JP2008267621A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008267621A
JP2008267621A JP2007107729A JP2007107729A JP2008267621A JP 2008267621 A JP2008267621 A JP 2008267621A JP 2007107729 A JP2007107729 A JP 2007107729A JP 2007107729 A JP2007107729 A JP 2007107729A JP 2008267621 A JP2008267621 A JP 2008267621A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
refrigerant
air conditioner
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007107729A
Other languages
Japanese (ja)
Inventor
Mitsukuni Yoshida
充邦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007107729A priority Critical patent/JP2008267621A/en
Publication of JP2008267621A publication Critical patent/JP2008267621A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of correctly detecting refrigerant leakage by monitoring a temperature of an indoor heat exchanger or an outdoor heat exchanger, and judging the refrigerant leakage when temperature difference between the maximum temperature and the minimum temperature within a determination time is smaller than a prescribed temperature difference. <P>SOLUTION: This air conditioner comprises a compressor 3 for operating a refrigerating cycle, the indoor heat exchanger 20 connected with one end of the compressor 3 and installed indoors, the outdoor heat exchanger 9 connected with the other end of the compressor 3 and installed outdoors, and a refrigerant leakage detecting portion for detecting the refrigerant leakage of the refrigerating cycle. The refrigerant leakage detecting portion determines the refrigerant leakage when the temperature difference ΔTj between the maximum temperature and the minimum temperature of the indoor heat exchanger 20 changed within the prescribed determination time t after driving the compressor 3, is smaller than the prescribed temperature difference Δ. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷媒の流通により冷凍サイクルを運転して室内の空気調和を行う空気調和機に関する。   The present invention relates to an air conditioner that operates a refrigeration cycle by circulating a refrigerant to perform indoor air conditioning.

従来の空気調和機は特許文献1に開示されている。この空気調和機は室内熱交換器を備えた室内機と室外熱交換器を備えた室外機とに分離される。室内熱交換器及び室外熱交換器はそれぞれ冷媒が流通する配管により圧縮機に接続される。圧縮機の駆動によって冷媒が流通して冷凍サイクルが運転される。これにより、冷房運転時には室内熱交換器が冷凍サイクルの低温側となり、室外熱交換器が冷凍サイクルの高温側となる。また、暖房運転時には室内熱交換器が冷凍サイクルの高温側となり、室外熱交換器が冷凍サイクルの低温側となる。   A conventional air conditioner is disclosed in Patent Document 1. This air conditioner is separated into an indoor unit having an indoor heat exchanger and an outdoor unit having an outdoor heat exchanger. The indoor heat exchanger and the outdoor heat exchanger are each connected to the compressor by piping through which the refrigerant flows. The refrigerant flows by driving the compressor and the refrigeration cycle is operated. Thus, during the cooling operation, the indoor heat exchanger is on the low temperature side of the refrigeration cycle, and the outdoor heat exchanger is on the high temperature side of the refrigeration cycle. Further, during the heating operation, the indoor heat exchanger is on the high temperature side of the refrigeration cycle, and the outdoor heat exchanger is on the low temperature side of the refrigeration cycle.

冷媒が流通する配管の亀裂や接合不良等によって冷媒漏れが発生すると圧縮機を駆動しても室内の冷暖房ができず、電力を浪費する。このため、圧縮機の駆動開始時と所定時間経過後との室内熱交換器の温度差によって冷媒漏れが検知される。即ち、圧縮機を駆動した後に所定時間が経過して室内熱交換器が所定の温度差よりも大きく降温(冷房運転時)または昇温(暖房運転時)されていない場合に冷媒漏れと判断する。冷媒漏れを検知すると報知や圧縮機の停止が行われ、電力浪費を防止することができる。   If a refrigerant leak occurs due to cracks in the piping through which the refrigerant flows, poor bonding, or the like, even if the compressor is driven, the room cannot be cooled or heated, and power is wasted. For this reason, the refrigerant leakage is detected by the temperature difference of the indoor heat exchanger between when the compressor starts to drive and after a predetermined time has elapsed. That is, it is determined that the refrigerant has leaked when a predetermined time elapses after the compressor is driven and the indoor heat exchanger has not been cooled (during cooling operation) or heated (during heating operation) to a temperature greater than a predetermined temperature difference. . When the refrigerant leakage is detected, notification and the compressor are stopped, and waste of electric power can be prevented.

特開平1−95255号公報(第2頁−第4頁、第3図)Japanese Patent Laid-Open No. 1-95255 (pages 2 to 4 and FIG. 3)

しかしながら、上記従来の空気調和機によると、暖房運転時に圧縮機を駆動すると室外熱交換器から外気により冷却された低温の冷媒が室内熱交換器に流入する。このため、圧縮機の駆動開始時に室内熱交換器の温度を検知した後に低温の冷媒の流入によって室内熱交換器が降温される場合がある。その結果、所定時間経過して室内熱交換器の温度を検知した際に冷媒漏れが発生していなくても圧縮機の駆動開始時との温度差が小さくなる。   However, according to the conventional air conditioner, when the compressor is driven during the heating operation, the low-temperature refrigerant cooled by the outside air flows from the outdoor heat exchanger into the indoor heat exchanger. For this reason, after detecting the temperature of an indoor heat exchanger at the time of a drive start of a compressor, an indoor heat exchanger may be temperature-fallen by inflow of a low temperature refrigerant | coolant. As a result, when the temperature of the indoor heat exchanger is detected after a lapse of a predetermined time, the temperature difference from the start of driving of the compressor is reduced even if no refrigerant leakage occurs.

また、外気温が極低温の場合は暖房運転時に室内熱交換器が昇温されるまでに時間がかかる。このため、冷媒漏れが発生していなくても圧縮機の駆動開始時と、所定時間経過後との室内熱交換器の温度差が小さくなる。従って、冷媒漏れを正確に検知できない問題があった。   Further, when the outside air temperature is extremely low, it takes time until the temperature of the indoor heat exchanger is raised during the heating operation. For this reason, even if refrigerant leakage does not occur, the temperature difference of the indoor heat exchanger between the start of driving of the compressor and the elapse of a predetermined time becomes small. Therefore, there has been a problem that refrigerant leakage cannot be detected accurately.

本発明は、冷媒漏れを正確に検知できる空気調和機を提供することを目的とする。   An object of this invention is to provide the air conditioner which can detect a refrigerant | coolant leak correctly.

上記目的を達成するために本発明は、冷媒の流通により冷凍サイクルを運転する圧縮機と、前記圧縮機の一端に接続して室内に配される室内熱交換器と、前記圧縮機の他端に接続して室外に配される室外熱交換器と、前記冷凍サイクルの冷媒漏れを検知する冷媒漏れ検知部とを備えた空気調和機において、前記冷媒漏れ検知部は、前記圧縮機の駆動後に所定の判定時間内で変化する前記室内熱交換器または前記室外熱交換器の最大温度と最小温度との温度差が所定の判定温度差よりも小さい時に冷媒漏れと判断し、前記室外熱交換器が配された室外の温度が所定温度よりも低い時の前記判定時間を高い時の前記判定時間よりも長くしたことを特徴としている。   In order to achieve the above object, the present invention includes a compressor that operates a refrigeration cycle by circulation of refrigerant, an indoor heat exchanger that is connected to one end of the compressor and disposed indoors, and the other end of the compressor In the air conditioner including an outdoor heat exchanger connected to the outside and a refrigerant leak detection unit that detects refrigerant leak in the refrigeration cycle, the refrigerant leak detection unit is configured to operate after the compressor is driven. When the temperature difference between the maximum temperature and the minimum temperature of the indoor heat exchanger or the outdoor heat exchanger that changes within a predetermined determination time is smaller than a predetermined determination temperature difference, it is determined that the refrigerant leaks, and the outdoor heat exchanger The determination time when the outdoor temperature where the is placed is lower than a predetermined temperature is longer than the determination time when it is high.

この構成によると、室内に配される室内熱交換器と室外に配される室外熱交換器はそれぞれ冷媒が流通する配管により圧縮機に接続される。圧縮機の駆動によって冷媒が流通して冷凍サイクルが運転される。圧縮機の駆動を開始すると室外の温度が検知される。室外の温度に応じて冷媒漏れを判別するための判定時間が設定される。この時、室外の温度が低い場合は判定時間を長くして室外の温度が高い場合は判定時間を短くする。また、室内熱交換器または室外熱交換器の温度が監視され、設定された判定時間が経過すると判定時間内の室内熱交換器または室外熱交換器の最大温度と最小温度との温度差が導出される。この温度差が所定の判定温度差よりも小さいと冷媒漏れ検知部は冷媒漏れと判断する。   According to this configuration, the indoor heat exchanger arranged indoors and the outdoor heat exchanger arranged outdoors are respectively connected to the compressor by the piping through which the refrigerant flows. The refrigerant flows by driving the compressor and the refrigeration cycle is operated. When the drive of the compressor is started, the outdoor temperature is detected. A determination time for determining refrigerant leakage is set according to the outdoor temperature. At this time, when the outdoor temperature is low, the determination time is lengthened, and when the outdoor temperature is high, the determination time is shortened. Also, the temperature of the indoor heat exchanger or outdoor heat exchanger is monitored, and when the set judgment time elapses, the temperature difference between the maximum temperature and the minimum temperature of the indoor heat exchanger or outdoor heat exchanger within the judgment time is derived. Is done. If this temperature difference is smaller than a predetermined determination temperature difference, the refrigerant leakage detection unit determines that the refrigerant is leaking.

また上記構成の空気調和機において、冷房運転時の前記判定時間を暖房運転時よりも短くすることが好ましい。   In the air conditioner configured as described above, it is preferable that the determination time during the cooling operation is shorter than that during the heating operation.

また上記構成の空気調和機において、冷房運転時の前記判定温度差を暖房運転時よりも小さくすることが好ましい。   In the air conditioner having the above configuration, it is preferable that the determination temperature difference during the cooling operation is smaller than that during the heating operation.

また上記構成の空気調和機において、暖房運転時に前記室外熱交換器の最大温度と最小温度との温度差が前記判定温度差よりも小さい時に冷媒漏れと判断することが好ましい。   In the air conditioner configured as described above, it is preferable to determine that the refrigerant leaks when the temperature difference between the maximum temperature and the minimum temperature of the outdoor heat exchanger is smaller than the determination temperature difference during heating operation.

また上記構成の空気調和機において、冷房運転時に前記室内熱交換器の最大温度と最小温度との温度差が前記判定温度差よりも小さい時に冷媒漏れと判断することが好ましい。   In the air conditioner configured as described above, it is preferable to determine that the refrigerant leaks when the temperature difference between the maximum temperature and the minimum temperature of the indoor heat exchanger is smaller than the determination temperature difference during the cooling operation.

また上記構成の空気調和機において、前記冷媒漏れ検知部は前記冷凍サイクルの冷媒漏れと判断した際に繰り返し冷媒漏れの判別を行い、所定回数連続して冷媒漏れと判断した際に空気調和機の駆動を停止することが好ましい。   In the air conditioner having the above-described configuration, the refrigerant leak detection unit repeatedly determines the refrigerant leak when it is determined that the refrigerant is leaking in the refrigeration cycle, and when the refrigerant leak is continuously determined a predetermined number of times, It is preferable to stop driving.

この構成によると、例えば、判定時間内の室内熱交換器の最大温度と最小温度との温度差が所定温度差よりも小さく冷媒漏れと判断した際に、再度室内熱交換器の温度を監視して判定時間内の室内熱交換器の最大温度と最小温度との温度差を導出して冷媒漏れを判別する。冷媒漏れ検知部により所定回数繰り返して冷媒漏れと判断されると、冷媒漏れの誤検知がないと判断して空気調和機が停止される。もちろん、この構成における動作を室内熱交換器に替えて、室外熱交換器にて行ってもよい。   According to this configuration, for example, when the temperature difference between the maximum temperature and the minimum temperature of the indoor heat exchanger within the determination time is determined to be smaller than the predetermined temperature difference and the refrigerant leaks, the temperature of the indoor heat exchanger is monitored again. The refrigerant leakage is determined by deriving the temperature difference between the maximum temperature and the minimum temperature of the indoor heat exchanger within the determination time. When it is determined that the refrigerant leak is repeated a predetermined number of times by the refrigerant leak detection unit, it is determined that there is no erroneous detection of the refrigerant leak, and the air conditioner is stopped. Of course, the operation in this configuration may be performed by an outdoor heat exchanger instead of the indoor heat exchanger.

本発明によると、圧縮機の駆動後に室内熱交換器または室外熱交換器の温度を監視して判定時間内の最大温度と最小温度との温度差が所定温度差よりも小さい時に冷媒漏れと判断するので、例えば、暖房運転時に室外熱交換器から低温の冷媒が流入して室内熱交換器が一時降温しても、冷媒漏れがない時場合は室内熱交換器の所定の判定温度差よりも大きな昇温を検知できる。   According to the present invention, after the compressor is driven, the temperature of the indoor heat exchanger or the outdoor heat exchanger is monitored, and it is determined that the refrigerant leaks when the temperature difference between the maximum temperature and the minimum temperature within the determination time is smaller than the predetermined temperature difference. Therefore, for example, even when a low-temperature refrigerant flows from the outdoor heat exchanger during heating operation and the indoor heat exchanger temporarily drops, if there is no refrigerant leakage, the difference between the predetermined judgment temperature difference of the indoor heat exchanger A large temperature rise can be detected.

また、判定時間を室外の温度に応じて可変したので、例えば、暖房運転時に室外熱交換器から流入する冷媒により室内熱交換器の昇温に時間がかかる際に判定時間を長くし、冷媒漏れがないときに所定の判定温度差よりも大きな室内熱交換器の昇温を検知できる。従って、冷媒漏れを正確に検知することができる。   In addition, since the determination time is varied according to the outdoor temperature, for example, when the temperature rise of the indoor heat exchanger takes time due to the refrigerant flowing from the outdoor heat exchanger during heating operation, the determination time is lengthened and the refrigerant leaks. When there is no temperature difference, it is possible to detect a temperature rise in the indoor heat exchanger that is larger than a predetermined judgment temperature difference. Therefore, it is possible to accurately detect refrigerant leakage.

以下に本発明の実施形態を図面を参照して説明する。図1は第1実施形態の空気調和機の構成を示すブロック図である。空気調和機1は室外に配される室外機2と室内に配される室内機11とを有している。室内機11には各部を制御する制御部12が設けられる。室外機2には制御部12に接続される圧縮機3、四方弁4、電子膨張弁5、外気温サーミスタ6、室外熱交換器サーミスタ7、室外送風機8が設けられる。また、室外機2内には圧縮機3に接続される室外熱交換器9(図2参照)が配される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the air conditioner of the first embodiment. The air conditioner 1 has an outdoor unit 2 disposed outside and an indoor unit 11 disposed indoors. The indoor unit 11 is provided with a control unit 12 that controls each unit. The outdoor unit 2 includes a compressor 3, a four-way valve 4, an electronic expansion valve 5, an outdoor temperature thermistor 6, an outdoor heat exchanger thermistor 7, and an outdoor fan 8 that are connected to the control unit 12. An outdoor heat exchanger 9 (see FIG. 2) connected to the compressor 3 is disposed in the outdoor unit 2.

圧縮機3はHFC(ハイドロフルオロカーボン)冷媒であるR410Aを流通させて冷凍サイクルを運転する。尚、HFC冷媒としては他にR407C、R404A等があり、これらを使用してもよい。四方弁4は冷媒の経路に設けられ、冷房運転時と暖房運転時とで冷媒の流通経路を切り替える。電子膨張弁5は室外熱交換器9に接続され、冷媒を膨張する。   The compressor 3 circulates R410A, which is an HFC (hydrofluorocarbon) refrigerant, and operates the refrigeration cycle. Other HFC refrigerants include R407C and R404A, and these may be used. The four-way valve 4 is provided in the refrigerant path, and switches the refrigerant distribution path between the cooling operation and the heating operation. The electronic expansion valve 5 is connected to the outdoor heat exchanger 9 and expands the refrigerant.

外気温サーミスタ6は外気温を検知して制御部12に伝達する。室外熱交換器サーミスタ7は室外熱交換器9の温度を検知して制御部12に伝達する。室外送風機8は室外熱交換器9の熱または冷熱を室外に放出する。尚、外気温サーミスタ6は室外送風機8、室外熱交換器9の上流側であって、室外熱交換器9の熱影響を受けない位置に設けられる。本実施形態では、室外送風機8による風の流れの上流側から外気温サーミスタ6、室外熱交換器9、室外送風機8の順序で並んでいる。   The outside air temperature thermistor 6 detects the outside air temperature and transmits it to the control unit 12. The outdoor heat exchanger thermistor 7 detects the temperature of the outdoor heat exchanger 9 and transmits it to the controller 12. The outdoor fan 8 releases the heat or cold of the outdoor heat exchanger 9 to the outside. The outdoor temperature thermistor 6 is provided on the upstream side of the outdoor fan 8 and the outdoor heat exchanger 9 and at a position not affected by the heat of the outdoor heat exchanger 9. In this embodiment, the outdoor temperature thermistor 6, the outdoor heat exchanger 9, and the outdoor blower 8 are arranged in this order from the upstream side of the wind flow by the outdoor blower 8.

室内機11には制御部12に接続される室内送風機13、室内熱交換器サーミスタ14、室内サーミスタ15、ルーバー16、記憶部17、表示部18、受信部19が設けられる。また、室内機11内には圧縮機3に接続される室内熱交換器20(図2参照)が配される。   The indoor unit 11 is provided with an indoor blower 13 connected to the control unit 12, an indoor heat exchanger thermistor 14, an indoor thermistor 15, a louver 16, a storage unit 17, a display unit 18, and a receiving unit 19. Further, an indoor heat exchanger 20 (see FIG. 2) connected to the compressor 3 is disposed in the indoor unit 11.

室内送風機13は室内熱交換器20の熱または冷熱を室内に送出する。室内熱交換器サーミスタ14は室内熱交換器20の温度を検知して制御部12に伝達する。室内サーミスタ15は室内の温度を検知して制御部12に伝達する。ルーバー16は室内送風機13により送出される空気の風向を可変する。   The indoor blower 13 sends the heat or cold of the indoor heat exchanger 20 into the room. The indoor heat exchanger thermistor 14 detects the temperature of the indoor heat exchanger 20 and transmits it to the controller 12. The indoor thermistor 15 detects the indoor temperature and transmits it to the controller 12. The louver 16 varies the air direction of the air sent out by the indoor blower 13.

記憶部17はROM及びRAMから成り、空気調和機1の動作プログラムや設定データを記憶するとともに制御部12による演算結果を一時記憶する。表示部18は空気調和機1の動作状況や警報等を表示する。受信部19はリモートコントローラ21を操作した際に送信される送信信号を受信する。   The memory | storage part 17 consists of ROM and RAM, and memorize | stores the operation program and setting data of the air conditioner 1, and memorize | stores the calculation result by the control part 12 temporarily. The display unit 18 displays the operating status and alarms of the air conditioner 1. The receiving unit 19 receives a transmission signal transmitted when operating the remote controller 21.

図2は空気調和機1の冷凍サイクルの回路図を示している。圧縮機3の一端には四方弁4を介して室外熱交換器9が接続され、他端には四方弁4を介して室内熱交換器20が接続される。四方弁4の切替えによって暖房運転時には圧縮機3の冷媒流出側に室内熱交換器20が接続され、冷房運転時には圧縮機3の冷媒流出側に室外熱交換器9が接続される。室外熱交換器9及び室内熱交換器20の圧縮機3側と反対側に電子膨張弁5が配される。   FIG. 2 shows a circuit diagram of the refrigeration cycle of the air conditioner 1. An outdoor heat exchanger 9 is connected to one end of the compressor 3 via a four-way valve 4, and an indoor heat exchanger 20 is connected to the other end via a four-way valve 4. By switching the four-way valve 4, the indoor heat exchanger 20 is connected to the refrigerant outflow side of the compressor 3 during the heating operation, and the outdoor heat exchanger 9 is connected to the refrigerant outflow side of the compressor 3 during the cooling operation. An electronic expansion valve 5 is arranged on the side opposite to the compressor 3 side of the outdoor heat exchanger 9 and the indoor heat exchanger 20.

本実施形態では、室内熱交換器サーミスタ14は室内熱交換器20における冷媒流入部と冷媒流出部との中間付近に設置されている。また、室外熱交換器サーミスタ7は室外熱交換器9の冷媒流出部付近に設けられている。   In the present embodiment, the indoor heat exchanger thermistor 14 is installed near the middle of the refrigerant inflow portion and the refrigerant outflow portion in the indoor heat exchanger 20. The outdoor heat exchanger thermistor 7 is provided in the vicinity of the refrigerant outflow portion of the outdoor heat exchanger 9.

尚、冷媒漏れを判断する場合には、熱交換器(室内熱交換器20または室外熱交換器9)の冷媒流入配管の温度(熱交換器への冷媒流入部の温度)を検知することが好ましい。これは、冷媒流入側配管の温度(熱交換器への冷媒流入部の温度)を検知する方が温度差がつきやすく、冷媒漏れの判断をし易くなるからである。   When judging the refrigerant leakage, it is possible to detect the temperature of the refrigerant inflow pipe of the heat exchanger (the indoor heat exchanger 20 or the outdoor heat exchanger 9) (the temperature of the refrigerant inflow portion to the heat exchanger). preferable. This is because detecting the temperature of the refrigerant inflow side pipe (the temperature of the refrigerant inflow portion to the heat exchanger) is more likely to cause a temperature difference and making it easier to determine refrigerant leakage.

暖房運転時には四方弁4が図中、実線で示すように切り替えられる。これにより、矢印Aに示す方向に冷媒が流通し、圧縮機3により圧縮された高温高圧の冷媒は室内熱交換器20で放熱しながら凝縮する。高温の冷媒は電子膨張弁5で膨張して低温低圧となり、室外熱交換器9に送られる。室外熱交換器9に流入する冷媒は吸熱しながら蒸発して低温のガス冷媒となり、圧縮機3に送られる。これにより、冷媒が循環して冷凍サイクルが運転される。冷凍サイクルの高温側となる室内熱交換器20と熱交換した空気が室内送風機13により室内に送出され、室内が暖められる。   During the heating operation, the four-way valve 4 is switched as indicated by a solid line in the figure. As a result, the refrigerant flows in the direction indicated by the arrow A, and the high-temperature and high-pressure refrigerant compressed by the compressor 3 is condensed while dissipating heat in the indoor heat exchanger 20. The high-temperature refrigerant expands at the electronic expansion valve 5 to become low-temperature and low-pressure and is sent to the outdoor heat exchanger 9. The refrigerant flowing into the outdoor heat exchanger 9 evaporates while absorbing heat to become a low-temperature gas refrigerant, and is sent to the compressor 3. Thereby, the refrigerant circulates and the refrigeration cycle is operated. The air exchanged with the indoor heat exchanger 20 on the high temperature side of the refrigeration cycle is sent out indoors by the indoor blower 13, and the room is warmed.

冷房運転時には四方弁4が図中、破線で示すように切り替えられる。これにより、矢印Aと反対方向に冷媒が流通し、室内熱交換器20が冷凍サイクルの低温側となるとともに室外熱交換器9が冷凍サイクルの高温側となる。室内熱交換器20と熱交換した空気が室内送風機13により室内に送出され、室内が冷却される。   During the cooling operation, the four-way valve 4 is switched as indicated by a broken line in the figure. As a result, the refrigerant flows in the direction opposite to the arrow A, the indoor heat exchanger 20 becomes the low temperature side of the refrigeration cycle, and the outdoor heat exchanger 9 becomes the high temperature side of the refrigeration cycle. The air exchanged with the indoor heat exchanger 20 is sent out indoors by the indoor blower 13, and the room is cooled.

図3は空気調和機1の動作を示すフローチャートである。空気調和機1は制御部12によって運転開始時に冷凍サイクルの冷媒漏れを検知する。空気調和機1の運転開始を指示するとステップ#11で圧縮機3が駆動される。ステップ#12では外気温サーミスタ6によって外気温Toが検知される。ステップ#13では外気温Toが所定温度T3(例えば、−10℃)以上か否かが判断される。   FIG. 3 is a flowchart showing the operation of the air conditioner 1. The air conditioner 1 detects refrigerant leakage in the refrigeration cycle at the start of operation by the control unit 12. When the start of operation of the air conditioner 1 is instructed, the compressor 3 is driven in step # 11. In step # 12, the outside air temperature To is detected by the outside air temperature thermistor 6. In step # 13, it is determined whether or not the outside air temperature To is equal to or higher than a predetermined temperature T3 (for example, −10 ° C.).

外気温Toが所定温度T3以上の場合はステップ#14で冷媒漏れを判別する判定時間tに時間t1が代入される。外気温Toが所定温度T3よりも低い場合はステップ#15で冷媒漏れを判別する判定時間tに時間t2が代入される。ここで、時間t2は時間t1よりも長くなっている。   When the outside air temperature To is equal to or higher than the predetermined temperature T3, the time t1 is substituted for the determination time t for determining refrigerant leakage in step # 14. When the outside air temperature To is lower than the predetermined temperature T3, the time t2 is substituted for the determination time t for determining the refrigerant leakage in step # 15. Here, time t2 is longer than time t1.

ステップ#16では冷房運転か否かが判断される。冷房運転でない場合はステップ#17に移行し、冷房運転の場合はステップ#20に移行する。ステップ#17では暖房運転か否かが判断される。暖房運転の場合はステップ#18に移行し、除湿運転等の暖房運転でない場合はステップ#51に移行する。ステップ#51では冷媒漏れの検知を行わずに通常運転が行われる。   In step # 16, it is determined whether or not the cooling operation is being performed. If it is not the cooling operation, the process proceeds to step # 17, and if it is the cooling operation, the process proceeds to step # 20. In step # 17, it is determined whether or not the heating operation is performed. In the case of heating operation, the process proceeds to step # 18, and in the case of non-heating operation such as dehumidifying operation, the process proceeds to step # 51. In step # 51, normal operation is performed without detecting refrigerant leakage.

制御部12は室内熱交換器20の温度を監視し、室内熱交換器20の最大温度と最小温度との温度差により冷媒漏れを判断する。このため、ステップ#18、#20では冷媒漏れと判断するための判定温度差ΔTが設定される。冷房運転の場合はステップ#20で判定温度差ΔTに所定温度T1が代入される。暖房運転の場合はステップ#18で判定温度差ΔTに所定温度T2が代入される。ここで、温度T2は温度T1よりも大きくなっている。   The controller 12 monitors the temperature of the indoor heat exchanger 20 and determines refrigerant leakage based on the temperature difference between the maximum temperature and the minimum temperature of the indoor heat exchanger 20. For this reason, in steps # 18 and # 20, a determination temperature difference ΔT for determining a refrigerant leak is set. In the case of the cooling operation, the predetermined temperature T1 is substituted for the determination temperature difference ΔT in step # 20. In the case of heating operation, the predetermined temperature T2 is substituted for the judgment temperature difference ΔT in step # 18. Here, the temperature T2 is higher than the temperature T1.

ステップ#21では室内熱交換器20の温度Tjが室内熱交換器サーミスタ14により検知される。ステップ#22では室内熱交換器サーミスタ14の検知した温度Tjが判定時間t内で最高温度または最低温度か否かが判断される。温度Tjが最高温度または最低温度の場合はステップ#23に移行する。ステップ#23では温度Tjが最高温度の場合は最高温度Tmaxとして記憶部17に記憶される。また、温度Tjが最低温度の場合は最高温度Tminとして記憶部17に記憶される。   In step # 21, the temperature Tj of the indoor heat exchanger 20 is detected by the indoor heat exchanger thermistor 14. In step # 22, it is determined whether or not the temperature Tj detected by the indoor heat exchanger thermistor 14 is the highest temperature or the lowest temperature within the determination time t. When the temperature Tj is the maximum temperature or the minimum temperature, the process proceeds to step # 23. In step # 23, when the temperature Tj is the maximum temperature, the maximum temperature Tmax is stored in the storage unit 17. Further, when the temperature Tj is the lowest temperature, it is stored in the storage unit 17 as the highest temperature Tmin.

ステップ#24では判定時間tが経過したか否かが判断される。判定時間tが経過していない場合はステップ#21に戻り、ステップ#21〜#24が繰り返し行われる。これにより、判定時間t内の室内熱交換器20の最高温度Tmax及び最低温度Tminが検知される。   In step # 24, it is determined whether the determination time t has elapsed. If the determination time t has not elapsed, the process returns to step # 21, and steps # 21 to # 24 are repeated. Thereby, the maximum temperature Tmax and the minimum temperature Tmin of the indoor heat exchanger 20 within the determination time t are detected.

判定時間tが経過するとステップ#25に移行し、室内熱交換器20の最高温度Tmaxと最低温度Tminとの温度差ΔTjが導出される。ステップ#31では温度差ΔTjがステップ#18、#20で設定した判定温度差ΔT以上か否かが判断される。温度差ΔTjが判定温度差ΔT以上の場合は冷媒漏れがなく室内熱交換器20が正常に昇温または降温されているためステップ#51に移行して通常運転が行われる。   When the determination time t elapses, the process proceeds to step # 25, and a temperature difference ΔTj between the maximum temperature Tmax and the minimum temperature Tmin of the indoor heat exchanger 20 is derived. In step # 31, it is determined whether or not the temperature difference ΔTj is greater than or equal to the determination temperature difference ΔT set in steps # 18 and # 20. When the temperature difference ΔTj is equal to or larger than the determination temperature difference ΔT, there is no refrigerant leakage, and the indoor heat exchanger 20 is normally heated or lowered, so the routine proceeds to step # 51 and normal operation is performed.

温度差ΔTjが判定温度差ΔTよりも小さい場合は冷媒漏れと判断し、ステップ#32で圧縮機3が停止される。ステップ#33ではステップ#11〜#31による冷媒漏れの検知が所定回数N回行われたか否かが判断される。ステップ#11〜#31による冷媒漏れの検知が1回の場合は誤検知する場合もあるため、複数回繰り返して同様に判断する。冷媒漏れの検知がN回行われていない場合はステップ#34に移行し、所定時間待機する。所定時間が経過するとステップ#11に移行して圧縮機3が再起動され、ステップ#11〜#34が繰り返し行われる。   If the temperature difference ΔTj is smaller than the determination temperature difference ΔT, it is determined that the refrigerant has leaked, and the compressor 3 is stopped in step # 32. In step # 33, it is determined whether or not the refrigerant leak detection in steps # 11 to # 31 has been performed N times a predetermined number of times. If the refrigerant leakage is detected once in steps # 11 to # 31, it may be erroneously detected. Therefore, the same determination is made by repeating a plurality of times. If the refrigerant leak has not been detected N times, the process proceeds to step # 34 and waits for a predetermined time. When the predetermined time has elapsed, the process proceeds to step # 11 where the compressor 3 is restarted, and steps # 11 to # 34 are repeated.

N回連続して室内熱交換器20の温度差ΔTjが判定温度差ΔTよりも小さく冷媒漏れと判断されると誤検知ではないと判断する。そして、ステップ#33の判断によりステップ#41に移行する。従って、ステップ#11〜#34は冷凍サイクルの冷媒漏れを検知する冷媒漏れ検知部を構成する。ステップ#41では表示部18により冷媒漏れの発生が報知される。冷媒漏れの発生をリモートコントローラ21により報知してもよい。ステップ#42では表示部18の報知状態を維持して空気調和機1の全体が停止される。   If the temperature difference ΔTj of the indoor heat exchanger 20 is determined to be smaller than the determination temperature difference ΔT for N consecutive times, it is determined that there is no false detection. And it transfers to step # 41 by judgment of step # 33. Therefore, steps # 11 to # 34 constitute a refrigerant leak detection unit that detects refrigerant leak in the refrigeration cycle. In step # 41, the display unit 18 notifies the occurrence of refrigerant leakage. The occurrence of refrigerant leakage may be notified by the remote controller 21. In step # 42, the notification state of the display unit 18 is maintained and the entire air conditioner 1 is stopped.

本実施形態によると、圧縮機3の駆動後に室内熱交換器20の温度を監視して判定時間t内の最大温度Tmaxと最小温度Tminとの温度差ΔTjが所定の判定温度差ΔTよりも小さい時に冷媒漏れと判断するので、暖房運転時に室外熱交換器9から流入する低温の冷媒により室内熱交換器20が一時降温しても冷媒漏れがない場合は所定量(判定温度差ΔTよりも大きな量)の昇温を検知できる。   According to this embodiment, the temperature of the indoor heat exchanger 20 is monitored after the compressor 3 is driven, and the temperature difference ΔTj between the maximum temperature Tmax and the minimum temperature Tmin within the determination time t is smaller than the predetermined determination temperature difference ΔT. Since it is sometimes determined that the refrigerant leaks, if the refrigerant does not leak even if the indoor heat exchanger 20 is temporarily cooled by the low-temperature refrigerant flowing from the outdoor heat exchanger 9 during the heating operation, a predetermined amount (larger than the determination temperature difference ΔT) Temperature) can be detected.

また、判定時間tを室外の温度Toに応じて可変したので、室外熱交換器9から流入する低温の冷媒により室内熱交換器20の昇温に時間がかかっても判定時間tを時間t2に長く設定して冷媒漏れがない場合は所定量(判定温度差ΔTよりも大きな量)の昇温を検知できる。従って、冷媒漏れを正確に検知することができる。尚、判定時間tを外気温サーミスタ6の検知温度Toにより可変しているが、室外熱交換器サーミスタ7の検知温度により可変してもよい。   Further, since the determination time t is varied according to the outdoor temperature To, even if it takes time to raise the temperature of the indoor heat exchanger 20 due to the low-temperature refrigerant flowing from the outdoor heat exchanger 9, the determination time t is set to the time t2. If the refrigerant is set to be long and there is no refrigerant leakage, it is possible to detect a temperature rise of a predetermined amount (an amount larger than the determination temperature difference ΔT). Therefore, it is possible to accurately detect refrigerant leakage. Although the determination time t is varied depending on the detected temperature To of the outdoor temperature thermistor 6, it may be varied depending on the detected temperature of the outdoor heat exchanger thermistor 7.

また、冷房運転時は室外熱交換器9と室内との温度差が小さいため、室外熱交換器9から若干高温の冷媒が流入しても室内熱交換器20の温度上昇が小さい。このため、判定温度差ΔTを温度T1に小さくしても正確に冷媒漏れを検知することができる。判定温度差ΔTを大きくすると冷媒漏れがなくても判定時間t内に判定温度差ΔTだけ降温されない可能性が生じる。従って、冷房運転時に冷媒漏れと判断する判定温度差ΔTを暖房運転時の設定温度T2よりも小さくし、冷媒漏れの誤検知をより低減することができる。   Further, since the temperature difference between the outdoor heat exchanger 9 and the room is small during the cooling operation, the temperature rise of the indoor heat exchanger 20 is small even if a slightly high temperature refrigerant flows from the outdoor heat exchanger 9. For this reason, it is possible to accurately detect the refrigerant leakage even if the determination temperature difference ΔT is reduced to the temperature T1. If the determination temperature difference ΔT is increased, there is a possibility that the temperature will not be lowered by the determination temperature difference ΔT within the determination time t even if there is no refrigerant leakage. Therefore, the determination temperature difference ΔT that is determined as refrigerant leakage during the cooling operation can be made smaller than the set temperature T2 during heating operation, and erroneous detection of refrigerant leakage can be further reduced.

また、ステップ#11〜#34から成る冷媒漏れ検知部はN回連続して冷媒漏れと判断した際に空気調和機1の全体の駆動を停止するので、冷媒漏れの誤検知によって空気調和機1が停止されることを低減することができる。   Moreover, since the refrigerant | coolant leak detection part which consists of step # 11-# 34 stops the whole drive of the air conditioner 1 when it judges that it is a refrigerant | coolant leak N times continuously, the air conditioner 1 is detected by the misdetection of a refrigerant | coolant leak. Can be reduced from being stopped.

尚、冷房運転時は室外熱交換器9と室内との温度差が小さいため、室外熱交換器9から若干高温の冷媒が流入しても室内熱交換器20の温度上昇が小さい。このため、冷房運転時の判定時間tを暖房運転時よりも短くしてもよい。即ち、室内熱交換器20が速く降温され、判定時間tを短くしても正確に冷媒漏れを検知することができる。従って、迅速に通常運転に移行することができる。   Since the temperature difference between the outdoor heat exchanger 9 and the room is small during the cooling operation, the temperature rise of the indoor heat exchanger 20 is small even if a slightly high-temperature refrigerant flows from the outdoor heat exchanger 9. For this reason, the determination time t during the cooling operation may be shorter than that during the heating operation. That is, the temperature of the indoor heat exchanger 20 is quickly lowered, and the refrigerant leakage can be accurately detected even if the determination time t is shortened. Therefore, it is possible to quickly shift to normal operation.

また、ステップ#12において、長時間運転しなかった場合等に室外熱交換器9が外気温とほぼ同じになっている場合であれば、室外熱交換器9の温度を検知してもよい。但し、繰り返し運転を行う場合には室外熱交換器9の温度が外気温と異なっていることがある。従って、室外の温度を検知する場合は直接外気温を検知するほうがより好ましい。   Further, in step # 12, if the outdoor heat exchanger 9 is substantially the same as the outside air temperature when not operated for a long time, the temperature of the outdoor heat exchanger 9 may be detected. However, when the operation is repeated, the temperature of the outdoor heat exchanger 9 may be different from the outside air temperature. Therefore, when detecting the outdoor temperature, it is more preferable to directly detect the outdoor temperature.

次に、図4は第2実施形態の空気調和機の動作を示すフローチャートである。本実施形態は前述の図1、図2に示す第1実施形態と同様に構成され、暖房運転時に室外熱交換器9の温度を監視して冷媒漏れを検知している。その他の部分は第1実施形態と同一である。同図において、ステップ#11〜#15及びステップ#22〜#42は前述の図3と同一のため説明を省略する。   Next, FIG. 4 is a flowchart showing the operation of the air conditioner of the second embodiment. This embodiment is configured similarly to the first embodiment shown in FIGS. 1 and 2 described above, and detects the refrigerant leakage by monitoring the temperature of the outdoor heat exchanger 9 during heating operation. Other parts are the same as those of the first embodiment. In the figure, steps # 11 to # 15 and steps # 22 to # 42 are the same as those in FIG.

暖房運転の場合はステップ#17の判断によってステップ#18で判定温度差ΔTに所定温度T2が代入されると、ステップ#19に移行する。ステップ#19では室外熱交換器9の温度Tjが室外熱交換器サーミスタ7により検知される。   In the case of heating operation, if the predetermined temperature T2 is substituted for the determination temperature difference ΔT in step # 18 by the determination in step # 17, the process proceeds to step # 19. In step # 19, the temperature Tj of the outdoor heat exchanger 9 is detected by the outdoor heat exchanger thermistor 7.

また、ステップ#24の判断で判定時間tが経過していない場合に、冷房運転時はステップ#21に戻り、暖房運転時はステップ#19に戻る。そして、冷房運転時はステップ#21〜#24が繰り返し行われ、暖房運転時はステップ#19、#22〜#24が繰り返し行われる。これにより、判定時間t内の室内熱交換器20または室外熱交換器9の最高温度Tmax及び最低温度Tminが検知される。   Further, when the determination time t has not elapsed in the determination of step # 24, the process returns to step # 21 during the cooling operation, and returns to step # 19 during the heating operation. Steps # 21 to # 24 are repeatedly performed during the cooling operation, and steps # 19 and # 22 to # 24 are repeatedly performed during the heating operation. Thereby, the maximum temperature Tmax and the minimum temperature Tmin of the indoor heat exchanger 20 or the outdoor heat exchanger 9 within the determination time t are detected.

本実施形態によると、暖房運転時に圧縮機3の駆動後に室外熱交換器9の温度を監視して判定時間t内の最大温度Tmaxと最小温度Tminとの温度差ΔTjが所定の判定温度差ΔTよりも小さい時に冷媒漏れと判断するので、運転開始時に冷媒の流通が不安定になるため室外熱交換器9が一時昇温しても冷媒漏れがない場合は所定量(判定温度差ΔTよりも大きな量)の降温を検知できる。   According to this embodiment, the temperature of the outdoor heat exchanger 9 is monitored after the compressor 3 is driven during the heating operation, and the temperature difference ΔTj between the maximum temperature Tmax and the minimum temperature Tmin within the determination time t is a predetermined determination temperature difference ΔT. Since the refrigerant flow becomes unstable when the operation is started, the refrigerant flow becomes unstable. Therefore, if the refrigerant does not leak even if the outdoor heat exchanger 9 is temporarily heated, a predetermined amount (determined from the determination temperature difference ΔT). A large amount) can be detected.

尚、暖房運転時に室内熱交換器20の温度を監視すると低温の冷媒の流入により一時降温して昇温に時間がかかるが、室外熱交換器9は圧縮機3の運転によって降温するため一時的な昇温が少ない。このため、室外熱交換器9の温度を監視することにより、温度変化を迅速に検知することができる。   If the temperature of the indoor heat exchanger 20 is monitored during the heating operation, the temperature is temporarily lowered due to the inflow of a low-temperature refrigerant and it takes time to raise the temperature. However, the outdoor heat exchanger 9 is temporarily lowered because the temperature is lowered by the operation of the compressor 3. There is little warming up. For this reason, the temperature change can be detected quickly by monitoring the temperature of the outdoor heat exchanger 9.

また、判定時間tを室外の温度Toに応じて可変したので、室外熱交換器9が低温であるため更に降温するのに時間がかかっても判定時間tを時間t2に長く設定して冷媒漏れがない場合は所定量の降温を検知できる。従って、冷媒漏れを正確に検知することができる。   Further, since the determination time t is varied in accordance with the outdoor temperature To, the outdoor heat exchanger 9 is low in temperature, so even if it takes time to further decrease the temperature, the determination time t is set long to the time t2 and the refrigerant leaks. If there is no, a predetermined amount of temperature drop can be detected. Therefore, it is possible to accurately detect refrigerant leakage.

本実施形態において、ステップ#21を省いてステップ#20の移行先をステップ#19にし、冷房運転時に室外熱交換器9の温度を監視して冷媒漏れを判断してもよい。しかしながら、冷房運転時は室外が高温のため室外熱交換器9よりも室内熱交換器20の方が温度変化が大きい。このため、本実施形態のように室内熱交換器20の温度を監視して冷媒漏れを判断する方がより望ましい。   In the present embodiment, step # 21 may be omitted and the transition destination of step # 20 may be set to step # 19, and the temperature of the outdoor heat exchanger 9 may be monitored during cooling operation to determine refrigerant leakage. However, since the outdoor temperature is high during the cooling operation, the temperature change of the indoor heat exchanger 20 is larger than that of the outdoor heat exchanger 9. For this reason, it is more desirable to monitor the temperature of the indoor heat exchanger 20 and judge the refrigerant leakage as in this embodiment.

次に、図5は第3実施形態の空気調和機の動作を示すフローチャートである。本実施形態は前述の図1、図2に示す第1実施形態と同様に構成され、図3のステップ#12〜#15が省略されている。その他の部分は第1実施形態と同一である。   Next, FIG. 5 is a flowchart showing the operation of the air conditioner of the third embodiment. This embodiment is configured in the same manner as the first embodiment shown in FIGS. 1 and 2, and steps # 12 to # 15 in FIG. 3 are omitted. Other parts are the same as those of the first embodiment.

本実施形態によると、圧縮機3の駆動後に室内熱交換器20の温度を監視して判定時間t内の最大温度Tmaxと最小温度Tminとの温度差ΔTjが所定温度差ΔTよりも小さい時に冷媒漏れと判断するので、暖房運転時に室外熱交換器9から流入する低温の冷媒により室内熱交換器20が一時降温しても冷媒漏れがない場合は所定量の昇温を検知できる。   According to the present embodiment, the refrigerant is monitored when the temperature difference ΔTj between the maximum temperature Tmax and the minimum temperature Tmin within the determination time t is smaller than the predetermined temperature difference ΔT by monitoring the temperature of the indoor heat exchanger 20 after the compressor 3 is driven. Since it is determined that there is a leak, a predetermined amount of temperature rise can be detected if there is no refrigerant leak even if the indoor heat exchanger 20 is temporarily cooled by the low-temperature refrigerant flowing from the outdoor heat exchanger 9 during the heating operation.

尚、第1実施形態のように室外の温度Toに応じて判定時間tを可変していないが、室外の温度が例えば−10℃以下になりにくい状況において本実施形態によって誤検知することなく冷媒漏れを正確に検知することができる。また、第2実施形態(図4)のステップ#12〜#15を省略してもよい。   Although the determination time t is not varied according to the outdoor temperature To as in the first embodiment, the refrigerant is not erroneously detected by the present embodiment in a situation where the outdoor temperature is difficult to be below −10 ° C., for example. Leakage can be detected accurately. Further, steps # 12 to # 15 of the second embodiment (FIG. 4) may be omitted.

第1〜第3実施形態において、圧縮機3、四方弁4、電子膨張弁5及び室外送風機8を制御部12に替えて室外機2に別途設けた室外機用制御部により制御してもよい。この時、室外機用制御部は制御部12との間で通信を行い、制御部12から温度情報及び指示内容等を受信する。また、室外機用制御部には室外機内の外気温サーミスタ6や室外熱交換器サーミスタ7から温度情報が入力される。圧縮機3、四方弁4、電子膨張弁5及び室外送風機8は制御部12からの受信情報や外気温サーミスタ6等の温度情報等に基づいて室外機用制御部により制御される。   In the first to third embodiments, the compressor 3, the four-way valve 4, the electronic expansion valve 5, and the outdoor blower 8 may be controlled by an outdoor unit controller provided separately in the outdoor unit 2 in place of the controller 12. . At this time, the outdoor unit control unit communicates with the control unit 12 and receives temperature information, instruction content, and the like from the control unit 12. In addition, temperature information is input from the outdoor temperature thermistor 6 and the outdoor heat exchanger thermistor 7 in the outdoor unit to the outdoor unit controller. The compressor 3, the four-way valve 4, the electronic expansion valve 5, and the outdoor blower 8 are controlled by the outdoor unit controller based on information received from the controller 12, temperature information such as the outdoor temperature thermistor 6, and the like.

また、冷房運転時に室外熱交換器の温度を検知する構成や、暖房運転時に室内熱交換器の温度を検知する構成にすることも可能である。   It is also possible to adopt a configuration for detecting the temperature of the outdoor heat exchanger during the cooling operation, or a configuration for detecting the temperature of the indoor heat exchanger during the heating operation.

本発明によると、冷媒の流通により冷凍サイクルを運転して室内の空気調和を行う空気調和機に利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can utilize for the air conditioner which operates a refrigerating cycle by circulation of a refrigerant | coolant, and performs indoor air conditioning.

本発明の第1実施形態の空気調和機の構成を示すブロック図The block diagram which shows the structure of the air conditioner of 1st Embodiment of this invention. 本発明の第1実施形態の空気調和機の冷凍サイクルを示す回路図The circuit diagram which shows the refrigerating cycle of the air conditioner of 1st Embodiment of this invention. 本発明の第1実施形態の空気調和機の動作を示すフローチャートThe flowchart which shows operation | movement of the air conditioner of 1st Embodiment of this invention. 本発明の第2実施形態の空気調和機の動作を示すフローチャートThe flowchart which shows operation | movement of the air conditioner of 2nd Embodiment of this invention. 本発明の第3実施形態の空気調和機の動作を示すフローチャートThe flowchart which shows operation | movement of the air conditioner of 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 空気調和機
2 室外機
3 圧縮機
4 四方弁
5 電子膨張弁
6 外気温サーミスタ
7 室外熱交換器サーミスタ
8 室外送風機
9 室外熱交換器
11 室内機
12 制御部
13 室内送風機
14 室内熱交換器サーミスタ
15 室内サーミスタ
16 ルーバー
17 記憶部
18 表示部
19 受信部
20 室内熱交換器
21 リモートコントローラ
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Compressor 4 Four-way valve 5 Electronic expansion valve 6 Outdoor temperature thermistor 7 Outdoor heat exchanger thermistor 8 Outdoor fan 9 Outdoor heat exchanger 11 Indoor unit 12 Control part 13 Indoor fan 14 Indoor heat exchanger thermistor DESCRIPTION OF SYMBOLS 15 Indoor thermistor 16 Louver 17 Memory | storage part 18 Display part 19 Receiving part 20 Indoor heat exchanger 21 Remote controller

Claims (6)

冷媒の流通により冷凍サイクルを運転する圧縮機と、前記圧縮機の一端に接続して室内に配される室内熱交換器と、前記圧縮機の他端に接続して室外に配される室外熱交換器と、前記冷凍サイクルの冷媒漏れを検知する冷媒漏れ検知部とを備えた空気調和機において、前記冷媒漏れ検知部は、前記圧縮機の駆動後に所定の判定時間内で変化する前記室内熱交換器または前記室外熱交換器の最大温度と最小温度との温度差が所定の判定温度差よりも小さい時に冷媒漏れと判断し、前記室外熱交換器が配された室外の温度が所定温度よりも低い時の前記判定時間を高い時の前記判定時間よりも長くしたことを特徴とする空気調和機。   A compressor that operates a refrigeration cycle by circulation of refrigerant, an indoor heat exchanger that is connected to one end of the compressor and arranged indoors, and an outdoor heat that is connected to the other end of the compressor and arranged outdoors An air conditioner including an exchanger and a refrigerant leak detection unit that detects a refrigerant leak in the refrigeration cycle, wherein the refrigerant leak detection unit changes the indoor heat that changes within a predetermined determination time after the compressor is driven. When the temperature difference between the maximum temperature and the minimum temperature of the exchanger or the outdoor heat exchanger is smaller than a predetermined determination temperature difference, it is determined that the refrigerant leaks, and the outdoor temperature where the outdoor heat exchanger is arranged is higher than the predetermined temperature. The air conditioner is characterized in that the determination time when the time is low is longer than the determination time when the time is high. 冷房運転時の前記判定時間を暖房運転時よりも短くしたことを特徴とする請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein the determination time during the cooling operation is shorter than that during the heating operation. 冷房運転時の前記判定温度差を暖房運転時よりも小さくしたことを特徴とする請求項1に記載の空気調和機。   2. The air conditioner according to claim 1, wherein the determination temperature difference during the cooling operation is smaller than that during the heating operation. 暖房運転時に前記室外熱交換器の最大温度と最小温度との温度差が前記判定温度差よりも小さい時に冷媒漏れと判断したことを特徴とする請求項1〜請求項3のいずれかに記載の空気調和機。   The refrigerant leakage is determined when the temperature difference between the maximum temperature and the minimum temperature of the outdoor heat exchanger is smaller than the determination temperature difference during heating operation. Air conditioner. 冷房運転時に前記室内熱交換器の最大温度と最小温度との温度差が前記判定温度差よりも小さい時に冷媒漏れと判断したことを特徴とする請求項1〜請求項4のいずれかに記載の空気調和機。   The refrigerant leakage is determined when a temperature difference between the maximum temperature and the minimum temperature of the indoor heat exchanger is smaller than the determination temperature difference during the cooling operation. Air conditioner. 前記冷媒漏れ検知部は前記冷凍サイクルの冷媒漏れと判断した際に繰り返し冷媒漏れの判別を行い、所定回数連続して冷媒漏れと判断した際に空気調和機の駆動を停止することを特徴とする請求項1〜請求項5のいずれかに記載の空気調和機。   The refrigerant leakage detection unit repeatedly determines refrigerant leakage when it is determined that the refrigerant is leaking in the refrigeration cycle, and stops driving the air conditioner when it is determined that the refrigerant has leaked continuously a predetermined number of times. The air conditioner according to any one of claims 1 to 5.
JP2007107729A 2007-04-17 2007-04-17 Air conditioner Pending JP2008267621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107729A JP2008267621A (en) 2007-04-17 2007-04-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107729A JP2008267621A (en) 2007-04-17 2007-04-17 Air conditioner

Publications (1)

Publication Number Publication Date
JP2008267621A true JP2008267621A (en) 2008-11-06

Family

ID=40047361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107729A Pending JP2008267621A (en) 2007-04-17 2007-04-17 Air conditioner

Country Status (1)

Country Link
JP (1) JP2008267621A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024923A (en) * 2007-07-19 2009-02-05 Sharp Corp Refrigerant leakage detecting device, air conditioner, and refrigerant leakage detecting method
JP2011174685A (en) * 2010-02-25 2011-09-08 Nakano Refrigerators Co Ltd Gas leakage detection method
WO2014024837A1 (en) * 2012-08-06 2014-02-13 三菱電機株式会社 Cascade refrigeration equipment
CN113639402A (en) * 2021-07-12 2021-11-12 青岛海尔空调电子有限公司 Refrigerant leakage detection and discharge method for air conditioner
CN115151769A (en) * 2020-02-25 2022-10-04 Lg电子株式会社 Heat pump and method of operating the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024923A (en) * 2007-07-19 2009-02-05 Sharp Corp Refrigerant leakage detecting device, air conditioner, and refrigerant leakage detecting method
JP2011174685A (en) * 2010-02-25 2011-09-08 Nakano Refrigerators Co Ltd Gas leakage detection method
WO2014024837A1 (en) * 2012-08-06 2014-02-13 三菱電機株式会社 Cascade refrigeration equipment
JP2014031981A (en) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp Binary refrigeration device
CN104541115A (en) * 2012-08-06 2015-04-22 三菱电机株式会社 Cascade refrigeration equipment
CN104541115B (en) * 2012-08-06 2016-07-20 三菱电机株式会社 Binary refrigeration device
US10001310B2 (en) 2012-08-06 2018-06-19 Mitsubishi Electric Corporation Binary refrigeration apparatus
CN115151769A (en) * 2020-02-25 2022-10-04 Lg电子株式会社 Heat pump and method of operating the same
CN113639402A (en) * 2021-07-12 2021-11-12 青岛海尔空调电子有限公司 Refrigerant leakage detection and discharge method for air conditioner
CN113639402B (en) * 2021-07-12 2024-03-22 青岛海尔空调电子有限公司 Refrigerant leakage detection and discharge method for air conditioner

Similar Documents

Publication Publication Date Title
JP5405161B2 (en) Air conditioner and energy equipment
JP5053430B2 (en) Air conditioner
JP5780977B2 (en) Heat pump cycle equipment
KR101673105B1 (en) Binary refrigeration cycle device
JP2013119954A (en) Heat pump hot water heater
US11802702B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP2008121982A (en) Refrigerating cycle device
JP2013204871A (en) Air conditioner
JP2008267621A (en) Air conditioner
US11397035B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP7211913B2 (en) heat pump equipment
JP4546067B2 (en) Air conditioner
JP6111665B2 (en) Refrigeration equipment
JP3687201B2 (en) Air conditioner
JP2009030839A (en) Air conditioner
JP6666803B2 (en) Hot water heating system
WO2023084779A1 (en) Air conditioner
KR20140063930A (en) An engine-driven heat pump system
JP7392567B2 (en) air conditioner
JP6367642B2 (en) Air conditioner
JP6057512B2 (en) Air conditioner with crankcase heater
JP2006170497A (en) Refrigerant natural circulation type cooling system
JP2009041831A (en) Multi-room type air conditioner
KR100688167B1 (en) Control process for heating operation of air conditioner
JP3984054B2 (en) Air conditioner, control method of air conditioner