JP2007240036A - Diagnosing method and system of air conditioner - Google Patents
Diagnosing method and system of air conditioner Download PDFInfo
- Publication number
- JP2007240036A JP2007240036A JP2006060431A JP2006060431A JP2007240036A JP 2007240036 A JP2007240036 A JP 2007240036A JP 2006060431 A JP2006060431 A JP 2006060431A JP 2006060431 A JP2006060431 A JP 2006060431A JP 2007240036 A JP2007240036 A JP 2007240036A
- Authority
- JP
- Japan
- Prior art keywords
- air conditioner
- deterioration
- specific part
- degree
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、空気調和機の診断方法及び診断システムに関し、特に、複数の顧客に設置される複数の空気調和機を遠隔集中管理するのに適した空気調和機の診断システム及び診断方法に関する。 The present invention relates to an air conditioner diagnosis method and diagnosis system, and more particularly to an air conditioner diagnosis system and diagnosis method suitable for remotely managing a plurality of air conditioners installed in a plurality of customers.
従来、空気調和機(空調機)の運用管理を集中的に行うセンターにおいて、空調機の限定的データを監視する技術が公知であるが、確認行為のトリガーは人為的に行われているのが現状である。また、空調機の劣化度の判定は現場での目視確認および空調機の運転状態情報を元にした確認者の経験的判断に頼っている。さらに、複数の空調機について劣化度を一元的に管理するシステムは実現されていない。この点に関して複数の空調機の運転状態を、通信ネットワークを介して遠隔で集中診断するシステムが提案されている(例えば特許文献1参照)。しかしながら当該技術は、故障診断情報と修理情報とを関連付けて情報提供するものではあるが、その主目的は顧客サービスの向上、通信コストの低減にあり、具体的な空調機の診断ロジックについては開示されていない。
本発明はこのような問題を解決するためのものであって、空調機の特定部位に関する性能劣化診断の具体的ロジック及び複数の空調機の集中管理に関する技術を提供するものである。 This invention is for solving such a problem, and provides the specific logic of the performance degradation diagnosis regarding the specific site | part of an air conditioner, and the technique regarding the centralized management of several air conditioners.
本発明は以下の内容をその要旨とする。すなわち、
請求項1の発明は、空気調和機の特定部位について、説明変数に対応する運転データを取得するステップと、説明変数に基づいて、該特定部位の性能劣化に関する所定の評価変数を演算するステップと、該評価変数が予め定めた閾値を超えたときに、該特定部位について性能劣化と判定するステップと、を含むことを特徴とする空気調和機の劣化診断方法である。
The gist of the present invention is as follows. That is,
The invention of claim 1 includes a step of obtaining operation data corresponding to an explanatory variable for a specific part of an air conditioner, and a step of calculating a predetermined evaluation variable related to performance deterioration of the specific part based on the explanatory variable. And a step of determining the performance degradation of the specific part when the evaluation variable exceeds a predetermined threshold value.
請求項2の発明は、前記特定部位が室外機熱交換器であり、前記運転データが、室外機吸い込み温度(T1)、室外機吹き出し温度(T2)、冷媒循環量(Gr)、冷媒高圧圧力(Pc)、冷媒低圧圧力(Pv)、冷媒高圧温度(Tc)又は冷媒低圧温度(Tv)、膨張弁開度の少なくともいずれかを含み、前記評価変数が室外機熱交換器のKA値である、ことを特徴とする。
In the invention according to
本発明は、空調機において機能劣化がもっとも著しいと想定される室外機熱交換器の腐食、汚れ等による性能劣化状況を自動診断するものである。図5は、評価変数であるKA値を求めるロジックを、モリエール線図を用いて説明するためのものである。同図において凝縮器における熱交換量(放熱量)Qcは、
Qc=Gr(h3−h1’)・・・・・(1)
で示される。ここに、冷媒循環量Grは、例えば圧縮機周波数fcの測定により求めることができる。h1’は、冷媒高圧圧力Pcに対応する凝縮温度Tcから過冷却された状態における冷媒エンタルピである。過冷却温度は、冷媒循環量、膨張弁開度により求めることもできるが、近似的に平均過冷却温度3〜5℃を用いてもよい。
The present invention automatically diagnoses a performance deterioration state due to corrosion, dirt, etc. of an outdoor unit heat exchanger that is assumed to have the most significant function deterioration in an air conditioner. FIG. 5 is a diagram for explaining the logic for obtaining the KA value, which is an evaluation variable, using the Moliere diagram. In the figure, the heat exchange amount (heat dissipation amount) Qc in the condenser is
Qc = Gr (h3-h1 ′) (1)
Indicated by Here, the refrigerant circulation amount Gr can be obtained, for example, by measuring the compressor frequency fc. h1 ′ is the refrigerant enthalpy in a state of being supercooled from the condensation temperature Tc corresponding to the refrigerant high pressure Pc. The supercooling temperature can be obtained from the refrigerant circulation amount and the expansion valve opening, but an average supercooling temperature of 3 to 5 ° C. may be used approximately.
これらを用いてKA値は以下の式により示される。
KA=Qc/MTD ・・・・・(2)
ここに、MTDは対数平均温度差であり、MTD=(△1−△2)/log(△1/△2)
で示される。△1=T1−Tc、△2=T2−Tcである。
Using these, the KA value is expressed by the following equation.
KA = Qc / MTD (2)
Here, MTD is a logarithm average temperature difference, and MTD = (Δ1−Δ2) / log (Δ1 / Δ2)
Indicated by Δ1 = T1-Tc, Δ2 = T2-Tc.
KA値は測定時における熱交換器の伝熱性能を示すから、KA値を継続的に監視することにより、室外機熱交換器の腐食、汚れ等による伝熱性能劣化状況の把握が可能となる。また、経験値による閾値管理をすることにより予防保全が可能となる。 Since the KA value indicates the heat transfer performance of the heat exchanger at the time of measurement, it is possible to grasp the deterioration of the heat transfer performance due to corrosion, dirt, etc. of the outdoor unit heat exchanger by continuously monitoring the KA value. . In addition, preventive maintenance is possible by threshold management based on experience values.
請求項3の発明は、閾値として評価時におけるKA値と新品時のKA値との比(劣化度)を用いるものである。
新品時から時間t経過後のKA値(KA(t))と新品時のKA値(KA(0))の比 D1=KA(t)/KA(0)は、時間tにおける熱交換器劣化度を表すものといえる。従って、対象空調機のKA(0)データを予め知り、診断時におけるKA値を求めることにより、その時点における劣化度の診断が可能となる。さらに劣化度D1に閾値を設けておけば、定量的な予防保全が可能となる。
The invention of
Ratio of KA value (KA (t)) after elapse of time t from the new article to KA value (KA (0)) of the new article D1 = KA (t) / KA (0) is the heat exchanger deterioration at time t It can be said that it represents a degree. Therefore, by knowing the KA (0) data of the target air conditioner in advance and obtaining the KA value at the time of diagnosis, it is possible to diagnose the degree of deterioration at that time. Further, if a threshold value is provided for the degree of deterioration D1, quantitative preventive maintenance can be performed.
請求項4の発明は、閾値として、室外機吸込み温度をパラメータとする劣化度と高圧保護制御作動頻度の回帰曲線を用いることを特徴とする。この場合、所定の室外機吸込み温度に対して、高圧保護制御作動頻度が所望の値となる劣化度を、閾値とすることができる(請求項5)。 The invention of claim 4 is characterized in that a regression curve of the degree of deterioration and the high-pressure protection control operation frequency using the outdoor unit suction temperature as a parameter is used as the threshold value. In this case, the degree of deterioration at which the high-pressure protection control operation frequency becomes a desired value with respect to a predetermined outdoor unit suction temperature can be set as a threshold value.
図5は、本発明の原理を概念的に示したものである。同図は、特定の空調機について室外機高圧保護制御(高圧カット)作動頻度と劣化度(D1)の運転データを集積し、吸込み温度をパラメータとする回帰曲線を求めたものである。同図では、閾値(D1th)として吸込み温度40℃で「高圧カット作動なし」の値を選定している。これに対応するKA値に至った時点を警告対象とすることにより、例えば経年劣化による運転停止等によるトラブルを回避できる。さらに、判定テーブルは、複数の顧客に設置される同一機種の運転データを集積して、これに基づいて作成することもできる。 FIG. 5 conceptually shows the principle of the present invention. The figure shows the regression curve using the operating temperature of the outdoor unit high-pressure protection control (high-pressure cut) operation and the degree of deterioration (D1) for a specific air conditioner and using the suction temperature as a parameter. In the figure, a value of “no high pressure cut operation” is selected as the threshold value (D1th) at a suction temperature of 40 ° C. By setting the time point at which the KA value corresponding to this is reached as a warning target, it is possible to avoid troubles due to, for example, shutdown due to aging. Furthermore, the determination table can be created based on the operation data of the same model installed in a plurality of customers.
請求項6の発明は、前記特定部位が室内機送風機であり、前記説明変数が、室内機送風機周波数(fw)、室内機吸い込み温度(T3)、室内機吹き出し温度(T4)、圧縮機周波数(fc)の少なくともいずれかを含み、前記評価変数が、室内機風量低下率である、ことを特徴とする。 In the invention of claim 6, the specific part is an indoor unit blower, and the explanatory variables include an indoor unit blower frequency (fw), an indoor unit suction temperature (T3), an indoor unit blowing temperature (T4), and a compressor frequency ( including at least one of fc), and the evaluation variable is an indoor unit air volume reduction rate.
本発明は、室内機送風機の送風量を監視することにより、その性能診断を可能とするものである。本発明は顕熱空調を前提とする。送風量低下の要因としては、設計者が想定しえなかった室内気流循環路での抵抗、風洞の閉塞、フィルタの目詰まり、ファンベルトのスリップ等が考えられる。 The present invention enables performance diagnosis by monitoring the amount of air blown from the indoor unit blower. The present invention is premised on sensible heat air conditioning. Possible causes of a decrease in the amount of air flow include resistance in the indoor air circulation circuit, which could not be assumed by the designer, air channel blockage, filter clogging, fan belt slip, and the like.
本発明の原理は以下の通りである。図6において、蒸発器における熱交換量(放熱量)Qvは、
Qv=Gr(h2’−h1’)・・・・・(3)
で示される。冷媒循環量Grは、上述のように圧縮機周波数の測定により求めることができる。h2’は、冷媒低圧圧力(Pv)に対応する飽和蒸発温度Tvから過熱された状態における冷媒エンタルピである。過熱温度は近似的に平均過冷却温度3〜5℃を用いることができる。
The principle of the present invention is as follows. In FIG. 6, the heat exchange amount (heat radiation amount) Qv in the evaporator is
Qv = Gr (h2′−h1 ′) (3)
Indicated by The refrigerant circulation amount Gr can be obtained by measuring the compressor frequency as described above. h2 ′ is the refrigerant enthalpy in a state of being heated from the saturation evaporation temperature Tv corresponding to the refrigerant low pressure (Pv). As the superheating temperature, an average supercooling temperature of 3 to 5 ° C. can be used approximately.
室内機風量をF、空気比熱をCpとすれば、Qv=F・Cp・(T4−T3)より、
F=Gr(h2’−h1’)/[Cp(T4−T3)]・・・・・・(4)
で示される。
If the indoor unit air volume is F and the specific air heat is Cp, then Qv = F · Cp · (T4-T3)
F = Gr (h2′−h1 ′) / [Cp (T4-T3)] (4)
Indicated by
風量低下率(D2)は、新品時から時間t経過後の風量F(t)と新品時又は設計新品時の風量F(0)の比 D2=F(t)/F(0)により求めることができる。また、予め閾値を設けておくことにより劣化度の診断が可能となる。 The air flow rate reduction rate (D2) is obtained by the ratio of the air flow rate F (t) after the elapse of time t from the new product and the air flow rate F (0) at the time of new product or design new product D2 = F (t) / F (0) Can do. Moreover, the deterioration degree can be diagnosed by providing a threshold value in advance.
請求項7の発明は、管理サーバと、一又は複数の顧客に設置される一又は複数の空気調和機と、これらを相互に通信ネットワークを介して通信可能に構成した空気調和機の診断システムであって、管理サーバは、各空気調和機の一又は複数の運転データを取得する手段と、運転データに基づいて、各空気調和機の特定部位の健全度に関する所定の評価変数を演算する手段と、評価変数が予め定めた閾値を超えたときに、該特定部位について劣化判定する手段と、判定結果を、必要に応じて顧客側に配信する手段と、
を備えて成ることを特徴とする空気調和機の診断システムである。
The invention of claim 7 is an air conditioner diagnostic system comprising a management server, one or more air conditioners installed in one or more customers, and capable of communicating with each other via a communication network. The management server includes means for acquiring one or a plurality of operation data of each air conditioner, and means for calculating a predetermined evaluation variable related to the soundness level of a specific part of each air conditioner based on the operation data. Means for determining deterioration of the specific part when the evaluation variable exceeds a predetermined threshold; means for distributing the determination result to the customer side as required;
A diagnostic system for an air conditioner comprising:
上記各発明によれば、空調機の特定部位について、経年使用等に伴う性能劣化(劣化度)を定量的に判定することが可能となる。
また、室外機(凝縮器)性能診断の発明によれば、空調機の機能劣化としてもっとも著しいと想定される室外機の熱交換器の腐食、汚れ等の劣化状況を自動診断、遠隔診断、定期診断することが可能となる。
また、室内機(送風機)性能診断の発明によれば、空調機能と密接な関係にある室内機送風機の風量について、ベルトの緩みによる回転数低下や、機外静圧の設計想定外の運用による風量低下を自動診断、遠隔診断、定期診断することが可能となる。
また、管理サーバに複数の空調機の運転データを集約する発明によれば、複数の顧客に設置される複数の空調機を集中管理でき、また、運転データの母数が大きくなるため劣化診断精度を向上させることが可能となる。
According to each said invention, it becomes possible to determine quantitatively the performance degradation (deterioration degree) accompanying aged use etc. about the specific site | part of an air conditioner.
In addition, according to the invention of outdoor unit (condenser) performance diagnosis, automatic diagnosis, remote diagnosis, periodic inspection of deterioration conditions such as corrosion and dirt of the heat exchanger of the outdoor unit, which is assumed to be the most serious deterioration of the air conditioner function Diagnosis is possible.
In addition, according to the invention of indoor unit (blower) performance diagnosis, the air volume of the indoor unit blower that is closely related to the air-conditioning function is caused by a decrease in the number of rotations due to the looseness of the belt or an operation outside the design assumption of the static pressure outside the unit. It is possible to perform automatic diagnosis, remote diagnosis, and periodic diagnosis of airflow reduction.
In addition, according to the invention of consolidating operation data of a plurality of air conditioners on the management server, it is possible to centrally manage a plurality of air conditioners installed in a plurality of customers, and the accuracy of deterioration diagnosis is increased because the parameter of operation data is increased. Can be improved.
以下、本発明に係る空調機の空水冷運転制御方法の各実施形態について、図1乃至3を参照してさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。 Hereinafter, each embodiment of the air-water cooling operation control method of an air conditioner according to the present invention will be described in more detail with reference to FIGS. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
(凝縮器劣化診断)
図1は、本発明の一実施形態に係る空調機診断システム1を示す図である。図2は、空調機Ajの構成を示す図である。図3は、空調機診断システム1における凝縮器21aの劣化診断フローを示す図である。
図1を参照して、空調機診断システム1は、複数の顧客に設置された空調機を集中管理する管理センター2、顧客C1乃至Cn、管理センター2と各顧客間を結ぶ通信ネットワーク3を主要構成とする。管理センター2は、送受信部4a、劣化度演算部4b、診断報告書作成部4c等を有するサーバ4及びデータベース4dを備えている。データベース4dには、不図示の顧客データテーブル、機器データテーブル、運転データテーブル、劣化度判定テーブル等が格納されている。運転データテーブルには複数の顧客に設置されている空調機の運転データが格納されている。さらに、運転データに基づいて予め図4の如き劣化度判定テーブルが作成されている。また、機器データテーブルには、後述する新品時のKA値、設計機外静圧から求めた設計上の室内機送風機風量等を含む機器データが格納されている。
(Condenser deterioration diagnosis)
FIG. 1 is a diagram showing an air conditioner diagnosis system 1 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating a configuration of the air conditioner Aj. FIG. 3 is a diagram illustrating a deterioration diagnosis flow of the condenser 21a in the air conditioner diagnosis system 1.
Referring to FIG. 1, an air conditioner diagnosis system 1 mainly includes a
顧客Ciは、複数の空調機A1乃至Am、各空調機の運転データをネットワーク3を介して管理センター2に送信する送受信制御部5、機器診断報告書の配信を受けるパソコン(PC)8を備えている。他の顧客についても同様の構成を備えている。通信ネットワーク3としては、例えばインターネット回線、公衆電話網、ISDN、専用線、パケット交換網等を用いることができる。サーバ4と送受信制御部7間のデータ通信は、XML形式で行われる。
The customer Ci includes a plurality of air conditioners A1 to Am, a transmission / reception control unit 5 that transmits operation data of each air conditioner to the
次に図2を参照して、空調機Ajはコンプレッサ23、凝縮器21a、室外送風機21b、膨張弁21cを備えた室外機21と、蒸発器22a、室内送風機22bを備えた室内機22と、室外機21及び室内機22の各構成要素間を接続する冷媒配管24を主要構成として備えている。冷媒配管24内部には冷媒が充填されており、冷凍サイクルに従って冷媒が気体又は液体状態で循環するように構成されている。空調機Ajは、上記以外にも四方弁、アキュムレーター等のヒートポンプシステムを構成する各種構成要素を備えているが、図示を省略してある。
Next, referring to FIG. 2, an air conditioner Aj includes a
次に、空調機Ajの運転データ計測手段は以下のように構成されている。室外機21には、吸込み温度T1、吹き出し温度T2、室内機22には吸込み温度T3、吹き出し温度T4を計測するための温度センサが、それぞれ配設されている。また、冷媒配管系統については、蒸発器22aに冷媒低圧圧力Pv、低圧温度Te計測用のセンサが、凝縮器21a出口近傍には、高圧圧力Pc、高圧温度Tcを計測するためのセンサが配設されている。各センサの計測値、膨張弁21c開度等は、送受信制御部5、通信ネットワーク3を経由して管理センター2のサーバ4に取り込まれるように構成されている。
Next, the operation data measuring means of the air conditioner Aj is configured as follows. The
空調機診断システム1は以上のように構成されており、次に図3をも参照して、管理サーバ4において行われる凝縮器21aに関する劣化診断フローについて説明する。診断ステップの開始に伴い、所定の時間間隔で所定回数、運転データの収集が行われる(ステップS101)。運転データには、外気温度、圧縮機周波数、室内送風機周波数、室外送風機周波数、膨張弁開度、高圧圧力、低圧圧力、高圧温度又は低圧温度等が含まれる。取り込まれたデータは、管理センター2のDB4dの所定の記憶領域に格納される。
The air conditioner diagnosis system 1 is configured as described above. Next, a deterioration diagnosis flow relating to the condenser 21a performed in the management server 4 will be described with reference to FIG. With the start of the diagnostic step, operation data is collected a predetermined number of times at predetermined time intervals (step S101). The operation data includes outside air temperature, compressor frequency, indoor fan frequency, outdoor fan frequency, expansion valve opening, high pressure, low pressure, high pressure or low pressure. The fetched data is stored in a predetermined storage area of the DB 4d of the
さらに、収集データの平均値を用いて以下の演算が行われる。最初に、冷凍サイクルの推定が行われる(ステップS102)。まず、高圧圧力、高圧温度に基づいて凝縮圧力相当飽和温度Tcの推定が行われる。次いで低圧圧力、低圧温度に基づいて蒸発圧力相当飽和温度Tvの推定が行われる。さらに、過冷却度、過熱度を考慮して上記凝縮、蒸発圧力相当飽和温度の補正が行われる(ステップS103)。補正値としては標準値の3〜5℃を用いる。なお、補正に際しては、膨張弁開度等に基づいて演算することもできる。 Further, the following calculation is performed using the average value of the collected data. First, the refrigeration cycle is estimated (step S102). First, the condensation pressure equivalent saturation temperature Tc is estimated based on the high pressure and the high pressure. Next, an evaporation pressure equivalent saturation temperature Tv is estimated based on the low pressure and the low pressure. Further, the condensation and evaporation pressure equivalent saturation temperature is corrected in consideration of the degree of supercooling and the degree of superheat (step S103). A standard value of 3 to 5 ° C. is used as the correction value. In the correction, it is also possible to calculate based on the expansion valve opening degree and the like.
さらに、上述の(1)式により凝縮に伴う熱交換量の推定が行われ(ステップS104)、次いで(2)式を用いて評価時のKA値であるKA(t)が演算される(ステップS105)。さらに、劣化度I=KA(t)/KA(0)の演算が行われる(ステップS106)。なお、新品時のKA値(KA(0))は機器テーブルに格納されている値を用いる。次いで、劣化度D1が閾値D1thを超えているか否かの判定が行われる(ステップS107)。ここに、閾値D1thは顧客との契約等により所定の温度に対する高圧保護制御作動限度に基づいて決められている(例えば、吸込み温度40℃において高圧カットがないこと)。閾値を超えているときは(ステップS108においてYES)、顧客PCに警告メールを送信して警告する(ステップS109)。閾値を超えていないときは判定結果が格納され(ステップS110)、次の判定タイミングまで待機する。
なお、本実施形態では圧縮機最大能力の判定を周波数で行う形態としたが、他の形態、例えば回転数を検知する形態とすることもできる。
また、本実施形態では運転データを管理センターに送信する集中制御方式としたが、スタンドアロン型コンピュータを用いて個別管理方式とすることもできる。
Furthermore, the amount of heat exchange accompanying condensation is estimated by the above-described equation (1) (step S104), and then KA (t), which is the KA value at the time of evaluation, is calculated using equation (2) (step). S105). Further, the calculation of the deterioration degree I = KA (t) / KA (0) is performed (step S106). In addition, the value stored in the device table is used as the KA value (KA (0)) when new. Next, it is determined whether or not the deterioration degree D1 exceeds the threshold value D1th (step S107). Here, the threshold value D1th is determined based on a high pressure protection control operation limit for a predetermined temperature by contract with a customer or the like (for example, there is no high pressure cut at a suction temperature of 40 ° C.). When the threshold value is exceeded (YES in step S108), a warning mail is sent to the customer PC for warning (step S109). When the threshold is not exceeded, the determination result is stored (step S110), and the process waits until the next determination timing.
In the present embodiment, the determination of the maximum compressor capacity is performed based on the frequency, but other forms, for example, a form for detecting the rotational speed may be employed.
In this embodiment, the central control method is used to transmit the operation data to the management center. However, an individual management method may be used by using a stand-alone computer.
(室内機送風機診断)
次に、本発明の他の実施形態について説明する。本実施形態は、顕熱空調を前提として室内機送風機の性能診断を行うものである。診断システム及び空調機の構成は、第一の実施形態と同一であるので、図示及び説明を省略する。
図4は、室内機送風機22bの劣化診断フローを示す図である。同図を参照して、ステップS201からステップS204までは第一の実施形態と同様である。但し、凝縮器21aに替えて蒸発器22aの熱交換量である点が異なる。次に、上述の(3)、(4)式に基づいて室内機風量の推定が行われる(ステップS205)。次いで、求めた評価時点における送風量(W)と設計風量(W0)との比、W/W0の演算が行われ(ステップS206)、さらに所定の閾値D2thを超えているか否かの判定が行われる(ステップS207)。閾値を超えているときは、顧客PCに警告メールを送信して警告する(ステップS208)。閾値を超えていないときは判定結果が格納され(ステップS209)、次の判定タイミングまで待機する。
(Indoor unit blower diagnosis)
Next, another embodiment of the present invention will be described. This embodiment performs performance diagnosis of an indoor unit blower on the premise of sensible heat air conditioning. Since the configurations of the diagnosis system and the air conditioner are the same as those in the first embodiment, illustration and description thereof are omitted.
FIG. 4 is a diagram illustrating a deterioration diagnosis flow of the
なお、本実施形態では顕熱空調を前提として行ったが、除湿量を計量することにより潜熱空調を含めて評価可能である。 In the present embodiment, the sensible heat air conditioning is assumed. However, it is possible to evaluate the latent heat air conditioning by measuring the amount of dehumidification.
本発明は、熱源種類、冷媒種類、空調方式等を問わず、圧縮式空調機に広く適用可能である。 The present invention can be widely applied to a compression air conditioner regardless of the heat source type, the refrigerant type, the air conditioning system, and the like.
1・・・・空調機診断システム
2・・・・管理センター
3・・・・通信ネットワーク
4・・・・管理サーバ
4a・・・・送受信部
4b・・・・劣化度演算部
4c・・・・診断報告書作成部
4d・・・・データベース
5・・・・送受信制御部
21・・・・室外機
21a・・・・凝縮器
21b・・・・室外送風機
21c・・・・膨張弁
22・・・・室内機
22a・・・・蒸発器
22b・・・・室内送風機
23・・・・コンプレッサ
24・・・・冷媒配管
A1〜Am・・・・空調機
C1〜Cn・・・・顧客
Pv・・・・冷媒低圧圧力
Pc・・・・高圧圧力
Tv・・・・低圧温度
Tc・・・・高圧温度
DESCRIPTION OF SYMBOLS 1 ... Air-conditioner
Claims (7)
説明変数に基づいて、該特定部位の性能劣化に関する所定の評価変数を演算するステップと、
該評価変数が予め定めた閾値を超えたときに、該特定部位について性能劣化と判定するステップと、
を含むことを特徴とする空気調和機の劣化診断方法。 For a specific part of the air conditioner, obtaining operation data corresponding to the explanatory variable;
Calculating a predetermined evaluation variable related to performance degradation of the specific part based on the explanatory variable;
Determining the performance degradation for the specific part when the evaluation variable exceeds a predetermined threshold;
The deterioration diagnosis method of the air conditioner characterized by including this.
前記運転データが、室外機吸い込み温度、室外機吹き出し温度、冷媒循環量、冷媒高圧圧力、冷媒低圧圧力、冷媒高圧温度又は冷媒低圧温度、膨張弁開度の少なくともいずれかを含み、
前記評価変数が室外機熱交換器のKA値である、
ことを特徴とする請求項1に記載の空気調和機の劣化診断方法。 The specific part is an outdoor unit heat exchanger,
The operation data includes at least one of outdoor unit suction temperature, outdoor unit blowing temperature, refrigerant circulation amount, refrigerant high pressure, refrigerant low pressure, refrigerant high pressure temperature or refrigerant low temperature, and expansion valve opening,
The evaluation variable is an outdoor unit heat exchanger KA value.
The deterioration diagnosis method for an air conditioner according to claim 1.
前記説明変数が、室内機送風機周波数、室内機吸い込み温度、室内機吹き出し温度、圧縮機周波数の少なくともいずれかを含み、
前記評価変数が、室内機風量低下割合である、
ことを特徴とする請求項1に記載の空気調和機の劣化診断方法。 The specific part is an indoor fan,
The explanatory variable includes at least one of an indoor unit blower frequency, an indoor unit suction temperature, an indoor unit blowing temperature, and a compressor frequency,
The evaluation variable is the indoor unit air volume reduction rate,
The deterioration diagnosis method for an air conditioner according to claim 1.
各空気調和機の一又は複数の運転データを取得する手段と、
運転データに基づいて、各空気調和機の特定部位の健全度に関する所定の評価変数を演算する手段と、
評価変数が予め定めた閾値を超えたときに、該特定部位について劣化判定する手段と、
判定結果を、必要に応じて顧客側に配信する手段と、
を備えて成ることを特徴とする空気調和機の診断システム。
A management server, one or a plurality of air conditioners installed in one or a plurality of customers, and an air conditioner diagnosis system configured to be able to communicate with each other via a communication network, the management server,
Means for obtaining one or more operating data of each air conditioner;
Means for calculating a predetermined evaluation variable related to the soundness of a specific part of each air conditioner based on the operation data;
Means for determining deterioration of the specific part when the evaluation variable exceeds a predetermined threshold;
Means for distributing the determination result to the customer side as necessary;
A diagnostic system for an air conditioner comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006060431A JP4290705B2 (en) | 2006-03-07 | 2006-03-07 | Diagnostic method and diagnostic system for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006060431A JP4290705B2 (en) | 2006-03-07 | 2006-03-07 | Diagnostic method and diagnostic system for air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007240036A true JP2007240036A (en) | 2007-09-20 |
JP4290705B2 JP4290705B2 (en) | 2009-07-08 |
Family
ID=38585746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006060431A Expired - Fee Related JP4290705B2 (en) | 2006-03-07 | 2006-03-07 | Diagnostic method and diagnostic system for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4290705B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013167438A (en) * | 2013-04-30 | 2013-08-29 | Daikin Industries Ltd | Air conditioner |
WO2014064792A1 (en) * | 2012-10-25 | 2014-05-01 | 三菱電機株式会社 | Monitoring system |
JP2017032259A (en) * | 2015-08-06 | 2017-02-09 | 株式会社Nttファシリティーズ | Condenser diagnostic method |
WO2018092312A1 (en) * | 2016-11-21 | 2018-05-24 | 三菱電機株式会社 | Deterioration diagnosis apparatus, deterioration diagnosis method, and deterioration diagnosis program |
WO2018220760A1 (en) * | 2017-05-31 | 2018-12-06 | 三菱電機株式会社 | Air conditioner failure diagnosing device |
CN110177980A (en) * | 2017-03-10 | 2019-08-27 | 株式会社日立制作所 | The performance diagnogtics device and performance diagnogtics method of air conditioner |
CN110440406A (en) * | 2019-08-05 | 2019-11-12 | 珠海格力电器股份有限公司 | Fan control method, device and unit equipment |
CN113587385A (en) * | 2021-07-13 | 2021-11-02 | Tcl空调器(中山)有限公司 | Communication fault processing method and control system for indoor and outdoor units of air conditioner and air conditioner |
WO2022201322A1 (en) * | 2021-03-23 | 2022-09-29 | 三菱電機株式会社 | Air conditioning control system |
-
2006
- 2006-03-07 JP JP2006060431A patent/JP4290705B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014064792A1 (en) * | 2012-10-25 | 2014-05-01 | 三菱電機株式会社 | Monitoring system |
JPWO2014064792A1 (en) * | 2012-10-25 | 2016-09-05 | 三菱電機株式会社 | Monitoring system |
JP2013167438A (en) * | 2013-04-30 | 2013-08-29 | Daikin Industries Ltd | Air conditioner |
JP2017032259A (en) * | 2015-08-06 | 2017-02-09 | 株式会社Nttファシリティーズ | Condenser diagnostic method |
WO2018092312A1 (en) * | 2016-11-21 | 2018-05-24 | 三菱電機株式会社 | Deterioration diagnosis apparatus, deterioration diagnosis method, and deterioration diagnosis program |
CN110177980A (en) * | 2017-03-10 | 2019-08-27 | 株式会社日立制作所 | The performance diagnogtics device and performance diagnogtics method of air conditioner |
CN110177980B (en) * | 2017-03-10 | 2021-08-27 | 株式会社日立制作所 | Performance diagnostic device and performance diagnostic method for air conditioner |
WO2018220760A1 (en) * | 2017-05-31 | 2018-12-06 | 三菱電機株式会社 | Air conditioner failure diagnosing device |
JPWO2018220760A1 (en) * | 2017-05-31 | 2019-12-12 | 三菱電機株式会社 | Air conditioner failure diagnosis device |
CN110440406A (en) * | 2019-08-05 | 2019-11-12 | 珠海格力电器股份有限公司 | Fan control method, device and unit equipment |
WO2022201322A1 (en) * | 2021-03-23 | 2022-09-29 | 三菱電機株式会社 | Air conditioning control system |
JPWO2022201322A1 (en) * | 2021-03-23 | 2022-09-29 | ||
JP7361987B2 (en) | 2021-03-23 | 2023-10-16 | 三菱電機株式会社 | air conditioning control system |
CN113587385A (en) * | 2021-07-13 | 2021-11-02 | Tcl空调器(中山)有限公司 | Communication fault processing method and control system for indoor and outdoor units of air conditioner and air conditioner |
CN113587385B (en) * | 2021-07-13 | 2022-10-04 | Tcl空调器(中山)有限公司 | Communication fault processing method and control system for indoor and outdoor units of air conditioner and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP4290705B2 (en) | 2009-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4290705B2 (en) | Diagnostic method and diagnostic system for air conditioner | |
US11769118B2 (en) | Systems and methods for automated diagnostics of HVAC systems | |
JP4762797B2 (en) | Multi-type air conditioning system | |
KR102436213B1 (en) | HVAC management system, HVAC management method, and program | |
US10663187B2 (en) | Air conditioning system and control method thereof | |
JP5146533B2 (en) | Diagnosis support device | |
US20090314017A1 (en) | Air conditioner | |
US20140260390A1 (en) | System for refrigerant charge verification | |
JP2015092121A (en) | Maintenance timing determination method for vehicular air conditioner and air conditioner | |
WO2010041386A1 (en) | Air conditioning device remote control system and remote control method | |
WO2018163402A1 (en) | Air conditioner performance diagnosis device and diagnosis method | |
US20240053077A1 (en) | Systems and methods for humidity control in an air conditioning system | |
JP7072398B2 (en) | Integrated air conditioner management equipment and management program | |
JP6972468B2 (en) | Evaluation device and evaluation method for air conditioners | |
MX2007001671A (en) | Method and apparatus for monitoring refrigerant-cycle systems. | |
JP2006292211A (en) | Air conditioner | |
JP4826117B2 (en) | Refrigerant leak detection system | |
KR102521851B1 (en) | Chiller system | |
CN112728655B (en) | Outdoor unit electric control temperature rise control method and device and air conditioner | |
JP6595139B1 (en) | Air conditioning management system, air conditioning management method, and program | |
JP2007017086A (en) | Air conditioner | |
WO2021250789A1 (en) | Refrigeration cycle device | |
KR101610843B1 (en) | Cooling and heating system and controlling method the same | |
WO2024058149A1 (en) | Apparatus-performance-value prediction method, system, and program | |
KR20180097041A (en) | Chiller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080509 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080902 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081027 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4290705 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |