WO2021250789A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2021250789A1
WO2021250789A1 PCT/JP2020/022734 JP2020022734W WO2021250789A1 WO 2021250789 A1 WO2021250789 A1 WO 2021250789A1 JP 2020022734 W JP2020022734 W JP 2020022734W WO 2021250789 A1 WO2021250789 A1 WO 2021250789A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
control device
temperature
plate heat
Prior art date
Application number
PCT/JP2020/022734
Other languages
French (fr)
Japanese (ja)
Inventor
端之 松下
康敬 落合
尚弘 市川
勝也 谷口
Original Assignee
三菱電機株式会社
三菱電機ビルテクノサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 三菱電機ビルテクノサービス株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/022734 priority Critical patent/WO2021250789A1/en
Priority to US18/000,320 priority patent/US20230221050A1/en
Priority to EP20940265.0A priority patent/EP4163574A4/en
Priority to CN202080101914.0A priority patent/CN115698606B/en
Priority to JP2022530407A priority patent/JP7367216B2/en
Publication of WO2021250789A1 publication Critical patent/WO2021250789A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • a refrigerating cycle device including a first refrigerant circuit constituting a heat source machine and a second refrigerant circuit connected to a load device using the heat of the heat source machine is known.
  • Some refrigeration cycle devices of this type are provided with a plate heat exchanger between the first refrigerant circuit and the second refrigerant circuit.
  • Patent Document 1 describes that the plate heat exchanger is clogged by the calcium ions and the like contained in the water in the heat medium circuit solidifying inside the plate heat exchanger.
  • the cooling device described in Patent Document 1 is a plate heat exchanger by determining whether or not the temperature difference between the temperature on the upstream side and the temperature on the downstream side of the plate heat exchanger exceeds the threshold value. Detects the presence or absence of clogging.
  • Clogged plate heat exchangers occur when dirt such as calcium ions gradually accumulates on the plate. Therefore, if an abnormality in the plate heat exchanger can be detected at a stage prior to the occurrence of clogging, the occurrence of clogging can be prevented by appropriate subsequent measures.
  • the refrigeration cycle apparatus of the present disclosure includes a heat source side first refrigerant circuit that circulates the first refrigerant, and the heat source side first refrigerant circuit exchanges heat between the first compressor, the outside air, and the first refrigerant. It has one heat exchanger, a first throttle mechanism, and further includes a load-side refrigerant circuit that circulates a second refrigerant.
  • the load-side refrigerant circuit has a pump and a load device that utilizes heat.
  • a first plate type heat exchanger that exchanges heat between the first refrigerant and the second refrigerant, and a temperature sensor that detects the temperature of the second refrigerant on the outlet side of the first plate type heat exchanger are further provided, and the heat source side.
  • the first refrigerant circuit circulates the first refrigerant between at least the first compressor, the first heat exchanger, the first throttle mechanism and the first plate heat exchanger, and the load side refrigerant circuit is at least the pump.
  • the second refrigerant is circulated in one direction between the load device and the first plate heat exchanger, and the temperature detected by the temperature sensor and the saturation temperature of the first refrigerant are used in the first plate heat exchanger. Further, a control device for diagnosing the flow path of the second refrigerant of the above is provided.
  • FIG. It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the dirt diagnosis processing at the time of a cooling operation. It is a ph diagram which shows the difference of the state with and without the refrigerant leakage. It is a flowchart which shows the dirt diagnosis processing at the time of a heating operation. It is a flowchart for determining whether a blockage occurs in a water heat exchanger or a strainer. It is a graph which shows the situation which dirt progresses. It is a flowchart for recording the progress of dirt inside a water heat exchanger. It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 2.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to a first embodiment.
  • the circuit configuration and operation of the refrigeration cycle apparatus 1 will be described with reference to FIG.
  • the refrigeration cycle device 1 includes a refrigerant circuit 100, a water circuit 200, and a control device 300.
  • the control device 300 wirelessly communicates with the remote control device 400 (hereinafter, abbreviated as a remote controller) operated by the user.
  • a remote controller the remote control device 400 operated by the user.
  • the refrigerant circuit 100 constitutes, for example, a heat source machine installed outdoors.
  • the refrigerant circuit 100 includes a compressor 101, a four-way valve 104, a heat exchanger 105, a fan 106, a throttle mechanism 108, a water heat exchanger 109, an accumulator 110, and a refrigerant pipe 10 connecting them.
  • Refrigerants such as chlorofluorocarbons circulate in the refrigerant circuit 100.
  • the refrigerant pipe 10 is provided with a discharge temperature sensor 102, a high pressure pressure sensor 103, a refrigerant temperature sensor 107, and a low pressure pressure sensor 111.
  • the compressor 101 circulates the refrigerant in the refrigerant circuit 100 by increasing the pressure of the refrigerant.
  • the compressor 101 changes the operating capacity according to the situation by controlling a motor (not shown) inside the compressor 101 by an inverter.
  • the compressor 101 controls the frequency of the compressor 101 so as to reach the target outlet water temperature set by the control board 301 of the control device 300 or the remote controller 400 during the cooling operation and the heating operation.
  • Two or more compressors 101 may be connected in parallel or in series with the refrigerant pipe 10.
  • the four-way valve 104 switches the direction in which the refrigerant flows.
  • the four-way valve 104 switches the flow path of the refrigerant as shown by the solid line in FIG. 1 during the cooling operation.
  • the four-way valve 104 switches the flow path of the refrigerant as shown by the broken line in FIG. 1 during the heating operation.
  • the refrigerant circuit 100 acts as a heat source.
  • the refrigerant circuit 100 acts as a cold heat source.
  • the heat exchanger 105 is, for example, a fin tube type heat exchanger composed of a large number of fins and a heat transfer tube.
  • the heat exchanger 105 exchanges heat between the refrigerant circulating in the refrigerant pipe 10 and the outdoor air.
  • the heat exchanger 105 functions as a condenser during the cooling operation.
  • the heat exchanger 105 functions as an evaporator during the heating operation.
  • the fan 106 is, for example, a propeller fan driven by a motor.
  • the fan 106 has a function of sucking outdoor air for heat exchange by the heat exchanger 105 and discharging the heat exchanged air by the heat exchanger 105 to the outside.
  • the throttle mechanism 108 adjusts the flow rate of the refrigerant flowing through the refrigerant pipe 10.
  • the throttle mechanism 108 is, for example, an electronic expansion valve or a capillary.
  • the electronic expansion valve has a function of efficiently controlling the flow rate of the refrigerant by adjusting the throttle opening.
  • the water heat exchanger 109 is a plate heat exchanger. In the plate heat exchanger, wavy plates are arranged in layers. The plates are brazed to a closed structure.
  • the water heat exchanger 109 alternately flows the refrigerant of the refrigerant circuit 100 and the refrigerant (water) of the water circuit 200 through the gaps between the stacked plates. That is, inside the water heat exchanger 109, a first flow path through which the refrigerant of the refrigerant circuit 100 flows and a second flow path through which the refrigerant of the water circuit 200 flows are formed. In the first flow path and the second flow path, the heat of the refrigerant of the refrigerant circuit 100 and the heat of the refrigerant of the water circuit 200 are exchanged.
  • the water heat exchanger 109 functions as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the accumulator 110 separates the liquid refrigerant and the gas refrigerant and stores an excess liquid refrigerant.
  • the accumulator 110 is provided to prevent failure of the compressor 101 due to suction of the refrigerant liquid into the compressor 101 (liquid back).
  • the discharge temperature sensor 102 is provided on the discharge side of the compressor 101.
  • the discharge temperature sensor 102 detects the temperature of the high-temperature refrigerant discharged by the compressor 101.
  • the high pressure pressure sensor 103 is provided on the discharge side of the compressor 101.
  • the high pressure saturation temperature CT can be calculated from the detection value of the high pressure pressure sensor 103.
  • the refrigerant temperature sensor 107 is provided between the heat exchanger 105 and the throttle mechanism 108.
  • the refrigerant temperature sensor 107 detects the temperature of the refrigerant on the outlet side of the heat exchanger 105, which exchanges heat between air and the refrigerant during cooling operation.
  • the refrigerant circuit 100 may be provided with a temperature sensor that detects the temperature on the inlet side of the water heat exchanger 109 and a temperature sensor that detects the temperature of the refrigerant on the outlet side of the water heat exchanger 109.
  • the low pressure pressure sensor 111 is provided on the suction portion side of the compressor 101.
  • the low pressure saturation temperature ET can be calculated from the detection value of the low pressure pressure sensor 111.
  • the refrigerant circuit 100 circulates the refrigerant in a circulation path including the compressor 101, the heat exchanger 105, the throttle mechanism 108, and the water heat exchanger 109.
  • the circulation direction of the refrigerant differs between cooling and heating.
  • the refrigerant circuit 100 is equipped with a microcomputer that operates in response to a command from the control device 300.
  • the water circuit 200 constitutes, for example, an air conditioner installed indoors.
  • the water circuit 200 includes a pump 201, a load device 202, a strainer 209, and a water pipe 20 connecting them.
  • Water as a refrigerant flows through the water pipe 20. Water may be mixed with additives that lower the freezing point.
  • the refrigerant pipe 10 is provided with a temperature sensor 203, a temperature sensor 204, a flow meter 205, and a differential pressure meter 206.
  • the water heat exchanger 109 described as the configuration on the refrigerant circuit 100 side may have a configuration on the water circuit 200 side instead of the configuration on the refrigerant circuit 100 side.
  • the water circuit 200 drives the pump 201 under inverter control so as to reach the target value of the preset flow meter 205 or differential pressure gauge 206.
  • the type of control of the pump 201 is set according to the type of the air conditioner and the installation status of the air conditioner.
  • the load device 202 is an air conditioner such as an air handling unit and a fan coil unit.
  • the load device 202 has a heat exchanger that exchanges heat between the air in the room and the water circulating in the water pipe 20.
  • FIG. 1 shows a configuration in which one load device 202 is provided in the water circuit 200. This configuration is an example, and a plurality of load devices 202 may be provided in the water circuit 200.
  • the temperature sensor 203 is provided on the inlet side of the water heat exchanger 109.
  • the temperature sensor 203 detects the temperature Twin of the water flowing into the water heat exchanger 109.
  • the temperature sensor 204 is provided on the outlet side of the water heat exchanger 109.
  • the temperature sensor 204 detects the temperature Twout of water after heat exchange with the refrigerant of the refrigerant circuit 100 inside the water heat exchanger 109. That is, Twout is the temperature on the outlet side of the second flow path through which water flows in the water heat exchanger 109.
  • the flow meter 205 is provided on the discharge side of the pump 201.
  • the flow meter 205 detects the flow rate Gw of water circulating in the water circuit 200.
  • the differential pressure gauge 206 measures the water pressure difference ⁇ Pw between the inlet and the outlet of the water heat exchanger 109.
  • the strainer 209 removes foreign matter mixed in the water circulating in the water pipe 20. The flow path in the strainer 209 may be clogged by foreign matter.
  • the water circuit 200 circulates the refrigerant in one direction from the left to the right in FIG. 1 in a circulation path including the pump 201, the load device 202, and the water heat exchanger 109.
  • the water circuit 200 is equipped with a microcomputer that operates in response to a command from the control device 300.
  • the control device 300 includes a control board 301.
  • a processor 302, a memory 303, a display unit 304, and a communication unit 305 are mounted on the control board 301.
  • the processor 302 executes the operating system and application programs stored in the memory 303. When executing the application program, various data stored in the memory 303 are referred to.
  • the processor 302 receives a command transmitted from the remote controller 400 and controls the refrigerant circuit 100 and the water circuit 200.
  • the processor 302 collects the detection values of various sensors provided in the refrigerant circuit 100 and the water circuit 200, and the operation data of the load device (air conditioner) 202.
  • the memory 303 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory.
  • the operating system and application programs are stored in the flash memory. Further, the flash memory stores the detection values of various sensors provided in the refrigerant circuit 100 and the water circuit 200, and the operation data of the load device 202 measured from the equipment.
  • the communication unit 305 communicates with the remote controller 400 and also communicates with the refrigerant circuit 100 and the water circuit 200.
  • the communication unit 305 receives the command information transmitted from the remote controller 400.
  • the communication unit 305 receives the detection values of various sensors and the operation data of the load device 202 measured from the equipment from the refrigerant circuit 100 and the water circuit 200.
  • Information indicating the occurrence of an abnormality is displayed on the display unit 304.
  • the remote controller 400 remotely controls the control device 300 by communicating with the control device 300.
  • the remote controller 400 includes a display unit 401 and an operation unit 402. By operating the operation unit 402, the user can switch ON / OFF of the indoor unit and adjust the set temperature.
  • the remote controller 400 transmits various commands corresponding to the operation of the operation unit 402 to the control device. For example, an operation command (command of cooling or heating) is transmitted from the remote controller 400 to the control device 300. Alternatively, the remote controller 400 transmits the outlet water temperature of the water heat exchanger 109 to the control device 300. In addition to various setting information, information for notifying the occurrence of an abnormality is displayed on the display unit 401.
  • the liquid refrigerant heading from the heat exchanger 105 to the throttle mechanism 108 is depressurized by the throttle mechanism 108.
  • the liquid refrigerant changes to a low pressure two-phase refrigerant.
  • the low pressure two-phase refrigerant moves from the throttle mechanism 108 to the water heat exchanger 109.
  • the water heat exchanger 109 functions as an evaporator.
  • the refrigerant flowing into the water heat exchanger 109 changes to a gas refrigerant by exchanging heat with water inside the water heat exchanger 109.
  • the gas refrigerant passes through the accumulator 110 and is sucked into the compressor 101.
  • the four-way valve 104 switches the flow path of the refrigerant as shown by the broken line in FIG.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 101 flows to the water heat exchanger 109.
  • the water heat exchanger 109 functions as a condenser. Since the refrigerant in the refrigerant pipe 10 exchanges heat with the water in the water pipe 20, the refrigerant changes from a gas refrigerant to a liquid refrigerant.
  • the liquid refrigerant heading from the water heat exchanger 109 to the throttle mechanism 108 is depressurized by the throttle mechanism 108.
  • the liquid refrigerant changes to a low pressure two-phase refrigerant.
  • the low pressure two-phase refrigerant moves from the throttle mechanism 108 to the heat exchanger 105.
  • the heat exchanger 105 functions as an evaporator.
  • the refrigerant flowing into the heat exchanger 105 is heat exchanged with air by the fan 106.
  • the refrigerant flowing into the accumulator 110 is separated into a liquid refrigerant and a gas refrigerant, and the gas refrigerant is sucked into the compressor 101.
  • the refrigerant circuit 100 can perform cooling operation and heating operation by providing the four-way valve 104.
  • the refrigeration cycle device may be constructed by a refrigerant circuit not provided with the four-way valve 104. That is, as the present embodiment, a cooling-only model or a heating-only model may be adopted.
  • Freezing of the water flowing through the water heat exchanger 109 adversely affects the plate of the water heat exchanger 109. If freezing and thawing occur repeatedly, the plate may burst (so-called freeze puncture), leading to damage to the water heat exchanger 109. At that time, if water infiltrates into the refrigerant circuit 100, the degree of failure increases, and as a result, a lot of time is required for maintenance and inspection work. Therefore, it is important to clarify the cause of freezing and then take measures to prevent freezing.
  • the cause of water freezing is the dirt generated in the water pipe 20.
  • the dirt generated in the water pipe 20 gradually adheres to the plate surface of the water heat exchanger 109. Dirt adhering to the plate surface is called scale or sludge. Repeated adhesion of dirt to the plate surface increases the flow path resistance of the water flow path formed by the gap between the plates. Inside the water heat exchanger 109, a portion where water is locally stagnant is generated, the flow of water is impaired, and eventually the water flow path is blocked. The so-called water heat exchanger 109 is clogged. If dirt adheres to the plate surface, the heat transfer performance of the water heat exchanger 109 deteriorates.
  • the four-way valve 104 switches the flow path of the refrigerant as shown by the solid line in FIG.
  • the water heat exchanger 109 functions as an evaporator.
  • the refrigerant in the refrigerant pipe 10 flows from the left to the right in FIG.
  • the control device 300 calculates the low pressure saturation temperature ET from the pressure value Ps detected by the low pressure pressure sensor 111.
  • the control device 300 calculates "Twout-ET" from the low-pressure saturation temperature ET and the water temperature Twout detected by the temperature sensor 204.
  • the threshold value is set to an appropriate value for stain diagnosis. By setting the threshold value to an appropriate value, it is possible to detect an abnormality in the water heat exchanger 109 at an early stage before the water heat exchanger 109 is clogged.
  • the operator may change the set water temperature of the water heat exchanger 109 depending on the inspection status.
  • the difference temperature "Twout-ET” is hardly affected by the set value of the outlet water temperature of the water heat exchanger 109. Therefore, even when the operator changes the setting of the target outlet water temperature of the water heat exchanger 109 on the control board 301 of the remote controller 400 or the control device 300, the dirt inside the water heat exchanger 109 can be diagnosed.
  • the control device 300 may determine whether or not the inside of the water heat exchanger 109 is clogged together with the dirt diagnosis by comparing the detected value of the flow meter 205 or the differential pressure gauge 206 with the reference value.
  • the control device 300 may estimate the water flow rate during the cooling operation based on a predetermined calculation formula, and determine whether or not the inside of the water heat exchanger 109 is clogged based on the estimation result.
  • An example of the equation related to the estimation of the water flow rate during the cooling operation is shown below.
  • the control device 300 may estimate the water flow rate using the equations (1) and (2).
  • Qr indicates the amount of heat on the refrigerant side [kW]
  • Gr indicates the amount of circulation of the refrigerant [kg / s]
  • h2 indicates the water heat exchanger outlet specific enthalpy [kJ / kg]
  • h1 indicates the water heat exchanger inlet.
  • Gw indicates water flow rate [m3 / h]
  • ⁇ w indicates water density [kg / m3]
  • Cp indicates water specific heat [kJ / kg ⁇ K]
  • Twin indicates water specific heat [kJ / kg ⁇ K].
  • the water heat exchanger inlet water temperature [° C.] is indicated, and Twout indicates the water heat exchanger outlet water temperature [° C.].
  • the four-way valve 104 switches the flow path of the refrigerant in the direction indicated by the broken line in FIG.
  • the water heat exchanger 109 functions as a condenser.
  • the refrigerant in the refrigerant pipe 10 flows from right to left in FIG.
  • the control device 300 calculates the high pressure saturation temperature CT from the pressure value Pd detected by the high pressure pressure sensor 103.
  • the control device 300 calculates "CT-Twout" from the high-pressure saturation temperature CT and the water temperature Twout detected by the temperature sensor 204.
  • the threshold value is set to an appropriate value for stain diagnosis.
  • the difference temperature "CT-Twout" shows the same value regardless of the set value of the outlet water temperature of the water heat exchanger 109. Therefore, even when the operator changes the setting of the target outlet water temperature of the water heat exchanger 109 on the control board 301 of the remote controller 400 or the control device 300, the dirt inside the water heat exchanger 109 can be diagnosed.
  • the control device 300 may determine whether or not the inside of the water heat exchanger 109 is clogged together with the dirt diagnosis by comparing the detected value of the flow meter 205 or the differential pressure gauge 206 with the reference value.
  • FIG. 2 is a flowchart showing a stain diagnosis process during cooling operation. This flowchart shows the process executed by the control device 300. The control program required for this process is stored in the memory 303 of the control device 300.
  • steps S2 to S6 are processes related to the determination of refrigerant leakage. That is, the control device 300 also determines the presence or absence of refrigerant leakage in the refrigerant circuit 100 in the dirt diagnosis process of the water heat exchanger 109.
  • the reason why the control device 300 determines the presence or absence of refrigerant leakage together with the dirt diagnosis of the water heat exchanger 109 will be described. Refer to FIG. 3 for the explanation.
  • FIG. 3 is a ph diagram showing the difference between the state with and without the refrigerant leakage.
  • SC indicates the degree of supercooling
  • TdSH indicates the degree of discharge superheat
  • ET indicates the low pressure saturation temperature
  • CT indicates the high pressure saturation temperature.
  • the low pressure saturation temperature ET is a value used when diagnosing dirt on the water heat exchanger 109 during cooling operation.
  • the high-pressure saturation temperature CT is a value used when diagnosing dirt on the water heat exchanger 109 during heating operation. Therefore, the refrigerant leakage affects the dirt diagnosis of the water heat exchanger 109. Therefore, in the present embodiment, when the water heat exchanger 109 is diagnosed as dirty, the presence or absence of refrigerant leakage is also determined. That is, in the present embodiment, the dirt diagnosis of the water heat exchanger 109 is performed by combining the determination of the presence or absence of the refrigerant leakage. This prevents an error in the dirt diagnosis of the water heat exchanger 109 due to the influence of the refrigerant leak.
  • the control device 300 collects operation data from the refrigerant circuit 100 and the water circuit 200 (step S1).
  • the control device 300 calculates SC and TdsH in order to determine the refrigerant leakage based on the operation data collected in step S1 (step S2).
  • the calculation procedure is as follows. First, the control device 300 extracts the pressure Pd obtained from the high-pressure pressure sensor 103, the Trout obtained from the refrigerant temperature sensor 107, and the discharge temperature Td obtained from the discharge temperature sensor 102.
  • the high pressure saturation temperature CT is obtained by converting the pressure Pd into the saturation temperature. Further, using the following formulas 3 and 4, the supercooling degree SC on the outlet side of the heat exchanger 105 and the discharge superheating degree TdSH of the refrigerant circuit 100 are calculated.
  • the control device 300 determines whether or not SC ⁇ A (step S3).
  • A indicates a threshold value set for detecting a refrigerant leak.
  • the control device 300 determines whether or not TdsH> B (step S4).
  • B also indicates a threshold value set for detecting a refrigerant leak.
  • the threshold values A and B appropriately adopt optimum values according to the type of the air conditioner.
  • the control device 300 determines that there is a refrigerant leak (step S5). In this case, the control device 300 notifies the refrigerant leak (step S6).
  • control device 300 outputs a signal notifying the refrigerant leak from the communication unit 305 to the remote controller 400. As a result, a message indicating the occurrence of refrigerant leakage is displayed on the display unit of the remote controller 400. Further, the control device 300 outputs a signal indicating the occurrence of refrigerant leakage to the display unit 304 of the control board 301. A message indicating the occurrence of refrigerant leakage is displayed on the display unit 304.
  • step S6 the control device 300 finishes the process of this flowchart. That is, when the refrigerant circuit 100 has a refrigerant leak, the control device 300 does not diagnose the water heat exchanger 109 for contamination. As described above, the control device 300 determines the refrigerant leak before diagnosing the contamination of the water heat exchanger 109, whereby in addition to the determination of the refrigerant leak, the contamination diagnosis that may result in an inaccurate diagnosis result. Is prevented from doing.
  • step S3 the control device 300 converts the detected value of the low pressure pressure sensor 111 into the low pressure saturation temperature ET (step S7).
  • step S8 the control device 300 determines whether or not Twoout-ET> C (step S8).
  • Twout indicates the temperature of water after heat exchange with the refrigerant of the refrigerant circuit 100 inside the water heat exchanger 109. In other words, Twout indicates the temperature on the outlet side of the second flow path through which water flows in the water heat exchanger 109.
  • C indicates a threshold value set for diagnosing dirt in the water heat exchanger 109. By adjusting this value, it is possible to make a diagnosis according to the degree of dirt.
  • the threshold value C varies depending on the specifications of the water heat exchanger.
  • the abnormality level may be diagnosed by setting a threshold value step by step.
  • the control device 300 diagnoses that there is an abnormality due to dirt (step S9).
  • the control device 300 diagnoses that the water heat exchanger 109 has an electric heating defect. This electric heating failure occurs because the flow path resistance increases due to the adhesion of dirt to the flow path in the water heat exchanger 109. Therefore, it can be said that the diagnosis in step S9 is a diagnosis of poor electric heating or a diagnosis of flow path resistance (difficulty of water flow).
  • the control device 300 determines whether or not ET ⁇ D before notifying the abnormality of the water heat exchanger 109 (step S10).
  • D indicates a threshold value for knowing the possibility of freezing of water in the second flow path of the water heat exchanger 109 from the low pressure saturation temperature ET.
  • the threshold value D indicates the freezing determination temperature of water.
  • the freezing determination temperature is the temperature at which water freezes.
  • the freezing determination temperature may be about 1 degree or 2 degrees higher than the temperature at which water freezes. If ET ⁇ D, the water may freeze in the water heat exchanger 109. Therefore, when the control device 300 determines that ET ⁇ D, the control device 300 raises the set temperature (target outlet water temperature) on the outlet side of the water heat exchanger 109 (step S11). This prevents the water from freezing in the water heat exchanger 109. As a result, the water heat exchanger 109 is prevented from being damaged due to freezing of water.
  • step S10 the control device 300 prohibits the set temperature from dropping (step S12).
  • step S12 for example, when the user operates the remote controller 400 to give a command to lower the set temperature, the control device 300 does not accept the command. As a result, the current set temperature is maintained. As a result, it is possible to prevent the water from freezing due to the water temperature being lower than the present.
  • the control device 300 determines the possibility of freezing of water and determines the possibility of freezing of water, instead of proceeding to the step of notifying the abnormality of the contamination of the water heat exchanger 109. Perform processing to prevent freezing. Therefore, it is possible to prevent the water from freezing, as compared with the case where the abnormality of the contamination of the water heat exchanger 109 is only notified.
  • the control device 300 may notify the possibility of freezing of water.
  • the control device 300 After step S11 or S12, the control device 300 notifies the dirt abnormality (step S13). Specifically, the control device 300 outputs a signal notifying that the water heat exchanger 109 is dirty from the communication unit 305 to the remote controller 400. As a result, a message indicating the occurrence of a dirt abnormality is displayed on the display unit of the remote controller 400. Further, the control device 300 outputs a signal indicating that the water heat exchanger 109 is dirty to the display unit 304 of the control board 301. A message indicating the occurrence of a dirt abnormality is displayed on the display unit 304. After step S13, the control device 300 ends the processing of this flowchart.
  • the presence or absence of refrigerant leakage may be determined after the dirt diagnosis of the water heat exchanger 109. Further, in the flowchart of FIG. 2, the processes of steps S10 to S12 may be executed after the notification of the dirt abnormality in step S13. Further, when the control device 300 determines in step S8 that the water heat exchanger 109 is dirty, the control device 300 controls the compressor 101 according to the set value of the remote controller 400.
  • FIG. 4 is a diagram showing a flowchart of dirt diagnosis during heating operation. This flowchart shows the process executed by the control device 300. The control program required for this process is stored in the memory 303 of the control device 300. An example of the diagnostic flow during the heating operation will be described with reference to FIG.
  • the control device 300 collects operation data from the refrigerant circuit 100 and the water circuit 200 (step S100). The control device 300 determines whether or not there is a refrigerant leak in the refrigerant circuit 100 before diagnosing the contamination of the water heat exchanger 109. The reason is as already explained. That is, when the refrigerant leaks in the refrigerant circuit 100, the high-pressure saturation temperature CT decreases. Since the high-pressure saturation temperature CT is a parameter used when diagnosing dirt on the water heat exchanger 109 during heating operation, if a refrigerant leak occurs, an error will occur in the dirt diagnosis on the water heat exchanger 109.
  • the control device 300 first determines whether or not there is a refrigerant leak. First, the control device 300 calculates the discharge superheat degree TdSH (step S101).
  • the discharge superheat degree TdSH is calculated using the equation (4) already shown. That is, the discharge superheat degree TdSH is calculated by subtracting the high pressure saturation temperature CT from the discharge temperature Td.
  • the discharge temperature Td is obtained from the detection value of the discharge temperature sensor 102.
  • the high pressure saturation temperature CT is obtained by converting the pressure Pd obtained from the high pressure pressure sensor 103 into the saturation temperature.
  • control device 300 determines the presence or absence of the refrigerant leak by using the discharge superheat degree TdSH in which the difference between the time when the refrigerant is not leaking and the time when the refrigerant is leaking is clear.
  • the control device 300 determines whether or not TdsH> E (step S102).
  • E indicates a threshold value set for detecting a refrigerant leak.
  • the threshold value E varies depending on the type of air conditioner.
  • the control device 300 determines that there is a refrigerant leak (step S103). In this case, the control device 300 notifies the refrigerant leak (step S104).
  • the process of step S104 is the same as that of step S6 already described. As a result, a message indicating the occurrence of refrigerant leakage is displayed on the display unit of the remote controller 400 and the display unit 304 of the control board 301.
  • step S104 the control device 300 ends the processing of this flowchart. That is, when the refrigerant circuit 100 has a refrigerant leak, the control device 300 does not diagnose the water heat exchanger 109 for contamination. In this way, the control unit determines the refrigerant leakage before diagnosing the contamination of the water heat exchanger 109, so that in addition to the determination of the refrigerant leakage, the contamination diagnosis that may result in an inaccurate diagnosis result is performed. It prevents you from doing so.
  • step S102 the control device 300 converts the detected value of the high pressure pressure sensor 103 into the high pressure saturation temperature CT (step S105).
  • step S105 the control device 300 determines whether or not CT-Twout> F (step S106).
  • Twout indicates the temperature of water after heat exchange with the refrigerant of the refrigerant circuit 100 inside the water heat exchanger 109. In other words, Twout indicates the temperature on the outlet side of the second flow path through which water flows in the water heat exchanger 109.
  • F indicates a threshold value set for diagnosing dirt in the water heat exchanger 109. By adjusting this value, it is possible to make a diagnosis according to the degree of dirt.
  • the threshold value F varies depending on the specifications of the water heat exchanger.
  • the abnormality level may be diagnosed by setting a threshold value step by step.
  • CT-Twout> F the control device 300 diagnoses that there is an abnormality due to dirt (step S107).
  • CT-Twout> F the control device 300 diagnoses that the water heat exchanger 109 has an electric heating defect. This electric heating failure occurs because the flow path resistance increases due to the adhesion of dirt to the flow path in the water heat exchanger 109. Therefore, it can be said that the diagnosis in step S107 is a diagnosis of poor electric heating or a diagnosis of flow path resistance (difficulty of water flow).
  • step S108 the control device 300 notifies the dirt abnormality (step S108).
  • the process of step S108 is the same as that of step S13 already described.
  • a message indicating the occurrence of a dirt abnormality is displayed on the display unit of the remote controller 400 and the display unit 304 of the control board 301.
  • step S108 the control device 300 ends the processing of this flowchart.
  • the presence or absence of refrigerant leakage may be determined after the dirt diagnosis of the water heat exchanger 109. Further, when the control device 300 determines in step S107 that the water heat exchanger 109 is dirty, the control device 300 controls the compressor 101 according to the set value of the remote controller 400.
  • FIG. 5 is a flowchart for determining whether the clogging has occurred in the water heat exchanger 109 or the strainer 209. This flowchart shows the process executed by the control device 300.
  • the control program required for this process is stored in the memory 303 of the control device 300.
  • the control device 300 determines whether or not Gw ⁇ G (step S200).
  • Gw indicates the flow rate of water circulating in the water circuit 200.
  • Gw is specified from the measured value of the flow meter 205.
  • G indicates a threshold value set for determining the degree of water flow rate.
  • the control device 300 may determine ⁇ Pw> H instead of determining Gw ⁇ G.
  • ⁇ Pw indicates the differential pressure between the inlet and the outlet of the water heat exchanger 109 on the water circuit 200 side. This differential pressure is specified from the detected value of the differential pressure gauge 206. Further, H indicates a threshold value set for determining the degree of differential pressure.
  • step S200 determines whether or not the water heat exchanger 109 is diagnosed as having an abnormality in contamination (step S201).
  • the control device 300 makes a determination in step S201 by referring to the determination result of step S9 in FIG. 2 during the cooling operation and the determination result in step S107 in FIG. 4 during the heating operation.
  • control device 300 determines in step S201 that the water heat exchanger 109 is dirty, it determines that the cause of the decrease in the amount of water in step S200 is the water heat exchanger 109. That is, the control device 300 determines that the water heat exchanger 109 is clogged (step S202).
  • the control device 300 determines in step S201 that there is no contamination abnormality in the water heat exchanger 109, it determines that the cause of the decrease in the amount of water in step S200 is the strainer 209. That is, the control device 300 determines that the strainer 209 is clogged (step S204).
  • step S203 When the control device 300 determines in step S202 that the water heat exchanger 109 is clogged, the control device 300 notifies that the water heat exchanger 109 is clogged (step S203).
  • step S204 When the control device 300 determines in step S204 that the strainer 209 is clogged, the control device 300 notifies that the strainer 209 is clogged (step S205).
  • the control device 300 outputs a signal notifying the clogging in the water heat exchanger 109 or the clogging in the strainer 209 from the communication unit 305 to the remote controller 400.
  • a message indicating clogging in the water heat exchanger 109 or the strainer 209 is displayed on the display unit of the remote controller 400 and the display unit 304 of the control device 300.
  • the control device 300 ends the processing of this flowchart after step S203 and step S205.
  • the control device 300 has a function of not only diagnosing the dirt of the water heat exchanger 109 but also identifying the location of the clogging and notifying the location of the clogging. In other words, the control device 300 can identify the blockage of the water channel in a wide range including the water heat exchanger 109 and the strainer 209, and further, whether the blockage occurs in the water heat exchanger 109 or occurs in the strainer 209. You can identify if it is.
  • FIG. 6 is a graph showing a situation in which dirt progresses.
  • FIG. 6 is a graph during cooling operation.
  • the control device 300 calculates the dirt state of the water heat exchanger 109 at a preset timing, and stores the calculation result in the memory 303.
  • the control device 300 displays the graph shown in FIG. 6 in response to the operation of the remote controller 400 or the direct operation of the control board 301. This graph is displayed on the display unit 304 of the control board 301. Further, this graph is displayed on the display unit 401 of the remote controller 400.
  • the vertical axis indicates “Twout-ET” and the horizontal axis indicates time.
  • the limit of "Twout-ET” determined to be a stain abnormality is indicated by the display of "abnormality”.
  • 30A, 30B, 30C, 30D, and 30D indicate the values of "Twout-ET” calculated at different timings.
  • the graph in FIG. 6 is for cooling operation.
  • the control device 300 may also display a graph corresponding to the heating operation. In this case, "CT-Twout" is displayed on the vertical axis.
  • FIG. 7 is a flowchart for recording the progress of dirt inside the water heat exchanger. This flowchart shows the process executed by the control device 300.
  • the control program required for this process is stored in the memory 303 of the control device 300.
  • the graph shown in FIG. 6 is presented to the user.
  • the control device 300 determines whether or not it is the set calculation timing (step S300).
  • the calculation timing can be set arbitrarily. For example, the calculation timing may be freely set by using the remote controller 400 or the control board 301.
  • the control board 301 collects operation data from the refrigerant circuit 100 and the water circuit 200 (step S301).
  • the control device 300 calculates Twoout-ET from the collected operation data (step S302). Since the procedure for calculating Twoout-ET has already been described, the description will not be repeated here.
  • control device 300 stores the calculation result in the memory 303 together with the calculation date and time (step S303).
  • control device 300 determines whether or not there is an instruction to display the graph (step S304).
  • an instruction to display a graph can be input by operating the remote controller 400 or the control board 301.
  • the control device 300 determines whether or not there is an instruction by those operations.
  • the control device 300 reads out the memory 303 and displays it as a graph (step S305). After that, the control device 300 finishes the processing of this flowchart.
  • the control device 300 calculates the differential temperature "Twout-ET" on a regular basis.
  • the worker of the periodic inspection can grasp the progress of the contamination of the water heat exchanger 109.
  • the operator can understand that the water heat exchanger 109 is approaching an abnormal state by looking at the calculation result 30C in FIG. Therefore, the operator can perform planned maintenance and inspection such as inspecting the water pipe 20 at the next periodic inspection and cleaning the inside of the water heat exchanger 109.
  • a plurality of threshold values for determining an abnormality in the water heat exchanger 109 may be set stepwise.
  • the control device 300 shall stepwise determine whether or not the dirt on the water heat exchanger 109 exceeds the first threshold value and whether or not the dirt on the water heat exchanger 109 exceeds the second threshold value. do.
  • FIG. 8 is a diagram showing the configuration of the refrigeration cycle device 2 according to the second embodiment.
  • the refrigerating cycle device 2 according to the second embodiment differs from the refrigerating cycle device 1 according to the second embodiment in the number of refrigerant circuits connected to one water circuit 200.
  • one refrigerant circuit 100 is connected to one water circuit 200.
  • a plurality of refrigerant circuits A100a and a refrigerant circuit B100b are connected to one water circuit 200.
  • the refrigerant circuit A100a includes a compressor 101a, a four-way valve 104a, a heat exchanger 105a, a fan 106a, a throttle mechanism 108a, a water heat exchanger 109a, an accumulator 110a, and a refrigerant pipe 10a connecting them.
  • the refrigerant circuit B100b includes a compressor 101b, a four-way valve 104b, a heat exchanger 105b, a fan 106b, a throttle mechanism 108b, a water heat exchanger 109b, an accumulator 110b, and a refrigerant pipe 10b connecting them.
  • Each of these configurations has the same function as the corresponding configuration described as the first embodiment.
  • the water circuit 200 according to the second embodiment is connected in series with two water heat exchangers A109a and a water heat exchanger B109b.
  • a differential pressure gauge 206 for detecting the differential pressure between the inlet side of the water heat exchanger A109a and the outlet side of the water heat exchanger B109b is provided in the water circuit 200.
  • the refrigerant circuit A100a and the refrigerant circuit B100b control the frequencies of the compressors 101a and 101b so that the water temperature at the outlet of the water heat exchanger B109b becomes a target set value.
  • the refrigeration cycle device 2 according to the second embodiment can execute each process described as the first embodiment. As a result, the control device 300 can diagnose the dirt abnormality of the water heat exchanger A109a and the water heat exchanger B109b.
  • FIG. 9 is a flowchart showing the content of control of the refrigeration cycle device 2 according to the second embodiment. This flowchart shows a process executed by the control device 300 of FIG. The control program required for this process is stored in the memory 303 of the control device 300 of FIG.
  • the control device 300 diagnoses whether or not the water heat exchanger A109a has a dirt abnormality (step S400). When the water heat exchanger A109a has no dirt abnormality, the control device 300 diagnoses whether or not the water heat exchanger B109b has a dirt abnormality (step S401). If there is no dirt abnormality in the water heat exchanger B109b, the control device 300 ends the process of this flowchart. If the water heat exchanger B109b is dirty, the control device 300 stops the refrigerant circuit B100b (step S403). As a result, it is possible to prevent the abnormal contamination of the water heat exchanger B109b from adversely affecting the refrigeration cycle device 2. Further, the control device 300 notifies the water heat exchanger B109b of a dirt abnormality (step S404).
  • step S404 the control device 300 adjusts the compressor 101a of the refrigerant circuit A100a (step S405). This adjustment is for adjusting the temperature on the outlet side of the water heat exchanger B109b (detected by the temperature sensor 204) to the target outlet temperature only by the refrigerant circuit A100a.
  • step S406 the control device 300 determines whether or not the temperature on the outlet side of the water heat exchanger B109b has reached the target outlet temperature (step S406).
  • the control device 300 continues the adjustment of the compressor 101a in step S405 until it can be determined as YES in step S406.
  • the control device 300 determines YES in step S406, the control device 300 ends the processing of this flowchart.
  • control device 300 diagnoses that the water heat exchanger A109a has a dirt abnormality in step S400, it diagnoses whether or not the water heat exchanger B109b has a dirt abnormality (step S402). If the water heat exchanger B109b is not dirty, the control device 300 stops the refrigerant circuit A100a (step S407). As a result, it is possible to prevent the abnormal contamination of the water heat exchanger A109a from adversely affecting the refrigeration cycle device 2. Further, the control device 300 notifies the water heat exchanger A109a of a dirt abnormality (step S408).
  • step S408 the control device 300 adjusts the compressor 101b of the refrigerant circuit B100b (step S409). This adjustment is for adjusting the temperature on the outlet side of the water heat exchanger B109b (detected by the temperature sensor 204) to the target outlet temperature only by the refrigerant circuit B100b.
  • step S410 the control device 300 determines whether or not the temperature on the outlet side of the water heat exchanger B109b has reached the target outlet temperature (step S410).
  • the control device 300 continues the adjustment of the compressor 101b in step S409 until it can be determined as YES in step S410.
  • the control device 300 determines YES in step S410, the control device 300 ends the processing of this flowchart.
  • step S402 determines YES in step S402, that is, when both the water heat exchanger A109a and the water heat exchanger B109b are diagnosed as having an abnormality in contamination, the refrigerant circuit A100a and the refrigerant circuit B100b are stopped (step S411). Further, the control device 300 notifies the water heat exchanger A109a and the water heat exchanger B109b of a dirt abnormality (step S412), and ends the process of this flowchart.
  • the diagnostic method of steps S400 to S402 and the notification method of steps S404, S408, and S412 are the same as those of the first embodiment described with reference to FIGS. 2 and 4.
  • the refrigerant circuit A100a and the refrigerant circuit B100b are stopped.
  • various processes for avoiding an immediate stop of the refrigeration cycle device 2 may be applied. For example, it is conceivable to continue the operation in the refrigerant circuit having the lower degree of contamination abnormality.
  • FIG. 8 has described an example in which two refrigerant circuits A100a and two refrigerant circuits B100b are provided for one water circuit 200. However, more refrigerant circuits may be provided for one water circuit 200.
  • the refrigerant flowing through the refrigerant circuit A100a and the refrigerant flowing through the refrigerant circuit B100b may be the same type of refrigerant or different types of refrigerant.
  • FIG. 10 is a diagram showing the configuration of the refrigeration cycle device 3 according to the third embodiment.
  • the refrigerant circuit group is connected in parallel to one water circuit 200.
  • the refrigerant circuit 100a and the refrigerant circuit 100b are connected in series, and these two refrigerant circuits form the first group of refrigerant circuits.
  • the refrigerant circuit 100c and the refrigerant circuit 100d are connected in series, and these two refrigerant circuits form the second group of refrigerant circuits.
  • the refrigerant circuit of the first group and the refrigerant circuit of the second group are connected in parallel.
  • Each of the refrigerant circuits 100a to 100d includes a water heat exchanger (plate heat exchanger).
  • the refrigeration cycle apparatus 3 similarly executes the processes according to the first embodiment and the second embodiment. For example, the dirt diagnosis of the water heat exchanger is executed for each water heat exchanger, and the determination of the refrigerant leakage of the refrigerant circuit is executed for each refrigerant circuit.
  • FIG. 11 is a diagram showing a water heat exchanger portion of the refrigeration cycle device according to the fourth embodiment.
  • the fourth embodiment shows an example in which the saturation temperature is directly detected by the temperature sensor.
  • the saturation temperature sensor 210 for detecting the saturation temperature is provided inside the water heat exchanger 109.
  • the high pressure saturation temperature CT and the low pressure saturation temperature ET are calculated from the pressures of the pressure sensors (high pressure pressure sensor 103, low pressure pressure sensor 111) provided in the refrigerant circuit 100.
  • the saturation temperature sensor 210 for detecting the saturation temperature may be provided at an appropriate position in the water heat exchanger 109, and the control device 300 may specify the saturation temperature by the detection value of the saturation temperature sensor 210. This makes it possible to simplify the control of the control device 300.
  • the method of specifying the saturation temperature using the saturation temperature sensor 210 may be applied to any of the first to third embodiments.
  • this dirt diagnosis is a diagnosis of an electric heat defect of the water heat exchanger 109 or a diagnosis of the state of the flow path in the water heat exchanger 109.
  • a defect of the water heat exchanger 109 can be found.
  • the water heat exchanger 109 is defective at an early stage leading to the clogging of the water heat exchanger 109. Can be detected.
  • the refrigeration cycle apparatus it is possible to diagnose the dirty state inside the plate heat exchanger regardless of the set water temperature on the outlet side. Therefore, it is possible to avoid a malfunction (for example, freezing) of the water heat exchanger 109 at an early stage.
  • the refrigeration cycle device can also be applied to a hot water supply device.
  • water has been described as an example as a heat medium for exchanging heat with the refrigerant circuit as a heat source.
  • the heat medium may be a medium other than water as long as it is a medium that carries heat.
  • brine or the like may be used instead of water.
  • the control device 300 may control the air conditioning system including the refrigerant circuit 100 and the water circuit 200 via a network such as the Internet.
  • the control device 300 may control one air conditioning system including the refrigerant circuit 100 and the water circuit 200, or may control a plurality of such air conditioning systems.
  • 1,2,3 refrigeration cycle device 100,100a-100d refrigerant circuit, 101 compressor, 102 discharge temperature sensor, 103 high pressure pressure sensor, 104 four-way valve, 105 heat exchanger, 106 fan, 107 refrigerant temperature sensor, 108 throttle Mechanism, 109 water heat exchanger, 110 accumulator, 111 low pressure pressure sensor, 200 water circuit, 201 pump, 202 load device, 203,204 temperature sensor, 205 flow meter, 206 differential pressure sensor, 209 strainer, 210 saturation temperature sensor, 300 Control device, 400 remote control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigeration cycle device (1) is provided with a refrigeration circuit (100), a water circuit (200), and a control device (300). The refrigeration circuit (100) includes a compressor (101), a four-way valve (104), a heat exchanger (105), a fan (106), a diaphragm mechanism (108), a water heat exchanger (109), and an accumulator (110). The refrigeration cycle device (1) determines whether there is a problem of grime being attached to an internal plate of the water heat exchanger (109) on the basis of the water temperature on the outlet side of the water heat exchanger (109) and the value of a low-pressure pressure sensor (111) or a high-pressure pressure sensor (103).

Description

冷凍サイクル装置Refrigeration cycle device
 本開示は冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 従来、熱源機を構成する第1冷媒回路と、熱源機の熱を利用する負荷装置に接続された第2冷媒回路とを備える冷凍サイクル装置が知られている。この種の冷凍サイクル装置の中には、第1冷媒回路と第2冷媒回路との間にプレート式熱交換器を設けたものがある。 Conventionally, a refrigerating cycle device including a first refrigerant circuit constituting a heat source machine and a second refrigerant circuit connected to a load device using the heat of the heat source machine is known. Some refrigeration cycle devices of this type are provided with a plate heat exchanger between the first refrigerant circuit and the second refrigerant circuit.
 特許文献1には、熱媒体回路内の水に含まれるカルシウムイオンなどがプレート式熱交換器の内部で固まることによって、プレート式熱交換器が詰まることが記載されている。特許文献1に記載の冷却装置は、プレート式熱交換器の上流側の温度と下流側の温度との温度差がしきい値を越えたか否かを判定することによって、プレート式熱交換器の詰まりの有無を検出する。 Patent Document 1 describes that the plate heat exchanger is clogged by the calcium ions and the like contained in the water in the heat medium circuit solidifying inside the plate heat exchanger. The cooling device described in Patent Document 1 is a plate heat exchanger by determining whether or not the temperature difference between the temperature on the upstream side and the temperature on the downstream side of the plate heat exchanger exceeds the threshold value. Detects the presence or absence of clogging.
特開2003-50067号公報Japanese Unexamined Patent Publication No. 2003-50067
 プレート式熱交換器の詰まりは、カルシウムイオンなどの汚れが徐々にプレートに蓄積することによって発生する。このため、詰まりが発生するよりも前の段階でプレート式熱交換器の異常を発見できると、その後の適切な処置によって詰まりの発生を未然に防止できる。 Clogged plate heat exchangers occur when dirt such as calcium ions gradually accumulates on the plate. Therefore, if an abnormality in the plate heat exchanger can be detected at a stage prior to the occurrence of clogging, the occurrence of clogging can be prevented by appropriate subsequent measures.
 本開示は、プレート式熱交換器の異常の発生を早期の段階で検出できる冷凍サイクル装置を提供することを目的とする。 It is an object of the present disclosure to provide a refrigeration cycle apparatus capable of detecting the occurrence of an abnormality in a plate heat exchanger at an early stage.
 本開示の冷凍サイクル装置は、第1冷媒を循環させる熱源側第1冷媒回路を備え、熱源側第1冷媒回路は、第1圧縮機と、外気と第1冷媒との間で熱交換する第1熱交換器と、第1絞り機構とを有し、第2冷媒を循環させる負荷側冷媒回路をさらに備え、負荷側冷媒回路は、ポンプと、熱を利用する負荷装置とを有し、第1冷媒と第2冷媒との間で熱交換する第1プレート式熱交換器と、第1プレート式熱交換器の出口側における第2冷媒の温度を検出する温度センサとをさらに備え、熱源側第1冷媒回路は、少なくとも第1圧縮機と第1熱交換器と第1絞り機構と第1プレート式熱交換器との間で第1冷媒を循環させ、負荷側冷媒回路は、少なくともポンプと負荷装置と第1プレート式熱交換器との間で第2冷媒を一方向に循環させ、温度センサが検出した温度と第1冷媒の飽和温度とを用いて、第1プレート式熱交換器内の第2冷媒の流路を診断する制御装置をさらに備える。 The refrigeration cycle apparatus of the present disclosure includes a heat source side first refrigerant circuit that circulates the first refrigerant, and the heat source side first refrigerant circuit exchanges heat between the first compressor, the outside air, and the first refrigerant. It has one heat exchanger, a first throttle mechanism, and further includes a load-side refrigerant circuit that circulates a second refrigerant. The load-side refrigerant circuit has a pump and a load device that utilizes heat. A first plate type heat exchanger that exchanges heat between the first refrigerant and the second refrigerant, and a temperature sensor that detects the temperature of the second refrigerant on the outlet side of the first plate type heat exchanger are further provided, and the heat source side. The first refrigerant circuit circulates the first refrigerant between at least the first compressor, the first heat exchanger, the first throttle mechanism and the first plate heat exchanger, and the load side refrigerant circuit is at least the pump. The second refrigerant is circulated in one direction between the load device and the first plate heat exchanger, and the temperature detected by the temperature sensor and the saturation temperature of the first refrigerant are used in the first plate heat exchanger. Further, a control device for diagnosing the flow path of the second refrigerant of the above is provided.
 本開示によれば、プレート式熱交換器の異常をより的確に診断できる冷凍サイクル装置を提供することができる。 According to the present disclosure, it is possible to provide a refrigeration cycle device capable of more accurately diagnosing an abnormality in a plate heat exchanger.
実施の形態1に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 冷房運転時の汚れ診断処理を示すフローチャートである。It is a flowchart which shows the dirt diagnosis processing at the time of a cooling operation. 冷媒漏れが有るときと無いときとの状態の違いを示すp-h線図である。It is a ph diagram which shows the difference of the state with and without the refrigerant leakage. 暖房運転時の汚れ診断処理を示すフローチャートである。It is a flowchart which shows the dirt diagnosis processing at the time of a heating operation. 詰まりが水熱交換器に発生しているかストレーナに発生しているかを判定するためのフローチャートである。It is a flowchart for determining whether a blockage occurs in a water heat exchanger or a strainer. 汚れが進行する状況を示すグラフである。It is a graph which shows the situation which dirt progresses. 水熱交換器内部の汚れの進行を記録するためのフローチャートである。It is a flowchart for recording the progress of dirt inside a water heat exchanger. 実施の形態2に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 2. 実施の形態2に係る冷凍サイクル装置の制御の内容を示すフローチャートである。It is a flowchart which shows the content of control of the refrigeration cycle apparatus which concerns on Embodiment 2. 実施の形態3に係る冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating cycle apparatus which concerns on Embodiment 3. 実施の形態4に係る冷凍サイクル装置の水熱交換器部分を示す図である。It is a figure which shows the water heat exchanger part of the refrigeration cycle apparatus which concerns on Embodiment 4. FIG.
 以下、本実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜、組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, the present embodiment will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 図1は、実施の形態1に係る冷凍サイクル装置1の構成を示す図である。図1に基づいて、冷凍サイクル装置1の回路構成および動作について説明する。冷凍サイクル装置1は、冷媒回路100と、水回路200と、制御装置300とを備える。制御装置300は、ユーザによって操作されるリモートコントロール装置400(以下、リモコンと略称する。)と無線通信する。
<冷媒回路100の構成>
 冷媒回路100は、たとえば、屋外に設置される熱源機を構成する。冷媒回路100は、圧縮機101と、四方弁104と、熱交換器105と、ファン106と、絞り機構108と、水熱交換器109と、アキュムレータ110と、それらを接続する冷媒配管10とを含む。冷媒回路100にはフロンなどの冷媒が循環する。冷媒配管10には、吐出温度センサ102と、高圧圧力センサ103と、冷媒温度センサ107と、低圧圧力センサ111とが設けられる。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to a first embodiment. The circuit configuration and operation of the refrigeration cycle apparatus 1 will be described with reference to FIG. The refrigeration cycle device 1 includes a refrigerant circuit 100, a water circuit 200, and a control device 300. The control device 300 wirelessly communicates with the remote control device 400 (hereinafter, abbreviated as a remote controller) operated by the user.
<Structure of Refrigerant Circuit 100>
The refrigerant circuit 100 constitutes, for example, a heat source machine installed outdoors. The refrigerant circuit 100 includes a compressor 101, a four-way valve 104, a heat exchanger 105, a fan 106, a throttle mechanism 108, a water heat exchanger 109, an accumulator 110, and a refrigerant pipe 10 connecting them. include. Refrigerants such as chlorofluorocarbons circulate in the refrigerant circuit 100. The refrigerant pipe 10 is provided with a discharge temperature sensor 102, a high pressure pressure sensor 103, a refrigerant temperature sensor 107, and a low pressure pressure sensor 111.
 圧縮機101は、冷媒の圧力を高めることで、冷媒回路100内の冷媒を循環させる。圧縮機101は、インバータによって圧縮機101の内部のモータ(図示省略)を制御することにより、状況に応じて運転容量を変化させる。圧縮機101は、冷房運転のとき、および暖房運転のときに、制御装置300の制御基板301またはリモコン400で設定した目標出口水温になるように、圧縮機101の周波数を制御する。なお、2台以上の圧縮機101を冷媒配管10に対して並列もしくは直列に接続してもよい。 The compressor 101 circulates the refrigerant in the refrigerant circuit 100 by increasing the pressure of the refrigerant. The compressor 101 changes the operating capacity according to the situation by controlling a motor (not shown) inside the compressor 101 by an inverter. The compressor 101 controls the frequency of the compressor 101 so as to reach the target outlet water temperature set by the control board 301 of the control device 300 or the remote controller 400 during the cooling operation and the heating operation. Two or more compressors 101 may be connected in parallel or in series with the refrigerant pipe 10.
 四方弁104は、冷媒が流れる方向を切り替える。四方弁104は、冷房運転のときに図1の実線で示すとおりに冷媒の流路を切り替える。四方弁104は、暖房運転のときに図1の破線で示すとおりに冷媒の流路を切り替える。暖房運転のとき、冷媒回路100は、熱源として作用する。一方、冷房運転のとき、冷媒回路100は、冷熱源として作用する。 The four-way valve 104 switches the direction in which the refrigerant flows. The four-way valve 104 switches the flow path of the refrigerant as shown by the solid line in FIG. 1 during the cooling operation. The four-way valve 104 switches the flow path of the refrigerant as shown by the broken line in FIG. 1 during the heating operation. During the heating operation, the refrigerant circuit 100 acts as a heat source. On the other hand, during the cooling operation, the refrigerant circuit 100 acts as a cold heat source.
 熱交換器105は、たとえば、多数のフィンと伝熱管とから構成されるフィン・チューブ式熱交換器である。熱交換器105は、冷媒配管10を循環する冷媒と室外空気との間で熱を交換する。熱交換器105は、冷房運転のときに凝縮器として機能する。一方、熱交換器105は、暖房運転のときに蒸発器として機能する。 The heat exchanger 105 is, for example, a fin tube type heat exchanger composed of a large number of fins and a heat transfer tube. The heat exchanger 105 exchanges heat between the refrigerant circulating in the refrigerant pipe 10 and the outdoor air. The heat exchanger 105 functions as a condenser during the cooling operation. On the other hand, the heat exchanger 105 functions as an evaporator during the heating operation.
 ファン106は、たとえば、モータによって駆動するプロペラファンである。ファン106は、熱交換器105が熱交換するために室外空気を吸入するとともに、熱交換器105が熱交換した空気を室外へ排出する機能を有する。 The fan 106 is, for example, a propeller fan driven by a motor. The fan 106 has a function of sucking outdoor air for heat exchange by the heat exchanger 105 and discharging the heat exchanged air by the heat exchanger 105 to the outside.
 絞り機構108は、冷媒配管10を流れる冷媒の流量を調節する。絞り機構108は、たとえば、電子膨張弁またはキャピラリーである。電子膨張弁は、絞り開度を調整することによって、冷媒の流量を効率よく制御する機能を有する。 The throttle mechanism 108 adjusts the flow rate of the refrigerant flowing through the refrigerant pipe 10. The throttle mechanism 108 is, for example, an electronic expansion valve or a capillary. The electronic expansion valve has a function of efficiently controlling the flow rate of the refrigerant by adjusting the throttle opening.
 水熱交換器109は、プレート式熱交換器である。プレート式熱交換器には、波打ったプレートが幾層も重なって配置されている。それらのプレートは、ロウ付けによって密閉構造とされている。水熱交換器109は、積層されたプレートの隙間に冷媒回路100の冷媒と水回路200の冷媒(水)とを交互に流す。つまり、水熱交換器109の内部には、冷媒回路100の冷媒が流れる第1流路と、水回路200の冷媒が流れる第2流路とが形成されている。第1流路と第2流路とにおいて、冷媒回路100の冷媒の熱と水回路200の冷媒の熱とが交換される。水熱交換器109は、冷房運転のときには蒸発器として機能し、暖房運転のときには凝縮器として機能する。 The water heat exchanger 109 is a plate heat exchanger. In the plate heat exchanger, wavy plates are arranged in layers. The plates are brazed to a closed structure. The water heat exchanger 109 alternately flows the refrigerant of the refrigerant circuit 100 and the refrigerant (water) of the water circuit 200 through the gaps between the stacked plates. That is, inside the water heat exchanger 109, a first flow path through which the refrigerant of the refrigerant circuit 100 flows and a second flow path through which the refrigerant of the water circuit 200 flows are formed. In the first flow path and the second flow path, the heat of the refrigerant of the refrigerant circuit 100 and the heat of the refrigerant of the water circuit 200 are exchanged. The water heat exchanger 109 functions as an evaporator during the cooling operation and as a condenser during the heating operation.
 アキュムレータ110は、液冷媒とガス冷媒とを分離し、過剰な液冷媒を貯留する。アキュムレータ110は、圧縮機101へ冷媒液が吸入されること(液バック)による圧縮機101の故障を防止するために設けられる。 The accumulator 110 separates the liquid refrigerant and the gas refrigerant and stores an excess liquid refrigerant. The accumulator 110 is provided to prevent failure of the compressor 101 due to suction of the refrigerant liquid into the compressor 101 (liquid back).
 吐出温度センサ102は、圧縮機101の吐出側に設けられている。吐出温度センサ102は、圧縮機101が吐出した高温冷媒の温度を検出する。高圧圧力センサ103は、圧縮機101の吐出側に設けられている。高圧圧力センサ103の検出値から、高圧飽和温度CTを算出することができる。 The discharge temperature sensor 102 is provided on the discharge side of the compressor 101. The discharge temperature sensor 102 detects the temperature of the high-temperature refrigerant discharged by the compressor 101. The high pressure pressure sensor 103 is provided on the discharge side of the compressor 101. The high pressure saturation temperature CT can be calculated from the detection value of the high pressure pressure sensor 103.
 冷媒温度センサ107は、熱交換器105と絞り機構108との間に設けられている。冷媒温度センサ107は、冷房運転時に空気と冷媒を熱交換した熱交換器105の出口側の冷媒の温度を検出する。必要に応じて、水熱交換器109の入口側の温度を検出する温度センサと水熱交換器109の出口側の冷媒の温度を検出する温度センサとを冷媒回路100に設けてもよい。 The refrigerant temperature sensor 107 is provided between the heat exchanger 105 and the throttle mechanism 108. The refrigerant temperature sensor 107 detects the temperature of the refrigerant on the outlet side of the heat exchanger 105, which exchanges heat between air and the refrigerant during cooling operation. If necessary, the refrigerant circuit 100 may be provided with a temperature sensor that detects the temperature on the inlet side of the water heat exchanger 109 and a temperature sensor that detects the temperature of the refrigerant on the outlet side of the water heat exchanger 109.
 低圧圧力センサ111は、圧縮機101の吸入部側に設けられている。低圧圧力センサ111の検出値から、低圧飽和温度ETを算出することができる。 The low pressure pressure sensor 111 is provided on the suction portion side of the compressor 101. The low pressure saturation temperature ET can be calculated from the detection value of the low pressure pressure sensor 111.
 冷媒回路100は、圧縮機101と、熱交換器105と、絞り機構108と、水熱交換器109とを含んで構成される循環経路で冷媒を循環させる。冷媒の循環方向は、冷房時と暖房時とで異なる。冷媒回路100には、制御装置300の指令を受けて動作するマイクロコンピュータが搭載されている。 The refrigerant circuit 100 circulates the refrigerant in a circulation path including the compressor 101, the heat exchanger 105, the throttle mechanism 108, and the water heat exchanger 109. The circulation direction of the refrigerant differs between cooling and heating. The refrigerant circuit 100 is equipped with a microcomputer that operates in response to a command from the control device 300.
 <水回路200の構成>
 水回路200は、たとえば、屋内に設置される空調機を構成する。水回路200は、ポンプ201と、負荷装置202と、ストレーナ209と、それらを接続する水配管20とを含む。水配管20には冷媒としての水が流れる。水には、凝固点を降下させる添加物を混ぜてもよい。冷媒配管10には、温度センサ203と、温度センサ204と、流量計205と、差圧計206とが設けられる。冷媒回路100側の構成として説明した水熱交換器109は、冷媒回路100側の構成ではなく、水回路200側の構成としてもよい。
<Structure of water circuit 200>
The water circuit 200 constitutes, for example, an air conditioner installed indoors. The water circuit 200 includes a pump 201, a load device 202, a strainer 209, and a water pipe 20 connecting them. Water as a refrigerant flows through the water pipe 20. Water may be mixed with additives that lower the freezing point. The refrigerant pipe 10 is provided with a temperature sensor 203, a temperature sensor 204, a flow meter 205, and a differential pressure meter 206. The water heat exchanger 109 described as the configuration on the refrigerant circuit 100 side may have a configuration on the water circuit 200 side instead of the configuration on the refrigerant circuit 100 side.
 水回路200は、予め設定された流量計205または差圧計206の目標値に達するように、インバータ制御でポンプ201を駆動する。空調装置の種類および空調装置の設置状況に応じて、ポンプ201の制御の種類が設定される。 The water circuit 200 drives the pump 201 under inverter control so as to reach the target value of the preset flow meter 205 or differential pressure gauge 206. The type of control of the pump 201 is set according to the type of the air conditioner and the installation status of the air conditioner.
 負荷装置202は、エアハンドリングユニット、ファンコイルユニットなどの空調機である。負荷装置202は、室内の空気と水配管20を循環する水との間で熱交換する熱交換器を有する。図1には、水回路200に1つの負荷装置202が設けられる構成が示されている。この構成は例示であって、水回路200に複数の負荷装置202を設けてもよい。 The load device 202 is an air conditioner such as an air handling unit and a fan coil unit. The load device 202 has a heat exchanger that exchanges heat between the air in the room and the water circulating in the water pipe 20. FIG. 1 shows a configuration in which one load device 202 is provided in the water circuit 200. This configuration is an example, and a plurality of load devices 202 may be provided in the water circuit 200.
 温度センサ203は、水熱交換器109の入口側に設けられている。温度センサ203は、水熱交換器109に流入する水の温度Twinを検出する。温度センサ204は、水熱交換器109の出口側に設けられている。温度センサ204は、水熱交換器109の内部で冷媒回路100の冷媒と熱交換した後の水の温度Twoutを検出する。つまり、Twoutは、水熱交換器109内で水が流れる第2流路の出口側の温度である。流量計205は、ポンプ201の吐出側に設けられている。流量計205は、水回路200を循環する水の流量Gwを検出する。差圧計206は、水熱交換器109の入口と出口との水圧差△Pwを計測する。ストレーナ209は、水配管20内を循環する水の中に混入した異物を取り除く。ストレーナ209内の流路は、異物によって詰まりが生じる場合がある。 The temperature sensor 203 is provided on the inlet side of the water heat exchanger 109. The temperature sensor 203 detects the temperature Twin of the water flowing into the water heat exchanger 109. The temperature sensor 204 is provided on the outlet side of the water heat exchanger 109. The temperature sensor 204 detects the temperature Twout of water after heat exchange with the refrigerant of the refrigerant circuit 100 inside the water heat exchanger 109. That is, Twout is the temperature on the outlet side of the second flow path through which water flows in the water heat exchanger 109. The flow meter 205 is provided on the discharge side of the pump 201. The flow meter 205 detects the flow rate Gw of water circulating in the water circuit 200. The differential pressure gauge 206 measures the water pressure difference ΔPw between the inlet and the outlet of the water heat exchanger 109. The strainer 209 removes foreign matter mixed in the water circulating in the water pipe 20. The flow path in the strainer 209 may be clogged by foreign matter.
 水回路200は、ポンプ201と、負荷装置202と、水熱交換器109とを含んで構成される循環経路で冷媒を図1の左から右方向へと一方向に循環させる。水回路200には、制御装置300の指令を受けて動作するマイクロコンピュータが搭載されている。 The water circuit 200 circulates the refrigerant in one direction from the left to the right in FIG. 1 in a circulation path including the pump 201, the load device 202, and the water heat exchanger 109. The water circuit 200 is equipped with a microcomputer that operates in response to a command from the control device 300.
 <制御装置300の構成>
 制御装置300は、制御基板301を備える。制御基板301には、プロセッサ302と、メモリ303と、表示部304と、通信部305とが搭載されている。プロセッサ302は、メモリ303に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行する。アプリケーションプログラムの実行の際には、メモリ303に記憶されている各種のデータが参照される。プロセッサ302は、リモコン400から送信される指令を受けて、冷媒回路100および水回路200を制御する。プロセッサ302は、冷媒回路100および水回路200に設けられた各種のセンサの検出値、負荷装置(空調装置)202の運転データを収集する。
<Configuration of control device 300>
The control device 300 includes a control board 301. A processor 302, a memory 303, a display unit 304, and a communication unit 305 are mounted on the control board 301. The processor 302 executes the operating system and application programs stored in the memory 303. When executing the application program, various data stored in the memory 303 are referred to. The processor 302 receives a command transmitted from the remote controller 400 and controls the refrigerant circuit 100 and the water circuit 200. The processor 302 collects the detection values of various sensors provided in the refrigerant circuit 100 and the water circuit 200, and the operation data of the load device (air conditioner) 202.
 メモリ303は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリとを含んで構成される。フラッシュメモリには、オペレーティングシステム、アプリケーションプログラムが記憶される。さらに、フラッシュメモリには、冷媒回路100および水回路200に設けられた各種センサの検出値、機器から計測された負荷装置202の運転データが記憶される。 The memory 303 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), and a flash memory. The operating system and application programs are stored in the flash memory. Further, the flash memory stores the detection values of various sensors provided in the refrigerant circuit 100 and the water circuit 200, and the operation data of the load device 202 measured from the equipment.
 通信部305は、リモコン400と通信するとともに、冷媒回路100および水回路200と通信する。通信部305は、リモコン400から送信された指令情報を受信する。通信部305は、冷媒回路100および水回路200から、各種センサの検出値、機器から計測された負荷装置202の運転データを受信する。表示部304には、異常の発生を知らせる情報が表示される。 The communication unit 305 communicates with the remote controller 400 and also communicates with the refrigerant circuit 100 and the water circuit 200. The communication unit 305 receives the command information transmitted from the remote controller 400. The communication unit 305 receives the detection values of various sensors and the operation data of the load device 202 measured from the equipment from the refrigerant circuit 100 and the water circuit 200. Information indicating the occurrence of an abnormality is displayed on the display unit 304.
 リモコン400は、制御装置300と通信することによって、制御装置300を遠隔から制御する。リモコン400は、表示部401と、操作部402とを含む。ユーザは、操作部402を操作することによって、室内機のON/OFFの切り替え、および設定温度の調整をすることができる。リモコン400は、操作部402の操作に応じた各種の指令を制御装置に送信する。たとえば、リモコン400から制御装置300には、運転指令(冷房であるか暖房であるかの指令)が送信される。あるいは、リモコン400から制御装置300には、水熱交換器109の出口水温が送信される。表示部401には、各種の設定情報の他、異常の発生を知らせる情報が表示される。 The remote controller 400 remotely controls the control device 300 by communicating with the control device 300. The remote controller 400 includes a display unit 401 and an operation unit 402. By operating the operation unit 402, the user can switch ON / OFF of the indoor unit and adjust the set temperature. The remote controller 400 transmits various commands corresponding to the operation of the operation unit 402 to the control device. For example, an operation command (command of cooling or heating) is transmitted from the remote controller 400 to the control device 300. Alternatively, the remote controller 400 transmits the outlet water temperature of the water heat exchanger 109 to the control device 300. In addition to various setting information, information for notifying the occurrence of an abnormality is displayed on the display unit 401.
 <冷媒回路100の動作>
 初めに、冷房運転時の冷媒回路100の動作を説明する。冷房運転時は、四方弁104が図1の実線で示すとおりに冷媒の流路を切り替える。圧縮機101から吐出した高温・高圧のガス冷媒は、熱交換器105に流れる。このとき熱交換器105は凝縮器として機能する。冷媒配管10内の冷媒は、ファン106によって空気と熱交換されるため、ガス冷媒から液冷媒に変化する。
<Operation of refrigerant circuit 100>
First, the operation of the refrigerant circuit 100 during the cooling operation will be described. During the cooling operation, the four-way valve 104 switches the flow path of the refrigerant as shown by the solid line in FIG. The high-temperature, high-pressure gas refrigerant discharged from the compressor 101 flows to the heat exchanger 105. At this time, the heat exchanger 105 functions as a condenser. The refrigerant in the refrigerant pipe 10 exchanges heat with air by the fan 106, so that the refrigerant changes from a gas refrigerant to a liquid refrigerant.
 熱交換器105から絞り機構108へと向かった液冷媒は、絞り機構108で減圧される。その結果、液冷媒は、低圧の二相冷媒に変化する。低圧の二相冷媒は、絞り機構108から水熱交換器109へと移動する。このとき、水熱交換器109は、蒸発器として機能する。水熱交換器109に流入した冷媒は、水熱交換器109の内部で水と熱交換することでガス冷媒に変化する。ガス冷媒は、アキュムレータ110を通り、圧縮機101に吸入される。 The liquid refrigerant heading from the heat exchanger 105 to the throttle mechanism 108 is depressurized by the throttle mechanism 108. As a result, the liquid refrigerant changes to a low pressure two-phase refrigerant. The low pressure two-phase refrigerant moves from the throttle mechanism 108 to the water heat exchanger 109. At this time, the water heat exchanger 109 functions as an evaporator. The refrigerant flowing into the water heat exchanger 109 changes to a gas refrigerant by exchanging heat with water inside the water heat exchanger 109. The gas refrigerant passes through the accumulator 110 and is sucked into the compressor 101.
 次に、暖房運転時の冷媒回路100の動作を説明する。暖房運転時は、四方弁104が図1の破線で示すとおりに冷媒の流路を切り替える。圧縮機101から吐出した高温・高圧のガス冷媒は、水熱交換器109に流れる。このとき水熱交換器109は凝縮器として機能する。冷媒配管10内の冷媒は、水配管20内の水と熱交換されるため、ガス冷媒から液冷媒に変化する。 Next, the operation of the refrigerant circuit 100 during the heating operation will be described. During the heating operation, the four-way valve 104 switches the flow path of the refrigerant as shown by the broken line in FIG. The high-temperature, high-pressure gas refrigerant discharged from the compressor 101 flows to the water heat exchanger 109. At this time, the water heat exchanger 109 functions as a condenser. Since the refrigerant in the refrigerant pipe 10 exchanges heat with the water in the water pipe 20, the refrigerant changes from a gas refrigerant to a liquid refrigerant.
 水熱交換器109から絞り機構108へと向かった液冷媒は、絞り機構108で減圧される。その結果、液冷媒は、低圧の二相冷媒に変化する。低圧の二相冷媒は、絞り機構108から熱交換器105へと移動する。このとき、熱交換器105は、蒸発器として機能する。熱交換器105に流入した冷媒は、ファン106によって空気と熱交換される。その後、アキュムレータ110に流入した冷媒は、液冷媒とガス冷媒とに分離され、ガス冷媒が圧縮機101に吸入される。 The liquid refrigerant heading from the water heat exchanger 109 to the throttle mechanism 108 is depressurized by the throttle mechanism 108. As a result, the liquid refrigerant changes to a low pressure two-phase refrigerant. The low pressure two-phase refrigerant moves from the throttle mechanism 108 to the heat exchanger 105. At this time, the heat exchanger 105 functions as an evaporator. The refrigerant flowing into the heat exchanger 105 is heat exchanged with air by the fan 106. After that, the refrigerant flowing into the accumulator 110 is separated into a liquid refrigerant and a gas refrigerant, and the gas refrigerant is sucked into the compressor 101.
 冷媒回路100は、四方弁104を備えることによって、冷房運転と暖房運転とを実行可能である。しかし、本実施の形態として、四方弁104を具備しない冷媒回路によって冷凍サイクル装置を構築してもよい。すなわち、本実施の形態として、冷房専用機種、あるいは、暖房専用機種を採用してもよい。 The refrigerant circuit 100 can perform cooling operation and heating operation by providing the four-way valve 104. However, as the present embodiment, the refrigeration cycle device may be constructed by a refrigerant circuit not provided with the four-way valve 104. That is, as the present embodiment, a cooling-only model or a heating-only model may be adopted.
 <水熱交換器109で冷媒が凍結する原因>
 水熱交換器109を流れる水が凍結すると、水熱交換器109のプレートに悪影響を及ぼす。凍結と解凍とが繰り返し発生すると、プレートが破裂(いわゆる凍結パンク)し、水熱交換器109の破損に至る場合がある。その際、冷媒回路100内に水が浸入すると、不具合の程度が大きくなり、結果、保守点検作業に多くの時間を要することになる。したがって、凍結の原因を明らかにした上で、凍結を未然に防止する対策を講じることが重要である。
<Cause of freezing of refrigerant in water heat exchanger 109>
Freezing of the water flowing through the water heat exchanger 109 adversely affects the plate of the water heat exchanger 109. If freezing and thawing occur repeatedly, the plate may burst (so-called freeze puncture), leading to damage to the water heat exchanger 109. At that time, if water infiltrates into the refrigerant circuit 100, the degree of failure increases, and as a result, a lot of time is required for maintenance and inspection work. Therefore, it is important to clarify the cause of freezing and then take measures to prevent freezing.
 水の凍結の原因は、水配管20内に発生する汚れにある。水配管20内で生じた汚れは、水熱交換器109のプレート表面に徐々に付着する。プレート表面に付着した汚れは、スケールまたはスラッジと称される。プレート表面への汚れの付着が繰り返されることによって、プレートとプレートとの隙間で構成される水流路の流路抵抗が大きくなる。水熱交換器109の内部には、局所的に水が淀んでいる部分が生じて、水の流れが悪くなり、やがては水流路が閉塞される。いわゆる、水熱交換器109に詰まりが発生する。プレート表面に汚れが付着すると、水熱交換器109の伝熱性能が劣化する。冷房運転時には、伝熱性能の劣化を補うために、冷媒回路100の冷媒温度をより低下させる必要が生じる。冷媒温度が水の凍結点以下となった場合、水熱交換器109の内部で局所的に水が淀んでいる部分では凍結が生じやすい。 The cause of water freezing is the dirt generated in the water pipe 20. The dirt generated in the water pipe 20 gradually adheres to the plate surface of the water heat exchanger 109. Dirt adhering to the plate surface is called scale or sludge. Repeated adhesion of dirt to the plate surface increases the flow path resistance of the water flow path formed by the gap between the plates. Inside the water heat exchanger 109, a portion where water is locally stagnant is generated, the flow of water is impaired, and eventually the water flow path is blocked. The so-called water heat exchanger 109 is clogged. If dirt adheres to the plate surface, the heat transfer performance of the water heat exchanger 109 deteriorates. During the cooling operation, it is necessary to further lower the refrigerant temperature of the refrigerant circuit 100 in order to compensate for the deterioration of the heat transfer performance. When the refrigerant temperature is below the freezing point of water, freezing is likely to occur in the portion where water is locally stagnant inside the water heat exchanger 109.
 したがって、凍結を防止するためには、水熱交換器109内での詰まりの発生を未然に防止することが重要である。このためには、水熱交換器109の内部に悪影響を及ぼす程度の汚れが付着しているか否かを把握できるとよい。そこで、本実施の形態に係る冷凍サイクル装置では、水熱交換器109内の汚れ診断を可能としている。以下、本実施の形態に係る汚れ診断を冷房運転時と暖房運転時とに分けて説明する。 Therefore, in order to prevent freezing, it is important to prevent the occurrence of clogging in the water heat exchanger 109. For this purpose, it is desirable to be able to grasp whether or not the inside of the water heat exchanger 109 is contaminated to the extent that it adversely affects the inside. Therefore, in the refrigerating cycle apparatus according to the present embodiment, it is possible to diagnose the dirt inside the water heat exchanger 109. Hereinafter, the dirt diagnosis according to the present embodiment will be described separately for the cooling operation and the heating operation.
 <冷房運転時の汚れ診断手法>
 冷房運転時は、四方弁104が図1の実線で示すとおりに冷媒の流路を切り替える。このとき、水熱交換器109は蒸発器として機能する。冷媒配管10内の冷媒は、図1の左から右へ流れる。制御装置300は、低圧圧力センサ111が検出した圧力値Psから低圧飽和温度ETを算出する。制御装置300は、低圧飽和温度ETと、温度センサ204が検出した水温Twoutとから「Twout-ET」を算出する。
<Dirt diagnosis method during cooling operation>
During the cooling operation, the four-way valve 104 switches the flow path of the refrigerant as shown by the solid line in FIG. At this time, the water heat exchanger 109 functions as an evaporator. The refrigerant in the refrigerant pipe 10 flows from the left to the right in FIG. The control device 300 calculates the low pressure saturation temperature ET from the pressure value Ps detected by the low pressure pressure sensor 111. The control device 300 calculates "Twout-ET" from the low-pressure saturation temperature ET and the water temperature Twout detected by the temperature sensor 204.
 水熱交換器109のプレート表面に汚れが付着すると、伝熱不良が発生するため、低圧飽和温度ETが低下する。このため、水温Twoutと低圧飽和温度ETとの差温「Twout-ET」が上昇する。したがって、「Twout-ET>しきい値」を満たす場合に、水熱交換器109の内部の水流に影響を及ぼす汚れがプレートに付着していると診断することができる。この場合、しきい値は、汚れ診断のための適切な値を設定する。しきい値を適切な値に設定することにより、水熱交換器109に詰まりが発生する前に水熱交換器109の異常を早期に発見することができる。 If dirt adheres to the plate surface of the water heat exchanger 109, heat transfer failure will occur, and the low pressure saturation temperature ET will decrease. Therefore, the difference temperature "Twout-ET" between the water temperature Twout and the low pressure saturation temperature ET increases. Therefore, when "Twout-ET> threshold value" is satisfied, it can be diagnosed that dirt affecting the water flow inside the water heat exchanger 109 is attached to the plate. In this case, the threshold value is set to an appropriate value for stain diagnosis. By setting the threshold value to an appropriate value, it is possible to detect an abnormality in the water heat exchanger 109 at an early stage before the water heat exchanger 109 is clogged.
 定期点検等の作業時は、点検の状況に応じて水熱交換器109の設定水温を作業者が変更する場合がある。しかし、差温「Twout-ET」は、水熱交換器109の出口水温の設定値の影響をほとんど受けない。このため、リモコン400または制御装置300の制御基板301で水熱交換器109の目標出口水温の設定を作業者が変更した場合にも、水熱交換器109の内部の汚れ診断が可能になる。 During work such as periodic inspections, the operator may change the set water temperature of the water heat exchanger 109 depending on the inspection status. However, the difference temperature "Twout-ET" is hardly affected by the set value of the outlet water temperature of the water heat exchanger 109. Therefore, even when the operator changes the setting of the target outlet water temperature of the water heat exchanger 109 on the control board 301 of the remote controller 400 or the control device 300, the dirt inside the water heat exchanger 109 can be diagnosed.
 水熱交換器109のプレート表面の汚れが進行すると、水熱交換器109の内部の水流路が閉塞し、詰まりが発生する可能性がある。制御装置300は、流量計205または差圧計206の検出値を基準値と比較することによって、水熱交換器109の内部の詰まりの有無を汚れ診断と併せて判定してもよい。 If the surface of the plate of the water heat exchanger 109 becomes dirty, the water flow path inside the water heat exchanger 109 may be blocked and clogging may occur. The control device 300 may determine whether or not the inside of the water heat exchanger 109 is clogged together with the dirt diagnosis by comparing the detected value of the flow meter 205 or the differential pressure gauge 206 with the reference value.
 制御装置300は、予め定めた演算式に基づいて冷房運転時の水流量を推定し、推定結果に基づいて水熱交換器109の内部の詰まりの有無を判定してもよい。冷房運転時の水流量推定に関係する式の一例を以下に示す。制御装置300は、式(1),(2)を用いて水流量を推定してもよい。 The control device 300 may estimate the water flow rate during the cooling operation based on a predetermined calculation formula, and determine whether or not the inside of the water heat exchanger 109 is clogged based on the estimation result. An example of the equation related to the estimation of the water flow rate during the cooling operation is shown below. The control device 300 may estimate the water flow rate using the equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここでQrは冷媒側熱量[kW]を示し、Grは冷媒循環量[kg/s]を示し、h2は水熱交換器出口比エンタルピ[kJ/kg]を示し、h1は水熱交換器入口比エンタルピ[kJ/kg]を示し、Gwは水流量[m3/h]を示し、ρwは水密度[kg/m3]を示し、Cpは水比熱[kJ/kg・K]を示し、Twinは水熱交換器入口水温[℃]を示し、Twoutは水熱交換器出口水温[℃]を示す。 Here, Qr indicates the amount of heat on the refrigerant side [kW], Gr indicates the amount of circulation of the refrigerant [kg / s], h2 indicates the water heat exchanger outlet specific enthalpy [kJ / kg], and h1 indicates the water heat exchanger inlet. Specific enthalpy [kJ / kg], Gw indicates water flow rate [m3 / h], ρw indicates water density [kg / m3], Cp indicates water specific heat [kJ / kg · K], and Twin indicates water specific heat [kJ / kg · K]. The water heat exchanger inlet water temperature [° C.] is indicated, and Twout indicates the water heat exchanger outlet water temperature [° C.].
 <暖房運転時の汚れ診断手法>
 暖房運転時は、四方弁104が図1の破線で示す方向に冷媒の流路を切り替える。このとき、水熱交換器109は凝縮器として機能する。冷媒配管10内の冷媒は、図1の右から左へ流れる。制御装置300は、高圧圧力センサ103が検出した圧力値Pdから高圧飽和温度CTを算出する。制御装置300は、高圧飽和温度CTと、温度センサ204が検出した水温Twoutとから「CT-Twout」を算出する。
<Dirty diagnosis method during heating operation>
During the heating operation, the four-way valve 104 switches the flow path of the refrigerant in the direction indicated by the broken line in FIG. At this time, the water heat exchanger 109 functions as a condenser. The refrigerant in the refrigerant pipe 10 flows from right to left in FIG. The control device 300 calculates the high pressure saturation temperature CT from the pressure value Pd detected by the high pressure pressure sensor 103. The control device 300 calculates "CT-Twout" from the high-pressure saturation temperature CT and the water temperature Twout detected by the temperature sensor 204.
 水熱交換器109のプレート表面の汚れが付着すると、伝熱不良が発生するため、高圧飽和温度CTが上昇する。このため、水温Twoutと高圧飽和温度CTとの差温「CT-Twout」が上昇する。したがって、「CT-Twout>しきい値」を満たす場合に、水熱交換器109の内部の水流に影響を及ぼす汚れがプレートに付着していると診断することができる。この場合、しきい値は、汚れ診断のための適切な値を設定する。しきい値を適切な値に設定することにより、水熱交換器109に詰まりが発生する前に水熱交換器109の異常を早期に発見することができる。 If the surface of the plate of the water heat exchanger 109 becomes dirty, heat transfer failure will occur, and the high-pressure saturation temperature CT will rise. Therefore, the difference temperature "CT-Twout" between the water temperature Twout and the high-pressure saturation temperature CT increases. Therefore, when "CT-Twout> threshold value" is satisfied, it can be diagnosed that dirt affecting the water flow inside the water heat exchanger 109 is attached to the plate. In this case, the threshold value is set to an appropriate value for stain diagnosis. By setting the threshold value to an appropriate value, it is possible to detect an abnormality in the water heat exchanger 109 at an early stage before the water heat exchanger 109 is clogged.
 冷房運転時と同様に、水熱交換器109の出口水温の設定値に関わらず、差温「CT-Twout」は同様の値を示す。このため、リモコン400または制御装置300の制御基板301で水熱交換器109の目標出口水温の設定を作業者が変更した場合にも、水熱交換器109の内部の汚れ診断が可能になる。制御装置300は、流量計205または差圧計206の検出値を基準値と比較することによって、水熱交換器109の内部の詰まりの有無を汚れ診断と併せて判定してもよい。 Similar to the cooling operation, the difference temperature "CT-Twout" shows the same value regardless of the set value of the outlet water temperature of the water heat exchanger 109. Therefore, even when the operator changes the setting of the target outlet water temperature of the water heat exchanger 109 on the control board 301 of the remote controller 400 or the control device 300, the dirt inside the water heat exchanger 109 can be diagnosed. The control device 300 may determine whether or not the inside of the water heat exchanger 109 is clogged together with the dirt diagnosis by comparing the detected value of the flow meter 205 or the differential pressure gauge 206 with the reference value.
 <冷房運転時の汚れ診断フロー>
 図2は、冷房運転時の汚れ診断処理を示すフローチャートである。このフローチャートは、制御装置300が実行する処理を示している。本処理に必要な制御プログラムは、制御装置300のメモリ303に格納されている。
<Dirt diagnosis flow during cooling operation>
FIG. 2 is a flowchart showing a stain diagnosis process during cooling operation. This flowchart shows the process executed by the control device 300. The control program required for this process is stored in the memory 303 of the control device 300.
 図2のフローチャートの各ステップのうち、ステップS2~ステップS6は、冷媒漏れの判定に関わる処理である。つまり、制御装置300は、水熱交換器109の汚れ診断処理において、冷媒回路100の冷媒漏れの有無も判定する。ここでは、フローチャートの各ステップを説明する前に、制御装置300が水熱交換器109の汚れ診断と併せて冷媒漏れの有無を判定する理由を説明することにする。その説明のために図3を参照する。 Of the steps in the flowchart of FIG. 2, steps S2 to S6 are processes related to the determination of refrigerant leakage. That is, the control device 300 also determines the presence or absence of refrigerant leakage in the refrigerant circuit 100 in the dirt diagnosis process of the water heat exchanger 109. Here, before explaining each step of the flowchart, the reason why the control device 300 determines the presence or absence of refrigerant leakage together with the dirt diagnosis of the water heat exchanger 109 will be described. Refer to FIG. 3 for the explanation.
 図3は、冷媒漏れが有るときと無いときとの状態の違いを示すp-h線図である。図3を参照して、SCは過冷却度を示し、TdSHは吐出過熱度を示し、ETは低圧飽和温度を示し、CTは高圧飽和温度を示す。冷媒漏れしていないときのp-h線図「1→2→3→4→1」に対して、冷媒漏れしているときのp-h線図は、「1’→2’→3’→4’→1’」となる。このため、冷媒漏れしているときには、低圧飽和温度ETと高圧飽和温度CTとが低下する一方、TdSHは上昇する。 FIG. 3 is a ph diagram showing the difference between the state with and without the refrigerant leakage. With reference to FIG. 3, SC indicates the degree of supercooling, TdSH indicates the degree of discharge superheat, ET indicates the low pressure saturation temperature, and CT indicates the high pressure saturation temperature. Whereas the ph diagram "1 → 2 → 3 → 4 → 1" when the refrigerant is not leaking, the ph diagram when the refrigerant is leaking is "1'→ 2'→ 3'". → 4'→ 1'". Therefore, when the refrigerant is leaking, the low-pressure saturation temperature ET and the high-pressure saturation temperature CT decrease, while the TdSH increases.
 すでに説明したとおり、低圧飽和温度ETは、冷房運転時に水熱交換器109の汚れ診断をするときに用いる値である。高圧飽和温度CTは、暖房運転時に水熱交換器109の汚れ診断をするときに用いる値である。このため、冷媒漏れは、水熱交換器109の汚れ診断に影響を与える。そこで、本実施の形態では、水熱交換器109の汚れ診断をする際に、併せて冷媒漏れの有無を判定する。つまり、本実施の形態では、冷媒漏れの有無の判定を組合せて水熱交換器109の汚れ診断をする。これにより、冷媒漏れの影響を受けて水熱交換器109の汚れ診断に誤りが生じることを防止する。 As already explained, the low pressure saturation temperature ET is a value used when diagnosing dirt on the water heat exchanger 109 during cooling operation. The high-pressure saturation temperature CT is a value used when diagnosing dirt on the water heat exchanger 109 during heating operation. Therefore, the refrigerant leakage affects the dirt diagnosis of the water heat exchanger 109. Therefore, in the present embodiment, when the water heat exchanger 109 is diagnosed as dirty, the presence or absence of refrigerant leakage is also determined. That is, in the present embodiment, the dirt diagnosis of the water heat exchanger 109 is performed by combining the determination of the presence or absence of the refrigerant leakage. This prevents an error in the dirt diagnosis of the water heat exchanger 109 due to the influence of the refrigerant leak.
 図2に戻り、冷房運転時の汚れ診断処理を説明する。まず、制御装置300は、冷媒回路100および水回路200から運転データを収集する(ステップS1)。次に、制御装置300は、ステップS1で収集した運転データに基づいて冷媒漏れを判定するために、SCおよびTdsHを算出する(ステップS2)。その算出手順は次のとおりである。まず、制御装置300は、高圧圧力センサ103から得られた圧力Pd、冷媒温度センサ107から得られたTrout、および吐出温度センサ102から得られた吐出温度Tdを抽出する。圧力Pdを飽和温度に換算して高圧飽和温度CTを求める。さらに、下記数式3および数式4を用いて、熱交換器105の出口側の過冷却度SCと、冷媒回路100の吐出過熱度TdSHとを算出する。 Returning to FIG. 2, the dirt diagnosis process during cooling operation will be explained. First, the control device 300 collects operation data from the refrigerant circuit 100 and the water circuit 200 (step S1). Next, the control device 300 calculates SC and TdsH in order to determine the refrigerant leakage based on the operation data collected in step S1 (step S2). The calculation procedure is as follows. First, the control device 300 extracts the pressure Pd obtained from the high-pressure pressure sensor 103, the Trout obtained from the refrigerant temperature sensor 107, and the discharge temperature Td obtained from the discharge temperature sensor 102. The high pressure saturation temperature CT is obtained by converting the pressure Pd into the saturation temperature. Further, using the following formulas 3 and 4, the supercooling degree SC on the outlet side of the heat exchanger 105 and the discharge superheating degree TdSH of the refrigerant circuit 100 are calculated.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に、制御装置300は、SC<Aであるか否かを判定する(ステップS3)。Aは、冷媒漏れを検出するために設定したしきい値を示す。次に、制御装置300は、TdsH>Bであるか否かを判定する(ステップS4)。Bも冷媒漏れを検出するために設定したしきい値を示す。しきい値AおよびBは空調装置の種類に応じて、適宜、最適な値を採用する。過冷却度SCがしきい値Aより小さく、かつ、吐出加熱度TdSHがしきい値Bより大きい場合、制御装置300は、冷媒漏れ有と判定する(ステップS5)。この場合、制御装置300は、冷媒漏れを報知する(ステップS6)。 Next, the control device 300 determines whether or not SC <A (step S3). A indicates a threshold value set for detecting a refrigerant leak. Next, the control device 300 determines whether or not TdsH> B (step S4). B also indicates a threshold value set for detecting a refrigerant leak. The threshold values A and B appropriately adopt optimum values according to the type of the air conditioner. When the supercooling degree SC is smaller than the threshold value A and the discharge heating degree TdSH is larger than the threshold value B, the control device 300 determines that there is a refrigerant leak (step S5). In this case, the control device 300 notifies the refrigerant leak (step S6).
 具体的には、制御装置300は、冷媒漏れを通知する信号を通信部305からリモコン400へ出力する。これにより、リモコン400の表示部には冷媒漏れの発生を示すメッセージが表示される。また、制御装置300は、冷媒漏れの発生を示す信号を制御基板301の表示部304に出力する。表示部304には冷媒漏れの発生を示すメッセージが表示される。 Specifically, the control device 300 outputs a signal notifying the refrigerant leak from the communication unit 305 to the remote controller 400. As a result, a message indicating the occurrence of refrigerant leakage is displayed on the display unit of the remote controller 400. Further, the control device 300 outputs a signal indicating the occurrence of refrigerant leakage to the display unit 304 of the control board 301. A message indicating the occurrence of refrigerant leakage is displayed on the display unit 304.
 ステップS6の後、制御装置300は、このフローチャートの処理を終える。つまり、制御装置300は、冷媒回路100に冷媒漏れが発生している場合には、水熱交換器109の汚れ診断をしない。このように、制御装置300は、水熱交換器109の汚れ診断をする前に冷媒漏れの判定をすることにより、冷媒漏れの判定に加えて、不正確な診断結果となるおそれのある汚れ診断をすることを防止している。 After step S6, the control device 300 finishes the process of this flowchart. That is, when the refrigerant circuit 100 has a refrigerant leak, the control device 300 does not diagnose the water heat exchanger 109 for contamination. As described above, the control device 300 determines the refrigerant leak before diagnosing the contamination of the water heat exchanger 109, whereby in addition to the determination of the refrigerant leak, the contamination diagnosis that may result in an inaccurate diagnosis result. Is prevented from doing.
 ステップS3またはステップS4でNOと判定した場合、制御装置300は、低圧圧力センサ111の検出値を低圧飽和温度ETに換算する(ステップS7)。次に、制御装置300は、Twout-ET>Cか否かを判定する(ステップS8)。ここで、Twoutは、水熱交換器109の内部で冷媒回路100の冷媒と熱交換した後の水の温度を示す。換言すると、Twoutは、水熱交換器109内で水が流れる第2流路の出口側の温度を示す。 If NO is determined in step S3 or step S4, the control device 300 converts the detected value of the low pressure pressure sensor 111 into the low pressure saturation temperature ET (step S7). Next, the control device 300 determines whether or not Twoout-ET> C (step S8). Here, Twout indicates the temperature of water after heat exchange with the refrigerant of the refrigerant circuit 100 inside the water heat exchanger 109. In other words, Twout indicates the temperature on the outlet side of the second flow path through which water flows in the water heat exchanger 109.
 また、Cは、水熱交換器109内の汚れを診断するために設定したしきい値を示す。この値を調整することによって、汚れ度合いに応じた診断をすることができる。しきい値Cは水熱交換器の仕様によって異ならせる。また、段階的にしきい値を設けて異常レベルを診断してもよい。Twout-ET>Cである場合、制御装置300は、汚れによる異常有と診断する(ステップS9)。換言すると、Twout-ET>Cである場合、制御装置300は、水熱交換器109に電熱不良が発生していると診断する。この電熱不良は、水熱交換器109内の流路に汚れが付着することによって流路抵抗が大きくなるために生じる。したがって、ステップS9の診断は、電熱不良の診断、または流路抵抗(水の流れ難さ)の診断であるともいえる。 Further, C indicates a threshold value set for diagnosing dirt in the water heat exchanger 109. By adjusting this value, it is possible to make a diagnosis according to the degree of dirt. The threshold value C varies depending on the specifications of the water heat exchanger. Further, the abnormality level may be diagnosed by setting a threshold value step by step. When Twout-ET> C, the control device 300 diagnoses that there is an abnormality due to dirt (step S9). In other words, when Twoout-ET> C, the control device 300 diagnoses that the water heat exchanger 109 has an electric heating defect. This electric heating failure occurs because the flow path resistance increases due to the adhesion of dirt to the flow path in the water heat exchanger 109. Therefore, it can be said that the diagnosis in step S9 is a diagnosis of poor electric heating or a diagnosis of flow path resistance (difficulty of water flow).
 制御装置300は、水熱交換器109の異常を報知する前に、ET<Dか否かを判定する(ステップS10)。ここで、Dは、低圧飽和温度ETから水熱交換器109の第2流路内の水の凍結の可能性を知るためのしきい値を示す。たとえば、しきい値Dは、水の凍結判定温度を示す。凍結判定温度は、水が凍結する温度である。凍結判定温度は、水が凍結する温度よりも1度あるいは2度程度、高くてもよい。ET<Dの場合、水熱交換器109内で水が凍結する可能性がある。このため、制御装置300は、ET<Dと判定した場合、水熱交換器109の出口側の設定温度(目標出口水温)を上昇させる(ステップS11)。これにより、水熱交換器109内で水が凍結することを防止する。その結果、水の凍結が原因で水熱交換器109が破損することを回避する。 The control device 300 determines whether or not ET <D before notifying the abnormality of the water heat exchanger 109 (step S10). Here, D indicates a threshold value for knowing the possibility of freezing of water in the second flow path of the water heat exchanger 109 from the low pressure saturation temperature ET. For example, the threshold value D indicates the freezing determination temperature of water. The freezing determination temperature is the temperature at which water freezes. The freezing determination temperature may be about 1 degree or 2 degrees higher than the temperature at which water freezes. If ET <D, the water may freeze in the water heat exchanger 109. Therefore, when the control device 300 determines that ET <D, the control device 300 raises the set temperature (target outlet water temperature) on the outlet side of the water heat exchanger 109 (step S11). This prevents the water from freezing in the water heat exchanger 109. As a result, the water heat exchanger 109 is prevented from being damaged due to freezing of water.
 ステップS10においてNOと判定したとき、制御装置300は、設定温度が低下することを禁止する(ステップS12)。ステップS12において、たとえば、ユーザがリモコン400を操作して設定温度を下げる指令をした場合、制御装置300は、その指令を受け付けない。これによって、現状の設定温度が維持される。その結果、水温が現在よりも下がることによって水が凍結してしまうことを未然に防止できる。 When NO is determined in step S10, the control device 300 prohibits the set temperature from dropping (step S12). In step S12, for example, when the user operates the remote controller 400 to give a command to lower the set temperature, the control device 300 does not accept the command. As a result, the current set temperature is maintained. As a result, it is possible to prevent the water from freezing due to the water temperature being lower than the present.
 このように、制御装置300は、Twout-ET>Cである場合に、水熱交換器109の汚れの異常を報知するステップに進むのではなく、水の凍結の可能性を判定し、水の凍結を防止する処理を実行する。このため、単に水熱交換器109の汚れの異常を報知のみの場合と比較して、水の凍結を未然に防止できる。なお、制御装置300は、水の凍結の可能性を報知するものとしてもよい。 As described above, when Twout-ET> C, the control device 300 determines the possibility of freezing of water and determines the possibility of freezing of water, instead of proceeding to the step of notifying the abnormality of the contamination of the water heat exchanger 109. Perform processing to prevent freezing. Therefore, it is possible to prevent the water from freezing, as compared with the case where the abnormality of the contamination of the water heat exchanger 109 is only notified. The control device 300 may notify the possibility of freezing of water.
 ステップS11またはS12の後、制御装置300は、汚れ異常を報知する(ステップS13)。具体的には、制御装置300は、水熱交換器109が汚れていることを通知する信号を通信部305からリモコン400へ出力する。これにより、リモコン400の表示部には汚れ異常の発生を示すメッセージが表示される。また、制御装置300は、水熱交換器109が汚れていることを示す信号を制御基板301の表示部304に出力する。表示部304には汚れ異常の発生を示すメッセージが表示される。ステップS13の後、制御装置300は、このフローチャートの処理を終える。 After step S11 or S12, the control device 300 notifies the dirt abnormality (step S13). Specifically, the control device 300 outputs a signal notifying that the water heat exchanger 109 is dirty from the communication unit 305 to the remote controller 400. As a result, a message indicating the occurrence of a dirt abnormality is displayed on the display unit of the remote controller 400. Further, the control device 300 outputs a signal indicating that the water heat exchanger 109 is dirty to the display unit 304 of the control board 301. A message indicating the occurrence of a dirt abnormality is displayed on the display unit 304. After step S13, the control device 300 ends the processing of this flowchart.
 なお、図2のフローチャートにおいて、水熱交換器109の汚れ診断の後に冷媒漏れの有無を判定してもよい。また、図2のフローチャートにおいて、ステップS13の汚れ異常の報知の後に、ステップS10~S12の処理を実行してもよい。また、制御装置300は、ステップS8において水熱交換器109の汚れ有と判定した場合、リモコン400の設定値に応じて圧縮機101を制御する。 In the flowchart of FIG. 2, the presence or absence of refrigerant leakage may be determined after the dirt diagnosis of the water heat exchanger 109. Further, in the flowchart of FIG. 2, the processes of steps S10 to S12 may be executed after the notification of the dirt abnormality in step S13. Further, when the control device 300 determines in step S8 that the water heat exchanger 109 is dirty, the control device 300 controls the compressor 101 according to the set value of the remote controller 400.
 <暖房運転時の汚れ診断フロー>
 図4は、暖房運転時の汚れ診断のフローチャートを示す図である。このフローチャートは、制御装置300が実行する処理を示している。本処理に必要な制御プログラムは、制御装置300のメモリ303に格納されている。図4を用いて暖房運転時の診断フローの一例を説明する。
<Dirt diagnosis flow during heating operation>
FIG. 4 is a diagram showing a flowchart of dirt diagnosis during heating operation. This flowchart shows the process executed by the control device 300. The control program required for this process is stored in the memory 303 of the control device 300. An example of the diagnostic flow during the heating operation will be described with reference to FIG.
 制御装置300は、冷媒回路100および水回路200から運転データを収集する(ステップS100)。制御装置300は、水熱交換器109の汚れ診断をする前に、冷媒回路100の冷媒漏れの有無を判定する。その理由は、すでに説明したとおりである。すなわち、冷媒回路100で冷媒漏れが生じていると、高圧飽和温度CTが低下する。高圧飽和温度CTは、暖房運転時に水熱交換器109の汚れ診断をする際に用いるパラメータであるため、冷媒漏れが生じていると、水熱交換器109の汚れ診断に誤りが生じてしまう。 The control device 300 collects operation data from the refrigerant circuit 100 and the water circuit 200 (step S100). The control device 300 determines whether or not there is a refrigerant leak in the refrigerant circuit 100 before diagnosing the contamination of the water heat exchanger 109. The reason is as already explained. That is, when the refrigerant leaks in the refrigerant circuit 100, the high-pressure saturation temperature CT decreases. Since the high-pressure saturation temperature CT is a parameter used when diagnosing dirt on the water heat exchanger 109 during heating operation, if a refrigerant leak occurs, an error will occur in the dirt diagnosis on the water heat exchanger 109.
 そこで、制御装置300は、先に冷媒漏れの有無を判定する。まず、制御装置300は、吐出過熱度TdSHを算出する(ステップS101)。吐出過熱度TdSHは、すでに示した式(4)を用いて算出する。すなわち、吐出温度Tdから高圧飽和温度CTを差し引くことによって吐出過熱度TdSHが算出される。ここで、吐出温度Tdは、吐出温度センサ102の検出値から得られる。また、高圧飽和温度CTは、高圧圧力センサ103から得られた圧力Pdを飽和温度に換算することによって求められる。 Therefore, the control device 300 first determines whether or not there is a refrigerant leak. First, the control device 300 calculates the discharge superheat degree TdSH (step S101). The discharge superheat degree TdSH is calculated using the equation (4) already shown. That is, the discharge superheat degree TdSH is calculated by subtracting the high pressure saturation temperature CT from the discharge temperature Td. Here, the discharge temperature Td is obtained from the detection value of the discharge temperature sensor 102. Further, the high pressure saturation temperature CT is obtained by converting the pressure Pd obtained from the high pressure pressure sensor 103 into the saturation temperature.
 特に、暖房運転時は、余剰冷媒がアキュムレータ110に滞留しやすい。このため、制御装置300は、冷媒漏れしていないときと冷媒漏れしているときとの差異が明確である吐出過熱度TdSHを用いて、冷媒漏れの有無を判定する。 In particular, during heating operation, excess refrigerant tends to stay in the accumulator 110. Therefore, the control device 300 determines the presence or absence of the refrigerant leak by using the discharge superheat degree TdSH in which the difference between the time when the refrigerant is not leaking and the time when the refrigerant is leaking is clear.
 次に、制御装置300は、TdsH>Eであるか否かを判定する(ステップS102)。Eは冷媒漏れを検出ために設定したしきい値を示す。しきい値Eは空調装置の種類によって異ならせる。吐出加熱度TdSHがしきい値Eより大きい場合、制御装置300は、冷媒漏れ有と判定する(ステップS103)。この場合、制御装置300は、冷媒漏れを報知する(ステップS104)。ステップS104の処理は、すでに説明したステップS6と同じである。その結果、リモコン400の表示部および制御基板301の表示部304に冷媒漏れの発生を示すメッセージが表示される。 Next, the control device 300 determines whether or not TdsH> E (step S102). E indicates a threshold value set for detecting a refrigerant leak. The threshold value E varies depending on the type of air conditioner. When the discharge heating degree TdSH is larger than the threshold value E, the control device 300 determines that there is a refrigerant leak (step S103). In this case, the control device 300 notifies the refrigerant leak (step S104). The process of step S104 is the same as that of step S6 already described. As a result, a message indicating the occurrence of refrigerant leakage is displayed on the display unit of the remote controller 400 and the display unit 304 of the control board 301.
 ステップS104の後、制御装置300は、このフローチャートの処理を終える。つまり、制御装置300は、冷媒回路100に冷媒漏れが発生している場合には、水熱交換器109の汚れ診断をしない。このように、制御部は、水熱交換器109の汚れ診断をする前に冷媒漏れの判定をすることにより、冷媒漏れの判定に加えて、不正確な診断結果となるおそれのある汚れ診断をすることを防止している。 After step S104, the control device 300 ends the processing of this flowchart. That is, when the refrigerant circuit 100 has a refrigerant leak, the control device 300 does not diagnose the water heat exchanger 109 for contamination. In this way, the control unit determines the refrigerant leakage before diagnosing the contamination of the water heat exchanger 109, so that in addition to the determination of the refrigerant leakage, the contamination diagnosis that may result in an inaccurate diagnosis result is performed. It prevents you from doing so.
 ステップS102でNOと判定した場合、制御装置300は、高圧圧力センサ103の検出値を高圧飽和温度CTに換算する(ステップS105)。次に、制御装置300は、CT-Twout>Fか否かを判定する(ステップS106)。ここで、Twoutは、水熱交換器109の内部で冷媒回路100の冷媒と熱交換した後の水の温度を示す。換言すると、Twoutは、水熱交換器109内で水が流れる第2流路の出口側の温度を示す。 If NO is determined in step S102, the control device 300 converts the detected value of the high pressure pressure sensor 103 into the high pressure saturation temperature CT (step S105). Next, the control device 300 determines whether or not CT-Twout> F (step S106). Here, Twout indicates the temperature of water after heat exchange with the refrigerant of the refrigerant circuit 100 inside the water heat exchanger 109. In other words, Twout indicates the temperature on the outlet side of the second flow path through which water flows in the water heat exchanger 109.
 また、Fは、水熱交換器109内の汚れを診断するために設定したしきい値を示す。この値を調整することによって、汚れ度合いに応じた診断をすることができる。しきい値Fは水熱交換器の仕様によって異ならせる。また、段階的にしきい値を設けて異常レベルを診断してもよい。CT-Twout>Fである場合、制御装置300は、汚れによる異常有と診断する(ステップS107)。換言すると、CT-Twout>Fである場合、制御装置300は、水熱交換器109に電熱不良が発生していると診断する。この電熱不良は、水熱交換器109内の流路に汚れが付着することによって流路抵抗が大きくなるために生じる。したがって、ステップS107の診断は、電熱不良の診断、または流路抵抗(水の流れ難さ)の診断であるともいえる。 Further, F indicates a threshold value set for diagnosing dirt in the water heat exchanger 109. By adjusting this value, it is possible to make a diagnosis according to the degree of dirt. The threshold value F varies depending on the specifications of the water heat exchanger. Further, the abnormality level may be diagnosed by setting a threshold value step by step. When CT-Twout> F, the control device 300 diagnoses that there is an abnormality due to dirt (step S107). In other words, when CT-Twout> F, the control device 300 diagnoses that the water heat exchanger 109 has an electric heating defect. This electric heating failure occurs because the flow path resistance increases due to the adhesion of dirt to the flow path in the water heat exchanger 109. Therefore, it can be said that the diagnosis in step S107 is a diagnosis of poor electric heating or a diagnosis of flow path resistance (difficulty of water flow).
 ステップS106の後、制御装置300は、汚れ異常を報知する(ステップS108)。ステップS108の処理は、すでに説明したステップS13と同じである。その結果、リモコン400の表示部および制御基板301の表示部304に汚れ異常の発生を示すメッセージが表示される。ステップS108の後、制御装置300は、このフローチャートの処理を終える。 After step S106, the control device 300 notifies the dirt abnormality (step S108). The process of step S108 is the same as that of step S13 already described. As a result, a message indicating the occurrence of a dirt abnormality is displayed on the display unit of the remote controller 400 and the display unit 304 of the control board 301. After step S108, the control device 300 ends the processing of this flowchart.
 なお、図4のフローチャートにおいて、水熱交換器109の汚れ診断の後に冷媒漏れの有無を判定してもよい。また、制御装置300は、ステップS107において水熱交換器109の汚れ有と判定した場合、リモコン400の設定値に応じて圧縮機101を制御する。 In the flowchart of FIG. 4, the presence or absence of refrigerant leakage may be determined after the dirt diagnosis of the water heat exchanger 109. Further, when the control device 300 determines in step S107 that the water heat exchanger 109 is dirty, the control device 300 controls the compressor 101 according to the set value of the remote controller 400.
 <詰まり箇所の特定>
 図5は、詰まりが水熱交換器109に発生しているかストレーナ209に発生しているかを判定するためのフローチャートである。このフローチャートは、制御装置300が実行する処理を示している。本処理に必要な制御プログラムは、制御装置300のメモリ303に格納されている。
<Identification of jammed area>
FIG. 5 is a flowchart for determining whether the clogging has occurred in the water heat exchanger 109 or the strainer 209. This flowchart shows the process executed by the control device 300. The control program required for this process is stored in the memory 303 of the control device 300.
 図5を参照して、制御装置300は、Gw<Gであるか否かを判定する(ステップS200)。ここで、Gwは、水回路200を循環する水の流量を示す。Gwは、流量計205の計測値から特定される。また、Gは、水の流量の度合いを判定するために設定したしきい値を示す。水Gw<Gであるか否かを判定することで、水回路200の水の流れが基準値よりも低下していないかどうかを判定できる。また、しきい値Gを調整することによって、水回路200で詰まりが発生していないかどうかを判定できる。 With reference to FIG. 5, the control device 300 determines whether or not Gw <G (step S200). Here, Gw indicates the flow rate of water circulating in the water circuit 200. Gw is specified from the measured value of the flow meter 205. Further, G indicates a threshold value set for determining the degree of water flow rate. By determining whether or not water Gw <G, it is possible to determine whether or not the flow of water in the water circuit 200 is lower than the reference value. Further, by adjusting the threshold value G, it can be determined whether or not the water circuit 200 is clogged.
 ステップS200のかっこ内に示すように、制御装置300は、Gw<Gを判定することに替えて、△Pw>Hを判定してもよい。ここで、△Pwは、水熱交換器109の水回路200側の入口と出口との差圧を示す。この差圧は、差圧計206の検出値から特定される。また、Hは、差圧の度合いを判定するために設定したしきい値を示す。 As shown in the parentheses of step S200, the control device 300 may determine ΔPw> H instead of determining Gw <G. Here, ΔPw indicates the differential pressure between the inlet and the outlet of the water heat exchanger 109 on the water circuit 200 side. This differential pressure is specified from the detected value of the differential pressure gauge 206. Further, H indicates a threshold value set for determining the degree of differential pressure.
 ステップS200でNOと判定した場合、制御装置300は処理を終える。ステップS200でYESと判定した場合、制御装置300は、水熱交換器109の汚れ異常有と診断したか否かを判定する(ステップS201)。制御装置300は、冷房運転時には図2のステップS9の判定結果を、暖房運転時には図4のステップS107の判定結果を、それぞれ参照して、ステップS201の判定をする。 If NO is determined in step S200, the control device 300 ends the process. If YES is determined in step S200, the control device 300 determines whether or not the water heat exchanger 109 is diagnosed as having an abnormality in contamination (step S201). The control device 300 makes a determination in step S201 by referring to the determination result of step S9 in FIG. 2 during the cooling operation and the determination result in step S107 in FIG. 4 during the heating operation.
 制御装置300は、ステップS201において、水熱交換器109の汚れ異常有と判定したときには、ステップS200の水量低下の原因が水熱交換器109にあると判定する。すなわち、制御装置300は、水熱交換器109に詰まり有と判定する(ステップS202)。制御装置300は、ステップS201において、水熱交換器109の汚れ異常無しと判定したときには、ステップS200の水量低下の原因がストレーナ209にあると判定する。すなわち、制御装置300は、ストレーナ209に詰まり有と判定する(ステップS204)。 When the control device 300 determines in step S201 that the water heat exchanger 109 is dirty, it determines that the cause of the decrease in the amount of water in step S200 is the water heat exchanger 109. That is, the control device 300 determines that the water heat exchanger 109 is clogged (step S202). When the control device 300 determines in step S201 that there is no contamination abnormality in the water heat exchanger 109, it determines that the cause of the decrease in the amount of water in step S200 is the strainer 209. That is, the control device 300 determines that the strainer 209 is clogged (step S204).
 制御装置300は、ステップS202にて水熱交換器109に詰まりが生じていると判定したときには、水熱交換器109に詰まりが生じていることを報知する(ステップS203)。制御装置300は、ステップS204にてストレーナ209に詰まりが生じていると判定したときには、ストレーナ209に詰まりが生じていることを報知する(ステップS205)。具体的には、制御装置300は、水熱交換器109での詰まりあるいはストレーナ209での詰まりを通知する信号を通信部305からリモコン400へ出力する。これにより、リモコン400の表示部および制御装置300の表示部304に、水熱交換器109あるいはストレーナ209での詰まりを示すメッセージが表示される。制御装置300は、ステップS203、ステップS205の後、このフローチャートの処理を終える。 When the control device 300 determines in step S202 that the water heat exchanger 109 is clogged, the control device 300 notifies that the water heat exchanger 109 is clogged (step S203). When the control device 300 determines in step S204 that the strainer 209 is clogged, the control device 300 notifies that the strainer 209 is clogged (step S205). Specifically, the control device 300 outputs a signal notifying the clogging in the water heat exchanger 109 or the clogging in the strainer 209 from the communication unit 305 to the remote controller 400. As a result, a message indicating clogging in the water heat exchanger 109 or the strainer 209 is displayed on the display unit of the remote controller 400 and the display unit 304 of the control device 300. The control device 300 ends the processing of this flowchart after step S203 and step S205.
 このように、制御装置300は、水熱交換器109の汚れ診断のみならず、詰まりの箇所を特定し、その箇所を報知する機能を備える。換言すると、制御装置300は、水熱交換器109とストレーナ209とを併せた広範囲での水路の詰まりを特定でき、さらに、その詰まりが水熱交換器109に生じているのか、ストレーナ209に生じているのかを特定できる。 As described above, the control device 300 has a function of not only diagnosing the dirt of the water heat exchanger 109 but also identifying the location of the clogging and notifying the location of the clogging. In other words, the control device 300 can identify the blockage of the water channel in a wide range including the water heat exchanger 109 and the strainer 209, and further, whether the blockage occurs in the water heat exchanger 109 or occurs in the strainer 209. You can identify if it is.
 <汚れの進行状況のグラフ化>
 図6は、汚れが進行する状況を示すグラフである。図6は、冷房運転時のグラフである。制御装置300は、予め設定されたタイミングで水熱交換器109の汚れ状況を算出し、算出結果をメモリ303に記憶する。制御装置300は、リモコン400の操作または制御基板301に対する直接の操作に応じて、図6に示すグラフを表示する。このグラフは、制御基板301の表示部304に表示される。また、このグラフは、リモコン400の表示部401に表示される。
<Graphing the progress of dirt>
FIG. 6 is a graph showing a situation in which dirt progresses. FIG. 6 is a graph during cooling operation. The control device 300 calculates the dirt state of the water heat exchanger 109 at a preset timing, and stores the calculation result in the memory 303. The control device 300 displays the graph shown in FIG. 6 in response to the operation of the remote controller 400 or the direct operation of the control board 301. This graph is displayed on the display unit 304 of the control board 301. Further, this graph is displayed on the display unit 401 of the remote controller 400.
 図6を参照して、グラフは、縦軸が「Twout-ET」を示し、横軸が時間を示す。グラフには、汚れ異常と判定される「Twout-ET」の限度が「異常」という表示によって示されている。30A,30B,30C,30D,および30Dは、異なるタイミングで算出された「Twout-ET」の値を示す。このグラフを見ることで、時間の経過とともに、「Twout-ET」がしきい値に近づき、汚れ度合いが増していることを簡単に理解できる。また、このグラフを見ることで、水熱交換器109が30Dの段階で汚れ異常と診断される状態となり、その後も汚れ度合いが進行していることを理解できる。したがって、制御装置300がこのようなグラフを表示することによって、ユーザまたは定期点検の作業者の利便性が向上される。 With reference to FIG. 6, in the graph, the vertical axis indicates “Twout-ET” and the horizontal axis indicates time. In the graph, the limit of "Twout-ET" determined to be a stain abnormality is indicated by the display of "abnormality". 30A, 30B, 30C, 30D, and 30D indicate the values of "Twout-ET" calculated at different timings. By looking at this graph, it can be easily understood that “Twout-ET” approaches the threshold value and the degree of contamination increases with the passage of time. Further, by looking at this graph, it can be understood that the water heat exchanger 109 is in a state of being diagnosed as having an abnormality in dirt at the stage of 30D, and the degree of dirt is still progressing. Therefore, by displaying such a graph on the control device 300, the convenience of the user or the operator of the periodic inspection is improved.
 図6のグラフは、冷房運転時のものである。制御装置300は、暖房運転時に対応するグラフも同様に表示してもよい。この場合、縦軸には、「CT-Twout」を表示する。 The graph in FIG. 6 is for cooling operation. The control device 300 may also display a graph corresponding to the heating operation. In this case, "CT-Twout" is displayed on the vertical axis.
 図7は、水熱交換器内部の汚れの進行を記録するためのフローチャートである。このフローチャートは、制御装置300が実行する処理を示している。本処理に必要な制御プログラムは、制御装置300のメモリ303に格納されている。本処理によって、たとえば、図6に示したグラフがユーザに提示される。 FIG. 7 is a flowchart for recording the progress of dirt inside the water heat exchanger. This flowchart shows the process executed by the control device 300. The control program required for this process is stored in the memory 303 of the control device 300. By this process, for example, the graph shown in FIG. 6 is presented to the user.
 まず、制御装置300は、設定された算出タイミングであるか否かを判定する(ステップS300)。算出タイミングは任意に設定できる。たとえば、リモコン400または制御基板301を用いて、算出タイミングを自由に設定できるものとしてもよい。次に、制御基板301は、冷媒回路100および水回路200から運転データを収集する(ステップS301)。次に、制御装置300は、収集した運転データからTwout-ETを算出する(ステップS302)。Twout-ETの算出手順はすでに説明したので、ここではその説明を繰り返さない。 First, the control device 300 determines whether or not it is the set calculation timing (step S300). The calculation timing can be set arbitrarily. For example, the calculation timing may be freely set by using the remote controller 400 or the control board 301. Next, the control board 301 collects operation data from the refrigerant circuit 100 and the water circuit 200 (step S301). Next, the control device 300 calculates Twoout-ET from the collected operation data (step S302). Since the procedure for calculating Twoout-ET has already been described, the description will not be repeated here.
 次に、制御装置300は、算出結果を算出日時とともにメモリ303に記憶する(ステップS303)。次に、制御装置300は、グラフを表示する指示が有るか否かを判定する(ステップS304)。本実施の形態では、リモコン400の操作、または制御基板301での操作により、グラフを表示する指示を入力することができる。制御装置300は、それらの操作による指示があったか否かを判定する。制御装置300は、グラフを表示する指示有と判定した場合、蓄積されたデータをメモリ303を読み出し、グラフにして表示する(ステップS305)。その後、制御装置300は、このフローチャートの処理を終える。 Next, the control device 300 stores the calculation result in the memory 303 together with the calculation date and time (step S303). Next, the control device 300 determines whether or not there is an instruction to display the graph (step S304). In the present embodiment, an instruction to display a graph can be input by operating the remote controller 400 or the control board 301. The control device 300 determines whether or not there is an instruction by those operations. When the control device 300 determines that there is an instruction to display a graph, the control device 300 reads out the memory 303 and displays it as a graph (step S305). After that, the control device 300 finishes the processing of this flowchart.
 定期点検などを想定して、差温「Twout-ET」を定期的に制御装置300に算出させるとよい。これにより、たとえば、定期点検の作業者は、水熱交換器109の汚れの進行を把握することができる。たとえば、作業者は、図6の算出結果30Cを見ることによって、水熱交換器109が異常状態に近づいていることを理解できる。したがって、作業者は、次回の定期点検の際に水配管20を点検し、水熱交換器109の内部を洗浄するなど、計画的な保守点検が可能になる。その結果、不具合が冷凍サイクル装置に発生することを防止できる。なお、水熱交換器109の異常を判定するためのしきい値を段階的に複数設定してもよい。 Assuming periodic inspections, it is advisable to have the control device 300 calculate the differential temperature "Twout-ET" on a regular basis. Thereby, for example, the worker of the periodic inspection can grasp the progress of the contamination of the water heat exchanger 109. For example, the operator can understand that the water heat exchanger 109 is approaching an abnormal state by looking at the calculation result 30C in FIG. Therefore, the operator can perform planned maintenance and inspection such as inspecting the water pipe 20 at the next periodic inspection and cleaning the inside of the water heat exchanger 109. As a result, it is possible to prevent defects from occurring in the refrigeration cycle device. A plurality of threshold values for determining an abnormality in the water heat exchanger 109 may be set stepwise.
 たとえば、第1しきい値と、第1しきい値よりも値の大きい第2しきい値とを設定する。制御装置300は、水熱交換器109の汚れが第1しきい値を超えたか否か、水熱交換器109の汚れが第2しきい値を超えたか否かを段階的に判定するものとする。 For example, set a first threshold value and a second threshold value having a larger value than the first threshold value. The control device 300 shall stepwise determine whether or not the dirt on the water heat exchanger 109 exceeds the first threshold value and whether or not the dirt on the water heat exchanger 109 exceeds the second threshold value. do.
 実施の形態2.
 図8は、実施の形態2に係る冷凍サイクル装置2の構成を示す図である。実施の形態2に係る冷凍サイクル装置2は、1つの水回路200に対して接続される冷媒回路の数が実施の形態2に係る冷凍サイクル装置1と異なる。実施の形態1に係る冷凍サイクル装置1は、1つの水回路200に対して1つの冷媒回路100が接続されている。これに対して、実施の形態2に係る冷凍サイクル装置2は、1つの水回路200に対して複数の冷媒回路A100a,冷媒回路B100bが接続されている。
Embodiment 2.
FIG. 8 is a diagram showing the configuration of the refrigeration cycle device 2 according to the second embodiment. The refrigerating cycle device 2 according to the second embodiment differs from the refrigerating cycle device 1 according to the second embodiment in the number of refrigerant circuits connected to one water circuit 200. In the refrigeration cycle device 1 according to the first embodiment, one refrigerant circuit 100 is connected to one water circuit 200. On the other hand, in the refrigerating cycle device 2 according to the second embodiment, a plurality of refrigerant circuits A100a and a refrigerant circuit B100b are connected to one water circuit 200.
 冷媒回路A100aは、圧縮機101aと、四方弁104aと、熱交換器105aと、ファン106aと、絞り機構108aと、水熱交換器109aと、アキュムレータ110aと、それらを接続する冷媒配管10aとを含む。冷媒回路B100bは、圧縮機101bと、四方弁104bと、熱交換器105bと、ファン106bと、絞り機構108bと、水熱交換器109bと、アキュムレータ110bと、それらを接続する冷媒配管10bとを含む。これらの各構成は、実施の形態1として説明した対応する構成と同様の機能を有する。 The refrigerant circuit A100a includes a compressor 101a, a four-way valve 104a, a heat exchanger 105a, a fan 106a, a throttle mechanism 108a, a water heat exchanger 109a, an accumulator 110a, and a refrigerant pipe 10a connecting them. include. The refrigerant circuit B100b includes a compressor 101b, a four-way valve 104b, a heat exchanger 105b, a fan 106b, a throttle mechanism 108b, a water heat exchanger 109b, an accumulator 110b, and a refrigerant pipe 10b connecting them. include. Each of these configurations has the same function as the corresponding configuration described as the first embodiment.
 実施の形態2に係る水回路200は、2つの水熱交換器A109a,水熱交換器B109bと直列接続されている。水熱交換器A109aの入り口側と水熱交換器B109bの出口側との差圧を検出する差圧計206が水回路200に設けられている。冷媒回路A100a,冷媒回路B100bは、水熱交換器B109bの出口の水温が目標の設定値になるよう、圧縮機101a,101bの周波数を制御する。実施の形態2に係る冷凍サイクル装置2は、実施の形態1として説明した各処理を実行可能なものである。その結果、制御装置300は、水熱交換器A109a,水熱交換器B109bの汚れ異常を診断することができる。 The water circuit 200 according to the second embodiment is connected in series with two water heat exchangers A109a and a water heat exchanger B109b. A differential pressure gauge 206 for detecting the differential pressure between the inlet side of the water heat exchanger A109a and the outlet side of the water heat exchanger B109b is provided in the water circuit 200. The refrigerant circuit A100a and the refrigerant circuit B100b control the frequencies of the compressors 101a and 101b so that the water temperature at the outlet of the water heat exchanger B109b becomes a target set value. The refrigeration cycle device 2 according to the second embodiment can execute each process described as the first embodiment. As a result, the control device 300 can diagnose the dirt abnormality of the water heat exchanger A109a and the water heat exchanger B109b.
 図9は、実施の形態2に係る冷凍サイクル装置2の制御の内容を示すフローチャートである。このフローチャートは、図8の制御装置300が実行する処理を示している。本処理に必要な制御プログラムは、図8の制御装置300のメモリ303に格納されている。 FIG. 9 is a flowchart showing the content of control of the refrigeration cycle device 2 according to the second embodiment. This flowchart shows a process executed by the control device 300 of FIG. The control program required for this process is stored in the memory 303 of the control device 300 of FIG.
 制御装置300は、水熱交換器A109aに汚れ異常が有るか否かを診断する(ステップS400)。水熱交換器A109aに汚れ異常が無い場合、制御装置300は、水熱交換器B109bに汚れ異常が有るか否かを診断する(ステップS401)。水熱交換器B109bにも汚れ異常が無い場合、制御装置300は、このフローチャートの処理を終える。水熱交換器B109bに汚れ異常が有る場合、制御装置300は、冷媒回路B100bを停止する(ステップS403)。これにより、水熱交換器B109bの汚れ異常が冷凍サイクル装置2に悪影響を及ぼすことを防止できる。さらに制御装置300は、水熱交換器B109bの汚れ異常を報知する(ステップS404)。 The control device 300 diagnoses whether or not the water heat exchanger A109a has a dirt abnormality (step S400). When the water heat exchanger A109a has no dirt abnormality, the control device 300 diagnoses whether or not the water heat exchanger B109b has a dirt abnormality (step S401). If there is no dirt abnormality in the water heat exchanger B109b, the control device 300 ends the process of this flowchart. If the water heat exchanger B109b is dirty, the control device 300 stops the refrigerant circuit B100b (step S403). As a result, it is possible to prevent the abnormal contamination of the water heat exchanger B109b from adversely affecting the refrigeration cycle device 2. Further, the control device 300 notifies the water heat exchanger B109b of a dirt abnormality (step S404).
 ステップS404の後、制御装置300は、冷媒回路A100aの圧縮機101aを調整する(ステップS405)。この調整は、水熱交換器B109bの出口側の温度(温度センサ204にて検出)を冷媒回路A100aのみで目標出口温度調整するためのものである。次に、制御装置300は、水熱交換器B109bの出口側の温度が目標出口温度に達したか否かを判定する(ステップS406)。制御装置300は、ステップS406でYESと判定できるまで、ステップS405での圧縮機101aの調整を継続する。制御装置300は、ステップS406にてYESと判定したとき、このフローチャートの処理を終える。 After step S404, the control device 300 adjusts the compressor 101a of the refrigerant circuit A100a (step S405). This adjustment is for adjusting the temperature on the outlet side of the water heat exchanger B109b (detected by the temperature sensor 204) to the target outlet temperature only by the refrigerant circuit A100a. Next, the control device 300 determines whether or not the temperature on the outlet side of the water heat exchanger B109b has reached the target outlet temperature (step S406). The control device 300 continues the adjustment of the compressor 101a in step S405 until it can be determined as YES in step S406. When the control device 300 determines YES in step S406, the control device 300 ends the processing of this flowchart.
 制御装置300は、ステップS400にて水熱交換器A109aに汚れ異常が有ると診断したとき、水熱交換器B109bに汚れ異常が有るか否かを診断する(ステップS402)。水熱交換器B109bに汚れ異常が無い場合、制御装置300は、冷媒回路A100aを停止する(ステップS407)。これにより、水熱交換器A109aの汚れ異常が冷凍サイクル装置2に悪影響を及ぼすことを防止できる。さらに制御装置300は、水熱交換器A109aの汚れ異常を報知する(ステップS408)。 When the control device 300 diagnoses that the water heat exchanger A109a has a dirt abnormality in step S400, it diagnoses whether or not the water heat exchanger B109b has a dirt abnormality (step S402). If the water heat exchanger B109b is not dirty, the control device 300 stops the refrigerant circuit A100a (step S407). As a result, it is possible to prevent the abnormal contamination of the water heat exchanger A109a from adversely affecting the refrigeration cycle device 2. Further, the control device 300 notifies the water heat exchanger A109a of a dirt abnormality (step S408).
 ステップS408の後、制御装置300は、冷媒回路B100bの圧縮機101bを調整する(ステップS409)。この調整は、水熱交換器B109bの出口側の温度(温度センサ204にて検出)を冷媒回路B100bのみで目標出口温度に調整するためのものである。次に、制御装置300は、水熱交換器B109bの出口側の温度が目標出口温度に達したか否かを判定する(ステップS410)。制御装置300は、ステップS410でYESと判定できるまで、ステップS409での圧縮機101bの調整を継続する。制御装置300は、ステップS410にてYESと判定したとき、このフローチャートの処理を終える。 After step S408, the control device 300 adjusts the compressor 101b of the refrigerant circuit B100b (step S409). This adjustment is for adjusting the temperature on the outlet side of the water heat exchanger B109b (detected by the temperature sensor 204) to the target outlet temperature only by the refrigerant circuit B100b. Next, the control device 300 determines whether or not the temperature on the outlet side of the water heat exchanger B109b has reached the target outlet temperature (step S410). The control device 300 continues the adjustment of the compressor 101b in step S409 until it can be determined as YES in step S410. When the control device 300 determines YES in step S410, the control device 300 ends the processing of this flowchart.
 制御装置300は、ステップS402でYESと判定した場合、つまり、水熱交換器A109a,水熱交換器B109bともに汚れ異常と診断した場合、冷媒回路A100a,冷媒回路B100bを停止する(ステップS411)。さらに、制御装置300は、水熱交換器A109a,水熱交換器B109bの汚れ異常を報知(ステップS412)し、このフローチャートの処理を終える。 When the control device 300 determines YES in step S402, that is, when both the water heat exchanger A109a and the water heat exchanger B109b are diagnosed as having an abnormality in contamination, the refrigerant circuit A100a and the refrigerant circuit B100b are stopped (step S411). Further, the control device 300 notifies the water heat exchanger A109a and the water heat exchanger B109b of a dirt abnormality (step S412), and ends the process of this flowchart.
 なお、ステップS400~ステップS402の診断方法は、および、ステップS404、ステップS408、およびステップS412の報知方法は、図2および図4を用いて説明した実施の形態1と同様である。このフローチャートでは、水熱交換器A109a,水熱交換器B109bともに汚れ異常と診断された場合、冷媒回路A100a,冷媒回路B100bを停止するものとしている。しかし、このような処理に替えて、冷凍サイクル装置2の即座の停止を避けるための様々な処理を適用してもよい。たとえば、汚れ異常の程度の低い方の冷媒回路での運転を継続することが考えられる。 The diagnostic method of steps S400 to S402 and the notification method of steps S404, S408, and S412 are the same as those of the first embodiment described with reference to FIGS. 2 and 4. In this flowchart, when both the water heat exchanger A109a and the water heat exchanger B109b are diagnosed as having an abnormality in contamination, the refrigerant circuit A100a and the refrigerant circuit B100b are stopped. However, instead of such a process, various processes for avoiding an immediate stop of the refrigeration cycle device 2 may be applied. For example, it is conceivable to continue the operation in the refrigerant circuit having the lower degree of contamination abnormality.
 実施の形態2として、図8では、1つの水回路200に対して2つの冷媒回路A100a,冷媒回路B100bを設けた例を説明した。しかし、さらに多くの冷媒回路を1つの水回路200に対して設けてもよい。冷媒回路A100aを流れる冷媒と、冷媒回路B100bを流れる冷媒とは、同一の種類の冷媒であってもよく、異なる種類の冷媒であってもよい。 As the second embodiment, FIG. 8 has described an example in which two refrigerant circuits A100a and two refrigerant circuits B100b are provided for one water circuit 200. However, more refrigerant circuits may be provided for one water circuit 200. The refrigerant flowing through the refrigerant circuit A100a and the refrigerant flowing through the refrigerant circuit B100b may be the same type of refrigerant or different types of refrigerant.
 実施の形態3.
 図10は、実施の形態3に係る冷凍サイクル装置3の構成を示す図である。実施の形態3に係る冷凍サイクル装置2では、1つの水回路200に対して冷媒回路群が並列接続されている。図10に示すとおり、実施の形態3に係る冷凍サイクル装置2では、冷媒回路100aと冷媒回路100bとが直列接続されており、この2つの冷媒回路が第1群の冷媒回路を構成する。一方、冷媒回路100cと冷媒回路100dとが直列接続されており、この2つの冷媒回路が第2群の冷媒回路を構成する。水回路200には、これら第1群の冷媒回路と第2群の冷媒回路とが並列接続されている。冷媒回路100a~100dは、それぞれ、水熱交換器(プレート式熱交換器)を含む。
Embodiment 3.
FIG. 10 is a diagram showing the configuration of the refrigeration cycle device 3 according to the third embodiment. In the refrigeration cycle device 2 according to the third embodiment, the refrigerant circuit group is connected in parallel to one water circuit 200. As shown in FIG. 10, in the refrigerating cycle device 2 according to the third embodiment, the refrigerant circuit 100a and the refrigerant circuit 100b are connected in series, and these two refrigerant circuits form the first group of refrigerant circuits. On the other hand, the refrigerant circuit 100c and the refrigerant circuit 100d are connected in series, and these two refrigerant circuits form the second group of refrigerant circuits. In the water circuit 200, the refrigerant circuit of the first group and the refrigerant circuit of the second group are connected in parallel. Each of the refrigerant circuits 100a to 100d includes a water heat exchanger (plate heat exchanger).
 実施の形態3に関わる冷凍サイクル装置3は、実施の形態1および実施の形態2に関わる処理を同様に実行する。たとえば、水熱交換器の汚れ診断は、水熱交換器毎に実行し、冷媒回路の冷媒漏れの判定は、冷媒回路毎に実行するものとする。 The refrigeration cycle apparatus 3 according to the third embodiment similarly executes the processes according to the first embodiment and the second embodiment. For example, the dirt diagnosis of the water heat exchanger is executed for each water heat exchanger, and the determination of the refrigerant leakage of the refrigerant circuit is executed for each refrigerant circuit.
 実施の形態4.
 図11は、実施の形態4に係る冷凍サイクル装置の水熱交換器部分を示す図である。実施の形態4は、飽和温度を温度センサで直接、検出する例を示す。図11に示すように、実施の形態4では、飽和温度を検出するための飽和温度センサ210が水熱交換器109の内部に設けられている。実施の形態1では、高圧飽和温度CTおよび低圧飽和温度ETを冷媒回路100に設けた圧力センサ(高圧圧力センサ103、低圧圧力センサ111)の圧力から算出した。しかし、飽和温度を検出するための飽和温度センサ210を水熱交換器109の適所に設け、飽和温度センサ210の検出値で制御装置300が飽和温度を特定するものとしてもよい。これにより、制御装置300の制御を単純化できる。飽和温度センサ210を用いて飽和温度を特定する手法は、実施の形態1~実施の形態3のいずれに適用してもよい。
Embodiment 4.
FIG. 11 is a diagram showing a water heat exchanger portion of the refrigeration cycle device according to the fourth embodiment. The fourth embodiment shows an example in which the saturation temperature is directly detected by the temperature sensor. As shown in FIG. 11, in the fourth embodiment, the saturation temperature sensor 210 for detecting the saturation temperature is provided inside the water heat exchanger 109. In the first embodiment, the high pressure saturation temperature CT and the low pressure saturation temperature ET are calculated from the pressures of the pressure sensors (high pressure pressure sensor 103, low pressure pressure sensor 111) provided in the refrigerant circuit 100. However, the saturation temperature sensor 210 for detecting the saturation temperature may be provided at an appropriate position in the water heat exchanger 109, and the control device 300 may specify the saturation temperature by the detection value of the saturation temperature sensor 210. This makes it possible to simplify the control of the control device 300. The method of specifying the saturation temperature using the saturation temperature sensor 210 may be applied to any of the first to third embodiments.
 以上、説明したように、各実施の形態に関わる冷凍サイクル装置によれば、プレート式の水熱交換器109の内部の汚れを診断することができる。この汚れ診断は、換言すると、水熱交換器109の電熱不良の診断、あるいは、水熱交換器109内の流路の状態の診断である。このような診断によって、水熱交換器109の不具合を発見できる。特に、プレート間の詰まりは、汚れの蓄積によるものから引き起こされるため、各実施の形態に関わる冷凍サイクル装置によれば、水熱交換器109の詰まりに至る早期段階で水熱交換器109の不具合を検知できる。 As described above, according to the refrigeration cycle apparatus according to each embodiment, it is possible to diagnose the dirt inside the plate type water heat exchanger 109. In other words, this dirt diagnosis is a diagnosis of an electric heat defect of the water heat exchanger 109 or a diagnosis of the state of the flow path in the water heat exchanger 109. By such a diagnosis, a defect of the water heat exchanger 109 can be found. In particular, since the clogging between the plates is caused by the accumulation of dirt, according to the refrigeration cycle apparatus according to each embodiment, the water heat exchanger 109 is defective at an early stage leading to the clogging of the water heat exchanger 109. Can be detected.
 各実施の形態に関わる冷凍サイクル装置によれば、設定した出口側の水温に関わらず、プレート式熱交換器の内部の汚れ状態を診断することができる。このため早期の段階で、水熱交換器109の不具合(たとえば、凍結)を回避することができる。 According to the refrigeration cycle apparatus according to each embodiment, it is possible to diagnose the dirty state inside the plate heat exchanger regardless of the set water temperature on the outlet side. Therefore, it is possible to avoid a malfunction (for example, freezing) of the water heat exchanger 109 at an early stage.
 実施の形態1~実施の形態4に係る冷凍サイクル装置は、給湯装置にも適用可能である。また、各実施の形態1~実施の形態4では、熱源となる冷媒回路と熱を交換する熱媒体として、水を例にした説明した。しかし、熱媒体は熱を運ぶ媒体であれば水以外の媒体であってもよい。たとえば、水に変えてブラインなどを用いてもよい。 The refrigeration cycle device according to the first to fourth embodiments can also be applied to a hot water supply device. Further, in the first to fourth embodiments, water has been described as an example as a heat medium for exchanging heat with the refrigerant circuit as a heat source. However, the heat medium may be a medium other than water as long as it is a medium that carries heat. For example, brine or the like may be used instead of water.
 制御装置300は、インターネットなどのネットワークを経由して、冷媒回路100および水回路200を含む空調システムを制御してもよい。制御装置300は、冷媒回路100および水回路200を含む1つの空調システムを1つ制御してもよく、そのような空調システムを複数制御してもよい。 The control device 300 may control the air conditioning system including the refrigerant circuit 100 and the water circuit 200 via a network such as the Internet. The control device 300 may control one air conditioning system including the refrigerant circuit 100 and the water circuit 200, or may control a plurality of such air conditioning systems.
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内で全ての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1,2,3 冷凍サイクル装置、100,100a~100d 冷媒回路、101 圧縮機、102 吐出温度センサ、103 高圧圧力センサ、104 四方弁、105 熱交換器、106 ファン、107 冷媒温度センサ、108 絞り機構、109 水熱交換器、110 アキュムレータ、111 低圧圧力センサ、200 水回路、201 ポンプ、202 負荷装置、203,204 温度センサ、205 流量計、206 差圧計、209 ストレーナ、210 飽和温度センサ、300 制御装置、400 リモコン。 1,2,3 refrigeration cycle device, 100,100a-100d refrigerant circuit, 101 compressor, 102 discharge temperature sensor, 103 high pressure pressure sensor, 104 four-way valve, 105 heat exchanger, 106 fan, 107 refrigerant temperature sensor, 108 throttle Mechanism, 109 water heat exchanger, 110 accumulator, 111 low pressure pressure sensor, 200 water circuit, 201 pump, 202 load device, 203,204 temperature sensor, 205 flow meter, 206 differential pressure sensor, 209 strainer, 210 saturation temperature sensor, 300 Control device, 400 remote control.

Claims (18)

  1.  冷凍サイクル装置であって、
     第1冷媒を循環させる熱源側第1冷媒回路を備え、前記熱源側第1冷媒回路は、
      第1圧縮機と、
      外気と前記第1冷媒との間で熱交換する第1熱交換器と、
      第1絞り機構とを有し、
     第2冷媒を循環させる負荷側冷媒回路をさらに備え、前記負荷側冷媒回路は、
      ポンプと、
      熱を利用する負荷装置とを有し、
     前記第1冷媒と前記第2冷媒との間で熱交換する第1プレート式熱交換器と、
     前記第1プレート式熱交換器の出口側における前記第2冷媒の温度を検出する温度センサとをさらに備え、
     前記熱源側第1冷媒回路は、少なくとも前記第1圧縮機と前記第1熱交換器と前記第1絞り機構と前記第1プレート式熱交換器との間で前記第1冷媒を循環させ、
     前記負荷側冷媒回路は、少なくとも前記ポンプと前記負荷装置と前記第1プレート式熱交換器との間で前記第2冷媒を一方向に循環させ、
     前記温度センサが検出した温度と前記第1冷媒の飽和温度とを用いて、前記第1プレート式熱交換器内の前記第2冷媒の流路を診断する制御装置をさらに備える、冷凍サイクル装置。
    It ’s a refrigeration cycle device.
    The first refrigerant circuit on the heat source side that circulates the first refrigerant is provided, and the first refrigerant circuit on the heat source side is
    With the first compressor,
    A first heat exchanger that exchanges heat between the outside air and the first refrigerant,
    It has a first aperture mechanism and
    A load-side refrigerant circuit for circulating the second refrigerant is further provided, and the load-side refrigerant circuit is provided.
    With a pump,
    It has a load device that utilizes heat,
    A first plate heat exchanger that exchanges heat between the first refrigerant and the second refrigerant,
    Further provided with a temperature sensor for detecting the temperature of the second refrigerant on the outlet side of the first plate heat exchanger.
    The first refrigerant circuit on the heat source side circulates the first refrigerant between at least the first compressor, the first heat exchanger, the first throttle mechanism, and the first plate heat exchanger.
    The load-side refrigerant circuit circulates the second refrigerant in one direction at least between the pump, the load device, and the first plate heat exchanger.
    A refrigeration cycle apparatus further comprising a control device for diagnosing the flow path of the second refrigerant in the first plate heat exchanger using the temperature detected by the temperature sensor and the saturation temperature of the first refrigerant.
  2.  前記制御装置は、前記第1圧縮機の周波数を制御することにより、前記第1プレート式熱交換器の出口側における前記第2冷媒の温度を、設定した目標温度に調整する、請求項1に記載の冷凍サイクル装置。 The control device adjusts the temperature of the second refrigerant on the outlet side of the first plate heat exchanger to a set target temperature by controlling the frequency of the first compressor, according to claim 1. The refrigeration cycle device described.
  3.  前記制御装置は、前記温度センサが検出した温度と前記第1冷媒の飽和温度との温度差に基づいて、前記第1プレート式熱交換器内の前記第2冷媒の流路を診断する、請求項1または請求項2に記載の冷凍サイクル装置。 The control device diagnoses the flow path of the second refrigerant in the first plate heat exchanger based on the temperature difference between the temperature detected by the temperature sensor and the saturation temperature of the first refrigerant. The refrigerating cycle apparatus according to claim 1 or 2.
  4.  前記制御装置は、前記第1冷媒の漏れの有無を判定する、請求項1~請求項3のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle device according to any one of claims 1 to 3, wherein the control device determines the presence or absence of leakage of the first refrigerant.
  5.  前記制御装置は、前記第1プレート式熱交換器内の前記第2冷媒の流路を診断するときに、前記第1冷媒の漏れの有無を判定する、請求項4に記載の冷凍サイクル装置。 The refrigerating cycle device according to claim 4, wherein the control device determines the presence or absence of leakage of the first refrigerant when diagnosing the flow path of the second refrigerant in the first plate heat exchanger.
  6.  前記制御装置は、前記第1プレート式熱交換器が前記第1冷媒の蒸発器として機能する場合に、前記第1熱交換器の出口側における過冷却度と、前記熱源側第1冷媒回路の吐出過熱度とに基づいて、前記第1冷媒の漏れの有無を判定する、請求項4または請求項5に記載の冷凍サイクル装置。 In the control device, when the first plate heat exchanger functions as an evaporator of the first refrigerant, the degree of supercooling on the outlet side of the first heat exchanger and the degree of supercooling on the outlet side of the first refrigerant circuit and the first refrigerant circuit on the heat source side. The refrigerating cycle apparatus according to claim 4 or 5, wherein the presence or absence of leakage of the first refrigerant is determined based on the discharge superheat degree.
  7.  前記制御装置は、前記第1プレート式熱交換器が前記第1冷媒の凝縮器として機能する場合に、前記熱源側第1冷媒回路の吐出過熱度に基づいて、前記第1冷媒の漏れの有無を判定する、請求項4~請求項6のいずれか1項に記載の冷凍サイクル装置。 In the control device, when the first plate heat exchanger functions as a condenser of the first refrigerant, the presence or absence of leakage of the first refrigerant is based on the degree of superheat discharge of the first refrigerant circuit on the heat source side. The refrigerating cycle apparatus according to any one of claims 4 to 6, wherein the refrigerating cycle apparatus is determined.
  8.  前記制御装置は、前記第1プレート式熱交換器内の前記第2冷媒の流路の診断結果を表示部に出力する、請求項1~請求項7のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle device according to any one of claims 1 to 7, wherein the control device outputs a diagnosis result of the flow path of the second refrigerant in the first plate heat exchanger to a display unit. ..
  9.  前記負荷側冷媒回路は、
      ストレーナと、
      差圧計または流量計とをさらに備え、
     前記制御装置は、
      前記第1プレート式熱交換器内の前記第2冷媒の流路に異常有と診断し、かつ、前記差圧計または前記流量計の計測結果に基づいて前記第2冷媒の流れが基準値よりも低下していると判定したときは、前記第1プレート式熱交換器内の前記第2冷媒の流路に詰まり有と判定する一方、
      前記第1プレート式熱交換器内の前記第2冷媒の流路に異常無と診断し、かつ、前記差圧計または前記流量計の計測結果に基づいて前記第2冷媒の流れが前記基準値よりも低下していると判定したときは、前記ストレーナに詰まり有と判定する、請求項1~請求項8のいずれか1項に記載の冷凍サイクル装置。
    The load-side refrigerant circuit is
    With a strainer,
    Further equipped with a differential pressure gauge or a flow meter,
    The control device is
    It is diagnosed that there is an abnormality in the flow path of the second refrigerant in the first plate heat exchanger, and the flow of the second refrigerant is higher than the reference value based on the measurement result of the differential pressure gauge or the flow meter. When it is determined that the amount has decreased, it is determined that the flow path of the second refrigerant in the first plate heat exchanger is clogged.
    It is diagnosed that there is no abnormality in the flow path of the second refrigerant in the first plate heat exchanger, and the flow of the second refrigerant is based on the reference value based on the measurement result of the differential pressure gauge or the flow meter. The refrigerating cycle apparatus according to any one of claims 1 to 8, wherein it is determined that the strainer is clogged when it is determined that the amount is reduced.
  10.  前記制御装置は、前記第1プレート式熱交換器が前記第1冷媒の蒸発器として機能しているときに前記第1プレート式熱交換器内の前記第2冷媒の流路に異常有と診断した場合、前記温度センサが検出した温度が凍結判定温度に至っているか否かを判定し、
     前記制御装置は、前記温度センサが検出した温度が前記凍結判定温度に至っていない場合、前記第2冷媒の温度を低下させる操作を受け付けない、請求項1~請求項9のいずれか1項に記載の冷凍サイクル装置。
    The control device diagnoses that there is an abnormality in the flow path of the second refrigerant in the first plate heat exchanger when the first plate heat exchanger is functioning as an evaporator of the first refrigerant. If so, it is determined whether or not the temperature detected by the temperature sensor has reached the freezing determination temperature.
    The one according to any one of claims 1 to 9, wherein the control device does not accept an operation of lowering the temperature of the second refrigerant when the temperature detected by the temperature sensor does not reach the freezing determination temperature. Refrigeration cycle equipment.
  11.  前記制御装置は、前記第1プレート式熱交換器が前記第1冷媒の蒸発器として機能しているときに前記第1プレート式熱交換器内の前記第2冷媒の流路に異常有と診断した場合、前記温度センサが検出した温度が凍結判定温度に至っているか否かを判定し、
     前記制御装置は、前記温度センサが検出した温度が前記凍結判定温度に至っている場合、前記第2冷媒の温度を上昇させる、請求項1~請求項10のいずれか1項に記載の冷凍サイクル装置。
    The control device diagnoses that there is an abnormality in the flow path of the second refrigerant in the first plate heat exchanger when the first plate heat exchanger is functioning as an evaporator of the first refrigerant. If so, it is determined whether or not the temperature detected by the temperature sensor has reached the freezing determination temperature.
    The refrigerating cycle apparatus according to any one of claims 1 to 10, wherein the control device raises the temperature of the second refrigerant when the temperature detected by the temperature sensor reaches the freezing determination temperature. ..
  12.  第2圧縮機と、外気と第3冷媒との間で熱交換する第2熱交換器と、第2絞り機構とを有する熱源側第2冷媒回路と、
     前記第1冷媒および前記第3冷媒と、前記第2冷媒との間で熱交換する第2プレート式熱交換器とをさらに備え、
     前記熱源側第2冷媒回路は、少なくとも前記第2圧縮機と前記第2熱交換器と前記第2絞り機構と前記第2プレート式熱交換器との間で第3冷媒を循環させ、
     前記負荷側冷媒回路は、少なくとも前記ポンプと前記負荷装置と前記第1プレート式熱交換器と前記第2プレート式熱交換器との間で前記第2冷媒を一方向に循環させ、
     前記負荷側冷媒回路に対して、前記第1プレート式熱交換器および前記第2プレート式熱交換器が直列に接続されている、請求項1~請求項11のいずれか1項に記載の冷凍サイクル装置。
    A second heat exchanger that exchanges heat between the second compressor, the outside air and the third refrigerant, and a second refrigerant circuit on the heat source side having a second throttle mechanism.
    Further, a second plate heat exchanger for heat exchange between the first refrigerant, the third refrigerant, and the second refrigerant is provided.
    The second refrigerant circuit on the heat source side circulates the third refrigerant between at least the second compressor, the second heat exchanger, the second throttle mechanism, and the second plate heat exchanger.
    The load-side refrigerant circuit circulates the second refrigerant in one direction at least between the pump, the load device, the first plate heat exchanger, and the second plate heat exchanger.
    The refrigeration according to any one of claims 1 to 11, wherein the first plate heat exchanger and the second plate heat exchanger are connected in series to the load-side refrigerant circuit. Cycle device.
  13.  前記制御装置は、
      前記第1プレート式熱交換器内の前記第2冷媒の流路に異常有と診断し、かつ、前記第2プレート式熱交換器内の前記第2冷媒の流路に異常無しと診断した場合に、
      前記第1圧縮機の運転を停止し、かつ、前記第2圧縮機を制御することにより、前記第1プレート式熱交換器および前記第2プレート式熱交換器よりも下流側を流れる前記第2冷媒の温度を、設定された目標温度に調整する、請求項12に記載の冷凍サイクル装置。
    The control device is
    When it is diagnosed that there is an abnormality in the flow path of the second refrigerant in the first plate heat exchanger and that there is no abnormality in the flow path of the second refrigerant in the second plate heat exchanger. To,
    By stopping the operation of the first compressor and controlling the second compressor, the second plate flowing on the downstream side of the first plate heat exchanger and the second plate heat exchanger. The refrigeration cycle apparatus according to claim 12, wherein the temperature of the refrigerant is adjusted to a set target temperature.
  14.  前記第1圧縮機の吸入部分または吐出部分に設けられた圧力センサをさらに備え、
     前記制御装置は、前記圧力センサの検出値に基づいて前記飽和温度を特定する、請求項1~請求項13のいずれか1項に記載の冷凍サイクル装置。
    A pressure sensor provided in the suction portion or the discharge portion of the first compressor is further provided.
    The refrigeration cycle device according to any one of claims 1 to 13, wherein the control device specifies the saturation temperature based on a detection value of the pressure sensor.
  15.  前記第1プレート式熱交換器の内部に設置され、前記第1冷媒の飽和温度を検出する飽和温度センサをさらに備え、
     前記制御装置は、前記飽和温度センサの検出値に基づいて前記飽和温度を特定する、請求項1~請求項13のいずれか1項に記載の冷凍サイクル装置。
    It is further equipped with a saturation temperature sensor which is installed inside the first plate heat exchanger and detects the saturation temperature of the first refrigerant.
    The refrigeration cycle device according to any one of claims 1 to 13, wherein the control device specifies the saturation temperature based on a detection value of the saturation temperature sensor.
  16.  前記負荷側冷媒回路は、流量計をさらに備え、
     前記制御装置は、前記流量計の計測結果に基づいて前記第1プレート式熱交換器内の前記第2冷媒の流路の詰まりの有無を判定する、請求項1~請求項15のいずれか1項に記載の冷凍サイクル装置。
    The load-side refrigerant circuit further comprises a flow meter.
    One of claims 1 to 15, wherein the control device determines whether or not the flow path of the second refrigerant in the first plate heat exchanger is clogged based on the measurement result of the flow meter. Refrigeration cycle device according to the section.
  17.  前記負荷側冷媒回路は、差圧計をさらに備え、
     前記制御装置は、前記差圧計の計測結果に基づいて前記第1プレート式熱交換器内の前記第2冷媒の流路の詰まりの有無を判定する、請求項1~請求項15のいずれか1項に記載の冷凍サイクル装置。
    The load-side refrigerant circuit further comprises a differential pressure gauge.
    One of claims 1 to 15, wherein the control device determines whether or not the flow path of the second refrigerant in the first plate heat exchanger is clogged based on the measurement result of the differential pressure gauge. Refrigeration cycle device according to the section.
  18.  前記制御装置は、前記第2冷媒の流量を予め定めた演算式に基づいて推定し、推定結果に基づいて前記第1プレート式熱交換器内の前記第2冷媒の流路の詰まりの有無を判定する、請求項1~請求項15のいずれか1項に記載の冷凍サイクル装置。 The control device estimates the flow rate of the second refrigerant based on a predetermined calculation formula, and based on the estimation result, determines whether or not the flow path of the second refrigerant in the first plate heat exchanger is clogged. The refrigerating cycle apparatus according to any one of claims 1 to 15, which is determined.
PCT/JP2020/022734 2020-06-09 2020-06-09 Refrigeration cycle device WO2021250789A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/022734 WO2021250789A1 (en) 2020-06-09 2020-06-09 Refrigeration cycle device
US18/000,320 US20230221050A1 (en) 2020-06-09 2020-06-09 Refrigeration cycle apparatus
EP20940265.0A EP4163574A4 (en) 2020-06-09 2020-06-09 Refrigeration cycle device
CN202080101914.0A CN115698606B (en) 2020-06-09 2020-06-09 Refrigeration cycle device
JP2022530407A JP7367216B2 (en) 2020-06-09 2020-06-09 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022734 WO2021250789A1 (en) 2020-06-09 2020-06-09 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021250789A1 true WO2021250789A1 (en) 2021-12-16

Family

ID=78845493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022734 WO2021250789A1 (en) 2020-06-09 2020-06-09 Refrigeration cycle device

Country Status (5)

Country Link
US (1) US20230221050A1 (en)
EP (1) EP4163574A4 (en)
JP (1) JP7367216B2 (en)
CN (1) CN115698606B (en)
WO (1) WO2021250789A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110022A1 (en) * 2022-11-23 2024-05-30 Diehl Ako Stiftung & Co. Kg Method for monitoring the fouling of a heat exchanger of a heat pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050067A (en) 2001-08-03 2003-02-21 Ckd Corp Cooler and method of judging failure of cooler
JP2012083084A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerating cycle device
JP2012159251A (en) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp Refrigeration cycle apparatus, flow rate calculation method, and program
WO2013038577A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Heat pump device and method for controlling heat pump device
WO2017145218A1 (en) * 2016-02-22 2017-08-31 三菱電機株式会社 Air conditioning device
WO2018186106A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Refrigerant leakage detection device, and refrigeration cycle device
JP2019060602A (en) * 2019-01-24 2019-04-18 三菱電機株式会社 Abnormality detection system, refrigeration cycle apparatus, and abnormality detection method
JP2019152347A (en) * 2018-02-28 2019-09-12 大阪瓦斯株式会社 Chiller system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365502B (en) * 2009-03-26 2014-05-21 三菱电机株式会社 Air-conditioning apparatus
JP5409743B2 (en) * 2011-10-03 2014-02-05 三菱電機株式会社 Cooling system
JP5780977B2 (en) * 2012-02-15 2015-09-16 三菱電機株式会社 Heat pump cycle equipment
JP6238876B2 (en) * 2014-11-21 2017-11-29 三菱電機株式会社 Refrigeration cycle equipment
JP2017142038A (en) * 2016-02-12 2017-08-17 三菱重工サーマルシステムズ株式会社 Refrigeration cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050067A (en) 2001-08-03 2003-02-21 Ckd Corp Cooler and method of judging failure of cooler
JP2012083084A (en) * 2010-10-14 2012-04-26 Mitsubishi Electric Corp Refrigerating cycle device
JP2012159251A (en) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp Refrigeration cycle apparatus, flow rate calculation method, and program
WO2013038577A1 (en) * 2011-09-13 2013-03-21 三菱電機株式会社 Heat pump device and method for controlling heat pump device
WO2017145218A1 (en) * 2016-02-22 2017-08-31 三菱電機株式会社 Air conditioning device
WO2018186106A1 (en) * 2017-04-05 2018-10-11 株式会社デンソー Refrigerant leakage detection device, and refrigeration cycle device
JP2019152347A (en) * 2018-02-28 2019-09-12 大阪瓦斯株式会社 Chiller system
JP2019060602A (en) * 2019-01-24 2019-04-18 三菱電機株式会社 Abnormality detection system, refrigeration cycle apparatus, and abnormality detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110022A1 (en) * 2022-11-23 2024-05-30 Diehl Ako Stiftung & Co. Kg Method for monitoring the fouling of a heat exchanger of a heat pump

Also Published As

Publication number Publication date
CN115698606B (en) 2024-03-19
JP7367216B2 (en) 2023-10-23
CN115698606A (en) 2023-02-03
EP4163574A1 (en) 2023-04-12
US20230221050A1 (en) 2023-07-13
JPWO2021250789A1 (en) 2021-12-16
EP4163574A4 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
KR102436213B1 (en) HVAC management system, HVAC management method, and program
EP2728280B1 (en) Air conditioner and control method thereof
JP6341808B2 (en) Refrigeration air conditioner
EP2204621B1 (en) Air conditioner and method for detecting malfunction thereof
JP4762797B2 (en) Multi-type air conditioning system
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
US20090314017A1 (en) Air conditioner
JP6444577B1 (en) Air conditioner
JP2007240036A (en) Diagnosing method and system of air conditioner
JP2009250554A (en) Refrigerating device
WO2021250789A1 (en) Refrigeration cycle device
US11353251B2 (en) Air conditioner with fluid line diagnostics using feedback signals from a pump
US7854134B2 (en) Air conditioner
JP4274236B2 (en) Air conditioner
CN112097364B (en) Air conditioner and electronic expansion valve fault detection method thereof
KR100677282B1 (en) Out door unit control method and control apparatus for air conditioner
JP6595139B1 (en) Air conditioning management system, air conditioning management method, and program
JPWO2021250789A5 (en)
EP2256423B1 (en) Multi-type air conditioner and a method for checking operation of indoor electronic expansion valves of indoor units
WO2022249424A1 (en) Refrigeration cycle system
KR20040033357A (en) Air conditioner
KR20090085892A (en) Method for diagnosing the disorder of a sensor for air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020940265

Country of ref document: EP

Effective date: 20230109