JP2006170497A - Refrigerant natural circulation type cooling system - Google Patents

Refrigerant natural circulation type cooling system Download PDF

Info

Publication number
JP2006170497A
JP2006170497A JP2004361635A JP2004361635A JP2006170497A JP 2006170497 A JP2006170497 A JP 2006170497A JP 2004361635 A JP2004361635 A JP 2004361635A JP 2004361635 A JP2004361635 A JP 2004361635A JP 2006170497 A JP2006170497 A JP 2006170497A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor unit
cooling operation
heat exchanger
steady
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004361635A
Other languages
Japanese (ja)
Other versions
JP4212549B2 (en
Inventor
Setsuo Kaneda
節夫 兼田
Naoto Sumi
直人 隅
Kosuke Nishihata
康介 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004361635A priority Critical patent/JP4212549B2/en
Publication of JP2006170497A publication Critical patent/JP2006170497A/en
Application granted granted Critical
Publication of JP4212549B2 publication Critical patent/JP4212549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly start cooling operation without impairing economic efficiency by minimizing the frequency of opening and closing an electronic expansion valve in performing the cooling operation by starting a part of a plurality of indoor units. <P>SOLUTION: The temperature difference between supply air temperature and return air temperature to a use-side heat exchanger is calculated by a temperature difference calculating means 16 after starting the cooling operation, the inability to start is judged when the temperature difference is not agreed with steady transition temperature difference which is judged to be a state transitable to a steady cooling operation state, even after the lapse of a set time from the starting, a start inability signal is output from a start inability discriminating means 19, an indoor unit in a cooling operation stop state is selected by a support indoor unit selecting means 20, and a start supporting signal is output to open the electronic expansion valve 7 of the corresponding indoor unit. Thus the refrigerant gas is released from a refrigerant liquid pipe in an early stage by utilizing the indoor unit in the cooling operation stop state, and the starting is performed and transited to the cooling operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、凝縮器と、複数個の室内ユニットに備えられている利用側熱交換器との間で、気体と液体とに相変化する冷媒を自然循環により流動させて冷房を行う冷媒自然循環式冷房システムに関する。   The present invention relates to a natural refrigerant circulation in which cooling is performed by flowing a refrigerant that changes phase between gas and liquid by natural circulation between a condenser and a use-side heat exchanger provided in a plurality of indoor units. The present invention relates to a type cooling system.

上述のような冷媒自然循環式冷房システムでは、室内ユニットを起動しようとしたときに、実際に所定温度の温調空気が吹き出されるまでに時間がかかる問題があった。これは、冷房運転を停止している間に冷媒液配管内に冷媒ガスが発生して溜まり、その溜まった冷媒ガスにより冷媒の自然循環が損なわれ、冷媒ガスが冷媒液配管内から抜けるのに時間を要するためである。   In the refrigerant natural circulation type cooling system as described above, there is a problem that it takes time until the temperature-controlled air at a predetermined temperature is actually blown when the indoor unit is started. This is because the refrigerant gas is generated and accumulated in the refrigerant liquid pipe while the cooling operation is stopped, and the natural refrigerant circulation is impaired by the accumulated refrigerant gas, and the refrigerant gas escapes from the refrigerant liquid pipe. This is because it takes time.

そこで、上述のような問題を解消するために冷媒液配管内に混入した冷媒ガスを抜くものとして、従来、次のようなものがあった。
最も下方に位置する室内機(室内ユニット)への入口付近において、冷媒液配管内の圧力を測定する圧力センサを設け、冷房運転が停止されている間中、冷媒液配管内の圧力をモニタリングし、その測定圧力が所定圧力よりも低くなったときに膨張弁を開き、冷媒液配管内に発生した冷媒ガスを抜くように構成されている(特許文献1参照)。
Therefore, in order to eliminate the above-described problems, conventionally, there are the following methods for removing the refrigerant gas mixed in the refrigerant liquid pipe.
A pressure sensor that measures the pressure in the refrigerant liquid pipe is provided near the entrance to the indoor unit (indoor unit) located at the lowest position, and the pressure in the refrigerant liquid pipe is monitored while the cooling operation is stopped. The expansion valve is opened when the measured pressure becomes lower than a predetermined pressure, and the refrigerant gas generated in the refrigerant liquid pipe is extracted (see Patent Document 1).

また、室内空調機(室内ユニット)の熱交換器に冷媒を供給する供給管内の圧力と帰還管内の圧力との圧力差を求め、その圧力差が一定値以下になったときに、熱交換器への冷媒の供給量を制御する電磁弁を開放し、供給管内に溜まった冷媒ガスを帰還管に排出するように構成されている(特許文献2参照)。
特開2000−292025号公報 特開平7−151353号公報
Further, the pressure difference between the pressure in the supply pipe for supplying the refrigerant to the heat exchanger of the indoor air conditioner (indoor unit) and the pressure in the return pipe is obtained, and when the pressure difference becomes a certain value or less, the heat exchanger An electromagnetic valve for controlling the amount of refrigerant supplied to the engine is opened, and the refrigerant gas accumulated in the supply pipe is discharged to the return pipe (see Patent Document 2).
JP 2000-292025 A JP-A-7-151353

しかしながら、上述のような前者の従来例の場合、中間期や冬期などのように、複数個の室内ユニットのうちの一部のもので短時間しか冷房運転を行わず、冷房運転を停止していることが多いような場合にも、冷媒ガスが溜まると最も下方に位置する室内機(室内ユニット)への膨張弁を開くことになる。このように膨張弁の開閉頻度が高くなると、特定の膨張弁といえども、その膨張弁が早期に損傷しやすくなるとともに、保守点検に手間と費用がかかり経済性が低下する欠点があった。また、この膨張弁の開閉によっても、起動しようとした室内ユニットにおいて起動不良を生じた場合には、即座に起動不良と判断されて保守が必要になり、同様に経済性が低下する欠点があった。   However, in the case of the former conventional example as described above, the cooling operation is performed only for a short time in some of the plurality of indoor units, such as in the intermediate period or winter period, and the cooling operation is stopped. Even in such a case, when the refrigerant gas accumulates, the expansion valve to the indoor unit (indoor unit) located at the lowest position is opened. Thus, when the frequency of opening and closing the expansion valve is high, there is a drawback that even if a specific expansion valve is used, the expansion valve is likely to be damaged at an early stage, and maintenance and inspection are troublesome and expensive, resulting in a reduction in economic efficiency. In addition, even when the expansion valve is opened and closed, if an activation failure occurs in the indoor unit to be activated, it is immediately judged as an activation failure and maintenance is required, and there is a disadvantage that the economy is similarly reduced. It was.

また、後者の従来例の場合、複数個の室内ユニットすべての電磁弁を開閉するものであり、前者の従来例の場合に比べて、経済性がより一層低下する欠点があった。   In the latter conventional example, the solenoid valves of all the plurality of indoor units are opened and closed, and there is a disadvantage that the economic efficiency is further reduced as compared with the former conventional example.

本発明は、上記の点に鑑みてなされたものであって、請求項1および2に係る発明は、複数個の室内ユニットの一部を起動して冷房運転を行う場合に、電子膨張弁の開閉頻度を極力少なくして、経済性を低下せずに良好に起動できるようにすることを目的とし、請求項3に係る発明は、冷媒循環系統の異常などを早期に見出してトラブル発生を未然に防止できるようにすることを目的とし、請求項4および5に係る発明は、起動不良を有効に解消できるようにすることを目的とする。   The present invention has been made in view of the above points, and the invention according to claims 1 and 2 is directed to an electronic expansion valve when a part of a plurality of indoor units is activated to perform a cooling operation. An object of the invention according to claim 3 is to find out abnormalities of the refrigerant circulation system at an early stage, and to prevent troubles from occurring, with the aim of reducing the frequency of opening and closing as much as possible so that it can be started up satisfactorily without reducing the economic efficiency. The inventions according to claims 4 and 5 are intended to make it possible to effectively eliminate startup failures.

請求項1に係る発明は、上述のような目的を達成するために、
気体と液体とに相変化する冷媒を蒸発気化して冷熱を放熱する利用側熱交換器を備えた室内ユニットを複数個設け、前記利用側熱交換器と、冷媒を凝縮液化する凝縮器とを冷媒液配管と冷媒ガス配管とを介して接続し、前記凝縮器を前記利用側熱交換器よりも上方に配置し、前記凝縮器と前記利用側熱交換器との間に、自然循環により前記凝縮器で凝縮液化した冷媒液を前記利用側熱交換器に移送するとともに、前記利用側熱交換器で蒸発気化した冷媒ガスを前記凝縮器に移送するに足るヘッド差を備え、前記冷媒液配管に、前記利用側熱交換器に供給する冷媒液量を調整する電子膨張弁を設けた冷媒自然循環式冷房システムにおいて、
前記利用側熱交換器から吹き出される温調空気の給気温度を測定する給気温度センサと、
前記利用側熱交換器に戻される温調空気の還気温度を測定する還気温度センサと、
前記還気温度センサで測定される還気温度と前記給気温度センサで測定される給気温度との差を算出する温度差算出手段と、
前記温度差算出手段で算出された温度差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差になったときに定常冷房運転移行信号を出力する比較手段と、
冷房運転の起動後に前記比較手段からの定常冷房運転移行信号に応答して前記電子膨張弁の開度を定常冷房運転状態で必要な開度に切り換える開度制御手段と、
冷房運転の起動後設定時間経過しても前記温度差算出手段で算出された温度差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差にならなかったときに起動不能信号を出力する起動不能判別手段と、
前記起動不能判別手段からの起動不能信号に応答して、起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニットのうちの優先順位の高い室内ユニットを選出し、その選出された室内ユニットに起動支援信号を出力し該当する室内ユニットの電子膨張弁を開く支援室内ユニット選出手段とを備えて構成する。
ここで、「起動予定の室内ユニット」とは、冷房運転を起動しようとした室内ユニットのことをいう。また、「起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニット」とは、運転を停止している室内ユニットに限らず、換気モードで運転している状態の室内ユニット、ならびに、暖房をも行う室内ユニットの場合には、暖房モードで運転している状態の室内ユニットをも含む(以下、同じであり、冷房運転停止状態の室内ユニットということもある)。
In order to achieve the above-described object, the invention according to claim 1
A plurality of indoor units including use side heat exchangers that evaporate and evaporate a refrigerant that changes phase between gas and liquid and dissipate cold heat are provided, and the use side heat exchanger and a condenser that condenses and liquefies the refrigerant are provided. The refrigerant liquid pipe and the refrigerant gas pipe are connected to each other, the condenser is disposed above the use side heat exchanger, and the natural heat circulates between the condenser and the use side heat exchanger. The refrigerant liquid pipe is provided with a head difference sufficient to transfer the refrigerant liquid condensed and liquefied by the condenser to the use side heat exchanger and to transfer the refrigerant gas evaporated and evaporated by the use side heat exchanger to the condenser. In the refrigerant natural circulation type cooling system provided with an electronic expansion valve for adjusting the amount of refrigerant liquid supplied to the use side heat exchanger,
A supply air temperature sensor for measuring a supply air temperature of the temperature-controlled air blown out from the use side heat exchanger;
A return air temperature sensor for measuring the return air temperature of the temperature-controlled air returned to the use side heat exchanger;
A temperature difference calculating means for calculating a difference between the return air temperature measured by the return air temperature sensor and the supply air temperature measured by the supply air temperature sensor;
Comparing means for outputting a steady cooling operation transition signal when the temperature difference calculated by the temperature difference calculation means becomes a steady transition temperature difference that can be determined to be a state capable of transitioning to the steady cooling operation state;
An opening degree control means for switching the opening degree of the electronic expansion valve to a required opening degree in a steady cooling operation state in response to a steady cooling operation transition signal from the comparison means after starting the cooling operation;
Even if the set time has elapsed after the start of cooling operation, a start impossible signal is output when the temperature difference calculated by the temperature difference calculating means does not become a steady transition temperature difference that can be determined to be a transition to the steady cooling operation state. A non-startable discrimination means to
In response to the start disable signal from the start disable determination means, a high priority indoor unit is selected from the indoor units excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state. Supporting indoor unit selection means for outputting an activation support signal to the indoor unit and opening an electronic expansion valve of the corresponding indoor unit.
Here, the “indoor unit scheduled to start” refers to an indoor unit that is about to start the cooling operation. In addition, the “indoor unit excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state” is not limited to the indoor unit that has stopped operating, but the indoor unit that is operating in the ventilation mode, and In the case of an indoor unit that also performs heating, the indoor unit that is operating in the heating mode is also included (hereinafter, the same as the indoor unit that is in the cooling operation stop state).

定常移行温度差としては、温度センサの取付位置や応答性の良し悪しなどによってバラツキがあるが、定常冷房運転状態での温度差(例えば、10℃)をTとしたときに、その25〜50%(0.25〜0.5T)である。25%未満では、冷媒ガスの抜けが不十分になり、50%を越えると、定常冷房運転状態に移行する前に、冷媒液が冷媒ガス配管内に流れ込む、いわゆる液バックを生じやすくなるからである。   The steady-state transition temperature difference varies depending on the mounting position of the temperature sensor and whether the responsiveness is good or bad. When the temperature difference (for example, 10 ° C.) in the steady-state cooling operation state is T, the temperature difference is 25-50. % (0.25-0.5T). If it is less than 25%, the escape of the refrigerant gas becomes insufficient, and if it exceeds 50%, the refrigerant liquid tends to flow into the refrigerant gas pipe before the transition to the steady cooling operation state, so that a so-called liquid back is likely to occur. is there.

(作用・効果)
請求項1に係る発明の冷媒自然循環式冷房システムの構成によれば、冷房運転を起動し、設定時間経過しても温度差算出手段で算出された温度差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差にならなかったときに起動不能と判断し、起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニット、すなわち、冷房運転停止状態の室内ユニットのうちの優先順位の高い室内ユニットの電子膨張弁を開き、冷媒液配管内の冷媒ガスを冷媒ガス配管側に抜く冷媒液配管の径を実質的に拡大し、冷媒ガスが抜けやすいようにする。
(Action / Effect)
According to the configuration of the refrigerant natural circulation type cooling system of the invention according to claim 1, the cooling operation is started, and the temperature difference calculated by the temperature difference calculating means can be shifted to the steady cooling operation state even if the set time has elapsed. It is determined that it is impossible to start when the steady transition temperature difference that can be determined as the state is not reached, and the indoor unit excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state, that is, among the indoor units in the cooling operation stopped state The electronic expansion valve of the indoor unit having a high priority is opened, and the diameter of the refrigerant liquid pipe that draws the refrigerant gas in the refrigerant liquid pipe to the refrigerant gas pipe side is substantially enlarged so that the refrigerant gas can be easily released.

したがって、冷房運転を起動したときにのみ冷房運転停止状態の室内ユニットの電子膨張弁を開くから、中間期や冬期などのように、冷房運転の頻度が少ないにもかかわらず、頻繁に電子膨張弁を開閉する従来の場合に比べ、電子膨張弁の開閉を必要最小限にして冷房運転を起動できる。そのうえ、冷房運転停止状態の室内ユニットを利用して起動を促進するから、複数個の室内ユニットの一部を起動して冷房運転を行う場合に、電子膨張弁の開閉頻度を極力少なくして、経済性を低下せずに良好に起動できる。
しかも、冷媒が自然循環を開始し、定常冷房運転状態に移行可能であるかどうかを、利用側熱交換器から吹き出される温調空気の給気温度と還気温度との温度差に基づいて判断するから、安価な温度センサを用いることができ、この点でも経済性を向上できる。
Therefore, since the electronic expansion valve of the indoor unit in the cooling operation stop state is opened only when the cooling operation is started, the electronic expansion valve is frequently used even though the frequency of the cooling operation is low, such as in the intermediate period or winter period. Compared to the conventional case of opening / closing the cooling operation, the cooling operation can be started by opening and closing the electronic expansion valve to the minimum necessary. In addition, since the start-up is promoted by using the indoor unit in the cooling operation stop state, when the cooling operation is performed by starting a part of the plurality of indoor units, the opening / closing frequency of the electronic expansion valve is reduced as much as possible. It can start well without degrading economy.
In addition, based on the temperature difference between the supply air temperature and the return air temperature of the temperature-controlled air blown from the use side heat exchanger, whether or not the refrigerant starts natural circulation and can shift to the steady cooling operation state. Therefore, an inexpensive temperature sensor can be used, and the economy can be improved in this respect.

また、請求項2に係る発明は、前述のような目的を達成するために、
気体と液体とに相変化する冷媒を蒸発気化して冷熱を放熱する利用側熱交換器を備えた室内ユニットを複数個設け、前記利用側熱交換器と、冷媒を凝縮液化する凝縮器とを冷媒液配管と冷媒ガス配管とを介して接続し、前記凝縮器を前記利用側熱交換器よりも上方に配置し、前記凝縮器と前記利用側熱交換器との間に、自然循環により前記凝縮器で凝縮液化した冷媒液を前記利用側熱交換器に移送するとともに、前記利用側熱交換器で蒸発気化した冷媒ガスを前記凝縮器に移送するに足るヘッド差を備え、前記冷媒液配管に、前記利用側熱交換器に供給する冷媒液量を調整する電子膨張弁を設けた冷媒自然循環式冷房システムにおいて、
前記電子膨張弁の上流側で冷媒液配管内の入口側圧力を測定する入口側圧力センサと、
前記利用側熱交換器より下流側で冷媒ガス配管内の出口側圧力を測定する出口側圧力センサと、
前記入口側圧力センサで測定される入口側圧力と前記出口側圧力センサで測定される出口側圧力との差を算出する圧力差算出手段と、
前記圧力差算出手段で算出された圧力差が定常冷房運転状態に移行可能な状態と判断できる定常移行圧力差になったときに定常冷房運転移行信号を出力する比較手段と、
冷房運転の起動後に前記比較手段からの定常冷房運転移行信号に応答して前記電子膨張弁の開度を定常冷房運転状態で必要な開度に切り換える開度制御手段と、
冷房運転の起動後設定時間経過しても前記圧力差算出手段で算出された圧力差が定常冷房運転状態に移行可能な状態と判断できる定常移行圧力差にならなかったときに起動不能信号を出力する起動不能判別手段と、
前記起動不能判別手段からの起動不能信号に応答して、起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニットのうちの優先順位の高い室内ユニットを選出して選出された室内ユニットに起動支援信号を出力し該当する室内ユニットの電子膨張弁を開く支援室内ユニット選出手段とを備えて構成する。
In order to achieve the above-described object, the invention according to claim 2
A plurality of indoor units including use side heat exchangers that evaporate and evaporate a refrigerant that changes phase between gas and liquid and dissipate cold heat are provided, and the use side heat exchanger and a condenser that condenses and liquefies the refrigerant are provided. The refrigerant liquid pipe and the refrigerant gas pipe are connected to each other, the condenser is disposed above the use side heat exchanger, and the natural heat circulates between the condenser and the use side heat exchanger. The refrigerant liquid pipe is provided with a head difference sufficient to transfer the refrigerant liquid condensed and liquefied by the condenser to the use side heat exchanger and to transfer the refrigerant gas evaporated and evaporated by the use side heat exchanger to the condenser. In the refrigerant natural circulation type cooling system provided with an electronic expansion valve for adjusting the amount of refrigerant liquid supplied to the use side heat exchanger,
An inlet side pressure sensor for measuring an inlet side pressure in the refrigerant liquid pipe on the upstream side of the electronic expansion valve;
An outlet-side pressure sensor that measures an outlet-side pressure in the refrigerant gas pipe on the downstream side of the use-side heat exchanger;
Pressure difference calculating means for calculating a difference between an inlet side pressure measured by the inlet side pressure sensor and an outlet side pressure measured by the outlet side pressure sensor;
Comparison means for outputting a steady cooling operation transition signal when the pressure difference calculated by the pressure difference calculation means becomes a steady transition pressure difference that can be determined as a state capable of transitioning to the steady cooling operation state;
An opening degree control means for switching the opening degree of the electronic expansion valve to a required opening degree in a steady cooling operation state in response to a steady cooling operation transition signal from the comparison means after starting the cooling operation;
Even if a set time elapses after the start of cooling operation, an unsuccessful start signal is output when the pressure difference calculated by the pressure difference calculation means does not become a steady transition pressure difference that can be determined to be a transition to the steady cooling operation state. A non-startable discrimination means to
In response to the start disable signal from the start disable determination means, the indoor unit selected by selecting a high priority indoor unit among the indoor units excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state. Supporting indoor unit selection means for outputting an activation support signal to the unit and opening the electronic expansion valve of the corresponding indoor unit.

定常移行圧力差としては、圧力センサの取付位置や応答性の良し悪しなどによってバラツキがあるが、定常冷房運転状態での圧力差をPとしたときに、その25〜50%(0.25〜0.5P)である。25%未満では、冷媒ガスの抜けが不十分になり、50%を越えると、定常冷房運転状態に移行する前に、冷媒液が冷媒ガス配管内に流れ込む、いわゆる液バックを生じやすくなるからである。   The steady transition pressure difference varies depending on the mounting position of the pressure sensor and whether the responsiveness is good or bad. When the pressure difference in the steady cooling operation state is P, the difference is 25 to 50% (0.25 to 0.25%). 0.5P). If it is less than 25%, the escape of the refrigerant gas becomes insufficient, and if it exceeds 50%, the refrigerant liquid tends to flow into the refrigerant gas pipe before the transition to the steady cooling operation state, so that a so-called liquid back is likely to occur. is there.

(作用・効果)
請求項2に係る発明の冷媒自然循環式冷房システムの構成によれば、冷房運転を起動し、設定時間経過しても圧力差算出手段で算出された圧力差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差にならなかったときに起動不能と判断し、起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニット、すなわち、冷房運転停止状態の室内ユニットのうちの優先順位の高い室内ユニットの電子膨張弁を開き、冷媒液配管内の冷媒ガスを冷媒ガス配管側に抜く冷媒液配管の径を実質的に拡大し、冷媒ガスが抜けやすいようにする。
(Action / Effect)
According to the configuration of the refrigerant natural circulation type cooling system of the invention according to claim 2, the cooling operation is started, and the pressure difference calculated by the pressure difference calculating means can be shifted to the steady cooling operation state even if the set time has elapsed. It is determined that it is impossible to start when the steady transition temperature difference that can be determined as the state is not reached, and the indoor unit excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state, that is, among the indoor units in the cooling operation stopped state The electronic expansion valve of the indoor unit having a high priority is opened, and the diameter of the refrigerant liquid pipe that draws the refrigerant gas in the refrigerant liquid pipe to the refrigerant gas pipe side is substantially enlarged so that the refrigerant gas can be easily released.

したがって、冷房運転を起動したときにのみ冷房運転停止状態の室内ユニットの電子膨張弁を開くから、中間期や冬期などのように、冷房運転の頻度が少ないにもかかわらず、頻繁に電子膨張弁を開閉する従来の場合に比べ、電子膨張弁の開閉を必要最小限にして冷房運転を起動できる。そのうえ、冷房運転停止状態の室内ユニットを利用して起動を促進するから、複数個の室内ユニットの一部を起動して冷房運転を行う場合に、電子膨張弁の開閉頻度を極力少なくして、経済性を低下せずに良好に起動できる。   Therefore, since the electronic expansion valve of the indoor unit in the cooling operation stop state is opened only when the cooling operation is started, the electronic expansion valve is frequently used even though the frequency of the cooling operation is low, such as in the intermediate period or winter period. Compared to the conventional case of opening / closing the cooling operation, the cooling operation can be started by opening and closing the electronic expansion valve to the minimum necessary. In addition, since the start-up is promoted by using the indoor unit in the cooling operation stop state, when the cooling operation is performed by starting a part of the plurality of indoor units, the opening / closing frequency of the electronic expansion valve is reduced as much as possible. It can start well without degrading economy.

また、請求項3に係る発明は、前述のような目的を達成するために、
請求項1または2に記載の冷媒自然循環式冷房システムにおいて、
前記支援室内ユニット選出手段から該当する室内ユニットの全てに起動支援信号を出力して支援動作を完了した後にも前記起動不能判別手段からの起動不能信号を受けたときに異常信号を出力する異常判別手段を備えて構成する。
In order to achieve the above-described object, the invention according to claim 3
In the refrigerant natural circulation type cooling system according to claim 1 or 2,
An abnormality determination that outputs an abnormality signal when the activation disable signal is received from the activation disable determination means even after the activation support signal is output to all of the corresponding indoor units from the support indoor unit selection means and the support operation is completed. A means is provided.

(作用・効果)
請求項3に係る発明の冷媒自然循環式冷房システムの構成によれば、冷房運転停止状態の全ての室内ユニットの電子膨張弁を開いても起動できないときには異常と判断し、そのことを異常信号を出力して知らせることができる。
したがって、冷媒の洩れや電子膨張弁の作動不良といった冷媒循環系統の異常などを早期に見出すことができ、トラブル発生を未然に防止できる。
(Action / Effect)
According to the configuration of the refrigerant natural circulation type cooling system of the invention according to claim 3, it is determined that an abnormality cannot be started even if the electronic expansion valves of all indoor units in the cooling operation stop state are opened, and this is indicated by an abnormal signal. Can output and inform.
Therefore, abnormalities in the refrigerant circulation system such as refrigerant leakage and malfunction of the electronic expansion valve can be found at an early stage, and trouble can be prevented.

また、請求項4に係る発明は、前述のような目的を達成するために、
請求項1、2、3のいずれかに記載の冷媒自然循環式冷房システムにおいて、
上下方向に高さの異なる位置に室内ユニットを設け、
支援室内ユニット選出手段を、低位置にある室内ユニットほど優先順位が高くなるように設定して構成する。
In order to achieve the above-described object, the invention according to claim 4
In the refrigerant natural circulation type cooling system according to any one of claims 1, 2, and 3,
Install indoor units at different heights in the vertical direction,
The support indoor unit selection means is configured to be set so that the lower the indoor unit in the lower position, the higher the priority.

(作用・効果)
請求項4に係る発明の冷媒自然循環式冷房システムの構成によれば、冷房運転停止状態にある室内ユニットのうち、低位置にある室内ユニット、すなわち、凝縮器からの冷媒液配管の長さが長い室内ユニットの電子膨張弁を優先的に開く。
したがって、冷媒液配管の長さが長くて溜まる冷媒ガス量が多い部分の冷媒液配管から冷媒ガスを抜くことができるから、冷媒ガスの抜けが早くなり、起動不良を有効に解消できる。
(Action / Effect)
According to the configuration of the refrigerant natural circulation type cooling system of the invention according to claim 4, among the indoor units in the cooling operation stop state, the indoor unit in the low position, that is, the length of the refrigerant liquid pipe from the condenser is Preferentially open electronic expansion valves for long indoor units.
Accordingly, since the refrigerant gas can be extracted from the refrigerant liquid piping of the portion where the refrigerant liquid piping is long and the amount of the refrigerant gas accumulated is large, the refrigerant gas can be quickly discharged and the starting failure can be effectively eliminated.

また、請求項5に係る発明は、前述のような目的を達成するために、
請求項1、2、3、4のいずれかに記載の冷媒自然循環式冷房システムにおいて、
鉛直方向の冷媒液配管に水平方向に距離が異なる状態で室内ユニットを設け、
支援室内ユニット選出手段を、前記鉛直方向の冷媒液配管から遠い位置にある室内ユニットほど優先順位が高くなるように設定して構成する。
Further, in order to achieve the above-described object, the invention according to claim 5
In the refrigerant natural circulation cooling system according to any one of claims 1, 2, 3, and 4,
An indoor unit is installed in a state where the distance is different in the horizontal direction in the refrigerant liquid pipe in the vertical direction,
The support indoor unit selection means is configured to be set so that the priority is higher in the indoor unit located farther from the vertical refrigerant liquid pipe.

(作用・効果)
請求項5に係る発明の冷媒自然循環式冷房システムの構成によれば、冷房運転停止状態にある室内ユニットのうち、鉛直方向の冷媒液配管から遠い位置にある室内ユニット、すなわち、鉛直方向の冷媒液配管からの冷媒液配管の長さが長い室内ユニットの電子膨張弁を優先的に開く。
したがって、冷媒液配管の長さが長くて溜まる冷媒ガス量が多い部分の冷媒液配管から冷媒ガスを抜くことができるから、冷媒ガスの抜けが早くなり、起動不良を有効に解消できる。
(Action / Effect)
According to the configuration of the refrigerant natural circulation type cooling system of the invention according to claim 5, among the indoor units in the cooling operation stop state, the indoor unit located far from the vertical refrigerant liquid pipe, that is, the vertical refrigerant. The electronic expansion valve of the indoor unit with a long refrigerant liquid pipe from the liquid pipe is preferentially opened.
Accordingly, since the refrigerant gas can be extracted from the refrigerant liquid piping of the portion where the refrigerant liquid piping is long and the amount of the refrigerant gas accumulated is large, the refrigerant gas can be quickly discharged and the starting failure can be effectively eliminated.

請求項1に係る発明の冷媒自然循環式冷房システムの構成によれば、冷房運転を起動し、設定時間経過しても温度差算出手段で算出された温度差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差にならなかったときに起動不能と判断し、起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニット、すなわち、冷房運転停止状態の室内ユニットのうちの優先順位の高い室内ユニットの電子膨張弁を開き、冷媒液配管内の冷媒ガスを冷媒ガス配管側に抜く冷媒液配管の径を実質的に拡大し、冷媒ガスが抜けやすいようにする。   According to the configuration of the refrigerant natural circulation type cooling system of the invention according to claim 1, the cooling operation is started, and the temperature difference calculated by the temperature difference calculating means can be shifted to the steady cooling operation state even if the set time has elapsed. It is determined that it is impossible to start when the steady transition temperature difference that can be determined as the state is not reached, and the indoor unit excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state, that is, among the indoor units in the cooling operation stopped state The electronic expansion valve of the indoor unit having a high priority is opened, and the diameter of the refrigerant liquid pipe that draws the refrigerant gas in the refrigerant liquid pipe to the refrigerant gas pipe side is substantially enlarged so that the refrigerant gas can be easily released.

したがって、冷房運転を起動したときにのみ冷房運転停止状態の室内ユニットの電子膨張弁を開くから、中間期や冬期などのように、冷房運転の頻度が少ないにもかかわらず、頻繁に電子膨張弁を開閉する従来の場合に比べ、電子膨張弁の開閉を必要最小限にして冷房運転を起動できる。そのうえ、冷房運転停止状態の室内ユニットを利用して起動を促進するから、複数個の室内ユニットの一部を起動して冷房運転を行う場合に、電子膨張弁の開閉頻度を極力少なくして、経済性を低下せずに良好に起動できる。
しかも、冷媒が自然循環を開始し、定常冷房運転状態に移行可能であるかどうかを、利用側熱交換器から吹き出される温調空気の給気温度と還気温度との温度差に基づいて判断するから、安価な温度センサを用いることができ、この点でも経済性を向上できる。
Therefore, since the electronic expansion valve of the indoor unit in the cooling operation stop state is opened only when the cooling operation is started, the electronic expansion valve is frequently used even though the frequency of the cooling operation is low, such as in the intermediate period or winter period. Compared to the conventional case of opening / closing the cooling operation, the cooling operation can be started by opening and closing the electronic expansion valve to the minimum necessary. In addition, since the start-up is promoted by using the indoor unit in the cooling operation stop state, when the cooling operation is performed by starting a part of the plurality of indoor units, the opening / closing frequency of the electronic expansion valve is reduced as much as possible. It can start well without degrading economy.
In addition, based on the temperature difference between the supply air temperature and the return air temperature of the temperature-controlled air blown from the use side heat exchanger, whether or not the refrigerant starts natural circulation and can shift to the steady cooling operation state. Therefore, an inexpensive temperature sensor can be used, and the economy can be improved in this respect.

次に、この発明の実施例について図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1に係る冷媒自然循環式冷房システムを示す全体構成図であり、建物の各階それぞれに、冷房能力の異なる複数個の室内ユニット1が設置されている。
室内ユニット1は、気体と液体とに相変化する冷媒を蒸発気化して冷熱を放熱する利用側熱交換器2と、室内からの空気を吸い込んで利用側熱交換器2を通過させて吹き出す送風ファン3とを備えて構成されている。
FIG. 1 is an overall configuration diagram showing a refrigerant natural circulation cooling system according to a first embodiment of the present invention, and a plurality of indoor units 1 having different cooling capabilities are installed on each floor of a building.
The indoor unit 1 evaporates and evaporates a refrigerant that changes phase between gas and liquid to dissipate cold heat, and blows air that sucks in air from the room and passes through the use side heat exchanger 2 to blow it out. The fan 3 is provided.

最上階の室内ユニット1よりも上方の位置に冷媒を凝縮液化する凝縮器4が設けられ、その凝縮器4と利用側熱交換器2とが冷媒液配管5と冷媒ガス配管6とを介して接続されている。
凝縮器4と利用側熱交換器2との間に、凝縮器4で凝縮液化した冷媒液を、自然循環により利用側熱交換器2に移送するとともに、利用側熱交換器2で蒸発気化した冷媒ガスを凝縮器4に移送するに足るヘッド差が備えられている。
A condenser 4 for condensing and liquefying the refrigerant is provided at a position above the indoor unit 1 on the top floor, and the condenser 4 and the use side heat exchanger 2 are connected via a refrigerant liquid pipe 5 and a refrigerant gas pipe 6. It is connected.
The refrigerant liquid condensed and liquefied by the condenser 4 is transferred to the utilization side heat exchanger 2 by natural circulation between the condenser 4 and the utilization side heat exchanger 2 and evaporated by the utilization side heat exchanger 2. A head difference sufficient to transfer the refrigerant gas to the condenser 4 is provided.

冷媒液配管5の、利用側熱交換器2それぞれに近い箇所に、利用側熱交換器2に供給する冷媒液量を調整する電子膨張弁7が設けられている。
電子膨張弁7として、定常冷房運転状態で必要な最大開度〔室内ユニット1の空調(冷房)能力に応じて特定される〕の1.5倍以上の開き可能開度を有するものが選定されている。
An electronic expansion valve 7 that adjusts the amount of refrigerant liquid supplied to the usage-side heat exchanger 2 is provided at a location near the usage-side heat exchanger 2 in the refrigerant liquid piping 5.
The electronic expansion valve 7 is selected to have an opening that can be opened more than 1.5 times the maximum opening required in the steady cooling operation state (specified according to the air conditioning (cooling) capacity of the indoor unit 1). ing.

室内ユニット1において、図2の拡大図に示すように、利用側熱交換器2の温調空気の下流側に、利用側熱交換器2から吹き出される温調空気の給気温度を測定する給気温度センサ8が設けられ、送風ファン3の温調空気の上流側に、利用側熱交換器2に戻される温調空気の還気温度を測定する還気温度センサ9が設けられている。   In the indoor unit 1, as shown in the enlarged view of FIG. 2, the supply temperature of the temperature-controlled air blown from the use-side heat exchanger 2 is measured downstream of the temperature-controlled air of the use-side heat exchanger 2. A supply air temperature sensor 8 is provided, and a return air temperature sensor 9 for measuring the return air temperature of the temperature adjustment air returned to the use side heat exchanger 2 is provided upstream of the temperature adjustment air of the blower fan 3. .

また、冷媒液配管5の利用側熱交換器2への入口に近い箇所に冷媒温度を測定する第1の冷媒温度センサ10が設けられ、一方、冷媒ガス配管6の利用側熱交換器2からの出口に近い箇所に冷媒温度を測定する第2の冷媒温度センサ11が設けられている。   In addition, a first refrigerant temperature sensor 10 that measures the refrigerant temperature is provided at a location near the entrance to the use side heat exchanger 2 of the refrigerant liquid pipe 5, while from the use side heat exchanger 2 of the refrigerant gas pipe 6. The 2nd refrigerant | coolant temperature sensor 11 which measures a refrigerant | coolant temperature in the location near the exit of this is provided.

各室内ユニット1にコントローラ12が備えられ、一方、集中管理室などにメインコントローラ13が備えられている。各コントローラ12がメインコントローラ13に接続され、給気温度センサ8、還気温度センサ9、第1および第2の冷媒温度センサ10,11がコントローラ12に接続されるとともに、コントローラ12に電子膨張弁7、および、各室内ユニット1に対する運転スイッチ14、ならびに、運転スイッチ13からの冷房運転起動信号に応答して計時を開示し設定時間経過後に時間信号を出力してからリセットされるタイマ15が接続されている。   Each indoor unit 1 is provided with a controller 12, while a central controller 13 is provided with a main controller 13. Each controller 12 is connected to the main controller 13, the supply air temperature sensor 8, the return air temperature sensor 9, the first and second refrigerant temperature sensors 10, 11 are connected to the controller 12, and an electronic expansion valve is connected to the controller 12. 7, and an operation switch 14 for each indoor unit 1 and a timer 15 that is reset in response to a cooling operation start signal from the operation switch 13 and that outputs a time signal after a set time has elapsed. Has been.

コントローラ12には、図3の制御系のブロック図に示すように、温度差算出手段16と、比較手段17と、開度制御手段18と、起動不能判別手段19とが備えられている。また、メインコントローラ13には、支援室内ユニット選出手段20と、優先順位設定テーブル21と、異常判別手段22とが備えられ、メインコントローラ13に警報ランプ23が接続されている。   As shown in the block diagram of the control system of FIG. 3, the controller 12 is provided with a temperature difference calculating means 16, a comparing means 17, an opening degree controlling means 18, and a start impossible determining means 19. The main controller 13 includes a support indoor unit selection unit 20, a priority order setting table 21, and an abnormality determination unit 22, and an alarm lamp 23 is connected to the main controller 13.

温度差算出手段16では、還気温度センサ9で測定される還気温度と給気温度センサ8で測定される給気温度との差を算出するようになっている。
比較手段17では、温度差算出手段16で算出された温度差と設定値(0.3T)とを比較し、算出温度差が設定値以上で無いときには未起動信号を、そして、算出温度差が設定値以上になったときに定常冷房運転移行信号をそれぞれ出力するようになっている。
The temperature difference calculating means 16 calculates the difference between the return air temperature measured by the return air temperature sensor 9 and the supply air temperature measured by the supply air temperature sensor 8.
The comparison means 17 compares the temperature difference calculated by the temperature difference calculation means 16 with the set value (0.3T). When the calculated temperature difference is not equal to or greater than the set value, an unstart signal is output, and the calculated temperature difference is A steady cooling operation transition signal is output when the set value is exceeded.

ここで、設定値(0.3T)としては、定常冷房運転状態に移行可能な状態と判断できる定常移行温度差を設定する。詳述すれば、定常冷房運転状態での温度差T(通常、10℃程度である)に対して30%の値(0.3T)が設定される。この設定値としては、25〜50%の値を設定すれば良い。なぜならば、運転後に温度差が生じるというのは、冷媒ガスが抜けて冷媒液が利用側熱交換器2に流動供給され始めたことを示す結果であり、これに伴って、自然循環が円滑に行われる状態に移行すると判断できるからである。   Here, as the set value (0.3T), a steady transition temperature difference that can be determined as a state in which the transition to the steady cooling operation state can be made is set. More specifically, a value of 30% (0.3 T) is set for the temperature difference T (usually about 10 ° C.) in the steady cooling operation state. As this setting value, a value of 25 to 50% may be set. This is because the temperature difference after the operation is a result indicating that the refrigerant gas has escaped and the refrigerant liquid has started to flow and be supplied to the use-side heat exchanger 2. This is because it can be determined that the state is to be performed.

開度制御手段18では、運転スイッチ14からの冷房運転起動信号に応答して電子膨張弁7の開度を開き可能開度まで開き、かつ、温度差算出手段14からの定常冷房運転移行信号に応答して電子膨張弁7の開度を定常冷房運転状態で必要な開度に切り換えるようになっている。   In the opening degree control means 18, the opening degree of the electronic expansion valve 7 is opened to a possible opening degree in response to the cooling operation start signal from the operation switch 14, and the steady cooling operation transition signal from the temperature difference calculation means 14 is set. In response, the opening degree of the electronic expansion valve 7 is switched to a necessary opening degree in the steady cooling operation state.

起動不能判別手段19では、タイマ15からの時間信号を受けたときに温度差算出手段16から未起動信号を受けているとき、すなわち、冷房運転の起動後設定時間経過しても温度差算出手段16で算出された温度差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差にならなかったときに起動不能信号を出力するようになっている。   In the start impossible determination means 19, when the time signal from the timer 15 is received, the temperature difference calculation means when the non-start signal is received from the temperature difference calculation means 16, that is, even if the set time elapses after starting the cooling operation. When the temperature difference calculated in 16 does not become a steady transition temperature difference that can be determined to be a state in which the transition to the steady cooling operation state can be made, an unstartable signal is output.

支援室内ユニット選出手段20では、起動不能判別手段19からの起動不能信号に応答して、優先順位設定テーブル21から、運転スイッチ14からの冷房運転起動信号に基づいて起動予定の室内ユニット1と冷房運転状態の室内ユニット1とを除いた室内ユニット1のうちの優先順位の高い室内ユニット1を選出し、その選出された室内ユニット1に起動支援信号を出力し、該当する室内ユニット1の電子膨張弁7を開き可能開度まで開くようになっている。   In the support indoor unit selection means 20, in response to the start disable signal from the start disable determination means 19, the indoor unit 1 scheduled to start up and the cooling based on the cooling operation start signal from the operation switch 14 from the priority order setting table 21. Among the indoor units 1 excluding the indoor unit 1 in the operating state, the indoor unit 1 having a higher priority is selected, a start support signal is output to the selected indoor unit 1, and the electronic expansion of the corresponding indoor unit 1 is performed. The valve 7 is opened to a possible opening.

優先順位設定テーブル21では、上下方向に高さの異なる位置の室内ユニット1に対して、低位置にある室内ユニット1ほど優先順位が高くなるように予め設定され、かつ、鉛直方向の冷媒液配管5に水平方向に距離が異なる状態の室内ユニット1に対して、鉛直方向の冷媒液配管5から遠い位置にある室内ユニット1ほど優先順位が高くなるように予め設定されている。これにより、支援室内ユニット選出手段20により、起動予定の室内ユニット1と冷房運転状態の室内ユニット1とを除いた室内ユニット1のうち、低位置でかつ鉛直方向の冷媒液配管5から遠い室内ユニット1を順に選出していくようになっている。上下方向に高さの異なる位置の室内ユニット1と、鉛直方向の冷媒液配管5から遠い位置にある室内ユニット1がそれぞれ複数個ある場合には、低位置に有る室内ユニット1を優先する。   In the priority order setting table 21, the indoor unit 1 at a position where the height is different in the vertical direction is set in advance so that the priority is higher in the indoor unit 1 at the lower position, and the refrigerant liquid piping in the vertical direction is set. For the indoor unit 1 in a state where the distance is different in the horizontal direction, the indoor unit 1 located farther from the refrigerant liquid pipe 5 in the vertical direction is set in advance so that the priority is higher. As a result, the indoor unit 1 that is at a low position and far from the refrigerant liquid pipe 5 in the vertical direction among the indoor units 1 excluding the indoor unit 1 scheduled to be activated and the indoor unit 1 in the cooling operation state is selected by the support indoor unit selection means 20. 1 is selected in order. When there are a plurality of indoor units 1 at different positions in the vertical direction and a plurality of indoor units 1 at positions far from the refrigerant liquid pipe 5 in the vertical direction, the indoor unit 1 at the lower position is given priority.

異常判別手段22では、支援室内ユニット選出手段20から該当する室内ユニット1の全てに起動支援信号を出力して支援動作を完了した後にも起動不能判別手段19からの起動不能信号を受けたときに異常信号を警報ランプ23に出力し、警報ランプ23を点滅して異常を報知するようになっている。   The abnormality determination unit 22 receives a start disable signal from the start disable determination unit 19 after outputting a start support signal to all the corresponding indoor units 1 from the support indoor unit selection unit 20 and completing the support operation. An abnormality signal is output to the alarm lamp 23, and the alarm lamp 23 blinks to notify the abnormality.

次に、上述制御動作につき、図4のフローチャートを用いて説明する。
先ず、運転スイッチ14がONされて運転信号が出力されているかどうかを判断する(S1)。
運転信号が出力されていれば、ステップS2に移行して、送風ファン3を駆動するなどの運転制御を行う。運転信号が出力されていなければ、ステップS1に戻る。
Next, the control operation will be described with reference to the flowchart of FIG.
First, it is determined whether the operation switch 14 is turned on and an operation signal is output (S1).
If the operation signal is output, it will transfer to step S2 and operation control, such as driving the ventilation fan 3, will be performed. If no operation signal is output, the process returns to step S1.

次いで、運転モードが冷房モードかどうかを判断する(S3)。
冷房モードで無ければ、暖房モードや換気モードなどの他の運転モードに移行する。冷房モードであれば、電子膨張弁7の開度を開き可能開度まで開いてからステップS4に移行し、温度差ΔTが設定温度差以上かどうか、すなわち、起動しているかどうかを判断する。
Next, it is determined whether or not the operation mode is a cooling mode (S3).
If it is not in the cooling mode, it shifts to another operation mode such as a heating mode or a ventilation mode. If it is in the cooling mode, the opening of the electronic expansion valve 7 is opened to a possible opening, and then the process proceeds to step S4, where it is determined whether the temperature difference ΔT is equal to or greater than the set temperature difference, that is, whether it is activated.

ステップS4において、温度差ΔTが設定温度差以上で無い、すなわち、起動していないと判断したときには、ステップS5に移行して設定時間が経過しているかどうかを判断し、設定時間以内に温度差ΔTが設定温度差以上になったとき、すなわち、起動したと判断したときには、ステップS6に移行して定常制御を行い、電子膨張弁7の開度を定常冷房運転状態で必要な開度に切り換える。   If it is determined in step S4 that the temperature difference ΔT is not greater than or equal to the set temperature difference, that is, it has not been started, the process proceeds to step S5 to determine whether the set time has elapsed, and within the set time, the temperature difference When ΔT is equal to or greater than the set temperature difference, that is, when it is determined that it has been started, the routine proceeds to step S6, where steady control is performed, and the opening of the electronic expansion valve 7 is switched to the required opening in the steady cooling operation state. .

ステップS5において、設定時間が経過したと判断したとき、すなわち、起動不能と判断したときには起動不能信号を出力し、ステップS7に移行して起動制御を行う。すなわち、起動支援室内ユニット選出手段20により、起動予定の室内ユニット1と冷房運転状態の室内ユニット1とを除いた室内ユニット1のうちの優先順位の高い室内ユニット1を選出し、その選出された室内ユニット1に起動支援信号を出力し、該当する室内ユニット1の電子膨張弁7を開き可能開度まで開く。その後、温度差ΔTが設定温度差以上かどうか、すなわち、起動しているかどうかを判断し(S8)、設定時間以内に温度差ΔTが設定温度差以上になったとき(S9)、すなわち、起動したと判断したときには、ステップS6に移行して定常制御を行い、電子膨張弁7の開度を定常冷房運転状態で必要な開度に切り換える。   When it is determined in step S5 that the set time has elapsed, that is, when it is determined that the activation is impossible, an activation impossible signal is output, and the process proceeds to step S7 to perform activation control. That is, the activation support indoor unit selection means 20 selects the indoor unit 1 having a higher priority among the indoor units 1 excluding the indoor unit 1 scheduled to be activated and the indoor unit 1 in the cooling operation state, and is selected. An activation support signal is output to the indoor unit 1 and the electronic expansion valve 7 of the corresponding indoor unit 1 is opened to the openable opening. Thereafter, it is determined whether or not the temperature difference ΔT is equal to or greater than the set temperature difference, that is, whether the temperature difference ΔT is activated (S8). When the temperature difference ΔT is equal to or greater than the set temperature difference within the set time (S9), that is, activated When it is determined that the operation has been performed, the routine proceeds to step S6, where steady control is performed, and the opening of the electronic expansion valve 7 is switched to a required opening in the steady cooling operation state.

ステップS9において、設定時間が経過したと判断したとき、すなわち、起動不能と判断したときには起動不能信号を出力し、ステップS10に移行して、起動支援室内ユニット選出手段20によって全ての室内ユニット1を選出したかどうかを判断し、全てで無ければ、起動制御(S7)に移行し、次に優先順位の高い室内ユニット1を選出し、その選出された室内ユニット1に起動支援信号を出力し、該当する室内ユニット1の電子膨張弁7を開き可能開度まで開く。   In step S9, when it is determined that the set time has elapsed, that is, when it is determined that the activation is impossible, an activation impossible signal is output, and the process proceeds to step S10 where all the indoor units 1 are detected by the activation support indoor unit selecting means 20. It is determined whether or not it has been selected. If not all, the process proceeds to start control (S7), the indoor unit 1 having the next highest priority is selected, and a start support signal is output to the selected indoor unit 1. The electronic expansion valve 7 of the corresponding indoor unit 1 is opened to the openable opening.

異常判別手段22によって、全ての室内ユニット1を選出して起動制御を行っても起動不能であると判断したときには、ステップS11に移行して警報ランプ23を点滅し、冷媒の洩れなど、冷媒の自然循環系に異常があることを報知する。   If it is determined by the abnormality determination means 22 that all the indoor units 1 are selected and the activation control is performed, it is determined that the activation is impossible, the process proceeds to step S11, the alarm lamp 23 blinks, and the refrigerant leakage such as the refrigerant leakage occurs. Notify that there is an abnormality in the natural circulation system.

以上の構成により、冷房運転の起動後設定時間が経過しても起動できないときに、冷房運転停止状態の室内ユニット1を利用して冷媒ガスを冷媒液配管5内から早期に抜き、起動を行って冷房運転に移行できるようになっている。また、全ての室内ユニット1を選出して起動制御を行っても起動不能である場合には、異常を報知して補修などを促すようになっている。   With the above configuration, when the cooling operation cannot be started even after the set time has elapsed, the refrigerant gas is quickly extracted from the refrigerant liquid pipe 5 by using the indoor unit 1 in the cooling operation stop state. It is possible to shift to cooling operation. Further, if it is impossible to start even if all the indoor units 1 are selected and the start control is performed, an abnormality is notified and repair or the like is prompted.

また、図示しないが、コントローラ12では、第1および第2の冷媒温度センサ10,11で測定される冷媒温度に基づいて、定常冷房運転状態での電子膨張弁7の開度を制御するようになっている。
すなわち、第2の冷媒温度センサ11で測定される冷媒温度と第1の冷媒温度センサ10で測定される冷媒温度との冷媒温度差を算出し、その冷媒温度差が第1の設定値(例えば、4)以下のときには、電子膨張弁7の開度を設定量閉じ、冷媒温度差が第2の設定値(例えば、10)以上のときには、電子膨張弁7の開度を設定量開き、そして、冷媒温度差が第1の設定値と第2の設定値と間であるときには、電子膨張弁7の開度をそのままの状態に維持し、常に設定温度の温調空気を吹き出すことができるように冷房運転を行うようになっている。
Although not shown, the controller 12 controls the opening of the electronic expansion valve 7 in the steady cooling operation state based on the refrigerant temperatures measured by the first and second refrigerant temperature sensors 10 and 11. It has become.
In other words, the refrigerant temperature difference between the refrigerant temperature measured by the second refrigerant temperature sensor 11 and the refrigerant temperature measured by the first refrigerant temperature sensor 10 is calculated, and the refrigerant temperature difference is a first set value (for example, 4) When the following is true, the opening degree of the electronic expansion valve 7 is closed by a set amount, and when the refrigerant temperature difference is a second set value (for example, 10) or more, the opening degree of the electronic expansion valve 7 is opened by a set amount, and When the refrigerant temperature difference is between the first set value and the second set value, the opening degree of the electronic expansion valve 7 is maintained as it is, and the temperature-controlled air at the set temperature can be always blown out. It is designed to perform cooling operation.

電子膨張弁7としては、開度―冷媒流量の特性がリニアに近いものを使用する。これにより、定常冷房運転状態で必要な最大開度が3倍以上といった十分余裕を有するものを選定した場合に、冷媒液配管5内の冷媒ガスを迅速に抜くことができ、本発明の制御をより効果的に行うことができる。   As the electronic expansion valve 7, a valve whose opening-refrigerant flow rate characteristics are close to linear is used. As a result, the refrigerant gas in the refrigerant liquid pipe 5 can be quickly extracted when the one having a sufficient margin such that the required maximum opening is three times or more in the steady cooling operation state can be quickly extracted. It can be done more effectively.

また、室内ユニット1の搬入後の起動テスト時などにおいて、例えば、電子膨張弁7の開度を2倍にし、前述温度差算出手段14で設定温度差以上になるまでの時間を測定し、その時間が長ければ、開度を4倍に調整し、それでも長ければ、開度を8倍に調整するといったようにして、極力時間が短くなるように、開き可能開度を設定できる。
これにより、定常冷房運転状態で冷媒液を制御する上での電子膨張弁の必要な最大開度にかかわらず、起動時には、選定した電子膨張弁自体の最大開度を開き可能開度として、冷媒ガスを抵抗少なく流動させ、一層迅速にガス抜きを行うことができる。
Further, at the time of a start-up test after the indoor unit 1 is carried in, for example, the opening degree of the electronic expansion valve 7 is doubled, and the time until the temperature difference calculating means 14 exceeds the set temperature difference is measured. If the time is long, the opening degree is adjusted to 4 times, and if the time is still long, the opening degree is adjusted to 8 times, so that the openable opening degree can be set so as to shorten the time as much as possible.
As a result, regardless of the maximum opening required for the electronic expansion valve for controlling the refrigerant liquid in the steady cooling operation state, at the time of start-up, the maximum opening of the selected electronic expansion valve itself is set as an openable opening. Gas can be flowed with less resistance, and degassing can be performed more rapidly.

また、例えば、ホテルなどのように、多量の冷媒が配管内を流動することに起因して、シュルシュルといった大きい流動音が発生することを抑制する必要がある場合には、選定した電子膨張弁自体の最大開度が大きくても、開き可能開度を定常冷房運転状態で必要な最大開度の1.5倍に近い開度に設定し、流動音の大きさを考慮しながら、極力時間が短くなるように、開き可能開度を設定してガス抜きを迅速に行うことができる。
したがって、空調場所に応じて好適に起動でき、しかも、それ自体の最大開度が同じ電子膨張弁でもって様々な空調場所に使用できるから、設計上での自由度が高くなり、設計を容易に行えるという効果を発揮させることができる。
In addition, when it is necessary to suppress the generation of a large flow noise such as surreal due to a large amount of refrigerant flowing in the piping, such as in a hotel, the selected electronic expansion valve itself Even if the maximum opening is large, the openable opening is set to an opening that is close to 1.5 times the maximum opening required in the steady cooling operation state, and the time as much as possible is taken into account while taking into account the loudness of the flow noise. Degassing can be quickly performed by setting the opening degree that can be opened so that the opening is shortened.
Therefore, it can be started appropriately according to the air-conditioning place, and it can be used in various air-conditioning places with the same electronic opening valve with the same maximum opening, so the degree of freedom in design becomes high and the design is easy The effect that it can be done can be exhibited.

図5は、本発明の実施例2に係る冷媒自然循環式冷房システムの室内ユニットの拡大図であり、実施例1と異なるところは、次の通りである。
すなわち、実施例1における給気温度センサ8と還気温度センサ9とに代えて、電子膨張弁7の上流側に冷媒液配管5内の入口側圧力を測定する入口側圧力センサ31が設けられ、また、利用側熱交換器2より下流側に冷媒ガス配管6内の出口側圧力を測定する出口側圧力センサ32が設けられ、入口側圧力センサ31および出口側圧力センサ32がコントローラ12に接続されている。
FIG. 5 is an enlarged view of the indoor unit of the refrigerant natural circulation cooling system according to the second embodiment of the present invention. The differences from the first embodiment are as follows.
That is, instead of the supply air temperature sensor 8 and the return air temperature sensor 9 in the first embodiment, an inlet side pressure sensor 31 for measuring the inlet side pressure in the refrigerant liquid pipe 5 is provided upstream of the electronic expansion valve 7. Further, an outlet side pressure sensor 32 for measuring the outlet side pressure in the refrigerant gas pipe 6 is provided downstream from the use side heat exchanger 2, and the inlet side pressure sensor 31 and the outlet side pressure sensor 32 are connected to the controller 12. Has been.

また、図6の制御系のブロック図に示すように、温度差算出手段16に代えて圧力差産出手段33が設けられ、入口側圧力センサ31で測定される入口側圧力と出口側圧力センサ32で測定される出口側圧力との差を算出するようになっている。
比較手段17では、圧力差算出手段33で算出された圧力差と設定値(0.3P)とを比較し、算出圧力差が設定値以上で無いときには未起動信号を、そして、算出圧力差が設定値以上になったときに定常冷房運転移行信号を出力するようになっている。
比較手段17では、温度差算出手段16で算出された温度差定常冷房運転移行信号をそれぞれ出力するようになっている。
Further, as shown in the block diagram of the control system of FIG. 6, pressure difference producing means 33 is provided instead of the temperature difference calculating means 16, and the inlet side pressure measured by the inlet side pressure sensor 31 and the outlet side pressure sensor 32. The difference from the outlet side pressure measured at is calculated.
The comparison means 17 compares the pressure difference calculated by the pressure difference calculation means 33 with the set value (0.3P). When the calculated pressure difference is not greater than or equal to the set value, an unstart signal is output, and the calculated pressure difference is When the set value is exceeded, a steady cooling operation transition signal is output.
The comparison means 17 outputs the temperature difference steady cooling operation transition signal calculated by the temperature difference calculation means 16.

ここで、設定値(0.3P)としては、定常冷房運転状態に移行可能な状態と判断できる定常移行圧力差を設定する。詳述すれば、定常冷房運転状態での圧力差Pに対して30%の値(0.3P)が設定される。この設定値としては、25〜50%の値を設定すれば良い。なぜならば、運転後に圧力差が生じるというのは、冷媒ガスが抜けて冷媒液が利用側熱交換器2に流動供給され始めたことを示す結果であり、これに伴って、自然循環が円滑に行われる状態に移行すると判断できるからである。   Here, as the set value (0.3P), a steady transition pressure difference that can be determined to be a state capable of transitioning to the steady cooling operation state is set. More specifically, a value of 30% (0.3P) is set for the pressure difference P in the steady cooling operation state. As this setting value, a value of 25 to 50% may be set. This is because the pressure difference after the operation is a result indicating that the refrigerant gas has escaped and the refrigerant liquid has started to flow and be supplied to the use-side heat exchanger 2, and accordingly, natural circulation is smoothly performed. This is because it can be determined that the state is to be performed.

開度制御手段18では、冷房運転の起動後に比較手段17からの定常冷房運転移行信号に応答して電子膨張弁7の開度を定常冷房運転状態で必要な開度に切り換えるようになっている。
起動不能判別手段19では、冷房運転の起動後設定時間経過しても圧力差算出手段33で算出された圧力差が定常冷房運転状態に移行可能な状態と判断できる定常移行圧力差にならなかったときに起動不能信号を出力するようになっている。
The opening degree control means 18 switches the opening degree of the electronic expansion valve 7 to a necessary opening degree in the steady cooling operation state in response to the steady cooling operation transition signal from the comparison means 17 after the start of the cooling operation. .
In the inoperability determining means 19, the pressure difference calculated by the pressure difference calculating means 33 does not become a steady transition pressure difference that can be determined to be a state capable of shifting to the steady cooling operation state even after a set time has elapsed after the start of the cooling operation. Sometimes it can not start.

また、図7のフローチャートに示すように、起動が不能かどうかの判別を行うためのステップS4およびステップS8それぞれに代えて、圧力差ΔPが設定圧力差以上かどうかの判断を行うようになっている。すなわち、圧力差ΔPが設定圧力差以上で無い、すなわち、起動不能と判断したときには起動不能信号を出力して起動制御に移行し、一方、圧力差ΔTが設定圧力差以上になったとき、すなわち、起動したと判断したときには、定常制御に移行するようになっている。他の構成は実施例1と同じであり、同一図番を付すことにより、その説明は省略する。   Further, as shown in the flowchart of FIG. 7, instead of each of steps S4 and S8 for determining whether or not activation is possible, it is determined whether or not the pressure difference ΔP is greater than or equal to the set pressure difference. Yes. That is, when the pressure difference ΔP is not equal to or greater than the set pressure difference, that is, when it is determined that the start is impossible, the start disable signal is output and the control shifts to start control. When it is determined that it has been activated, the routine proceeds to steady control. Other configurations are the same as those of the first embodiment, and the description thereof is omitted by assigning the same reference numerals.

本発明は、上述のように建物の複数階それぞれに多数の室内ユニット1を設ける場合に限らず、例えば、ひとつの階に複数個の室内ユニット1を設ける場合や、ひとつの室内ユニット1を設ける場合にも適用できる。   The present invention is not limited to the case where a large number of indoor units 1 are provided on each of a plurality of floors of a building as described above. For example, when a plurality of indoor units 1 are provided on one floor, or a single indoor unit 1 is provided. It can also be applied to cases.

本発明の実施例1に係る冷媒自然循環式冷房システムを示す全体構成図である。It is a whole lineblock diagram showing the refrigerant natural circulation type cooling system concerning Example 1 of the present invention. 室内ユニットの拡大図である。It is an enlarged view of an indoor unit. 制御系を示すブロック図である。It is a block diagram which shows a control system. 起動制御動作を示すフローチャートである。It is a flowchart which shows starting control operation | movement. 本発明の実施例2に係る冷媒自然循環式冷房システムの室内ユニットの拡大図である。It is an enlarged view of the indoor unit of the refrigerant | coolant natural circulation type cooling system which concerns on Example 2 of this invention. 制御系を示すブロック図である。It is a block diagram which shows a control system. 起動制御動作を示すフローチャートである。It is a flowchart which shows starting control operation | movement.

符号の説明Explanation of symbols

1…室内ユニット
2…利用側熱交換器
4…凝縮器
5…冷媒液配管
6…冷媒ガス配管
7…電子膨張弁
8…給気温度センサ
9…還気温度センサ
16…温度差算出手段
17…比較手段
18…開度制御手段
19…起動不能判別手段
20…支援室内ユニット選出手段
22…異常判別手段
31…入口側圧力センサ
32…出口側圧力センサ
33…圧力差算出手段
DESCRIPTION OF SYMBOLS 1 ... Indoor unit 2 ... Use side heat exchanger 4 ... Condenser 5 ... Refrigerant liquid piping 6 ... Refrigerant gas piping 7 ... Electronic expansion valve 8 ... Supply air temperature sensor 9 ... Return air temperature sensor 16 ... Temperature difference calculation means 17 ... Comparison means 18 ... Opening degree control means 19 ... Start-up impossibility determination means 20 ... Support indoor unit selection means 22 ... Abnormality determination means 31 ... Inlet side pressure sensor 32 ... Outlet side pressure sensor 33 ... Pressure difference calculation means

Claims (5)

気体と液体とに相変化する冷媒を蒸発気化して冷熱を放熱する利用側熱交換器を備えた室内ユニットを複数個設け、前記利用側熱交換器と、冷媒を凝縮液化する凝縮器とを冷媒液配管と冷媒ガス配管とを介して接続し、前記凝縮器を前記利用側熱交換器よりも上方に配置し、前記凝縮器と前記利用側熱交換器との間に、自然循環により前記凝縮器で凝縮液化した冷媒液を前記利用側熱交換器に移送するとともに、前記利用側熱交換器で蒸発気化した冷媒ガスを前記凝縮器に移送するに足るヘッド差を備え、前記冷媒液配管に、前記利用側熱交換器に供給する冷媒液量を調整する電子膨張弁を設けた冷媒自然循環式冷房システムにおいて、
前記利用側熱交換器から吹き出される温調空気の給気温度を測定する給気温度センサと、
前記利用側熱交換器に戻される温調空気の還気温度を測定する還気温度センサと、
前記還気温度センサで測定される還気温度と前記給気温度センサで測定される給気温度との差を算出する温度差算出手段と、
前記温度差算出手段で算出された温度差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差になったときに定常冷房運転移行信号を出力する比較手段と、
冷房運転の起動後に前記比較手段からの定常冷房運転移行信号に応答して前記電子膨張弁の開度を定常冷房運転状態で必要な開度に切り換える開度制御手段と、
冷房運転の起動後設定時間経過しても前記温度差算出手段で算出された温度差が定常冷房運転状態に移行可能な状態と判断できる定常移行温度差にならなかったときに起動不能信号を出力する起動不能判別手段と、
前記起動不能判別手段からの起動不能信号に応答して、起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニットのうちの優先順位の高い室内ユニットを選出して選出された室内ユニットに起動支援信号を出力し該当する室内ユニットの電子膨張弁を開く支援室内ユニット選出手段と、
を備えたことを特徴とする冷媒自然循環式冷房システム。
A plurality of indoor units including use side heat exchangers that evaporate and evaporate a refrigerant that changes phase between gas and liquid and dissipate cold heat are provided, and the use side heat exchanger and a condenser that condenses and liquefies the refrigerant are provided. The refrigerant liquid pipe and the refrigerant gas pipe are connected to each other, the condenser is disposed above the use side heat exchanger, and the natural heat circulates between the condenser and the use side heat exchanger. The refrigerant liquid pipe is provided with a head difference sufficient to transfer the refrigerant liquid condensed and liquefied by the condenser to the use side heat exchanger and to transfer the refrigerant gas evaporated and evaporated by the use side heat exchanger to the condenser. In the refrigerant natural circulation type cooling system provided with an electronic expansion valve for adjusting the amount of refrigerant liquid supplied to the use side heat exchanger,
A supply air temperature sensor for measuring a supply air temperature of the temperature-controlled air blown out from the use side heat exchanger;
A return air temperature sensor for measuring the return air temperature of the temperature-controlled air returned to the use side heat exchanger;
A temperature difference calculating means for calculating a difference between the return air temperature measured by the return air temperature sensor and the supply air temperature measured by the supply air temperature sensor;
Comparing means for outputting a steady cooling operation transition signal when the temperature difference calculated by the temperature difference calculation means becomes a steady transition temperature difference that can be determined to be a state capable of transitioning to the steady cooling operation state;
An opening degree control means for switching the opening degree of the electronic expansion valve to a required opening degree in a steady cooling operation state in response to a steady cooling operation transition signal from the comparison means after starting the cooling operation;
Even if the set time has elapsed after the start of cooling operation, a start impossible signal is output when the temperature difference calculated by the temperature difference calculating means does not become a steady transition temperature difference that can be determined to be a transition to the steady cooling operation state. A non-startable discrimination means to
In response to the start disable signal from the start disable determination means, the indoor unit selected by selecting the indoor unit having a higher priority among the indoor units excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state. A support indoor unit selection means for outputting a start support signal to the unit and opening an electronic expansion valve of the corresponding indoor unit;
A refrigerant natural circulation type cooling system comprising:
気体と液体とに相変化する冷媒を蒸発気化して冷熱を放熱する利用側熱交換器を備えた室内ユニットを複数個設け、前記利用側熱交換器と、冷媒を凝縮液化する凝縮器とを冷媒液配管と冷媒ガス配管とを介して接続し、前記凝縮器を前記利用側熱交換器よりも上方に配置し、前記凝縮器と前記利用側熱交換器との間に、自然循環により前記凝縮器で凝縮液化した冷媒液を前記利用側熱交換器に移送するとともに、前記利用側熱交換器で蒸発気化した冷媒ガスを前記凝縮器に移送するに足るヘッド差を備え、前記冷媒液配管に、前記利用側熱交換器に供給する冷媒液量を調整する電子膨張弁を設けた冷媒自然循環式冷房システムにおいて、
前記電子膨張弁の上流側で冷媒液配管内の入口側圧力を測定する入口側圧力センサと、
前記利用側熱交換器より下流側で冷媒ガス配管内の出口側圧力を測定する出口側圧力センサと、
前記入口側圧力センサで測定される入口側圧力と前記出口側圧力センサで測定される出口側圧力との差を算出する圧力差算出手段と、
前記圧力差算出手段で算出された圧力差が定常冷房運転状態に移行可能な状態と判断できる定常移行圧力差になったときに定常冷房運転移行信号を出力する比較手段と、
冷房運転の起動後に前記比較手段からの定常冷房運転移行信号に応答して前記電子膨張弁の開度を定常冷房運転状態で必要な開度に切り換える開度制御手段と、
冷房運転の起動後設定時間経過しても前記圧力差算出手段で算出された圧力差が定常冷房運転状態に移行可能な状態と判断できる定常移行圧力差にならなかったときに起動不能信号を出力する起動不能判別手段と、
前記起動不能判別手段からの起動不能信号に応答して、起動予定の室内ユニットと冷房運転状態の室内ユニットとを除いた室内ユニットのうちの優先順位の高い室内ユニットを選出して選出された室内ユニットに起動支援信号を出力し該当する室内ユニットの電子膨張弁を開く支援室内ユニット選出手段と、
を備えたことを特徴とする冷媒自然循環式冷房システム。
A plurality of indoor units provided with use side heat exchangers that evaporate and evaporate a refrigerant that changes phase between gas and liquid to dissipate cold heat, and the use side heat exchanger and a condenser that condenses and liquefies the refrigerant are provided. The refrigerant liquid pipe and the refrigerant gas pipe are connected to each other, the condenser is disposed above the use side heat exchanger, and the natural heat circulates between the condenser and the use side heat exchanger. The refrigerant liquid pipe is provided with a head difference sufficient to transfer the refrigerant liquid condensed and liquefied by the condenser to the use side heat exchanger and to transfer the refrigerant gas evaporated and evaporated by the use side heat exchanger to the condenser. In the refrigerant natural circulation type cooling system provided with an electronic expansion valve for adjusting the amount of refrigerant liquid supplied to the use side heat exchanger,
An inlet side pressure sensor for measuring an inlet side pressure in the refrigerant liquid pipe on the upstream side of the electronic expansion valve;
An outlet-side pressure sensor that measures an outlet-side pressure in the refrigerant gas pipe on the downstream side of the use-side heat exchanger;
Pressure difference calculating means for calculating a difference between an inlet side pressure measured by the inlet side pressure sensor and an outlet side pressure measured by the outlet side pressure sensor;
Comparison means for outputting a steady cooling operation transition signal when the pressure difference calculated by the pressure difference calculation means becomes a steady transition pressure difference that can be determined as a state capable of transitioning to the steady cooling operation state;
An opening degree control means for switching the opening degree of the electronic expansion valve to a required opening degree in a steady cooling operation state in response to a steady cooling operation transition signal from the comparison means after starting the cooling operation;
Even if a set time elapses after the start of cooling operation, an unsuccessful start signal is output when the pressure difference calculated by the pressure difference calculation means does not become a steady transition pressure difference that can be determined to be a transition to the steady cooling operation state. A non-startable discrimination means to
In response to the start disable signal from the start disable determination means, the indoor unit selected by selecting a high priority indoor unit among the indoor units excluding the indoor unit scheduled to start and the indoor unit in the cooling operation state. A support indoor unit selection means for outputting a start support signal to the unit and opening an electronic expansion valve of the corresponding indoor unit;
A refrigerant natural circulation type cooling system comprising:
請求項1または2に記載の冷媒自然循環式冷房システムにおいて、
前記支援室内ユニット選出手段から該当する室内ユニットの全てに起動支援信号を出力して支援動作を完了した後にも前記起動不能判別手段からの起動不能信号を受けたときに異常信号を出力する異常判別手段を備えたものである冷媒自然循環式冷房システム。
In the refrigerant natural circulation type cooling system according to claim 1 or 2,
An abnormality determination that outputs an abnormality signal when the activation disable signal is received from the activation disable determination means even after the activation support signal is output to all of the corresponding indoor units from the support indoor unit selection means and the support operation is completed. Refrigerant natural circulation type cooling system provided with means.
請求項1、2、3のいずれかに記載の冷媒自然循環式冷房システムにおいて、
上下方向に高さの異なる位置に室内ユニットが設けられ、
支援室内ユニット選出手段が、低位置にある室内ユニットほど優先順位が高くなるように設定してある冷媒自然循環式冷房システム。
In the refrigerant natural circulation type cooling system according to any one of claims 1, 2, and 3,
Indoor units are installed at different heights in the vertical direction,
The refrigerant natural circulation type cooling system in which the support indoor unit selection means is set so that the priority is higher in the indoor unit at the lower position.
請求項1、2、3、4のいずれかに記載の冷媒自然循環式冷房システムにおいて、
鉛直方向の冷媒液配管に水平方向に距離が異なる状態で室内ユニットが設けられ、
支援室内ユニット選出手段が、前記鉛直方向の冷媒液配管から遠い位置にある室内ユニットほど優先順位が高くなるように設定してある冷媒自然循環式冷房システム。
In the refrigerant natural circulation cooling system according to any one of claims 1, 2, 3, and 4,
An indoor unit is provided in a state where the distance is different in the horizontal direction in the refrigerant liquid pipe in the vertical direction,
The refrigerant natural circulation type cooling system in which the support indoor unit selection means is set so that the priority is higher in an indoor unit located farther from the refrigerant liquid pipe in the vertical direction.
JP2004361635A 2004-12-14 2004-12-14 Refrigerant natural circulation cooling system Active JP4212549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361635A JP4212549B2 (en) 2004-12-14 2004-12-14 Refrigerant natural circulation cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361635A JP4212549B2 (en) 2004-12-14 2004-12-14 Refrigerant natural circulation cooling system

Publications (2)

Publication Number Publication Date
JP2006170497A true JP2006170497A (en) 2006-06-29
JP4212549B2 JP4212549B2 (en) 2009-01-21

Family

ID=36671445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361635A Active JP4212549B2 (en) 2004-12-14 2004-12-14 Refrigerant natural circulation cooling system

Country Status (1)

Country Link
JP (1) JP4212549B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164276A (en) * 2009-01-19 2010-07-29 Fuji Koki Corp Freezing/refrigerating system, its control device and control method
CN110017592A (en) * 2019-03-11 2019-07-16 广东美的暖通设备有限公司 Multi-connected machine control method, device and equipment
CN113405155A (en) * 2021-07-01 2021-09-17 宁波奥克斯电气股份有限公司 Expansion valve control method and device and multi-connected air conditioner
WO2024111018A1 (en) * 2022-11-21 2024-05-30 日本電気株式会社 Heat exchange device, cooling device, cooling method, method for controlling heat exchange device, and program for controlling heat exchange device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783203B (en) * 2016-04-28 2018-11-20 广东美的暖通设备有限公司 The method for detecting abnormality of air conditioner and its indoor unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010164276A (en) * 2009-01-19 2010-07-29 Fuji Koki Corp Freezing/refrigerating system, its control device and control method
CN110017592A (en) * 2019-03-11 2019-07-16 广东美的暖通设备有限公司 Multi-connected machine control method, device and equipment
CN113405155A (en) * 2021-07-01 2021-09-17 宁波奥克斯电气股份有限公司 Expansion valve control method and device and multi-connected air conditioner
WO2024111018A1 (en) * 2022-11-21 2024-05-30 日本電気株式会社 Heat exchange device, cooling device, cooling method, method for controlling heat exchange device, and program for controlling heat exchange device

Also Published As

Publication number Publication date
JP4212549B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP5622859B2 (en) Heat source equipment
JP2008121982A (en) Refrigerating cycle device
WO2019026270A1 (en) Refrigeration cycle device and heat source unit
WO2019193685A1 (en) Air conditioning system control device, outdoor unit, relay unit, heat source unit, and air conditioning system
JP4212549B2 (en) Refrigerant natural circulation cooling system
JP2004353916A (en) Temperature controlling method and air conditioner
JP2018204814A (en) Control apparatus, multiple type air conditioning system with the same, and control method and control program
JP3847314B2 (en) Refrigerant natural circulation heating system
JP2008267621A (en) Air conditioner
JP3717503B2 (en) Refrigerant natural circulation cooling system
JP2011149612A (en) Air-conditioning apparatus
JP2009192096A (en) Air conditioner
JP2020176798A (en) Air conditioner
JP2005225329A (en) Air conditioner
JP7211913B2 (en) heat pump equipment
JPH07332817A (en) Heat pump refrigerator
JPH10110996A (en) Method and apparatus for controlling air conditioner
JP3833497B2 (en) Air conditioner
JP2009030839A (en) Air conditioner
JPH0875274A (en) Refrigerating equipment
JP2005003250A (en) Air conditioner and its control method
JP3800340B2 (en) Refrigerant natural circulation cooling system
JP3357823B2 (en) Air conditioner
JP3800342B2 (en) Refrigerant natural circulation cooling system
JP7392567B2 (en) air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4212549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5