WO2021250953A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2021250953A1
WO2021250953A1 PCT/JP2021/008542 JP2021008542W WO2021250953A1 WO 2021250953 A1 WO2021250953 A1 WO 2021250953A1 JP 2021008542 W JP2021008542 W JP 2021008542W WO 2021250953 A1 WO2021250953 A1 WO 2021250953A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
groove
grain
oriented electrical
linear
Prior art date
Application number
PCT/JP2021/008542
Other languages
English (en)
French (fr)
Inventor
義悠 市原
健 大村
博貴 井上
邦浩 千田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CA3181052A priority Critical patent/CA3181052A1/en
Priority to KR1020227036978A priority patent/KR20220152580A/ko
Priority to US17/998,356 priority patent/US11990261B2/en
Priority to EP21821594.5A priority patent/EP4163403A4/en
Priority to MX2022015720A priority patent/MX2022015720A/es
Priority to CN202180034717.6A priority patent/CN115605624B/zh
Publication of WO2021250953A1 publication Critical patent/WO2021250953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet suitable as an iron core material such as a transformer.
  • the grain-oriented electrical steel sheet is used as a material for the iron core of a transformer, and the iron loss of the grain-oriented electrical steel sheet has a great influence on the energy loss of the transformer.
  • reduction of energy loss in transformers has been strongly demanded. Since the iron loss of a transformer is affected by the iron loss of the grain-oriented electrical steel sheet used as the material, it is very important to develop the grain-oriented electrical steel sheet with low iron loss.
  • Iron loss of grain-oriented electrical steel sheets is classified into hysteresis loss and eddy current loss.
  • a method for improving the hysteresis loss a method called GOSS direction (110) [001] for highly orienting the direction in the rolling direction and a method for reducing impurities have been developed.
  • a method for improving the eddy current loss a method for increasing the electric resistance by adding Si and a method for applying the coating tension in the rolling direction have been developed.
  • a method in which the effect is not lost even when strain removal and annealing is performed is called a heat-resistant magnetic domain subdivision method.
  • This method is generally applied to materials for wound iron cores, which are indispensable for strain removal and annealing in the manufacturing process.
  • Patent Document 1 by introducing a linear groove having a width of 300 ⁇ m or less and a depth of 100 ⁇ m or less on the surface of a steel sheet, an iron loss of 0.80 W / kg or more is reduced to 0.
  • a technique for improving to 70 W / kg or less has been proposed.
  • Patent Document 2 As a method for forming a groove in a directional electromagnetic steel sheet, for example, an electrolytic etching method (Patent Document 2) in which a groove is formed on the surface of the steel sheet by electrolytic etching, and a laser method in which the steel sheet is locally melted and evaporated by a high-power laser.
  • Patent Document 3 As a method for forming a groove in a directional electromagnetic steel sheet, for example, an electrolytic etching method (Patent Document 2) in which a groove is formed on the surface of the steel sheet by electrolytic etching, and a laser method in which the steel sheet is locally melted and evaporated by a high-power laser.
  • Patent Document 3 As a method for forming a groove in a directional electromagnetic steel sheet, for example, an electrolytic etching method (Patent Document 2) in which a groove is formed on the surface of the steel sheet by electrolytic etching, and a laser method in which the steel sheet is locally melted and evaporated by a high-power
  • the iron loss of grain-oriented electrical steel sheets in recent years has been significantly improved by the combination of the above methods, especially by high orientation and subdivision of magnetic domains.
  • the building factor deteriorates due to the influence of high orientation and the low iron loss characteristic of the material cannot be fully utilized.
  • the building factor (BF) is the ratio of the iron loss of the transformer to the iron loss of the material electrical steel sheet, and the closer the value is to 1, the better the iron loss in the transformer. ..
  • the rotational iron loss means the iron loss that occurs in the material magnetic steel sheet when a rotational magnetic flux whose magnetization direction and magnitude change in an elliptical shape having a long axis in the rolling direction is applied.
  • an object of the present invention is to provide a linear groove formation pattern that achieves both the effect of lowering the building factor and the high magnetic flux density.
  • the material iron loss is the iron loss when an AC magnetic field having a magnetization component is applied only in the rolling direction.
  • the transformer loss increases, that is, the building factor increases. Therefore, in order to improve the building factor of the transformer, it is necessary to reduce the rotational iron loss, that is, to facilitate the rotation of the magnetization.
  • auxiliary magnetic domain a magnetic domain having a magnetization direction different from the rolling direction in the non-groove forming portion. Further, it was found that such an auxiliary magnetic domain is likely to be formed starting from a defect in which the continuity of the magnetic flux is hindered in the non-groove forming portion.
  • the convex portion is unsuitable because it causes deterioration of the space factor, and the local strain is unsuitable because its effect is lost by strain removal annealing after winding the core. Appropriate.
  • the recess is considered to be suitable because the above problem does not occur and the recess can be manufactured by applying the current grooving process.
  • the formation of the concave portion means a local decrease in the cross-sectional area, and as described above, there is a concern that the magnetic permeability and the iron loss may be deteriorated.
  • FIG. 1 (a) for a schematic diagram of a general grain-oriented electrical steel sheet in which linear grooves are formed
  • FIG. 1 (b) for a newly discovered groove formation pattern
  • a new one is shown.
  • the groove forming pattern of concave defects which are defects due to recesses are scattered in the non-groove forming portion, and a portion where the linear groove extending in the direction orthogonal to the rolling is interrupted, that is, a portion where the groove is not formed is formed.
  • FIG. 1 (a) for a schematic diagram of a general grain-oriented electrical steel sheet in which linear grooves are formed
  • FIG. 1 (b) for a newly discovered groove formation pattern
  • a recess defect is formed in the non-groove forming portion between the linear grooves, and the non-groove forming portion outside the non-groove forming portion, in the figure, between the linear groove and the plate edge.
  • No concave defect is shown in the non-groove forming portion of the above, but it is needless to say that a concave defect can be formed in the non-groove forming portion. In any case, it is sufficient to satisfy the requirements regarding the recess defect described later.
  • the groove formed linearly on the steel sheet is a "linear groove", the portion where the linear groove is interrupted is the “interrupted portion”, and the region between the adjacent linear grooves is “non-grooved".
  • Defects due to recesses existing in the "formed portion” and the non-groove forming portion are referred to as “concave defects", respectively.
  • the present invention has been made based on the above findings. That is, the gist structure of the present invention is as follows. [1] A grain-oriented electrical steel sheet having a plurality of linear grooves extending in a direction crossing the rolling direction of the steel sheet on the surface of the steel sheet. The surface of the steel sheet between the linear grooves has a concave defect recessed from the surface. The volume fraction of the concave defect in the steel sheet is 0.0025 vol% or more and 0.01 vol% or less with respect to the steel sheet in the state where the concave defect does not exist, and the interrupted portion that divides the extension of the linear groove is formed. A grain-oriented electrical steel sheet having a frequency of 30 or more and 200 or less per 1 m 2 of steel sheet.
  • a building factor is increased more than before. The effect of reduction can be obtained.
  • (A) is a schematic diagram showing an introduction form of a linear groove
  • (b) is a schematic diagram showing an introduction form of a linear groove and a recessed defect. It is a graph which shows the relationship between the volume fraction of a concave defect and the magnetic flux density. It is a graph which shows the relationship between the volume fraction of a concave defect and iron loss. It is a graph which shows the relationship between the volume fraction of a concave defect and a building factor. It is a graph which shows the relationship between the number of breaks of a groove, and the magnetic flux density. It is a graph which shows the relationship between the number of breaks of a groove, and iron loss. It is a graph which shows the relationship between the number of breaks of a groove and a building factor.
  • Example 1 A cold-rolled steel strip of a grain-oriented electrical steel sheet with a plate thickness of 0.23 mm and a plate width of 1 m is used as a test material, a resist film is applied to the entire surface of the test material, and then the film is patterned using a laser. (Formation of a non-coated portion by partial peeling of the resist film, hereinafter also referred to as laser patterning) was performed.
  • a resist coating is applied to the surface of the test material, and a dot-shaped non-applied portion is formed in order to form a dotted concave defect having a diameter of 20 ⁇ m in the non-groove forming portion between the linear grooves.
  • a large number of laser patterns are performed to locally peel off the resist film (dots with a diameter of 20 ⁇ m), and then electrolytic etching is performed. Was formed. Then, after removing the resist film, the weight of the test material was measured and used as the weight B.
  • the amount of weight loss due to the concave defect was calculated from the weights A and B, and this was converted into a volume fraction using a steel plate density of 7.65 g / cm 3.
  • the number of concave defects per 1 mm 2 was variously adjusted by adjusting the laser patterning conditions, and the depth of the concave defects was variously adjusted by adjusting the electrolytic etching time.
  • the directional electromagnetic steel sheet cold-rolled steel strips with various groove patterns according to the above were subjected to decarburization annealing, finish annealing, flattening annealing, and insulation tension coating application steps to obtain the final product plate.
  • a final product plate of grain-oriented electrical steel sheet in which only linear grooves were formed without forming the concave defects was also produced.
  • the Epstein method described in JIS C2550 was measured B 8 and W 17/50 as magnetic properties.
  • a three-phase stacking transformer iron core weight 500 kg was manufactured from the final product plate, and the iron loss characteristics were measured at a frequency of 50 Hz when the magnetic flux density of the iron core leg portion was 1.7 T. For this iron loss characteristic at 1.7 T and 50 Hz, no load loss was measured using a watt meter. The building factor was calculated from this and the value of W 17/50 measured in the Epstein test earlier.
  • FIGS. 2 to 4 The above measurement results are shown in FIGS. 2 to 4.
  • the volume fraction of the concave defects is slightly deteriorated B 8 becomes more than 0.0025Vol%, was confirmed to be degraded significantly further than the 0.0100vol%. It is considered that this is because the magnetic permeability deteriorated due to the increase in the volume fraction of the concave defect.
  • FIG. 3 when the volume fraction of the concave defect exceeds 0.0100 vol%, the iron loss W 17/50 increases sharply. It is considered that this is because the domain wall movement was hindered by the concave defect.
  • FIG. 2 the volume fraction of the concave defects is slightly deteriorated B 8 becomes more than 0.0025Vol%, was confirmed to be degraded significantly further than the 0.0100vol%. It is considered that this is because the magnetic permeability deteriorated due to the increase in the volume fraction of the concave defect.
  • FIG. 3 when the volume fraction of the concave defect exceeds 0.0100 vol%, the
  • the building factor tends to improve as the volume fraction of the concave defect increases, and the improvement effect becomes particularly large at 0.0025 vol% or more. It is considered that this is because the rotational iron loss, which is one of the factors for increasing the building factor, was suppressed by the introduction of defects.
  • the volume fraction of the concave defect which is effective as a range in which both the magnetic properties and the building factor of the steel sheet are improved, is 0.0025 vol% or more and 0.01 vol% or less. More preferably, it is 0.003 vol% or more and 0.008 vol% or less.
  • a three-phase stacking transformer (iron core weight 500 kg) is manufactured from the final product plate that has undergone the same process as above, and iron loss occurs when the magnetic flux density of the iron core legs becomes 1.7 T at a frequency of 50 Hz. The characteristics were measured. The iron loss characteristics at 1.7 T and 50 Hz were measured with no load loss using a watt meter. The building factor was calculated from this and the value of W 17/50 measured in the Epstein test earlier.
  • FIGS. 5 to 7 The above measurement results are shown in FIGS. 5 to 7.
  • the number of interruptions of the groove is at 30 / m 2 or more areas, the improvement of B 8 is seen. It is considered that this is because the cross-sectional area of the steel sheet is locally increased at the interrupted portion, and the magnetic permeability that has decreased due to the introduction of the concave defect is recovered.
  • improvement of the building factor can be confirmed. It is probable that this is because the auxiliary magnetic domain was formed starting from the break and the rotational iron loss decreased.
  • FIG. 6 when the number of interrupted portions exceeds 200 / m 2 , deterioration of iron loss can be confirmed. It is considered that this is because the effect of subdividing the magnetic domain by the groove was reduced by the increase of the break.
  • the range of the number of breaks in the groove which is effective as a range for improving both the magnetic properties and the building factor of the steel sheet, is 30 / m 2 or more and 200 / m 2 or less. More preferably, it is 40 pieces / m 2 or more and 180 pieces / m 2 or less.
  • a three-phase stacking transformer (iron core weight 500 kg) is manufactured from the final product plate that has undergone the same process as above, and iron loss occurs when the magnetic flux density of the iron core legs becomes 1.7 T at a frequency of 50 Hz. The characteristics were measured. For this iron loss characteristic at 1.7 T and 50 Hz, no load loss was measured using a watt meter. The building factor was calculated from this and the value of W 17/50 measured in the Epstein test earlier.
  • the length of the break in the groove extension direction is 50% or less of the average width of the groove
  • the maximum number of breaks per 1 m of one linear groove is 5 or less
  • the frequency of the presence of concave defects is non-existent. It was confirmed that the improvement effect of the higher building factor was confirmed at the same number of interrupted portions and the volume fraction of the concave defect in the groove forming portion of 1 or more and 50 or less per 1 mm 2. More preferably, the length of the break in the groove extending direction is 10% or more and 40% or less of the average width of the groove, the maximum number of breaks per 1 m of one linear groove is 4 or less, and the frequency of the presence of concave defects is non-existent. The number of groove forming portions is 5 or more and 40 or less per 1 mm 2.
  • the component composition of the slab used as the material of the grain-oriented electrical steel sheet may be any component composition that causes secondary recrystallization.
  • an inhibitor for example, when using an AlN-based inhibitor, Al and N should be contained, and when using a MnS / MnSe-based inhibitor, Mn and Se and / or S should be contained in appropriate amounts. Just do it. Of course, both inhibitors may be used in combination.
  • the suitable contents of Al, N, S and Se are, respectively. Al: 0.010 to 0.065% by mass N: 0.0050 to 0.0120% by mass S: 0.005 to 0.030% by mass Se: 0.005 to 0.030% by mass Is.
  • the present invention can also be applied to grain-oriented electrical steel sheets that do not use inhibitors and have limited contents of Al, N, S, and Se.
  • the contents of Al, N, S and Se are, respectively.
  • C 0.08% by mass or less C is added to improve the structure of the hot-rolled plate, but if the C content exceeds 0.08% by mass, magnetic aging does not occur and the manufacturing process is up to 50% by mass or less. Since it becomes difficult to decarburize the inside, it is desirable that the C content is 0.08% by mass or less. Further, since the steel material containing no C is recrystallized secondarily, it is not necessary to set the lower limit of the C content in particular. Therefore, C may be 0% by mass.
  • Si 2.0-8.0% by mass
  • Si is an element effective in increasing the electrical resistance of steel and improving iron loss. Therefore, the content is preferably 2.0% by mass or more.
  • the Si content is 8.0% by mass or less. More preferably, it is 2.5 to 7.0% by mass.
  • Mn 0.005 to 1.0% by mass
  • Mn is an element necessary for improving hot workability. Therefore, the content is preferably 0.005% by mass or more. On the other hand, if the content exceeds 1.0% by mass, the magnetic flux density deteriorates, so the Mn content is preferably 1.0% by mass or less. More preferably, it is 0.01 to 0.9% by mass.
  • Ni 0.03 to 1.50% by mass
  • Sn 0.01 to 1.50% by mass
  • Sb 0.005 to 1.50% by mass
  • Cu 0.03 to 3.0% by mass
  • P 0.03 to 0.50% by mass
  • Mo 0.005 to 0.10% by mass
  • Cr One or more selected from 0.03 to 1.50% by mass
  • Ni is an effective element for improving the thermal rolled plate structure and improving the magnetic properties. If the Ni content is less than 0.03% by mass, the contribution to the magnetic characteristics is small, while if it exceeds 1.50% by mass, the secondary recrystallization becomes unstable and the magnetic characteristics deteriorate. Therefore, it is desirable that the Ni content is in the range of 0.03 to 1.50% by mass.
  • Sn, Sb, Cu, P, Mo and Cr are also elements that improve magnetic properties.
  • the effect is not sufficient when the content is less than the above lower limit, and when the content exceeds the upper limit, the growth of secondary recrystallized grains is suppressed and the magnetic properties deteriorate. Therefore, it is preferable to set the content in the above range.
  • it consists of Fe and unavoidable impurities.
  • hot-rolled sheet is annealed as necessary. Then, cold rolling is performed once or twice or more with intermediate annealing sandwiched between them to finish the steel strip with the final plate thickness. Then, the steel strip is decarburized and annealed, an annealed separator containing MgO as a main component is applied, and then the steel strip is wound into a coil and finished for the purpose of secondary recrystallization and formation of a forsterite film. Anneal.
  • the steel strip after finish annealing is subjected to flattening annealing, and then a magnesium phosphate-based tension film is formed to form a product plate.
  • a linear groove is formed on the surface of the grain-oriented electrical steel sheet (steel strip) as described above. It is preferable to form the linear groove in an arbitrary step after cold rolling and before applying the annealing separator.
  • the linear groove is formed by a gravure printing method or an inkjet printing method, when a linear non-printing portion extending in a direction crossing the rolling direction of the steel plate is provided, a discontinuous portion is formed in the non-printing portion.
  • a method of printing a resist pattern and then forming a linear groove on the non-printed portion by an electrolytic etching method can be used.
  • a resist ink is applied to the entire surface of the steel sheet to form a resist on the surface of the steel sheet, and then a linear resist peeling portion extending in a direction crossing the rolling direction of the steel sheet is provided by laser irradiation, the inside of the resist peeling portion is provided.
  • a method of forming a linear groove on the exposed portion from which the resist has been removed by an electrolytic etching method after patterning (resist removal) so as to form a discontinuous portion.
  • the formation of the linear groove is not limited to these methods.
  • the dimensions of the linear groove suitable for the present invention are shown.
  • the dimensions of the linear groove are, in addition to the groove width and the groove depth, the distance between the linear grooves periodically formed in the rolling direction of the grain-oriented electrical steel sheet (steel strip), and the extension of the linear groove. It means the angle formed by the direction and the plate width direction (rolling orthogonal direction).
  • the linear groove formed on the surface of the steel sheet is determined to have an appropriate range in consideration of deterioration of magnetic permeability due to an increase in groove volume and plate permeability.
  • the groove width is preferably 300 ⁇ m or less.
  • the lower limit of the groove width is 10 ⁇ m. More preferably, it is 20 to 200 ⁇ m.
  • Groove depth 4 to 25% of plate thickness
  • the effect of improving iron loss by forming the groove is higher as the surface area of the groove end is larger, in other words, as the depth of the groove is deeper. Therefore, it is preferable to form a groove having a depth of 4% or more of the plate thickness.
  • the depth of the groove is increased, the volume of the groove naturally increases, which tends to cause deterioration of the magnetic permeability. Further, there is a risk of breakage starting from the groove when passing the plate on the production line.
  • the upper limit of the groove depth is 25% of the plate thickness. More preferably, it is 5 to 20% of the plate thickness.
  • Formation interval of linear grooves in the rolling direction of steel sheet 1.5 to 10 mm
  • the effect of improving iron loss is improved as the surface area of the groove end is larger, so that the narrower the gap between the grooves in the rolling direction, the better the result can be obtained.
  • the groove formation interval in the rolling direction is 1.5 to 10 mm. More preferably, it is 2 to 8 mm.
  • Angle formed by the linear groove and the plate width direction (rolling orthogonal direction): within ⁇ 30 °
  • the angle formed by the linear groove in the plate width direction is preferably within ⁇ 30 °. More preferably, it is within ⁇ 20 °.
  • Concave defect diameter 5 to 300 ⁇ m
  • the diameter of the concave defect is preferably 300 ⁇ m or less.
  • the lower limit of the diameter is set to 5 ⁇ m. Is suitable. More preferably, it is 10 ⁇ m or more and 200 ⁇ m or less.
  • the diameter of the concave defect means the diameter equivalent to a circle on the surface of the steel plate of the defect.
  • Depth of concave defect 4 to 25% of plate thickness
  • the effect of improving iron loss due to the formation of concave defects is higher as the surface area of the side wall surface of the defect, that is, the depth of defect formation is larger (deeper). Therefore, it is preferable to form a defect having a depth of 4% or more with respect to the plate thickness.
  • the depth of the defect increases, the volume of the concave defect naturally increases, which tends to cause deterioration of the magnetic permeability. Furthermore, there is a risk that cracks will occur starting from the concave defect portion when passing the plate. Based on the above, it is preferable that the upper limit of the concave defect depth is 25% with respect to the plate thickness.
  • the depth of the concave defect is defined as the depth of the concave defect, which is the average value of the deepest portions of each obtained point in the depth profile of the concave defect portion obtained by observing the surface of the steel sheet using a laser microscope. do.
  • the shape of the concave portion does not matter, but the inclination of the portion (wall surface) that enters the concave portion from the surface of the steel plate is preferably as steep as possible from the viewpoint of forming a demagnetic field, and is preferably 60 in the plate thickness direction. ° or less, more preferably 45 ° or less.
  • the width and depth of the groove, the length in the stretching direction of the groove at the break, and the frequency of the presence of the concave defect are determined by observing the surface of the directional electromagnetic steel plate after forming the tension film with an optical microscope. Calculate by measuring the length and number of.
  • the width of the groove is defined as the distance between two straight lines that pass through the groove end in the rolling direction of the obtained image by observing the surface of the steel sheet with an optical microscope and are parallel to the groove stretching direction.
  • the surface of the steel sheet is observed using a laser microscope, and the depth profile of the groove portion is acquired along the stretching direction. The average value of the deepest part in the depth profile of each obtained point is defined as the groove depth.
  • the volume fraction of the concave defect is ideally calculated from the weight A of the grain-oriented electrical steel sheet after forming the linear groove and the groove break and the weight B of the grain-oriented electrical steel sheet after the formation of the concave defect. It is calculated as 7.65 g / cm 3 , but for convenience, the weight A'calculated from the measurement results of the shape and existence frequency of the linear grooves and the groove breaks is used for the grain-oriented electrical steel sheet after the concave defect formation. May be.
  • the frequency of the breaks and the number of breaks per linear groove operate the laser rangefinder along the extension direction of the groove for the linear groove on the grain-oriented electrical steel sheet after forming the tension film. And measure.
  • B 8 is the magnetic flux density of the sample when the sample is excited with a magnetization force of 800 A / m in the rolling direction
  • W 17/50 is the AC magnetization of 1.7 T and 50 Hz applied to the sample in the rolling direction. It means a loss at the time.
  • a three-phase stacking transformer iron core weight 500 kg was manufactured from the final product plate, and the iron loss characteristics were measured at a frequency of 50 Hz when the magnetic flux density of the iron core leg portion was 1.7 T. For this iron loss characteristic at 1.7 T and 50 Hz, no load loss was measured using a watt meter. The building factor was calculated from this and the value of W 17/50 measured in the Epstein test earlier.
  • a grain-oriented electrical steel sheet material (slab) having the components shown in Table 1 and having the balance of Fe and unavoidable impurities was used.
  • Example 1 Using a cold-rolled steel sheet of grain-oriented electrical steel with a plate thickness of 0.23 mm as a test material, after applying a resist film to the entire surface of the steel sheet, the groove width is 100 ⁇ m, the groove rolling direction spacing (groove mutual pitch) is 3 mm, and the steel sheet Patterning was performed using a laser so that a linear groove having an inclination angle of the groove with respect to the plate width direction of 10 ° could be formed. At this time, the irradiation pattern was controlled so that the number of broken portions of the grooves on the surface of the steel sheet 1 mm 2 was in the range of 0 to 300.
  • Electrolytic conditions are set for the patterned cold-rolled steel sheet so that the groove depth is 20 ⁇ m, electrolytic etching is performed to form linear grooves, and then the resist film is removed before the weight of the sample plate. Was measured. This was defined as weight A.
  • the length of the interrupted portion in the groove extending direction was set to 40% of the groove width, and the patterning conditions were adjusted so that the number of interrupted portions per linear groove was three.
  • the resist film was reapplied to the surface of the above sample plate in the same manner as above, and the conditions were adjusted so that a large number of recesses having a diameter of 50 ⁇ m and a depth of 10 ⁇ m per point were formed in the non-grooved portion.
  • the resist film was locally peeled off, electrolytic etching was performed, and then the resist film was removed. After that, the plate weight was measured and used as the weight B. For each sample, the weight loss rate was calculated from the above A and B, and this was converted into the volume fraction using the steel sheet density of 7.65 g / cm 3. At this time, the resist pattern was adjusted so that 30 concave defects were formed per 1 mm 2.
  • the cold-rolled steel sheet of grain-oriented electrical steel with various groove patterns was subjected to decarburization annealing, finish annealing, flattening annealing, and application of insulating tension coating to obtain the final product plate.
  • Example 2 A cold-rolled steel sheet of directional electromagnetic steel sheet with a plate thickness of 0.23 mm is used as a test material, and after applying a resist film to the entire surface of the steel sheet, the groove width is 100 ⁇ m, the groove rolling direction spacing (groove mutual pitch) is 3 mm, and the steel plate is a steel plate.
  • the inclination angle of the groove with respect to the width direction is 10 °, the number of breaks in the groove per 1 m 2 is 100, the maximum number of breaks per linear groove is 1 to 6, and the groove extension of the break is made.
  • a resist pattern was applied using a gravure roll patterned so as to form a linear groove having a directional length of 5 to 60 ⁇ m.
  • Electrolytic conditions were set for this cold-rolled steel sheet so that the groove depth was 20 ⁇ m, electrolytic etching was performed to form linear grooves, and then the resist film was removed, and then the weight of the sample plate was measured. .. This was defined as weight A.
  • the resist film is reapplied to the surface of the above sample plate in the same manner as above, and 1 to 60 recesses having a diameter of 50 ⁇ m per point are formed in the non-grooved portion per 1 mm 2.
  • a resist pattern was applied using a gravure roll patterned in this way. This was subjected to electrolytic etching to remove the resist film. After that, the plate weight was measured and used as the weight B. For each sample, the weight loss rate was calculated from the above A and B, and this was converted into the volume fraction using the steel sheet density of 7.65 g / cm 3. The depth, that is, the electrolytic condition was adjusted according to the defect frequency so that the volume fraction was 0.008 vol% in all the samples.
  • the cold-rolled steel sheet of grain-oriented electrical steel with various groove patterns was subjected to decarburization annealing, finish annealing, flattening annealing, and application of insulating tension coating to obtain the final product plate.
  • Table 3 shows the above measurement results. When the range shown in the present invention is satisfied, it can be seen that the grain-oriented electrical steel sheet has a better building factor (BF) and is suitable for a transformer core.
  • BF building factor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

低ビルディングファクター化の効果と高い磁束密度とを両立する、線状溝の形成パターンを提供する。鋼板の表面に、該鋼板の圧延方向を横切る向きに延伸する線状溝を複数有する方向性電磁鋼板において、前記線状溝相互間の前記鋼板の表面に、該表面から凹む凹型欠陥を形成し、前記凹型欠陥による前記鋼板の体積分率を、該凹型欠陥の存在しない状態の鋼板に対して0.0025vol%以上0.01vol%以下とし、前記線状溝の前記延伸を分断する途切れ部を鋼板1mあたり30個以上200個以下の頻度で形成する。

Description

方向性電磁鋼板
 本発明は、例えば変圧器などの鉄心材料として好適な方向性電磁鋼板に関するものである。
 方向性電磁鋼板は、変圧器鉄心用材料として用いられており、変圧器のエネルギー損失には方向性電磁鋼板の鉄損が大きく影響している。近年では、省エネ・環境規制の観点から、変圧器におけるエネルギー損失の低減が強く求められている。変圧器の鉄損は、素材となる方向性電磁鋼板の鉄損によって影響されるため、鉄損の低い方向性電磁鋼板を開発することが非常に重要である。
 方向性電磁鋼板の鉄損は、ヒステリシス損と渦電流損とに分類される。ヒステリシス損の改善手法としては、GOSS方位と呼ばれる(110)[001]方位を圧延方向に高度に配向させる手法や、不純物を低減する手法などが開発されている。一方、渦電流損の改善手法としては、Si添加により電気抵抗を増加させる手法、圧延方向への被膜張力の付与などの手法が開発されている。しかし、これらの手法では、製造上の限界から更なる低鉄損化を追求することが難しい。
 そこで、仕上げ焼鈍に絶縁被膜を焼き付けた後の鋼板に、溝の形成や局所的な歪みの導入などの物理的な手法を用いて磁束の不均一性を導入することによって、圧延方向に沿って形成される180°磁区(主磁区)の幅を細分化して、鉄損、特に渦電流損を低減させる手法、いわゆる磁区細分化技術が開発されている。
 この磁区細分化技術において、歪み取り焼鈍を施した場合にも、その効果が失われない手法を耐熱型磁区細分化法と呼んでいる。この手法は一般に、製造工程上、歪み取り焼鈍が必須な巻鉄心用材料に適用される。例えば、特許文献1には幅300μm以下かつ深さ100μm以下の線状溝を鋼板表面に導入することにより、0.80W/kg以上あった鉄損を、前記線状溝の形成後には0.70W/kg以下まで改善する技術が提案されている。
 方向性電磁鋼板に溝を形成する方法としては、例えば、電解エッチングによって鋼板表面に溝を形成する電解エッチング法(特許文献2)、高出力のレーザーによって鋼板を局所的に溶解・蒸発させるレーザー法(特許文献3)、歯車状のロールを鋼板に押し付けることで圧痕を与える歯車プレス法(特許文献4)などが提案されている。
特公平6-22179号公報 特開2012-77380号公報 特開2003-129135号公報 特開昭62-86121号公報 特開2008-57001号公報
 以上のように、昨今の方向性電磁鋼板の鉄損は、上記の手法の組み合わせ、特に高配向化と磁区細分化によって大幅な改善が実現されている。しかしながら、このようにして製造した方向性電磁鋼板を変圧器に加工した後の鉄損は、高配向化の影響によりビルディングファクターが劣化し、素材の低鉄損特性を生かしきれないという問題が知られている。ここで、ビルディングファクター(BF)とは、素材電磁鋼板の鉄損に対する変圧器の鉄損の比であり、その値が1に近いほど、変圧器での鉄損が優れていることを意味する。ビルディングファクターが増大する要因の一つとして、変圧器として組み上げた際に生じる、電磁鋼板同士の接合部における回転鉄損が挙げられている。ここで、回転鉄損とは、圧延方向に長軸を持つ楕円状に磁化方向・大きさが変化する回転磁束が印加されたときに、素材電磁鋼板に生じる鉄損を意味する。
 このビルディングファクターを低減する手法として、圧延方向を横切る方向に複数の溝を有する方向性電磁鋼板において、各溝の間に板厚減少部を点在して形成させる手法が提案されている(特許文献5)。この方法では、ビルディングファクターが高くなる原因の一つと考えられている、方向性電磁鋼板の回転鉄損を低減させることができるが、鋼板に板厚減少部を導入するために鋼板の厚み方向断面積が低下し、それに起因する磁束密度の低下を免れない。
 したがって、更なる高特性な変圧器用の耐熱型磁区細分化材を開発するためには、低ビルディングファクター化の効果と高い磁束密度とを両立する、溝形成パターンの開発が必要である。そこで、本発明の目的は、低ビルディングファクター化の効果と高い磁束密度とを両立する、線状溝の形成パターンを提供することにある。
 発明者らは、上記問題を解決すべく鋭意検討を重ねた。
 まず、線状溝間(以下、非溝形成部ともいう)に上記した特許文献5に従って板厚減少部を点在させる手法について検討を行った。
 さて、方向性電磁鋼板は、圧延方向に磁化容易方向が高度に集積しているため、先述のように、圧延方向を長軸とする楕円状に磁化方向・大きさが回転する回転磁束となった際に、非常に大きな損失(回転鉄損)が発生する。特に変圧器鉄心では、接合部においてこのような回転磁束が発生する。一方、素材鉄損は圧延方向のみに磁化成分を持つ交流磁場を印加した際の鉄損であるため、変圧器として組み上げた際に、素材電磁鋼板の回転鉄損が大きいと、素材鉄損に対して変圧器鉄損が増加する、つまりビルディングファクターが増加するのである。したがって、変圧器のビルディングファクター改善のためには、回転鉄損の低減、すなわち磁化の回転を容易にする必要がある。
 加えて、溝を形成させた方向性電磁鋼板においては、溝形成によって鉄損が改善する一方で、溝の存在に起因する局所的な断面積の低下が発生する。これによって溝底部での磁束の集中が生じ、透磁率や鉄損といった磁気特性の劣化につながる。したがって、溝形成に起因する断面積の低下の影響も最小限にする必要がある。
 以上の課題を解決するために、まず、回転鉄損の低減方法について検討を行った。その結果、非溝形成部において、圧延方向とは異なる磁化方向を持つ磁区(以下、補助磁区と呼称する)を形成させることによって、磁化の回転を容易にできることが判明した。また、このような補助磁区は、非溝形成部において磁束の連続性が阻害される、欠陥を起点として形成されやすいことが判明した。
 このような欠陥の最も好ましい分布についてさらに検討を行った。欠陥の態様としては、凸部、凹部および局所歪みが挙げられる。これらのうち、変圧器用鉄心としての用途を考慮した際、凸部は占積率の劣化を招くため不適当であり、また局所歪みは巻鉄心形成後の歪み取り焼鈍によってその効果を失うため不適当である。さらに、凸部や局所歪みを形成するには、工程的にも設備の追加が必要になるため望ましくない。一方、凹部は、上記の問題は生じない上、現行の溝加工プロセスの応用で製造可能となるため好適と考えられる。しかしながら、凹部の形成はすなわち、局所的な断面積の低下を意味し、先述の通り透磁率や鉄損の劣化が懸念される。
 そこで、凹部を形成させつつ、鋼板の磁気特性を劣化させない形成パターンについて鋭意検討を行ったところ、非溝形成部における凹部(欠陥)に加えて、連続する線状溝に途切れ部を導入することが有効であることを新たに見出した。すなわち、一般的な線状溝を形成させた方向性電磁鋼板の模式図を図1(a)に、新規に知見した溝形成パターンを図1(b)に、対比して示すように、新規の溝形成パターンは、非溝形成部に凹部による欠陥である凹型欠陥を点在させるとともに、圧延直交方向に延びる線状溝が途切れる部分、つまり溝形成がされていない部分である途切れ部を形成するところが、従前の溝形成パターンとの差異である。なお、図1(b)では、線状溝相互間の非溝形成部に凹部欠陥を形成し、該非溝形成部の外側の非溝形成部、図において線状溝と板端縁との間の非溝形成部には凹部欠陥が示されていないが、当該非溝形成部に凹部欠陥を形成できることは勿論である。いずれにしろ、後述する凹部欠陥に関する要件を満足すればよい。
 以上の通り、本発明では、鋼板に線状に形成される溝を「線状溝」、線状溝が途切れた部分を「途切れ部」、隣り合う線状溝の間の領域を「非溝形成部」、非溝形成部に存在する凹部による欠陥を「凹型欠陥」と、それぞれ呼称する。
 本発明は上記知見に基づきなされたものである。すなわち、本発明の要旨構成は次のとおりである。
[1]鋼板の表面に、該鋼板の圧延方向を横切る向きに延伸する線状溝を複数有する方向性電磁鋼板であって、
 前記線状溝相互間の前記鋼板の表面に、該表面から凹む凹型欠陥を有し、
 前記凹型欠陥の前記鋼板中における体積分率が、該凹型欠陥の存在しない状態の鋼板に対して0.0025vol%以上0.01vol%以下であり
 前記線状溝の前記延伸を分断する途切れ部を、鋼板1mあたり30個以上200個以下の頻度で有する、方向性電磁鋼板。
[2]前記凹型欠陥の存在頻度が1mmあたり1個以上50個以下である、前記[1]に記載の方向性電磁鋼板。
[3]前記線状溝の途切れ部の前記延伸方向に沿う長さが、前記線状溝の平均幅の50%以下である、前記[1]または[2]に記載の方向性電磁鋼板。
[4]前記線状溝1本あたりに存在する途切れ部の数が該線状溝の長さ1mあたり5個以下である、前記[1]から[3]のいずれかに記載の方向性電磁鋼板。
 本発明によれば、線状溝を施した耐熱型磁区細分化方向性電磁鋼板において、従来よりも磁気特性の劣化を抑制しつつ、変圧器鉄心として組み上げた際に、従来以上にビルディングファクターを低減する効果を得ることができる。
(a)は線状溝の導入形態を示す模式図および(b)は線状溝および凹部欠陥の導入形態を示す模式図である。 凹型欠陥の体積分率と磁束密度との関係を示すグラフである。 凹型欠陥の体積分率と鉄損との関係を示すグラフである。 凹型欠陥の体積分率とビルディングファクターとの関係を示すグラフである。 溝の途切れ部数と磁束密度との関係を示すグラフである。 溝の途切れ部数と鉄損との関係を示すグラフである。 溝の途切れ部数とビルディングファクターとの関係を示すグラフである。 溝の途切れ部の長さとビルディングファクターとの関係を示すグラフである。 溝1mにおける途切れ部数とビルディングファクターとの関係を示すグラフである。 凹型欠陥の存在比率とビルディングファクターとの関係を示すグラフである。
  まず、本発明を完成させるに至った実験結果について説明する。
[実験1]
 板厚0.23mmおよび板幅1mの方向性電磁鋼板の冷延鋼帯を供試材とし、該供試材の全面にレジスト被膜を塗布したのち、この被膜に対して、レーザーを用いてパターニング(レジスト被膜の部分的な剥離による非塗布部の形成、以下レーザーパターニングとも称する)を行った。すなわち、幅100μmで圧延直交方向(板幅方向)に対して10°の傾きで延びる非塗布部が、圧延方向に3mmの間隔(溝ピッチ)で並ぶ、レーザーパターニングを行った。このパターニング後の供試材を、前記非塗布部に深さが20μmの溝が形成される電解条件を設定して、電解エッチングを施し、非塗布部に図1(a)に示したような線状溝を形成した。得られた線状溝の平均幅は100μmであった。その後レジスト被膜を除去してから、供試材の重量を測定した。これを重量Aとした。 
 さらに、前記の供試材の表面にレジスト被膜を塗布し、前記の線状溝相互間の非溝形成部に直径20μmの点状の凹型欠陥を形成するために、点状の非塗布部を多数形成するレーザーパターニングを行って、レジスト被膜を局所的(直径20μmの点状)に剥離し、次いで電解エッチングを施し、点状の非塗布部に図1(b)に示したように凹型欠陥を形成した。その後、レジスト被膜を除去してから、供試材の重量を測定し、これを重量Bとした。
 この供試材について、前記重量AとBから凹型欠陥による重量減少量を算出し、これを鋼板の密度7.65g/cmを用いて体積分率に換算した。ここで、レーザーパターニングの条件を調整することにより1mmあたりの凹型欠陥の数を種々に調整し、電解エッチング時間を調整することにより凹型欠陥の深さを種々に調整した。
 上記に従って様々な溝パターンを施した方向性電磁鋼板冷延鋼帯に対し、脱炭焼鈍、仕上げ焼鈍、平坦化焼鈍、絶縁張力被膜の付与工程を施し、最終製品板とした。比較として、上記凹型欠陥を形成させず、線状溝のみを形成させた方向性電磁鋼板の最終製品板も作製した。
 かくして得られた最終製品板から一部を切り出し、JIS C2550に記載のエプスタイン法により、磁気特性としてB及びW17/50を測定した。加えて上記最終製品板から、3相積み変圧器(鉄心重量500kg)を製作し、周波数50Hzにて、鉄心脚部分の磁束密度が1.7Tとなるときの鉄損特性を測定した。この、1.7T、50Hzでの鉄損特性はワットメータを用いて無負荷損を測定した。これと先ほどエプスタイン試験で測定したW17/50の値からビルディングファクターを算出した。
 上記の測定結果を、図2~図4に示す。まず、図2に示すように、凹型欠陥の体積分率が0.0025vol%以上になるとBはわずかに劣化し、さらに0.0100vol%を超えると大幅に劣化することが確認された。これは、凹型欠陥の体積分率の増加によって、透磁率が劣化したためと考えられる。また、図3に示すように、凹型欠陥の体積分率が0.0100vol%を超えると、鉄損W17/50が急激に増加することも確認された。これは、凹型欠陥によって磁壁移動が妨げられたことによるものと考えられる。一方、図4に示すように、ビルディングファクターは、凹型欠陥の体積分率の増加に伴って改善する傾向にあり、0.0025vol%以上で特に改善効果が大きくなる。これは、ビルディングファクター増大の一要因である回転鉄損が、欠陥の導入によって抑制されたためと考えられる。
 以上の結果を総合すると、鋼板における磁気特性とビルディングファクターとが共に向上する範囲として有効な、凹型欠陥の体積分率は、0.0025vol%以上0.01vol%以下となる。より好ましくは、0.003vol%以上0.008vol%以下である。
[実験2]
 次に、上記と同様の手法で供試材を作製する際に、線状溝形成のためのパターニング時に、各線状溝に上記した途切れ部(図1(b)参照)が形成されるようにパターニングの条件調整を行った。その際、1mあたりの途切れ部の個数が変化するように、溝用の非塗布部を形成するパターニングを行った。なお、凹型欠陥の体積分率はそれぞれの供試材において0.005vol%の一定になるようにパターニング条件並びに、電解条件を固定して試料を作製し、実験1と同様に磁気特性(B及びW17/50)を測定した。加えて、上記と同様の工程を経た最終製品板から、3相積み変圧器(鉄心重量500kg)を製作し、周波数50Hzにて、鉄心脚部分の磁束密度が1.7Tとなるときの鉄損特性を測定した。この1.7Tおよび50Hzでの鉄損特性はワットメータを用いて無負荷損を測定した。これと先ほどエプスタイン試験で測定したW17/50の値からビルディングファクターを算出した。
 上記の測定結果を、図5~図7に示す。図5に示すように、溝の途切れ部の個数が30個/m以上の領域において、Bの向上が見られる。これは途切れ部で局所的に鋼板の断面積が増加することで、凹型欠陥の導入によって低下した透磁率が回復したためと考えられる。加えて、図7に示すように、ビルディングファクターの改善も確認できる。これは、途切れ部を起点として補助磁区が形成され、回転鉄損が低下したためと考えられる。一方、図6に示すように、途切れ部の個数が200個/mを超えると、鉄損の劣化が確認できる。これは溝による磁区細分化効果が、途切れの増加によって低下したためと考えられる。
 以上の結果を総合すると、鋼板における磁気特性とビルディングファクターとが共に向上する範囲として有効な、溝の途切れ部数の範囲は30個/m以上200個/m以下となる。より好ましくは、40個/m以上180個/m以下である。
[実験3]
 次に、上記の途切れ部と凹型欠陥との好適な分布について検討を行った。
 上記と同様の工程で供試材を作製する際に、途切れ部の溝の延伸方向長さ、1本の線状溝1mあたりの途切れ部数および、非溝形成部1mmにおける凹型欠陥の存在頻度を種々に変更し、かつ全体の途切れ部数を50個/m、凹型欠陥の体積分率を0.005vol%となるようにパターニング条件並びに、電解条件を調整し、実験1と同様のプロセスにて試料を作製した。得られた試料について実験1と同様に磁気特性(B及びW17/50)を測定した。加えて、上記と同様の工程を経た最終製品板から、3相積み変圧器(鉄心重量500kg)を製作し、周波数50Hzにて、鉄心脚部分の磁束密度が1.7Tとなるときの鉄損特性を測定した。この、1.7T、50Hzでの鉄損特性はワットメータを用いて無負荷損を測定した。これと先ほどエプスタイン試験で測定したW17/50の値からビルディングファクターを算出した。
 以上の測定結果を、図8~図10に示す。これら図に示す結果から、途切れ部の溝延伸方向長さが溝の平均幅の50%以下、一本の線状溝1mあたりの最大の途切れ部数が5個以下、凹型欠陥の存在頻度が非溝形成部1mmあたり1個以上50個以下において、同じ途切れ部数および凹型欠陥の体積分率において、より高いビルディングファクターの改善効果が確認できた。より好ましくは、途切れ部の溝延伸方向長さが溝の平均幅の10%以上40%以下、一本の線状溝1mあたりの最大の途切れ部数が4個以下、凹型欠陥の存在頻度が非溝形成部1mmあたり5個以上40個以下である。
 上述した効果については詳細な原因については不明だが、発明者らは以下のように推定している。すなわち、凹型欠陥や溝途切れ部の分布を上記範囲に制御することによって、補助磁区の起点の分布が適正化され、ビルディングファクターの改善、つまり回転鉄損の改善がより効率的に行われたと考えている。
 以下に、本発明の好適な実施形態について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに限定されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
[方向性電磁鋼板]
 本発明において、方向性電磁鋼板の素材となるスラブの成分組成は、二次再結晶が生じる成分組成であればよい。また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であれば、MnとSe及び/またはSを適量含有させればよい。もちろん両インヒビターを併用してもよい。この場合における、Al、N、S及びSeの好適含有量はそれぞれ、
 Al:0.010~0.065質量%
 N:0.0050~0.0120質量%
 S:0.005~0.030質量%
 Se:0.005~0.030質量%
である。
 さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合には、Al、N、S、Seの含有量はそれぞれ、
 Al:0.010質量%以下
 N:0.0050質量%以下
 S:0.0050質量%以下
 Se:0.0050質量%以下
に抑制することが好ましい。
 つぎに、本発明の方向性電磁鋼板用の鋼素材(スラブ)の基本成分および任意添加成分について具体的に述べる。
C:0.08質量%以下
 Cは、熱延板組織の改善のために添加をするが、Cの含有量が0.08質量%を超えると磁気時効の起こらない50質量ppm以下まで製造工程中に脱炭することが難しくなるため、C含有量は0.08質量%以下とすることが望ましい。また、Cを含まない鋼素材でも二次再結晶することから、C含有量の下限については特に設ける必要はない。したがって、Cは0質量%であってもよい。
Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を増大させ、鉄損を改善するのに有効な元素である。そのためには含有量を2.0質量%以上とすることが好ましい。一方、含有量が8.0質量%を超えると、加工性および通板性が劣化することに加え、磁束密度も低下するため、Si含有量は8.0質量%以下とすることが望ましい。より好ましくは2.5~7.0質量%である。
Mn:0.005~1.0質量%
 Mnは、熱間加工性を向上させるうえで必要な元素である。そのためには含有量を0.005質量%以上とすることが好ましい。一方、含有量が1.0質量%を超えると磁束密度が劣化するため、Mn含有量は1.0質量%以下とすることが好ましい。より好ましくは、0.01~0.9質量%である。
 上記の基本成分以外に、磁気特性改善に有効であることが知られている、以下の任意添加成分を単独または複数で適宜含有させることができる。
 Ni:0.03~1.50質量%、
 Sn:0.01~1.50質量%、
 Sb:0.005~1.50質量%、
 Cu:0.03~3.0質量%、
 P:0.03~0.50質量%、
 Mo:0.005~0.10質量%、
 Cr:0.03~1.50質量%のうちから選ばれる1種以上
 Niは、熱延板組織を改善して磁気特性を向上させるために有効な元素である。Ni含有量が0.03質量%未満では磁気特性への貢献は小さく、一方1.50質量%を超えると二次再結晶が不安定となり磁気特性が劣化する。そのためNiの含有量は0.03~1.50質量%の範囲とすることが望ましい。
 また、Sn、Sb、Cu、P、MoおよびCrも、磁気特性を向上させる元素である。いずれも、含有量が上記の下限未満ではその効果は十分ではなく、また上限を超えると二次再結晶粒の成長が抑制されるために磁気特性が劣化する。そのためそれぞれ上記の含有量の範囲とすることが好ましい。
 上記成分以外はFe及び不可避的不純物からなる。
 なお、Cは一次再結晶焼鈍において脱炭され、Al、N、SおよびSeは二次再結晶焼鈍において純化されるため、二次再結晶焼鈍後の鋼板(方向性電磁鋼板の最終製品板)では、これらの成分は不可避的不純物程度の含有量に低減される。
 上記の成分系からなる方向性電磁鋼板の鋼素材(スラブ)に、熱間圧延を施した後、必要に応じて熱延板焼鈍を行う。次いで1回または中間焼鈍をはさむ2回以上の冷間圧延を施して、最終板厚の鋼帯に仕上げる。その後、前記鋼帯に、脱炭焼鈍を施し、MgOを主成分とする焼鈍分離剤を塗布した後、コイル状に巻き取って、二次再結晶及びフォルステライト被膜の形成を目的とした、仕上げ焼鈍を施す。仕上げ焼鈍後の鋼帯に対し、平坦化焼鈍を施した後、リン酸マグネシウム系の張力被膜を形成させて製品板とする。
 本発明においては、方向性電磁鋼板(鋼帯)の表面に、上述のとおり線状溝を形成する。線状溝は、冷間圧延後かつ焼鈍分離剤を塗布する前の、任意の工程において、線状溝を形成することが好ましい。
[線状溝の形成方法]
 本発明において線状溝の形成は、グラビア印刷法やインクジェット印刷法によって、鋼板の圧延方向を横切る向きに延伸する線状の非印刷部を設ける際に、該非印刷部内に不連続部が形成されるように、レジストパターンを印刷し、次いで非印刷部を電解エッチング法により線状溝を形成する方法を用いることができる。あるいは、鋼板の全面にレジストインクを塗布し鋼板表面にレジストを形成した後、レーザー照射によって、鋼板の圧延方向を横切る向きに延伸する線状のレジスト剥離部分を設ける際に、該レジスト剥離部分内に不連続部が形成されるようにパターニング(レジスト除去)を行った後、レジストが除去された露出部を電解エッチング法により線状溝を形成する方法を用いることも可能である。なお、線状溝の形成は、これらの手法に限定するものではない。
 次に、線状溝および凹型欠陥について、上記した途切れ部に関する数および溝延伸方向長さ並びに、凹型欠陥の存在頻度および凹型欠陥の体積分率以外の好適要件について詳しく述べる。
[線状溝寸法]
 次に、本発明において好適な線状溝の寸法を示す。ここで、線状溝の寸法とは、溝幅、溝深さに加え、方向性電磁鋼板(鋼帯)の圧延方向に周期的に形成する線状溝同士の間隔及び、線状溝の延伸方向と板幅方向(圧延直交方向)との成す角を意味する。本発明で鋼板表面に形成する線状溝は、溝体積増加による透磁率の劣化や、通板性などを加味し、適正範囲を決定した。
溝幅:10~300μm
 鋼板圧延方向の溝幅が広いほど、同程度の溝深さとしたときの透磁率の劣化が大きいため、狭いほど好適である。したがって、溝幅は300μm以下とすることが好ましい。しかし、溝幅が過剰に狭くなると、溝両端における磁極カップリングにより、鉄損改善効果が低下してしまうため、溝幅の下限は10μmとすることが好適である。より好ましくは、20~200μmである。
溝深さ:板厚の4~25%
 溝形成による鉄損改善効果は、溝端部の表面積が大きいほど、換言すると、溝の形成深さが深いほど高い効果が得られる。したがって、板厚の4%以上の深さの溝を形成させることが好適である。一方、溝の深さを増していくと、当然溝の体積も増加し、透磁率の劣化を招く傾向となる。さらに、製造ラインの通板時に溝部を起点とした破断のリスクがある。以上を踏まえ、溝深さの上限を板厚の25%とするのが好適である。より好ましくは、板厚の5~20%である。
線状溝の鋼板圧延方向の形成間隔:1.5~10mm
 先述の通り、鉄損改善効果は溝端部の表面積が大きいほど向上するため、圧延方向における溝相互の形成間隔は狭いほど良好な結果を得られる。しかしながら、溝の形成間隔が狭まるにつれ、鋼板に対する溝の体積分率も増加し、透磁率の劣化に加えて、操業時の破断のリスクも高まる。したがって、圧延方向(線状溝の延伸方向に直交する方向)における溝の形成間隔を1.5~10mmとするのが好適である。より好ましくは、2~8mmである。
線状溝と板幅方向(圧延直交方向)との成す角:±30°以内
 線状溝の延伸方向が板幅方向から傾くほど、溝の体積が増加するため、透磁率が劣化する傾向となる。したがって、線状溝と板幅方向の成す角は±30°以内とすることが好ましい。より好ましくは、±20°以内である。
凹型欠陥の直径:5~300μm
 凹型欠陥の直径が大きいほど、同程度の凹型欠陥深さとしたときの透磁率の劣化が大きく、また磁壁移動の阻害効果が大きいため、直径は小さいほど好適である。したがって、凹型欠陥の直径は300μm以下とするのが好ましい。しかし、凹型欠陥の直径が過剰に狭くなると、線状溝の両端における磁極カップリングにより、補助磁区が形成されにくくなり、鉄損改善効果が低下してしまうため、直径の下限を5μmとするのが好適である。より好適には10μm以上200μm以下である。
 ここで、凹型欠陥の直径とは、欠陥の鋼板表面における円相当径を意味する。
凹型欠陥の深さ:板厚に対して4~25%
 凹型欠陥形成による鉄損改善効果は、欠陥の側壁面の表面積、すなわち欠陥の形成深さが大きい(深い)ほど高い効果が得られる。したがって、板厚に対して4%以上の深さの欠陥を形成させることが好適である。一方、欠陥の深さを増していくと、当然凹型欠陥の体積も増加し、透磁率の劣化を招く傾向となる。さらに、通板時に凹型欠陥部を起点に亀裂が発生するリスクがある。以上を踏まえ、凹型欠陥深さの上限を板厚に対して25%とするのが好適である。ここで、凹型欠陥の深さとは、レーザー顕微鏡を用いて前記鋼板の表面を観察して取得した凹型欠陥部の深度プロファイルにおいて、得られた各点の最深部の平均値を凹型欠陥の深さとする。
 また、凹部の形状は問わないが、鋼板表面から凹部に陥入する部分(壁面)の傾斜は、反磁界形成の点から、なるべく急であることがよく、板厚方向に対して好ましくは60°以下、より好ましくは45°以下である。
[線状溝および凹型欠陥の各種測定方法]
 本発明における、溝の幅及び深さ、途切れ部の溝の延伸方向長さ並びに、凹型欠陥の存在頻度は、張力被膜形成後の方向性電磁鋼板の表面を、光学顕微鏡で観察し、該当箇所の長さ、個数を計測して求める。
 まず、溝の幅は、鋼板表面を光学顕微鏡で観察し、得られた像の圧延方向溝端部を通り、溝延伸方向に平行な2直線間の距離を溝幅とする。
 また、溝深さの測定は、レーザー顕微鏡を用いて前記鋼板の表面を観察し、延伸方向に沿って溝部の深度プロファイルを取得する。得られた各点の深度プロファイルにおける、最深部の平均値を溝深さとする。
 次に、途切れ部の溝延伸方向長さについては、途切れた溝部分の両端において、端部を通り延伸方向に垂直な接線間の距離を計測する。
 凹型欠陥の体積分率は、理想的には線状溝及び溝途切れ部を形成させた後の方向性電磁鋼板の重量Aと凹型欠陥形成後の方向性電磁鋼板の重量Bから鋼板の密度を7.65g/cmとして算出するが、簡便のために、凹型欠陥形成後の方向性電磁鋼板について、線状溝及び溝途切れ部の形状および存在頻度の計測結果から算出した重量A’を用いてもよい。
 途切れ部の存在頻度及び、線状溝1本あたりの途切れ部の数については、張力被膜形成後の方向性電磁鋼板上の線状溝部について、溝の延伸方向に沿ってレーザー距離計を操作して計測する。
[磁気測定方法]
 絶縁張力被膜形成後の方向性電磁鋼板の磁気特性(B及びW17/50)は、JIS C2550に記載のエプスタイン法により測定する。なお、Bとは試料を圧延方向に800A/mの磁化力で励磁した際の試料の磁束密度、W17/50とは、試料を圧延方向に1.7T、50Hzの交流磁化を印加した際の損失を意味する。
 加えて上記最終製品板から、3相積み変圧器(鉄心重量500kg)を製作し、周波数50Hzにて、鉄心脚部分の磁束密度が1.7Tとなるときの鉄損特性を測定した。この、1.7T、50Hzでの鉄損特性はワットメータを用いて無負荷損を測定した。これと先ほどエプスタイン試験で測定したW17/50の値からビルディングファクターを算出した。
 その他、本発明において、上述した工程や製造条件以外については、線状溝を形成して磁区細分化処理を施す、公知の方向性電磁鋼板の製造方法を適宜使用することができる。
 次に実施例に基づいて本発明を具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本実施例によって何ら限定を受けるものではない。本発明の趣旨に適合しうる範囲で変更を加えて実施することも可能であり、そのような態様でも本発明の技術範囲に含まれる。
 本実施例においては、表1に示す成分を有し残部がFe及び不可避的不純物からなる方向性電磁鋼板素材(スラブ)を用いた。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 板厚0.23mmの方向性電磁鋼の冷延鋼板を供試材とし、該鋼板全面にレジスト被膜を塗布したのち、溝幅100μm、溝の圧延方向間隔(溝相互ピッチ)が3mm、鋼板の板幅方向に対する溝の傾斜角が10°となる、線状溝が形成できるように、レーザーを用いてパターニングを行った。このとき、鋼板表面1mmにおける溝の途切れ部数が0~300個の範囲となるように照射パターンを制御して行った。パターニング後の冷延鋼板を、溝深さが20μmになるように電解条件を設定して、電解エッチングを施して線状溝を形成させた後、レジスト被膜を除去してから当該試料板の重量を測定した。これを重量Aとした。このとき、途切れ部の溝延伸方向長さは、溝幅の40%とし、線状溝1本当たりの途切れ部数は3個となるようにパターニング条件を調整した。
 上記の試料板に対して、上記と同様にして表面に再度レジスト被膜を塗布し、非溝形成部に1点当たりの直径50μm、深さ10μmの凹部が多数形成されるように条件を調整してレジスト被膜を局所的に剥離し、電解エッチングを施した後、レジスト被膜を除去した。この後に板重量を測定し、これを重量Bとした。それぞれの試料について、上記のAとBから重量減少率を算出し、これを鋼板の密度7.65g/cmを用いて体積分率に換算した。この際、凹型欠陥は1mmあたりに30個形成されるように、レジストパターンを調整した。
 以上に従って様々な溝パターンを施した方向性電磁鋼の冷延鋼板に対し、脱炭焼鈍、仕上げ焼鈍、平坦化焼鈍、絶縁張力被膜の付与工程を施し、最終製品板とした。
 また、比較として、上記途切れ部や凹型欠陥を形成することなしに、線状溝のみを形成した方向性電磁鋼板の最終製品板も作製した。
 かくして得られた試料板から一部を切り出し、JIS C2550に記載のエプスタイン法により、磁気特性(B及びW17/50)を測定した。加えて、上記最終製品板から、3相積み変圧器(鉄心重量500kg)を製作し、周波数50Hzにて、鉄心脚部分の磁束密度が1.7Tとなるときの鉄損特性を測定した。この、1.7T、50Hzでの鉄損特性はワットメータを用いて無負荷損を測定した。これと先ほどエプスタイン試験で測定したW17/50の値からビルディングファクター(BF)を算出した。
 以上の測定結果を、表2に示す。本発明の範囲を満たす場合において、BおよびW17/50並びに、BFはいずれの特性にも優れ、変圧器鉄心に好適な方向性電磁鋼板となっていることが分かる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
<実施例2>
 板厚0.23mmの方向性電磁鋼板の冷延鋼板を供試材とし、鋼板全面にレジスト被膜を塗布したのち、溝幅100μm、溝の圧延方向間隔(溝相互ピッチ)が3mm、鋼板の板幅方向に対する溝の傾斜角が10°であり、1mあたりの溝の途切れ部数が100個とし、線状溝1本あたりの途切れ部の最大数が1~6個、かつ途切れ部の溝延伸方向長さが5~60μmとなる、線状溝が形成できるようにパターニングされた、グラビアロールを用いて、レジストパターンを塗布した。この冷延鋼板を、溝深さが20μmになるように電解条件を設定して、電解エッチングを施し、線状溝を形成した後、レジスト被膜を除去してから当該試料板の重量を測定した。これを重量Aとした。
 上記の試料板に対して、上記と同様にして表面に再度レジスト被膜を塗布し、非溝形成部に1点当たりの直径が50μmとなる凹部が、1mmあたりに1~60個形成されるようにパターニングされた、グラビアロールを用いて、レジストパターンを塗布した。これに、電解エッチングを施して、レジスト被膜を除去した。この後に板重量を測定し、これを重量Bとした。それぞれの試料について、上記のAとBから重量減少率を算出し、これを鋼板の密度7.65g/cmを用いて体積分率に換算した。この体積分率がいずれの試料においても0.008vol%となるように欠陥頻度に応じて深さ、すなわち電解条件を調整した。
 以上に従って様々な溝パターンを施した方向性電磁鋼の冷延鋼板に対し、脱炭焼鈍、仕上げ焼鈍、平坦化焼鈍、絶縁張力被膜の付与工程を施し、最終製品板とした。
 また、比較として、上記途切れ部や凹型欠陥を形成することなしに、線状溝のみを形成した方向性電磁鋼板の最終製品板も作製した。
 かくして得られた試料板から一部を切り出し、JIS C2550に記載のエプスタイン法により、磁気特性(B及びW17/50)を測定した。加えて、上記最終製品板から3相積み変圧器(鉄心重量500kg)を製作し、周波数50Hzにて、鉄心脚部分の磁束密度が1.7Tとなるときの鉄損特性を測定した。この、1.7T、50Hzでの鉄損特性はワットメータを用いて無負荷損を測定した。これと先ほどエプスタイン試験で測定したW17/50の値からビルディングファクター(BF)を算出した。
 以上の測定結果を表3に示す。本発明に示す範囲を満たす場合において、よりビルディングファクター(BF)に優れる、変圧器鉄心に好適な方向性電磁鋼板となることが分かる。
Figure JPOXMLDOC01-appb-T000004

Claims (4)

  1.  鋼板の表面に、該鋼板の圧延方向を横切る向きに延伸する線状溝を複数有する方向性電磁鋼板であって、
     前記線状溝相互間の前記鋼板の表面に、該表面から凹む凹型欠陥を有し、
     前記凹型欠陥の前記鋼板中における体積分率が、該凹型欠陥の存在しない状態の鋼板に対して0.0025vol%以上0.01vol%以下であり
     前記線状溝の前記延伸を分断する途切れ部を、鋼板1mあたり30個以上200個以下の頻度で有する、方向性電磁鋼板。
  2.  前記凹型欠陥の存在頻度が1mmあたり1個以上50個以下である、
    請求項1に記載の方向性電磁鋼板。
  3.  前記線状溝の途切れ部の前記延伸方向に沿う長さが、前記線状溝の平均幅の50%以下である、
    請求項1または2に記載の方向性電磁鋼板。
  4.  前記線状溝1本あたりに存在する途切れ部の数が該線状溝の長さ1mあたり5個以下である、
    請求項1から3のいずれかに記載の方向性電磁鋼板。
PCT/JP2021/008542 2020-06-09 2021-03-04 方向性電磁鋼板 WO2021250953A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3181052A CA3181052A1 (en) 2020-06-09 2021-03-04 Grain-oriented electrical steel sheet
KR1020227036978A KR20220152580A (ko) 2020-06-09 2021-03-04 방향성 전기 강판
US17/998,356 US11990261B2 (en) 2020-06-09 2021-03-04 Grain-oriented electrical steel sheet
EP21821594.5A EP4163403A4 (en) 2020-06-09 2021-03-04 CORNORIENTED ELECTROMAGNETIC STEEL SHEET
MX2022015720A MX2022015720A (es) 2020-06-09 2021-03-04 Lamina de acero electrico de grano orientado.
CN202180034717.6A CN115605624B (zh) 2020-06-09 2021-03-04 方向性电磁钢板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020100436A JP6947248B1 (ja) 2020-06-09 2020-06-09 方向性電磁鋼板
JP2020-100436 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021250953A1 true WO2021250953A1 (ja) 2021-12-16

Family

ID=78001273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008542 WO2021250953A1 (ja) 2020-06-09 2021-03-04 方向性電磁鋼板

Country Status (8)

Country Link
US (1) US11990261B2 (ja)
EP (1) EP4163403A4 (ja)
JP (1) JP6947248B1 (ja)
KR (1) KR20220152580A (ja)
CN (1) CN115605624B (ja)
CA (1) CA3181052A1 (ja)
MX (1) MX2022015720A (ja)
WO (1) WO2021250953A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3726543A4 (en) * 2018-01-31 2021-03-03 JFE Steel Corporation ALIGNED ELECTRIC STEEL SHEET, WRAPPED TRANSFORMER CORE WITH IT AND PROCESS FOR MANUFACTURING A WRAPPED CORE

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286121A (ja) 1985-10-14 1987-04-20 Nippon Steel Corp 鋼板への与歪装置
JPH0622179B2 (ja) 1986-10-09 1994-03-23 川崎製鉄株式会社 鉄損の低い変圧器用巻き鉄心
JP2003129135A (ja) 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2008057001A (ja) 2006-08-31 2008-03-13 Jfe Steel Kk 方向性電磁鋼板
JP2012077380A (ja) 2010-09-10 2012-04-19 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2017145490A (ja) * 2016-02-19 2017-08-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2017171013A1 (ja) * 2016-03-31 2017-10-05 新日鐵住金株式会社 方向性電磁鋼板
WO2019151397A1 (ja) * 2018-01-31 2019-08-08 日本製鉄株式会社 方向性電磁鋼板
WO2019151399A1 (ja) * 2018-01-31 2019-08-08 Jfeスチール株式会社 方向性電磁鋼板およびこれを用いてなる変圧器の巻鉄心並びに巻鉄心の製造方法
KR20200072273A (ko) * 2018-12-12 2020-06-22 주식회사 포스코 방향성 전기강판의 자구 미세화 장치 및 방향성 전기강판

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2062972B (en) * 1979-10-19 1983-08-10 Nippon Steel Corp Iron core for electrical machinery and apparatus and well as method for producing the iron core
DE3675325D1 (de) 1985-10-14 1990-12-06 Nippon Steel Corp Kaltverfestigungsvorrichtung.
JPH0622179A (ja) 1992-06-30 1994-01-28 Fuji Photo Optical Co Ltd 小型雲台装置
DE69706388T2 (de) 1996-10-21 2002-02-14 Kawasaki Steel Co Kornorientiertes elektromagnetisches Stahlblech
WO2010147009A1 (ja) 2009-06-19 2010-12-23 新日本製鐵株式会社 一方向性電磁鋼板及びその製造方法
CA2987379C (en) * 2015-07-28 2019-10-29 Jfe Steel Corporation Linear groove formation method and linear groove formation device
JP7166748B2 (ja) 2017-07-24 2022-11-08 日本製鉄株式会社 巻鉄心
JP7052391B2 (ja) 2018-02-08 2022-04-12 日本製鉄株式会社 方向性電磁鋼板、および方向性電磁鋼板の製造方法
US11441215B2 (en) 2018-03-22 2022-09-13 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286121A (ja) 1985-10-14 1987-04-20 Nippon Steel Corp 鋼板への与歪装置
JPH0622179B2 (ja) 1986-10-09 1994-03-23 川崎製鉄株式会社 鉄損の低い変圧器用巻き鉄心
JP2003129135A (ja) 2001-10-22 2003-05-08 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2008057001A (ja) 2006-08-31 2008-03-13 Jfe Steel Kk 方向性電磁鋼板
JP2012077380A (ja) 2010-09-10 2012-04-19 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2017145490A (ja) * 2016-02-19 2017-08-24 Jfeスチール株式会社 方向性電磁鋼板の製造方法
WO2017171013A1 (ja) * 2016-03-31 2017-10-05 新日鐵住金株式会社 方向性電磁鋼板
WO2019151397A1 (ja) * 2018-01-31 2019-08-08 日本製鉄株式会社 方向性電磁鋼板
WO2019151399A1 (ja) * 2018-01-31 2019-08-08 Jfeスチール株式会社 方向性電磁鋼板およびこれを用いてなる変圧器の巻鉄心並びに巻鉄心の製造方法
KR20200072273A (ko) * 2018-12-12 2020-06-22 주식회사 포스코 방향성 전기강판의 자구 미세화 장치 및 방향성 전기강판

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163403A4

Also Published As

Publication number Publication date
JP2021195571A (ja) 2021-12-27
CN115605624A (zh) 2023-01-13
CA3181052A1 (en) 2021-12-16
KR20220152580A (ko) 2022-11-16
CN115605624B (zh) 2024-01-30
US20230178276A1 (en) 2023-06-08
EP4163403A1 (en) 2023-04-12
MX2022015720A (es) 2023-01-11
JP6947248B1 (ja) 2021-10-13
EP4163403A4 (en) 2024-01-03
US11990261B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP5754097B2 (ja) 方向性電磁鋼板およびその製造方法
KR101421392B1 (ko) 방향성 전기 강판 및 그 제조 방법
JP5077470B2 (ja) 方向性電磁鋼板
WO2012017670A1 (ja) 方向性電磁鋼板およびその製造方法
WO2012032792A1 (ja) 方向性電磁鋼板およびその製造方法
KR101593346B1 (ko) 방향성 전기 강판 및 그 제조 방법
WO2013099272A1 (ja) 方向性電磁鋼板およびその製造方法
RU2610204C1 (ru) Способ изготовления листа из текстурированной электротехнической стали
WO2012001952A1 (ja) 方向性電磁鋼板およびその製造方法
JP5712667B2 (ja) 方向性電磁鋼板の製造方法
KR102407899B1 (ko) 방향성 전기 강판
WO2021250953A1 (ja) 方向性電磁鋼板
JP6879439B1 (ja) 方向性電磁鋼板
JP5527094B2 (ja) 方向性電磁鋼板の製造方法
JP6939852B2 (ja) 線状溝形成方法および方向性電磁鋼板の製造方法
JP7435486B2 (ja) 方向性電磁鋼板およびその製造方法
KR102673933B1 (ko) 방향성 전기 강판
JP4876799B2 (ja) 方向性電磁鋼板
JP5754170B2 (ja) 方向性電磁鋼板の製造方法
JP2020158882A (ja) 方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3181052

Country of ref document: CA

Ref document number: 20227036978

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021821594

Country of ref document: EP

Effective date: 20230109