WO2018220760A1 - Air conditioner failure diagnosing device - Google Patents

Air conditioner failure diagnosing device Download PDF

Info

Publication number
WO2018220760A1
WO2018220760A1 PCT/JP2017/020309 JP2017020309W WO2018220760A1 WO 2018220760 A1 WO2018220760 A1 WO 2018220760A1 JP 2017020309 W JP2017020309 W JP 2017020309W WO 2018220760 A1 WO2018220760 A1 WO 2018220760A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
failure
failure diagnosis
processing
deterioration
Prior art date
Application number
PCT/JP2017/020309
Other languages
French (fr)
Japanese (ja)
Inventor
赳弘 古谷野
航祐 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/020309 priority Critical patent/WO2018220760A1/en
Priority to JP2019521612A priority patent/JPWO2018220760A1/en
Publication of WO2018220760A1 publication Critical patent/WO2018220760A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays

Definitions

  • the present invention relates to an air conditioner failure diagnosis apparatus for diagnosing deterioration or failure of an air conditioner. In particular, it enables evaluation of failure factors that cause failures and the like.
  • Air conditioners that control at least one of the temperature and humidity of a space have become widespread and have become indispensable for producing a comfortable space. For this reason, the failure of the air conditioner is directly connected to the user's discomfort. In an environment such as a server room or a freezer warehouse, a failure of an air conditioner can lead to a fatal loss in business. Therefore, in recent years, attention has been paid to periodic maintenance of air conditioners, diagnosis of failure, etc. (hereinafter referred to as failure diagnosis).
  • the air conditioner is configured by combining a plurality of functional parts and equipment. For this reason, specialized knowledge is required to identify the maintenance location and failure location.
  • Patent Document 1 it is impossible to evaluate the influence of the failure factor on the performance of the air conditioner. For this reason, as a result of exchanging parts, it is impossible to quantitatively evaluate how much the merit relating to the exchange can be enjoyed or how the deterioration proceeds.
  • the present invention has been made in view of the above circumstances, and an air conditioner failure diagnosis apparatus capable of quantitatively evaluating the degree of deterioration of a failure factor in an air conditioner based on the performance of the air conditioner.
  • the purpose is to obtain.
  • an air conditioner failure diagnosis apparatus performs diagnosis related to air conditioner failure diagnosis from data indicating the state of an air conditioner and data relating to control of the air conditioner.
  • the diagnostic processing device includes a processing device, and the diagnostic processing device performs a process of calculating a degree of divergence of the air conditioning characteristics from the air conditioning characteristics with respect to at least one of the air conditioning characteristics, which is an index indicating the performance of the air conditioner.
  • a deterioration influence calculation unit that performs failure diagnosis processing for diagnosing the degree of deterioration due to the failure factor for a plurality of predetermined failure factors that cause the failure of the air conditioner based on the degree of deviation Is.
  • the degree of deterioration leading to a failure can be quantitatively expressed by a common term called air conditioning characteristics for a plurality of failure factors that cause the failure of the air conditioner. It is possible to easily determine the repair timing, replacement, and repair priority for parts.
  • FIG. 1 is a diagram illustrating a configuration example of an air conditioner failure diagnosis system 000 centering on an air conditioner failure diagnosis apparatus 400 according to Embodiment 1 of the present invention.
  • an air conditioner failure diagnosis system 000 includes an air conditioner 100, an external terminal device 200, an external cloud device 300, and an air conditioner failure diagnosis device 400.
  • External terminal device 200 has at least a device that realizes a display function, a notification function, and a communication function.
  • a smart phone, a tablet terminal, etc. become the external terminal device 200.
  • the external cloud device 300 is an external processing storage device outside the air conditioner 100 provided by a cloud service, for example.
  • the external cloud device 300 is communicatively connected to the external terminal device 200 and the air conditioner failure diagnosis device 400 via, for example, an electric communication line (network) 500.
  • the external cloud device 300 is a database that stores and accumulates various types of data such as failure diagnosis result data obtained by processing by the air conditioner failure diagnosis device 400. Also, arithmetic processing and the like are performed based on the stored data.
  • the external cloud device 300 includes a cloud communication device 320, a machine learning device 310, and a cloud storage device 330.
  • the cloud communication device 320 is an interface when devices in the external cloud device 300 such as the machine learning device 310 and the cloud storage device 330 communicate with devices outside the cloud communication device 320 via the electric communication line 500, for example. Then, signal conversion is performed.
  • the machine learning device 310 is a device that performs processing by machine learning on input data. Machine learning is a process in which a functional unit improves its performance by acquiring new knowledge and skills, or by reconstructing existing knowledge and skills.
  • the coefficient used for the arithmetic processing when the air conditioner failure diagnosis apparatus 400 performs failure diagnosis is calculated from the data of the result of the failure diagnosis performed in the air conditioner failure diagnosis apparatus 400.
  • the cloud storage device 330 stores, as data, a coefficient related to the calculation of the machine learning device 310, a result of failure diagnosis from the air conditioner failure diagnosis device 400, and the like.
  • the air conditioner 100 is an apparatus that performs air conditioning of a target space by connecting a device such as a compressor, a heat exchanger, an expansion valve, and the like to form a refrigerant circuit and circulating the refrigerant enclosed in the refrigerant circuit. It is.
  • the air conditioner 100 includes the air conditioning control device 110, the sensors 130a to 130n, and the actuators 120a to 120n as devices and devices related to control.
  • Actuators 120a to 120n are drive devices such as a compressor, an electronic expansion valve, and a wind direction control device.
  • the actuators 120a to 120n are devices that are driven and controlled based on control-related data sent from the air conditioning controller 110.
  • the sensors 130a to 130n detect physical quantities such as the temperature distribution of the target space such as the temperature and pressure of the refrigerant in the refrigerant circuit.
  • the detected temperature, pressure, and the like are data indicating the state of the air conditioner 100.
  • a signal including data related to detection is output.
  • the sensors 130a to 130n are devices such as a temperature detection device, a pressure detection device, and an infrared camera, for example.
  • the air conditioning control device 110 is a device that controls the air conditioner 100.
  • the air conditioning control apparatus 110 Based on the data included in the signals sent from the sensors 130a to 130n, the air conditioning control apparatus 110 sends a signal including data related to the control to the actuators 120a to 120n, for example, to control driving.
  • the sensors 130a to 130n and the actuators 120a to 120n will be described as the sensor 130 and the actuator 120, respectively, unless otherwise specified.
  • the air conditioner failure diagnosis device 400 performs processing based on various data included in signals sent from the air conditioner control device 110, the sensor 130, etc. of the air conditioner 100, and diagnoses the failure of the air conditioner 100 to be diagnosed. And so on.
  • the air conditioner failure diagnosis apparatus 400 is installed in the air conditioner 100 to be diagnosed.
  • the air conditioner failure diagnosis device 400 includes a diagnosis processing device 410, an operation device 420, a display device 430, a communication device 440, and a notification device 450.
  • the operation device 420 sends a signal including an instruction input by an operator such as a user or a maintenance company to the diagnosis processing device 410.
  • the display device 430 performs display based on a display signal sent from the diagnostic processing device 410, for example.
  • the notification device 450 is a device that notifies a user or the like based on a signal related to notification sent from the diagnostic processing device 410, for example.
  • As the notification device for example, there is a light-emitting device that performs visual notification by light emission or blinking.
  • the display device 430 may be a notification device.
  • the communication device 440 serves as an interface when the diagnostic processing device 410 communicates with devices outside the air conditioner failure diagnosis device 400 such as the external terminal device 200 and the external cloud device 300, and performs signal conversion and the like.
  • the communication device 440 includes a terminal communication unit 441 and a line communication unit 442.
  • the terminal communication unit 441 performs communication with the external terminal device 200.
  • the line communication unit 442 performs communication with the external cloud device 300 via the electric communication line 500.
  • the communication device 440 may perform communication via the external terminal device 200.
  • the communication device 440 communicates with the external terminal device 200 using a short-range communication method such as Wi-Fi or Bluetooth (registered trademark).
  • the external terminal device 200 serves as a relay device that transmits and receives signals on the telecommunications line 500 and communicates with the external cloud device 300 connected to the telecommunications line 500.
  • the line communication unit 442 may be omitted.
  • the air conditioner failure diagnosis apparatus 400 is installed in the air conditioner 100. Therefore, for example, the operation device, the display device, the communication device, and the notification device included in the remote controller installed in the air conditioner 100 may be the operation device 420, the display device 430, the communication device 440, and the notification device 450. .
  • the diagnosis processing apparatus 410 includes a divergence degree calculation unit 415, a deterioration influence calculation unit 411, a calculation coefficient storage unit 412, a diagnosis result storage processing unit 413, and a deterioration progress prediction unit 414.
  • the divergence degree calculation unit 415 and the deterioration influence calculation unit 411 include, for example, data related to the control of the air conditioner 100 included in the signal sent from the air conditioning control device 110 and the signals sent from the sensors 130a to 130n. Various detection data indicating the state of the air conditioner 100 is input.
  • the divergence degree calculation unit 415 performs processing for calculating the degree of divergence of the air conditioning characteristics from the reference of the air conditioning characteristics.
  • the deterioration influence calculation unit 411 further calculates the influence degree of failure, deterioration, etc. due to the failure factor on the air conditioning characteristics from the data including the divergence degree for each failure factor.
  • the air conditioning characteristics are the performance (specifications) of the air conditioner 100.
  • COP coefficient of performance
  • the failure factor is an element that causes the air conditioner 100 to fail. Further, the failure factor becomes a factor that deteriorates the air conditioning characteristics.
  • the failure factors include, for example, insufficient refrigerant amount in the refrigerant circuit in the air conditioner 100, abnormal operation of the blower fan, fouling or corrosion of the heat exchanger, abnormal operation of the compressor, stuck electronic expansion valve, filter clogging, etc. There is. For this reason, the deterioration degree in each failure factor can be evaluated by the common term of influence on air conditioning characteristics.
  • the calculation coefficient storage unit 412 stores, as data, one or a plurality of coefficients used when the deterioration influence calculation unit 411 performs calculation in the processing.
  • the calculation coefficient storage unit 412 stores data of initial coefficients that are determined in advance at the time of product shipment, for example. The initial coefficient can be used as it is, but the coefficient data may be rewritten and updated.
  • the external cloud device 300 performs processing by machine learning to determine the coefficient using various data relating to the operation of the air conditioner 100 at normal time and abnormal time as input. Then, the coefficient data transmitted from the external cloud device 300 is rewritten and stored in the calculation coefficient storage unit 412 via the communication device 440.
  • the diagnosis result storage processing unit 413 stores failure diagnosis result data obtained by the calculation processing by the deterioration influence calculation unit 411 for at least the past certain period. In addition, a display signal for displaying the deterioration of the deterioration factor due to the failure factor in time series with the failure diagnosis result data is sent.
  • the degradation progress prediction unit 414 performs a process of predicting the transition of the future air-conditioning characteristics and the degree of influence of each failure factor based on the data stored in the diagnosis result storage processing unit 413.
  • the diagnosis processing device 410 is constituted by, for example, a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit). Further, it has a storage device (not shown), and has data in which a processing procedure related to control or the like is a program. Then, based on the program data, the control arithmetic processing device executes the processes of the deterioration influence calculation unit 411 and the deterioration progress prediction unit 414 to realize control.
  • each unit may be configured by a different dedicated device (hardware).
  • a neural network is, for example, a processing mechanism that is configured by modeling and networking nerve cells (neurons) that make up the brain.
  • a neural network is, for example, a processing mechanism that is configured by modeling and networking nerve cells (neurons) that make up the brain.
  • a plurality of neurons are conceptually connected to the network, and based on data sent from the air conditioning control device 110 and the sensors 130a to 130n.
  • final calculation result data is output while sending and receiving calculation results between neurons.
  • the control data from the air conditioning control device 110 and various detection data from the sensors 130a to 130n can be used for a large amount of data by using a neural network even when about 20 data are input. The accuracy of calculation can be improved.
  • the failure diagnosis processing is mainly performed by the deterioration influence calculation unit 411 of the diagnosis processing device 410.
  • the deterioration influence calculation unit 411 determines, based on the data sent from the air conditioning controller 110 and the sensors 130a to 130n, the degree of influence that the failure factor deterioration has on the air conditioning characteristics for each failure factor. Calculate. As the calculation contents, for example, the deterioration influence calculation unit 411 calculates how far the COP deviates from the reference. For example, it is based on the rated value described in the product catalog.
  • the deterioration influence calculation unit 411 further calculates how much each failure factor contributes to the overall influence degree, and outputs the influence degree of each failure factor as a failure diagnosis result.
  • FIG. 2 is a diagram showing an output example of a failure diagnosis result of each failure factor influence comparison in the first embodiment of the present invention.
  • FIG. 2 shows a case where the remote controller of the air conditioner 100 displays on the display device 430.
  • the deterioration influence calculation unit 411 transmits a display signal related to the failure diagnosis result to the display device 430 to display it. Therefore, each failure factor can be evaluated by the degree of influence on a common air conditioning characteristic called COP. Therefore, as shown on the right half side of the screen shown in FIG. 2, the degree of deterioration of each failure factor can be displayed as a numerical value called the degree of influence on COP. Further, as displayed on the left half side of the screen shown in FIG.
  • the degree of deterioration of each failure factor can be associated with each other and expressed as, for example, a radar chart.
  • the point of the failure factor having the greatest influence is located at the top of the outermost shell, and the points of the other failure factors are relative to the influence of the failure factor having the greatest influence. The position is determined.
  • FIG. 2 it can be visually understood that the decrease in COP of the air conditioner 100 is most affected by deterioration due to filter clogging or the like.
  • a signal including the result data may be sent from the communication device 440 and displayed on the display device of the external terminal device 200.
  • the diagnosis result storage processing unit 413 of the diagnosis processing apparatus 410 stores data obtained as a result of the failure diagnosis processing performed by the past deterioration influence calculation unit 411.
  • the deterioration progress prediction unit 414 performs the deterioration prediction process in the device related to the failure factor based on the result data stored in the diagnosis result storage processing unit 413.
  • the content of the prediction process is not particularly limited. For example, for a failure factor having a theoretical formula related to prediction, the result data may be applied to the theoretical formula, and a predicted value may be calculated by performing an operation. Further, a predicted value or the like may be calculated by machine learning or the like.
  • FIG. 3 is a diagram showing an output example related to the secular change of the failure factor in the first embodiment of the present invention.
  • FIG. 3 shows a case where the remote controller of the air conditioner 100 displays on the display device 430.
  • the deterioration progress prediction unit 414 transmits a display signal related to the prediction process to the display device 430 together with the past calculation result data stored in the diagnosis result storage processing unit 413.
  • the change over time in the degree of influence of COP due to failure factors and the progress of deterioration in the future are visually displayed.
  • the display device 430 but also the signal transmitted from the communication device 440 may be displayed on the display device of the external terminal device 200.
  • a user, a maintenance contractor, or the like can visually grasp the progress of deterioration of each failure factor. And it becomes easy to determine the timing of maintenance, part replacement, and the like.
  • the diagnostic processing conditions and result data stored in the diagnostic result storage processing unit 413 are transmitted to the external cloud device 300 via the communication device 440 and stored therein, for example, at regular intervals. Based on these data, the machine learning device 310 of the external cloud device 300 performs machine learning processing to calculate the coefficient, whereby the coefficient necessary for the calculation of the deterioration influence calculation unit 411 can be improved.
  • the deterioration influence calculation unit 411 determines that the degree of deterioration of one or more failure factors exceeds a predetermined deterioration value based on the failure diagnosis result, the deterioration influence calculation unit 411 sends a signal related to notification to the notification device 450.
  • a signal indicating that an abnormality has occurred in the external terminal device 200 is sent via the communication device 440, and the display device of the external terminal device 200 notifies that there is an abnormality in the air conditioner 100. You may do it.
  • the notification there is a visual notification by light emission or blinking in the display device 430 and the external terminal device 200 as described above. In addition, there is an audible notification that generates a warning sound from the sound generation device.
  • a signal indicating that an abnormality has occurred in the air conditioner 100 may be sent to a maintenance service company that maintains the air conditioner 100 via the communication device 440 so as to notify the maintenance service company.
  • the notification to the maintenance service company may be notified by sending a signal from the communication device 440 to the maintenance service company via the external terminal device 200.
  • the failure diagnosis process performed by the air conditioner failure diagnosis apparatus 400 is executed based on a diagnosis execution request signal input via the operation device 420 by a user, a maintenance company, or the like, for example.
  • the failure diagnosis process may be executed periodically. By performing the failure diagnosis process periodically, it can be expected that the function of the air conditioner 100 is maintained and the effect on maintenance can be expected.
  • abnormality for example, when it is determined that the temperature of the refrigerant sealed in the refrigerant circuit of the air conditioner 100 exceeds a predetermined temperature value based on the data detected by the sensors 130a to 130n.
  • a failure diagnosis process may be executed. Thereby, when the air conditioner 100 confirms an abnormality, a failure factor that causes the abnormality can be analyzed. Further, when determining whether or not to execute the failure diagnosis process, it is not only determined based on the data related to the detection of one sensor 130 but also determined by combining the data related to the detection of a plurality of sensors 130. Also good.
  • the air-conditioning control device 110 may determine whether to execute the failure diagnosis process based on the detection values of the sensors 130a to 130n.
  • COP is used as an air conditioner characteristic influenced by a failure factor.
  • COP is one index expressing energy consumption efficiency, but in the present invention, it is not limited to COP.
  • another energy consumption efficiency such as APF (annual energy consumption efficiency) may be used as the air conditioner characteristic.
  • FIG. 4 is a diagram illustrating a configuration example of an air conditioner failure diagnosis system 000 centering on the air conditioner failure diagnosis apparatus 400 according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 perform the same operations as those in the first embodiment.
  • the air conditioner failure diagnosis apparatus 400 is installed in the air conditioner 100.
  • the air conditioner failure diagnosis device 400 is installed in the external cloud device 300.
  • the diagnosis processing device 410 of the air conditioner failure diagnosis device 400 is installed in the external cloud device 300.
  • the operation device, the display device, the communication device, and the notification device installed in the air conditioner 100 operate as the operation device 420, the display device 430, the communication device 440, and the notification device 450, respectively.
  • the diagnosis processing device 410 Are input via the communication device 440 in the air conditioner 100 and the cloud communication device 320 of the external cloud device 300.
  • the display signal output from the diagnostic processing device 410 is sent to the display device 430 in the air conditioner 100 via the cloud communication device 320 and the communication device 440.
  • the air conditioner failure diagnosis apparatus 400 is installed in the external cloud apparatus 300, in the air conditioner 100, the burden on the failure determination process is reduced. Can do.
  • Embodiment 3 In the first embodiment described above, the processing and operation in the air conditioner failure diagnosis apparatus 400 when the air conditioning characteristic is energy consumption efficiency have been described.
  • processing and operation in the air conditioner failure diagnosis apparatus 400 when the air conditioning characteristic is the magnitude of the air conditioning load will be described.
  • the diagnosis processing device 410 in the air conditioner failure diagnosis device 400 according to the third embodiment performs a failure determination process based on the maximum capacity as an index expressing the magnitude of the air conditioning load.
  • the configuration of the system will be described as being the same as that of the air conditioner failure diagnosis system 000 of the first embodiment.
  • the deterioration influence calculation unit 411 of the diagnostic processing device 410 is based on the data sent from the air conditioning control device 110 and the sensors 130a to 130n to what extent the maximum capacity deviates from the reference. Is calculated.
  • the standard for the maximum capacity in the third embodiment is, for example, a rated value described in a catalog or the like. This is the influence of the entire air conditioner 100 due to the deterioration of the failure factor.
  • the deterioration influence calculation unit 411 further calculates how much each failure factor contributes to the overall influence degree, and outputs the influence degree of each failure factor as a failure diagnosis result.
  • FIG. 5 is a diagram showing an output example of a failure diagnosis result of each failure factor influence comparison in the third embodiment of the present invention.
  • FIG. 5 shows a case where the remote controller of the air conditioner 100 displays on the display device 430.
  • the deterioration influence calculation unit 411 transmits a display signal related to the failure diagnosis result to the display device 430 to display it. Therefore, each failure factor can be evaluated based on the degree of influence on the common air-conditioning characteristic of maximum capacity. For this reason, as shown in the right half side of the screen shown in FIG. 5, the degree of deterioration of each failure factor can be displayed as a numerical value called the degree of influence on the maximum capacity. Further, as displayed on the left half side of the screen shown in FIG.
  • the degree of deterioration of each failure factor can be associated with other failure factors, for example, expressed as a radar chart.
  • a signal including the result data may be sent from the communication device 440 and displayed on the display device of the external terminal device 200.
  • FIG. 6 is a diagram showing an output example related to the secular change of the failure factor in the third embodiment of the present invention.
  • FIG. 6 shows a case where the remote controller of the air conditioner 100 displays on the display device 430.
  • the deterioration progress prediction unit 414 transmits a display signal related to the prediction process to the display device 430 together with the past calculation result data stored in the diagnosis result storage processing unit 413.
  • the influence of the failure factor on the maximum capacity over time and the progress of deterioration in the future are visually displayed.
  • the display device 430 not also the signal transmitted from the communication device 440 may be displayed on the display device of the external terminal device 200.
  • the failure diagnosis process performed by the air conditioner failure diagnosis apparatus 400 may be performed in the case of a diagnosis execution request, a periodic diagnosis, an abnormal state, etc., as described in the first embodiment.
  • the maximum capacity of the air conditioner 100 is one index that expresses the air conditioner characteristic (the size of the air conditioner load that can be processed by the air conditioner 100), which is an air conditioner characteristic.
  • the failure determination process is performed using the air conditioning capability of the other air conditioner 100 such as the air conditioning capability when the frequency of the compressor included in the air conditioner 100 is constant as the air conditioner characteristics. It may be.
  • Embodiment 4 In the first to third embodiments described above, the energy consumption efficiency and the air conditioning capability of the air conditioner 100 are used as the air conditioner characteristics affected by the failure factor.
  • the present invention is not limited to this,
  • the power consumption of the air conditioner 100, the magnitude of noise, and the like may be used as the air conditioner characteristics.
  • the air conditioner failure diagnosis apparatus 400 may perform failure determination processing for a plurality of air conditioner characteristics as well as failure determination processing for one air conditioner characteristic.
  • Air conditioner failure diagnosis system 100 air conditioner, 110 air condition control device, 120, 120a-120n actuator, 130, 130a-130n sensor, 200 external terminal device, 300 external cloud device, 310 machine learning device, 320 cloud Communication device, 330 Cloud storage device, 400 Air conditioner failure diagnosis device, 410 Diagnosis processing device, 411 Deterioration influence calculation unit, 412 Operation coefficient storage unit, 413 Diagnosis result storage processing unit, 414 Deterioration progress prediction unit, 415 Deviation degree calculation Unit, 420 operation device, 430 display device, 440 communication device, 441 terminal communication unit, 442 line communication unit, 450 notification device, 500 electric communication line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner failure diagnosing device is provided with: a diagnosis processing device which performs processing related to a failure diagnosis of an air conditioner on data that indicates a state of the air conditioner and data about a control of the air conditioner, wherein the diagnosis processing device includes: a deviation degree calculation unit which calculates the degrees of deviation from criteria for air conditioning characteristics with respect to at least one or more air conditioning characteristics that are indications for indicating the performance of the air conditioner; and a degradation influence calculation unit which performs, on a plurality of predetermined failure factors that cause failure of the air conditioner, a failure diagnosis processing that diagnoses, on the basis of the degrees of deviation, a degradation degree caused by the failure factors.

Description

空気調和機故障診断装置Air conditioner failure diagnosis device
 この発明は、空気調和機の劣化、故障などの診断を行う空気調和機故障診断装置に関するものである。特に、故障などの原因となる故障因子における評価などを行えるようにするものである。 The present invention relates to an air conditioner failure diagnosis apparatus for diagnosing deterioration or failure of an air conditioner. In particular, it enables evaluation of failure factors that cause failures and the like.
 空間の温度および湿度の少なくとも一方を制御する空気調和機は広く普及しており、快適な空間などを演出する上で必要不可欠なものとなった。このため、空気調和機の故障は、利用者の不快に直結する。また、サーバールーム、冷凍倉庫などの環境においては、空気調和機の故障は、業務上、致命的な損失に繋がりかねない。そのため、近年、空気調和機の定期的なメンテナンス、故障などの診断(以下、故障診断という)について着目がなされている。 Air conditioners that control at least one of the temperature and humidity of a space have become widespread and have become indispensable for producing a comfortable space. For this reason, the failure of the air conditioner is directly connected to the user's discomfort. In an environment such as a server room or a freezer warehouse, a failure of an air conditioner can lead to a fatal loss in business. Therefore, in recent years, attention has been paid to periodic maintenance of air conditioners, diagnosis of failure, etc. (hereinafter referred to as failure diagnosis).
 ただ、空気調和機は、複数の機能部品および機器が組み合わさって構成されている。このため、メンテナンス箇所、故障箇所を特定するには専門知識が必要になる。 However, the air conditioner is configured by combining a plurality of functional parts and equipment. For this reason, specialized knowledge is required to identify the maintenance location and failure location.
 そこで、たとえば、表示部に点検箇所、部品交換率などを表示させることにより、故障要因を特定する負荷を低減しているものがある(たとえば、特許文献1参照)。 Therefore, for example, there is one that reduces the load for identifying the cause of failure by displaying the inspection location, part replacement rate, etc. on the display unit (see, for example, Patent Document 1).
特開2007-192492号公報JP 2007-192492 A
 しかしながら、上記の特許文献1では、故障要因が、空気調和機の性能に及ぼす影響を評価することができない。このため、部品などを交換した結果、どの程度、交換に係るメリットを享受できるか、劣化がどのように進行しているかなどを定量的に評価することができない。 However, in Patent Document 1 described above, it is impossible to evaluate the influence of the failure factor on the performance of the air conditioner. For this reason, as a result of exchanging parts, it is impossible to quantitatively evaluate how much the merit relating to the exchange can be enjoyed or how the deterioration proceeds.
 この発明は、上記の実情に鑑みてなされたものであり、空気調和機における故障因子における劣化度合を、空気調和機の性能に基づいて、定量的に評価することができる空気調和機故障診断装置を得ることを目的とする。 The present invention has been made in view of the above circumstances, and an air conditioner failure diagnosis apparatus capable of quantitatively evaluating the degree of deterioration of a failure factor in an air conditioner based on the performance of the air conditioner. The purpose is to obtain.
 上記の目的を達成するため、この発明に係る空気調和機故障診断装置は、空気調和機の状態を示すデータおよび空気調和機の制御に関するデータから、空気調和機の故障診断に係る処理を行う診断処理装置を備え、診断処理装置は、空気調和機の性能を示す指標である空気調和特性の、少なくとも1以上の空気調和特性について、空気調和特性の基準からの乖離度を演算する処理を行う乖離度演算部と、乖離度に基づいて、空気調和機の故障の原因となるあらかじめ定められた複数の故障因子について、故障因子による劣化度合を診断する故障診断処理を行う劣化影響演算部とを有するものである。 In order to achieve the above object, an air conditioner failure diagnosis apparatus according to the present invention performs diagnosis related to air conditioner failure diagnosis from data indicating the state of an air conditioner and data relating to control of the air conditioner. The diagnostic processing device includes a processing device, and the diagnostic processing device performs a process of calculating a degree of divergence of the air conditioning characteristics from the air conditioning characteristics with respect to at least one of the air conditioning characteristics, which is an index indicating the performance of the air conditioner. And a deterioration influence calculation unit that performs failure diagnosis processing for diagnosing the degree of deterioration due to the failure factor for a plurality of predetermined failure factors that cause the failure of the air conditioner based on the degree of deviation Is.
 この発明によれば、空気調和機の故障の原因となる複数の故障因子について、故障に到る劣化度合を、空気調和特性という共通項で定量的に表すことができるので、故障因子に係る機器、部品などに対し、修理の時期、交換、修理の優先度を容易に判断することができる。 According to the present invention, the degree of deterioration leading to a failure can be quantitatively expressed by a common term called air conditioning characteristics for a plurality of failure factors that cause the failure of the air conditioner. It is possible to easily determine the repair timing, replacement, and repair priority for parts.
この発明の実施の形態1における空気調和機故障診断装置400を中心とする空気調和機故障診断システム000の構成例を示す図である。It is a figure which shows the structural example of the air conditioner fault diagnostic system 000 centering on the air conditioner fault diagnostic apparatus 400 in Embodiment 1 of this invention. この発明の実施の形態1における各故障因子影響比較の故障診断結果の出力例を示す図である。It is a figure which shows the example of an output of the failure diagnosis result of each failure factor influence comparison in Embodiment 1 of this invention. この発明の実施の形態1における故障因子の経年変化に係る出力例を示す図である。It is a figure which shows the example of an output which concerns on the secular change of the failure factor in Embodiment 1 of this invention. この発明の実施の形態2における空気調和機故障診断装置400を中心とする空気調和機故障診断システム000の構成例を示す図である。It is a figure which shows the structural example of the air conditioner fault diagnostic system 000 centering on the air conditioner fault diagnostic apparatus 400 in Embodiment 2 of this invention. この発明の実施の形態3における各故障因子影響比較の故障診断結果の出力例を示す図である。It is a figure which shows the example of an output of the failure diagnosis result of each failure factor influence comparison in Embodiment 3 of this invention. この発明の実施の形態3における故障因子の経年変化に係る出力例を示す図である。It is a figure which shows the example of an output which concerns on the secular change of the failure factor in Embodiment 3 of this invention.
 以下、この発明の実施形態について、図面を参照して詳細に説明する。ここで、参照する図面の各図において、共通する機器などの要素には、同一の符号を付している。また、この発明は、以下の実施の形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲で種々に変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, in each of the drawings to be referred to, elements such as common devices are denoted by the same reference numerals. Further, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit of the present invention.
実施の形態1.
<空気調和機故障診断システム000の構成>
 図1は、この発明の実施の形態1における空気調和機故障診断装置400を中心とする空気調和機故障診断システム000の構成例を示す図である。図1において、空気調和機故障診断システム000は、空気調和機100、外部端末装置200、外部クラウド装置300および空気調和機故障診断装置400を有している。
Embodiment 1 FIG.
<Configuration of Air Conditioner Failure Diagnosis System 000>
FIG. 1 is a diagram illustrating a configuration example of an air conditioner failure diagnosis system 000 centering on an air conditioner failure diagnosis apparatus 400 according to Embodiment 1 of the present invention. In FIG. 1, an air conditioner failure diagnosis system 000 includes an air conditioner 100, an external terminal device 200, an external cloud device 300, and an air conditioner failure diagnosis device 400.
 外部端末装置200は、表示機能、報知機能、通信機能を実現する装置を少なくとも有する。たとえば、スマートフォン、タブレット端末などが外部端末装置200となる。 External terminal device 200 has at least a device that realizes a display function, a notification function, and a communication function. For example, a smart phone, a tablet terminal, etc. become the external terminal device 200.
 また、外部クラウド装置300は、たとえば、クラウドサービスにより提供される空気調和機100外の外部処理記憶装置である。外部クラウド装置300は、たとえば、電気通信回線(ネットワーク)500を介して、外部端末装置200および空気調和機故障診断装置400と通信接続されている。外部クラウド装置300は、空気調和機故障診断装置400が処理して得られた故障診断結果のデータなど、各種のデータを記憶して、蓄積するデータベースとなる。また、記憶されたデータに基づいて、演算処理などを行う。外部クラウド装置300は、クラウド通信装置320、機械学習装置310およびクラウド記憶装置330を有している。 Further, the external cloud device 300 is an external processing storage device outside the air conditioner 100 provided by a cloud service, for example. The external cloud device 300 is communicatively connected to the external terminal device 200 and the air conditioner failure diagnosis device 400 via, for example, an electric communication line (network) 500. The external cloud device 300 is a database that stores and accumulates various types of data such as failure diagnosis result data obtained by processing by the air conditioner failure diagnosis device 400. Also, arithmetic processing and the like are performed based on the stored data. The external cloud device 300 includes a cloud communication device 320, a machine learning device 310, and a cloud storage device 330.
 クラウド通信装置320は、たとえば、機械学習装置310、クラウド記憶装置330などの外部クラウド装置300内の装置が、電気通信回線500を介して、クラウド通信装置320外の装置と通信を行う際のインターフェイスとなり、信号変換などを行う。機械学習装置310は、入力されたデータについて、機械学習による処理を行う装置である。機械学習とは、機能単位が新しい知識および技能を獲得すること、または、既存の知識および技能を再構成することによって、自身の性能を向上させる過程である。ここでは、空気調和機故障診断装置400において行われた故障診断の結果のデータから、空気調和機故障診断装置400が故障診断を行う際の演算処理に用いる係数を算出する。クラウド記憶装置330は、機械学習装置310の演算に係る係数、空気調和機故障診断装置400からの故障診断の結果などを、データとして記憶する。 The cloud communication device 320 is an interface when devices in the external cloud device 300 such as the machine learning device 310 and the cloud storage device 330 communicate with devices outside the cloud communication device 320 via the electric communication line 500, for example. Then, signal conversion is performed. The machine learning device 310 is a device that performs processing by machine learning on input data. Machine learning is a process in which a functional unit improves its performance by acquiring new knowledge and skills, or by reconstructing existing knowledge and skills. Here, the coefficient used for the arithmetic processing when the air conditioner failure diagnosis apparatus 400 performs failure diagnosis is calculated from the data of the result of the failure diagnosis performed in the air conditioner failure diagnosis apparatus 400. The cloud storage device 330 stores, as data, a coefficient related to the calculation of the machine learning device 310, a result of failure diagnosis from the air conditioner failure diagnosis device 400, and the like.
 空気調和機100は、圧縮機、熱交換器、膨張弁などの機器を配管接続して冷媒回路を構成し、冷媒回路に封入された冷媒を循環させることで、対象空間の空気調和を行う装置である。ここで、空気調和機100は、空気調和制御装置110、センサ130a~センサ130nおよびアクチュエータ120a~アクチュエータ120nを、制御に関する装置、機器などとして有している。 The air conditioner 100 is an apparatus that performs air conditioning of a target space by connecting a device such as a compressor, a heat exchanger, an expansion valve, and the like to form a refrigerant circuit and circulating the refrigerant enclosed in the refrigerant circuit. It is. Here, the air conditioner 100 includes the air conditioning control device 110, the sensors 130a to 130n, and the actuators 120a to 120n as devices and devices related to control.
 アクチュエータ120a~アクチュエータ120nは、たとえば、圧縮機、電子膨張弁、風向制御装置などの駆動機器である。アクチュエータ120a~アクチュエータ120nは、空気調和制御装置110から送られる制御に係るデータに基づいて駆動制御される機器である。また、センサ130a~センサ130nは、たとえば、冷媒回路における冷媒の温度、圧力など、対象空間の温度分布など物理量を検出する。検出された温度、圧力などは、空気調和機100の状態を示すデータとなる。そして、検出に係るデータを含む信号を出力する。ここで、センサ130a~センサ130nは、たとえば、温度検出装置、圧力検出装置、赤外線カメラなどの装置である。空気調和制御装置110は、空気調和機100を制御する装置である。空気調和制御装置110は、センサ130a~センサ130nから送られる信号に含まれるデータに基づいて、たとえば、アクチュエータ120a~アクチュエータ120nに、制御に関するデータを含む信号を送り、駆動を制御する。ここで、センサ130a~センサ130nおよびアクチュエータ120a~アクチュエータ120nについて、特に限定しない場合には、それぞれセンサ130、アクチュエータ120として説明する。 Actuators 120a to 120n are drive devices such as a compressor, an electronic expansion valve, and a wind direction control device. The actuators 120a to 120n are devices that are driven and controlled based on control-related data sent from the air conditioning controller 110. The sensors 130a to 130n detect physical quantities such as the temperature distribution of the target space such as the temperature and pressure of the refrigerant in the refrigerant circuit. The detected temperature, pressure, and the like are data indicating the state of the air conditioner 100. Then, a signal including data related to detection is output. Here, the sensors 130a to 130n are devices such as a temperature detection device, a pressure detection device, and an infrared camera, for example. The air conditioning control device 110 is a device that controls the air conditioner 100. Based on the data included in the signals sent from the sensors 130a to 130n, the air conditioning control apparatus 110 sends a signal including data related to the control to the actuators 120a to 120n, for example, to control driving. Here, the sensors 130a to 130n and the actuators 120a to 120n will be described as the sensor 130 and the actuator 120, respectively, unless otherwise specified.
 空気調和機故障診断装置400は、空気調和機100の空気調和制御装置110、センサ130などから送られる信号に含まれる各種データに基づいて処理を行い、診断対象となる空気調和機100の故障診断などを行う。実施の形態1では、空気調和機故障診断装置400は、診断対象となる空気調和機100内に設置されているものとする。 The air conditioner failure diagnosis device 400 performs processing based on various data included in signals sent from the air conditioner control device 110, the sensor 130, etc. of the air conditioner 100, and diagnoses the failure of the air conditioner 100 to be diagnosed. And so on. In Embodiment 1, the air conditioner failure diagnosis apparatus 400 is installed in the air conditioner 100 to be diagnosed.
 空気調和機故障診断装置400は、診断処理装置410、操作装置420、表示装置430、通信装置440および報知装置450を備える。操作装置420は、ユーザ、メンテナンス業者などの操作者が入力した指示などを含む信号を診断処理装置410に送る。表示装置430は、たとえば、診断処理装置410から送られる表示信号に基づく表示を行う。報知装置450は、たとえば、診断処理装置410から送られる報知に係る信号に基づいて、ユーザなどに報知を行う装置である。報知装置については、たとえば、発光または点滅などによる視覚的な報知を行う発光装置がある。他にも、警告音の発生などによる聴覚的な報知を行う発音装置がある。また、表示装置430を報知装置としてもよい。 The air conditioner failure diagnosis device 400 includes a diagnosis processing device 410, an operation device 420, a display device 430, a communication device 440, and a notification device 450. The operation device 420 sends a signal including an instruction input by an operator such as a user or a maintenance company to the diagnosis processing device 410. The display device 430 performs display based on a display signal sent from the diagnostic processing device 410, for example. The notification device 450 is a device that notifies a user or the like based on a signal related to notification sent from the diagnostic processing device 410, for example. As the notification device, for example, there is a light-emitting device that performs visual notification by light emission or blinking. In addition, there is a sounding device that makes an audible notification by generating a warning sound. The display device 430 may be a notification device.
 通信装置440は、たとえば、診断処理装置410が、外部端末装置200、外部クラウド装置300などの空気調和機故障診断装置400外の装置と通信を行う際のインターフェイスとなり、信号変換などを行う。実施の形態1においては、通信装置440は、端末通信部441および回線通信部442を有している。端末通信部441は、外部端末装置200との通信を行う。また、回線通信部442は、電気通信回線500を介して、外部クラウド装置300との通信を行う。 The communication device 440 serves as an interface when the diagnostic processing device 410 communicates with devices outside the air conditioner failure diagnosis device 400 such as the external terminal device 200 and the external cloud device 300, and performs signal conversion and the like. In Embodiment 1, the communication device 440 includes a terminal communication unit 441 and a line communication unit 442. The terminal communication unit 441 performs communication with the external terminal device 200. In addition, the line communication unit 442 performs communication with the external cloud device 300 via the electric communication line 500.
 ここで、通信装置440は、外部クラウド装置300と通信をする際、外部端末装置200を経由した通信ができるようにしてもよい。たとえば、通信装置440が、Wi-Fi、Bluetooth(登録商標)などの近距離の通信方式で外部端末装置200と通信する。外部端末装置200は、電気通信回線500における信号を送受する中継装置となって、電気通信回線500に接続された外部クラウド装置300と通信を行う。この場合には、回線通信部442はなくてもよい。 Here, when the communication device 440 communicates with the external cloud device 300, the communication device 440 may perform communication via the external terminal device 200. For example, the communication device 440 communicates with the external terminal device 200 using a short-range communication method such as Wi-Fi or Bluetooth (registered trademark). The external terminal device 200 serves as a relay device that transmits and receives signals on the telecommunications line 500 and communicates with the external cloud device 300 connected to the telecommunications line 500. In this case, the line communication unit 442 may be omitted.
 前述したように、空気調和機故障診断装置400は、空気調和機100内に設置されている。このため、たとえば、空気調和機100に設置されたリモートコントローラが有する操作装置、表示装置、通信装置および報知装置が、操作装置420、表示装置430、通信装置440および報知装置450であってもよい。 As described above, the air conditioner failure diagnosis apparatus 400 is installed in the air conditioner 100. Therefore, for example, the operation device, the display device, the communication device, and the notification device included in the remote controller installed in the air conditioner 100 may be the operation device 420, the display device 430, the communication device 440, and the notification device 450. .
 診断処理装置410は、乖離度演算部415、劣化影響演算部411、演算係数記憶部412、診断結果記憶処理部413および劣化進行予測部414を有する。乖離度演算部415および劣化影響演算部411には、たとえば、空気調和制御装置110から送られた信号に含まれる空気調和機100の制御に関するデータ、センサ130a~センサ130nから送られた信号に含まれる、空気調和機100の状態を示す各種検出データが入力される。乖離度演算部415は、空気調和特性について、前記空気調和特性の基準からの乖離度を演算する処理を行う。劣化影響演算部411は、さらに乖離度を含むデータから、故障因子による故障、劣化などが空気調和特性に及ぼす影響度を、故障因子別に演算する。 The diagnosis processing apparatus 410 includes a divergence degree calculation unit 415, a deterioration influence calculation unit 411, a calculation coefficient storage unit 412, a diagnosis result storage processing unit 413, and a deterioration progress prediction unit 414. The divergence degree calculation unit 415 and the deterioration influence calculation unit 411 include, for example, data related to the control of the air conditioner 100 included in the signal sent from the air conditioning control device 110 and the signals sent from the sensors 130a to 130n. Various detection data indicating the state of the air conditioner 100 is input. The divergence degree calculation unit 415 performs processing for calculating the degree of divergence of the air conditioning characteristics from the reference of the air conditioning characteristics. The deterioration influence calculation unit 411 further calculates the influence degree of failure, deterioration, etc. due to the failure factor on the air conditioning characteristics from the data including the divergence degree for each failure factor.
 ここで、空気調和特性とは、空気調和機100が有する性能(仕様)のことである。実施の形態1においては、エネルギー消費効率を表現する指標の1つであるCOP(成績係数)を空気調和特性とする。故障因子は、空気調和機100を故障に導く原因となる要素である。また、故障因子は、空気調和特性を悪化させる要因となる。故障因子としては、たとえば、空気調和機100における冷媒回路内の冷媒量不足、送風ファンの動作異常、熱交換器の汚損または腐食、圧縮機の動作異常、電子膨張弁の固着、フィルタ目詰りなどがある。このため、空気調和特性への影響という共通項により、各故障因子における劣化度合を評価することができる。 Here, the air conditioning characteristics are the performance (specifications) of the air conditioner 100. In the first embodiment, COP (coefficient of performance), which is one of the indexes expressing energy consumption efficiency, is set as the air conditioning characteristic. The failure factor is an element that causes the air conditioner 100 to fail. Further, the failure factor becomes a factor that deteriorates the air conditioning characteristics. The failure factors include, for example, insufficient refrigerant amount in the refrigerant circuit in the air conditioner 100, abnormal operation of the blower fan, fouling or corrosion of the heat exchanger, abnormal operation of the compressor, stuck electronic expansion valve, filter clogging, etc. There is. For this reason, the deterioration degree in each failure factor can be evaluated by the common term of influence on air conditioning characteristics.
 演算係数記憶部412は、劣化影響演算部411が処理において、演算を行う際に用いる1または複数の係数を、データとして記憶する。演算係数記憶部412には、たとえば、製品出荷時などに、あらかじめ定められた初期の係数のデータが記憶されている。初期の係数をそのまま用いることもできるが、係数のデータを書き換えて更新するようにしてもよい。たとえば、空気調和機100の正常時および異常時における運転に係る各種データを入力として、外部クラウド装置300が、機械学習による処理を行って係数を決定する。そして、通信装置440を介して、演算係数記憶部412に、外部クラウド装置300から送られた係数のデータに書き換えられて、記憶される。 The calculation coefficient storage unit 412 stores, as data, one or a plurality of coefficients used when the deterioration influence calculation unit 411 performs calculation in the processing. The calculation coefficient storage unit 412 stores data of initial coefficients that are determined in advance at the time of product shipment, for example. The initial coefficient can be used as it is, but the coefficient data may be rewritten and updated. For example, the external cloud device 300 performs processing by machine learning to determine the coefficient using various data relating to the operation of the air conditioner 100 at normal time and abnormal time as input. Then, the coefficient data transmitted from the external cloud device 300 is rewritten and stored in the calculation coefficient storage unit 412 via the communication device 440.
 診断結果記憶処理部413は、劣化影響演算部411が演算処理して得られた故障診断結果のデータを、少なくとも過去一定期間分記憶する。また、故障診断結果のデータを時系列にして故障因子による劣化度合の経年変化を表示させる表示信号を送る。劣化進行予測部414は、診断結果記憶処理部413が記憶するデータに基づいて、今後の空気調和特性および各故障因子の影響度の推移について、予測する処理を行う。 The diagnosis result storage processing unit 413 stores failure diagnosis result data obtained by the calculation processing by the deterioration influence calculation unit 411 for at least the past certain period. In addition, a display signal for displaying the deterioration of the deterioration factor due to the failure factor in time series with the failure diagnosis result data is sent. The degradation progress prediction unit 414 performs a process of predicting the transition of the future air-conditioning characteristics and the degree of influence of each failure factor based on the data stored in the diagnosis result storage processing unit 413.
 ここで、診断処理装置410は、たとえば、CPU(Central Processing Unit)などの制御演算処理装置を有するマイクロコンピュータなどで構成されている。また、記憶装置(図示しない)を有しており、制御などに係る処理手順をプログラムとしたデータを有している。そして、制御演算処理装置がプログラムのデータに基づいて、劣化影響演算部411および劣化進行予測部414の処理を実行して制御を実現する。また、各部をそれぞれ異なる専用機器(ハードウェア)で構成してもよい。 Here, the diagnosis processing device 410 is constituted by, for example, a microcomputer having a control arithmetic processing device such as a CPU (Central Processing Unit). Further, it has a storage device (not shown), and has data in which a processing procedure related to control or the like is a program. Then, based on the program data, the control arithmetic processing device executes the processes of the deterioration influence calculation unit 411 and the deterioration progress prediction unit 414 to realize control. In addition, each unit may be configured by a different dedicated device (hardware).
 特に、実施の形態1における乖離度演算部415および劣化影響演算部411での演算には、ニューラルネットワークを利用するものとする。ニューラルネットワークとは、たとえば、脳を構成する神経細胞(ニューロン)をモデル化し、ネットワーク化して構成した処理機構である。このため、実施の形態1の乖離度演算部415および劣化影響演算部411において、概念的に複数のニューロンがネットワーク接続され、空気調和制御装置110およびセンサ130a~センサ130nから送られるデータに基づいて、ニューロン間で演算結果を送受しながら、最終的な演算結果のデータが出力されるものとする。たとえば、空気調和制御装置110からの制御データ、センサ130a~センサ130nからの各種検出データが、約20のデータが入力される場合でも、ニューラルネットワークを利用することで、多くのデータに対応し、演算の精度を向上させることができる。 In particular, it is assumed that a neural network is used for the calculation in the divergence degree calculation unit 415 and the deterioration influence calculation unit 411 in the first embodiment. A neural network is, for example, a processing mechanism that is configured by modeling and networking nerve cells (neurons) that make up the brain. For this reason, in the divergence degree calculation unit 415 and the degradation influence calculation unit 411 of the first embodiment, a plurality of neurons are conceptually connected to the network, and based on data sent from the air conditioning control device 110 and the sensors 130a to 130n. Assume that final calculation result data is output while sending and receiving calculation results between neurons. For example, the control data from the air conditioning control device 110 and various detection data from the sensors 130a to 130n can be used for a large amount of data by using a neural network even when about 20 data are input. The accuracy of calculation can be improved.
<故障診断の動作>
 次に、空気調和機故障診断装置400が行う故障診断に係る動作について説明する。故障診断処理は、主として診断処理装置410の劣化影響演算部411が行う。前述したように、劣化影響演算部411は、空気調和制御装置110およびセンサ130a~センサ130nから送られるデータに基づいて、故障因子の劣化などが空気調和特性に及ぼす影響度を、各故障因子別に演算する。演算内容としては、たとえば、劣化影響演算部411は、COPが、基準よりもどの程度乖離しているかを演算する。たとえば、製品カタログなどに記載される定格値を基準とする。これが、故障因子の劣化による空気調和機100全体の影響度となる。劣化影響演算部411は、さらに、全体の影響度に対して各故障因子がどの程度寄与しているかを演算し、各故障因子の影響度を故障診断結果として出力する。
<Operation of fault diagnosis>
Next, the operation | movement which concerns on the failure diagnosis which the air conditioner failure diagnosis apparatus 400 performs is demonstrated. The failure diagnosis processing is mainly performed by the deterioration influence calculation unit 411 of the diagnosis processing device 410. As described above, the deterioration influence calculation unit 411 determines, based on the data sent from the air conditioning controller 110 and the sensors 130a to 130n, the degree of influence that the failure factor deterioration has on the air conditioning characteristics for each failure factor. Calculate. As the calculation contents, for example, the deterioration influence calculation unit 411 calculates how far the COP deviates from the reference. For example, it is based on the rated value described in the product catalog. This is the influence of the entire air conditioner 100 due to the deterioration of the failure factor. The deterioration influence calculation unit 411 further calculates how much each failure factor contributes to the overall influence degree, and outputs the influence degree of each failure factor as a failure diagnosis result.
 図2は、この発明の実施の形態1における各故障因子影響比較の故障診断結果の出力例を示す図である。図2は、空気調和機100が有するリモートコントローラにおいて、表示装置430に表示された場合について示している。劣化影響演算部411は、故障診断結果に係る表示信号を表示装置430に送信し、表示させる。したがって、各故障因子について、COPという共通した空気調和特性への影響度で評価を行うことができる。このため、図2に示す画面の右半分側に示されているように、各故障因子の劣化の度合を、COPへの影響度という数値で表示することができる。また、図2に示す画面の左半分側に表示されているように、各故障因子の劣化の度合について、故障因子間の関連付けを行い、たとえば、レーダーチャートとして表現することができる。図2のレーダーチャートでは、影響度が最も大きい故障因子のポイントが最外殻の頂点に位置し、他の故障因子のポイントは、影響度が最も大きい故障因子の影響度に対する相対的な大きさの位置に決まる。図2においては、空気調和機100のCOP低下は、フィルタの目詰まりなどによる劣化が最も影響していることを、視覚的に理解することができる。ここで、評価結果を表示装置430に表示させるだけでなく、通信装置440から、結果のデータを含む信号を送り、外部端末装置200が有する表示装置に表示させるようにしてもよい。 FIG. 2 is a diagram showing an output example of a failure diagnosis result of each failure factor influence comparison in the first embodiment of the present invention. FIG. 2 shows a case where the remote controller of the air conditioner 100 displays on the display device 430. The deterioration influence calculation unit 411 transmits a display signal related to the failure diagnosis result to the display device 430 to display it. Therefore, each failure factor can be evaluated by the degree of influence on a common air conditioning characteristic called COP. Therefore, as shown on the right half side of the screen shown in FIG. 2, the degree of deterioration of each failure factor can be displayed as a numerical value called the degree of influence on COP. Further, as displayed on the left half side of the screen shown in FIG. 2, the degree of deterioration of each failure factor can be associated with each other and expressed as, for example, a radar chart. In the radar chart of FIG. 2, the point of the failure factor having the greatest influence is located at the top of the outermost shell, and the points of the other failure factors are relative to the influence of the failure factor having the greatest influence. The position is determined. In FIG. 2, it can be visually understood that the decrease in COP of the air conditioner 100 is most affected by deterioration due to filter clogging or the like. Here, not only the evaluation result is displayed on the display device 430 but also a signal including the result data may be sent from the communication device 440 and displayed on the display device of the external terminal device 200.
 また、前述したように、診断処理装置410の診断結果記憶処理部413には、過去の劣化影響演算部411が故障診断処理した結果のデータが記憶されている。劣化進行予測部414は、前述したように、診断結果記憶処理部413に記憶された結果のデータに基づいて、故障因子に係る機器における劣化の予測処理を行う。予測処理の内容については、特に限定するものではない。たとえば、予測に係る理論式が存在する故障因子については、結果のデータを理論式に当てはめ、演算を行って予測値を算出などするようにしてもよい。また、機械学習などにより、予測値などを算出するようにしてもよい。 As described above, the diagnosis result storage processing unit 413 of the diagnosis processing apparatus 410 stores data obtained as a result of the failure diagnosis processing performed by the past deterioration influence calculation unit 411. As described above, the deterioration progress prediction unit 414 performs the deterioration prediction process in the device related to the failure factor based on the result data stored in the diagnosis result storage processing unit 413. The content of the prediction process is not particularly limited. For example, for a failure factor having a theoretical formula related to prediction, the result data may be applied to the theoretical formula, and a predicted value may be calculated by performing an operation. Further, a predicted value or the like may be calculated by machine learning or the like.
 図3は、この発明の実施の形態1における故障因子の経年変化に係る出力例を示す図である。図3は、空気調和機100が有するリモートコントローラにおいて、表示装置430に表示された場合について示している。劣化進行予測部414は、診断結果記憶処理部413に記憶された過去の演算結果のデータとともに、予測処理に係る表示信号を表示装置430に送信する。図3に示すように、故障因子によるCOPへの影響度経年変化および今後の劣化の進行具合が視覚的に表示される。ここで、表示装置430に表示させるだけでなく、通信装置440から、信号を送り、外部端末装置200が有する表示装置に表示させるようにしてもよい。以上のようにして、ユーザ、メンテナンス業者などが、各故障因子の劣化の進行を視覚的に把握することができる。そして、メンテナンス、部品交換などのタイミングを決定することが容易になる。 FIG. 3 is a diagram showing an output example related to the secular change of the failure factor in the first embodiment of the present invention. FIG. 3 shows a case where the remote controller of the air conditioner 100 displays on the display device 430. The deterioration progress prediction unit 414 transmits a display signal related to the prediction process to the display device 430 together with the past calculation result data stored in the diagnosis result storage processing unit 413. As shown in FIG. 3, the change over time in the degree of influence of COP due to failure factors and the progress of deterioration in the future are visually displayed. Here, not only the display device 430 but also the signal transmitted from the communication device 440 may be displayed on the display device of the external terminal device 200. As described above, a user, a maintenance contractor, or the like can visually grasp the progress of deterioration of each failure factor. And it becomes easy to determine the timing of maintenance, part replacement, and the like.
 診断結果記憶処理部413に記憶された診断処理の条件、および結果のデータは、たとえば一定周期で通信装置440を介して外部クラウド装置300へと送信され、記憶される。これらのデータに基づいて、外部クラウド装置300の機械学習装置310が機械学習処理を行って、係数を演算することで、劣化影響演算部411の演算に必要な係数を改善することができる。 The diagnostic processing conditions and result data stored in the diagnostic result storage processing unit 413 are transmitted to the external cloud device 300 via the communication device 440 and stored therein, for example, at regular intervals. Based on these data, the machine learning device 310 of the external cloud device 300 performs machine learning processing to calculate the coefficient, whereby the coefficient necessary for the calculation of the deterioration influence calculation unit 411 can be improved.
 そして、劣化影響演算部411は、故障診断結果に基づいて、1または複数の故障因子における劣化の度合が、劣化所定値を超えていると判定すると、報知に係る信号を送り、報知装置450に報知させる。ここで、通信装置440を経由して、外部端末装置200に異常が発生している旨の信号を送り、空気調和機100に異常があることを、外部端末装置200が有する表示装置によって報知させるようにしてもよい。報知については、前述したように、表示装置430、外部端末装置200における発光または点滅などによる視覚的な報知がある。他にも、発音装置から警告音を発生させる聴覚的な報知などがある。 If the deterioration influence calculation unit 411 determines that the degree of deterioration of one or more failure factors exceeds a predetermined deterioration value based on the failure diagnosis result, the deterioration influence calculation unit 411 sends a signal related to notification to the notification device 450. Let me know. Here, a signal indicating that an abnormality has occurred in the external terminal device 200 is sent via the communication device 440, and the display device of the external terminal device 200 notifies that there is an abnormality in the air conditioner 100. You may do it. As for the notification, there is a visual notification by light emission or blinking in the display device 430 and the external terminal device 200 as described above. In addition, there is an audible notification that generates a warning sound from the sound generation device.
 また、通信装置440を介して、たとえば、空気調和機100を保守などする保守サービス会社に対して、空気調和機100に異常が発生している旨の信号を送り、通報させるようにしてもよい。ここで、保守サービス会社への報知は、通信装置440から外部端末装置200を経由して保守サービス会社へ信号が送られることで、報知されるようにしてもよい。 In addition, for example, a signal indicating that an abnormality has occurred in the air conditioner 100 may be sent to a maintenance service company that maintains the air conditioner 100 via the communication device 440 so as to notify the maintenance service company. . Here, the notification to the maintenance service company may be notified by sending a signal from the communication device 440 to the maintenance service company via the external terminal device 200.
<診断実行タイミング>
 空気調和機故障診断装置400が行う故障診断処理については、たとえば、ユーザ、メンテナンス業者などが操作装置420を介して入力した診断実行要求の信号に基づいて実行する。また、診断実行要求とは別に、定期的に故障診断処理を実行してもよい。定期的に故障診断処理を行うことで、空気調和機100の機能維持、保全への効果などが期待できる。
<Diagnosis execution timing>
The failure diagnosis process performed by the air conditioner failure diagnosis apparatus 400 is executed based on a diagnosis execution request signal input via the operation device 420 by a user, a maintenance company, or the like, for example. In addition to the diagnosis execution request, the failure diagnosis process may be executed periodically. By performing the failure diagnosis process periodically, it can be expected that the function of the air conditioner 100 is maintained and the effect on maintenance can be expected.
 また、センサ130a~130nが検出したデータに基づいて、たとえば、空気調和機100の冷媒回路に封入された冷媒の温度などが所定の温度値を超えたと判断したときなど、異常である可能性があるときに、故障診断処理を実行してもよい。これにより、空気調和機100、異常を確認したときに、その原因となる故障因子を分析することができる。また、故障診断処理を実行するかどうかを判断する際、1つのセンサ130の検出に係るデータに基づいて判断するだけではなく、複数のセンサ130の検出に係るデータを組み合わせて判断するようにしてもよい。ここで、センサ130a~130nの検出値に基づく故障診断処理実行の判断は、空気調和制御装置110が行うようにしてもよい。 Further, there is a possibility of abnormality, for example, when it is determined that the temperature of the refrigerant sealed in the refrigerant circuit of the air conditioner 100 exceeds a predetermined temperature value based on the data detected by the sensors 130a to 130n. At some time, a failure diagnosis process may be executed. Thereby, when the air conditioner 100 confirms an abnormality, a failure factor that causes the abnormality can be analyzed. Further, when determining whether or not to execute the failure diagnosis process, it is not only determined based on the data related to the detection of one sensor 130 but also determined by combining the data related to the detection of a plurality of sensors 130. Also good. Here, the air-conditioning control device 110 may determine whether to execute the failure diagnosis process based on the detection values of the sensors 130a to 130n.
 ここで、前述した実施の形態1の説明では、故障因子が影響を及ぼす空気調和機特性としてCOPを利用した。COPは、エネルギー消費効率を表現する1つの指標であるが、この発明では、COPに限定するものではない。たとえば、APF(年間エネルギー消費効率)などのような、他のエネルギー消費効率を、空気調和機特性として、利用するようにしてもよい。 Here, in the description of the first embodiment described above, COP is used as an air conditioner characteristic influenced by a failure factor. COP is one index expressing energy consumption efficiency, but in the present invention, it is not limited to COP. For example, another energy consumption efficiency such as APF (annual energy consumption efficiency) may be used as the air conditioner characteristic.
実施の形態2.
<空気調和機故障診断システム000の構成>
 図4は、この発明の実施の形態2における空気調和機故障診断装置400を中心とする空気調和機故障診断システム000の構成例を示す図である。図4において、図1と同じ符号を付している機器などについては、実施の形態1と同様の動作を行う。
Embodiment 2. FIG.
<Configuration of Air Conditioner Failure Diagnosis System 000>
FIG. 4 is a diagram illustrating a configuration example of an air conditioner failure diagnosis system 000 centering on the air conditioner failure diagnosis apparatus 400 according to Embodiment 2 of the present invention. In FIG. 4, the same reference numerals as those in FIG. 1 perform the same operations as those in the first embodiment.
 実施の形態1の空気調和機故障診断システム000では、空気調和機100内に空気調和機故障診断装置400が設置されていた。実施の形態2の空気調和機故障診断システム000では、空気調和機故障診断装置400は、外部クラウド装置300内に設置されている。ここで、実施の形態2では、空気調和機故障診断装置400の診断処理装置410だけが外部クラウド装置300内に設置されている。そして、空気調和機100内に設置された操作装置、表示装置、通信装置および報知装置が、操作装置420、表示装置430、通信装置440および報知装置450として、それぞれ動作を行う。 In the air conditioner failure diagnosis system 000 of the first embodiment, the air conditioner failure diagnosis apparatus 400 is installed in the air conditioner 100. In the air conditioner failure diagnosis system 000 of the second embodiment, the air conditioner failure diagnosis device 400 is installed in the external cloud device 300. Here, in the second embodiment, only the diagnosis processing device 410 of the air conditioner failure diagnosis device 400 is installed in the external cloud device 300. Then, the operation device, the display device, the communication device, and the notification device installed in the air conditioner 100 operate as the operation device 420, the display device 430, the communication device 440, and the notification device 450, respectively.
 したがって、実施の形態1において、診断処理装置410に直接的に入力されていた、操作装置420からの指示、空気調和制御装置110からの制御データおよびセンサ130a~センサ130nからの検出データを含む信号は、空気調和機100内の通信装置440および外部クラウド装置300のクラウド通信装置320を介して入力される。また、診断処理装置410から出力した表示信号は、クラウド通信装置320および通信装置440を介して、空気調和機100内の表示装置430に送られる。 Therefore, in the first embodiment, the signal including the instruction from the operation device 420, the control data from the air conditioning control device 110, and the detection data from the sensors 130a to 130n, which are directly input to the diagnosis processing device 410. Are input via the communication device 440 in the air conditioner 100 and the cloud communication device 320 of the external cloud device 300. Further, the display signal output from the diagnostic processing device 410 is sent to the display device 430 in the air conditioner 100 via the cloud communication device 320 and the communication device 440.
 空気調和機故障診断システム000における各装置の故障診断の動作および故障診断処理の診断実行タイミングなどについては、実施の形態1で説明したことと同様である。 The operation of failure diagnosis of each device in the air conditioner failure diagnosis system 000, the diagnosis execution timing of failure diagnosis processing, and the like are the same as described in the first embodiment.
 以上のように、実施の形態2によれば、空気調和機故障診断装置400が、外部クラウド装置300内に設置されるようにしたので、空気調和機100において、故障判定処理における負担を減らすことができる。 As described above, according to the second embodiment, since the air conditioner failure diagnosis apparatus 400 is installed in the external cloud apparatus 300, in the air conditioner 100, the burden on the failure determination process is reduced. Can do.
実施の形態3.
 前述した実施の形態1においては、空気調和特性がエネルギー消費効率である場合の、空気調和機故障診断装置400における処理、動作について説明した。実施の形態3においては、空気調和特性が空気調和負荷の大きさである場合の、空気調和機故障診断装置400における処理、動作について説明する。ここで、実施の形態3の空気調和機故障診断装置400における診断処理装置410は、空気調和負荷の大きさを表現する指標として、最大能力に基づいて、故障判定処理を行う。ここで、システムの構成については、実施の形態1の空気調和機故障診断システム000と同じであるものとして説明する。
Embodiment 3 FIG.
In the first embodiment described above, the processing and operation in the air conditioner failure diagnosis apparatus 400 when the air conditioning characteristic is energy consumption efficiency have been described. In the third embodiment, processing and operation in the air conditioner failure diagnosis apparatus 400 when the air conditioning characteristic is the magnitude of the air conditioning load will be described. Here, the diagnosis processing device 410 in the air conditioner failure diagnosis device 400 according to the third embodiment performs a failure determination process based on the maximum capacity as an index expressing the magnitude of the air conditioning load. Here, the configuration of the system will be described as being the same as that of the air conditioner failure diagnosis system 000 of the first embodiment.
<故障診断の動作>
 空気調和機故障診断システム000における各装置の故障診断の動作については、基本的には、実施の形態1で説明したことと同様である。実施の形態3においては、COPの代わりに、最大能力を空気調和特性とする。
<Operation of fault diagnosis>
The operation of failure diagnosis of each device in the air conditioner failure diagnosis system 000 is basically the same as that described in the first embodiment. In Embodiment 3, instead of COP, the maximum capacity is the air conditioning characteristic.
 実施の形態3において、診断処理装置410の劣化影響演算部411は、空気調和制御装置110およびセンサ130a~センサ130nから送られるデータに基づいて、最大能力が、基準よりもどの程度乖離しているかを演算する。実施の形態3における最大能力の基準は、たとえば、カタログなどに記載される定格値とする。これが、故障因子の劣化による空気調和機100全体の影響度となる。劣化影響演算部411は、さらに、全体の影響度に対して各故障因子がどの程度寄与しているかを演算し、各故障因子の影響度を故障診断結果として出力する。 In the third embodiment, the deterioration influence calculation unit 411 of the diagnostic processing device 410 is based on the data sent from the air conditioning control device 110 and the sensors 130a to 130n to what extent the maximum capacity deviates from the reference. Is calculated. The standard for the maximum capacity in the third embodiment is, for example, a rated value described in a catalog or the like. This is the influence of the entire air conditioner 100 due to the deterioration of the failure factor. The deterioration influence calculation unit 411 further calculates how much each failure factor contributes to the overall influence degree, and outputs the influence degree of each failure factor as a failure diagnosis result.
 図5は、この発明の実施の形態3における各故障因子影響比較の故障診断結果の出力例を示す図である。図5は、空気調和機100が有するリモートコントローラにおいて、表示装置430に表示された場合について示している。劣化影響演算部411は、故障診断結果に係る表示信号を表示装置430に送信し、表示させる。したがって、各故障因子について、最大能力という共通した空気調和特性への影響度で評価を行うことができる。このため、図5に示す画面の右半分側に示されているように、各故障因子の劣化の度合を、最大能力への影響度という数値で表示することができる。また、図5に示す画面の左半分側に表示されているように、各故障因子の劣化の度合について、他の故障因子と関連付け、たとえばレーダーチャートとして表現することができる。ここで、評価結果を表示装置430に表示させるだけでなく、通信装置440から、結果のデータを含む信号を送り、外部端末装置200が有する表示装置に表示させるようにしてもよい。 FIG. 5 is a diagram showing an output example of a failure diagnosis result of each failure factor influence comparison in the third embodiment of the present invention. FIG. 5 shows a case where the remote controller of the air conditioner 100 displays on the display device 430. The deterioration influence calculation unit 411 transmits a display signal related to the failure diagnosis result to the display device 430 to display it. Therefore, each failure factor can be evaluated based on the degree of influence on the common air-conditioning characteristic of maximum capacity. For this reason, as shown in the right half side of the screen shown in FIG. 5, the degree of deterioration of each failure factor can be displayed as a numerical value called the degree of influence on the maximum capacity. Further, as displayed on the left half side of the screen shown in FIG. 5, the degree of deterioration of each failure factor can be associated with other failure factors, for example, expressed as a radar chart. Here, not only the evaluation result is displayed on the display device 430 but also a signal including the result data may be sent from the communication device 440 and displayed on the display device of the external terminal device 200.
 図6は、この発明の実施の形態3における故障因子の経年変化に係る出力例を示す図である。図6は、空気調和機100が有するリモートコントローラにおいて、表示装置430に表示された場合について示している。劣化進行予測部414は、診断結果記憶処理部413に記憶された過去の演算結果のデータとともに、予測処理に係る表示信号を表示装置430に送信する。図3に示すように、故障因子による最大能力への影響度経年変化および今後の劣化の進行具合が視覚的に表示される。ここで、表示装置430に表示させるだけでなく、通信装置440から、信号を送り、外部端末装置200が有する表示装置に表示させるようにしてもよい。 FIG. 6 is a diagram showing an output example related to the secular change of the failure factor in the third embodiment of the present invention. FIG. 6 shows a case where the remote controller of the air conditioner 100 displays on the display device 430. The deterioration progress prediction unit 414 transmits a display signal related to the prediction process to the display device 430 together with the past calculation result data stored in the diagnosis result storage processing unit 413. As shown in FIG. 3, the influence of the failure factor on the maximum capacity over time and the progress of deterioration in the future are visually displayed. Here, not only the display device 430 but also the signal transmitted from the communication device 440 may be displayed on the display device of the external terminal device 200.
<診断実行タイミング>
 空気調和機故障診断装置400が行う故障診断処理については、実施の形態1で説明したことと同様に、診断実行要求、定期診断、異常状態などの場合に、行うようにすればよい。
<Diagnosis execution timing>
The failure diagnosis process performed by the air conditioner failure diagnosis apparatus 400 may be performed in the case of a diagnosis execution request, a periodic diagnosis, an abnormal state, etc., as described in the first embodiment.
 ここで、空気調和機100の最大能力は、空気調和特性である空気調和能力(空気調和機100が処理できる空気調和負荷の大きさ)を表現する1つの指標であるが、この発明はこれに限らない。たとえば、空気調和機100が有する圧縮機の周波数を一定にした場合の空気調和能力など、他の空気調和機100が空気調和を行う空気調和能力を、空気調和機特性として故障判定処理を行うようにしてもよい。 Here, the maximum capacity of the air conditioner 100 is one index that expresses the air conditioner characteristic (the size of the air conditioner load that can be processed by the air conditioner 100), which is an air conditioner characteristic. Not exclusively. For example, the failure determination process is performed using the air conditioning capability of the other air conditioner 100 such as the air conditioning capability when the frequency of the compressor included in the air conditioner 100 is constant as the air conditioner characteristics. It may be.
実施の形態4.
 前述した実施の形態1~実施の形態3においては、故障因子が影響を及ぼす空気調和機特性として、空気調和機100のエネルギー消費効率と空調能力を利用したが、この発明はこれに限られず、たとえば、空気調和機100の消費電力量、騒音の大きさなどを空気調和機特性としてもよい。
Embodiment 4 FIG.
In the first to third embodiments described above, the energy consumption efficiency and the air conditioning capability of the air conditioner 100 are used as the air conditioner characteristics affected by the failure factor. However, the present invention is not limited to this, For example, the power consumption of the air conditioner 100, the magnitude of noise, and the like may be used as the air conditioner characteristics.
 また、空気調和機故障診断装置400は、1の空気調和機特性に対する故障判定処理を行うだけでなく、複数の空気調和機特性に対する故障判定処理を行うようにしてもよい。 In addition, the air conditioner failure diagnosis apparatus 400 may perform failure determination processing for a plurality of air conditioner characteristics as well as failure determination processing for one air conditioner characteristic.
 000 空気調和機故障診断システム、100 空気調和機、110 空気調和制御装置、120,120a~120n アクチュエータ、130,130a~130n センサ、200 外部端末装置、300 外部クラウド装置、310 機械学習装置、320 クラウド通信装置、330 クラウド記憶装置、400 空気調和機故障診断装置、410 診断処理装置、411 劣化影響演算部、412 演算係数記憶部、413 診断結果記憶処理部、414 劣化進行予測部、415 乖離度演算部、420 操作装置、430 表示装置、440 通信装置、441 端末通信部、442 回線通信部、450 報知装置、500 電気通信回線。 000 air conditioner failure diagnosis system, 100 air conditioner, 110 air condition control device, 120, 120a-120n actuator, 130, 130a-130n sensor, 200 external terminal device, 300 external cloud device, 310 machine learning device, 320 cloud Communication device, 330 Cloud storage device, 400 Air conditioner failure diagnosis device, 410 Diagnosis processing device, 411 Deterioration influence calculation unit, 412 Operation coefficient storage unit, 413 Diagnosis result storage processing unit, 414 Deterioration progress prediction unit, 415 Deviation degree calculation Unit, 420 operation device, 430 display device, 440 communication device, 441 terminal communication unit, 442 line communication unit, 450 notification device, 500 electric communication line.

Claims (19)

  1.  空気調和機の状態を示すデータおよび前記空気調和機の制御に関するデータから、前記空気調和機の故障診断に係る処理を行う診断処理装置を備え、
     該診断処理装置は、
     前記空気調和機の性能を示す指標である空気調和特性の、少なくとも1以上の前記空気調和特性について、前記空気調和特性の基準からの乖離度を演算する処理を行う乖離度演算部と、
     前記乖離度に基づいて、前記空気調和機の故障の原因となるあらかじめ定められた複数の故障因子について、前記故障因子による劣化度合を診断する故障診断処理を行う劣化影響演算部と
    を有する空気調和機故障診断装置。
    From the data indicating the state of the air conditioner and the data relating to the control of the air conditioner, a diagnosis processing device that performs processing related to the failure diagnosis of the air conditioner,
    The diagnostic processing device comprises:
    A divergence degree calculation unit that performs a process of calculating a divergence degree from a reference of the air conditioning characteristics for at least one air conditioning characteristic of an air conditioning characteristic that is an index indicating the performance of the air conditioner;
    An air conditioner having a deterioration influence calculation unit that performs a failure diagnosis process for diagnosing the degree of deterioration due to the failure factor for a plurality of predetermined failure factors that cause a failure of the air conditioner based on the degree of deviation. Machine fault diagnosis device.
  2.  前記空気調和特性は、エネルギー消費効率である請求項1に記載の空気調和機故障診断装置。 The air conditioner failure diagnosis apparatus according to claim 1, wherein the air conditioning characteristic is energy consumption efficiency.
  3.  前記空気調和特性は、空気調和負荷の大きさである請求項1に記載の空気調和機故障診断装置。 The air conditioner failure diagnosis apparatus according to claim 1, wherein the air conditioning characteristic is a size of an air conditioning load.
  4.  前記診断処理装置が処理した結果を、表示装置に表示させる請求項1~請求項3のいずれか一項に記載の空気調和機故障診断装置。 The air conditioner failure diagnosis apparatus according to any one of claims 1 to 3, wherein a result processed by the diagnosis processing apparatus is displayed on a display device.
  5.  前記故障診断処理の結果に係るデータを少なくとも一定期間分記憶し、記憶したデータに基づき、前記故障因子による劣化度合の経年変化を、前記表示装置に表示させる診断結果記憶処理部をさらに備える請求項4に記載の空気調和機故障診断装置。 A diagnosis result storage processing unit is further provided that stores data related to the result of the failure diagnosis processing for at least a predetermined period, and causes the display device to display a secular change in the degree of deterioration due to the failure factor based on the stored data. 4. The air conditioner failure diagnosis device according to 4.
  6.  前記診断結果記憶処理部に記憶されたデータに基づいて、前記故障因子による劣化度合の推移を予測処理する劣化進行予測部をさらに備え、
     該劣化進行予測部は、予測処理した結果を、前記表示装置に表示させる請求項5に記載の空気調和機故障診断装置。
    Based on the data stored in the diagnostic result storage processing unit, further comprising a deterioration progress prediction unit for predicting the transition of the degree of deterioration due to the failure factor,
    The air conditioner failure diagnosis apparatus according to claim 5, wherein the deterioration progress prediction unit causes the display device to display a result of the prediction process.
  7.  前記乖離度演算部および前記劣化影響演算部の処理は、ニューラルネットワークを利用して行われる請求項1~請求項6のいずれか一項に記載の空気調和機故障診断装置。 The air conditioner failure diagnosis apparatus according to any one of claims 1 to 6, wherein processing of the divergence degree calculation unit and the deterioration influence calculation unit is performed using a neural network.
  8.  前記乖離度演算部および前記劣化影響演算部が処理を行う際に演算に用いる係数は、前記故障診断処理の結果に基づき機械学習により導かれたものである請求項7に記載の空気調和機故障診断装置。 The air conditioner failure according to claim 7, wherein a coefficient used for calculation when the divergence degree calculation unit and the deterioration influence calculation unit perform processing is derived by machine learning based on a result of the failure diagnosis processing. Diagnostic device.
  9.  外部端末装置と通信を行う端末通信部を有する通信装置をさらに備え、
     前記診断処理装置は、前記故障診断処理の結果に係るデータを含む信号を、前記通信装置に送信させて、前記外部端末装置に送る請求項1~請求項8のいずれか一項に記載の空気調和機故障診断装置。
    A communication device having a terminal communication unit for communicating with the external terminal device;
    The air according to any one of claims 1 to 8, wherein the diagnostic processing device causes the communication device to transmit a signal including data relating to a result of the failure diagnostic processing to the external terminal device. Harmonic machine fault diagnosis device.
  10.  外部処理記憶装置と通信を行う回線通信部を有する通信装置をさらに備え、
     前記診断処理装置は、前記故障診断処理の条件および結果に係るデータを含む信号を、前記通信装置に送信させて、前記外部処理記憶装置に送って記憶させる請求項1~請求項8のいずれか一項に記載の空気調和機故障診断装置。
    A communication device having a line communication unit for communicating with the external processing storage device;
    9. The diagnosis processing device according to claim 1, wherein a signal including data relating to conditions and results of the failure diagnosis processing is transmitted to the communication device and transmitted to the external processing storage device for storage. The air conditioner failure diagnosis device according to one item.
  11.  前記空気調和機および外部端末装置の少なくとも一方と通信を行う通信装置をさらに備え、
     前記診断処理装置は、前記空気調和機外に設置され、
     前記診断処理装置が処理した結果は、前記空気調和機が有する表示装置および前記外部端末装置の少なくとも一方に送られる請求項1~請求項9のいずれか一項に記載の空気調和機故障診断装置。
    A communication device that communicates with at least one of the air conditioner and the external terminal device;
    The diagnostic processing device is installed outside the air conditioner,
    The air conditioner failure diagnosis device according to any one of claims 1 to 9, wherein a result processed by the diagnosis processing device is sent to at least one of a display device of the air conditioner and the external terminal device. .
  12.  前記診断処理装置は、
     前記係数が外部から入力されると、前記係数を更新する請求項8に記載の空気調和機故障診断装置。
    The diagnostic processing device includes:
    The air conditioner failure diagnosis apparatus according to claim 8, wherein the coefficient is updated when the coefficient is input from the outside.
  13.  前記診断処理装置は、前記端末通信部を介して、前記外部端末装置と通信接続された外部処理記憶装置との通信を行う請求項9に記載の空気調和機故障診断装置。 10. The air conditioner failure diagnosis device according to claim 9, wherein the diagnosis processing device communicates with an external processing storage device connected to the external terminal device via the terminal communication unit.
  14.  前記空気調和機の状態に係るデータは、
     前記空気調和機が有する冷媒の温度を検出する温度検出装置、前記冷媒の圧力を検出する圧力検出装置および赤外線カメラの少なくとも1以上の装置の検出に係るデータである請求項1~請求項13のいずれか一項に記載の空気調和機故障診断装置。
    Data related to the state of the air conditioner
    The temperature detection device that detects the temperature of the refrigerant that the air conditioner has, the pressure detection device that detects the pressure of the refrigerant, and data related to detection by at least one of the infrared cameras. The air conditioner failure diagnosis apparatus according to any one of the above.
  15.  前記乖離度演算部および前記劣化影響演算部は、指示が入力されると処理を実行する請求項1~請求項14のいずれか一項に記載の空気調和機故障診断装置。 15. The air conditioner failure diagnosis apparatus according to claim 1, wherein the divergence degree calculation unit and the deterioration influence calculation unit execute a process when an instruction is input.
  16.  前記乖離度演算部および前記劣化影響演算部は、あらかじめ定められた一定期間毎に処理を実行する請求項1~請求項15のいずれか一項に記載の空気調和機故障診断装置。 The air conditioner failure diagnosis apparatus according to any one of claims 1 to 15, wherein the divergence degree calculation unit and the deterioration influence calculation unit execute processing every predetermined period.
  17.  前記乖離度演算部および前記劣化影響演算部は、前記空気調和機の状態に係るデータとあらかじめ定められた所定値との比較に基づき、処理を実行する請求項1~請求項15のいずれか一項に記載の空気調和機故障診断装置。 16. The method according to claim 1, wherein the divergence degree calculation unit and the deterioration influence calculation unit execute processing based on a comparison between data relating to the state of the air conditioner and a predetermined value. The air conditioner failure diagnosis device according to Item.
  18.  報知に係る信号に基づいて報知を行う報知装置をさらに備え、
     前記劣化影響演算部は、複数の前記故障因子による劣化度合が、前記故障因子毎にそれぞれ定められた劣化所定値を超えたものと判定すると、前記報知に係る信号を前記報知装置に送る請求項1~請求項17のいずれか一項に記載の空気調和機故障診断装置。
    Further comprising a notification device for performing notification based on a signal related to notification;
    The deterioration influence calculation unit, when determining that the degree of deterioration due to a plurality of failure factors exceeds a predetermined deterioration value determined for each failure factor, sends a signal related to the notification to the notification device. The air conditioner failure diagnosis apparatus according to any one of claims 1 to 17.
  19.  前記劣化影響演算部は、複数の前記故障因子による劣化度合が、前記故障因子毎にそれぞれ定められた劣化所定値を超えたものと判定すると、前記空気調和機に異常がある旨を保守サービス会社に通報する請求項1~請求項18のいずれか一項に記載の空気調和機故障診断装置。 When the deterioration influence calculation unit determines that the degree of deterioration due to the plurality of failure factors exceeds a predetermined deterioration value determined for each failure factor, a maintenance service company indicates that the air conditioner has an abnormality. The air conditioner failure diagnosis apparatus according to any one of claims 1 to 18, which reports to the air conditioner.
PCT/JP2017/020309 2017-05-31 2017-05-31 Air conditioner failure diagnosing device WO2018220760A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/020309 WO2018220760A1 (en) 2017-05-31 2017-05-31 Air conditioner failure diagnosing device
JP2019521612A JPWO2018220760A1 (en) 2017-05-31 2017-05-31 Air conditioner failure diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020309 WO2018220760A1 (en) 2017-05-31 2017-05-31 Air conditioner failure diagnosing device

Publications (1)

Publication Number Publication Date
WO2018220760A1 true WO2018220760A1 (en) 2018-12-06

Family

ID=64455712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020309 WO2018220760A1 (en) 2017-05-31 2017-05-31 Air conditioner failure diagnosing device

Country Status (2)

Country Link
JP (1) JPWO2018220760A1 (en)
WO (1) WO2018220760A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243057A (en) * 2019-06-14 2019-09-17 珠海格力电器股份有限公司 A kind of environmental quality control method, apparatus, storage medium and environment adjusting device
CN110440392A (en) * 2019-08-09 2019-11-12 芜湖美智空调设备有限公司 Detection method, system and the air-conditioning of air-conditioning
JP2021105456A (en) * 2019-12-26 2021-07-26 三菱電機株式会社 Air conditioning system
CN113550893A (en) * 2021-07-29 2021-10-26 北京百度网讯科技有限公司 Device detection method and device, electronic device and storage medium
CN113587402A (en) * 2021-06-30 2021-11-02 珠海拓芯科技有限公司 Air conditioner control method and air conditioner
JP7360373B2 (en) 2020-10-26 2023-10-12 株式会社富士通ゼネラル air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345096A (en) * 2005-07-07 2005-12-15 Mitsubishi Electric Corp Refrigeration cycle device, and refrigeration cycle monitoring system
JP2007240036A (en) * 2006-03-07 2007-09-20 Ntt Facilities Inc Diagnosing method and system of air conditioner
JP2009168296A (en) * 2008-01-11 2009-07-30 Daikin Ind Ltd Air conditioner diagnostic device and air conditioner diagnostic method
JP2009299934A (en) * 2008-06-10 2009-12-24 Samsung Electronics Co Ltd Failure diagnosing device using refrigerating cycle device
JP2016081363A (en) * 2014-10-20 2016-05-16 株式会社日立ビルシステム Instrument diagnosis device, instrument diagnosis method and instrument diagnosis program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345096A (en) * 2005-07-07 2005-12-15 Mitsubishi Electric Corp Refrigeration cycle device, and refrigeration cycle monitoring system
JP2007240036A (en) * 2006-03-07 2007-09-20 Ntt Facilities Inc Diagnosing method and system of air conditioner
JP2009168296A (en) * 2008-01-11 2009-07-30 Daikin Ind Ltd Air conditioner diagnostic device and air conditioner diagnostic method
JP2009299934A (en) * 2008-06-10 2009-12-24 Samsung Electronics Co Ltd Failure diagnosing device using refrigerating cycle device
JP2016081363A (en) * 2014-10-20 2016-05-16 株式会社日立ビルシステム Instrument diagnosis device, instrument diagnosis method and instrument diagnosis program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243057A (en) * 2019-06-14 2019-09-17 珠海格力电器股份有限公司 A kind of environmental quality control method, apparatus, storage medium and environment adjusting device
CN110440392A (en) * 2019-08-09 2019-11-12 芜湖美智空调设备有限公司 Detection method, system and the air-conditioning of air-conditioning
JP2021105456A (en) * 2019-12-26 2021-07-26 三菱電機株式会社 Air conditioning system
JP7433043B2 (en) 2019-12-26 2024-02-19 三菱電機株式会社 air conditioning system
JP7360373B2 (en) 2020-10-26 2023-10-12 株式会社富士通ゼネラル air conditioning system
CN113587402A (en) * 2021-06-30 2021-11-02 珠海拓芯科技有限公司 Air conditioner control method and air conditioner
CN113550893A (en) * 2021-07-29 2021-10-26 北京百度网讯科技有限公司 Device detection method and device, electronic device and storage medium

Also Published As

Publication number Publication date
JPWO2018220760A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018220760A1 (en) Air conditioner failure diagnosing device
US20180347843A1 (en) Methods and systems for prognostic analysis in electromechanical and environmental control equipment in building management systems
CN109937331B (en) Air conditioner and air conditioning system
WO2018123144A1 (en) Diagnostic device, diagnostic method, and program
US7031880B1 (en) Method and apparatus for assessing performance of an environmental control system
US20070225849A1 (en) Automated part procurement and service dispatch
JP2006343063A (en) Abnormality prediction system for equipment, abnormality predicting device for equipment, and abnormality predicting method for equipment
CN114730163A (en) Building system for improved temperature, pressure and humidity compliance
KR20080073574A (en) Unification management system and method for multi-air conditioner
JP2009053938A (en) Equipment diagnosing system and equipment-diagnosing method on the basis of multiple model
KR102278744B1 (en) Method and apparatus for outputting alarm about abnormal condition of robot
WO2018216197A1 (en) Anomaly seriousness computation system, anomaly seriousness computation device, and anomaly seriousness computation program
JP2007327656A (en) Information management system
JP6862130B2 (en) Anomaly detection device, anomaly detection method, and program
US20150168977A1 (en) Energy analysis system and methods of operating the same
JP6517991B1 (en) Abnormality sign diagnosis system, management device, and abnormality sign diagnosis method
JP2015103043A (en) I/o module and process control system
RU2440596C2 (en) Method of operating industrial plant, and industrial plant control system
TW202013110A (en) Assistance device, learning device, and plant operation condition setting assistance system
JP6381122B2 (en) Failure estimation device, failure estimation database device, failure estimation program, failure estimation database program, and failure estimation system
JP2011076334A (en) Diagnostic method and diagnostic device for plant
JP2019120433A (en) Air conditioning system and local controller
US20200309400A1 (en) Hvac monitoring method and apparatus
US11906185B2 (en) State analyzer system and state analysis device
JP2018077634A (en) Plant facility deterioration diagnostic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911694

Country of ref document: EP

Kind code of ref document: A1