WO2022249424A1 - Refrigeration cycle system - Google Patents

Refrigeration cycle system Download PDF

Info

Publication number
WO2022249424A1
WO2022249424A1 PCT/JP2021/020312 JP2021020312W WO2022249424A1 WO 2022249424 A1 WO2022249424 A1 WO 2022249424A1 JP 2021020312 W JP2021020312 W JP 2021020312W WO 2022249424 A1 WO2022249424 A1 WO 2022249424A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
refrigeration cycle
flow rate
heat exchanger
Prior art date
Application number
PCT/JP2021/020312
Other languages
French (fr)
Japanese (ja)
Inventor
樹彦 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/020312 priority Critical patent/WO2022249424A1/en
Publication of WO2022249424A1 publication Critical patent/WO2022249424A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to a refrigerating cycle system, and more particularly to a refrigerating cycle system having a plurality of refrigerating cycle devices that detects signs of blockage in heat medium circuits of plate heat exchangers of the plurality of refrigerating cycle devices. .
  • Patent Document 1 discloses a method for calculating the cleaning timing of the heat exchanger, it does not disclose the relationship with a plurality of refrigeration cycle devices.
  • the heat medium circuit of the plate heat exchanger is blocked by scale or the like, the high pressure and discharge temperature will rise and the operation of the refrigeration cycle device will stop abnormally if the plate heat exchanger is used as a condenser.
  • the plate heat exchanger is used as an evaporator, the water freezes and expands in volume, causing a so-called freeze puncture, in which the joint between the plates of the plate heat exchanger bursts.
  • the heat medium may flow into the side, causing uncooling and unwarming due to component failure and refrigerant leakage in the refrigerant circuit.
  • each refrigerating cycle device When using a plurality of refrigerating cycle devices, the operating time and operating conditions of each refrigerating cycle device differ depending on the environmental conditions and usage conditions of the plurality of indoor spaces. It is necessary to detect signs and prevent breakage of plate heat exchangers, failure of parts in refrigerant circuits, and leakage of refrigerant.
  • An object of the present invention is to provide a refrigeration cycle system capable of preventing
  • a refrigeration cycle system of the present disclosure includes a plurality of refrigeration cycle devices and a heat medium system that supplies a heat medium to the plurality of refrigeration cycle devices, and the refrigeration cycle device includes a compressor that compresses refrigerant; A first heat exchanger that is connected to a compressor and exchanges heat between the refrigerant and the heat medium; an expansion valve that expands and decompresses the refrigerant heat-exchanged in the first heat exchanger; and the expansion valve.
  • the heat medium system comprises a heat medium circuit connected by the heat medium pipes, the heat medium system is connected to the first heat exchanger by heat medium pipes, and includes a heat source device that supplies a heat medium, and the heat medium
  • the pump is provided in a pipe and circulates the heat medium supplied from the heat source device to the first heat exchanger and the heat source device, and the refrigeration cycle device is provided in the heat medium pipe, a detection device for detecting the flow rate of the heat medium flowing into the first heat exchanger through the heat medium pipe; and detecting that the flow rate of the heat medium is less than or equal to the minimum flow rate, and in response to detecting that the flow rate of the heat medium is less than or equal to the minimum flow rate, and a control device that controls at least one of
  • the refrigerating cycle system of the present disclosure can prevent uncooling and unwarming due to component failure and refrigerant leakage in the refrigerant circuit due to the heat medium flowing from the first heat exchanger to the refrigerant circuit side.
  • a plurality of constituent elements are distinguished from each other by adding an underscore and a number at the end of the code of the constituent element.
  • the description will be made without underscores and numbers.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle system A according to an embodiment.
  • FIG. 1 illustrates a case where the refrigerating cycle device 100 and the heat medium system 103 are configured in a three-to-one ratio.
  • the refrigerating cycle system A has a refrigerating cycle device 100 — a, a refrigerating cycle device 100 — b, a refrigerating cycle device 100 — c, and a heat medium system 103 .
  • the number of refrigeration cycle devices 100 may be two or three or more. Further, the refrigerating cycle device 100_a, the refrigerating cycle device 100_b, and the refrigerating cycle device 100_c may all have the same capacity, or may have different capacities.
  • the refrigeration cycle device 100_a has a plate heat exchanger 13_a.
  • the refrigeration cycle device 100_b has a plate heat exchanger 13_b.
  • a refrigerating cycle device 100_c has a plate heat exchanger 13_c.
  • the heat medium system 103 has a heat source device 22 and a pump 21 .
  • the heat source device 22, the pump 21, and the plate heat exchangers 13_a to 13_c are connected by heat medium pipes 23 to form a heat medium circuit 20 in which the heat medium circulates.
  • the plate heat exchangers 13 — a to 13 — c are connected in parallel to a common heat source device 22 through heat medium pipes 23 .
  • the plate heat exchanger 13_a exchanges heat between the refrigerant flowing through the refrigerant circuit (see FIG. 2) and the heat medium flowing through the heat medium circuit 20 in the refrigeration cycle device 100_a.
  • the plate heat exchanger 13_b exchanges heat between the refrigerant flowing through the refrigerant circuit (see FIG. 2) and the heat medium flowing through the heat medium circuit 20 in the refrigeration cycle device 100_b.
  • the plate heat exchanger 13_c exchanges heat between the refrigerant flowing through the refrigerant circuit (see FIG. 2) and the heat medium flowing through the heat medium circuit 20 in the refrigeration cycle device 100_c.
  • the heat source device 22 is, for example, a cooling tower or a boiler, and cools or heats the heat medium flowing through the heat medium circuit 20 .
  • the heat medium is water, brine, or the like.
  • the pump 21 has a motor driven by, for example, an inverter, and is driven using the motor as a power source to circulate the heat medium in the heat medium circuit 20 .
  • the heat medium output from the heat source device 22 to the heat medium pipe 23 is circulated by the pump 21 and flows into the plate heat exchangers 13_a to 13_c. do.
  • the heat medium flowing into the plate heat exchanger 13 — a is heat-exchanged with the refrigerant flowing through the refrigerant circuit of the refrigeration cycle device 100 — a and flows into the heat source device 22 .
  • the heat medium flowing into the plate heat exchanger 13 — b is heat-exchanged with the refrigerant flowing through the refrigerant circuit of the refrigeration cycle device 100 — b, and flows into the heat source device 22 .
  • the heat medium flowing into the plate heat exchanger 13 — c is heat-exchanged with the refrigerant flowing through the refrigerant circuit of the refrigeration cycle device 100 — c and flows into the heat source device 22 .
  • FIG. 2 is a diagram showing the details of the configurations of the refrigeration cycle device 100 and the heat medium system 103, which are representative of the refrigeration cycle system A according to the embodiment.
  • the refrigeration cycle system A has a refrigeration cycle device 100 and a heat medium system 103 .
  • the refrigeration cycle device 100 has a heat source device 101 and an indoor unit 102 .
  • FIG. 2 shows a circuit in which the representative refrigeration cycle device 100 and the heat medium system 103 are connected one-to-one in the refrigeration cycle system A according to the embodiment shown in FIG. Moreover, the case where the heat source unit 101 and the indoor unit 102 are configured in a one-to-one manner is illustrated.
  • the heat source device 101 and the indoor unit 102 may be integrated. Also, a plurality of indoor units 102 connected to the heat source unit 101 may be connected.
  • the heat source unit 101 exchanges heat between the refrigerant and the heat medium in the plate heat exchanger 13 and supplies cold heat or hot heat to the indoor unit 102 .
  • the heat source device 101 has a compressor 11 , a four-way valve 12 , a plate heat exchanger 13 and an accumulator 17 .
  • the heat source machine 101 also has a heat source machine side control device 30 , a flow rate sensor 31 , a first pressure sensor 32 , a second pressure sensor 33 and a notification device 41 .
  • the compressor 11 has, for example, a compressor motor driven by an inverter, and sucks and compresses the refrigerant.
  • the four-way valve 12 is connected to the compressor 11 and controlled by the heat source device side control device 30 to switch the flow path of the refrigerant between cooling and heating.
  • the four-way valve 12 is an example of a refrigerant channel switching device that switches the flow direction of the refrigerant.
  • the refrigerant flow switching device may be composed of a combination of two-way valves or three-way valves. Further, when the refrigerating cycle device 100 is exclusively used for cooling or heating and there is no need to switch the flow direction of the refrigerant, the refrigerant channel switching device such as the four-way valve 12 may not be provided.
  • the accumulator 17 is a liquid separator that separates the refrigerant liquid that has not completely evaporated in the load-side heat exchanger 15 . Accumulator 17 may not be provided.
  • the plate heat exchanger 13 is connected between the refrigerant circuit 10 and the heat medium circuit 20 .
  • the plate heat exchanger 13 is a heat exchanger between mediums, and exchanges heat between the refrigerant circulating in the refrigerant circuit 10 and the heat medium circulating in the heat medium circuit 20 .
  • the indoor unit 102 has an expansion valve 14 , a load-side heat exchanger 15 , a load-side blower 16 and a load-side controller 34 .
  • the expansion valve 14 is, for example, an electronic expansion valve.
  • the expansion valve 14 is provided between the plate heat exchanger 13 and the load side heat exchanger 15 in the refrigerant circuit 10 .
  • the expansion valve 14 is controlled by a load side controller 34 .
  • the expansion valve 14 adjusts the degree of opening according to, for example, the difference between the indoor temperature and the target temperature to reduce or expand the refrigerant.
  • the load-side blower 16 blows indoor air to the load-side heat exchanger 15 .
  • the load-side heat exchanger 15 exchanges heat between the refrigerant flowing from the plate-type heat exchanger 13 through the expansion valve 14 or the refrigerant discharged from the compressor 11 and the air blown from the load-side blower 16 . .
  • a compressor 11, a four-way valve 12, a plate heat exchanger 13, an expansion valve 14, a load-side heat exchanger 15, and an accumulator 17 are connected to the refrigeration cycle device 100 via refrigerant pipes 18, and refrigerant circulates.
  • a refrigerant circuit 10 is formed. That is, the heat source device 101 and the indoor unit 102 are connected by the refrigerant pipe 18 .
  • the refrigerating cycle device 100 may have the heat source device 101 and the indoor unit 102 integrated.
  • the flow rate sensor 31 is provided on the heat medium pipe 23 connected to the heat medium inlet of the plate heat exchanger 13 .
  • the flow rate sensor 31 detects the flow rate of the heat medium flowing into the plate heat exchanger 13 from the heat medium pipe 23 .
  • the first pressure sensor 32 is provided in the heat medium pipe 23 connected to the heat medium inlet of the plate heat exchanger 13 .
  • the first pressure sensor 32 detects the inflow pressure of the heat medium flowing into the plate heat exchanger 13 from the heat medium pipe 23 .
  • the second pressure sensor 33 is provided on the heat medium pipe 23 connected to the heat medium outlet of the plate heat exchanger 13 .
  • the second pressure sensor 33 detects the outflow pressure of the heat medium flowing out from the plate heat exchanger 13 to the heat medium pipe 23 .
  • the heat source unit side control device 30 receives the flow rate of the heat medium detected by the flow rate sensor 31, the inflow pressure detected by the first pressure sensor 32, and the outflow pressure detected by the second pressure sensor 33.
  • the heat source unit side control device 30 detects signs of clogging of the heat medium circuit of the plate heat exchanger 13 based on the received flow rate, the received inflow pressure, and the received outflow pressure.
  • the heat source unit side control device 30 detects whether or not the flow rate of the heat medium flowing into the plate heat exchanger 13 is equal to or less than the minimum flow rate of the heat medium required for normal operation of the refrigeration cycle device 100. do.
  • the heat source unit side control device 30 stops the operation of the compressor 11 when detecting that the flow rate of the heat medium is equal to or less than the minimum flow rate of the heat medium required for the refrigeration cycle device 100 to operate normally. This minimum flow rate is stored in the storage device of the heat source machine side control device 30 .
  • the abnormality signal is sent to the notification device 41 and the load side control device 41. It is transmitted to the device 34 and the heat medium system side controller 35 .
  • the processing circuit of the heat source machine side control device 30 is dedicated hardware
  • the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or any of these A combination is applicable.
  • Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
  • the processing circuit of the heat source machine side control device 30 is a CPU
  • each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the storage unit.
  • the CPU implements each function of the processing circuit by reading and executing the program stored in the storage unit.
  • a part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
  • the load-side control device 34 is connected to the heat source device-side control device 30 by a control communication line 40, and is capable of communicating with the heat source device-side control device 30.
  • the load-side controller 34 controls operations of the expansion valve 14 and the load-side blower 16 .
  • the load-side control device 34 is connected to the remote controller 37 of the indoor unit 102 by wire or wirelessly.
  • the load side controller 34 outputs control instructions to the expansion valve 14 of the indoor unit 102 and the load side fan 16 based on the target temperature and the fan air volume set by the remote controller 37 .
  • the load-side control device 34 stops the air blowing operation of the load-side fan 16 when receiving the abnormal signal output from the heat source device-side control device 30 .
  • the load side control device 34 causes the remote controller 37 to display that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned. .
  • the notification device 41 is, for example, a monitor and/or a speaker. Based on the inspection signal output from the heat source device side control device 30, the notification device 41 displays and/or outputs by voice that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned. to notify that inspection and cleaning are required. Further, when the notification device 41 receives the abnormality signal output from the heat source device side control device 30, the notification device 41 displays the abnormality of the heat medium circuit 20 and/or issues an audible notification that the abnormality of the heat medium circuit 20 has occurred. Output by
  • the heat medium system 103 has a pump 21 , a heat source device 22 and a heat medium system side controller 35 .
  • the heat medium system 103 may be prepared and constructed at the delivery destination of the refrigeration cycle system A.
  • the heat source device 22, the pump 21, and the plate heat exchanger 13 in the heat medium system 103 are connected by a heat medium pipe 23 to form a heat medium circuit 20 in which the heat medium circulates. That is, the refrigeration cycle device 100 and the heat medium system 103 are connected by the heat medium pipe 23 .
  • the heat medium system control device 35 is connected to the heat source device control device 30 by a control communication line 40 and is capable of communicating with the heat source device control device 30 .
  • the heat medium system controller 35 controls the pressure for circulating the heat medium in the heat medium circuit 20 by the pump 21 .
  • the heat medium system side control device 35 is, for example, the central management device of the delivery destination.
  • the heat medium system side controller 35 is connected to the heat medium system side notification device 36 .
  • the heat medium system side notification device 36 is, for example, a monitor and/or a speaker in the central monitoring panel of the heat medium system 103 .
  • the heat medium system side notification device 36 indicates that the heat medium circuit of the plate heat exchanger 13 should be inspected and cleaned. Show that you need it.
  • the heat medium system side controller 35 outputs by voice that inspection and cleaning of the heat medium circuit of the plate heat exchanger 13 are necessary.
  • the heat medium system side notification device 36 displays the abnormality of the heat medium circuit 20 .
  • the heat medium system side control device 35 may output the fact that the heat medium circuit 20 is abnormal by voice.
  • FIG. 3 is a functional block diagram illustrating the functions of the heat source equipment side control device 30 in the refrigeration cycle system A according to the embodiment.
  • the heat source unit side control device 30 has a clogging symptom detection section 30_1, an inspection signal output section 30_2, and a minimum flow rate detection section 30_3.
  • the blockage indication detection unit 30_1 detects the flow rate of the heat medium detected by the flow sensor 31, the inflow pressure of the heat medium detected by the first pressure sensor 32, and the outflow pressure of the heat medium detected by the second pressure sensor 33. to detect signs of blockage in the heat medium circuit of the plate heat exchanger 13 .
  • the inspection signal output unit 30_2 outputs an inspection signal for the heat medium circuit of the plate heat exchanger 13 to the notification device 41 and the load side control device when a sign of blockage in the heat medium circuit of the plate heat exchanger 13 is detected. 34 and the heat medium system side controller 35 .
  • the minimum flow rate detection unit 30_3 detects that the flow rate of the heat medium detected by the flow rate sensor 31 is equal to or less than the minimum flow rate of the heat medium required for the refrigeration cycle device 100 to operate normally.
  • the minimum flow rate detection unit 30_3 controls to stop the operation of the compressor 11 in response to detection that the flow rate of the heat medium is equal to or less than the minimum flow rate of the heat medium required for the refrigeration cycle device 100 to operate normally.
  • the minimum flow rate detection unit 30_3 detects that the flow rate of the heat medium is equal to or less than the minimum flow rate required for the refrigeration cycle device 100 to operate normally, the load side controller 34, the heat medium system side controller 35 and an anomaly signal to the notification device 41 .
  • the load-side control device 34 performs control to stop the blowing operation of the load-side fan 16 and control to close the expansion valve 14 in response to receiving the abnormality signal.
  • the minimum flow rate detection unit 30_3 may control at least one of the compressor 11, the expansion valve 14, and the load-side blower 16.
  • the heat medium system side controller 35 displays the abnormality of the heat medium circuit 20 on the heat medium system side notification device 36 and/or sounds that the abnormality of the heat medium circuit 20 has occurred.
  • output by The notification device 41 displays an abnormality in the heat medium circuit 20 and/or outputs by voice that an abnormality has occurred in the heat medium circuit 20 when receiving the abnormality signal output from the heat source device side control device 30. do.
  • FIG. 4 is a flow chart for explaining the operation of the refrigeration cycle system A according to the embodiment.
  • the heat source unit side control device 30 controls the flow rate of the heat medium flowing into the plate heat exchanger 13, the inflow pressure of the heat medium flowing into the plate heat exchanger 13, and the outflow of the heat medium flowing out of the plate heat exchanger 13. A pressure is received (step S1).
  • the heat source unit side control device 30 determines whether or not the flow rate of the heat medium flowing into the plate heat exchanger 13 is equal to or less than the minimum flow rate of the heat medium required for normal operation of the refrigeration cycle device 100. It judges (step S2).
  • step S2 if the flow rate of the heat medium is not equal to or less than the minimum flow rate (NO in step S2), the heat source unit side control device 30 proceeds to determination in step S4. On the other hand, in step S2, if the flow rate of the heat medium is equal to or less than the minimum flow rate (YES in step S2), the heat source equipment side control device 30 controls the compressor 11, the load side control device 34, the heat medium system side control An abnormal signal is output to the device 35 and the notification device 41 (step S3).
  • the load-side controller 34 controls the expansion valve 14 and the load-side blower 16 . At least one of the compressor 11, the expansion valve 14, and the load-side blower 16 should be controlled.
  • the heat source machine side control device 30 performs control to stop the operation of the compressor 11 .
  • the heat source unit side control device 30 outputs an abnormality signal indicating that the heat medium circuit 20 is abnormal to the notification device 41 , the load side control device 34 and the heat medium system side control device 35 . Thereby, in the refrigerating cycle system A, abnormality signal processing is performed.
  • the notification device 41 When the notification device 41 receives the abnormality signal output from the heat source device side control device 30, the notification device 41 displays the abnormality of the heat medium circuit 20 and/or outputs it by voice.
  • the load-side control device 34 performs control to stop blowing air from the load-side blower 16 and control to close the expansion valve 14 in response to the reception of the abnormality signal.
  • the heat medium system side controller 35 displays the abnormality of the heat medium circuit 20 on the heat medium system side notification device 36 and/or sounds that the abnormality of the heat medium circuit 20 has occurred. output by
  • the heat source unit side control device 30 controls the plate It is determined whether a sign of clogging in the heat medium circuit of the heat exchanger 13 is detected (step S4).
  • a sign of clogging in the heat medium circuit of the plate heat exchanger 13 is determined by comparing the flow rate of the heat medium detected by the flow rate sensor 31 with the inflow pressure detected by the first pressure sensor 32 and the pressure detected by the second pressure sensor 33. This is done when the pressure difference from the detected outflow pressure is greater than or equal to a predetermined pressure.
  • the "predetermined pressure” means the inflow pressure detected by the first pressure sensor 32 and the second pressure sensor during the test run at the time of delivery of the refrigeration cycle apparatus 100 with no scale deposition on the plate heat exchanger 13.
  • step S4 if no sign of blockage in the heat medium circuit of the plate heat exchanger 13 is detected (NO in step S4), the process returns to step S1.
  • step S4 when a sign of blockage in the heat medium circuit of the plate heat exchanger 13 is detected (YES in step S4), the heat source unit side control device 30 inspects the heat medium circuit of the plate heat exchanger 13. A signal is output to the notification device 41, the load side control device 34, and the heat medium system side notification device 36 (step S5).
  • the notification device 41 When receiving the inspection signal from the heat source unit side control device 30, the notification device 41 displays and/or outputs by voice that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned, and performs inspection. and notify that cleaning is required.
  • the load side control device 34 receives the inspection signal from the heat source device side control device 30, it displays on the remote control 37 that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned.
  • the heat medium system side notification device 36 receives the inspection signal output from the heat source unit side control device 30, the heat medium system side notification device 36 sends the heat medium system side notification device 36 to the plate heat exchanger 13. Indicates that the heat transfer circuit needs to be inspected and cleaned.
  • the heat medium system side notification device 36 receives the inspection signal output from the heat source unit side control device 30, the heat medium system side notification device 36 issues a voice message indicating that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned. You can also output by
  • failure of the pump 21 and blockage of the strainer are factors other than blockage of the heat medium circuit of the plate heat exchanger 13, and the flow rate of the heat medium may decrease or stop.
  • the refrigeration cycle system A of the present disclosure needs to be controlled so that the compressor 11 of the heat source device 101 does not operate.
  • the flow rate information detected by the flow rate sensor 31 can be used not only to detect signs of blockage in the heat medium circuit of the plate heat exchanger 13, but also to determine whether the refrigeration cycle apparatus 100 satisfies the minimum required flow rate for normal operation. Used as an interlock function to detect.
  • the plate heat exchanger 13 in the embodiment is also called a first heat exchanger
  • the load side heat exchanger 15 is called a second heat exchanger
  • the heat source unit side control device 30 is also called a control device.
  • the flow rate sensor 31, the first pressure sensor 32, and the second pressure sensor 33 in the embodiment are also referred to as detection devices.
  • the heat source equipment side control device 30, the load side control device 34, and the heat medium system side control device 35 in the embodiment are also referred to as control devices.
  • the refrigeration cycle system A for each of the plurality of refrigeration cycle devices 100, it is determined whether the flow rate detected by the flow rate sensor 31 is equal to or less than the minimum flow rate at which the refrigeration cycle device 100 can operate normally. . Then, when the detected flow rate is equal to or less than the minimum flow rate, the heat source side control device 30 and the load side control device 34 control at least one of the compressor 11 , the load side fan 16 and the expansion valve 14 . Therefore, the refrigeration cycle system A of the present disclosure can prevent poor cooling and poor heating due to component failure and refrigerant leakage in the refrigerant circuit 10 due to the heat medium flowing from the plate heat exchanger 13 to the refrigerant circuit 10 side. .
  • the heat source unit side control device 30 can know the timing of inspection and cleaning of the heat medium circuit of the plate heat exchanger 13 for each of the plurality of refrigeration cycle devices 100. can. Therefore, it is possible to prevent uncooling and unwarming due to component failures and refrigerant leaks in the plurality of refrigeration cycle apparatuses 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This refrigeration cycle system comprises a plurality of refrigeration cycle devices, and a heat transfer medium system for supplying a heat transfer medium to the plurality of refrigeration cycle devices. The refrigeration cycle device includes: a compressor that compresses a refrigerant; a first heat exchanger that is connected to the compressor and performs heat exchange between the refrigerant and the heat transfer medium; an expansion valve that expands and decompresses the refrigerant subjected to heat exchange in the first heat exchanger; a second heat exchanger that is connected to the expansion valve and performs heat exchange between the refrigerant and air; and a load-side blower for blowing air to the second heat exchanger. A heat source device, a pump, and the first heat exchanger constitute a heat transfer medium circuit connected by heat transfer medium piping. The heat transfer medium system includes: the heat source device, which is connected by the heat transfer medium piping to the first heat exchanger and supplies a heat transfer medium; and the pump, which is provided to the heat transfer medium piping and circulates the heat transfer medium supplied from the heat source device to the first heat exchanger and the heat source device. The refrigeration cycle device includes: a detection device that is provided to the heat transfer medium piping and detects the flow rate of the heat transfer medium flowing into the first heat exchanger through the heat transfer medium piping; and a control device that detects that the flow rate of the heat transfer medium detected by the detection device is lower than or equal to a minimum flow rate of the heat transfer medium required for normal operation of the refrigeration cycle device, and controls at least one among the compressor, the load-side blower, and the expansion valve in accordance with the detection that the flow rate of the heat transfer medium is lower than or equal to the minimum flow rate.

Description

冷凍サイクルシステムrefrigeration cycle system
 本開示は、冷凍サイクルシステムに関し、特に、複数の冷凍サイクル装置を有する冷凍サイクルシステムにおいて、複数の冷凍サイクル装置が有するプレート式熱交換器の熱媒体回路における閉塞の兆候を検出する冷凍サイクルシステムに関する。 TECHNICAL FIELD The present disclosure relates to a refrigerating cycle system, and more particularly to a refrigerating cycle system having a plurality of refrigerating cycle devices that detects signs of blockage in heat medium circuits of plate heat exchangers of the plurality of refrigerating cycle devices. .
 オフィスビルなどの空調を行なう場合、冷媒と熱媒体とで熱交換するプレート式熱交換器を有する複数の冷凍サイクル装置が必要になる。複数の冷凍サイクル装置を使用する場合、被冷却又は被加熱対象となる複数の室内空間の環境状況及び使用状況によって、各冷凍サイクル装置の運転時間及び運転状況が異なる。特許文献1においては、熱交換器の洗浄時期の算出方法について開示しているものの複数の冷凍サイクル装置との関係については開示されていない。 When air-conditioning an office building, multiple refrigeration cycle devices with plate-type heat exchangers that exchange heat between refrigerant and heat medium are required. When using a plurality of refrigeration cycle devices, the operating time and operating conditions of each refrigeration cycle device differ depending on the environmental conditions and usage conditions of the plurality of indoor spaces to be cooled or heated. Although Patent Document 1 discloses a method for calculating the cleaning timing of the heat exchanger, it does not disclose the relationship with a plurality of refrigeration cycle devices.
特開平10-281695号公報JP-A-10-281695
 スケール等によりプレート式熱交換器の熱媒体回路が閉塞すると、プレート式熱交換器を凝縮器として使用している場合、高圧圧力及び吐出温度が上昇し冷凍サイクル装置の運転が異常停止する。また、プレート式熱交換器を蒸発器として使用している場合、水が凍結し体積膨張することで、プレート式熱交換器のプレート間の接合部が破裂するいわゆる凍結パンクが発生し、冷媒回路側へ熱媒体が流れ込み冷媒回路の部品故障及び冷媒漏れにより不冷及び不暖が発生する場合がある。 If the heat medium circuit of the plate heat exchanger is blocked by scale or the like, the high pressure and discharge temperature will rise and the operation of the refrigeration cycle device will stop abnormally if the plate heat exchanger is used as a condenser. In addition, when a plate heat exchanger is used as an evaporator, the water freezes and expands in volume, causing a so-called freeze puncture, in which the joint between the plates of the plate heat exchanger bursts. The heat medium may flow into the side, causing uncooling and unwarming due to component failure and refrigerant leakage in the refrigerant circuit.
 複数の冷凍サイクル装置を使用する場合、複数の室内空間の環境状況及び使用状況によって、各冷凍サイクル装置の運転時間及び運転状況が異なるので、複数の冷凍サイクル装置毎に、熱媒体回路における閉塞の兆候を検知し、プレート式熱交換器の破損及び冷媒回路の部品故障及び冷媒漏れを防止する必要がある。 When using a plurality of refrigerating cycle devices, the operating time and operating conditions of each refrigerating cycle device differ depending on the environmental conditions and usage conditions of the plurality of indoor spaces. It is necessary to detect signs and prevent breakage of plate heat exchangers, failure of parts in refrigerant circuits, and leakage of refrigerant.
 本開示は、上記実情に鑑みてなされたものであり、複数の冷凍サイクル装置におけるプレート式熱交換器内の熱媒体回路から熱媒体が流れ込み冷媒回路の部品故障及び冷媒漏れによる不冷及び不暖を防止することができる冷凍サイクルシステムを提供することを目的とする。 The present disclosure has been made in view of the above-mentioned circumstances, and is intended to prevent uncooling and unwarming caused by a heat medium flowing from a heat medium circuit in a plate-type heat exchanger in a plurality of refrigeration cycle devices and a component failure and refrigerant leakage in the refrigerant circuit. An object of the present invention is to provide a refrigeration cycle system capable of preventing
 本開示の冷凍サイクルシステムは、複数の冷凍サイクル装置と、前記複数の冷凍サイクル装置に熱媒体を供給する熱媒体システムとを具備し、前記冷凍サイクル装置は、冷媒を圧縮する圧縮機と、前記圧縮機に接続され、前記冷媒と前記熱媒体とを熱交換させる第1熱交換器と、前記第1熱交換器において熱交換がされた冷媒を膨張して減圧する膨張弁と、前記膨張弁に接続され、前記冷媒と空気との熱交換を行なう第2熱交換器と、前記第2熱交換器に送風を行なう負荷側送風機とを具備し、前記熱源装置、ポンプ及び前記第1熱交換器は、前記熱媒体配管で接続された熱媒体回路を構成し、前記熱媒体システムは、前記第1熱交換器と熱媒体配管で接続され、熱媒体を供給する熱源装置と、前記熱媒体配管に設けられ、前記熱源装置から供給された前記熱媒体を前記第1熱交換器及び前記熱源装置に循環する前記ポンプとを具備し、前記冷凍サイクル装置は、前記熱媒体配管に設けられ、前記熱媒体配管を介して前記第1熱交換器に流入する前記熱媒体の流量を検出する検出装置と、前記検出装置により検出された前記熱媒体の流量が、前記冷凍サイクル装置が正常に運転するために必要な前記熱媒体の最低流量以下であることを検出し、前記熱媒体の流量が前記最低流量以下であることの検出に応じて、前記圧縮機、前記負荷側送風機及び前記膨張弁のうち、少なくとも1つを制御する制御装置とを具備する。 A refrigeration cycle system of the present disclosure includes a plurality of refrigeration cycle devices and a heat medium system that supplies a heat medium to the plurality of refrigeration cycle devices, and the refrigeration cycle device includes a compressor that compresses refrigerant; A first heat exchanger that is connected to a compressor and exchanges heat between the refrigerant and the heat medium; an expansion valve that expands and decompresses the refrigerant heat-exchanged in the first heat exchanger; and the expansion valve. and a second heat exchanger that exchanges heat between the refrigerant and air, and a load side blower that blows air to the second heat exchanger, the heat source device, the pump, and the first heat exchange The heat medium system comprises a heat medium circuit connected by the heat medium pipes, the heat medium system is connected to the first heat exchanger by heat medium pipes, and includes a heat source device that supplies a heat medium, and the heat medium The pump is provided in a pipe and circulates the heat medium supplied from the heat source device to the first heat exchanger and the heat source device, and the refrigeration cycle device is provided in the heat medium pipe, a detection device for detecting the flow rate of the heat medium flowing into the first heat exchanger through the heat medium pipe; and detecting that the flow rate of the heat medium is less than or equal to the minimum flow rate, and in response to detecting that the flow rate of the heat medium is less than or equal to the minimum flow rate, and a control device that controls at least one of
 本開示の冷凍サイクルシステムは、複数の冷凍サイクル装置毎に、制御装置が冷凍サイクル装置が正常に運転できる最低流量以下である場合に、圧縮機、負荷側送風機及び膨張弁のうち、少なくとも1つを制御する。従って、本開示の冷凍サイクルシステムは、熱媒体が第1熱交換器から冷媒回路側に流れ込むことによる冷媒回路の部品故障及び冷媒漏れによる不冷及び不暖を防止することができる。 In the refrigeration cycle system of the present disclosure, for each of a plurality of refrigeration cycle devices, at least one of a compressor, a load-side blower, and an expansion valve is controlled when the controller is set to a minimum flow rate at which the refrigeration cycle device can operate normally. to control. Therefore, the refrigerating cycle system of the present disclosure can prevent uncooling and unwarming due to component failure and refrigerant leakage in the refrigerant circuit due to the heat medium flowing from the first heat exchanger to the refrigerant circuit side.
実施の形態に係る冷凍サイクルシステムの構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the refrigerating-cycle system which concerns on embodiment. 実施の形態に係る冷凍サイクルシステムにおける代表となる冷凍サイクル装置と熱媒体システムとの構成の詳細を示す図である。It is a figure which shows the detail of a structure of the refrigerating-cycle apparatus and heat-medium system which are representative in the refrigerating-cycle system which concerns on embodiment. 実施の形態に係る冷凍サイクルシステムにおける熱源機側制御装置の機能を説明する機能ブロック図である。It is a functional block diagram explaining the function of the heat-source equipment side control apparatus in the refrigeration cycle system which concerns on embodiment. 実施の形態に係る冷凍サイクルシステムの動作について説明するためのフローチャートである。It is a flow chart for explaining the operation of the refrigeration cycle system according to the embodiment.
 以下、図面を参照して、実施の形態に係る冷凍サイクルシステムAについて説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。本開示は、以下の各実施の形態で説明する構成のうち、組合せ可能な構成のあらゆる組合せを含み得る。 A refrigeration cycle system A according to an embodiment will be described below with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and redundant description is given only when necessary. The present disclosure may include any combination of configurations that can be combined among the configurations described in the following embodiments.
 また、以下の実施の形態では、複数設けられている構成要素については、当該構成要素の符号の末尾にアンダーバーと数字を付加することで互いに区別する。しかしながら、複数の当該構成要素をまとめて説明する場合、あるいは、当該構成要素のうちの1つを代表として説明する場合には、アンダーバーと数字を付けずに説明を行なうこととする。 In addition, in the following embodiments, a plurality of constituent elements are distinguished from each other by adding an underscore and a number at the end of the code of the constituent element. However, when a plurality of constituent elements are collectively described, or when one of the constituent elements is described as a representative, the description will be made without underscores and numbers.
実施の形態.
 図1は、実施の形態に係る冷凍サイクルシステムAの構成を示す図である。図1では、冷凍サイクル装置100と、熱媒体システム103とが、3対1で構成される場合を例示している。図1に示すように、冷凍サイクルシステムAは、冷凍サイクル装置100_a、冷凍サイクル装置100_b、冷凍サイクル装置100_c及び熱媒体システム103を有する。
Embodiment.
FIG. 1 is a diagram showing the configuration of a refrigeration cycle system A according to an embodiment. FIG. 1 illustrates a case where the refrigerating cycle device 100 and the heat medium system 103 are configured in a three-to-one ratio. As shown in FIG. 1 , the refrigerating cycle system A has a refrigerating cycle device 100 — a, a refrigerating cycle device 100 — b, a refrigerating cycle device 100 — c, and a heat medium system 103 .
 冷凍サイクル装置100は、2台又は3台以上でも良い。また、冷凍サイクル装置100_a、冷凍サイクル装置100_b及び冷凍サイクル装置100_cは、全て同じ容量のものであってもよく、異なる容量のものが混在していても良い。 The number of refrigeration cycle devices 100 may be two or three or more. Further, the refrigerating cycle device 100_a, the refrigerating cycle device 100_b, and the refrigerating cycle device 100_c may all have the same capacity, or may have different capacities.
 冷凍サイクル装置100_aは、プレート式熱交換器13_aを有する。冷凍サイクル装置100_bは、プレート式熱交換器13_bを有する。冷凍サイクル装置100_cは、プレート式熱交換器13_cを有する。 The refrigeration cycle device 100_a has a plate heat exchanger 13_a. The refrigeration cycle device 100_b has a plate heat exchanger 13_b. A refrigerating cycle device 100_c has a plate heat exchanger 13_c.
 熱媒体システム103は、熱源装置22及びポンプ21を有する。熱源装置22、ポンプ21及びプレート式熱交換器13_a~プレート式熱交換器13_cは、熱媒体配管23により接続され、熱媒体が循環する熱媒体回路20を構成する。プレート式熱交換器13_a~プレート式熱交換器13_cは、熱媒体配管23により共通の熱源装置22に並列に接続されている。 The heat medium system 103 has a heat source device 22 and a pump 21 . The heat source device 22, the pump 21, and the plate heat exchangers 13_a to 13_c are connected by heat medium pipes 23 to form a heat medium circuit 20 in which the heat medium circulates. The plate heat exchangers 13 — a to 13 — c are connected in parallel to a common heat source device 22 through heat medium pipes 23 .
 プレート式熱交換器13_aは、冷凍サイクル装置100_aにおける冷媒回路(図2参照)を流れる冷媒と、熱媒体回路20を流れる熱媒体との熱交換を行なう。プレート式熱交換器13_bは、冷凍サイクル装置100_bにおける冷媒回路(図2参照)を流れる冷媒と、熱媒体回路20を流れる熱媒体との熱交換を行なう。プレート式熱交換器13_cは、冷凍サイクル装置100_cにおける冷媒回路(図2参照)を流れる冷媒と、熱媒体回路20を流れる熱媒体との熱交換を行なう。 The plate heat exchanger 13_a exchanges heat between the refrigerant flowing through the refrigerant circuit (see FIG. 2) and the heat medium flowing through the heat medium circuit 20 in the refrigeration cycle device 100_a. The plate heat exchanger 13_b exchanges heat between the refrigerant flowing through the refrigerant circuit (see FIG. 2) and the heat medium flowing through the heat medium circuit 20 in the refrigeration cycle device 100_b. The plate heat exchanger 13_c exchanges heat between the refrigerant flowing through the refrigerant circuit (see FIG. 2) and the heat medium flowing through the heat medium circuit 20 in the refrigeration cycle device 100_c.
 熱源装置22は、例えば冷却塔又はボイラーからなり、熱媒体回路20を流れる熱媒体を冷却又は加温する。熱媒体は、水又はブライン等である。ポンプ21は、例えばインバータによって駆動されるモータを有しており、モータを動力源として駆動され、熱媒体回路20内の熱媒体を循環する。 The heat source device 22 is, for example, a cooling tower or a boiler, and cools or heats the heat medium flowing through the heat medium circuit 20 . The heat medium is water, brine, or the like. The pump 21 has a motor driven by, for example, an inverter, and is driven using the motor as a power source to circulate the heat medium in the heat medium circuit 20 .
 図1に示した冷凍サイクルシステムAにおいて、熱源装置22から熱媒体配管23に出力された熱媒体は、ポンプ21により循環されて、プレート式熱交換器13_a~プレート式熱交換器13_cにそれぞれ流入する。プレート式熱交換器13_aに流入した熱媒体は、冷凍サイクル装置100_aの冷媒回路を流れる冷媒と熱交換され、熱源装置22に流入する。プレート式熱交換器13_bに流入した熱媒体は、冷凍サイクル装置100_bの冷媒回路を流れる冷媒と熱交換され、熱源装置22に流入する。プレート式熱交換器13_cに流入した熱媒体は、冷凍サイクル装置100_cの冷媒回路を流れる冷媒と熱交換され、熱源装置22に流入する。 In the refrigeration cycle system A shown in FIG. 1, the heat medium output from the heat source device 22 to the heat medium pipe 23 is circulated by the pump 21 and flows into the plate heat exchangers 13_a to 13_c. do. The heat medium flowing into the plate heat exchanger 13 — a is heat-exchanged with the refrigerant flowing through the refrigerant circuit of the refrigeration cycle device 100 — a and flows into the heat source device 22 . The heat medium flowing into the plate heat exchanger 13 — b is heat-exchanged with the refrigerant flowing through the refrigerant circuit of the refrigeration cycle device 100 — b, and flows into the heat source device 22 . The heat medium flowing into the plate heat exchanger 13 — c is heat-exchanged with the refrigerant flowing through the refrigerant circuit of the refrigeration cycle device 100 — c and flows into the heat source device 22 .
 図2は、実施の形態に係る冷凍サイクルシステムAにおける代表となる冷凍サイクル装置100と熱媒体システム103との構成の詳細を示す図である。図2に示すように、冷凍サイクルシステムAは、冷凍サイクル装置100及び熱媒体システム103を有する。冷凍サイクル装置100は、熱源機101と室内機102とを有する。 FIG. 2 is a diagram showing the details of the configurations of the refrigeration cycle device 100 and the heat medium system 103, which are representative of the refrigeration cycle system A according to the embodiment. As shown in FIG. 2 , the refrigeration cycle system A has a refrigeration cycle device 100 and a heat medium system 103 . The refrigeration cycle device 100 has a heat source device 101 and an indoor unit 102 .
 図2においては、図1に示す実施の形態に係る冷凍サイクルシステムAにおいて、代表となる冷凍サイクル装置100と熱媒体システム103とが1対1で接続されている回路を示している。また、熱源機101と、室内機102とが、1対1で構成される場合を例示している。なお、冷凍サイクル装置100は、熱源機101と室内機102とが一体となっていても良い。また、熱源機101に接続される室内機102が複数台接続されていても良い。 FIG. 2 shows a circuit in which the representative refrigeration cycle device 100 and the heat medium system 103 are connected one-to-one in the refrigeration cycle system A according to the embodiment shown in FIG. Moreover, the case where the heat source unit 101 and the indoor unit 102 are configured in a one-to-one manner is illustrated. In the refrigeration cycle device 100, the heat source device 101 and the indoor unit 102 may be integrated. Also, a plurality of indoor units 102 connected to the heat source unit 101 may be connected.
 熱源機101は、プレート式熱交換器13にて冷媒と熱媒体とを熱交換し、室内機102に冷熱又は温熱を供給する。熱源機101は、圧縮機11、四方弁12、プレート式熱交換器13及びアキュムレータ17を有している。 The heat source unit 101 exchanges heat between the refrigerant and the heat medium in the plate heat exchanger 13 and supplies cold heat or hot heat to the indoor unit 102 . The heat source device 101 has a compressor 11 , a four-way valve 12 , a plate heat exchanger 13 and an accumulator 17 .
 また、熱源機101は、熱源機側制御装置30、流量センサ31、第1圧力センサ32、第2圧力センサ33及び報知装置41を有する。 The heat source machine 101 also has a heat source machine side control device 30 , a flow rate sensor 31 , a first pressure sensor 32 , a second pressure sensor 33 and a notification device 41 .
 圧縮機11は、例えばインバータによって駆動される圧縮機モータを有し、冷媒を吸入して圧縮する。四方弁12は、圧縮機11に接続されており、熱源機側制御装置30により制御され、冷房時と暖房時とで冷媒の流路を切り替える。なお、四方弁12は、冷媒の流れ方向を切り替える冷媒流路切替装置の一例である。冷媒流路切替装置は、二方弁又は三方弁の組み合わせで構成されていてもよい。また、冷凍サイクル装置100が冷房専用又は暖房専用であって冷媒の流れ方向を切り替える必要が無い場合には、四方弁12等の冷媒流路切替装置を設けなくてよい。アキュムレータ17は、負荷側熱交換器15で蒸発しきれなかった冷媒液を分離する液分離器である。アキュムレータ17は、設けられていなくてもよい。 The compressor 11 has, for example, a compressor motor driven by an inverter, and sucks and compresses the refrigerant. The four-way valve 12 is connected to the compressor 11 and controlled by the heat source device side control device 30 to switch the flow path of the refrigerant between cooling and heating. The four-way valve 12 is an example of a refrigerant channel switching device that switches the flow direction of the refrigerant. The refrigerant flow switching device may be composed of a combination of two-way valves or three-way valves. Further, when the refrigerating cycle device 100 is exclusively used for cooling or heating and there is no need to switch the flow direction of the refrigerant, the refrigerant channel switching device such as the four-way valve 12 may not be provided. The accumulator 17 is a liquid separator that separates the refrigerant liquid that has not completely evaporated in the load-side heat exchanger 15 . Accumulator 17 may not be provided.
 プレート式熱交換器13は、冷媒回路10と熱媒体回路20との間に接続されている。プレート式熱交換器13は、媒体間熱交換器であり、冷媒回路10を循環する冷媒と、熱媒体回路20を循環する熱媒体との間で熱交換する。 The plate heat exchanger 13 is connected between the refrigerant circuit 10 and the heat medium circuit 20 . The plate heat exchanger 13 is a heat exchanger between mediums, and exchanges heat between the refrigerant circulating in the refrigerant circuit 10 and the heat medium circulating in the heat medium circuit 20 .
 室内機102は、膨張弁14、負荷側熱交換器15、負荷側送風機16及び負荷側制御装置34を有する。 The indoor unit 102 has an expansion valve 14 , a load-side heat exchanger 15 , a load-side blower 16 and a load-side controller 34 .
 膨張弁14は、例えば電子膨張弁からなる。膨張弁14は、冷媒回路10におけるプレート式熱交換器13と負荷側熱交換器15との間に設けられている。膨張弁14は、負荷側制御装置34により制御される。膨張弁14は、例えば室内の温度と目標温度との差に応じて開度を調整し、冷媒を減圧又は膨張させる。 The expansion valve 14 is, for example, an electronic expansion valve. The expansion valve 14 is provided between the plate heat exchanger 13 and the load side heat exchanger 15 in the refrigerant circuit 10 . The expansion valve 14 is controlled by a load side controller 34 . The expansion valve 14 adjusts the degree of opening according to, for example, the difference between the indoor temperature and the target temperature to reduce or expand the refrigerant.
 負荷側送風機16は、負荷側熱交換器15に室内の空気を送風する。負荷側熱交換器15は、プレート式熱交換器13から膨張弁14を介して流入する冷媒又は圧縮機11から吐出された冷媒と、負荷側送風機16から送風された空気との熱交換を行なう。 The load-side blower 16 blows indoor air to the load-side heat exchanger 15 . The load-side heat exchanger 15 exchanges heat between the refrigerant flowing from the plate-type heat exchanger 13 through the expansion valve 14 or the refrigerant discharged from the compressor 11 and the air blown from the load-side blower 16 . .
 冷凍サイクル装置100には、圧縮機11、四方弁12、プレート式熱交換器13、膨張弁14、負荷側熱交換器15、及びアキュムレータ17が冷媒配管18を介して接続され、冷媒が循環する冷媒回路10が形成されている。つまり、熱源機101と室内機102とは、冷媒配管18によって接続されている。冷凍サイクル装置100は、熱源機101と室内機102とが一体でもよい。 A compressor 11, a four-way valve 12, a plate heat exchanger 13, an expansion valve 14, a load-side heat exchanger 15, and an accumulator 17 are connected to the refrigeration cycle device 100 via refrigerant pipes 18, and refrigerant circulates. A refrigerant circuit 10 is formed. That is, the heat source device 101 and the indoor unit 102 are connected by the refrigerant pipe 18 . The refrigerating cycle device 100 may have the heat source device 101 and the indoor unit 102 integrated.
 流量センサ31は、プレート式熱交換器13の熱媒体入口に接続される熱媒体配管23に設けられる。流量センサ31は、熱媒体配管23からプレート式熱交換器13に流入する熱媒体の流量を検出する。 The flow rate sensor 31 is provided on the heat medium pipe 23 connected to the heat medium inlet of the plate heat exchanger 13 . The flow rate sensor 31 detects the flow rate of the heat medium flowing into the plate heat exchanger 13 from the heat medium pipe 23 .
 第1圧力センサ32は、プレート式熱交換器13の熱媒体入口に接続される熱媒体配管23に設けられる。第1圧力センサ32は、熱媒体配管23からプレート式熱交換器13に流入する熱媒体の流入圧力を検出する。 The first pressure sensor 32 is provided in the heat medium pipe 23 connected to the heat medium inlet of the plate heat exchanger 13 . The first pressure sensor 32 detects the inflow pressure of the heat medium flowing into the plate heat exchanger 13 from the heat medium pipe 23 .
 第2圧力センサ33は、プレート式熱交換器13の熱媒体出口に接続される熱媒体配管23に設けられる。第2圧力センサ33は、プレート式熱交換器13から熱媒体配管23に流出する熱媒体の流出圧力を検出する。 The second pressure sensor 33 is provided on the heat medium pipe 23 connected to the heat medium outlet of the plate heat exchanger 13 . The second pressure sensor 33 detects the outflow pressure of the heat medium flowing out from the plate heat exchanger 13 to the heat medium pipe 23 .
 熱源機側制御装置30は、流量センサ31により検出された熱媒体の流量、第1圧力センサ32により検出された流入圧力及び第2圧力センサ33により検出された流出圧力を受信する。熱源機側制御装置30は、受信した流量、受信した流入圧力及び受信した流出圧力に基づいて、プレート式熱交換器13の熱媒体回路の閉塞の兆候を検出する。 The heat source unit side control device 30 receives the flow rate of the heat medium detected by the flow rate sensor 31, the inflow pressure detected by the first pressure sensor 32, and the outflow pressure detected by the second pressure sensor 33. The heat source unit side control device 30 detects signs of clogging of the heat medium circuit of the plate heat exchanger 13 based on the received flow rate, the received inflow pressure, and the received outflow pressure.
 また、熱源機側制御装置30は、プレート式熱交換器13に流入する熱媒体の流量が冷凍サイクル装置100が正常に運転するために必要な熱媒体の最低流量以下であるか否かを検出する。熱源機側制御装置30は、熱媒体の流量が冷凍サイクル装置100が正常に運転するために必要な熱媒体の最低流量以下であることを検出した場合、圧縮機11の運転を停止する。この最低流量は、熱源機側制御装置30の記憶装置に記憶される。 In addition, the heat source unit side control device 30 detects whether or not the flow rate of the heat medium flowing into the plate heat exchanger 13 is equal to or less than the minimum flow rate of the heat medium required for normal operation of the refrigeration cycle device 100. do. The heat source unit side control device 30 stops the operation of the compressor 11 when detecting that the flow rate of the heat medium is equal to or less than the minimum flow rate of the heat medium required for the refrigeration cycle device 100 to operate normally. This minimum flow rate is stored in the storage device of the heat source machine side control device 30 .
 熱源機側制御装置30は、熱媒体の流量が冷凍サイクル装置100が正常に運転するために必要な熱媒体の最低流量以下であることを検出した場合、異常信号を報知装置41、負荷側制御装置34及び熱媒体システム側制御装置35に送信する。 When the heat source unit side control device 30 detects that the flow rate of the heat medium is equal to or less than the minimum flow rate of the heat medium required for the refrigeration cycle device 100 to operate normally, the abnormality signal is sent to the notification device 41 and the load side control device 41. It is transmitted to the device 34 and the heat medium system side controller 35 .
 熱源機側制御装置30の処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。処理回路が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部が一つのハードウェアで実現されてもよい。熱源機側制御装置30の処理回路がCPUの場合、処理回路が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、記憶部に格納される。CPUは、記憶部に格納されたプログラムを読み出して実行することにより、処理回路の各機能を実現する。なお、処理回路の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 When the processing circuit of the heat source machine side control device 30 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or any of these A combination is applicable. Each functional unit implemented by the processing circuit may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware. When the processing circuit of the heat source machine side control device 30 is a CPU, each function executed by the processing circuit is implemented by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the storage unit. The CPU implements each function of the processing circuit by reading and executing the program stored in the storage unit. A part of the functions of the processing circuit may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
 負荷側制御装置34は、熱源機側制御装置30と制御通信線40により接続され、熱源機側制御装置30と通信が可能である。負荷側制御装置34は、膨張弁14と負荷側送風機16との動作を制御する。また、負荷側制御装置34は、室内機102のリモコン37と有線又は無線により接続されている。 The load-side control device 34 is connected to the heat source device-side control device 30 by a control communication line 40, and is capable of communicating with the heat source device-side control device 30. The load-side controller 34 controls operations of the expansion valve 14 and the load-side blower 16 . Also, the load-side control device 34 is connected to the remote controller 37 of the indoor unit 102 by wire or wirelessly.
 リモコン37にて設定された目標温度及び送風機風量に基づき、負荷側制御装置34は室内機102の膨張弁14及び負荷側送風機16に対する制御指示を出力する。また、負荷側制御装置34は、熱源機側制御装置30から出力された異常信号を受信した場合、負荷側送風機16の送風運転を停止する。さらに、負荷側制御装置34は、熱源機側制御装置30から出力された点検信号を受信した場合、リモコン37にプレート式熱交換器13の熱媒体回路の点検及び洗浄が必要なことを表示させる。 The load side controller 34 outputs control instructions to the expansion valve 14 of the indoor unit 102 and the load side fan 16 based on the target temperature and the fan air volume set by the remote controller 37 . In addition, the load-side control device 34 stops the air blowing operation of the load-side fan 16 when receiving the abnormal signal output from the heat source device-side control device 30 . Further, when receiving the inspection signal output from the heat source unit side control device 30, the load side control device 34 causes the remote controller 37 to display that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned. .
 報知装置41は、例えば、モニタ及び/又はスピーカである。報知装置41は、熱源機側制御装置30から出力された点検信号を基づいて、プレート式熱交換器13の熱媒体回路の点検及び洗浄が必要であることを表示し及び/又は音声により出力して、点検及び洗浄が必要なことを報知する。また、報知装置41は、熱源機側制御装置30から出力された異常信号を受信した場合に、熱媒体回路20の異常を表示し、及び/又は熱媒体回路20の異常が生じたことを音声により出力する。 The notification device 41 is, for example, a monitor and/or a speaker. Based on the inspection signal output from the heat source device side control device 30, the notification device 41 displays and/or outputs by voice that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned. to notify that inspection and cleaning are required. Further, when the notification device 41 receives the abnormality signal output from the heat source device side control device 30, the notification device 41 displays the abnormality of the heat medium circuit 20 and/or issues an audible notification that the abnormality of the heat medium circuit 20 has occurred. Output by
 熱媒体システム103は、ポンプ21、熱源装置22及び熱媒体システム側制御装置35を有する。熱媒体システム103は、冷凍サイクルシステムAの納入先にて準備及び施工されても良い。熱媒体システム103における熱源装置22、ポンプ21及びプレート式熱交換器13は、熱媒体配管23により接続され、熱媒体が循環する熱媒体回路20を構成する。つまり、冷凍サイクル装置100と熱媒体システム103とは、熱媒体配管23によって接続されている。 The heat medium system 103 has a pump 21 , a heat source device 22 and a heat medium system side controller 35 . The heat medium system 103 may be prepared and constructed at the delivery destination of the refrigeration cycle system A. The heat source device 22, the pump 21, and the plate heat exchanger 13 in the heat medium system 103 are connected by a heat medium pipe 23 to form a heat medium circuit 20 in which the heat medium circulates. That is, the refrigeration cycle device 100 and the heat medium system 103 are connected by the heat medium pipe 23 .
 熱媒体システム側制御装置35は、熱源機側制御装置30と制御通信線40により接続され、熱源機側制御装置30と通信が可能である。熱媒体システム側制御装置35は、熱媒体回路20内で熱媒体を循環させるための圧力をポンプ21により制御する。熱媒体システム側制御装置35は、例えば、納入先の中央管理装置である。 The heat medium system control device 35 is connected to the heat source device control device 30 by a control communication line 40 and is capable of communicating with the heat source device control device 30 . The heat medium system controller 35 controls the pressure for circulating the heat medium in the heat medium circuit 20 by the pump 21 . The heat medium system side control device 35 is, for example, the central management device of the delivery destination.
 熱媒体システム側制御装置35は、熱媒体システム側報知装置36に接続されている。熱媒体システム側報知装置36は、例えば、熱媒体システム103の中央監視盤におけるモニタ及び/又はスピーカである。熱媒体システム側制御装置35は、熱源機側制御装置30から出力された点検信号を受信した場合に、熱媒体システム側報知装置36にプレート式熱交換器13の熱媒体回路の点検及び洗浄が必要であることを表示する。熱媒体システム側制御装置35は、熱源機側制御装置30から出力された点検信号を受信した場合に、プレート式熱交換器13の熱媒体回路の点検及び洗浄が必要であることを音声により出力しても良い。熱媒体システム側制御装置35は、熱源機側制御装置30から出力された異常信号を受信した場合に、熱媒体システム側報知装置36に熱媒体回路20の異常を表示する。熱媒体システム側制御装置35は、熱源機側制御装置30から出力された異常信号を受信した場合に、熱媒体回路20の異常が生じたことを音声により出力させても良い。 The heat medium system side controller 35 is connected to the heat medium system side notification device 36 . The heat medium system side notification device 36 is, for example, a monitor and/or a speaker in the central monitoring panel of the heat medium system 103 . When the heat medium system side controller 35 receives the inspection signal output from the heat source unit side controller 30, the heat medium system side notification device 36 indicates that the heat medium circuit of the plate heat exchanger 13 should be inspected and cleaned. Show that you need it. When receiving the inspection signal output from the heat source unit side controller 30, the heat medium system side controller 35 outputs by voice that inspection and cleaning of the heat medium circuit of the plate heat exchanger 13 are necessary. You can When the heat medium system side controller 35 receives the abnormality signal output from the heat source unit side controller 30 , the heat medium system side notification device 36 displays the abnormality of the heat medium circuit 20 . When receiving the abnormality signal output from the heat source equipment side control device 30 , the heat medium system side control device 35 may output the fact that the heat medium circuit 20 is abnormal by voice.
 図3は、実施の形態に係る冷凍サイクルシステムAにおける熱源機側制御装置30の機能を説明する機能ブロック図である。 FIG. 3 is a functional block diagram illustrating the functions of the heat source equipment side control device 30 in the refrigeration cycle system A according to the embodiment.
 図3に示すように、熱源機側制御装置30は、閉塞兆候検出部30_1、点検信号出力部30_2及び最低流量検出部30_3を有する。 As shown in FIG. 3, the heat source unit side control device 30 has a clogging symptom detection section 30_1, an inspection signal output section 30_2, and a minimum flow rate detection section 30_3.
 閉塞兆候検出部30_1は、流量センサ31により検出された熱媒体の流量、第1圧力センサ32により検出された熱媒体の流入圧力、第2圧力センサ33により検出された熱媒体の流出圧力に基づいて、プレート式熱交換器13の熱媒体回路における閉塞の兆候を検出する。 The blockage indication detection unit 30_1 detects the flow rate of the heat medium detected by the flow sensor 31, the inflow pressure of the heat medium detected by the first pressure sensor 32, and the outflow pressure of the heat medium detected by the second pressure sensor 33. to detect signs of blockage in the heat medium circuit of the plate heat exchanger 13 .
 点検信号出力部30_2は、プレート式熱交換器13の熱媒体回路における閉塞の兆候が検出された場合に、プレート式熱交換器13の熱媒体回路の点検信号を報知装置41、負荷側制御装置34及び熱媒体システム側制御装置35に出力する。 The inspection signal output unit 30_2 outputs an inspection signal for the heat medium circuit of the plate heat exchanger 13 to the notification device 41 and the load side control device when a sign of blockage in the heat medium circuit of the plate heat exchanger 13 is detected. 34 and the heat medium system side controller 35 .
 最低流量検出部30_3は、流量センサ31により検出された熱媒体の流量が、冷凍サイクル装置100が正常に運転するために必要な熱媒体の最低流量以下であることを検出する。最低流量検出部30_3は、熱媒体の流量が、冷凍サイクル装置100が正常に運転するために必要な熱媒体の最低流量以下であることの検出に応じて、圧縮機11の運転を停止する制御を行なう。また、最低流量検出部30_3は、冷凍サイクル装置100が正常に運転するために必要な熱媒体の最低流量以下であることの検出に応じて、負荷側制御装置34、熱媒体システム側制御装置35及び報知装置41に異常信号を送信する。 The minimum flow rate detection unit 30_3 detects that the flow rate of the heat medium detected by the flow rate sensor 31 is equal to or less than the minimum flow rate of the heat medium required for the refrigeration cycle device 100 to operate normally. The minimum flow rate detection unit 30_3 controls to stop the operation of the compressor 11 in response to detection that the flow rate of the heat medium is equal to or less than the minimum flow rate of the heat medium required for the refrigeration cycle device 100 to operate normally. do In addition, the minimum flow rate detection unit 30_3 detects that the flow rate of the heat medium is equal to or less than the minimum flow rate required for the refrigeration cycle device 100 to operate normally, the load side controller 34, the heat medium system side controller 35 and an anomaly signal to the notification device 41 .
 負荷側制御装置34は、異常信号の受信に応じて、負荷側送風機16の送風運転の停止の制御及び膨張弁14を閉じる制御を行なう。なお、最低流量検出部30_3は、圧縮機11、膨張弁14及び負荷側送風機16の少なくとも1つを制御しても良い。熱媒体システム側制御装置35は、異常信号の受信に応じて、熱媒体システム側報知装置36に熱媒体回路20の異常を表示し、及び/又は熱媒体回路20の異常が生じたことを音声により出力させる。報知装置41は、熱源機側制御装置30から出力された異常信号を受信した場合に、熱媒体回路20の異常を表示し、及び/又は熱媒体回路20の異常が生じたことを音声により出力する。 The load-side control device 34 performs control to stop the blowing operation of the load-side fan 16 and control to close the expansion valve 14 in response to receiving the abnormality signal. Note that the minimum flow rate detection unit 30_3 may control at least one of the compressor 11, the expansion valve 14, and the load-side blower 16. In response to the reception of the abnormality signal, the heat medium system side controller 35 displays the abnormality of the heat medium circuit 20 on the heat medium system side notification device 36 and/or sounds that the abnormality of the heat medium circuit 20 has occurred. output by The notification device 41 displays an abnormality in the heat medium circuit 20 and/or outputs by voice that an abnormality has occurred in the heat medium circuit 20 when receiving the abnormality signal output from the heat source device side control device 30. do.
 次に、実施の形態に係る冷凍サイクルシステムAの動作について説明する。図4は、実施の形態に係る冷凍サイクルシステムAの動作について説明するためのフローチャートである。 Next, the operation of the refrigeration cycle system A according to the embodiment will be described. FIG. 4 is a flow chart for explaining the operation of the refrigeration cycle system A according to the embodiment.
 熱源機側制御装置30は、プレート式熱交換器13に流入する熱媒体の流量、プレート式熱交換器13に流入する熱媒体の流入圧力、プレート式熱交換器13から流出する熱媒体の流出圧力を受信する(ステップS1)。 The heat source unit side control device 30 controls the flow rate of the heat medium flowing into the plate heat exchanger 13, the inflow pressure of the heat medium flowing into the plate heat exchanger 13, and the outflow of the heat medium flowing out of the plate heat exchanger 13. A pressure is received (step S1).
 次に、熱源機側制御装置30は、プレート式熱交換器13に流入する熱媒体の流量が冷凍サイクル装置100を正常に運転するために必要な熱媒体の最低流量以下であるか否かを判断する(ステップS2)。 Next, the heat source unit side control device 30 determines whether or not the flow rate of the heat medium flowing into the plate heat exchanger 13 is equal to or less than the minimum flow rate of the heat medium required for normal operation of the refrigeration cycle device 100. It judges (step S2).
 ステップS2において、熱媒体の流量が最低流量以下でない場合(ステップS2のNO)、熱源機側制御装置30は、ステップS4の判断に進む。一方、ステップS2において、熱媒体の流量が最低流量以下である場合(ステップS2のYES)、熱源機側制御装置30は、圧縮機11を制御し、負荷側制御装置34、熱媒体システム側制御装置35及び報知装置41に異常信号を出力する(ステップS3)。負荷側制御装置34は、膨張弁14及び負荷側送風機16を制御する。なお、圧縮機11、膨張弁14及び負荷側送風機16のうち、少なくとも1つが制御されれば良い。 In step S2, if the flow rate of the heat medium is not equal to or less than the minimum flow rate (NO in step S2), the heat source unit side control device 30 proceeds to determination in step S4. On the other hand, in step S2, if the flow rate of the heat medium is equal to or less than the minimum flow rate (YES in step S2), the heat source equipment side control device 30 controls the compressor 11, the load side control device 34, the heat medium system side control An abnormal signal is output to the device 35 and the notification device 41 (step S3). The load-side controller 34 controls the expansion valve 14 and the load-side blower 16 . At least one of the compressor 11, the expansion valve 14, and the load-side blower 16 should be controlled.
 具体的には、熱源機側制御装置30は、圧縮機11の運転を停止する制御を行なう。熱源機側制御装置30は、熱媒体回路20が異常であることを示す異常信号を報知装置41、負荷側制御装置34及び熱媒体システム側制御装置35に出力する。これにより、冷凍サイクルシステムAにおいて、異常信号処理が行われる。 Specifically, the heat source machine side control device 30 performs control to stop the operation of the compressor 11 . The heat source unit side control device 30 outputs an abnormality signal indicating that the heat medium circuit 20 is abnormal to the notification device 41 , the load side control device 34 and the heat medium system side control device 35 . Thereby, in the refrigerating cycle system A, abnormality signal processing is performed.
 報知装置41は、熱源機側制御装置30から出力された異常信号を受信した場合、熱媒体回路20の異常を表示し、及び/又は音声により出力する。負荷側制御装置34は、異常信号の受信に応じて、負荷側送風機16の送風の停止の制御及び膨張弁14を閉じる制御を行なう。熱媒体システム側制御装置35は、異常信号の受信に応じて、熱媒体システム側報知装置36に熱媒体回路20の異常を表示し、及び/又は熱媒体回路20の異常が生じたことを音声により出力させる。 When the notification device 41 receives the abnormality signal output from the heat source device side control device 30, the notification device 41 displays the abnormality of the heat medium circuit 20 and/or outputs it by voice. The load-side control device 34 performs control to stop blowing air from the load-side blower 16 and control to close the expansion valve 14 in response to the reception of the abnormality signal. In response to the reception of the abnormality signal, the heat medium system side controller 35 displays the abnormality of the heat medium circuit 20 on the heat medium system side notification device 36 and/or sounds that the abnormality of the heat medium circuit 20 has occurred. output by
 次に、熱源機側制御装置30は、プレート式熱交換器13に流入する熱媒体の流量、熱媒体の流入圧力及びプレート式熱交換器13から流出する熱媒体の流出圧力に基づいて、プレート式熱交換器13の熱媒体回路における閉塞の兆候が検出されたかを判断する(ステップS4)。 Next, based on the flow rate of the heat medium flowing into the plate heat exchanger 13, the inflow pressure of the heat medium, and the outflow pressure of the heat medium flowing out of the plate heat exchanger 13, the heat source unit side control device 30 controls the plate It is determined whether a sign of clogging in the heat medium circuit of the heat exchanger 13 is detected (step S4).
 プレート式熱交換器13の熱媒体回路における閉塞の兆候の判断は、流量センサ31により検出された熱媒体の流量に対し、第1圧力センサ32により検出された流入圧力と第2圧力センサ33により検出された流出圧力との圧力差が、所定の圧力以上大きくなった場合に行われる。ここで、「所定の圧力」とは、プレート式熱交換器13にスケールの堆積が無い冷凍サイクル装置100の納入時の試運転時の第1圧力センサ32により検出された流入圧力と第2圧力センサ33により検出された流入圧力との差よりも大きな所定の圧力をいう。 A sign of clogging in the heat medium circuit of the plate heat exchanger 13 is determined by comparing the flow rate of the heat medium detected by the flow rate sensor 31 with the inflow pressure detected by the first pressure sensor 32 and the pressure detected by the second pressure sensor 33. This is done when the pressure difference from the detected outflow pressure is greater than or equal to a predetermined pressure. Here, the "predetermined pressure" means the inflow pressure detected by the first pressure sensor 32 and the second pressure sensor during the test run at the time of delivery of the refrigeration cycle apparatus 100 with no scale deposition on the plate heat exchanger 13. A predetermined pressure greater than the difference from the incoming pressure sensed by 33.
 ステップS4において、プレート式熱交換器13の熱媒体回路における閉塞の兆候が検出されない場合(ステップS4のNO)、ステップS1の処理に戻る。 In step S4, if no sign of blockage in the heat medium circuit of the plate heat exchanger 13 is detected (NO in step S4), the process returns to step S1.
 ステップS4において、プレート式熱交換器13の熱媒体回路における閉塞の兆候が検出された場合(ステップS4のYES)、熱源機側制御装置30は、プレート式熱交換器13の熱媒体回路の点検信号を報知装置41、負荷側制御装置34及び熱媒体システム側報知装置36に出力する(ステップS5)。 In step S4, when a sign of blockage in the heat medium circuit of the plate heat exchanger 13 is detected (YES in step S4), the heat source unit side control device 30 inspects the heat medium circuit of the plate heat exchanger 13. A signal is output to the notification device 41, the load side control device 34, and the heat medium system side notification device 36 (step S5).
 報知装置41は、熱源機側制御装置30から点検信号を受信すると、プレート式熱交換器13の熱媒体回路の点検及び洗浄が必要であることを表示し及び/又は音声により出力して、点検及び洗浄が必要なことを報知する。負荷側制御装置34は、熱源機側制御装置30から点検信号を受信すると、リモコン37にプレート式熱交換器13の熱媒体回路の点検及び洗浄が必要なことを表示する。熱媒体システム側報知装置36は、熱源機側制御装置30から出力された点検信号を受信した場合に、熱媒体システム側報知装置36に熱媒体システム側報知装置36にプレート式熱交換器13の熱媒体回路の点検及び洗浄が必要であることを表示する。また、熱媒体システム側報知装置36は、熱源機側制御装置30から出力された点検信号を受信した場合に、プレート式熱交換器13の熱媒体回路の点検及び洗浄が必要であることを音声により出力させても良い。 When receiving the inspection signal from the heat source unit side control device 30, the notification device 41 displays and/or outputs by voice that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned, and performs inspection. and notify that cleaning is required. When the load side control device 34 receives the inspection signal from the heat source device side control device 30, it displays on the remote control 37 that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned. When the heat medium system side notification device 36 receives the inspection signal output from the heat source unit side control device 30, the heat medium system side notification device 36 sends the heat medium system side notification device 36 to the plate heat exchanger 13. Indicates that the heat transfer circuit needs to be inspected and cleaned. Further, when the heat medium system side notification device 36 receives the inspection signal output from the heat source unit side control device 30, the heat medium system side notification device 36 issues a voice message indicating that the heat medium circuit of the plate heat exchanger 13 needs to be inspected and cleaned. You can also output by
 なお、本開示の冷凍サイクルシステムAは、プレート式熱交換器13の熱媒体回路の閉塞以外にも、ポンプ21の故障、ストレーナの閉塞が要因となり、熱媒体の流量が低下又は停止する可能性がある。このような場合、本開示の冷凍サイクルシステムAは、熱源機101の圧縮機11が運転しないように制御する必要がある。流量センサ31が検出する流量情報は、プレート式熱交換器13の熱媒体回路の閉塞の兆候を検知する以外にも、冷凍サイクル装置100が正常に運転する必要最低流量を満足しているかどうかを検知するインターロック機能として使用される。 In addition, in the refrigeration cycle system A of the present disclosure, failure of the pump 21 and blockage of the strainer are factors other than blockage of the heat medium circuit of the plate heat exchanger 13, and the flow rate of the heat medium may decrease or stop. There is In such a case, the refrigeration cycle system A of the present disclosure needs to be controlled so that the compressor 11 of the heat source device 101 does not operate. The flow rate information detected by the flow rate sensor 31 can be used not only to detect signs of blockage in the heat medium circuit of the plate heat exchanger 13, but also to determine whether the refrigeration cycle apparatus 100 satisfies the minimum required flow rate for normal operation. Used as an interlock function to detect.
 実施の形態におけるプレート式熱交換器13は第1熱交換器、負荷側熱交換器15は第2熱交換器及び熱源機側制御装置30は制御装置とも称する。また、実施の形態における流量センサ31、第1圧力センサ32及び第2圧力センサ33は、検出装置とも称する。さらに、実施の形態における熱源機側制御装置30、負荷側制御装置34及び熱媒体システム側制御装置35は制御装置とも称する。 The plate heat exchanger 13 in the embodiment is also called a first heat exchanger, the load side heat exchanger 15 is called a second heat exchanger, and the heat source unit side control device 30 is also called a control device. Moreover, the flow rate sensor 31, the first pressure sensor 32, and the second pressure sensor 33 in the embodiment are also referred to as detection devices. Further, the heat source equipment side control device 30, the load side control device 34, and the heat medium system side control device 35 in the embodiment are also referred to as control devices.
 従って、実施の形態に係る冷凍サイクルシステムAによれば、複数の冷凍サイクル装置100毎に、流量センサ31が検出した流量が冷凍サイクル装置100が正常に運転できる最低流量以下であるかを判断する。そして、検出した流量が最低流量以下である場合に、熱源機側制御装置30及び負荷側制御装置34が圧縮機11、負荷側送風機16及び膨張弁14のうち、少なくとも1つを制御する。従って、本開示の冷凍サイクルシステムAは、熱媒体がプレート式熱交換器13から冷媒回路10側に流れ込むことによる冷媒回路10の部品故障及び冷媒漏れによる不冷及び不暖を防止することができる。 Therefore, according to the refrigeration cycle system A according to the embodiment, for each of the plurality of refrigeration cycle devices 100, it is determined whether the flow rate detected by the flow rate sensor 31 is equal to or less than the minimum flow rate at which the refrigeration cycle device 100 can operate normally. . Then, when the detected flow rate is equal to or less than the minimum flow rate, the heat source side control device 30 and the load side control device 34 control at least one of the compressor 11 , the load side fan 16 and the expansion valve 14 . Therefore, the refrigeration cycle system A of the present disclosure can prevent poor cooling and poor heating due to component failure and refrigerant leakage in the refrigerant circuit 10 due to the heat medium flowing from the plate heat exchanger 13 to the refrigerant circuit 10 side. .
 また、実施の形態に係る冷凍サイクルシステムAによれば、熱源機側制御装置30が複数の冷凍サイクル装置100毎にプレート式熱交換器13の熱媒体回路の点検及び洗浄の時期を知ることができる。従って、複数の冷凍サイクル装置100の部品故障及び冷媒漏れによる不冷及び不暖を防止することができる。 Further, according to the refrigeration cycle system A according to the embodiment, the heat source unit side control device 30 can know the timing of inspection and cleaning of the heat medium circuit of the plate heat exchanger 13 for each of the plurality of refrigeration cycle devices 100. can. Therefore, it is possible to prevent uncooling and unwarming due to component failures and refrigerant leaks in the plurality of refrigeration cycle apparatuses 100 .
 さらに、熱源機101における圧縮機11の運転を停止させることで、冷凍サイクル装置100の故障を防止することができる。また、室内機102の負荷側送風機16の運転を停止させることで、冷凍サイクル装置100の運転停止時の不冷及び不暖のクレームを防止することができる。 Furthermore, by stopping the operation of the compressor 11 in the heat source device 101, it is possible to prevent the refrigeration cycle device 100 from malfunctioning. In addition, by stopping the operation of the load-side blower 16 of the indoor unit 102, it is possible to prevent complaints about poor cooling and poor heating when the operation of the refrigeration cycle device 100 is stopped.
 実施の形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。 The embodiment is presented as an example and is not intended to limit the scope of claims. Embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the gist of the embodiments. These embodiments and modifications thereof are included in the scope and gist of the embodiments.
 10 冷媒回路、11 圧縮機、12 四方弁、13、13_a、13_b、13_c プレート式熱交換器、14 膨張弁、15 負荷側熱交換器、16 負荷側送風機、17 アキュムレータ、18 冷媒配管、20 熱媒体回路、21 ポンプ、22 熱源装置、23 熱媒体配管、30 熱源機側制御装置、30_1 閉塞兆候検出部、30_2 点検信号出力部、30_3 最低流量検出部、31 流量センサ、32 第1圧力センサ、33 第2圧力センサ、34 負荷側制御装置、35 熱媒体システム側制御装置、36 熱媒体システム側報知装置、37 リモコン、40 制御通信線、41 報知装置、100、100_a、100_b、100_c 冷凍サイクル装置、101 熱源機、102 室内機、103 熱媒体システム、A 冷凍サイクルシステム。 10 refrigerant circuit, 11 compressor, 12 four-way valve, 13, 13_a, 13_b, 13_c plate heat exchanger, 14 expansion valve, 15 load side heat exchanger, 16 load side blower, 17 accumulator, 18 refrigerant piping, 20 heat medium circuit, 21 pump, 22 heat source device, 23 heat medium pipe, 30 heat source machine side control device, 30_1 clogging indication detection unit, 30_2 inspection signal output unit, 30_3 minimum flow rate detection unit, 31 flow sensor, 32 first pressure sensor, 33 second pressure sensor, 34 load side control device, 35 heat medium system side control device, 36 heat medium system side notification device, 37 remote control, 40 control communication line, 41 notification device, 100, 100_a, 100_b, 100_c refrigeration cycle device , 101 heat source unit, 102 indoor unit, 103 heat medium system, A refrigeration cycle system.

Claims (4)

  1.  複数の冷凍サイクル装置と、
     前記複数の冷凍サイクル装置に熱媒体を供給する熱媒体システムと
    を具備し、
     前記冷凍サイクル装置は、
     冷媒を圧縮する圧縮機と、
     前記圧縮機に接続され、前記冷媒と前記熱媒体とを熱交換させる第1熱交換器と、
     前記第1熱交換器において熱交換がされた冷媒を膨張して減圧する膨張弁と、
     前記膨張弁に接続され、前記冷媒と空気との熱交換を行なう第2熱交換器と、
     前記第2熱交換器に送風を行なう負荷側送風機と
    を具備し、
     前記熱源装置、ポンプ及び前記第1熱交換器は、前記熱媒体配管で接続された熱媒体回路を構成し、
     前記熱媒体システムは、
     前記第1熱交換器と熱媒体配管で接続され、熱媒体を供給する熱源装置と、
     前記熱媒体配管に設けられ、前記熱源装置から供給された前記熱媒体を前記第1熱交換器及び前記熱源装置に循環する前記ポンプと
    を具備し、
     前記冷凍サイクル装置は、
     前記熱媒体配管に設けられ、前記熱媒体配管を介して前記第1熱交換器に流入する前記熱媒体の流量を検出する検出装置と、
     前記検出装置により検出された前記熱媒体の流量が、前記冷凍サイクル装置が正常に運転するために必要な前記熱媒体の最低流量以下であることを検出し、前記熱媒体の流量が前記最低流量以下であることの検出に応じて、前記圧縮機、前記負荷側送風機及び前記膨張弁のうち、少なくとも1つを制御する制御装置と
    を具備する
    冷凍サイクルシステム。
    a plurality of refrigeration cycle devices;
    A heat medium system that supplies a heat medium to the plurality of refrigeration cycle devices,
    The refrigeration cycle device is
    a compressor that compresses a refrigerant;
    a first heat exchanger connected to the compressor for exchanging heat between the refrigerant and the heat medium;
    an expansion valve that expands and decompresses the refrigerant heat-exchanged in the first heat exchanger;
    a second heat exchanger connected to the expansion valve and performing heat exchange between the refrigerant and air;
    A load-side blower that blows air to the second heat exchanger,
    The heat source device, the pump and the first heat exchanger constitute a heat medium circuit connected by the heat medium pipe,
    The heat medium system is
    a heat source device connected to the first heat exchanger by a heat medium pipe and supplying a heat medium;
    the pump provided in the heat medium pipe and configured to circulate the heat medium supplied from the heat source device to the first heat exchanger and the heat source device;
    The refrigeration cycle device is
    a detection device provided in the heat medium pipe for detecting the flow rate of the heat medium flowing into the first heat exchanger through the heat medium pipe;
    Detecting that the flow rate of the heat medium detected by the detection device is equal to or lower than the minimum flow rate of the heat medium required for normal operation of the refrigeration cycle device, and the flow rate of the heat medium is the minimum flow rate A refrigeration cycle system comprising: a controller that controls at least one of the compressor, the load-side blower, and the expansion valve in response to detection of:
  2.  前記検出装置は、前記第1熱交換器に流入する前記熱媒体の流量を検出する流量センサを具備する
    請求項1記載の冷凍サイクルシステム。
    2. The refrigeration cycle system according to claim 1, wherein said detection device comprises a flow rate sensor for detecting a flow rate of said heat medium flowing into said first heat exchanger.
  3.  前記検出装置は、
     前記第1熱交換器に流入する前記熱媒体の流入圧力を検出する第1圧力センサと、
     前記第1熱交換器から流出する前記熱媒体の流出圧力を検出する第2圧力センサと
    を具備し、
     前記制御装置は、
     前記検出装置により検出された前記熱媒体の流量、前記流入圧力及び前記流出圧力に基づいて、前記熱媒体回路における閉塞の兆候を検出し、
     前記熱媒体回路の閉塞の兆候の検出に応じて、前記熱媒体回路の点検信号を出力する
    請求項1又は2に記載の冷凍サイクルシステム。
    The detection device is
    a first pressure sensor that detects an inflow pressure of the heat medium flowing into the first heat exchanger;
    a second pressure sensor that detects an outflow pressure of the heat medium flowing out of the first heat exchanger;
    The control device is
    detecting a sign of blockage in the heat medium circuit based on the heat medium flow rate, the inflow pressure, and the outflow pressure detected by the detection device;
    3. The refrigeration cycle system according to claim 1, wherein an inspection signal for said heat medium circuit is output in response to detection of a sign of clogging of said heat medium circuit.
  4.  前記制御装置は、
     前記熱媒体の流量が前記最低流量以下であることの検出に応じて、前記熱媒体回路が異常であることを示す異常信号を出力する
    請求項1~3のいずれか1項に記載の冷凍サイクルシステム。
    The control device is
    The refrigeration cycle according to any one of claims 1 to 3, wherein an abnormality signal indicating that the heat medium circuit is abnormal is output in response to detection that the flow rate of the heat medium is equal to or lower than the minimum flow rate. system.
PCT/JP2021/020312 2021-05-28 2021-05-28 Refrigeration cycle system WO2022249424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020312 WO2022249424A1 (en) 2021-05-28 2021-05-28 Refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020312 WO2022249424A1 (en) 2021-05-28 2021-05-28 Refrigeration cycle system

Publications (1)

Publication Number Publication Date
WO2022249424A1 true WO2022249424A1 (en) 2022-12-01

Family

ID=84228509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020312 WO2022249424A1 (en) 2021-05-28 2021-05-28 Refrigeration cycle system

Country Status (1)

Country Link
WO (1) WO2022249424A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159251A (en) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp Refrigeration cycle apparatus, flow rate calculation method, and program
WO2015194020A1 (en) * 2014-06-19 2015-12-23 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle system
CN109253558A (en) * 2018-03-19 2019-01-22 华洋通信科技股份有限公司 A kind of cyclic ammonia water UTILIZATION OF VESIDUAL HEAT IN refrigeration unit automatic back-flushing device and method
WO2019058506A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Air conditioning device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159251A (en) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp Refrigeration cycle apparatus, flow rate calculation method, and program
WO2015194020A1 (en) * 2014-06-19 2015-12-23 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle system
WO2019058506A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Air conditioning device
CN109253558A (en) * 2018-03-19 2019-01-22 华洋通信科技股份有限公司 A kind of cyclic ammonia water UTILIZATION OF VESIDUAL HEAT IN refrigeration unit automatic back-flushing device and method

Similar Documents

Publication Publication Date Title
JP5405161B2 (en) Air conditioner and energy equipment
JP6521571B2 (en) Cooling and heating equipment
AU2020449188B2 (en) Refrigeration cycle apparatus
EP3228951B1 (en) Refrigeration cycle apparatus
WO2012050087A1 (en) Heat source apparatus
JP4663483B2 (en) Air conditioner
JP7142789B2 (en) air conditioner
JP6570745B2 (en) Air conditioner
JP2014126310A (en) Air conditioner
JP5216842B2 (en) Air conditioner
US11204193B2 (en) Refrigeration apparatus
KR100911218B1 (en) Air conditioning system for communication equipment and controlling method thereof
WO2022249424A1 (en) Refrigeration cycle system
JP2007024320A (en) Refrigerating device
JP2008267621A (en) Air conditioner
JP7415017B2 (en) air conditioner
US20230221050A1 (en) Refrigeration cycle apparatus
JP6678785B2 (en) Abnormality detection system, refrigeration cycle device, and abnormality detection method
JP6111692B2 (en) Refrigeration equipment
KR100911221B1 (en) Air conditioning system for communication equipment and controlling method thereof
JP2002188874A (en) Refrigerator
WO2022244798A1 (en) Refrigerant leak management system
JP2009243720A (en) Multi-type air conditioner, method for checking operation of indoor electronic expansion valve of indoor unit, computer program, and failure diagnosis device
KR102105655B1 (en) An air conditioner and a control method the same
KR100911220B1 (en) Air conditioning system for communication equipment and controlling method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943070

Country of ref document: EP

Kind code of ref document: A1