JP4546067B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4546067B2
JP4546067B2 JP2003389386A JP2003389386A JP4546067B2 JP 4546067 B2 JP4546067 B2 JP 4546067B2 JP 2003389386 A JP2003389386 A JP 2003389386A JP 2003389386 A JP2003389386 A JP 2003389386A JP 4546067 B2 JP4546067 B2 JP 4546067B2
Authority
JP
Japan
Prior art keywords
water
heat source
temperature
refrigerant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003389386A
Other languages
Japanese (ja)
Other versions
JP2005147622A (en
Inventor
雅彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2003389386A priority Critical patent/JP4546067B2/en
Publication of JP2005147622A publication Critical patent/JP2005147622A/en
Application granted granted Critical
Publication of JP4546067B2 publication Critical patent/JP4546067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B30/125

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、たとえば蓄熱源から冷水もしくは温水である熱源水を供給して、冷房もしくは暖房を行うファンコイル機能にヒートポンプ式の冷凍サイクルを付加した空気調和装置に関する。   The present invention relates to an air conditioner in which a heat pump type refrigeration cycle is added to a fan coil function for cooling or heating by supplying cold water or hot water, for example, from a heat storage source.

たとえば蓄熱源から冷水もしくは温水である熱源水を供給して冷房もしくは暖房を行うファンコイル機能に、ヒートポンプ式の冷凍サイクルを付加し組合せた技術が、[特許文献1]に開示されている。
特に、[特許文献1]の第4図に示されているように、室内空気を導く風路(ダクト)中に、熱源水を導くファンコイル(水対空気熱交換器)および冷凍サイクルの室内熱交換器に相当する空気熱交換器(冷媒対空気熱交換器)が配置される。冷凍サイクルは、圧縮機、四方弁、減圧装置、上記空気熱交換器の他に、室外熱交換器に相当する水対冷媒熱交換器を備えている。そして、蓄熱源から導かれる熱源水をファンコイルもしくは水対冷媒熱交換器、もしくはその両方に切換え案内する三方弁を備えた回路を備えている。
For example, [Patent Document 1] discloses a technique in which a heat pump type refrigeration cycle is added to a fan coil function for cooling or heating by supplying cold water or hot water from a heat storage source.
In particular, as shown in FIG. 4 of [Patent Document 1], a fan coil (water-to-air heat exchanger) for leading heat source water and a refrigeration cycle room in an air passage (duct) for guiding room air. An air heat exchanger (refrigerant to air heat exchanger) corresponding to the heat exchanger is arranged. The refrigeration cycle includes a water-to-refrigerant heat exchanger corresponding to an outdoor heat exchanger, in addition to a compressor, a four-way valve, a pressure reducing device, and the air heat exchanger. And the circuit provided with the three-way valve which switches and guides the heat source water guide | induced from a heat storage source to a fan coil or a water-to-refrigerant heat exchanger, or both.

通常の冷暖房は、冷凍サイクルを停止し三方弁を切換えて熱源水をファンコイルに導びき、室内空気と熱交換させる。また、三方弁を切換えて冷凍サイクルを駆動し熱源水を水対冷媒熱交換器に循環させれば、熱源水を熱源とするヒートポンプサイクルとなり、空気熱交換器において冷風または温風を得られる。このときファンコイルには熱源水が導かれないので、ここでの熱交換作用はない。
冷凍サイクルによる冷暖房運転時に、さらに冷暖房能力の性能アップが要求されると、三方弁は熱源水をファンコイルおよび水対冷媒熱交換器の両方に同時に流すよう制御される。ファンコイルと空気熱交換器を併用することになり、より大きな熱負荷に対処できる、とある。
特公平6−68392号公報
In normal air conditioning, the refrigeration cycle is stopped and the three-way valve is switched to guide the heat source water to the fan coil to exchange heat with room air. If the three-way valve is switched to drive the refrigeration cycle to circulate the heat source water to the water-to-refrigerant heat exchanger, a heat pump cycle using the heat source water as a heat source is obtained, and cold air or hot air can be obtained in the air heat exchanger. At this time, the heat source water is not led to the fan coil, so there is no heat exchange effect here.
In the cooling / heating operation by the refrigeration cycle, when further improvement in the cooling / heating capacity is required, the three-way valve is controlled to flow the heat source water to both the fan coil and the water-to-refrigerant heat exchanger at the same time. A fan coil and an air heat exchanger are used together, and it can cope with a larger heat load.
Japanese Examined Patent Publication No. 6-68392

しかしながら、上記[特許文献1]による技術では、以下のごとき不具合がある。
(1) 蓄熱源から供給される熱源水(冷水)の温度が所定温度以下のときにヒートポンプ式の冷凍サイクルによる冷房運転を行った場合、低温の熱源水と熱交換する水対冷媒熱交換器で凝縮液冷媒の温度が低くなり過ぎ、ヒートポンプ式の冷凍サイクルにおいて正常な運転を行うことができず、故障を招く虞れがあった。
また、蓄熱源から供給される熱源水(温水)の温度が所定温度以下のときにヒートポンプ式の冷凍サイクルによる暖房運転を行った場合、低温の熱源水が冷媒蒸発器となる水対冷媒熱交換器で熱交換することによりさらに冷やされて熱源水が凍結する虞れがある。
However, the technique according to [Patent Document 1] has the following problems.
(1) Water-to-refrigerant heat exchanger that exchanges heat with low-temperature heat source water when cooling operation using a heat pump refrigeration cycle is performed when the temperature of the heat source water (cold water) supplied from the heat storage source is equal to or lower than a predetermined temperature. Thus, the temperature of the condensate refrigerant becomes too low, and normal operation cannot be performed in the heat pump refrigeration cycle, which may cause a failure.
In addition, when heating operation using a heat pump refrigeration cycle is performed when the temperature of the heat source water (hot water) supplied from the heat storage source is equal to or lower than a predetermined temperature, water-to-refrigerant heat exchange in which the low-temperature heat source water becomes a refrigerant evaporator There is a possibility that the heat source water may be further cooled by heat exchange in the vessel and the heat source water may freeze.

(2) 蓄熱源から熱源水を供給する供給設備(たとえば熱源水供給用ポンプ、冷凍サイクル停止時に給水を停止する節水弁等)が何らかの原因で故障している間にヒートポンプ式の暖房運転を行った場合、極く短時間(30分以内程度)で熱源水循環回路の一部(特に、水対冷媒熱交換器内部)が凍結してしまう虞れがある。 (2) Heat pump heating operation is performed while a supply facility that supplies heat source water from a heat storage source (for example, a heat source water supply pump, a water-saving valve that stops water supply when the refrigeration cycle is stopped) has failed for some reason. In this case, a part of the heat source water circulation circuit (particularly, the inside of the water-to-refrigerant heat exchanger) may be frozen in a very short time (about 30 minutes or less).

本発明は上記課題に着目してなされたもので、その目的とするところは、蓄熱源から熱源水である冷水もしくは温水を供給して冷房もしくは暖房を行うファンコイル機能にヒートポンプ式の冷凍サイクルを付加したうえに、供給される熱源水の温度が所定温度以下のときは冷凍サイクル運転を自動的に停止して熱源水の凍結を防止するとともに構成機器のパンクを防止し、安全性と信頼性の向上化を得る空気調和装置を提供しようとするものである。   The present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to provide a heat pump type refrigeration cycle for a fan coil function for cooling or heating by supplying cold water or hot water as heat source water from a heat storage source. In addition, when the temperature of the supplied heat source water is below the specified temperature, the refrigeration cycle operation is automatically stopped to prevent the heat source water from freezing and prevent the components from being punctured. It is an object of the present invention to provide an air conditioner that can improve the efficiency.

本発明は上述の目的を満足するためになされたものであり、室内空気の通風路に配置され熱源水の導通路を備えたファンコイルおよび冷媒の導通路を備えた空気熱交換器と、圧縮機、四方弁、空気熱交換器、減圧装置、熱源水と冷媒の導通路を備えた水/冷媒熱交換器が順次冷媒管を介して連通されるヒートポンプ式の冷凍サイクルと、要求される運転モードに応じて熱源から供給された熱源水をファンコイルと水/冷媒熱交換器へ導く水循環手段と、冷凍サイクルによる暖房運転時に、上記水/冷媒熱交換器に導入される冷媒の温度を検出する第3の温度センサと、冷凍サイクルを構成する圧縮機に吸込まれる冷媒の温度を検出する第4の温度センサと、第3の温度センサの検出温度が第1の所定温度以下になったとき、もしくは第4の温度センサの検出温度が第2の所定温度以下になったとき、圧縮機の運転を停止する熱源水凍結防止制御手段とを具備し、
上記熱源水凍結防止制御手段は、さらに圧縮機から吐出される冷媒の温度を検出する第5の温度センサを有し、圧縮機の起動時に第5の温度センサの検出温度が所定温度以下のとき、圧縮機を起動してから所定時間経過後に第3の温度センサもしくは第4の温度センサによる熱源水凍結防止制御を行う。
The present invention has been made in order to satisfy the above-mentioned object, and is provided with a fan coil provided with a conduction path for heat source water and an air heat exchanger provided with a conduction path for refrigerant and a compression path disposed in a ventilation path for indoor air. Machine, four-way valve, air heat exchanger, pressure reducing device, heat pump type refrigeration cycle in which water / refrigerant heat exchanger with heat source water and refrigerant conduction path are sequentially communicated through refrigerant pipe, and required operation Detects the temperature of the refrigerant introduced into the water / refrigerant heat exchanger during heating operation by the refrigeration cycle and the water circulation means that guides the heat source water supplied from the heat source to the fan coil and the water / refrigerant heat exchanger according to the mode The third temperature sensor, the fourth temperature sensor for detecting the temperature of the refrigerant sucked into the compressor constituting the refrigeration cycle, and the temperature detected by the third temperature sensor is equal to or lower than the first predetermined temperature. Or 4th temperature When the detected temperature of the sensor is below a second predetermined temperature, and a heat source water freezing prevention control means for stopping the operation of the compressor,
The heat source water freeze prevention control means further includes a fifth temperature sensor for detecting the temperature of the refrigerant discharged from the compressor, and when the temperature detected by the fifth temperature sensor is equal to or lower than a predetermined temperature when the compressor is started. The heat source water freeze prevention control is performed by the third temperature sensor or the fourth temperature sensor after a predetermined time has elapsed since the compressor was started.

本発明によれば、ファンコイル機能にヒートポンプ式の冷凍サイクルを付加することを前提として、常に熱源水の温度を検知し、熱源水の凍結と構成機器のパンクを確実に防止して安全性と信頼性の向上化を得るという効果を奏する。   According to the present invention, on the premise that a heat pump type refrigeration cycle is added to the fan coil function, the temperature of the heat source water is always detected, and the freezing of the heat source water and the puncture of the constituent devices are surely prevented to ensure safety. There is an effect of improving the reliability.

[実施例1]
以下、図面を参照して本発明の実施例1に係る空気調和装置について説明する。
図1は、空気調和装置の概略構成と配管系統図である。
図中1は、被空調室に連通する通風路(ダクト)であり、この通風路1内における風上側に熱源水の導通路を備えたファンコイル2が配置されていて、熱源水と通風路1に導かれる空気とを熱交換できる。上記通風路1内のファンコイル2風下側には、冷凍サイクルRの室内熱交換器に相当する空気熱交換器3が配置され、冷媒と通風路1に導かれる空気とを熱交換できる。さらに、ファンコイル2および空気熱交換器3の風下側には被空調室内へ送風する送風機4が設置される。
[Example 1]
Hereinafter, an air-conditioning apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration of an air conditioner and a piping system diagram.
In the figure, reference numeral 1 denotes a ventilation path (duct) that communicates with the air-conditioned room. A fan coil 2 having a conduction path for heat source water is arranged on the windward side in the ventilation path 1, and the heat source water and the ventilation path. Heat exchange with the air led to 1 is possible. An air heat exchanger 3 corresponding to the indoor heat exchanger of the refrigeration cycle R is arranged on the leeward side of the fan coil 2 in the ventilation path 1 so that heat can be exchanged between the refrigerant and the air guided to the ventilation path 1. Further, a blower 4 for blowing air into the air-conditioned room is installed on the leeward side of the fan coil 2 and the air heat exchanger 3.

通風路1外部の所定の部位(もしくは、通風路1内部でもよい)にメインユニットMが配置されていて、このメインユニットMには冷凍サイクルRを構成する、圧縮機13、四方弁12、電子膨張弁(減圧装置)11、室外熱交換器に相当する後述する水/冷媒熱交換器9など上記空気熱交換器3を除いて配置され、これら構成機器は冷媒管Pを介して連通される。
上記電子膨張弁11は、上記水/冷媒熱交換器9と空気熱交換器3との間に配置され、適度な絞りを与えて冷媒の過熱度を制御する。上記水/冷媒熱交換器9は冷媒を導く導通路と、熱源水を導く導通路を備えていて、冷媒と熱源水との熱交換ができる。
A main unit M is disposed at a predetermined portion outside the ventilation path 1 (or inside the ventilation path 1). The main unit M includes a compressor 13, a four-way valve 12, and an electronic device constituting a refrigeration cycle R. An expansion valve (decompression device) 11 and a water / refrigerant heat exchanger 9 to be described later corresponding to an outdoor heat exchanger are arranged except for the air heat exchanger 3, and these components are communicated via a refrigerant pipe P. .
The electronic expansion valve 11 is disposed between the water / refrigerant heat exchanger 9 and the air heat exchanger 3, and controls the degree of superheat of the refrigerant by providing an appropriate throttle. The water / refrigerant heat exchanger 9 includes a conduction path that guides the refrigerant and a conduction path that leads the heat source water, and can exchange heat between the refrigerant and the heat source water.

さらにメインユニットMには、図示しない蓄熱源から供給される熱源水(冷水または温水)を導入する熱源水入口部5と、蓄熱源へ熱源水を戻す熱源水出口部10を備えている。これら熱源水入口部5と熱源水出口部10は、メインユニットM内に収容される熱源水循環回路(水循環手段)Nの入口部と出口部を構成している。
熱源水循環回路Nとして、蓄熱源から熱源水入口部5に供給される熱源水を、後述する水/水熱交換器6を介して上記ファンコイル2に導き、このファンコイル2から導出される熱源水を三方弁7の切換え動作にもとづいて、図中破線矢印に示すように再び上記水/水熱交換器6へ導き、さらに上記水/冷媒熱交換器9に導いてから熱源水出口部10を介して蓄熱源へ戻す第1の流路Aを備えている。
Further, the main unit M includes a heat source water inlet portion 5 for introducing heat source water (cold water or hot water) supplied from a heat storage source (not shown), and a heat source water outlet portion 10 for returning the heat source water to the heat storage source. The heat source water inlet portion 5 and the heat source water outlet portion 10 constitute an inlet portion and an outlet portion of a heat source water circulation circuit (water circulation means) N accommodated in the main unit M.
As the heat source water circulation circuit N, heat source water supplied from the heat storage source to the heat source water inlet 5 is led to the fan coil 2 via a water / water heat exchanger 6 described later, and the heat source derived from the fan coil 2 Based on the switching operation of the three-way valve 7, the water is led to the water / water heat exchanger 6 again as indicated by the broken arrow in the figure, and further led to the water / refrigerant heat exchanger 9, and then the heat source water outlet 10. The 1st flow path A which returns to a heat storage source via is provided.

そして上記熱源水循環回路Nは、上記ファンコイル2から導出される熱源水を上記三方弁7の切換え動作にもとづいて、図中実線矢印に示すように水/水熱交換器6に通さずに直接、上記水/冷媒熱交換器9へ導く第2の流路Bを備えている。
上記水/水熱交換器6には、上記熱源水入口部5と上記ファンコイル2に連通する熱源水導通路と、三方弁7と水/冷媒熱交換器9導入側とを連通する熱源水導通路の、2本の熱源水導通路が互いに交差して備えられていて、これら熱源水導通路を導かれる間に互いの熱源水は熱交換されるようになっている。
The heat source water circulation circuit N directly passes the heat source water led out from the fan coil 2 without passing through the water / water heat exchanger 6 as shown by the solid line arrow based on the switching operation of the three-way valve 7. The second flow path B leading to the water / refrigerant heat exchanger 9 is provided.
The water / water heat exchanger 6 includes a heat source water that communicates the heat source water inlet passage 5 and the heat source water passage that communicates with the fan coil 2, the three-way valve 7, and the water / refrigerant heat exchanger 9 introduction side. The two heat source water conduction paths of the conduction path are provided so as to intersect each other, and the heat source waters exchange heat with each other while being guided through these heat source water conduction paths.

さらに空気調和装置は、使用者において運転モード・風量・設定温度の指示をなすための図示しない遠隔操作盤(リモコン)と、この遠隔操作盤での指示にもとづくとともに、後述する温度センサSからの検知信号を受けて、その結果により送風機4、圧縮機13、電子膨張弁11および三方弁7などを制御し、最適な運転を実施するための制御部(制御手段)15を備えている。
温度センサSとして、熱源水入口部5近傍部位に、蓄熱源から導かれ熱源水入口部5を通過した直後の熱源水の温度を検知する第1の温度センサS1が設けられている。熱源水循環回路Nを構成する水/冷媒熱交換器9と熱源水出口部10とを連通する配管に第2の温度センサS2が取付けられていて、水/冷媒熱交換器9から導出される熱源水の温度を検知するようになっている。
Further, the air conditioner is based on a remote control panel (remote control) (not shown) for giving an instruction of an operation mode, an air volume, and a set temperature to the user, and based on an instruction on the remote control panel, and from a temperature sensor S described later. A control unit (control means) 15 is provided for receiving the detection signal and controlling the blower 4, the compressor 13, the electronic expansion valve 11, the three-way valve 7 and the like based on the detection result and performing an optimum operation.
As the temperature sensor S, a first temperature sensor S1 that detects the temperature of the heat source water immediately after passing through the heat source water inlet portion 5 guided from the heat storage source is provided in the vicinity of the heat source water inlet portion 5. A heat source derived from the water / refrigerant heat exchanger 9 is provided with a second temperature sensor S2 attached to a pipe communicating the water / refrigerant heat exchanger 9 and the heat source water outlet 10 constituting the heat source water circulation circuit N. The temperature of water is detected.

上記冷凍サイクルRを構成する水/冷媒熱交換器9と電子膨張弁11との間の冷媒管Pには第3の温度センサS3が取付けられていて、冷凍サイクルRによる暖房運転時において水/冷媒熱交換器9へ導入される冷媒の温度を検知するようになっている。
圧縮機13の冷媒吸込み部a近傍部位には第4の温度センサS4が取付けられていて、圧縮機13に吸込まれる冷媒の温度を検知するようになっている。圧縮機13の冷媒吐出部bの近傍部位には第5の温度センサS5が取付けられていて、圧縮機13から吐出される冷媒の温度を検知できるようになっている。
A third temperature sensor S3 is attached to the refrigerant pipe P between the water / refrigerant heat exchanger 9 and the electronic expansion valve 11 constituting the refrigeration cycle R, and water / The temperature of the refrigerant introduced into the refrigerant heat exchanger 9 is detected.
A fourth temperature sensor S4 is attached to the vicinity of the refrigerant suction portion a of the compressor 13 so as to detect the temperature of the refrigerant sucked into the compressor 13. A fifth temperature sensor S5 is attached to the vicinity of the refrigerant discharge portion b of the compressor 13 so that the temperature of the refrigerant discharged from the compressor 13 can be detected.

これら第1の温度センサS1〜第5の温度センサS5は、全てサーミスタータイプの温度センサであり、それぞれが取付けられる部位の空気温度もしくは熱源水の温度もしくは冷媒の温度を検知して、上記制御部15へ検知信号を送るようになっている。
つぎに、このようにして構成される空気調和装置の作用を説明する。
The first temperature sensor S1 to the fifth temperature sensor S5 are all thermistor type temperature sensors, and detect the temperature of the air, heat source water or refrigerant in the part to which each is attached, and perform the above control. A detection signal is sent to the unit 15.
Next, the operation of the air conditioner configured as described above will be described.

(1)通常冷房運転と通常暖房運転
必要とする冷暖房能力がそれほど大きくなく、かつ冷房時に25℃未満の冷水が供給され、暖房時に25℃以上の温水が供給されている場合は、制御部15は圧縮機13の運転停止を指示していて空気熱交換器3での熱交換作用はなく、ファンコイル2のみ機能するよう制御する。
このとき制御部15は三方弁7を切換えて第2の流路Bに熱源水を循環させ、第1の流路Aには熱源水が流れないように制御する。蓄熱源の熱源水は熱源水入口部5から水/水熱交換器6を介してファンコイル2へ導かれ、さらに三方弁7から水/冷媒熱交換器9を介して熱源水出口部10から排出され蓄熱源に戻される。
(1) Normal cooling operation and normal heating operation
When the required cooling / heating capacity is not so large and cold water of less than 25 ° C. is supplied during cooling and hot water of 25 ° C. or more is supplied during heating, the control unit 15 instructs the compressor 13 to stop operating. Therefore, there is no heat exchange effect in the air heat exchanger 3, and only the fan coil 2 is controlled to function.
At this time, the control unit 15 switches the three-way valve 7 to circulate the heat source water in the second flow path B, and performs control so that the heat source water does not flow in the first flow path A. The heat source water of the heat storage source is led from the heat source water inlet 5 to the fan coil 2 through the water / water heat exchanger 6, and from the three-way valve 7 to the heat source water outlet 10 through the water / refrigerant heat exchanger 9. It is discharged and returned to the heat storage source.

この運転モードでは、水/水熱交換器6において熱源水相互の熱交換作用は行われず、かつ冷凍サイクル運転を停止しているため水/冷媒熱交換器9においても熱交換作用はない状態で熱源水が導かれる。
結局、ファンコイル2において通風路1に導かれる空気と熱交換するのみであり、熱源水循環回路Nに冷水が導かれていれば室内の冷房作用をなし、熱源水循環回路Nに温水が導かれていれば室内の暖房作用をなす。
In this operation mode, heat exchange between the heat source waters is not performed in the water / water heat exchanger 6, and since the refrigeration cycle operation is stopped, the water / refrigerant heat exchanger 9 also has no heat exchange action. Heat source water is led.
Eventually, the fan coil 2 only exchanges heat with the air guided to the ventilation path 1. If cold water is guided to the heat source water circulation circuit N, the indoor cooling operation is performed, and hot water is guided to the heat source water circulation circuit N. If this is done, the room is heated.

(2)高能力冷房運転と高能力暖房運転
設定温度と現在室温の差が大きくなりファンコイル機能のみでは能力不足になった場合は、冷凍サイクル運転をなして能力を増加させる高能力冷暖房運転を行う。
このとき、熱源水循環回路Nにおける三方弁7の切換え方向に変化がなく先に説明した通常の冷暖房運転と同様であるが、制御部15は冷凍サイクルRを構成する圧縮機13の駆動を開始するとともに、四方弁12の切換え制御をなす。
(2) High capacity cooling operation and high capacity heating operation
If the difference between the set temperature and the current room temperature becomes large and the capacity becomes insufficient with only the fan coil function, high-performance air conditioning operation is performed in which the capacity is increased by performing the refrigeration cycle operation.
At this time, there is no change in the switching direction of the three-way valve 7 in the heat source water circulation circuit N, which is the same as the normal air conditioning operation described above, but the control unit 15 starts driving the compressor 13 constituting the refrigeration cycle R. At the same time, the switching control of the four-way valve 12 is performed.

たとえば、冷水供給中に高能力冷房運転の指示がある場合、蓄熱源から熱源水入口部5に導かれる冷水は水/水熱交換器6の一方の熱源水導通路のみ導通し他方の熱源水導通路には導かれないので、水/水熱交換器6で温度上昇することなくファンコイル2に導かれ、通風路1に導かれる空気から吸熱する。ファンコイル2に導かれるは空気は温度低下して冷気となり、ファンコイル2の風下側に配置される空気熱交換器3にその冷気が導かれる。   For example, when there is an instruction for high-capacity cooling operation during the supply of cold water, the cold water led from the heat storage source to the heat source water inlet 5 is conducted only in one heat source water passage of the water / water heat exchanger 6 and the other heat source water. Since it is not led to the conduction path, it is led to the fan coil 2 without increasing in temperature by the water / water heat exchanger 6 and absorbs heat from the air led to the ventilation path 1. The air that is led to the fan coil 2 is cooled down as the air is cooled, and the cool air is led to the air heat exchanger 3 arranged on the leeward side of the fan coil 2.

同時に冷凍サイクル運転が行われて、水/冷媒熱交換器9で冷媒が凝縮し、空気熱交換器3では冷媒が蒸発して、ファンコイル2を流通したあとの冷気から熱を奪う。冷気はさらに温度低下した冷気に変わり、室内へ送風される。したがって、高能力冷房が得られる。
ファンコイル2で吸熱した冷水は三方弁7から第2の流路Bを経由して水/冷媒熱交換器9に導かれる。この水/冷媒熱交換器9では冷媒の凝縮作用が行われているので、冷水は冷媒と熱交換して凝縮熱を吸収する。水/冷媒熱交換器9は水熱交換器として用いられることになり、ここでの吸熱が冷凍サイクルRにおける冷房熱量として利用され、ファンコイル機能のみと比べて利用温度差が取れ効率のよい冷房となる。
At the same time, the refrigeration cycle operation is performed, the refrigerant condenses in the water / refrigerant heat exchanger 9, the refrigerant evaporates in the air heat exchanger 3, and heat is taken from the cold air after flowing through the fan coil 2. The cool air is changed to cool air whose temperature has further decreased, and is blown into the room. Therefore, high capacity cooling is obtained.
The cold water absorbed by the fan coil 2 is guided from the three-way valve 7 to the water / refrigerant heat exchanger 9 via the second flow path B. In this water / refrigerant heat exchanger 9, since the refrigerant condenses, cold water exchanges heat with the refrigerant and absorbs the heat of condensation. The water / refrigerant heat exchanger 9 is used as a water heat exchanger, and the heat absorption here is used as the cooling heat amount in the refrigeration cycle R, and the cooling temperature is high in efficiency by taking a difference in use temperature compared to the fan coil function alone. It becomes.

温水供給中に高能力暖房運転の指示がある場合は、蓄熱源から熱源水入口部5に導かれる温水が水/水熱交換器6で温度低下することなくファンコイル2に導かれ、室内空気へ放熱する。ファンコイル2が室内空気中に温熱を放出することで室内空気は温度上昇して暖気に変わり、空気熱交換器3に導かれる。
同時に冷凍サイクル運転が行われ、空気熱交換器3で冷媒が凝縮してファンコイル2から導かれる暖気へ凝縮熱を放出する。暖気はさらに温度上昇した暖気に変わり、室内へ送風される。したがって、高能力暖房が得られる。
ファンコイル2で放熱を終了した温水は三方弁7から第2の流路Bを経由して水/冷媒熱交換器9に導かれる。冷媒は水/冷媒熱交換器9で蒸発して熱を吸収する。ファンコイル2で温度低下した温水は水/冷媒熱交換器9でさらに熱を奪われ、ここでの放熱が冷凍サイクルを介して暖房熱量として利用されるので、ファンコイル機能のみと比べて利用温度差が取れ効率のよい暖房となる。
When there is an instruction for high-capacity heating operation during the supply of hot water, the hot water led from the heat storage source to the heat source water inlet 5 is led to the fan coil 2 by the water / water heat exchanger 6 without lowering the temperature, and the room air To dissipate heat. As the fan coil 2 releases warm heat into the room air, the room air rises in temperature and changes to warm air, and is led to the air heat exchanger 3.
At the same time, the refrigeration cycle operation is performed, and the refrigerant is condensed in the air heat exchanger 3 to release the heat of condensation to the warm air guided from the fan coil 2. The warm air changes into warm air whose temperature has further increased, and is blown into the room. Therefore, high capacity heating is obtained.
The hot water that has finished radiating heat with the fan coil 2 is guided from the three-way valve 7 to the water / refrigerant heat exchanger 9 via the second flow path B. The refrigerant evaporates in the water / refrigerant heat exchanger 9 and absorbs heat. The hot water whose temperature has been reduced by the fan coil 2 is further deprived of heat by the water / refrigerant heat exchanger 9, and the heat radiation here is used as the amount of heating heat through the refrigeration cycle. A difference is taken and it becomes efficient heating.

(3)温水供給時の冷房運転(逆冷房)と冷水供給時の暖房運転(逆暖房)
蓄熱源から25℃以上の温水が供給されているが、被空調室における何らかの事情により冷房運転を強調したい要求がある。また、蓄熱源から25℃未満の冷水が供給されているが、被空調室における何らかの事情により暖房運転を強調したい要求がある。これらの要求があると制御部15は、三方弁7に対して熱源水の導通方向を第2の流路Bから第1の流路Aに切換え制御したうえで、冷凍サイクル運転を開始する。
(3) Cooling operation when supplying hot water (reverse cooling) and heating operation when supplying cold water (reverse heating)
Hot water of 25 ° C. or higher is supplied from the heat storage source, but there is a demand for emphasizing the cooling operation for some reason in the air-conditioned room. Moreover, although cold water below 25 degreeC is supplied from the heat storage source, there exists a request | requirement which wants to emphasize heating operation by a certain situation in an air-conditioned room. When these requests are made, the control unit 15 switches the conduction direction of the heat source water from the second flow path B to the first flow path A for the three-way valve 7 and then starts the refrigeration cycle operation.

温水供給時に冷房運転の指示があると、蓄熱源から熱源水入口部5に導かれる温水は水/水熱交換器6の一方の熱源水導通路を導通してからファンコイル2に導かれる。ファンコイル2で温水は導かれる空気と熱交換して温度低下し、そのあと三方弁7の切換え方向に応じて第1の流路Aから水/水熱交換器6の他方の熱源水導通路に導かれ、熱源水入口部5を通過した温水と熱交換する。   If there is an instruction for cooling operation during the supply of hot water, the hot water led from the heat storage source to the heat source water inlet 5 is conducted through one heat source water conduction path of the water / water heat exchanger 6 and then led to the fan coil 2. In the fan coil 2, the hot water exchanges heat with the guided air to lower the temperature, and then the other heat source water conduction path of the water / water heat exchanger 6 from the first flow path A according to the switching direction of the three-way valve 7. To exchange heat with the hot water that has passed through the heat source water inlet 5.

熱源水入口部5で高温(45〜50℃)であった温水が、水/水熱交換器6で熱交換することにより温度低下(略30℃程度)したあと、ファンコイル2に導かれる。温水は通風路1に導かれる低温の空気と熱交換して空気温度(略25℃程度)に近い温度にまで低下し、さらに熱源水入口部5から導かれる温水と水/水熱交換器6で熱交換する。
ファンコイル2での暖房能力が無効化し、その一方で冷凍サイクルRに対する運転が開始される。水/冷媒熱交換器9で冷媒は凝縮し冷やされて温度低下した温水と熱交換し、そのあと冷媒は空気熱交換器3に導かれて蒸発する冷房運転が行われる。空気熱交換器3では、ファンコイル2を流通したあとの空気から熱を奪って冷気に変える、いわゆる“逆冷房”作用を得る。
The hot water that has been at a high temperature (45 to 50 ° C.) at the heat source water inlet 5 is reduced in temperature (about 30 ° C.) by heat exchange with the water / water heat exchanger 6, and then guided to the fan coil 2. The hot water exchanges heat with the low-temperature air led to the ventilation path 1 and drops to a temperature close to the air temperature (about 25 ° C.), and further, the hot water and the water / water heat exchanger 6 led from the heat source water inlet 5. To exchange heat.
The heating capacity in the fan coil 2 is invalidated, while the operation for the refrigeration cycle R is started. The refrigerant is condensed and cooled in the water / refrigerant heat exchanger 9 to exchange heat with the hot water whose temperature has been lowered, and then the cooling operation is performed in which the refrigerant is led to the air heat exchanger 3 and evaporated. The air heat exchanger 3 obtains a so-called “reverse cooling” action in which heat is taken from the air that has passed through the fan coil 2 and converted into cold air.

同様にして、冷水供給時に暖房運転の指示があると、蓄熱源から熱源水入口部5に導かれる冷水は水/水熱交換器6の一方の熱源水導通路を導通してからファンコイル2に導かれる。ファンコイル2で冷水は空気と熱交換して温度上昇し、そのあと三方弁7の切換え方向に応じて第1の流路Aである水/水熱交換器6の他方の熱源水導通路に導かれ、熱源水入口部5を通過した冷水と熱交換する。   Similarly, when there is an instruction for heating operation during the supply of cold water, the cold water led from the heat storage source to the heat source water inlet 5 is conducted through one heat source water passage of the water / water heat exchanger 6 and then the fan coil 2. Led to. In the fan coil 2, the cold water exchanges heat with air and rises in temperature, and then enters the other heat source water conduction path of the water / water heat exchanger 6 as the first flow path A according to the switching direction of the three-way valve 7. It is guided and exchanges heat with cold water that has passed through the heat source water inlet 5.

結局、熱源水入口部5で低温(10℃程度)であった冷水が、水/水熱交換器6で熱交換することにより温度上昇(20℃程度)したあとファンコイル2に導かれる。冷水は室内空気と熱交換して空気温度(25℃程度)に近い温度にまで上昇し、さらに熱源水入口部から導かれる低温の冷水と水/水熱交換器6で熱交換する。
ファンコイル2での冷房能力が無効化し、その一方で冷凍サイクルRに対する運転が開始される。圧縮機13から吐出される冷媒は空気熱交換器3に導かれ、ここで凝縮する暖房運転が行われる。そして冷媒は水/冷媒熱交換器9に導かれて、温められて温度上昇した冷水と熱交換し冷媒は蒸発する。上記空気熱交換器3では、ファンコイル2を流通したあとの空気へ凝縮熱を付与し暖気に変える、いわゆる“逆暖房”作用を得る。
Eventually, the cold water, which has been at a low temperature (about 10 ° C.) at the heat source water inlet portion 5, is led to the fan coil 2 after the temperature rises (about 20 ° C.) by exchanging heat with the water / water heat exchanger 6. The cold water exchanges heat with room air and rises to a temperature close to the air temperature (about 25 ° C.), and further exchanges heat with the low-temperature cold water led from the heat source water inlet 5 and the water / water heat exchanger 6.
The cooling capacity of the fan coil 2 is invalidated, while the operation for the refrigeration cycle R is started. The refrigerant discharged from the compressor 13 is led to the air heat exchanger 3 where the heating operation for condensation is performed. Then, the refrigerant is guided to the water / refrigerant heat exchanger 9, and heat is exchanged with the cold water whose temperature has been increased by heating, whereby the refrigerant evaporates. The air heat exchanger 3 obtains a so-called “reverse heating” action in which condensation heat is applied to the air after flowing through the fan coil 2 to change it into warm air.

ところで、上述した逆暖房運転は、たとえば春先や晩秋時期など蓄熱源から冷水が供給されているが、急な気温の落ち込みで暖房作用を得たい状態で行われる。すなわち、熱源水として冷水が供給されているので、気温の低温化があればその影響で熱源水循環回路Nを循環する冷水が凍結する虞れがある。
上記制御部15は、常時、熱源水入口部5と水/水熱交換器6の熱源水導入部との間に取付けられる第1の温度センサS1から送られる熱源水(冷水)の検知温度信号と、水/冷媒熱交換器9の熱源水導出部と熱源水出口部10との間に取付けられる第2の温度センサS2から送られる熱源水の検知温度信号を、記憶回路に記憶している基準温度と比較している。
By the way, the above-described reverse heating operation is performed in a state where cold water is supplied from a heat storage source such as early spring or late autumn, but a heating action is desired due to a sudden drop in temperature. That is, since cold water is supplied as the heat source water, if the temperature is lowered, the cold water circulating through the heat source water circulation circuit N may be frozen due to the influence.
The control unit 15 always detects the temperature signal of the heat source water (cold water) sent from the first temperature sensor S1 attached between the heat source water inlet 5 and the heat source water introduction part of the water / water heat exchanger 6. And a detection temperature signal of the heat source water sent from the second temperature sensor S2 attached between the heat source water outlet portion and the heat source water outlet portion 10 of the water / refrigerant heat exchanger 9 is stored in the storage circuit. Comparison with reference temperature.

そして制御部15は、所定の条件下で熱源水循環回路Nを循環する熱源水の凍結防止制御を実施する。具体的には、第1の温度センサS1あるいは第2の温度センサS2のいずれかの検知温度が2℃未満であり、かつその検知温度が30秒以上継続した信号を受けた場合は、直ちに圧縮機13へ運転停止信号を送り圧縮機13の運転を停止させる。
熱源水は自然凍結寸前の水温となっているうえに冷凍サイクル運転をなせば冷媒の蒸発作用をなす水/冷媒熱交換器9において熱源水が熱を奪われて凍結するところであるが、圧縮機13の運転を停止するので熱源水循環回路Nを循環する熱源水の凍結を確実に防止できる。そして、熱源水循環回路Nを構成する構成機器、特に水/冷媒熱交換器9の熱源水導通路で熱源水が凍結することがなくパンク事故の防止を図れる。
And the control part 15 implements freeze prevention control of the heat source water which circulates through the heat source water circulation circuit N on predetermined conditions. Specifically, if the detected temperature of either the first temperature sensor S1 or the second temperature sensor S2 is less than 2 ° C. and the detected temperature continues for 30 seconds or more, the signal is immediately compressed. An operation stop signal is sent to the machine 13 to stop the operation of the compressor 13.
The heat source water has a water temperature just before natural freezing, and if the refrigeration cycle operation is performed, the heat source water is deprived of heat in the water / refrigerant heat exchanger 9 that performs the evaporation of the refrigerant. Therefore, the heat source water circulating through the heat source water circulation circuit N can be reliably prevented from freezing. And the heat source water does not freeze in the component equipment which comprises the heat source water circulation circuit N, especially the heat source water conduction path of the water / refrigerant heat exchanger 9, and a puncture accident can be prevented.

この状態においても熱源水の供給は継続されていて、引き続き熱源水の温度を検知する第1の温度センサS1と第2の温度センサS2の双方が、ともに4℃以上を検知する信号を制御部15へ送れば、制御部15は正常に戻ったと判断して、圧縮機13の運転を復帰させる。したがって、熱源水の凍結を防止したうえで熱源水が循環している状態で逆暖房運転が行われる。
なお、第1の温度センサS1と第2の温度センサS2が何らかの理由によって故障し、異常温度の検知信号を送るようなことがあれば、制御部15はセンサ異常と判定して圧縮機13の運転を停止する。
Even in this state, the supply of the heat source water is continued, and both the first temperature sensor S1 and the second temperature sensor S2 that subsequently detect the temperature of the heat source water send signals that detect 4 ° C. or higher. 15, the control unit 15 determines that the operation has returned to normal and returns the operation of the compressor 13. Therefore, the reverse heating operation is performed in a state where the heat source water is circulating while preventing the heat source water from freezing.
If the first temperature sensor S1 and the second temperature sensor S2 fail for some reason and send an abnormal temperature detection signal, the control unit 15 determines that the sensor is abnormal and determines that the compressor 13 Stop operation.

また、上述の第1の温度センサS1と第2の温度センサS2の代りに、極く単純に、熱源水出口部10にバイメタルサーモからなる温度センサを配置して水/冷媒熱交換器9から熱源水出口部10へ導出される熱源水の温度を検出する構成が考えられる。具体的には、バイメタルサーモが所定温度(たとえば0℃)を検知すると、圧縮機13の運転/停止リレーを遮断させ、温度が上昇復帰(たとえば6℃)したことを感知すると運転/停止リレーを接続する制御となる。   Further, instead of the first temperature sensor S1 and the second temperature sensor S2 described above, a temperature sensor made of a bimetal thermo is arranged at the heat source water outlet 10 simply from the water / refrigerant heat exchanger 9. A configuration for detecting the temperature of the heat source water led out to the heat source water outlet 10 is conceivable. Specifically, when the bimetal thermostat detects a predetermined temperature (for example, 0 ° C.), the operation / stop relay of the compressor 13 is shut off, and when it detects that the temperature has returned to an increase (for example, 6 ° C.), the operation / stop relay is turned on. Control to connect.

しかしながら、バイメタルサーモには動作点と復帰点があって、どちらか一方しか精度調整を行うことができない。動作点(たとえば0℃)を優先して製造上の調整を行った場合、復帰点(たとえば6℃)が実際には4℃〜8℃となってしまう。熱源水の凍結防止を図るため圧縮機を一旦停止すると、長い間復帰することができない。この間に室温が低下して空気調和装置としての基本機能が損なわれる。   However, the bimetal thermo has an operating point and a return point, and only one of them can adjust the accuracy. When adjustment in manufacturing is performed with priority given to the operating point (for example, 0 ° C.), the return point (for example, 6 ° C.) actually becomes 4 ° C. to 8 ° C. Once the compressor is stopped to prevent freezing of the heat source water, it cannot be restored for a long time. During this time, the room temperature decreases and the basic function as an air conditioner is impaired.

上述の実施例では全ての温度センサS1〜S5に、サーミスタ温度センサを使用するため、動作温度と復帰温度とも精度が高く製造上の調整も不要である。また、復帰温度の設定にもよるが、熱源水循環回路Nにおける熱源水凍結防止のために圧縮機13を停止した場合、約3分後には圧縮機の運転を再開するので、室温の低下はほとんどみられない。すなわち、空気調和装置としての基本機能である暖房運転性能を損なうことなく、熱源水の凍結と、最悪の事態である構成部品のパンク事故の防止を図れる。   In the above-described embodiment, the thermistor temperature sensors are used for all the temperature sensors S1 to S5, so that the operating temperature and the return temperature are both highly accurate and do not require adjustment in manufacturing. Depending on the setting of the return temperature, when the compressor 13 is stopped to prevent freezing of the heat source water in the heat source water circulation circuit N, the operation of the compressor is resumed after about 3 minutes, so that the room temperature is hardly lowered. I can't see it. That is, it is possible to prevent the heat source water from freezing and the worst-case component puncture accident without impairing the heating operation performance that is the basic function of the air conditioner.

[実施例2]
いわゆる逆暖房運転時において、蓄熱源から熱源水を送る供給設備が何らかの理由で故障し、それが原因で給水が行われなかったときに、制御部15は熱源水循環回路Nにおける熱源水の凍結防止を図るよう制御する。
すなわち、ポンプが故障するなどの理由により熱源水循環回路Nに冷水が導かれず循環しない場合、冷凍サイクルRによるヒートポンプ暖房運転を実行すると短時間(約30分以内)で冷水が凍結することが確認された。特に、水/冷媒熱交換器9において冷媒が蒸発し熱を奪うので、水の移動がない水導通路側の冷水が早急に凍結する。
[Example 2]
During the so-called reverse heating operation, when the supply facility that sends the heat source water from the heat storage source fails for some reason and water supply is not performed for that reason, the control unit 15 prevents freezing of the heat source water in the heat source water circulation circuit N. To control.
That is, when cold water is not led to the heat source water circulation circuit N due to a pump failure or the like and does not circulate, it is confirmed that when the heat pump heating operation by the refrigeration cycle R is performed, the cold water freezes in a short time (within about 30 minutes). It was. In particular, since the refrigerant evaporates and takes heat away in the water / refrigerant heat exchanger 9, the cold water on the side of the water conduction path where there is no movement of water quickly freezes.

なお、水/冷媒熱交換器9の内部の水導通路温度を検知できればよいが、現実的には内部の温度検知は困難である。熱源水の供給が停止して熱源水循環回路Nに熱源水が循環しない場合は、上述の第1の温度センサS1および第2の温度センサS2からの水温検知信号は判断対象にはならない。
そこで制御部15は、水/冷媒熱交換器9の冷媒導入側に設けられる第3の温度センサS3と、圧縮機13の吸込み部に設けられる第4の温度センサS4からの検知信号を受けて記憶回路に記憶している基準値と比較し、所定の条件下で熱源水の供給設備が何らかの理由で故障し、それが原因で給水が行われなかったことと判断して、熱源水循環回路Nにおける熱源水の凍結防止を図る。
Although it is only necessary to detect the temperature of the water conduction path inside the water / refrigerant heat exchanger 9, it is actually difficult to detect the temperature inside. When the supply of the heat source water is stopped and the heat source water does not circulate in the heat source water circulation circuit N, the water temperature detection signals from the first temperature sensor S1 and the second temperature sensor S2 are not determined.
Therefore, the control unit 15 receives detection signals from the third temperature sensor S3 provided on the refrigerant introduction side of the water / refrigerant heat exchanger 9 and the fourth temperature sensor S4 provided on the suction unit of the compressor 13. Compared to the reference value stored in the storage circuit, it is determined that the heat source water supply facility has failed for some reason under a predetermined condition, and water supply has not been performed for that reason, and the heat source water circulation circuit N To prevent freezing of the heat source water in

具体的には、水/冷媒熱交換器9の冷媒導入側に設けられる第3の温度センサS3の検出温度TEが−5℃未満である、もしくは、圧縮機13の吸込み部aに設けられる第4の温度センサS4の検出温度TSが0℃未満を検知して検知信号を制御部15へ送ると、凍結防止判定条件が整うとして圧縮機13の運転を停止するよう制御する。したがって、熱源水循環回路Nに循環する熱交換水(冷水)の凍結を確実に防止できる。   Specifically, the detected temperature TE of the third temperature sensor S3 provided on the refrigerant introduction side of the water / refrigerant heat exchanger 9 is less than −5 ° C., or is provided in the suction portion a of the compressor 13. When the detected temperature TS of the temperature sensor S4 of 4 is less than 0 ° C. and a detection signal is sent to the control unit 15, control is performed to stop the operation of the compressor 13 assuming that the freeze prevention determination condition is satisfied. Therefore, freezing of the heat exchange water (cold water) circulating in the heat source water circulation circuit N can be reliably prevented.

そして、制御部15は圧縮機13の運転停止とタイミングを合わせて内蔵する再起動タイマを作動させ、所定時間(たとえば2分30秒)経過後に再び第3の温度センサS3と第4の温度センサS4の検出信号を取込み、前述した凍結防止判定条件に該当するか否かを判断する。制御部15は、凍結防止判定条件に該当しないことを確認したうえで、2回目の圧縮機13の再起動を実施する。   Then, the control unit 15 activates a built-in restart timer in synchronism with the operation stop of the compressor 13, and after the elapse of a predetermined time (for example, 2 minutes 30 seconds), the third temperature sensor S3 and the fourth temperature sensor again. The detection signal of S4 is taken in and it is determined whether or not the above-described anti-freezing determination condition is met. The control unit 15 confirms that the anti-freezing determination condition is not satisfied, and then restarts the compressor 13 for the second time.

圧縮機13の再起動後も、第3の温度センサS3と第4の温度センサS4はそれぞれの取付け部位における冷媒温度を検知してその検知信号を制御部15へ送る。そして制御部15は、再び第3の温度センサS3の検出温度TEが−5℃未満である、もしくは第4の温度センサS4の検出温度TSが0℃未満であるとの検知信号を受けると、凍結防止判定条件が整うと判断して圧縮機13の運転を停止するよう制御する。   Even after the compressor 13 is restarted, the third temperature sensor S3 and the fourth temperature sensor S4 detect the refrigerant temperatures at the respective attachment sites and send the detection signals to the control unit 15. When the control unit 15 receives the detection signal that the detection temperature TE of the third temperature sensor S3 is less than −5 ° C. or the detection temperature TS of the fourth temperature sensor S4 is less than 0 ° C., It is determined that the freeze prevention determination condition is satisfied, and control is performed so as to stop the operation of the compressor 13.

制御部15は、先の圧縮機13の運転停止直後と同様に再起動タイマを作動させ、所定時間(たとえば2分30秒)経過後、前述した凍結防止判定条件に該当しないことを確認したうえで3回目の圧縮機13の再起動を実施する。そして、再び凍結防止判定条件が整ったら、圧縮機13の運転を停止するよう制御し、かつ「給水異常」と判定して異常コードを表示する。   The control unit 15 activates the restart timer in the same manner as immediately before the operation of the compressor 13 is stopped, and after confirming that the above-described anti-freezing determination condition is not satisfied after a predetermined time (for example, 2 minutes and 30 seconds) has elapsed. Then, the compressor 13 is restarted for the third time. When the freeze prevention determination condition is satisfied again, control is performed to stop the operation of the compressor 13, and “abnormal water supply” is determined and an abnormal code is displayed.

このようにして、たとえば熱源水(冷水)を供給するポンプが故障して熱源水の供給が行われなくなり熱源水循環回路Nに熱源水が循環しない状態において、特に水/冷媒熱交換器9の内部にある熱源水導通路の温度を検知しなくても、第3の温度センサS3と第4の温度センサS4による冷凍サイクルR側での温度検知から圧縮機13を制御して熱源水の凍結防止と、構成機器のパンクを防止できる。
先の[実施例1]と同様に、第3の温度センサS3と第4の温度センサS4が何らかの理由によって故障し、異常温度の検知信号を送るようなことがあれば、制御部15はセンサ異常と判定して圧縮機13の運転を停止する。
Thus, for example, in the state where the heat source water is not supplied to the heat source water circulation circuit N because the pump for supplying the heat source water (cold water) breaks down and the heat source water is not supplied, the inside of the water / refrigerant heat exchanger 9 in particular. Even if the temperature of the heat source water conduction path is not detected, the compressor 13 is controlled from the temperature detection on the refrigeration cycle R side by the third temperature sensor S3 and the fourth temperature sensor S4 to prevent the heat source water from freezing. And the puncture of the component equipment can be prevented.
Similar to the first embodiment, if the third temperature sensor S3 and the fourth temperature sensor S4 fail for some reason and send an abnormal temperature detection signal, the control unit 15 detects the sensor. It is determined that there is an abnormality and the operation of the compressor 13 is stopped.

ところで、圧縮機13の運転を長時間停止させている間に、圧縮機13が冷え込むことがある。このとき、水/冷媒熱交換器9の冷媒導入側に設けられる第3の温度センサS3と、圧縮機13の吸込み部aに設けられる第4の温度センサS4は、日常的な運転状態の温度よりも低めの温度を検出してしまい、その検出信号にもとづいて制御する制御部15の判断が実際とはズレてしまう虞れがある。   By the way, while the operation of the compressor 13 is stopped for a long time, the compressor 13 may be cooled. At this time, the third temperature sensor S3 provided on the refrigerant introduction side of the water / refrigerant heat exchanger 9 and the fourth temperature sensor S4 provided on the suction portion a of the compressor 13 If the temperature is lower than that, the control unit 15 that performs control based on the detection signal may deviate from the actual determination.

このような圧縮機13の状態を推定するために、圧縮機13の吐出部bに第5の温度センサS5が備えられていて、制御部15は常に第5の温度センサS5からの検知信号を受けて判断条件に加えている。
具体的には、第5の温度センサS5の検知温度TDが25℃未満であることの検知信号を受けると、制御部15は圧縮機13の起動後の経過時間(3分)を前記凍結防止判定条件に加える。
In order to estimate such a state of the compressor 13, the discharge part b of the compressor 13 is provided with a fifth temperature sensor S5, and the control unit 15 always receives a detection signal from the fifth temperature sensor S5. In addition to the judgment conditions.
Specifically, upon receiving a detection signal that the detection temperature TD of the fifth temperature sensor S5 is less than 25 ° C., the control unit 15 sets the elapsed time (3 minutes) after the start of the compressor 13 to the freeze prevention. Add to judgment conditions.

上記した遅延経過時間(3分)の設定により、冷凍サイクルは日常的な状態となるため、給水遅れや正常復帰した場合など正常に熱源水の供給設備が作動している場合の空気調和装置側の誤判定による、圧縮機13の運転停止を未然に防止することができる。凍結、パンクを恐れるために、無駄に圧縮機13停止(すなわち、空気調和装置の運転停止)というような基本機能を損なうことはない。   Since the refrigeration cycle becomes a daily state by setting the above-mentioned delay elapsed time (3 minutes), the air conditioner side when the heat source water supply equipment is operating normally, such as when the water supply is delayed or returned to normal It is possible to prevent the compressor 13 from being stopped due to the erroneous determination. In order to fear freezing and puncture, the basic function such as stopping the compressor 13 (that is, stopping the operation of the air conditioner) is not spoiled.

なお、先に説明したように、第3の温度センサS3の検出温度TEが−5℃未満である、もしくは第4の温度センサS4の検出温度TSが0℃未満を検知すると凍結防止判定条件が整うことになるので、制御部15は圧縮機13の運転を停止しタイミングを合わせて再起動タイマを作動させ、所定時間(たとえば2分30秒)経過後、凍結防止判定条件に該当しないことを確認して2回目の圧縮機13の再起動を実施する。   As described above, when the detection temperature TE of the third temperature sensor S3 is less than −5 ° C. or the detection temperature TS of the fourth temperature sensor S4 is detected to be less than 0 ° C., the freeze prevention determination condition is satisfied. Therefore, the control unit 15 stops the operation of the compressor 13 and activates the restart timer at the same timing. After a predetermined time (for example, 2 minutes and 30 seconds) has elapsed, the control unit 15 confirms that the anti-freezing determination condition is not met. After confirmation, the compressor 13 is restarted for the second time.

上記圧縮機13を再起動して所定時間(たとえば、60分)運転が継続された場合、つまり前記凍結防止判定条件に該当することなく圧縮機13が停止とならなかった場合は、制御部15は先に実施例2で説明した3回目の圧縮機13の起動/停止カウントをクリアする。
また、リモコン(リモートコントローラ)操作による運転停止やサーモコントロールなど他の要因による圧縮機13の停止によっても、熱源水凍結防止制御の圧縮機13の起動/停止カウントをクリアする。
When the compressor 13 is restarted and the operation is continued for a predetermined time (for example, 60 minutes), that is, when the compressor 13 is not stopped without satisfying the freeze prevention determination condition, the control unit 15 Clears the third start / stop count of the compressor 13 described in the second embodiment.
Further, the start / stop count of the compressor 13 in the heat source water freeze prevention control is also cleared by stopping the compressor 13 due to other factors such as operation stop by remote control (remote controller) operation or thermo control.

このように、熱源水凍結防止制御での圧縮機13の停止回数カウントをクリアするので、熱源水供給設備の給水動作遅れや正常復帰した場合など、些細なことで正常に給水されている場合の空気調和装置側の誤判定による圧縮機13の運転停止を抑制することができる。
勿論、カウントをクリアするだけで熱源水凍結防止制御は逆暖房運転時に随時有効であることには変わりがない。構成機器における凍結パンクを確実に回避しつつ、無駄な圧縮機13の運転停止(すなわち、空気調和装置の運転停止)と、「給水異常」判定による異常コード表示というような自体を極力避けることができる。
As described above, since the count of the number of stops of the compressor 13 in the heat source water freeze prevention control is cleared, when the water supply operation of the heat source water supply facility is delayed or returned to normal, the water is normally supplied by a trivial matter. The operation stop of the compressor 13 due to the erroneous determination on the air conditioner side can be suppressed.
Of course, the heat source water freezing prevention control is effective at any time during the reverse heating operation only by clearing the count. While avoiding freezing punctures in the components, it is possible to avoid as much as possible the unnecessary operation stop of the compressor 13 (that is, the operation stop of the air conditioner) and the abnormal code display by the “abnormal water supply” determination. it can.

[実施例3]
つぎに、本発明の実施例3を図面にもとづいて説明する。
図2は、空気調和装置の概略構成と配管系統図である。
送風機4の位置が通風路1内の先に説明した実施例1での位置とは異なるが、通風路1内に配置されるファンコイル2と空気熱交換器3に対して送風して熱交換させ、熱交換後の空気を室内へ導くようにしていることは変りがない。
[Example 3]
Next, a third embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic configuration of an air conditioner and a piping system diagram.
Although the position of the blower 4 is different from the position in the first embodiment described above in the ventilation path 1, heat is exchanged by blowing air to the fan coil 2 and the air heat exchanger 3 arranged in the ventilation path 1. The air after the heat exchange is guided to the room is not changed.

第1の温度センサS1がファンコイル2の熱源水導通路の出口部に取付けられ、第2の温度センサS2が空気熱交換器3の冷媒導通路中間部に取付けられることも変りがない。メインユニットMa内には先に説明したのと同一のヒートポンプ式冷凍サイクルRが空気熱交換器3を除いて収容されることも変りがなく、同一構成機器に同番号を付して新たな説明を省略する。   The first temperature sensor S1 is attached to the outlet portion of the heat source water conduction path of the fan coil 2, and the second temperature sensor S2 is attached to the intermediate part of the refrigerant conduction path of the air heat exchanger 3. In the main unit Ma, the same heat pump refrigeration cycle R as described above is accommodated except for the air heat exchanger 3, and the same components are assigned the same numbers and a new description is given. Is omitted.

熱源水循環回路Naとして、熱源水入口部5から直接、三方弁7が接続され、この三方弁7の残りのポートはファンコイル2と連通され、もう一方のポートは水/冷媒熱交換器9とファンコイル2を連通するパイプの中間部に連通される。水/冷媒熱交換器9と熱源水出口部10とは直接連通することには変りがない。
温度センサSとして、熱源水入口部5と三方弁7との間の配管に第1の温度センサS1が取付けられ、熱源水循環回路Naに導入された直後の熱源水温度を検知する。熱源水循環回路Naを構成する水/冷媒熱交換器9と熱源水出口部10とを連通する配管に第2の温度センサS2が取付けられ、水/冷媒熱交換器9から導出される熱源水の温度を検知する。
As the heat source water circulation circuit Na, a three-way valve 7 is connected directly from the heat source water inlet 5, the remaining port of the three-way valve 7 is connected to the fan coil 2, and the other port is connected to the water / refrigerant heat exchanger 9. The fan coil 2 communicates with an intermediate portion of a pipe communicating with the fan coil 2. The water / refrigerant heat exchanger 9 and the heat source water outlet 10 are not changed in direct communication.
As the temperature sensor S, a first temperature sensor S1 is attached to a pipe between the heat source water inlet 5 and the three-way valve 7 to detect the temperature of the heat source water immediately after being introduced into the heat source water circulation circuit Na. The second temperature sensor S2 is attached to a pipe communicating the water / refrigerant heat exchanger 9 and the heat source water outlet 10 constituting the heat source water circulation circuit Na, and the heat source water derived from the water / refrigerant heat exchanger 9 is provided. Detect temperature.

上記冷凍サイクルRを構成する水/冷媒熱交換器9と電子膨張弁11との間の冷媒管Pに第3の温度センサS3が取付けられ、冷凍サイクルRによる暖房運転時において水/冷媒熱交換器9へ導入される冷媒の温度を検知する。圧縮機13の冷媒吸込み部a近傍部位には第4の温度センサS4が取付けられ、圧縮機13に吸込まれる冷媒の温度を検知する。圧縮機13の冷媒吐出部bの近傍部位には第5の温度センサS5が取付けられ、圧縮機13から吐出される冷媒の温度を検知する。   A third temperature sensor S3 is attached to the refrigerant pipe P between the water / refrigerant heat exchanger 9 and the electronic expansion valve 11 constituting the refrigeration cycle R, and water / refrigerant heat exchange is performed during heating operation by the refrigeration cycle R. The temperature of the refrigerant introduced into the vessel 9 is detected. A fourth temperature sensor S4 is attached to the vicinity of the refrigerant suction portion a of the compressor 13, and detects the temperature of the refrigerant sucked into the compressor 13. A fifth temperature sensor S5 is attached to the vicinity of the refrigerant discharge portion b of the compressor 13 to detect the temperature of the refrigerant discharged from the compressor 13.

このようにして構成される空気調和装置であり、通常冷房の場合は熱源水として冷水が供給され、三方弁7は実線矢印に示すようにファンコイル2へ直接導き、冷熱を放出させる。送風機4が駆動され通風路1に導かれる空気は冷気に変り空気熱交換器3を介して室内へ導かれる。冷凍サイクルRは停止していて、空気熱交換器3における熱交換作用は行われない。
ファンコイル2から導出される温度上昇した冷水は水/冷媒熱交換器9へ導かれるが、ここでの熱交換作用はないから、その温度のままで熱源水出口部10から導出される。通常暖房の場合は、熱源水として温水が供給されることが相違するだけで、温水の循環径路は変りがなく、冷凍サイクル運転が停止されることも変りがない。
In the air conditioner configured as described above, in the case of normal cooling, cold water is supplied as heat source water, and the three-way valve 7 is directly guided to the fan coil 2 as indicated by the solid line arrow to release cold heat. The air guided to the ventilation path 1 by driving the blower 4 is changed into cold air and guided to the room through the air heat exchanger 3. The refrigeration cycle R is stopped, and the heat exchange action in the air heat exchanger 3 is not performed.
The chilled water whose temperature has risen derived from the fan coil 2 is led to the water / refrigerant heat exchanger 9, but since there is no heat exchanging action here, it is led out from the heat source water outlet section 10 at that temperature. In the case of normal heating, the only difference is that hot water is supplied as the heat source water, the circulation path of the hot water is not changed, and the refrigeration cycle operation is not changed.

高能力冷房の場合は、熱源水として冷水が導かれ、通常冷房と同様に冷水が循環される。同時に冷凍サイクルRの運転が開始され、ファンコイル2による冷熱の放出と、空気熱交換器3による冷熱の放出があって、高能力の冷房運転が得られる。高能力暖房の場合は、熱源水として温水が導かれて通常暖房と同様に温水が循環され、同時に冷凍サイクルRの運転が開始される。ファンコイル2による温熱の放出と、空気熱交換器3による温熱の放出があって、高能力の暖房運転が得られる。
熱源水として温水が導かれるときの逆冷房運転の場合は、三方弁7を図中破線矢印に示す方向に切換える。熱源水入口部5から導入される温水は上記三方弁7の切換え方向に沿って水/冷媒熱交換器9へ導かれ、そのまま熱源水出口部10から排出される。
In the case of high-capacity cooling, cold water is introduced as heat source water, and the cold water is circulated in the same manner as normal cooling. At the same time, the operation of the refrigeration cycle R is started, and there is a discharge of cold heat by the fan coil 2 and a discharge of cold heat by the air heat exchanger 3, and a high-capacity cooling operation is obtained. In the case of high-capacity heating, hot water is introduced as heat source water, and hot water is circulated in the same manner as in normal heating, and at the same time, the operation of the refrigeration cycle R is started. There is discharge of warm heat by the fan coil 2 and discharge of warm heat by the air heat exchanger 3, and a high-performance heating operation can be obtained.
In the case of the reverse cooling operation when hot water is guided as the heat source water, the three-way valve 7 is switched in the direction indicated by the broken line arrow in the figure. The hot water introduced from the heat source water inlet 5 is guided to the water / refrigerant heat exchanger 9 along the switching direction of the three-way valve 7 and is discharged from the heat source water outlet 10 as it is.

冷凍サイクルRは冷房運転をなし、空気熱交換器3において冷熱が放出される。温水はファンコイル2に導かれないので、ファンコイル2においては何らの機能もしない。温水は水/冷媒熱交換器9に導かれ、凝縮熱を吸収してから排出される。すなわち、温水を水/冷媒熱交換器9に導くことにより、ある程度高圧を低くする機能を得られる。
熱源水として冷水が導かれるときの逆暖房運転の場合も、三方弁7を図中破線矢印に示す方向に切換える。熱源水入口部5から導入される冷水は上記三方弁7の切換え方向に沿って水/冷媒熱交換器9へ導かれ、そのまま熱源水出口部10から排出される。
The refrigeration cycle R performs a cooling operation, and cold air is released in the air heat exchanger 3. Since hot water is not guided to the fan coil 2, the fan coil 2 has no function. The hot water is guided to the water / refrigerant heat exchanger 9 and absorbs the heat of condensation before being discharged. That is, by guiding the hot water to the water / refrigerant heat exchanger 9, a function of lowering the high pressure to some extent can be obtained.
Also in the case of reverse heating operation when cold water is guided as heat source water, the three-way valve 7 is switched in the direction indicated by the broken line arrow in the figure. The cold water introduced from the heat source water inlet 5 is guided to the water / refrigerant heat exchanger 9 along the switching direction of the three-way valve 7 and is discharged from the heat source water outlet 10 as it is.

冷凍サイクルRは暖房運転をなし、空気熱交換器3において凝縮熱が放出される。冷水はファンコイル2に導かれないので、ファンコイル2においては何らの機能もしない。冷水は水/冷媒熱交換器9に導かれ、蒸発潜熱を奪われてから排出される。すなわち、冷水を水/冷媒熱交換器9に導くことにより、ある程度低圧を高くする機能を得られる。
制御部15は、常時、熱源水入口部5と水/水熱交換器6の熱源水導入部との間に取付けられる第1の温度センサS1から送られる熱源水の検知温度信号と、水/冷媒熱交換器9の熱源水導出部と熱源水出口部10との間に取付けられる第2の温度センサS2から送られる熱源水の検知温度信号を記憶した基準温度と比較する。
The refrigeration cycle R performs heating operation, and condensation heat is released in the air heat exchanger 3. Since the cold water is not guided to the fan coil 2, the fan coil 2 has no function. The cold water is led to the water / refrigerant heat exchanger 9, where the latent heat of vaporization is taken away and discharged. That is, by introducing cold water to the water / refrigerant heat exchanger 9, a function of increasing the low pressure to some extent can be obtained.
The control unit 15 always detects the detection temperature signal of the heat source water sent from the first temperature sensor S1 attached between the heat source water inlet 5 and the heat source water introduction part of the water / water heat exchanger 6, and the water / water The detected temperature signal of the heat source water sent from the second temperature sensor S2 attached between the heat source water outlet portion and the heat source water outlet portion 10 of the refrigerant heat exchanger 9 is compared with the stored reference temperature.

そして制御部15は、所定の条件下で熱源水循環回路Nを循環する熱源水の凍結防止制御を実施する。熱源水凍結防止制御条件の具体的な数値は、先に実施例1で説明した条件と全く同様でよいので、ここでは同実施例を適用して新たな説明は省略する。
さらに制御部15は、水/冷媒熱交換器9と電子膨張弁11との間に設けられる第3の温度センサS3と、圧縮機13の吸込み部に取付けられる第4の温度センサS4の検知温度から、熱源水の供給設備が何らかの理由で故障し、それが原因で給水が行われなかったことと判断して、熱源水循環回路Nにおける熱源水の凍結防止を図る。熱源水凍結防止制御条件の具体的な数値は、先に実施例2で説明した条件と全く同様でよいので、ここでは同実施例を適用して新たな説明は省略する。
And the control part 15 implements freeze prevention control of the heat source water which circulates through the heat source water circulation circuit N on predetermined conditions. The specific numerical values of the heat source water freeze prevention control conditions may be exactly the same as the conditions described in the first embodiment, and therefore, a new description is omitted here by applying the same embodiment.
Further, the control unit 15 detects a temperature detected by a third temperature sensor S3 provided between the water / refrigerant heat exchanger 9 and the electronic expansion valve 11, and a fourth temperature sensor S4 attached to the suction unit of the compressor 13. From this, it is determined that the heat source water supply facility has failed for some reason and water supply has not been performed, and the heat source water circulation circuit N is prevented from freezing. Since the specific numerical value of the heat source water freeze prevention control condition may be exactly the same as the condition described in the second embodiment, a new description is omitted here by applying the same embodiment.

そして制御部15は、圧縮機13の吐出部bに取付けられる第5の温度センサS5からの検知信号を受けて所定温度よりも低い温度の検知信号を受けた場合は、凍結防止判定条件に圧縮機13起動後の経過時間を遅延させた制御をなすことも同様である。
そして制御部15は、圧縮機13が起動後所定時間運転を継続した場合、つまり熱源水凍結防止制御の圧縮機13の起動/停止のカウントをクリアすることも同様であり、またリモコン操作による運転停止や、サーモコントロールなどの他の要因による圧縮機13の停止によっても、熱源水凍結防止制御の圧縮機13の起動/停止のカウントをクリアすることも同様である。
また、本発明は上述の実施例に限定されるものではなく、本発明の趣旨を越えない範囲内でさらに種々変形実施が可能であり、本願発明はこれらの全てを完全に包含するものである。
When the control unit 15 receives a detection signal from the fifth temperature sensor S5 attached to the discharge unit b of the compressor 13 and receives a detection signal having a temperature lower than a predetermined temperature, the control unit 15 compresses the freezing prevention determination condition. It is also the same that control is performed by delaying the elapsed time after the machine 13 is activated.
The control unit 15 is also configured to clear the start / stop count of the compressor 13 in the heat source water freeze prevention control when the compressor 13 continues operation for a predetermined time after the start, that is, the operation by remote control operation. The same applies to clearing the start / stop count of the compressor 13 under the heat source water freeze prevention control even when the compressor 13 is stopped due to other factors such as stoppage or thermo control.
Further, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention, and the present invention completely includes all of them. .

本発明の実施例1および実施例2に係る、空気調和装置の概略の構成と配管図。The schematic structure and piping figure of the air conditioning apparatus which concern on Example 1 and Example 2 of this invention. 本発明の実施例3に係る、空気調和装置の概略の構成と配管図。The schematic structure and piping figure of the air conditioning apparatus based on Example 3 of this invention.

符号の説明Explanation of symbols

1…通風路、2…ファンコイル、3…空気熱交換器、4…送風機、13…圧縮機、12…四方弁、11…減圧装置(電子膨張弁)、9…水/冷媒熱交換器、R…冷凍サイクル、N…熱源水循環回路(水循環手段)、S1…第1の温度センサ、S2…第2の温度センサ、15…制御部(制御手段)、S3…第3の温度センサ、S4…第4の温度センサ、S5…第5の温度センサ。   DESCRIPTION OF SYMBOLS 1 ... Ventilation path, 2 ... Fan coil, 3 ... Air heat exchanger, 4 ... Blower, 13 ... Compressor, 12 ... Four-way valve, 11 ... Pressure-reducing device (electronic expansion valve), 9 ... Water / refrigerant heat exchanger, R ... refrigeration cycle, N ... heat source water circulation circuit (water circulation means), S1 ... first temperature sensor, S2 ... second temperature sensor, 15 ... control unit (control means), S3 ... third temperature sensor, S4 ... 4th temperature sensor, S5 ... 5th temperature sensor.

Claims (1)

室内空気の通風路に配置され、熱源水の導通路を備えたファンコイルおよび、冷媒の導通路を備えた空気熱交換器と、
圧縮機、四方弁、上記空気熱交換器、減圧装置、熱源水と冷媒の導通路を備えた水/冷媒熱交換器が順次冷媒管を介して連通されるヒートポンプ式の冷凍サイクルと、
要求される運転モードに応じて、熱源から供給された熱源水を上記ファンコイルと上記水/冷媒熱交換器へ導く水循環手段と、
冷凍サイクルによる暖房運転時に、上記水/冷媒熱交換器に導入される冷媒の温度を検出する第3の温度センサと、
上記冷凍サイクルを構成する上記圧縮機に吸込まれる冷媒の温度を検出する第4の温度センサと、
上記第3の温度センサの検出温度が第1の所定温度以下になったとき、もしくは第4の温度センサの検出温度が第2の所定温度以下になったとき、上記圧縮機の運転を停止する熱源水凍結防止制御手段とを具備し、
上記熱源水凍結防止制御手段は、さらに圧縮機から吐出される冷媒の温度を検出する第5の温度センサを有し、圧縮機の起動時に上記第5の温度センサの検出温度が所定温度以下のとき、圧縮機を起動してから所定時間経過後に上記第3の温度センサもしくは上記第4の温度センサによる熱源水凍結防止制御を行うことを特徴とする空気調和装置。
A fan coil disposed in the indoor air ventilation path and provided with a heat source water conduction path; and an air heat exchanger provided with a refrigerant conduction path;
A heat pump type refrigeration cycle in which a water / refrigerant heat exchanger having a compressor, a four-way valve, the air heat exchanger, a pressure reducing device, a heat source water and a refrigerant passage is sequentially communicated via a refrigerant pipe;
Water circulation means for guiding heat source water supplied from a heat source to the fan coil and the water / refrigerant heat exchanger according to a required operation mode;
A third temperature sensor for detecting the temperature of the refrigerant introduced into the water / refrigerant heat exchanger during heating operation by the refrigeration cycle;
A fourth temperature sensor for detecting the temperature of the refrigerant sucked into the compressor constituting the refrigeration cycle;
When the temperature detected by the third temperature sensor falls below the first predetermined temperature, or when the temperature detected by the fourth temperature sensor falls below the second predetermined temperature, the compressor is stopped. Heat source water freeze prevention control means,
The heat source water freeze prevention control means further includes a fifth temperature sensor for detecting the temperature of the refrigerant discharged from the compressor, and the detected temperature of the fifth temperature sensor is equal to or lower than a predetermined temperature when the compressor is started. The air conditioner is characterized in that heat source water freeze prevention control is performed by the third temperature sensor or the fourth temperature sensor after a predetermined time has elapsed since starting the compressor.
JP2003389386A 2003-11-19 2003-11-19 Air conditioner Expired - Fee Related JP4546067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003389386A JP4546067B2 (en) 2003-11-19 2003-11-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003389386A JP4546067B2 (en) 2003-11-19 2003-11-19 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005147622A JP2005147622A (en) 2005-06-09
JP4546067B2 true JP4546067B2 (en) 2010-09-15

Family

ID=34696151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003389386A Expired - Fee Related JP4546067B2 (en) 2003-11-19 2003-11-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP4546067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006375A (en) * 2019-12-23 2020-04-14 四川虹美智能科技有限公司 Heating anti-freezing control method and device for ground source heat pump unit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524768B2 (en) * 2010-03-31 2014-06-18 株式会社石本建築事務所 Fan coil type radiant air conditioning panel air conditioner with heat pump
JP5993683B2 (en) * 2012-09-24 2016-09-14 リンナイ株式会社 Heat supply system
JP6653938B2 (en) * 2016-11-30 2020-02-26 日本ピーマック株式会社 Water heater / cooler, air conditioner and air conditioner system
FR3089281A1 (en) * 2018-11-29 2020-06-05 Muller Et Cie Building thermal control device
CN110986281B (en) * 2019-11-04 2021-02-02 珠海格力电器股份有限公司 Automatic anti-freezing control method for multi-connected cold-hot water heat pump unit and air conditioning system thereof
CN110986283B (en) * 2019-11-26 2021-06-18 珠海格力电器股份有限公司 Water multi-connected system heating anti-freezing mode control method, computer readable storage medium and air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208437A (en) * 1989-02-08 1990-08-20 Mitsubishi Electric Corp Air conditioner
JPH02309161A (en) * 1989-05-23 1990-12-25 Ebara Corp Heat pump system
JPH05288437A (en) * 1992-04-09 1993-11-02 Hitachi Ltd Water cooler freeze preventive controller of refrigerating plant
JPH0668392B2 (en) * 1987-07-09 1994-08-31 高砂熱学工業株式会社 Air conditioning system
JPH09196422A (en) * 1996-01-22 1997-07-31 Nippon P-Mac Kk Air conditioner device
JPH1078266A (en) * 1996-09-04 1998-03-24 Nippon P-Mac Kk Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function
JP2003294292A (en) * 2002-03-29 2003-10-15 Daikin Ind Ltd Air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668392B2 (en) * 1987-07-09 1994-08-31 高砂熱学工業株式会社 Air conditioning system
JPH02208437A (en) * 1989-02-08 1990-08-20 Mitsubishi Electric Corp Air conditioner
JPH02309161A (en) * 1989-05-23 1990-12-25 Ebara Corp Heat pump system
JPH05288437A (en) * 1992-04-09 1993-11-02 Hitachi Ltd Water cooler freeze preventive controller of refrigerating plant
JPH09196422A (en) * 1996-01-22 1997-07-31 Nippon P-Mac Kk Air conditioner device
JPH1078266A (en) * 1996-09-04 1998-03-24 Nippon P-Mac Kk Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function
JP2003294292A (en) * 2002-03-29 2003-10-15 Daikin Ind Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006375A (en) * 2019-12-23 2020-04-14 四川虹美智能科技有限公司 Heating anti-freezing control method and device for ground source heat pump unit

Also Published As

Publication number Publication date
JP2005147622A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP5549773B1 (en) Air conditioner
US9909790B2 (en) Methods and systems for controlling integrated air conditioning systems
WO2013088482A1 (en) Air conditioning device
JP2018124046A (en) Air conditioner
CN110050162B (en) Air conditioner
CN108779938B (en) Air conditioner hot water supply system
KR20190005445A (en) Method for controlling multi-type air conditioner
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
JP2007155299A (en) Air conditioner
JP2009264715A (en) Heat pump hot water system
EP2204620B1 (en) Heating and/or cooling installation and method for monitoring the operability of the installation
JP4546067B2 (en) Air conditioner
JP5515568B2 (en) Heat pump cycle equipment
JP3785893B2 (en) Air conditioner
JP2009264718A (en) Heat pump hot water system
JP2015152174A (en) hot water system
JP6105270B2 (en) Air conditioner
JP2009264714A (en) Heat pump hot water system
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP5927502B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP4426824B2 (en) Air conditioner
KR101204443B1 (en) Multi system air conditioner and control method thereof
JP2016090174A (en) Hot water supply air-conditioning system
KR100606267B1 (en) Air conditioner capable of continuous cooling operation
JP7392567B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees