WO2021250984A1 - 半導体検査方法及び半導体検査装置 - Google Patents

半導体検査方法及び半導体検査装置 Download PDF

Info

Publication number
WO2021250984A1
WO2021250984A1 PCT/JP2021/013840 JP2021013840W WO2021250984A1 WO 2021250984 A1 WO2021250984 A1 WO 2021250984A1 JP 2021013840 W JP2021013840 W JP 2021013840W WO 2021250984 A1 WO2021250984 A1 WO 2021250984A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pattern image
semiconductor device
semiconductor
learning
Prior art date
Application number
PCT/JP2021/013840
Other languages
English (en)
French (fr)
Inventor
朗 嶋瀬
祥光 毛
哲人 内角
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP21822608.2A priority Critical patent/EP4131350A4/en
Priority to JP2021542162A priority patent/JP6966668B1/ja
Priority to US17/925,625 priority patent/US20230206422A1/en
Priority to KR1020227044286A priority patent/KR20230021669A/ko
Priority to CN202180041063.XA priority patent/CN115699281A/zh
Publication of WO2021250984A1 publication Critical patent/WO2021250984A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • This disclosure relates to a semiconductor inspection method and a semiconductor inspection apparatus.
  • Patent Documents 1 and 2 acquire an optical image obtained by imaging reflected light from a semiconductor device as a pattern image showing a pattern of the semiconductor device, and show the pattern image and the layout of the semiconductor device. It is disclosed that alignment with a layout image (design image) such as a CAD image is performed. By performing such alignment, for example, a failure analysis image of a semiconductor device obtained by an inspection device (for example, a light emitting image showing a failure location of the semiconductor device by light emission or the like) and a layout image of the semiconductor device are superimposed. It is possible to obtain a superposed image. By using such a superposed image, failure analysis in a semiconductor device becomes easy.
  • one aspect of the present disclosure is to provide a semiconductor inspection method and a semiconductor inspection apparatus capable of accurately aligning a pattern image obtained from a semiconductor device with a layout image of the semiconductor device. ..
  • characteristic information indicating the characteristics of the electric signal of the semiconductor device corresponding to the irradiation of light is acquired for each light irradiation position.
  • a semiconductor device based on a step of generating a first pattern image of a semiconductor device based on characteristic information for each irradiation position, a layout image showing the layout of the semiconductor device, and current path information showing a current path in the semiconductor device.
  • the light emitted to the semiconductor device has a certain spread, and is half the value of the reflected light from the semiconductor device rather than the full width at half maximum (FWHM) of the incident light on the semiconductor device.
  • FWHM full width at half maximum
  • the full width is larger.
  • the resolution (resolution) of the optical image acquired based on the reflected light depends on the half-value full width of the observed reflected light, whereas the resolution of the first pattern image not based on the reflected light depends on the semiconductor device. It depends on the half-value full width of the incident light. Further, the smaller the full width at half maximum of light, the smaller the resolution of the obtained image.
  • the first pattern image based on the characteristics of the electric signal of the semiconductor device corresponding to the irradiation of light, it is possible to obtain an image with higher resolution than the optical image acquired based on the reflected light. Further, highly accurate matching between the first pattern image and the layout image is based on the result of the alignment between the second pattern image and the first pattern image obtained based on the layout image and the current path in the semiconductor device. Information can be obtained. As described above, according to the semiconductor inspection method, the pattern image (first pattern image) obtained from the semiconductor device and the layout image of the semiconductor device can be accurately aligned.
  • the step of generating the second pattern image classifies at least one of at least a part of the diffusion layer and at least a part of the element separation layer included in the semiconductor device based on the current path information, and at least one of the diffusion layers in the layout image.
  • the first process of setting a color according to the classification for at least one of a part and at least a part of the element separation layer, and the second process of generating a second pattern image based on the colored image generated by the first process Processing and may be included. According to the above configuration, it is possible to obtain a second pattern image capable of accurately aligning with the first pattern image based on the colored image colored based on the current path information.
  • the second process may include a blurring process for the colored image. According to the above configuration, a second pattern image similar to the first pattern image can be obtained by the blurring process. As a result, it is possible to obtain a second pattern image capable of accurately aligning with the one pattern image.
  • the second process is determined by a process of learning the conversion process of the colored image by machine learning using the teacher data including the colored image for learning and the first pattern image corresponding to the colored image for learning, and the learning. It may include a process of generating a second pattern image by converting a colored image using the conversion process. According to the above configuration, a second pattern image similar to the first pattern image can be obtained by the conversion process based on the result of machine learning. As a result, it is possible to accurately align the first pattern image and the second pattern image.
  • the step of acquiring the matching information is based on the process of presenting the first pattern image and the second pattern image to the user and the information indicating the correspondence relationship between the first pattern image and the second pattern image specified by the user. It may include a process of acquiring matching information. According to the above configuration, the user can visually align the first pattern image and the second pattern image.
  • the step of acquiring matching information is by machine learning using teacher data including a first pattern image for learning, a second pattern image corresponding to the first pattern image for learning, and matching results of these images.
  • teacher data including a first pattern image for learning, a second pattern image corresponding to the first pattern image for learning, and matching results of these images.
  • the semiconductor inspection method may further include a step of generating a superimposed image in which the layout image and the first pattern image are superimposed based on the matching information. According to the above configuration, it is possible to obtain a superimposed image in which the layout image and the first pattern image are accurately superimposed based on the matching information. As a result, it becomes possible to perform failure analysis and the like using the superimposed image with high accuracy.
  • the semiconductor inspection method may further include a step of identifying the failure position identified by the failure analysis for the semiconductor device and the position on the layout image based on the matching information, or setting the probing position for the semiconductor device. .. According to the above configuration, by using the matching information, failure analysis (identification of the failure position on the layout image or setting of the probing position) can be performed with high accuracy.
  • the measured value of the photoelectromotive force generated in response to the irradiation of the semiconductor device with light may be acquired as characteristic information.
  • an OBIC (Optical Beam Induced Current) image in which a hue (shade) is set according to the measured value of the optical beam current can be obtained as the first pattern image.
  • the semiconductor device may have a semiconductor substrate having a main surface on which the transistor is formed and a back surface opposite to the main surface, and in the step of generating the first pattern image, the back surface of the semiconductor substrate is used.
  • the light transmitted from the back surface to the main surface side may be irradiated, and the light may have energy higher than the band gap of the material of the semiconductor substrate.
  • OBIC can be suitably generated by causing single photon absorption (SPA) in the transistor on the main surface side of the semiconductor substrate.
  • SPA single photon absorption
  • the semiconductor device may have a semiconductor substrate having a main surface on which the transistor is formed and a back surface opposite to the main surface, and in the step of generating the first pattern image, the back surface of the semiconductor substrate is used.
  • the light which is pulsed light transmitted from the back surface to the main surface side, may be irradiated, and the light may have an energy lower than the band gap of the material of the semiconductor substrate.
  • OBIC can be suitably generated by causing multi-photon absorption (MPA) in the transistor on the main surface side of the semiconductor substrate.
  • MPA multi-photon absorption
  • the semiconductor inspection apparatus is electrically connected to a light source, a scanning unit that scans light from the light source with respect to the semiconductor device, and the semiconductor device, and irradiates light at each light irradiation position.
  • a first pattern image of the semiconductor device is generated based on the measurement unit that measures the characteristics of the electric signal of the semiconductor device according to the above and the characteristic information indicating the characteristics of the electric signal for each irradiation position measured by the measurement unit.
  • the first generation unit, the second generation unit that generates the second pattern image of the semiconductor device based on the layout image showing the layout of the semiconductor device and the current path information indicating the current path in the semiconductor device, and the first pattern image.
  • a processing unit for acquiring matching information indicating a relative relationship between the first pattern image and the layout image based on the result of alignment with the second pattern image is provided.
  • the above-mentioned semiconductor inspection method can be suitably executed.
  • the second generation unit classifies at least one of the diffusion layer and at least a part of the element separation layer included in the semiconductor device based on the current path information, and classifies at least a part of the diffusion layer and the element in the layout image.
  • the second process may include a blurring process for the colored image. According to the above configuration, a second pattern image similar to the first pattern image can be obtained by the blurring process. As a result, it is possible to obtain a second pattern image that can be accurately aligned with the first pattern image.
  • the second process is determined by a process of learning the conversion process of the colored image by machine learning using the teacher data including the colored image for learning and the first pattern image corresponding to the colored image for learning, and the learning. You may execute the process of generating the second pattern image by converting the colored image by using the conversion process. According to the above configuration, a second pattern image similar to the first pattern image can be obtained by the conversion process based on the result of machine learning. As a result, it is possible to accurately align the 1-pattern image and the 2nd pattern image.
  • the processing unit acquires matching information based on the process of presenting the first pattern image and the second pattern image to the user and the information indicating the correspondence between the first pattern image and the second pattern image specified by the user. You may execute the processing to be performed. According to the above configuration, the user can visually align the first pattern image and the second pattern image.
  • the processing unit performs the first pattern by machine learning using the teacher data including the first pattern image for learning, the second pattern image corresponding to the first pattern image for learning, and the matching result of these images.
  • Matching information is acquired by performing alignment between the first pattern image and the second pattern image using the process of learning the alignment process between the image and the second pattern image and the alignment process determined by learning. You may execute the processing to be performed. According to the above configuration, the alignment process based on the result of machine learning makes it possible to accurately align the 1-pattern image and the 2nd pattern image.
  • the processing unit may generate a superimposed image in which the layout image and the first pattern image are superimposed based on the matching information. According to the above configuration, it is possible to obtain a superimposed image in which the layout image and the first pattern image are accurately superimposed based on the matching information. As a result, it becomes possible to perform failure analysis and the like using the superimposed image with high accuracy.
  • the processing unit may identify the failure position identified by the failure analysis for the semiconductor device and the position on the layout image, or set the probing position for the semiconductor device. According to the above configuration, by using the matching information, failure analysis (identification of the failure position on the layout image or setting of the probing position) can be performed with high accuracy.
  • the measuring unit may acquire the measured value of the photoelectromotive force generated in response to the irradiation of the semiconductor device with light as characteristic information.
  • an OBIC Optical Beam Induced Current
  • a hue shade
  • the measuring unit may acquire the measured value of the photoelectromotive force generated in response to the irradiation of the semiconductor device with light as characteristic information.
  • the semiconductor device may have a semiconductor substrate having a main surface on which a transistor is formed and a back surface opposite to the main surface, and the scanning unit may have a scanning unit from the back surface to the main surface side with respect to the back surface of the semiconductor substrate.
  • the light transmitted through may be scanned, and the light may have a higher energy than the bandgap of the material of the semiconductor substrate.
  • OBIC can be suitably generated by causing single photon absorption (SPA) in the transistor on the main surface side of the semiconductor substrate.
  • SPA single photon absorption
  • the semiconductor device may have a semiconductor substrate having a main surface on which a transistor is formed and a back surface opposite to the main surface, and the scanning unit may be located on the back surface side to the main surface side with respect to the back surface of the semiconductor substrate.
  • the light which is the pulsed light transmitted to the semiconductor substrate, may be scanned, and the light may have an energy lower than the band gap of the material of the semiconductor substrate.
  • OBIC can be suitably generated by causing multi-photon absorption (MPA) in the transistor on the main surface side of the semiconductor substrate.
  • MPA multi-photon absorption
  • a semiconductor inspection method and a semiconductor inspection apparatus capable of accurately aligning a pattern image obtained from a semiconductor device with a layout image of the semiconductor device. ..
  • FIG. 1 is a schematic configuration diagram of a semiconductor inspection device according to an embodiment.
  • FIG. 2 is a schematic view showing a configuration example of a semiconductor device.
  • (A) and (B) of FIG. 3 are schematic views showing an example of a layout of a part of a semiconductor device.
  • FIG. 4 is a diagram showing an example of a layout image.
  • FIG. 5 is a diagram showing an example of an OBIC image (first pattern image).
  • FIG. 6 is a graph showing the relationship between the wavelength of the laser beam and the resolution of the OBIC image, and the relationship between the wavelength of the laser beam and the transmittance of the silicon substrate.
  • FIG. 7 is a diagram showing an example of a box setting image.
  • FIG. 8 is a diagram showing an example of a colored image.
  • FIG. 1 is a schematic configuration diagram of a semiconductor inspection device according to an embodiment.
  • FIG. 2 is a schematic view showing a configuration example of a semiconductor device.
  • FIG. 9 is a diagram showing an example of a blurred image (second pattern image).
  • FIG. 10 is a flowchart showing an example of the operation of the semiconductor inspection device.
  • FIG. 11 is a diagram showing the relationship between each image generated by the semiconductor inspection apparatus.
  • FIG. 12 is a schematic diagram showing a first configuration example for acquiring an OBIC signal.
  • FIG. 13 is a schematic view showing a second configuration example for acquiring an OBIC signal.
  • FIG. 14A is a schematic diagram showing a third configuration example for acquiring an OBIC signal
  • FIG. 14B is a schematic diagram showing a fourth configuration example for acquiring an OBIC signal.
  • FIG. 15 is a schematic diagram showing a fifth configuration example for acquiring an OBIC signal.
  • FIG. 1 is a schematic configuration diagram of a semiconductor inspection device 1 according to an embodiment.
  • FIG. 2 is a schematic diagram showing a configuration example of the semiconductor device 10 which is the device to be inspected.
  • the semiconductor device 10 is, for example, a logic LSI, a memory, an IC (integrated circuit) such as an analog circuit, a power device, or the like.
  • the semiconductor device 10 includes a semiconductor chip 11 and a package substrate 12.
  • the semiconductor chip 11 has a semiconductor substrate 11A, a wiring layer 11B, and a bump B.
  • the semiconductor substrate 11A has a main surface 11a on which a transistor T such as a MOS transistor is formed, and a back surface 11b on the opposite side of the main surface 11a.
  • the semiconductor substrate 11A is, for example, a silicon substrate.
  • the material of the semiconductor substrate 11A is not limited to silicon.
  • the semiconductor device 10 is a high-frequency device, a photonic device, or the like, a compound semiconductor such as GaAs or GaP can be used as the material of the semiconductor substrate 11A.
  • SiC, GaN, or the like can be used as the material of the semiconductor substrate 11A.
  • the wiring layer 11B is a layer on which the metal wiring W electrically connected to the transistor T is arranged on the main surface 11a side of the semiconductor substrate 11A.
  • the bump B is provided on the surface of the wiring layer 11B opposite to the semiconductor substrate 11A side.
  • the package substrate 12 is a wiring board on which the semiconductor chip 11 is mounted.
  • the package substrate 12 is electrically connected to the metal wiring W provided in the wiring layer 11B of the semiconductor chip 11 via the bump B.
  • the package substrate 12, the terminal 12a is provided corresponding to the transistor T supply (V DD) or ground (V SS).
  • FIG. 3 is a schematic view showing an example of the layout of a part of the semiconductor device 10 (a portion near the main surface 11a of the semiconductor substrate 11A).
  • FIG. 3A is a schematic plan view of the semiconductor substrate 11A as viewed from the direction facing the main surface 11a.
  • FIG. 3B is a schematic cross-sectional view taken along the line BB in FIG. 3A.
  • FIG. 3 (C) is a schematic cross-sectional view taken along the line CC in FIG. 3 (A).
  • the first conductive type diffusion layers 11c1, 11c2 (11c) and the diffusion layer 11c are separated on the main surface 11a of the semiconductor substrate 11A.
  • the insulating layer 11d and the like are formed.
  • the diffusion layer 11c is a region where impurities are diffused.
  • the diffusion layer 11c1 is a region in which n-type impurities are diffused
  • the diffusion layer 11c2 is a region in which p-type impurities are diffused.
  • the pattern shown in FIG. 3 is an extraction of one cell row in the semiconductor device 10.
  • the insulating layer 11d includes an element separation layer 11d1 that separates the elements arranged in the cell row direction corresponding to the lateral direction in FIG.
  • the insulating layer 11d is formed of, for example, SiO2 or the like.
  • the diffusion layer 11c has a plurality of peak-shaped shapes generally called fins.
  • Impurities different from the diffusion layer 11c are injected into the upper part of the fin by ion implantation or the like.
  • a p-type impurity having a predetermined concentration is injected into the upper part of the diffusion layer 11c1
  • an n-type impurity having a predetermined concentration is injected into the upper part of the diffusion layer 11c2.
  • the second conductive type fin portions 14a and 14b (14) are formed.
  • the semiconductor device 10 is a device (7 nm device) manufactured by a 7 nm process, and the distance between adjacent gates 13 is, for example, about several tens of nm.
  • the portion including the fin portion 14 and the gate 13 functions as a transistor T in the semiconductor device 10.
  • the transistor T having such a structure is called a FinFET (Fin Field-Effect Transistor).
  • the diffusion layer 11c1 (region in which n-type impurities are diffused) and the fin portion 14a (region in which p-type impurities are injected) formed on the diffusion layer 11c1 (region in which n-type impurities are diffused) operate as a p-type transistor (SiO).
  • the diffusion layer 11c2 region in which p-type impurities are diffused
  • the fin portion 14b region in which n-type impurities are injected
  • MOS n-type transistor
  • a gate 13a is also formed on the element separation layer 11d1, but this gate 13a does not have a function as an original gate and is called a dummy gate.
  • the fin portion 14 is electrically connected to the metal wiring W (metal first layer) via the via V (also referred to as a contact).
  • each fin portion 14 is electrically connected to the power supply (VDD ), the ground ( VSS ), or the gate 13 constituting the other transistor T via the via V (contact) and the metal wiring W. ing.
  • the semiconductor inspection device 1 includes a laser light source 2 (light source), a laser scanning unit 3 (scanning unit), an amplifier 4 (measurement unit), a computer 5, an input device 6, and a display device 7. ..
  • the laser light source 2 and the laser scanning unit 3 constitute an optical system that irradiates and scans the semiconductor device 10 with the laser beam L, which is the stimulating light.
  • the laser light source 2 is a light source that emits the laser beam L.
  • the laser scanning unit 3 two-dimensionally scans the laser beam L emitted from the laser light source 2 with respect to the semiconductor device 10.
  • the laser scanning unit 3 is composed of, for example, a galvano mirror, a MEMS mirror, or the like.
  • the laser scanning unit 3 is configured to scan the back surface 11b of the semiconductor substrate 11A with the laser light L transmitted from the back surface 11b to the main surface 11a.
  • the focal point of the laser beam L is adjusted to the vicinity of the main surface 11a (that is, the region where the transistor T is formed) of the semiconductor substrate 11A.
  • a solid immersion lens (SIL) 8 may be arranged on the back surface 11b of the semiconductor substrate 11A. That is, the laser beam L may be applied to the back surface 11b of the semiconductor substrate 11A via the solid immersion lens 8.
  • the numerical aperture (NA: Numerical Aperture) of the laser beam L irradiated on the back surface 11b of the semiconductor substrate 11A can be increased as compared with the case where the solid immersion lens 8 is not arranged. can.
  • the laser light source 2 is configured to emit laser light L having an energy higher than the band gap (1.12 eV in the case of silicon) of the material (silicon in the present embodiment) of the semiconductor substrate 11A, for example. May be good. That is, the laser beam L may be light having a wavelength shorter than the wavelength (1107 nm) corresponding to the band gap (energy gap) of silicon.
  • the optical beam-induced current (OBIC: Optical Beam Induced Current) is generated in the transistor T (for example, the pn junction) on the main surface 11a side of the semiconductor substrate 11A by causing single photon absorption (SPA: Single Photon Absorption). ) Can be suitably produced.
  • the laser light source 2 may be configured to emit laser light L, which is pulsed light having an energy lower than the band gap of the material of the semiconductor substrate 11A, for example. That is, the laser beam L may be pulsed light having a wavelength longer than the wavelength corresponding to the band gap of silicon (1107 nm).
  • the transistor T for example, the pn junction
  • MPA multi-photon absorption
  • the amplifier 4 measures the characteristics of the electric signal of the semiconductor device 10 according to the irradiation of the laser beam L for each irradiation position of the laser beam L.
  • the amplifier 4 acquires the measured value (OBIC signal) of the OBIC generated by the semiconductor device 10 in response to the irradiation of the laser beam L as the characteristic of the electric signal.
  • the amplifier 4 has a pair of terminals 4a and 4b.
  • One terminal 4a of the amplifier 4 is electrically connected to the terminal 12a of the package substrate 12 corresponding to the power supply (VDD ) on the drain side of the transistor T.
  • the other terminal 4b of the amplifier 4 is electrically connected to the terminal 12a of the package substrate 12 corresponding to the ground (VSS) on the source side of the transistor T.
  • the amplifier 4 inputs the measured value (OBIC signal) obtained by detecting and amplifying the OBIC generated by the laser beam L to the computer 5.
  • the computer 5 is a device that performs various image processing described later, processing of OBIC signals input from the amplifier 4, control of each part constituting the semiconductor inspection device 1, and the like.
  • the computer 5 includes, for example, a processor (for example, CPU, etc.), a built-in memory (for example, ROM, RAM, etc.), a storage medium (for example, HDD, SSD, etc.), and the like.
  • the computer 5 has a storage unit 51, a first generation unit 52, a second generation unit 53, an image processing unit 54 (processing unit), and a control unit 55 as functional components.
  • the computer 5 includes an input device 6 such as a mouse and a keyboard for inputting data to the computer 5, and a display device such as a display for displaying (outputting) the processing result (image or the like) by the computer 5. 7 and are connected.
  • an input device 6 such as a mouse and a keyboard for inputting data to the computer 5
  • a display device such as a display for displaying (outputting) the processing result (image or the like) by the computer 5. 7 and are connected.
  • Each function of the computer 5 is realized, for example, by the processor executing a computer program stored in the built-in memory or the storage medium.
  • the storage unit 51 stores the layout image of the semiconductor device 10 to be inspected.
  • FIG. 4 is a diagram showing an example of a layout image (layout image P1).
  • the layout image P1 is a design image showing a pattern of the semiconductor device 10 such as CAD data acquired from the outside, for example.
  • the storage unit 51 stores current path information indicating the current path corresponding to the layout image P1.
  • the current path information is, for example, information indicating an object (connection object) to which each region shown in the layout image P1 is connected via the metal wiring W of the wiring layer 11B.
  • the storage unit 51 appropriately stores the OBIC signal sent from the amplifier 4, the processing results (data such as images) of the first generation unit 52, the second generation unit 53, and the image processing unit 54, which will be described later. To.
  • the first generation unit 52 generates a first pattern image of the semiconductor device 10 based on the characteristic information indicating the characteristics of the electric signal obtained for each irradiation position.
  • the characteristic information is an OBIC signal measured by the amplifier 4.
  • the first pattern image is an OBIC image obtained based on the OBIC signal.
  • the OBIC image is an image obtained by associating the value of the OBIC signal with the position irradiated with the laser beam L and imaging (that is, converting the value of the OBIC signal into a pixel value).
  • the OBIC image of the present embodiment is an image in which the pixel value is set so that the region where the current amount of the OBIC is large becomes brighter.
  • FIG. 5 is an image diagram (OBIC image P2) of an OBIC image of the semiconductor device 10 (7 nm device).
  • the OBIC image P2 shown in FIG. 5 is an image created by the present inventor by analogy with the OBIC image of the semiconductor device manufactured by the 40 nm process.
  • FIG. 6 is a graph showing the relationship between the wavelength of the laser beam L and the resolution of the obtained OBIC image, and the relationship between the wavelength of the laser beam L and the transmittance of the silicon substrate.
  • the dashed line indicates the wavelength (1107 nm) corresponding to the silicon bandgap.
  • Graph G1 represents the resolution of an OBIC image obtained when single photon absorption (SPA) is generated.
  • Graph G2 represents the resolution of the OBIC image obtained when multiphoton absorption (MPA) is generated. As shown in FIG. 6, it is known that the resolution (G2) when MPA is generated is 1 / ⁇ 2 of the resolution (G1) when SPA is generated.
  • the graph G3 shows the relationship between the wavelength of the laser beam L and the transmittance of a silicon substrate (here, as an example, a silicon substrate having a thickness of 100 ⁇ m).
  • a silicon substrate here, as an example, a silicon substrate having a thickness of 100 ⁇ m.
  • the resolution is about 160 nm
  • the transmittance of the laser beam L with respect to the silicon substrate is about 50%.
  • the MPA using the laser beam L pulse light
  • the laser beam L pulse light
  • the transmittance of the laser beam L is about 100%. Therefore, from the viewpoint of improving both the resolution and the irradiation efficiency of the laser beam L, the laser beam L (that is, the pulsed light having an energy lower than the band gap of silicon) that causes MPA rather than the SPA is used. Is preferable.
  • the pulsed laser applied to the MPA needs to have a high peak value.
  • Examples of such a pulse laser include an ultrashort pulse laser called a femtosecond laser.
  • a femtosecond laser When such a special laser is used, restrictions such as stability and wavelength selection range are added. The laser itself is also expensive. Therefore, from the viewpoint of reducing the device price (manufacturing cost) of the semiconductor device 10, it is preferable to use SPA rather than MPA. However, it may be necessary to prioritize resolution in order to perform sufficient analysis. Therefore, which method of SPA and MPA to be selected can be determined depending on what kind of semiconductor device 10 the user needs to perform detailed analysis.
  • the portion of the pn junction where the OBIC flows most easily is the portion connected to the power supply (VDD ) or the ground ( VSS). Even in the portion of the pn junction connected to the gate, some OBIC flows due to the leak from the gate. On the other hand, the OBIC hardly flows in the portion of the pn junction that is not connected to any part. Further, in a part of the element separation layer 11d1 provided with the dummy gate 13a (the part excluding the portion overlapping with the dummy gate 13a), the OBIC is very small even if it flows.
  • the amount of current of the OBIC is different for each of the above-mentioned classifications of the current path. Then, due to such a difference in the amount of current, a difference in shade for each region occurs in the OBIC image P2.
  • the second generation unit 53 generates an image (second pattern image) similar to the OBIC image P2 from the layout image P1 based on the above-mentioned properties of the OBIC image. That is, the second generation unit 53 is a semiconductor based on the layout image P1 of the semiconductor device 10 and the current path information of the semiconductor device 10 (in this embodiment, the classification of the current path (connection target) for each region described above). A second pattern image of the device 10 is generated. For example, the second generation unit 53 carries out the first process and the second process described later.
  • the first process includes a classification process and a color setting process.
  • the classification process is a process of classifying at least a part of the diffusion layer 11c and at least a part of the element separation layer 11d1 included in the semiconductor device 10 based on the current path information.
  • the color setting process is a process of setting colors according to the classification of the current path for at least a part of the diffusion layer 11c and at least a part of the element separation layer 11d1 in the layout image P1.
  • FIG. 7 is a diagram showing a box setting image P3 generated by the first process for the layout image P1.
  • the second generation unit 53 is a rectangular box between the gates 13 adjacent to each other in the diffusion layer 11c (the region where the diffusion layer 11c is provided when viewed from the thickness direction of the semiconductor substrate 11A).
  • the area BA (BA1, BA2, BA3) is set.
  • the second generation unit 53 sets a rectangular box region BA (BA4) between the gates 13A adjacent to each other in the element separation layer 11d1.
  • the box regions BA1 to BA4 are classified by the above-mentioned current path.
  • the box area BA1 is an area connected to a power supply (VDD ) or a ground ( VSS).
  • the box area BA2 is an area connected to the gate.
  • the box region BA3 is a region having no connection destination (an isolated region in the diffusion layer 11c).
  • the box region BA4 is an isolated region in the element separation layer 11d1.
  • the second generation unit 53 sets a color according to the classification of the current path for each of the box areas BA1 to BA4 in the color setting process.
  • the magnitude relationship of the current amount of the OBIC corresponding to each box region BA1 to BA4 is "BA1>BA2>BA3>BA4". Therefore, in the OBIC image P2, the area corresponding to the box area BA2 is darker than the area corresponding to the box area BA1. Further, the area corresponding to the box area BA3 is darker than the area corresponding to the box area BA2. Further, the area corresponding to the box area BA4 is darker than the area corresponding to the box area BA3.
  • the second generation unit 53 sets the brightest color (for example, a color close to white) in the box area BA1, sets the box area BA2 to a darker color (for example, light gray) than the box area BA1, and sets the box area BA3. Is set to a color darker than the box area BA2 (for example, dark gray), and the box area BA4 is set to a color darker than the box area BA3 (for example, a color close to black). Then, the second generation unit 53 removes the patterns other than the box areas BA1 to BA4 from the box setting image P3. As a result, as shown in FIG. 8, a colored image P4 containing only a plurality of colored box regions BA is obtained.
  • the second process is a process of generating a second pattern image based on the colored image P4.
  • the second generation unit 53 generates a second pattern image by performing a blurring process on the colored image P4.
  • a known blurring method can be used.
  • the parameter (blurring degree) of the blurring process may be determined based on, for example, the OBIC image P2. For example, the operator (user) determines the degree of blurring of the colored image P4 so that a second pattern image similar to the OBIC image P2 is generated while checking the OBIC image P2 displayed on the display device 7. You may.
  • the second generation unit 53 generates a second pattern image (blurred image) by executing a blurring process on the colored image P4 based on the degree of blurring input by the operator via the input device 6. May be good.
  • the second generation unit 53 may execute the blurring process for the colored image P4 based on the preset degree of blurring without human intervention.
  • FIG. 9 is a diagram showing an example of a blurred image P5 obtained by the blurring process.
  • the process of generating the blurred image P5 from the colored image P4 may be performed by using the conversion process learned by machine learning instead of the above-mentioned blurring process.
  • the second generation unit 53 learns the conversion process of the colored image by machine learning using the teacher data including the colored image for learning and the OBIC image corresponding to the colored image for learning in advance. May be good. Then, the second generation unit 53 may generate the blurred image P5 by converting the colored image P4 by using the conversion process determined by the above machine learning.
  • the second generation unit 53 may create a trained model (hereinafter referred to as “transformation model”) having a parameter (learned parameter) corresponding to the conversion process in advance and store it in the storage unit 51.
  • the conversion model is configured to input a colored image and output an image similar to an OBIC image (an image corresponding to the image generated by the above-mentioned blurring process) by machine learning using the above-mentioned teacher data, for example. It is a model that was made.
  • the teacher data colored image for learning and OBIC image corresponding to the colored image for learning
  • a colored image and an OBIC image obtained from a semiconductor device that has been an inspection target in the past can be used.
  • the second generation unit 53 may acquire the image output from the conversion model as the blurred image P5 by inputting the colored image P4 into the conversion model.
  • the transformation model is, for example, a neural network, a multi-layer neural network constructed by deep learning, or the like. Examples of transformation models include CNN (Convolutional Neural Network), FCN (Fully Convolutional Networks), U-Net, ResNet (Residual Network), and the like. However, the transformation model is not limited to a specific model. Further, the number of nodes and the number of layers of the transformation model can be arbitrarily set.
  • the image processing unit 54 has a relative relationship (see FIG. 4) between the OBIC image P2 and the layout image P1 (see FIG. 4) based on the result of alignment between the OBIC image P2 (see FIG. 5) and the blurred image P5 (see FIG. 9). Acquires matching information indicating correspondence).
  • the alignment between the OBIC image P2 and the blurred image P5 is performed by specifying three or more points corresponding to each other between the OBIC image P2 and the blurred image P5.
  • Such alignment may be performed by a known pattern matching technique or may be performed by an operator.
  • the image processing unit 54 presents the OBIC image P2 and the blurred image P5 to the user via the display device 7, and establishes a correspondence relationship between the OBIC image P2 and the blurred image P5 designated by the operator via the input device 6.
  • Information to be indicated (for example, information indicating three or more points corresponding to each other) may be acquired.
  • the blurred image P5 is an image generated based on the colored image P4 so as to be as similar as possible to the OBIC image P2, the blurred image P5 and the OBIC image P2 can be seen with a certain degree of accuracy even by the operator's visual inspection. Can be aligned.
  • the image processing unit 54 can obtain matching information between the OBIC image P2 and the layout image P1 from the result of the alignment between the OBIC image P2 and the blurred image P5.
  • the obtained matching information is stored in, for example, the storage unit 51.
  • the matching information is information for specifying which coordinate position in the layout image P1 corresponds to an arbitrary coordinate position in the OBIC image P2 (or, in which coordinate position the arbitrary coordinate position in the layout image P1 corresponds to in the OBIC image P2). Information for specifying whether to correspond).
  • the matching information may be, for example, information (for example, a function or the like) for mutually converting the coordinates of the OBIC image P2 and the coordinates associated with the layout image P1.
  • the coordinates of the OBIC image P2 are the coordinates associated with the irradiation position of the laser beam L, and are the coordinates for operating control of the semiconductor inspection device 1 (that is, the coordinates in the coordinate system recognized by the semiconductor inspection device 1). ).
  • the matching information may include angle information indicating the rotation angle of the layout image P1 with respect to the OBIC image P2, information such as the magnification of the layout image P1 with respect to the OBIC image P2, and the like.
  • angle information indicating the rotation angle of the layout image P1 with respect to the OBIC image P2
  • information such as the magnification of the layout image P1 with respect to the OBIC image P2, and the like.
  • the generalization of the above is as follows. There is a two-dimensional first coordinate system that defines the layout image P1 and a two-dimensional second coordinate system that defines the OBIC image P2.
  • the vertical / horizontal scale and the horizontal / vertical angle may be different between the first coordinate system and the second coordinate system.
  • it is assumed that the coordinate planes of both coordinate systems are flat and have no distortion.
  • the image processing unit 54 may generate a superimposed image P6 (see FIG. 11) in which the layout image P1 and the OBIC image P2 are superimposed based on the matching information obtained as described above.
  • the superimposed image P6 is shown as a solid color.
  • the superimposed image P6 is one in which the other image with the transmittance set is superimposed on one of the layout image P1 and the OBIC image P2.
  • the image processing unit 54 superimposes an image other than the layout image P1 and the OBIC image P2 (for example, a box setting image P3, a colored image P4, a blurred image P5, etc.) as the superimposed image P6 as necessary. May be generated.
  • the image processing unit 54 may have the operator select an image to be superimposed, an order of overlay, a transmittance of each image, and the like, and generate a superimposed image based on the selected content.
  • the image processing unit 54 may display the layout image P1 and the OBIC image P2 side by side on the display of the display device 7.
  • the image processing unit 54 is based on the matching information when the cursor is moved to an arbitrary position on one of the layout image P1 and the OBIC image P2 by the operation of the operator via the input device 6 such as a mouse.
  • the other cursor may be displayed at the position on the other image corresponding to the cursor position on one image. Even with such parallel display, the operator can easily grasp the correspondence between the layout image P1 and the OBIC image P2.
  • the image processing unit 54 identifies the failure position identified by the failure analysis for the semiconductor device 10 and the position on the layout image P1 based on the matching information, or sets the probing position for the semiconductor device 10. You may. For example, the image processing unit 54 applies a predetermined electric signal test pattern, a predetermined voltage, or a predetermined current to the semiconductor device 10 by a tester (not shown) included in the semiconductor inspection device 1, resulting in a failure of the semiconductor device 10. The heat generation or light emission generated in the image is imaged by an image pickup unit (not shown).
  • the coordinates of the failure position (reaction position) shown in the heat generation image or the light emission image captured by the image pickup unit in this way are grasped as the coordinates of the OBIC image P2 (that is, the coordinates for operation control of the semiconductor inspection device 1).
  • the image processing unit 54 can specify the failure position on the layout image P1 by using the matching information.
  • the failure analysis method is not limited to a specific method.
  • OBIRCH Optical Beam Induced Resistance Current
  • SDL Soft Defect Localization
  • LADA Laser Assisted Device Alteration
  • EOFM Electro Optical Frequency analysis Mapping
  • the matching information can be used to convert arbitrary coordinates on the layout image P1 into the coordinates of the OBIC image P2 corresponding to the coordinates (that is, the coordinates for operation control of the semiconductor inspection device 1). That is, by using the matching information, the position of probing by the semiconductor inspection device 1 can be specified by designating arbitrary coordinates on the layout image P1.
  • the image processing unit 54 presents the layout image P1 to the operator via the display device 7, and acquires the position (coordinates) on the layout image P1 designated by the operator via the input device 6.
  • the image processing unit 54 converts the coordinates acquired in this way into the coordinates for operation control of the semiconductor inspection device 1 based on the matching information, so that the position of probing by the semiconductor inspection device 1 (for example, EOP (for example, EOP) Electro Optical Probing) Probing position during analysis) can be set.
  • EOP for example, EOP
  • Electro Optical Probing Electro Optical Probing
  • the control unit 55 controls data processing in the computer 5 and the operation of each device (laser light source 2, laser scanning unit 3, amplifier 4, input device 6, display device 7, etc.) connected to the computer 5.
  • each device laser light source 2, laser scanning unit 3, amplifier 4, input device 6, display device 7, etc.
  • step S1 the semiconductor inspection device 1 (mainly the laser light source 2, the laser scanning unit 3, and the amplifier 4) scans the semiconductor device 10 with the laser beam L, so that the semiconductor in response to the irradiation of the laser beam L is irradiated.
  • Characteristic information indicating the characteristics of the electric signal of the device 10 is acquired for each irradiation position of the laser beam L.
  • the semiconductor inspection device 1 (mainly the first generation unit 52) generates a first pattern image (OBIC image P2 in this embodiment) of the semiconductor device 10 based on the characteristic information for each irradiation position (FIG. 5). reference).
  • step S2 the semiconductor inspection device 1 (mainly the second generation unit 53) generates a second pattern image (blurred image P5 in this embodiment) based on the layout image P1 and the current path information.
  • the second generation unit 53 generates the box setting image P3 (see FIG. 7) based on the layout image P1 and the current path information, and the colored image P4 (see FIG. 8) is generated from the box setting image P3.
  • the colored image P4 (see FIG. 8) is generated from the box setting image P3. ) Is generated, and a blurred image P5 (see FIG. 9) is generated from the colored image P4.
  • step S2 may be executed before step S1, or step S1 and step S2 may be executed in parallel.
  • step S3 the semiconductor inspection device 1 (mainly the image processing unit 54) obtains matching information based on the result of alignment between the first pattern image (OBIC image P2) and the second pattern image (blurred image P5). get.
  • step S4 the semiconductor inspection device 1 (mainly the image processing unit 54) generates a superimposed image P6 in which the first pattern image (OBIC image P2) and the layout image P1 are superimposed by using the matching information.
  • step S5 the semiconductor inspection device 1 (mainly the image processing unit 54) performs failure analysis using the matching information. For example, as described above, the semiconductor inspection device 1 identifies the failure position identified by the failure analysis for the semiconductor device 10 and the position on the layout image P1, or sets the probing position for the semiconductor device 10. May be good.
  • the semiconductor inspection device 1 it is not always necessary to carry out the process of generating the superimposed image P6 in step S4, but the operator who performs the failure analysis by generating the superimposed image P6 and presenting it to the operator. It is possible to improve the convenience of.
  • the light emitted to the semiconductor device 10 has a certain spread, and is more from the semiconductor device 10 than the full width at half maximum (FWHM) of the incident light to the semiconductor device 10.
  • FWHM full width at half maximum
  • the full width at half maximum of the reflected light is larger.
  • the resolution (resolution) of the optical image acquired based on the reflected light depends on the half-value full width of the observed reflected light, whereas the resolution of the first pattern image (OBIC image P2) not based on the reflected light.
  • the smaller the full width at half maximum of light the smaller the resolution of the obtained image.
  • the optical image acquired based on the reflected light is obtained.
  • High resolution images can be obtained.
  • the first pattern is based on the result of alignment between the second pattern image (blurred image P5) and the first pattern image (OBIC image P2) obtained based on the layout image P1 and the current path in the semiconductor device 10. Highly accurate matching information between the image (OBIC image P2) and the layout image P1 can be obtained.
  • the semiconductor inspection device 1 and the semiconductor inspection method described above the first pattern image (OBIC image P2) obtained from the semiconductor device 10 and the layout image P1 of the semiconductor device 10 are accurately aligned. Can be done. As a result, it is possible to display the failure position of the semiconductor device 10 identified by the failure analysis on the layout image P1 or easily set the probing position by designating the position on the layout image P1. ..
  • the second generation unit 53 classifies at least one of at least a part of the diffusion layer 11c and at least a part of the element separation layer 11d1 (both in the present embodiment) included in the semiconductor device 10 based on the current path information.
  • the second process of generating the second pattern image (blurred image P5) based on P4 may be executed. According to the above configuration, it is possible to obtain a second pattern image (blurred image P5) capable of accurately aligning with the layout image P1 based on the colored image P4 colored based on the current path information. can.
  • the second process may include a blurring process for the colored image P4.
  • a second pattern image (blurred image P5) similar to the first pattern image (OBIC image P2) can be obtained by the blurring process.
  • a second pattern image (blurred image P5) capable of accurately aligning with the one pattern image (OBIC image P2).
  • the colored image P4 is subjected to machine learning using the teacher data including the colored image P4 for learning and the first pattern image (OBIC image P2) corresponding to the colored image P4 for learning.
  • a process of learning the conversion process and a process of generating a second pattern image (blurred image P5) by converting the colored image P4 using the conversion process determined by the learning may be executed.
  • a second pattern image (blurred image P5) similar to the first pattern image (OBIC image P2) can be obtained by a conversion process based on the result of machine learning. As a result, it is possible to accurately align the one pattern image (OBIC image P2) and the second pattern image (blurred image P5).
  • the image processing unit 54 performs a process of presenting the first pattern image (OBIC image P2) and the second pattern image (blurred image P5) to the user, and the first pattern image (OBIC image P2) designated by the user.
  • the process of acquiring matching information may be executed based on the information indicating the correspondence with the second pattern image (blurred image P5). According to the above configuration, the user can visually align the first pattern image (OBIC image P2) and the second pattern image (blurred image P5).
  • the amplifier 4 may acquire the measured value (OBIC signal) of the photogenic current (OBIC) generated in response to the irradiation of the semiconductor device 10 with the laser beam L as characteristic information. According to the above configuration, it is possible to obtain an OBIC image in which the hue (shading) corresponding to the measured value of the photoelectromotive force is set as the first pattern image.
  • the blurred image P5 obtained by performing blurring processing (or conversion processing by a conversion model) on the colored image P4 is used as the second pattern image, but the colored image P4 is the second pattern. It may be used as an image.
  • the process of acquiring the above-mentioned matching information may be performed by using the alignment process learned by machine learning.
  • the image processing unit 54 may use the first pattern image for learning (OBIC image P2) and the second pattern image (colored image P4 or blur) corresponding to the first pattern image for learning (OBIC image P2) in advance.
  • the first pattern image (OBIC image P2) and the second pattern image (colored image P4 or blurred image) by machine learning using the teacher data including the image P5) and the matching result (alignment result) of these images.
  • a process for learning the alignment process with P5) may be executed.
  • the image processing unit 54 may create a learned model (hereinafter referred to as “alignment model”) having a parameter (learned parameter) corresponding to the alignment process in advance and store it in the storage unit 51.
  • the alignment model for example, the first pattern image and the second pattern image are input by machine learning using the above-mentioned teacher data, and the result of these alignments (for example, three or more locations corresponding to each other of both images). It is a model configured to output (coordinates of points, etc.).
  • the teacher data for example, a set of an OBIC image, a colored image (or a blurred image), and a matching result obtained by processing a semiconductor device that has been inspected in the past can be used.
  • the image processing unit 54 aligns the first pattern image (OBIC image P2) and the second pattern image (colored image P4 or blurred image P5) by using the alignment process determined by the above learning. Therefore, a process of acquiring matching information indicating the relative relationship between the first pattern image (OBIC image P2) and the layout image P1 may be executed. For example, the image processing unit 54 may acquire the result output from the alignment model by inputting the first pattern image and the second pattern image into the alignment model as the result of alignment of these images. .. Then, the image processing unit 54 may acquire matching information based on the result of the alignment obtained in this way.
  • the alignment model is, for example, a neural network, a multi-layer neural network constructed by deep learning, or the like.
  • the alignment model examples include CNN (Convolutional Neural Network), FCN (Fully Convolutional Networks), U-Net, ResNet (Residual Network), and the like.
  • CNN Convolutional Neural Network
  • FCN Fully Convolutional Networks
  • U-Net U-Net
  • ResNet Residual Network
  • the alignment model is not limited to a specific model. Further, the number of nodes and the number of layers of the alignment model can be arbitrarily set. According to the above configuration, the alignment process based on the result of machine learning makes it possible to accurately align the first pattern image and the second pattern image. Further, when the colored image P4 is used as the second pattern image, the accuracy of alignment may be lowered by the operator's visual inspection or a conventional method such as pattern matching.
  • the above-mentioned alignment model even when the colored image P4 is used as the second pattern image, it can be expected that the alignment between the first pattern image and the second pattern image is performed with high accuracy. That is, when the above alignment model is used, it is possible to omit the process of generating the blurred image P5 from the colored image P4 while ensuring the alignment accuracy.
  • a configuration example for acquiring an OBIC signal (first configuration example to fifth configuration example) will be described with reference to FIGS. 12 to 15.
  • FIG. 12 is a schematic view showing a first configuration example.
  • the semiconductor device 10 is divided into a plurality of block BRs having different power supply voltages from each other.
  • Block BR1 is applied from the power source V DD1 first voltage
  • block BR2 is the supply V DD2 second voltage is configured to be applied.
  • the one terminal 4a (the side of the terminal 4b which is connected to ground V SS amplifier 4 on the opposite side The terminal) may be connected to the terminal 12a of the package board 12 corresponding to the power supply VDD1.
  • one terminal 4a of the amplifier 4 may be connected to the terminal 12a of the package board 12 corresponding to the power supply VDD2.
  • VDD2 the power supply VDD2
  • FIG. 13 is a schematic view showing a second configuration example.
  • the above-mentioned semiconductor device 10 semiconductor chip 11 and package substrate 12
  • the terminals 4a and 4b of the amplifier 4 may be connected to the power supply terminal and the ground terminal provided on the board 16.
  • FIG. 14A is a schematic diagram showing a third configuration example.
  • the terminals 4a and 4b of the amplifier 4 are connected as shown in FIG. 13, for example. connected to a power supply V DD and the ground V SS, without applying a bias, a change in current I DD flowing in response to the irradiation of the laser beam L (i.e., OBIC signal) may be monitored.
  • the noise component can be made as small as possible, and the measurement (identification) of the OBIC signal can be easily performed.
  • FIG. 14B is a schematic diagram showing a fourth configuration example.
  • the MOS switch SW when the MOS switch SW is provided to ground V SS, by setting the semiconductor device 10 to the standby state, the ground V SS is connected to the external. In this state, it is possible to detect a current change in which the OBIC signal is added to a constant level of leakage current.
  • the figure on the left side of FIG. 14B is a simplified diagram of the actual configuration, and in reality, the MOS (transistor T) is switched ON / OFF by the circuit that controls the switch.
  • the amplifier 4 may be configured by a differentiating circuit in order to detect a minute current. In this case, the change in current can be detected. That is, when the OBIC signal is larger than the noise component, the offset of the noise component or the like can be ignored.
  • FIG. 15 is a schematic view showing a fifth configuration example.
  • the semiconductor device 10 is provided with a power management circuit (PMC) C.
  • the power supply management circuit C is configured to adjust the voltage supplied from the power supply VDD and supply the adjusted power supply voltage ( VDD1 and VDD2 ) to each block BR (see FIG. 12) of the semiconductor device 10. ing.
  • the power supply line WDD1 for supplying the power supply voltage (VDD1 ) is accessed. There is a need to.
  • the back surface 11b of the semiconductor substrate 11A is formed with an opening 11e that reaches from the back surface 11b to the power supply line WDD1 provided in the wiring layer 11B.
  • an insulating portion 17 made of an insulator formed by FIB processing such as FIBCVD and a pad 18 made of metal similarly formed by FIB processing are arranged in the opening 11e.
  • the tip of the inside of the pad 18 (on the side of the wiring layer 11B) is connected to the power supply line WDD1, and the outer surface of the pad 18 is exposed to the opening 11e.
  • the insulating portion 17 is formed so as to cover the periphery of the pad 18.
  • the outer surface of the pad 18 is connected to the tip of a probe PR for measuring the current flowing through the power supply line WDD1.
  • the current flowing through the power supply line WDD1 is measured by probing the power supply line WDD1 after branching from the power supply management circuit C via the pad 18 exposed on the back surface 11b side of the semiconductor substrate 11A. can do.
  • a relatively wide power supply line corresponding to the block BR is provided at the outer edge of the block BR (see FIG. 12). In this case, the above-mentioned opening 11e may be formed at the outer edge portion.
  • the first pattern image is not limited to the OBIC image.
  • the first pattern image an arbitrary image obtained by imaging the characteristics of the electric signal observed in response to light irradiation (light stimulation) from the back surface 11b of the semiconductor substrate 11A can be used.
  • 1 ... Semiconductor inspection device 2 ... Laser light source (light source), 3 ... Laser scanning unit (scanning unit), 4 ... Amplifier (measurement unit), 10 ... Semiconductor device, 11A ... Semiconductor substrate, 11a ... Main surface, 11b ... Back surface , 11c, 11c1, 11c2 ... Diffusion layer, 11d ... Insulation layer, 11d1 ... Element separation layer, 52 ... First generation unit, 53 ... Second generation unit, 54 ... Image processing unit (processing unit), L ... Laser light ( Light), P1 ... Layout image, P2 ... OBIC image (first pattern image), P4 ... Colored image (second pattern image), P5 ... Blurred image (second pattern image), P6 ... Superimposed image, T ... Transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一実施形態の半導体検査方法は、半導体デバイスに対してレーザ光を走査することにより、レーザ光の照射に応じた半導体デバイスの電気信号の特性を示す特性情報をレーザ光の照射位置毎に取得し、照射位置毎の特性情報に基づいて、半導体デバイスの第1パターン画像を生成するステップと、半導体デバイスのレイアウト画像と半導体デバイスにおける電流経路を示す電流経路情報とに基づいて、半導体デバイスの第2パターン画像を生成するステップと、第1パターン画像と第2パターン画像との位置合わせの結果に基づいて、第1パターン画像とレイアウト画像との相対関係を示すマッチング情報を取得するステップと、を含む。

Description

半導体検査方法及び半導体検査装置
 本開示は、半導体検査方法及び半導体検査装置に関する。
 従来、検査対象デバイス(DUT:device under test)である半導体デバイスの画像に基づいて故障解析等を行う技術が知られている。例えば、特許文献1,2には、半導体デバイスからの反射光を撮像することで得られる光学画像を当該半導体デバイスのパターンを示すパターン画像として取得し、当該パターン画像と当該半導体デバイスのレイアウトを示すCAD画像等のレイアウト画像(設計画像)との位置合わせを行うことが開示されている。このような位置合わせを行うことで、例えば、検査装置により得られる半導体デバイスの故障解析画像(例えば、半導体デバイスの故障箇所を発光等によって示す発光画像)と当該半導体デバイスのレイアウト画像とを重ね合わせた重畳画像を得ることが可能となる。このような重畳画像を利用することにより、半導体デバイスにおける故障解析が容易となる。
特開2007-00306号公報 国際公開2015/098342号公報
 しかしながら、近年、半導体デバイスのパターンの微細化が進んでおり、半導体デバイスのパターンを高精度に認識可能な光学画像を得ることが難しくなってきている。このため、半導体デバイスから得られたパターン画像とレイアウト画像との位置合わせを精度良く行うことが困難な場合があった。
 そこで、本開示の一側面は、半導体デバイスから得られたパターン画像と当該半導体デバイスのレイアウト画像とを精度良く位置合わせすることが可能な半導体検査方法及び半導体検査装置を提供することを目的とする。
 本開示の一側面に係る半導体検査方法は、半導体デバイスに対して光を走査することにより、光の照射に応じた半導体デバイスの電気信号の特性を示す特性情報を光の照射位置毎に取得し、照射位置毎の特性情報に基づいて、半導体デバイスの第1パターン画像を生成するステップと、半導体デバイスのレイアウトを示すレイアウト画像と半導体デバイスにおける電流経路を示す電流経路情報とに基づいて、半導体デバイスの第2パターン画像を生成するステップと、第1パターン画像と第2パターン画像との位置合わせの結果に基づいて、第1パターン画像とレイアウト画像との相対関係を示すマッチング情報を取得するステップと、を含む。
 半導体デバイスに照射される光(例えばレーザ光)は一定の広がりを有しており、半導体デバイスへの入射光の半値全幅(FWHM:full width at half maximum)よりも半導体デバイスからの反射光の半値全幅の方が大きくなることが知られている。ここで、反射光に基づいて取得される光学画像の分解能(解像度)は観察される反射光の半値全幅に依存するのに対し、反射光に基づかない第1パターン画像の分解能は半導体デバイスへの入射光の半値全幅に依存する。また、光の半値全幅が小さい程、得られる画像の分解能は小さくなる。従って、光の照射に応じた半導体デバイスの電気信号の特性に基づいて第1パターン画像を生成することにより、反射光に基づいて取得される光学画像よりも高分解能の画像を得ることができる。さらに、レイアウト画像と半導体デバイスにおける電流経路とに基づいて得られる第2パターン画像と第1パターン画像との位置合わせの結果に基づいて、第1パターン画像とレイアウト画像との間の精度の高いマッチング情報を得ることができる。以上により、上記半導体検査方法によれば、半導体デバイスから得られたパターン画像(第1パターン画像)と当該半導体デバイスのレイアウト画像とを精度良く位置合わせすることができる。
 第2パターン画像を生成するステップは、半導体デバイスに含まれる拡散層の少なくとも一部及び素子分離層の少なくとも一部の少なくとも一方を電流経路情報に基づいて分類し、レイアウト画像中の拡散層の少なくとも一部及び素子分離層の少なくとも一部の少なくとも一方に対して分類に応じた色を設定する第1処理と、第1処理により生成された着色画像に基づいて第2パターン画像を生成する第2処理と、を含んでもよい。上記構成によれば、電流経路情報に基づいて着色された着色画像に基づいて、第1パターン画像との位置合わせを精度良く行うことが可能な第2パターン画像を得ることができる。
 第2処理は、着色画像に対するぼかし処理を含んでもよい。上記構成によれば、ぼかし処理により、第1パターン画像に似た第2パターン画像を得ることができる。その結果、1パターン画像との位置合わせを精度良く行うことが可能な第2パターン画像を得ることができる。
 第2処理は、学習用の着色画像と学習用の着色画像に対応する第1パターン画像とを含む教師データを用いた機械学習によって、着色画像の変換処理を学習する処理と、学習により決定された変換処理を用いて着色画像を変換することにより、第2パターン画像を生成する処理と、を含んでもよい。上記構成によれば、機械学習の結果に基づく変換処理により、第1パターン画像に似た第2パターン画像を得ることができる。その結果、第1パターン画像と第2パターン画像との位置合わせを精度良く行うことが可能となる。
 マッチング情報を取得するステップは、第1パターン画像及び第2パターン画像をユーザに提示する処理と、ユーザにより指定された第1パターン画像と第2パターン画像との対応関係を示す情報に基づいて、マッチング情報を取得する処理と、を含んでもよい。上記構成によれば、目視による第1パターン画像及び第2パターン画像の位置合わせをユーザに実施させることができる。
 マッチング情報を取得するステップは、学習用の第1パターン画像と、学習用の第1パターン画像に対応する第2パターン画像と、これらの画像のマッチング結果とを含む教師データを用いた機械学習によって、第1パターン画像と第2パターン画像との位置合わせ処理を学習する処理と、学習により決定された位置合わせ処理を用いて第1パターン画像と第2パターン画像との位置合わせを行うことにより、マッチング情報を取得する処理と、を含んでもよい。上記構成によれば、機械学習の結果に基づく位置合わせ処理により、第1パターン画像と第2パターン画像との位置合わせを精度良く行うことが可能となる。
 半導体検査方法は、マッチング情報に基づいて、レイアウト画像と第1パターン画像とを重畳させた重畳画像を生成するステップを更に含んでもよい。上記構成によれば、マッチング情報に基づいて、レイアウト画像と第1パターン画像とを精度良く重畳させた重畳画像を得ることができる。その結果、重畳画像を用いた故障解析等を精度良く行うことが可能となる。
 半導体検査方法は、マッチング情報に基づいて、半導体デバイスに対する故障解析により特定された故障位置とレイアウト画像上の位置との同定、又は、半導体デバイスに対するプロービングの位置の設定を行うステップを更に含んでもよい。上記構成によれば、マッチング情報を用いることにより、故障解析(レイアウト画像上における故障位置の特定又はプロービング位置の設定)を精度良く行うことができる。
 第1パターン画像を生成するステップでは、半導体デバイスへの光の照射に応じて生じる光起電流の測定値を特性情報として取得してもよい。上記構成によれば、光起電流の測定値に応じた色合い(濃淡)が設定されたOBIC(Optical Beam Induced Current)画像を第1パターン画像として得ることができる。
 半導体デバイスは、トランジスタが形成された主面と主面とは反対側の裏面とを有する半導体基板を有していてもよく、第1パターン画像を生成するステップでは、半導体基板の裏面に対して、裏面から主面側へと透過する光を照射してもよく、光は、半導体基板の材料のバンドギャップよりも高いエネルギーを有していてもよい。上記構成によれば、半導体基板の主面側のトランジスタにおいて、単一光子吸収(SPA:Single Photon Absorption)を生じさせることで、OBICを好適に生成することができる。
 半導体デバイスは、トランジスタが形成された主面と主面とは反対側の裏面とを有する半導体基板を有していてもよく、第1パターン画像を生成するステップでは、半導体基板の裏面に対して、裏面から主面側へと透過するパルス光である光を照射してもよく、光は、半導体基板の材料のバンドギャップよりも低いエネルギーを有していてもよい。上記構成によれば、半導体基板の主面側のトランジスタにおいて、多光子吸収(MPA:Multi Photon Absorption)を生じさせることで、OBICを好適に生成することができる。
 本開示の一側面に係る半導体検査装置は、光源と、半導体デバイスに対して光源からの光を走査する走査部と、半導体デバイスと電気的に接続され、光の照射位置毎に、光の照射に応じた半導体デバイスの電気信号の特性を測定する測定部と、測定部により測定された照射位置毎の電気信号の特性を示す特性情報に基づいて、半導体デバイスの第1パターン画像を生成する第1生成部と、半導体デバイスのレイアウトを示すレイアウト画像と半導体デバイスにおける電流経路を示す電流経路情報とに基づいて、半導体デバイスの第2パターン画像を生成する第2生成部と、第1パターン画像と第2パターン画像との位置合わせの結果に基づいて、第1パターン画像とレイアウト画像との相対関係を示すマッチング情報を取得する処理部と、を備える。
 上記半導体検査装置によれば、上述した半導体検査方法を好適に実行することができる。
 第2生成部は、半導体デバイスに含まれる拡散層の少なくとも一部及び素子分離層の少なくとも一部の少なくとも一方を電流経路情報に基づいて分類し、レイアウト画像中の拡散層の少なくとも一部及び素子分離層の少なくとも一部の少なくとも一方に対して分類に応じた色を設定する第1処理と、第1処理により生成された着色画像に基づいて第2パターン画像を生成する第2処理と、を実行してもよい。上記構成によれば、電流経路情報に基づいて着色された着色画像に基づいて、第1パターン画像との位置合わせを精度良く行うことが可能な第2パターン画像を得ることができる。
 第2処理は、着色画像に対するぼかし処理を含んでもよい。上記構成によれば、ぼかし処理により、第1パターン画像に似た第2パターン画像を得ることができる。その結果、第1パターン画像との位置合わせを精度良く行うことが可能な第2パターン画像を得ることができる。
 第2処理は、学習用の着色画像と学習用の着色画像に対応する第1パターン画像とを含む教師データを用いた機械学習によって、着色画像の変換処理を学習する処理と、学習により決定された変換処理を用いて着色画像を変換することにより、第2パターン画像を生成する処理と、を実行してもよい。上記構成によれば、機械学習の結果に基づく変換処理により、第1パターン画像に似た第2パターン画像を得ることができる。その結果、1パターン画像と第2パターン画像との位置合わせを精度良く行うことが可能となる。
 処理部は、第1パターン画像及び第2パターン画像をユーザに提示する処理と、ユーザにより指定された第1パターン画像と第2パターン画像との対応関係を示す情報に基づいて、マッチング情報を取得する処理と、を実行してもよい。上記構成によれば、目視による第1パターン画像及び第2パターン画像の位置合わせをユーザに実施させることができる。
 処理部は、学習用の第1パターン画像と、学習用の第1パターン画像に対応する第2パターン画像と、これらの画像のマッチング結果とを含む教師データを用いた機械学習によって、第1パターン画像と第2パターン画像との位置合わせ処理を学習する処理と、学習により決定された位置合わせ処理を用いて第1パターン画像と第2パターン画像との位置合わせを行うことにより、マッチング情報を取得する処理と、を実行してもよい。上記構成によれば、機械学習の結果に基づく位置合わせ処理により、1パターン画像と第2パターン画像との位置合わせを精度良く行うことが可能となる。
 処理部は、マッチング情報に基づいて、レイアウト画像と第1パターン画像とを重畳させた重畳画像を生成してもよい。上記構成によれば、マッチング情報に基づいて、レイアウト画像と第1パターン画像とを精度良く重畳させた重畳画像を得ることができる。その結果、重畳画像を用いた故障解析等を精度良く行うことが可能となる。
 処理部は、マッチング情報に基づいて、半導体デバイスに対する故障解析により特定された故障位置とレイアウト画像上の位置との同定、又は、半導体デバイスに対するプロービングの位置の設定を行ってもよい。上記構成によれば、マッチング情報を用いることにより、故障解析(レイアウト画像上における故障位置の特定又はプロービング位置の設定)を精度良く行うことができる。
 測定部は、半導体デバイスへの光の照射に応じて生じる光起電流の測定値を特性情報として取得してもよい。上記構成によれば、光起電流の測定値に応じた色合い(濃淡)が設定されたOBIC(Optical Beam Induced Current)画像を第1パターン画像として得ることができる。
 半導体デバイスは、トランジスタが形成された主面と主面とは反対側の裏面とを有する半導体基板を有していてもよく、走査部は、半導体基板の裏面に対して、裏面から主面側へと透過する光を走査してもよく、光は、半導体基板の材料のバンドギャップよりも高いエネルギーを有していてもよい。上記構成によれば、半導体基板の主面側のトランジスタにおいて、単一光子吸収(SPA:Single Photon Absorption)を生じさせることで、OBICを好適に生成することができる。
 半導体デバイスは、トランジスタが形成された主面と主面とは反対側の裏面とを有する半導体基板を有していてもよく、走査部は、半導体基板の裏面に対して、裏面から主面側へと透過するパルス光である光を走査してもよく、光は、半導体基板の材料のバンドギャップよりも低いエネルギーを有していてもよい。上記構成によれば、半導体基板の主面側のトランジスタにおいて、多光子吸収(MPA:Multi Photon Absorption)を生じさせることで、OBICを好適に生成することができる。
 本開示の一側面によれば、半導体デバイスから得られたパターン画像と当該半導体デバイスのレイアウト画像とを精度良く位置合わせすることが可能な半導体検査方法及び半導体検査装置を提供することが可能となる。
図1は、一実施形態に係る半導体検査装置の概略構成図である。 図2は、半導体デバイスの構成例を示す概略図である。 図3の(A)及び(B)は、半導体デバイスの一部のレイアウトの一例を示す概略図である。 図4は、レイアウト画像の一例を示す図である。 図5は、OBIC画像(第1パターン画像)の一例を示す図である。 図6は、レーザ光の波長とOBIC画像の分解能との関係、及びレーザ光の波長とシリコン基板の透過率との関係を示すグラフである。 図7は、ボックス設定画像の一例を示す図である。 図8は、着色画像の一例を示す図である。 図9は、ぼかし画像(第2パターン画像)の一例を示す図である。 図10は、半導体検査装置の動作の一例を示すフローチャートである。 図11は、半導体検査装置により生成される各画像の関係を示す図である。 図12は、OBIC信号を取得するための第1構成例を示す概略図である。 図13は、OBIC信号を取得するための第2構成例を示す概略図である。 図14の(A)はOBIC信号を取得するための第3構成例を示す概略図であり、図14の(B)はOBIC信号を取得するための第4構成例を示す概略図である。 図15は、OBIC信号を取得するための第5構成例を示す概略図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。
よい。
 図1は、一実施形態に係る半導体検査装置1の概略構成図である。図2は、検査対象デバイスである半導体デバイス10の構成例を示す概略図である。半導体デバイス10は、例えば、ロジックLSI、メモリ、アナログ回路等のIC(集積回路)、又はパワーデバイス等である。一例として、半導体デバイス10は、半導体チップ11と、パッケージ基板12と、を有している。半導体チップ11は、半導体基板11Aと、配線層11Bと、バンプBと、を有している。
 半導体基板11Aは、例えばMOSトランジスタ等のトランジスタTが形成された主面11aと、主面11aとは反対側の裏面11bと、を有している。半導体基板11Aは、例えばシリコン基板である。ただし、半導体基板11Aの材料は、シリコンに限定されない。例えば、半導体デバイス10が高周波デバイス、フォトニックデバイス等である場合には、GaAs、GaP等の化合物半導体を半導体基板11Aの材料として用いることができる。また、半導体デバイス10がパワーデバイスである場合には、SiC、GaN等を半導体基板11Aの材料として用いることができる。
 配線層11Bは、半導体基板11Aの主面11a側において、トランジスタTと電気的に接続される金属配線Wが配置される層である。バンプBは、配線層11Bの半導体基板11A側とは反対側の表面に設けられている。パッケージ基板12は、半導体チップ11が搭載される配線基板である。パッケージ基板12は、バンプBを介して半導体チップ11の配線層11Bに設けられた金属配線Wと電気的に接続されている。パッケージ基板12には、トランジスタTの電源(VDD)又はグランド(VSS)に対応する端子12aが設けられている。
 図3は、半導体デバイス10の一部(半導体基板11Aの主面11a付近の部分)のレイアウトの一例を示す概略図である。図3の(A)は、半導体基板11Aを主面11aに対向する方向から見た概略平面図である。図3の(B)は、図3の(A)におけるB-B線に沿った概略断面図である。図3の(C)は、図3の(A)におけるC-C線に沿った概略断面図である。図3の(A),(B),(C)に示されるように、半導体基板11Aの主面11aには、第1導電型の拡散層11c1,11c2(11c)と、拡散層11cを分離するための絶縁層11dと、が形成されている。拡散層11cは、不純物が拡散された領域である。ここでは一例として、拡散層11c1はn型不純物が拡散された領域であり、拡散層11c2はp型不純物が拡散された領域である。図3に示したパターンは、半導体デバイス10における一つのセル列を抜き出したものである。絶縁層11dは、図3における横方向に対応するセル列方向に配置されたそれぞれの素子間を分離する素子分離層11d1を含んでいる。絶縁層11dは、例えばSiO2等によって形成されている。図3の(C)に示されるように、拡散層11cは、一般的にフィンと呼ばれる複数の峰状の形状を有している。フィンの上部には、拡散層11cとは異なる不純物が、イオン打ち込み等によって注入されている。ここでは一例として、拡散層11c1の上部に所定濃度のp型不純物が注入されており、拡散層11c2の上部に所定濃度のn型不純物が注入されている。このようにして、第2導電型のフィン部14a,14b(14)が形成されている。本実施形態では一例として、半導体デバイス10は、7nmプロセスで製造されたデバイス(7nmデバイス)であり、隣り合うゲート13同士の間隔は、例えば数十nm程度である。このようにフィン部14を跨ぐように形成されたゲート13に電圧が印加されることにより、フィン部14及びゲート13を含む部分が、半導体デバイス10におけるトランジスタTとして機能する。このような構造を有するトランジスタTは、フィン型電界効果トランジスタ(FinFET:Fin Field-Effect Transistor)と呼ばれている。拡散層11c1(n型不純物が拡散された領域)とその上に形成されたフィン部14a(p型不純物が注入された領域)とは、p型トランジスタ(PMOS)として動作する。一方、拡散層11c2(p型不純物が拡散された領域)とその上に形成されたフィン部14b(n型不純物が注入された領域)とは、n型トランジスタ(NMOS)として動作する。フィン部14を跨ぐゲート13以外に、素子分離層11d1上にもゲート13aが形成されているが、このゲート13aは、本来のゲートとしての機能を有しておらず、ダミーゲートと呼ばれる。フィン部14は、ビアV(コンタクトとも呼ばれる)を介して、金属配線W(メタル第1層)と電気的に接続されている。これにより、各フィン部14は、ビアV(コンタクト)及び金属配線Wを介して、電源(VDD)、グランド(VSS)、又は他のトランジスタTを構成するゲート13に電気的に接続されている。
 半導体検査装置1は、レーザ光源2(光源)と、レーザ走査部3(走査部)と、アンプ4(測定部)と、コンピュータ5と、入力装置6と、表示装置7と、を備えている。レーザ光源2及びレーザ走査部3は、半導体デバイス10に対して、刺激光であるレーザ光Lを照射及び走査する光学系を構成している。レーザ光源2は、レーザ光Lを出射する光源である。レーザ走査部3は、半導体デバイス10に対して、レーザ光源2から出射されたレーザ光Lを2次元的に走査する。レーザ走査部3は、例えばガルバノミラー、MEMSミラー等によって構成されている。レーザ走査部3は、半導体基板11Aの裏面11bに対して、裏面11bから主面11a側へと透過するレーザ光Lを走査するように構成されている。レーザ光Lの焦点は、半導体基板11Aの主面11a(すなわち、トランジスタTが形成されている領域)付近に調整される。図1に示されるように、半導体基板11Aの裏面11b上には、固浸レンズ(SIL:Solid immersion lens)8が配置されてもよい。すなわち、レーザ光Lは、固浸レンズ8を介して、半導体基板11Aの裏面11bに対して照射されてもよい。固浸レンズ8が配置される場合には、固浸レンズ8が配置されない場合よりも、半導体基板11Aの裏面11bに照射されるレーザ光Lの開口数(NA:Numerical Aperture)を大きくすることができる。
 レーザ光源2は、例えば、半導体基板11Aの材料(本実施形態ではシリコン)のバンドギャップ(シリコンの場合には1.12eV)よりも高いエネルギーを有するレーザ光Lを出射するように構成されていてもよい。すなわち、レーザ光Lは、シリコンのバンドギャップ(エネルギーギャップ)に対応する波長(1107nm)よりも短い波長の光であってもよい。この場合、半導体基板11Aの主面11a側のトランジスタT(例えば、pn接合部)において、単一光子吸収(SPA:Single Photon Absorption)を生じさせることで、光起電流(OBIC:Optical Beam Induced Current)を好適に生成することができる。
 或いは、レーザ光源2は、例えば、半導体基板11Aの材料のバンドギャップよりも低いエネルギーを有するパルス光であるレーザ光Lを出射するように構成されていてもよい。すなわち、レーザ光Lは、シリコンのバンドギャップに対応する波長(1107nm)よりも長い波長のパルス光であってもよい。この場合、半導体基板11Aの主面11a側のトランジスタT(例えば、pn接合部)において、例えば特開平10-332794号公報に記載されているような多光子吸収(MPA:Multi Photon Absorption)を生じさせることで、OBICを好適に生成することができる。
 アンプ4は、レーザ光Lの照射位置毎に、レーザ光Lの照射に応じた半導体デバイス10の電気信号の特性を測定する。本実施形態では、アンプ4は、レーザ光Lの照射に応じて半導体デバイス10で発生したOBICの測定値(OBIC信号)を上記電気信号の特性として取得する。アンプ4は一対の端子4a,4bを有している。アンプ4の一方の端子4aは、トランジスタTのドレイン側の電源(VDD)に対応するパッケージ基板12の端子12aと電気的に接続されている。アンプ4の他方の端子4bは、トランジスタTのソース側のグランド(VSS)に対応するパッケージ基板12の端子12aと電気的に接続されている。アンプ4は、レーザ光Lによって生じたOBICを検出及び増幅することにより得られた測定値(OBIC信号)をコンピュータ5に入力する。
 コンピュータ5は、後述する種々の画像処理、及びアンプ4から入力されたOBIC信号の処理、半導体検査装置1を構成する各部の制御等を行う装置である。コンピュータ5は、例えば、プロセッサ(例えばCPU等)、内蔵メモリ(例えばROM、RAM等)、記憶媒体(例えばHDD、SSD等)等を備えている。コンピュータ5は、機能的構成要素として、記憶部51と、第1生成部52と、第2生成部53と、画像処理部54(処理部)と、制御部55と、を有している。また、コンピュータ5には、コンピュータ5に対してデータを入力するためのマウス、キーボード等の入力装置6と、コンピュータ5による処理結果(画像等)を表示(出力)するためのディスプレイ等の表示装置7と、が接続されている。コンピュータ5の各機能は、例えば、上記プロセッサが上記内蔵メモリ又は上記記憶媒体に格納されたコンピュータプログラムを実行することによって実現される。
 記憶部51は、検査対象の半導体デバイス10のレイアウト画像を記憶する。図4は、レイアウト画像の一例(レイアウト画像P1)を示す図である。レイアウト画像P1は、例えば、外部から取得されたCADデータ等の半導体デバイス10のパターンを示す設計画像である。また、記憶部51は、レイアウト画像P1に対応する電流経路を示す電流経路情報を記憶する。電流経路情報は、例えば、レイアウト画像P1に示される各領域が配線層11Bの金属配線Wを介して接続されている対象(接続対象)を示す情報である。このような電流経路(接続対象)の分類の例としては、例えば、電源(VDD)、グランド(VSS)、ゲート、接続先なしの4つが挙げられる。また、記憶部51には、アンプ4から送られたOBIC信号、後述する第1生成部52、第2生成部53、及び画像処理部54の処理結果(画像等のデータ)等が適宜記憶される。
 第1生成部52は、照射位置毎に得られた電気信号の特性を示す特性情報に基づいて、半導体デバイス10の第1パターン画像を生成する。本実施形態では、特性情報は、アンプ4により測定されたOBIC信号である。また、第1パターン画像は、OBIC信号に基づいて得られるOBIC画像である。OBIC画像は、OBIC信号の値をレーザ光Lが照射された位置に対応付けて画像化する(すなわち、OBIC信号の値を画素値に変換する)ことにより得られる画像である。本実施形態のOBIC画像は、OBICの電流量が大きい領域ほど明るくなるように画素値が設定された画像である。図5は、半導体デバイス10(7nmデバイス)のOBIC画像のイメージ図(OBIC画像P2)である。具体的には、図5に示されるOBIC画像P2は、本発明者が40nmプロセスで製造された半導体デバイスのOBIC画像から類推することによって作成した画像である。
 図6は、レーザ光Lの波長と得られるOBIC画像の分解能との関係、及びレーザ光Lの波長とシリコン基板の透過率との関係を示すグラフである。図6において、破線は、シリコンのバンドギャップに対応する波長(1107nm)を示している。グラフG1は、単一光子吸収(SPA)を生じさせた場合に得られるOBIC画像の分解能を表している。グラフG2は、多光子吸収(MPA)を生じさせた場合に得られるOBIC画像の分解能を表している。図6に示されるように、MPAを生じさせた場合の分解能(G2)は、SPAを生じさせた場合の分解能(G1)の1/√2となることが知られている。また、グラフG3は、レーザ光Lの波長とシリコン基板(ここでは一例として、厚さが100μmのシリコン基板)の透過率との関係を示している。グラフG3に示されるように、シリコンのバンドギャップに対応する波長よりも長い波長のレーザ光Lが用いられるMPAでは、レーザ光Lのほぼ100%がシリコン基板を透過することができるため、効率的なレーザ光Lの照射を実現することができる。具体的には、1000nmの波長のレーザ光Lを用いたSPAでは、分解能が約160nmであり、シリコン基板に対するレーザ光Lの透過率は約50%である。これに対して、1300nmの波長のレーザ光L(パルス光)を用いたMPAでは、1000nmの波長のレーザ光Lを用いたSPAと同等以上の分解能(約150nm)が得られると共に、シリコン基板に対するレーザ光Lの透過率は約100%となる。従って、分解能の向上及びレーザ光Lの照射効率の向上の両方を図る観点において、SPAよりもMPAを生じさせるレーザ光L(すなわち、シリコンのバンドギャップよりも低いエネルギーを有するパルス光)を用いることが好ましい。一方、MPAに適用されるパルスレーザは、高い尖頭値を有する必要がある。このようなパルスレーザとしては、例えばフェムト秒レーザと呼ばれる超短パルスレーザが挙げられる。このような特殊なレーザを用いる場合、安定度及び波長の選択範囲等の制限が加わる。また、レーザ自体も高額である。よって、半導体デバイス10の装置価格(製造コスト)の低減を図る観点においては、MPAよりもSPAを用いることが好ましい。ただし、十分な解析を行うために分解能を優先させる必要がある場合もある。従って、SPAとMPAとのいずれの方式を搭載した装置を選択するかは、ユーザがどのような半導体デバイス10に対してどの程度詳細な解析を行う必要があるかに応じて決定され得る。
 ここで、レーザ光Lの照射によって電子-正孔対が発生するのはpn接合部である。そして、pn接合部のうちOBICが最も流れ易い部分は、電源(VDD)又はグランド(VSS)に接続された部分である。pn接合部のうちゲートに接続された部分においても、ゲートからのリークによって若干のOBICが流れる。一方、pn接合部のうちどこにも接続されていない部分においては、OBICはほとんど流れない。また、ダミーゲート13aが設けられた素子分離層11d1の一部(ダミーゲート13aと重なる部分を除いた部分)においては、OBICは流れたとしても非常に僅かである。このように、半導体デバイス10では、上述した電流経路の分類毎に、OBICの電流量が異なっている。そして、このような電流量の違いによって、OBIC画像P2において、領域毎の濃淡差が生じる。
 そこで、第2生成部53は、上述したOBIC画像の性質に基づいて、レイアウト画像P1からOBIC画像P2に類似する画像(第2パターン画像)を生成する。すなわち、第2生成部53は、半導体デバイス10のレイアウト画像P1と半導体デバイス10の電流経路情報(本実施形態では、上述した領域毎の電流経路(接続対象)の分類)とに基づいて、半導体デバイス10の第2パターン画像を生成する。例えば、第2生成部53は、後述する第1処理及び第2処理を実施する。
(第1処理)
 第1処理は、分類処理と色設定処理とを含んでいる。分類処理は、半導体デバイス10に含まれる拡散層11cの少なくとも一部及び素子分離層11d1の少なくとも一部を電流経路情報に基づいて分類する処理である。色設定処理は、レイアウト画像P1中の拡散層11cの少なくとも一部及び素子分離層11d1の少なくとも一部に対して電流経路の分類に応じた色を設定する処理である。図7は、レイアウト画像P1に対する第1処理により生成されたボックス設定画像P3を示す図である。
(分類処理)
 一例として、第2生成部53は、分類処理において、拡散層11c(半導体基板11Aの厚さ方向から見て拡散層11cが設けられた領域)のうち互いに隣り合うゲート13間に矩形状のボックス領域BA(BA1,BA2,BA3)を設定する。同様に、第2生成部53は、素子分離層11d1のうち互いに隣り合うゲート13A間に矩形状のボックス領域BA(BA4)を設定する。ボックス領域BA1~BA4は、上述した電流経路によって分類されている。具体的には、ボックス領域BA1は、電源(VDD)又はグランド(VSS)に接続された領域である。ボックス領域BA2は、ゲートに接続された領域である。ボックス領域BA3は、接続先がない領域(拡散層11cにおいて孤立した領域)である。ボックス領域BA4は、素子分離層11d1において孤立した領域である。
(色設定処理)
 続いて、第2生成部53は、色設定処理において、各ボックス領域BA1~BA4に対して、電流経路の分類に応じた色を設定する。上述したように、各ボックス領域BA1~BA4に対応するOBICの電流量の大小関係は、「BA1>BA2>BA3>BA4」となる。このため、OBIC画像P2では、ボックス領域BA1に対応する領域よりもボックス領域BA2に対応する領域の方が暗くなる。また、ボックス領域BA2に対応する領域よりもボックス領域BA3に対応する領域の方が暗くなる。また、ボックス領域BA3に対応する領域よりもボックス領域BA4に対応する領域の方が暗くなる。そこで、第2生成部53は、ボックス領域BA1に最も明るい色(例えば白に近い色)を設定し、ボックス領域BA2にボックス領域BA1よりも暗い色(例えば薄い灰色)を設定し、ボックス領域BA3にボックス領域BA2よりも暗い色(例えば濃い灰色)を設定し、ボックス領域BA4にボックス領域BA3よりも暗い色(例えば黒に近い色)を設定する。そして、第2生成部53は、ボックス設定画像P3からボックス領域BA1~BA4以外のパターンを除去する。これにより、図8に示されるように、着色された複数のボックス領域BAのみを含む着色画像P4が得られる。
(第2処理)
 第2処理は、着色画像P4に基づいて第2パターン画像を生成する処理である。一例として、第2生成部53は、着色画像P4に対するぼかし処理を行うことにより、第2パターン画像を生成する。ぼかし処理としては、公知のぼかし加工の手法を用いることができる。ぼかし加工のパラメータ(ぼかし度合い)は、例えば、OBIC画像P2に基づいて決定されてもよい。例えば、オペレータ(ユーザ)が、表示装置7に表示されたOBIC画像P2を確認しながら、なるべくOBIC画像P2に類似する第2パターン画像が生成されるように、着色画像P4のぼかし度合いを決定してもよい。そして、第2生成部53は、入力装置6を介してオペレータにより入力されたぼかし度合いに基づいて、着色画像P4に対するぼかし処理を実行することにより、第2パターン画像(ぼかし画像)を生成してもよい。或いは、第2生成部53は、人手を介さずに、事前に設定されたぼかし度合いに基づいて、着色画像P4に対するぼかし処理を実行してもよい。図9は、ぼかし処理によって得られたぼかし画像P5の一例を示す図である。
 また、着色画像P4からぼかし画像P5を生成する処理は、上記のぼかし処理に代えて、機械学習によって学習された変換処理を用いて行われてもよい。例えば、第2生成部53は、事前に、学習用の着色画像と当該学習用の着色画像に対応するOBIC画像とを含む教師データを用いた機械学習によって、着色画像の変換処理を学習してもよい。そして、第2生成部53は、上記機械学習により決定された変換処理を用いて着色画像P4を変換することにより、ぼかし画像P5を生成してもよい。
 例えば、第2生成部53は、上記変換処理に対応するパラメータ(学習済みパラメータ)を有する学習済みモデル(以下「変換モデル」)を事前に作成し、記憶部51に記憶させてもよい。変換モデルは、例えば、上述した教師データを用いた機械学習によって、着色画像を入力してOBIC画像に類似する画像(上述したぼかし処理により生成される画像に対応する画像)を出力するように構成されたモデルである。教師データ(学習用の着色画像と当該学習用の着色画像に対応するOBIC画像)としては、例えば、過去に検査対象とされた半導体デバイスから得られた着色画像及びOBIC画像を用いることができる。そして、第2生成部53は、変換モデルに着色画像P4を入力することで変換モデルから出力された画像を、ぼかし画像P5として取得してもよい。変換モデルは、例えば、ニューラルネットワーク、深層学習(ディープラーニング)によって構築された多層ニューラルネットワーク等である。変換モデルの例としては、CNN(Convolutional Neural Network)、FCN(Fully Convolutional Networks)、U-Net、ResNet(Residual Network)等がある。ただし、変換モデルは特定のモデルには限定されない。また、変換モデルのノード数及び層数も任意に設定され得る。
 画像処理部54は、OBIC画像P2(図5参照)とぼかし画像P5(図9参照)との位置合わせの結果に基づいて、OBIC画像P2とレイアウト画像P1(図4参照)との相対関係(対応関係)を示すマッチング情報を取得する。例えば、OBIC画像P2とぼかし画像P5との位置合わせは、OBIC画像P2とぼかし画像P5との間で、互いに対応する3箇所以上の点を特定することにより行われる。このような位置合わせは、公知のパターンマッチング手法によって行われてもよいし、オペレータによって実行されてもよい。例えば、画像処理部54は、表示装置7を介してOBIC画像P2及びぼかし画像P5をユーザに提示し、入力装置6を介してオペレータにより指定されたOBIC画像P2とぼかし画像P5との対応関係を示す情報(例えば、互いに対応する3箇所以上の点を示す情報)を取得してもよい。上述したように、ぼかし画像P5は、OBIC画像P2になるべく似るように着色画像P4に基づいて生成された画像であるため、オペレータの目視によっても、それなりの精度でぼかし画像P5とOBIC画像P2との位置合わせを行うことができる。また、ぼかし画像P5は、レイアウト画像P1から生成された画像であるため、ぼかし画像P5に設定された座標とレイアウト画像P1に設定された座標との対応関係は予め把握されている。従って、画像処理部54は、OBIC画像P2とぼかし画像P5との位置合わせの結果から、OBIC画像P2とレイアウト画像P1との間のマッチング情報を得ることができる。得られたマッチング情報は、例えば記憶部51に記憶される。
 マッチング情報は、OBIC画像P2における任意の座標位置がレイアウト画像P1におけるどの座標位置に対応するかを特定するための情報(或いは、レイアウト画像P1における任意の座標位置がOBIC画像P2におけるどの座標位置に対応するかを特定するための情報)である。マッチング情報は、例えば、OBIC画像P2の座標とレイアウト画像P1に関連付けられている座標とを相互に変換するための情報(例えば関数等)であってもよい。ここで、OBIC画像P2の座標は、レーザ光Lの照射位置に関連付けられた座標であり、半導体検査装置1の動作制御用の座標(すなわち、半導体検査装置1が認識している座標系における座標)である。ただし、マッチング情報に含まれる情報は上記に限られない。例えば、マッチング情報は、OBIC画像P2に対するレイアウト画像P1の回転角度を示す角度情報や、OBIC画像P2に対するレイアウト画像P1の倍率等の情報を含んでいてもよい。上記を一般化すると以下のようになる。レイアウト画像P1を規定する2次元の第1座標系とOBIC画像P2を規定する2次元の第2座標系が存在する。ここで、第1座標系と第2座標系との間で、縦横尺度及び水平垂直角度が異なっていてもよい。ただし、両座標系の座標面は平坦で歪みは無いものとする。このとき、第1座標系の3点(X1,Y1)、(X2,Y2)、(X3,Y3)と、これらの3点と同一位置として対応する第2座標系の3点(x1,y1)、(x2,y2)、(x3,y3)を指定する。第1座標系及び第2座標系に歪みが無い場合、第1座標系における点と第2座標系における点とが1次変換によって対応付けられる。このような対応関係に基づいて、一方の座標系の任意の点を他方の座標系の対応する点に変換するための変換式が得られる。上記で述べた関数は、この変換式に相当する。また、角度情報や倍率も、この変換式に含まれ得る。両方の座標系の間で特定の条件(例えば、両方の座標系が同じ平面上に乗っている状況等)が成立している場合等には、変換式が簡略化され得る。例えば、座標回転又は座標シフトのみによって、第1座標系と第2座標系との相互変換が可能となる。
 画像処理部54は、上述のようにして得られたマッチング情報に基づいて、レイアウト画像P1とOBIC画像P2とを重畳させた重畳画像P6(図11参照)を生成してもよい。なお、図11では、便宜上、重畳画像P6を無地で表している。実際には、重畳画像P6は、レイアウト画像P1及びOBIC画像P2の一方の画像の上に、透過率が設定された他方の画像が重畳したものとなる。上述したマッチング情報を用いることにより、レイアウト画像P1とOBIC画像P2とを精度良く重畳させた重畳画像P6を得ることができる。その結果、重畳画像P6を用いた故障解析等を精度良く行うことが可能となる。なお、画像処理部54は、重畳画像P6として、レイアウト画像P1及びOBIC画像P2以外の画像(例えば、ボックス設定画像P3、着色画像P4、ぼかし画像P5等)を必要に応じて重畳させた画像を生成してもよい。例えば、画像処理部54は、オペレータに重畳対象とする画像、重ね合わせの順番、各画像の透過率等を選択させ、選択された内容に基づいて重畳画像を生成してもよい。
 或いは、画像処理部54は、レイアウト画像P1とOBIC画像P2とを表示装置7のディスプレイ上に並べて表示してもよい。この場合、画像処理部54は、マウス等の入力装置6を介したオペレータの操作によってレイアウト画像P1及びOBIC画像P2の一方の画像上の任意の位置にカーソルが合わされた場合に、マッチング情報に基づいて、一方の画像上のカーソル位置に対応する他方の画像上における位置に他のカーソルを表示してもよい。このような並列表示によっても、オペレータは、レイアウト画像P1とOBIC画像P2との対応関係を容易に把握することが可能となる。
 また、画像処理部54は、マッチング情報に基づいて、半導体デバイス10に対する故障解析により特定された故障位置とレイアウト画像P1上の位置との同定、又は、半導体デバイス10に対するプロービングの位置の設定を行ってもよい。例えば、画像処理部54は、半導体検査装置1が備える図示しないテスタによって半導体デバイス10に所定の電気信号のテストパターン、所定の電圧、又は所定の電流を印加し、半導体デバイス10の故障に起因して発生する発熱又は発光を図示しない撮像部で撮像する。このようにして撮像部により撮像された発熱画像又は発光画像に示される故障位置(反応位置)の座標は、OBIC画像P2の座標(すなわち、半導体検査装置1の動作制御用の座標)として把握される。従って、画像処理部54は、マッチング情報を用いることにより、レイアウト画像P1上における故障位置を特定することができる。なお、故障解析手法は特定の手法に限られない。例えば、故障解析手法としては、上述した発熱解析又は発光解析以外に、OBIRCH(Optical Beam Induced Resistance Current)解析、SDL(Soft Defect Localization)解析、LADA(Laser Assisted Device Alteration)解析、EOFM(Electro Optical Frequency Mapping)解析等が用いられ得る。
 また、マッチング情報により、レイアウト画像P1上の任意の座標を当該座標に対応するOBIC画像P2の座標(すなわち、半導体検査装置1の動作制御用の座標)に変換することができる。すなわち、マッチング情報を用いることで、レイアウト画像P1上の任意の座標を指定することにより、半導体検査装置1によるプロービングの位置を指定することができる。例えば、画像処理部54は、表示装置7を介してオペレータにレイアウト画像P1を提示し、入力装置6を介してオペレータによって指定されたレイアウト画像P1上の位置(座標)を取得する。そして、画像処理部54は、このように取得された座標をマッチング情報に基づいて半導体検査装置1の動作制御用の座標に変換することで、半導体検査装置1によるプロービングの位置(例えば、EOP(Electro Optical Probing)解析時のプロービングの位置)を設定することができる。以上のように、マッチング情報を用いることにより、故障解析(レイアウト画像P1上における故障位置の特定又はプロービング位置の設定)を精度良く行うことができる。
 制御部55は、コンピュータ5におけるデータ処理、及びコンピュータ5に接続された各デバイス(レーザ光源2,レーザ走査部3、アンプ4、入力装置6、表示装置7等)の動作を制御する。
 次に、図10及び図11を参照して、半導体検査装置1により実行される半導体検査方法の処理手順の一例について説明する。
 ステップS1において、半導体検査装置1(主にレーザ光源2、レーザ走査部3,及びアンプ4)は、半導体デバイス10に対してレーザ光Lを走査することにより、レーザ光Lの照射に応じた半導体デバイス10の電気信号の特性を示す特性情報(本実施形態ではOBIC信号)をレーザ光Lの照射位置毎に取得する。そして、半導体検査装置1(主に第1生成部52)は、照射位置毎の特性情報に基づいて、半導体デバイス10の第1パターン画像(本実施形態ではOBIC画像P2)を生成する(図5参照)。
 ステップS2において、半導体検査装置1(主に第2生成部53)は、レイアウト画像P1及び電流経路情報に基づいて、第2パターン画像(本実施形態ではぼかし画像P5)を生成する。一例として、第2生成部53は、上述したように、レイアウト画像P1及び電流経路情報に基づいてボックス設定画像P3(図7参照)を生成し、ボックス設定画像P3から着色画像P4(図8参照)を生成し、着色画像P4からぼかし画像P5(図9参照)を生成する。なお、ステップS1よりも前にステップS2が実行されてもよいし、ステップS1とステップS2とは並行して実行されてもよい。
 ステップS3において、半導体検査装置1(主に画像処理部54)は、第1パターン画像(OBIC画像P2)と第2パターン画像(ぼかし画像P5)との位置合わせの結果に基づいて、マッチング情報を取得する。
 ステップS4において、半導体検査装置1(主に画像処理部54)は、マッチング情報を用いることにより、第1パターン画像(OBIC画像P2)とレイアウト画像P1とを重畳させた重畳画像P6を生成する。
 ステップS5において、半導体検査装置1(主に画像処理部54)は、マッチング情報を用いて故障解析を実施する。例えば、半導体検査装置1は、上述したように、半導体デバイス10に対する故障解析により特定された故障位置とレイアウト画像P1上の位置との同定、又は、半導体デバイス10に対するプロービングの位置の設定を行ってもよい。なお、ステップS5の処理を実施するにあたって、必ずしもステップS4における重畳画像P6を生成する処理を実施する必要はないが、重畳画像P6を生成してオペレータに提示することにより、故障解析を実施するオペレータの利便性を向上させることができる。
[作用効果]
 半導体デバイス10に照射される光(例えばレーザ光L)は一定の広がりを有しており、半導体デバイス10への入射光の半値全幅(FWHM:full width at half maximum)よりも半導体デバイス10からの反射光の半値全幅の方が大きくなることが知られている。ここで、反射光に基づいて取得される光学画像の分解能(解像度)は観察される反射光の半値全幅に依存するのに対し、反射光に基づかない第1パターン画像(OBIC画像P2)の分解能は半導体デバイス10への入射光の半値全幅に依存する。また、光の半値全幅が小さい程、得られる画像の分解能は小さくなる。従って、光の照射に応じた半導体デバイス10の電気信号の特性(OBIC信号)に基づいて第1パターン画像(OBIC画像P2)を生成することにより、反射光に基づいて取得される光学画像よりも高分解能の画像を得ることができる。さらに、レイアウト画像P1と半導体デバイス10における電流経路とに基づいて得られる第2パターン画像(ぼかし画像P5)と第1パターン画像(OBIC画像P2)との位置合わせの結果に基づいて、第1パターン画像(OBIC画像P2)とレイアウト画像P1との間の精度の高いマッチング情報を得ることができる。以上により、上述した半導体検査装置1及び半導体検査方法によれば、半導体デバイス10から得られた第1パターン画像(OBIC画像P2)と当該半導体デバイス10のレイアウト画像P1とを精度良く位置合わせすることができる。その結果、故障解析により特定された半導体デバイス10の故障位置をレイアウト画像P1上に表示させたり、レイアウト画像P1上の位置を指定することによりプロービング位置を容易に設定したりすることが可能となる。
 また、第2生成部53は、半導体デバイス10に含まれる拡散層11cの少なくとも一部及び素子分離層11d1の少なくとも一部の少なくとも一方(本実施形態では両方)を電流経路情報に基づいて分類し、レイアウト画像P1中の拡散層11cの少なくとも一部及び素子分離層11d1の少なくとも一部の少なくとも一方に対して分類に応じた色を設定する第1処理と、第1処理により生成された着色画像P4に基づいて第2パターン画像(ぼかし画像P5)を生成する第2処理と、を実行してもよい。上記構成によれば、電流経路情報に基づいて着色された着色画像P4に基づいて、レイアウト画像P1との位置合わせを精度良く行うことが可能な第2パターン画像(ぼかし画像P5)を得ることができる。
 また、上記第2処理は、着色画像P4に対するぼかし処理を含んでもよい。上記構成によれば、ぼかし処理により、第1パターン画像(OBIC画像P2)に似た第2パターン画像(ぼかし画像P5)を得ることができる。その結果、1パターン画像(OBIC画像P2)との位置合わせを精度良く行うことが可能な第2パターン画像(ぼかし画像P5)を得ることができる。
 また、上記第2処理は、学習用の着色画像P4と当該学習用の着色画像P4に対応する第1パターン画像(OBIC画像P2)とを含む教師データを用いた機械学習によって、着色画像P4の変換処理を学習する処理と、学習により決定された変換処理を用いて着色画像P4を変換することにより、第2パターン画像(ぼかし画像P5)を生成する処理と、を実行してもよい。上記構成によれば、機械学習の結果に基づく変換処理により、第1パターン画像(OBIC画像P2)に似た第2パターン画像(ぼかし画像P5)を得ることができる。その結果、1パターン画像(OBIC画像P2)と第2パターン画像(ぼかし画像P5)との位置合わせを精度良く行うことが可能となる。
 また、画像処理部54は、第1パターン画像(OBIC画像P2)及び第2パターン画像(ぼかし画像P5)をユーザに提示する処理と、ユーザにより指定された第1パターン画像(OBIC画像P2)と第2パターン画像(ぼかし画像P5)との対応関係を示す情報に基づいて、マッチング情報を取得する処理と、を実行してもよい。上記構成によれば、目視による第1パターン画像(OBIC画像P2)及び第2パターン画像(ぼかし画像P5)の位置合わせをユーザに実施させることができる。
 また、アンプ4は、半導体デバイス10へのレーザ光Lの照射に応じて生じる光起電流(OBIC)の測定値(OBIC信号)を特性情報として取得してもよい。上記構成によれば、光起電流の測定値に応じた色合い(濃淡)が設定されたOBIC画像を第1パターン画像として得ることができる。
[変形例]
 以上、本開示の一実施形態について説明したが、本開示は、上述した実施形態に限定されない。各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。
 例えば、上記実施形態では、着色画像P4に対してぼかし加工(或いは変換モデルによる変換処理)を行うことで得られるぼかし画像P5が第2パターン画像として利用されたが、着色画像P4が第2パターン画像として利用されてもよい。
 また、上述したマッチング情報を取得する処理は、機械学習によって学習された位置合わせ処理を用いて行われてもよい。例えば、画像処理部54は、事前に、学習用の第1パターン画像(OBIC画像P2)と、学習用の第1パターン画像(OBIC画像P2)に対応する第2パターン画像(着色画像P4又はぼかし画像P5)と、これらの画像のマッチング結果(位置合わせの結果)とを含む教師データを用いた機械学習によって、第1パターン画像(OBIC画像P2)と第2パターン画像(着色画像P4又はぼかし画像P5)との位置合わせ処理を学習する処理を実行してもよい。例えば、画像処理部54は、上記位置合わせ処理に対応するパラメータ(学習済みパラメータ)を有する学習済みモデル(以下「位置合わせモデル」)を事前に作成し、記憶部51に記憶させてもよい。位置合わせモデルは、例えば、上述した教師データを用いた機械学習によって、第1パターン画像及び第2パターン画像を入力して、これらの位置合わせの結果(例えば、両画像の互いに対応する3箇所以上の点の座標等)を出力するように構成されたモデルである。教師データとしては、例えば、過去に検査対象とされた半導体デバイスに対する処理によって得られたOBIC画像、着色画像(又はぼかし画像)、及びマッチング結果の組を用いることができる。
 そして、画像処理部54は、上記学習により決定された位置合わせ処理を用いて第1パターン画像(OBIC画像P2)と第2パターン画像(着色画像P4又はぼかし画像P5)との位置合わせを行うことにより、第1パターン画像(OBIC画像P2)とレイアウト画像P1との相対関係を示すマッチング情報を取得する処理を実行してもよい。例えば、画像処理部54は、位置合わせモデルに第1パターン画像及び第2パターン画像を入力することで位置合わせモデルから出力された結果を、これらの画像の位置合わせの結果として取得してもよい。そして、画像処理部54は、このようにして得られた位置合わせの結果に基づいてマッチング情報を取得してもよい。位置合わせモデルは、例えば、ニューラルネットワーク、深層学習(ディープラーニング)によって構築された多層ニューラルネットワーク等である。位置合わせモデルの例としては、CNN(Convolutional Neural Network)、FCN(Fully Convolutional Networks)、U-Net、ResNet(Residual Network)等がある。ただし、位置合わせモデルは特定のモデルには限定されない。また、位置合わせモデルのノード数及び層数も任意に設定され得る。上記構成によれば、機械学習の結果に基づく位置合わせ処理により、第1パターン画像と第2パターン画像との位置合わせを精度良く行うことが可能となる。また、第2パターン画像として着色画像P4を用いた場合、オペレータの目視又は従来のパターンマッチング等の手法では、位置合わせの精度が落ちる可能性がある。一方、上記の位置合わせモデルを用いることにより、第2パターン画像として着色画像P4を用いた場合でも、精度良く第1パターン画像と第2パターン画像との位置合わせを行うことが期待できる。すなわち、上記の位置合わせモデルを用いた場合には、位置合わせの精度を確保しつつ、着色画像P4からぼかし画像P5を生成する処理を省略することが可能となる。
 図12~図15を参照して、OBIC信号を取得するための構成例(第1構成例~第5構成例)について説明する。
(第1構成例)
 図12は、第1構成例を示す概略図である。この例では、半導体デバイス10は、互いに電源電圧の異なる複数のブロックBRに分けられている。ブロックBR1は、電源VDD1から第1の電圧が印加され、ブロックBR2は、電源VDD2から第2の電圧が印加されるように構成されている。この場合、ブロックBR1の領域に対してレーザ光Lを走査してOBIC信号を取得する際には、アンプ4の一方の端子4a(グランドVSSに接続される側の端子4bとは反対側の端子)を電源VDD1に対応するパッケージ基板12の端子12aに接続すればよい。一方、ブロックBR2の領域に対してレーザ光Lを走査してOBIC信号を取得する際には、アンプ4の一方の端子4aを電源VDD2に対応するパッケージ基板12の端子12aに接続すればよい。
(第2構成例)
 図13は、第2構成例を示す概略図である。図13に示されるように、上述した半導体デバイス10(半導体チップ11及びパッケージ基板12)は、ソケット15を介してプリント基板等のボード16に搭載されてもよい。この場合、アンプ4の端子4a,4bは、ボード16に設けられた電源端子及びグランド端子に接続されてもよい。
(第3構成例)
 図14の(A)は、第3構成例を示す概略図である。図14の(A)に示されるように、電源VDD及びグランドVSSが半導体チップ11内に直接接続されている場合には、例えば図13に示されるようにアンプ4の端子4a,4bを電源VDD及びグランドVSSに接続し、バイアスを印加することなく、レーザ光Lの照射に応じて流れる電流IDDの変化(すなわち、OBIC信号)をモニタすればよい。バイアスを印加しないことにより、ノイズ成分をなるべく小さくすることができ、OBIC信号の測定(識別)を容易に行うことが可能となる。
(第4構成例)
 図14の(B)は、第4構成例を示す概略図である。図14の(B)に示されるように、MOSスイッチSWがグランドVSSに設けられている場合には、半導体デバイス10をスタンバイ状態にセットすることにより、グランドVSSが外部に接続される。この状態で、一定レベルのリーク電流にOBIC信号が乗った電流変化を検出することができる。なお、図14の(B)の左側の図は、実際の構成を簡略的に図示したものであり、実際には、スイッチを制御する回路によってMOS(トランジスタT)のON/OFFが切り替えられる。また、アンプ4は、微小電流を検知するために、微分回路で構成されてもよい。この場合、電流の変化分を検出できる。すなわち、OBIC信号がノイズ成分よりも大きい場合には、ノイズ成分等のオフセットを無視することができる。
(第5構成例)
 図15は、第5構成例を示す概略図である。この例では、半導体デバイス10に、電源管理回路(PMC:power management circuit)Cが設けられている。電源管理回路Cは、電源VDDから供給される電圧を調整し、調整された電源電圧(VDD1,VDD2)を半導体デバイス10の各ブロックBR(図12参照)に供給するように構成されている。このような場合、電源電圧(VDD1)に対応するブロックBRにレーザ光Lを照射した際に生じるOBIC信号を取得するためには、電源電圧(VDD1)を供給する電源ラインWDD1にアクセスする必要がある。そこで、この例では、半導体基板11Aの裏面11bに、裏面11bから配線層11Bに設けられた電源ラインWDD1まで到達する開口部11eが形成されている。開口部11eには、例えばFIBCVD等のFIB加工によって形成された絶縁体からなる絶縁部17と、同様にFIB加工によって形成された金属からなるパッド18と、が配置される。パッド18の内側(配線層11B側)の先端部は電源ラインWDD1と接続されており、パッド18の外側の表面は開口部11eに露出している。絶縁部17は、パッド18の周囲を覆うように形成されている。パッド18の外側の表面は、電源ラインWDD1を流れる電流を測定するためのプローブPRの先端が接続されている。このように、電源管理回路Cから枝分かれした後の電源ラインWDD1に対して、半導体基板11Aの裏面11b側に露出するパッド18を介してプロービングすることにより、電源ラインWDD1を流れる電流を測定することができる。なお、通常、ブロックBR(図12参照)の外縁部に、当該ブロックBRに対応する比較的幅広の電源ラインが設けられる。この場合、上述した開口部11eは、当該外縁部に形成されればよい。
 また、第1パターン画像は、OBIC画像に限定されない。第1パターン画像としては、半導体基板11Aの裏面11bからの光照射(光刺激)に応じて観測される電気信号の特性を画像化することによって得られる任意の画像を用いることができる。
 1…半導体検査装置、2…レーザ光源(光源)、3…レーザ走査部(走査部)、4…アンプ(測定部)、10…半導体デバイス、11A…半導体基板、11a…主面、11b…裏面、11c,11c1,11c2…拡散層、11d…絶縁層、11d1…素子分離層、52…第1生成部、53…第2生成部、54…画像処理部(処理部)、L…レーザ光(光)、P1…レイアウト画像、P2…OBIC画像(第1パターン画像)、P4…着色画像(第2パターン画像)、P5…ぼかし画像(第2パターン画像)、P6…重畳画像、T…トランジスタ。

Claims (22)

  1.  半導体デバイスに対して光を走査することにより、前記光の照射に応じた前記半導体デバイスの電気信号の特性を示す特性情報を前記光の照射位置毎に取得し、前記照射位置毎の前記特性情報に基づいて、前記半導体デバイスの第1パターン画像を生成するステップと、
     前記半導体デバイスのレイアウトを示すレイアウト画像と前記半導体デバイスにおける電流経路を示す電流経路情報とに基づいて、前記半導体デバイスの第2パターン画像を生成するステップと、
     前記第1パターン画像と前記第2パターン画像との位置合わせの結果に基づいて、前記第1パターン画像と前記レイアウト画像との相対関係を示すマッチング情報を取得するステップと、を含む半導体検査方法。
  2.  前記第2パターン画像を生成するステップは、
      前記半導体デバイスに含まれる拡散層の少なくとも一部及び素子分離層の少なくとも一部の少なくとも一方を前記電流経路情報に基づいて分類し、前記レイアウト画像中の前記拡散層の少なくとも一部及び前記素子分離層の少なくとも一部の少なくとも一方に対して前記分類に応じた色を設定する第1処理と、
      前記第1処理により生成された着色画像に基づいて前記第2パターン画像を生成する第2処理と、を含む、請求項1に記載の半導体検査方法。
  3.  前記第2処理は、前記着色画像に対するぼかし処理を含む、請求項2に記載の半導体検査方法。
  4.  前記第2処理は、
      学習用の前記着色画像と前記学習用の着色画像に対応する前記第1パターン画像とを含む教師データを用いた機械学習によって、前記着色画像の変換処理を学習する処理と、
      前記学習により決定された前記変換処理を用いて前記着色画像を変換することにより、前記第2パターン画像を生成する処理と、を含む、請求項2に記載の半導体検査方法。
  5.  前記マッチング情報を取得するステップは、
      前記第1パターン画像及び前記第2パターン画像をユーザに提示する処理と、
      前記ユーザにより指定された前記第1パターン画像と前記第2パターン画像との対応関係を示す情報に基づいて、前記マッチング情報を取得する処理と、を含む、請求項1~4のいずれか一項に記載の半導体検査方法。
  6.  前記マッチング情報を取得するステップは、
      学習用の前記第1パターン画像と、前記学習用の第1パターン画像に対応する前記第2パターン画像と、これらの画像のマッチング結果とを含む教師データを用いた機械学習によって、前記第1パターン画像と前記第2パターン画像との位置合わせ処理を学習する処理と、
      前記学習により決定された前記位置合わせ処理を用いて前記第1パターン画像と前記第2パターン画像との位置合わせを行うことにより、前記マッチング情報を取得する処理と、を含む、請求項1~4のいずれか一項に記載の半導体検査方法。
  7.  前記マッチング情報に基づいて、前記レイアウト画像と前記第1パターン画像とを重畳させた重畳画像を生成するステップを更に含む、請求項1~6のいずれか一項に記載の半導体検査方法。
  8.  前記マッチング情報に基づいて、前記半導体デバイスに対する故障解析により特定された故障位置と前記レイアウト画像上の位置との同定、又は、前記半導体デバイスに対するプロービングの位置の設定を行うステップを更に含む、請求項1~7のいずれか一項に記載の半導体検査方法。
  9.  前記第1パターン画像を生成するステップでは、前記半導体デバイスへの光の照射に応じて生じる光起電流の測定値を前記特性情報として取得する、請求項1~8のいずれか一項に記載の半導体検査方法。
  10.  前記半導体デバイスは、トランジスタが形成された主面と前記主面とは反対側の裏面とを有する半導体基板を有しており、
     前記第1パターン画像を生成するステップでは、前記半導体基板の前記裏面に対して、前記裏面から前記主面側へと透過する前記光を照射し、
     前記光は、前記半導体基板の材料のバンドギャップよりも高いエネルギーを有する、請求項9に記載の半導体検査方法。
  11.  前記半導体デバイスは、トランジスタが形成された主面と前記主面とは反対側の裏面とを有する半導体基板を有しており、
     前記第1パターン画像を生成するステップでは、前記半導体基板の前記裏面に対して、前記裏面から前記主面側へと透過するパルス光である前記光を照射し、
     前記光は、前記半導体基板の材料のバンドギャップよりも低いエネルギーを有する、請求項9に記載の半導体検査方法。
  12.  光源と、
     半導体デバイスに対して前記光源からの光を走査する走査部と、
     前記半導体デバイスと電気的に接続され、前記光の照射位置毎に、前記光の照射に応じた前記半導体デバイスの電気信号の特性を測定する測定部と、
     前記測定部により測定された前記照射位置毎の前記電気信号の特性を示す特性情報に基づいて、前記半導体デバイスの第1パターン画像を生成する第1生成部と、
     前記半導体デバイスのレイアウトを示すレイアウト画像と前記半導体デバイスにおける電流経路を示す電流経路情報とに基づいて、前記半導体デバイスの第2パターン画像を生成する第2生成部と、
     前記第1パターン画像と前記第2パターン画像との位置合わせの結果に基づいて、前記第1パターン画像と前記レイアウト画像との相対関係を示すマッチング情報を取得する処理部と、
    を備える半導体検査装置。
  13.  前記第2生成部は、
      前記半導体デバイスに含まれる拡散層の少なくとも一部及び素子分離層の少なくとも一部の少なくとも一方を前記電流経路情報に基づいて分類し、前記レイアウト画像中の前記拡散層の少なくとも一部及び前記素子分離層の少なくとも一部の少なくとも一方に対して前記分類に応じた色を設定する第1処理と、
      前記第1処理により生成された着色画像に基づいて前記第2パターン画像を生成する第2処理と、を実行する、請求項12に記載の半導体検査装置。
  14.  前記第2処理は、前記着色画像に対するぼかし処理を含む、請求項13に記載の半導体検査装置。
  15.  前記第2処理は、
      学習用の前記着色画像と前記学習用の着色画像に対応する前記第1パターン画像とを含む教師データを用いた機械学習によって、前記着色画像の変換処理を学習する処理と、
      前記学習により決定された前記変換処理を用いて前記着色画像を変換することにより、前記第2パターン画像を生成する処理と、を実行する、請求項13に記載の半導体検査装置。
  16.  前記処理部は、
      前記第1パターン画像及び前記第2パターン画像をユーザに提示する処理と、
      前記ユーザにより指定された前記第1パターン画像と前記第2パターン画像との対応関係を示す情報に基づいて、前記マッチング情報を取得する処理と、を実行する、請求項12~15のいずれか一項に記載の半導体検査装置。
  17.  前記処理部は、
      学習用の前記第1パターン画像と、前記学習用の第1パターン画像に対応する前記第2パターン画像と、これらの画像のマッチング結果とを含む教師データを用いた機械学習によって、前記第1パターン画像と前記第2パターン画像との位置合わせ処理を学習する処理と、
      前記学習により決定された前記位置合わせ処理を用いて前記第1パターン画像と前記第2パターン画像との位置合わせを行うことにより、前記マッチング情報を取得する処理と、を実行する、請求項12~15のいずれか一項に記載の半導体検査装置。
  18.  前記処理部は、前記マッチング情報に基づいて、前記レイアウト画像と前記第1パターン画像とを重畳させた重畳画像を生成する、請求項12~17のいずれか一項に記載の半導体検査装置。
  19.  前記処理部は、前記マッチング情報に基づいて、前記半導体デバイスに対する故障解析により特定された故障位置と前記レイアウト画像上の位置との同定、又は、前記半導体デバイスに対するプロービングの位置の設定を行う、請求項12~18のいずれか一項に記載の半導体検査装置。
  20.  前記測定部は、前記半導体デバイスへの光の照射に応じて生じる光起電流の測定値を前記特性情報として取得する、請求項12~19のいずれか一項に記載の半導体検査装置。
  21.  前記半導体デバイスは、トランジスタが形成された主面と前記主面とは反対側の裏面とを有する半導体基板を有しており、
     前記走査部は、前記半導体基板の前記裏面に対して、前記裏面から前記主面側へと透過する前記光を走査し、
     前記光は、前記半導体基板の材料のバンドギャップよりも高いエネルギーを有する、請求項20に記載の半導体検査装置。
  22.  前記半導体デバイスは、トランジスタが形成された主面と前記主面とは反対側の裏面とを有する半導体基板を有しており、
     前記走査部は、前記半導体基板の前記裏面に対して、前記裏面から前記主面側へと透過するパルス光である前記光を走査し、
     前記光は、前記半導体基板の材料のバンドギャップよりも低いエネルギーを有する、請求項20に記載の半導体検査装置。
PCT/JP2021/013840 2020-06-08 2021-03-31 半導体検査方法及び半導体検査装置 WO2021250984A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21822608.2A EP4131350A4 (en) 2020-06-08 2021-03-31 SEMICONDUCTOR INSPECTION METHOD AND SEMICONDUCTOR INSPECTION APPARATUS
JP2021542162A JP6966668B1 (ja) 2020-06-08 2021-03-31 半導体検査方法及び半導体検査装置
US17/925,625 US20230206422A1 (en) 2020-06-08 2021-03-31 Semiconductor inspecting method and semiconductor inspecting device
KR1020227044286A KR20230021669A (ko) 2020-06-08 2021-03-31 반도체 검사 방법 및 반도체 검사 장치
CN202180041063.XA CN115699281A (zh) 2020-06-08 2021-03-31 半导体检查方法及半导体检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020099463 2020-06-08
JP2020-099463 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021250984A1 true WO2021250984A1 (ja) 2021-12-16

Family

ID=78845500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013840 WO2021250984A1 (ja) 2020-06-08 2021-03-31 半導体検査方法及び半導体検査装置

Country Status (2)

Country Link
TW (1) TW202146919A (ja)
WO (1) WO2021250984A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11852675B2 (en) 2021-12-29 2023-12-26 Taiwan Semiconductor Manufacturing Company, Ltd. Gallium nitride-based devices and methods of testing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332794A (ja) 1997-05-15 1998-12-18 Lucent Technol Inc 半導体デバイスの画像化方法
WO2006137415A1 (ja) * 2005-06-22 2006-12-28 Hamamatsu Photonics K.K. 半導体不良解析装置、不良解析方法、不良解析プログラム、及び不良解析システム
JP2007000306A (ja) 2005-06-23 2007-01-11 Yoshiko Amano 物干しハンガー
JP2010190738A (ja) * 2009-02-18 2010-09-02 Renesas Electronics Corp 半導体集積回路の故障解析方法、故障解析装置、及び故障解析プログラム
WO2015098342A1 (ja) 2013-12-26 2015-07-02 浜松ホトニクス株式会社 画像処理方法、画像処理装置、画像処理プログラム、及び画像処理プログラムを記憶した記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332794A (ja) 1997-05-15 1998-12-18 Lucent Technol Inc 半導体デバイスの画像化方法
WO2006137415A1 (ja) * 2005-06-22 2006-12-28 Hamamatsu Photonics K.K. 半導体不良解析装置、不良解析方法、不良解析プログラム、及び不良解析システム
JP2007000306A (ja) 2005-06-23 2007-01-11 Yoshiko Amano 物干しハンガー
JP2010190738A (ja) * 2009-02-18 2010-09-02 Renesas Electronics Corp 半導体集積回路の故障解析方法、故障解析装置、及び故障解析プログラム
WO2015098342A1 (ja) 2013-12-26 2015-07-02 浜松ホトニクス株式会社 画像処理方法、画像処理装置、画像処理プログラム、及び画像処理プログラムを記憶した記憶媒体

Also Published As

Publication number Publication date
TW202146919A (zh) 2021-12-16

Similar Documents

Publication Publication Date Title
JP6718534B2 (ja) 画像処理方法、画像処理装置、画像処理プログラム、及び画像処理プログラムを記憶した記憶媒体
CN111564384B (zh) 检查装置及检查方法
JP7033225B2 (ja) 検査方法、検査装置、及びマーキング形成方法
TWI392867B (zh) 故障解析方法及故障解析裝置
US8131056B2 (en) Constructing variability maps by correlating off-state leakage emission images to layout information
KR100402044B1 (ko) 비파괴 검사 방법
Aaron Falk Advanced LIVA/TIVA Techniques
WO2021250984A1 (ja) 半導体検査方法及び半導体検査装置
JP6966668B1 (ja) 半導体検査方法及び半導体検査装置
US20220301135A1 (en) Method for inspecting semiconductor and semiconductor inspecting device
KR102578485B1 (ko) 해석 방법, 해석 장치, 해석 프로그램, 및 해석 프로그램을 기록하는 기록 매체
JP2010197051A (ja) 故障解析装置
JP2002313859A (ja) 非破壊検査方法および装置ならびに半導体チップ
JP2006337203A (ja) 位置出し方法と装置
JP2006047294A (ja) 半導体素子解析方法
JP2012033604A (ja) 試料検査装置及び吸収電流像の作成方法
JP2008286658A (ja) 半導体検査装置及びそれを用いた半導体検査方法
JP2012138456A (ja) 配線構造、半導体装置及び不良箇所特定方法
Keow et al. Logic circuit failure analysis & micro-probing on floating signal net
JP2013083537A (ja) 半導体装置の不良解析方法ならびに不良解析装置および不良解析プログラム
CN113994372A (zh) 半导体检查装置及半导体检查方法
Sienkiewcz et al. Methodology to support laser-localized soft defects on analog and mixed-mode advanced ICs
JP2012079939A (ja) 解析装置、解析方法、及び半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021542162

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021822608

Country of ref document: EP

Effective date: 20221025

ENP Entry into the national phase

Ref document number: 20227044286

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE