その他の構成要素は共通であるため、部品の調達コストを抑えることができ、部品の管理が容易になる。
 請求項5では、内ケース、内側電気絶縁材、発熱体、外側電気絶縁材、外ケース及びバンドは、各々少なくとも1箇所で割られており、外から加熱筒が見えるように割りの位置が揃えられている。割りの位置を揃えることにより、バンド締め付け時の密着性が高まり、伝熱性を高めることができ、省エネルギーが図れる。
 請求項6に係る発明では、保温部における割りは、加熱筒の真上に位置決めされている。対流伝熱は上向きで最大となるため、保温部の割りから熱が盛んに大気へ放出され、保温部の温度制御性能がさらに高まる。
 請求項7に係る発明では、予熱部における割りは、加熱筒の真下に位置決めされている。対流伝熱は下向きで最小となるため、予熱部の割りから熱がほとんど大気へ放出されない。結果、予熱部の加熱性能がさらに高まると共に省エネルギーが図れる。
本発明に係る射出装置の要部を示す側面図である。 発熱体の斜視図である。 図1の3-3線断面図であって加熱部の断面図である。 図3の4-4線断面の分解図である。 図1の5-5線断面図であって予熱部の断面図である。 図5の6-6線断面の分解図である。 図1の7-7線断面図であって保温部の断面図である。 図7の8-8線断面の分解図である。 (a)は保温部の作用説明図、(b)は加熱部の作用説明図、(c)は予熱部の作用説明図である。 (a)はバンドの変形例の断面図、(b)は(a)のb矢視図である。 (a)~(c)は発熱体の変更例を説明する図である。 (a)は発熱体のさらなる変更例を説明する斜視図、(b)は(a)のb―b線断面図、(c)は比較例を説明する断面図である。 (a)は保温部の割りの好ましい位置を示す図、(b)は加熱部の割りの好ましい位置を示す図、(c)は予熱部の割りの好ましい位置を示す図である。 従来の射出装置の構造を説明する図である。
 本発明の実施の形態を添付図に基づいて以下に説明する。
 図1に示されるように、射出装置10は、先端にノズル11を有する加熱筒12と、この加熱筒12に回転自在に且つ軸方向移動可能に収納されるスクリュー13と、加熱筒12に巻き付けられる加熱機構20と、加熱筒12に接続される落下口ブロック15と、この落下口ブロック15に取付けられるホッパ17とを備える。ペレット状の樹脂材料は、ッパ17から落下口16を介して加熱筒12内へ落とされる。
 加熱機構20は、加熱筒12の基部側に配置される予熱部21と、この予熱部21よりも加熱筒12の先端寄りに配置される加熱部22と、この加熱部22よりも加熱筒12の先端寄りに配置される保温部23とからなる。加熱機構20の主要部品の一つである発熱体の構造を図2で説明する。
 図2に示されるように、発熱体25は、絶縁板26に電熱線27をつるまき状に巻いてなる。電熱線27は、裸線である。そのため、発熱体25は、後述する電気絶縁材で上と下から被われる。
 予熱部21と加熱部22と保温部23のうち、先ず、加熱部22の構成を、図3に基づいて説明する。
 図3に示されるように、加熱部22は、加熱筒(図1、符号12)に巻く内ケース31と、内ケース31の外周面に被せる内側電気絶縁材32と、この内側電気絶縁材32の外周面に被せる発熱体25と、この発熱体25の外周面に被せる外側電気絶縁材34と、この外側電気絶縁材34の外周面に被せる外ケース35と、この外ケース35の外周面に被せるバンド36とからなる。
 バンド36は、割りが1箇所であるワンピースバンドが好ましいが、割りが2箇所であるツーピースバンドであってもよい。ワンピースバンドやツーピースバンドであれば、バンド36は、ボルト37を締めることで内径を小さくすることができる。
 内ケース31の割り位置と、内側電気絶縁材32の割り位置と、発熱体25の割り位置と、外側電気絶縁材34の割り位置と、外ケース35の割り位置と、バンド36の割り位置を合わせる。すると、ボルト37を締めることで、加熱筒12に内ケース31を密着させ、内ケース31に内側電気絶縁材32を密着させ、内側電気絶縁材32に発熱体25を密着させ、発熱体25に外側電気絶縁材34を密着させ、外側電気絶縁材34に外ケース35を密着させ、外ケース35にバンド36を密着させることができる。
 図4は図3の4-4線断面の分解図である。
 図4に示されるように、加熱部22は、内ケース31と、内側電気絶縁材32と、発熱体25と、外側電気絶縁材34と、外ケース35と、バンド36とを重ねてなる。
 内ケース31、外ケース35及びバンド36は、錆びにくいステンレス鋼(例えば、SUS304)の薄板が好適である。
 内側電気絶縁材32及び外側電気絶縁材34は、例えば0.4mm厚さのマイカ(雲母)である。0.2mm厚さのマイカを2枚重ねてもよい。
 なお、内ケース31の内側に、想像線で示す冷却ジャケット38を追加することは差し支えない。冷却ジャケット38は、冷媒(水、空気など)が適宜流される。
 図5は図1の5-5線断面図であって予熱部21の断面図であり、図6は図5の6-6線断面の分解図である。
 図6において、予熱部21では、外側電気絶縁材34Bが図4と異なるが、その他の内ケース31、内側電気絶縁材32、発熱体25、外ケース35及びバンド36は、形態、材質とも図4と同じである。
 外側電気絶縁材34Bは、図4に示す外側電気絶縁材34の5倍~10倍の厚さ(2mm~4mm)とする。好ましくは、外側電気絶縁材34Bは、5枚~10枚の図4の外側電気絶縁材34を重ねて得る。
 図7は図1の7-7線断面図であって保温部23の断面図であり、図8は図7の8-8線断面の分解図である。
 図8において、保温部23では、外ケース35Bの材質が図4と異なるが、その他の内ケース31、内側電気絶縁材32、発熱体25、外側電気絶縁材34及びバンド36は、形態、材質とも図4と同じである。
 外ケース35Bは、アルミニウムをめっきした炭素鋼板(アルミニウムめっき鋼板)が好適である。
 以上に述べた材質及びこの材質に対応する熱伝導率λ(W/m・K)を、加熱部、予熱部、保温部に付記したものを、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 マイカの熱伝導率λは0.5(W/m・K)であり、SUS304の熱伝導率λ16.3(W/m・K)より格段に小さい。すなわち、マイカは電気絶縁性能に加えて、断熱性能をも有する。
 加熱部に対して予熱部では、外側電気絶縁材の厚さを5倍~10倍にした。厚さが5倍になると伝熱量は1/5になり、厚さが10倍になると伝熱量は1/10になる。すなわち、予熱部では、外側電気絶縁材で断熱される。
 また、保温部では、外ケースにアルミニウムめっき鋼板を採用した。SUS304の熱伝導率λが16.3(W/m・K)であるのに対して、炭素鋼の熱伝導率λは54(W/m・K)であり、アルミニウムの熱伝導率λが204(W/m・K)であるため、アルミニウムめっき鋼板の熱伝導率λは十分に大きくなる。結果、外ケースからバンドへの伝熱量が増大し、バンドから大気への放熱量が増加する。
 好ましくは、保温部変更例に示されるように、SUS304であったバンドをアルミニウムめっき鋼板に変更する。
 又は、外ケースとバンドを共にアルミニウムめっき鋼板にすることは差し支えない。バンドから大気への放熱量がさらに増加する。
 表1で説明した作用を、図面に基づいて再度説明する。
 図9(a)で保温部23の作用が示され、図9(b)で加熱部22の作用が示され、図9(c)で予熱部21の作用が示される。
 図9(b)に示される加熱部22では、発熱体25の発生熱は、約半分の伝熱量q1が加熱筒12に伝わり、残りの約半分のq2が大気へ放熱される。
 対して、図9(c)に示される予熱部21では、外側電気絶縁材34Bの断熱作用により、大気への放熱q3は小さくなり、発熱体25の発生熱の大部分の熱(伝熱量)q4が加熱筒12に伝わる。
 また、図9(a)に示される保温部23では、外ケース35Bとバンド36の少なくとも一方がアルミニウムめっき鋼板で構成されているため、大気への放熱q5が大きくなり、その分だけ加熱筒12への伝熱量q6は小さくなる。
 保温部23の温度が所定温度を超えた場合、放熱q5が大きいため、速やかに温度を所定温度に下げることができる。よって、保温部23での温度制御性能は、加熱部22や予熱部21より格段に良くなる。
 加熱部22を基準にすると、伝熱量q1より伝熱量q4が大きくなるように予熱部21は構成され、伝熱量q1より伝熱量q6が小さくなるように保温部23が構成されている。
 すなわち、予熱部21は、加熱部22より加熱筒12への加熱性能が高く構成され、保温部23は、加熱部22より加熱筒12への加熱性能が低く構成されている。
 バンド36の変形例を、図10に基づいて説明する。
 図10(a)にバンド36Bの断面図が示され、図10(b)に図10(a)のb矢視図が示される。
 図10(b)に示されるように、バンド36Bに適当な大きさの冷却窓39が開けられている。
 図9(a)に示されるバンド36を、図10(b)に示されるバンド36Bに置き換えると、放熱q5は、バンド36Bを介さないで、外ケース35から直接大気へ放熱されるため、さらに増加する。
 そのため、図10の構造であれば、バンド36Bの材質は、SUS304が採用可能となり、材料の選択枝が増える。
 次に、発熱体25の変更例を、図11に基づいて説明する。
 図11(b)に加熱部で使用する発熱体25が示される。
 図11(c)に予熱部で使用する発熱体25が示される。この発熱体25は、加熱部での発熱体25に比較して、電熱線27を密に巻くことで、単位面積当たりの出力が増される。
 図11(a)に保温部で使用する発熱体25が示される。この発熱体25は、加熱部での発熱体25に比較して、電熱線27を粗に巻くことで、単位面積当たりの出力が減らされる。
 このような発熱体25を、加熱部、予熱部及び保温部に適用した例が、表2に示される。
Figure JPOXMLDOC01-appb-T000002
 加熱部、予熱部及び保温部において、内ケース、内側電気絶縁材、外側電気絶縁材、外ケース及びバンドは、共通であって、熱伝導率は共通である。
 加熱部の発熱体を基準にすると、予熱部の発熱体の出力が大きく、保温部の発熱体の出力が小さい。
 すなわち、予熱部21は、加熱部22より加熱筒12への加熱性能が高く構成され、保温部23は、加熱部22より加熱筒12への加熱性能が低く構成されている。
 表2に示されるように、加熱部、予熱部、保温部において、内ケース、内側電気絶縁材、外側電気絶縁材、外ケース及びバンドが共通化でき、部品調達が楽になる。
 発熱体25のさらなる変更例を、図12に基づいて説明する。
 図12(a)に示されるように、絶縁板26は、貫通穴41を有する。この貫通穴41は千鳥状に設けられている。貫通穴41を通過するようにして、電熱線27が巻かれる。絶縁板26の下面が加熱筒側の面である。
 図12(b)に示されるように、長さL1で示す部分が加熱筒に臨む。残りの長さL2は長さL1に比較して格段に短い。L1が概ね70%でL2が概ね30%となる。
 図12(c)は比較例を示し、図2の断面図に相当する。この比較例では長さL3が加熱筒に臨む。この長さL3は残りの長さL4とほぼ等しくなる。L3とL4が共に50%となる。
 L1とL3が、加熱筒の加熱に大きく寄与すると考えると、図12(a)、(b)に示す発熱体25の方が、図2に示す発熱体25より、望ましいといえる。
 図3で、ボルト37近傍の割りを説明した。この割りは、熱的考察により、好ましい位置が決まる。好ましい位置を図13に基づいて説明する。
 対流現象により、物を加熱すると、物の上面から上方へ熱が逃げ、物の下面からは熱がほとんど逃げないことが知られている。
 別の観点から、物の上面の熱伝達係数は、物の側面の熱伝達係数より格段に大きい。物の下面の熱伝達係数は、物の側面の熱伝達係数より格段に小さい。
 図13(a)に示されるように、保温部23では、割りの位置を加熱筒12の真上にすると、上方への放熱q7が大きくなり、温度制御性能が高まる。
 図13(c)に示されるように、予熱部21では、割りの位置を加熱筒12の真下にすると、下方への放熱q9が小さくなり、加熱性能が高まる。
 図13(b)に示されるように、加熱部22では、割りの位置を加熱筒12の真横にする。ある程度の温度制御性能を維持しつつある程度の加熱性能が得られる。
 尚、本発明は、加熱筒12に1個又は2個のバンドヒータのみを備える射出装置には適用されないが、3個又は4個以上のバンドヒータを備える射出装置に適用される。4個以上の場合は、4個以上のバンドヒータに、予熱部21と、加熱部22と、保温部23とが含まれていればよい。
 本発明は、加熱筒に、予熱部と加熱部と保温部とを備える射出装置に好適である。
 10…射出装置、11…ノズル、12…加熱筒、13…スクリュー、20…加熱機構、21…予熱部、22…加熱部、23…保温部、25…発熱体、31…内ケース、32…内側電気絶縁材、34…外側電気絶縁材、34B…厚くした外側電気絶縁材、35…外ケース、35B…熱伝導率を高めた外ケース、36、36B…バンド、q1…加熱部における加熱筒への伝熱量、q4…予熱部における加熱筒への伝熱量、q6…保温部における加熱筒への伝熱量。

Claims (7)

  1.  先端にノズルを有する加熱筒と、この加熱筒に回転自在に且つ軸方向移動可能に収納されるスクリューと、前記加熱筒に巻き付けられる加熱機構とを備える射出装置において、
     前記加熱機構は、前記加熱筒の基部に配置される予熱部と、この予熱部よりも前記加熱筒の先端寄りに配置される加熱部と、この加熱部よりも前記加熱筒の先端寄りに配置される保温部とを有し、
     前記予熱部は、前記加熱部より前記加熱筒への加熱性能が高く構成され、
     前記保温部は、前記加熱部より前記加熱筒への加熱性能が低く構成されている射出装置。
  2.  請求項1記載の射出装置であって、
     前記加熱部は、前記加熱筒に巻く内ケースと、この内ケースの外周面に被せる内側電気絶縁材と、この内側電気絶縁材の外周面に被せる発熱体と、この発熱体の外周面に被せる外側電気絶縁材と、この外側電気絶縁材の外周面に被せる外ケースと、この外ケースの外周面に被せるバンドとからなり、
     前記予熱部は、前記加熱部に対して前記外側電気絶縁材を厚くし、その他は前記加熱部と同じ構成とし、
     前記保温部は、前記加熱部に対して前記外ケースと前記バンドの少なくとも一方は熱伝導率が高い材料で構成し、その他は前記加熱部と同じ構成とした射出装置。
  3.  請求項2記載の射出装置であって、
     前記予熱部の前記外側電気絶縁材は、前記加熱部の前記外側電気絶縁材を重ねることで、厚くした射出装置。
  4.  請求項1記載の射出装置であって、
     前記加熱部は、前記加熱筒に巻く内ケースと、この内ケースの外周面に被せる内側電気絶縁材と、この内側電気絶縁材の外周面に被せる発熱体と、この発熱体の外周面に被せる外側電気絶縁材と、この外側電気絶縁材の外周面に被せる外ケースと、この外ケースの外周面に被せるバンドとからなり、
     前記予熱部は、前記加熱部に対して単位面積当たりの出力が大きな発熱体を採用し、その他は前記加熱部と同じ構成とし、
     前記保温部は、前記加熱部に対して単位面積当たりの出力が小さな発熱体を採用し、その他は前記加熱部と同じ構成とした射出装置。
  5.  請求項2~4のいずれか1項記載の射出装置であって、
     前記内ケース、前記内側電気絶縁材、前記発熱体、前記外側電気絶縁材、前記外ケース及び前記バンドは、各々少なくとも1箇所で割られており、外から加熱筒が見えるように割りの位置が揃えられている射出装置。
  6.  請求項5記載の射出装置であって、
     前記保温部における前記割りは、前記加熱筒の真上に位置決めされている射出装置。
  7.  請求項5記載の射出装置であって、
     前記予熱部における前記割りは、前記加熱筒の真下に位置決めされている射出装置。
PCT/JP2021/017789 2020-06-11 2021-05-11 射出装置 WO2021251040A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020101401 2020-06-11
JP2020-101401 2020-06-11
JP2021-052922 2021-03-26
JP2021052922A JP7046249B2 (ja) 2020-06-11 2021-03-26 射出装置

Publications (1)

Publication Number Publication Date
WO2021251040A1 true WO2021251040A1 (ja) 2021-12-16

Family

ID=78847225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017789 WO2021251040A1 (ja) 2020-06-11 2021-05-11 射出装置

Country Status (1)

Country Link
WO (1) WO2021251040A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021197229A (ja) * 2020-06-11 2021-12-27 日精樹脂工業株式会社 バンドヒータ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255114A (ja) * 1988-08-18 1990-02-23 Nissei Plastics Ind Co 射出成形機の加熱装置
JPH038523U (ja) * 1989-06-13 1991-01-28
JP2003025404A (ja) * 2001-07-16 2003-01-29 Toyo Mach & Metal Co Ltd 成形機
JP2003205541A (ja) * 2002-01-16 2003-07-22 Sumitomo Heavy Ind Ltd 射出装置
JP2004199526A (ja) * 2002-12-19 2004-07-15 Toshiba Mach Co Ltd 加熱制御方法並びに加熱制御プログラム及び加熱制御装置
JP2006075846A (ja) * 2004-09-07 2006-03-23 Nissei Plastics Ind Co 金属成形機の加熱筒における昇温方法
JP2012218418A (ja) * 2011-04-14 2012-11-12 Nissei Plastics Ind Co 射出成形機の温度分布矯正装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255114A (ja) * 1988-08-18 1990-02-23 Nissei Plastics Ind Co 射出成形機の加熱装置
JPH038523U (ja) * 1989-06-13 1991-01-28
JP2003025404A (ja) * 2001-07-16 2003-01-29 Toyo Mach & Metal Co Ltd 成形機
JP2003205541A (ja) * 2002-01-16 2003-07-22 Sumitomo Heavy Ind Ltd 射出装置
JP2004199526A (ja) * 2002-12-19 2004-07-15 Toshiba Mach Co Ltd 加熱制御方法並びに加熱制御プログラム及び加熱制御装置
JP2006075846A (ja) * 2004-09-07 2006-03-23 Nissei Plastics Ind Co 金属成形機の加熱筒における昇温方法
JP2012218418A (ja) * 2011-04-14 2012-11-12 Nissei Plastics Ind Co 射出成形機の温度分布矯正装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021197229A (ja) * 2020-06-11 2021-12-27 日精樹脂工業株式会社 バンドヒータ
JP7093809B2 (ja) 2020-06-11 2022-06-30 日精樹脂工業株式会社 バンドヒータ

Similar Documents

Publication Publication Date Title
WO2021251040A1 (ja) 射出装置
US10236103B2 (en) Moisture resistant layered sleeve heater and method of manufacture thereof
JP7046249B2 (ja) 射出装置
WO2021251039A1 (ja) バンドヒータ
US9761353B2 (en) High temperature insulated bus pipe
JPH0463995B2 (ja)
AU2004213229B2 (en) Continuous extrusion apparatus
JP7270810B2 (ja) バンドヒータ
WO2016185624A1 (ja) 溶湯保持炉
CN1292899C (zh) 热压凸滚筒
JPH05286018A (ja) 押出機シリンダ加熱装置
JP7044781B2 (ja) 熱伝達機器
JP2021197229A5 (ja)
JPS5957729A (ja) 高温チヤンネル多重注入銃
FR2745147A1 (fr) Element chauffant a resistance electrique
JP2022546917A (ja) 電気ヒーター
CN101484594A (zh) 用于隔离电磁感应器的隔热屏,以及包括该屏的热处理设备
JP6961268B1 (ja) バンドヒータ
JPH01208414A (ja) 真空熱処理炉
TWI640218B (zh) Injection molding machine and its variable power type heating sheet
JP2005226931A (ja) ヒートパイプ用加熱装置
EP0279509A1 (en) A heat-distributing winding
US1068763A (en) Electric heating device.
US932469A (en) Electric furnace.
JP3002174U (ja) 電熱ヒータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822917

Country of ref document: EP

Kind code of ref document: A1