WO2021249256A1 - 信号传输的方法和通信装置 - Google Patents

信号传输的方法和通信装置 Download PDF

Info

Publication number
WO2021249256A1
WO2021249256A1 PCT/CN2021/097886 CN2021097886W WO2021249256A1 WO 2021249256 A1 WO2021249256 A1 WO 2021249256A1 CN 2021097886 W CN2021097886 W CN 2021097886W WO 2021249256 A1 WO2021249256 A1 WO 2021249256A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
navigation
kasami
primitive polynomial
signal
Prior art date
Application number
PCT/CN2021/097886
Other languages
English (en)
French (fr)
Inventor
汪宇
周建伟
乔云飞
罗禾佳
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21821954.1A priority Critical patent/EP4156549A4/en
Publication of WO2021249256A1 publication Critical patent/WO2021249256A1/zh
Priority to US18/078,810 priority patent/US20230123363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18523Satellite systems for providing broadcast service to terrestrial stations, i.e. broadcast satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18532Arrangements for managing transmission, i.e. for transporting data or a signalling message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • This application relates to a satellite network, and more specifically, to a signal transmission method and communication device.
  • Satellite communications and other non-terrestrial communications networks have significant advantages such as global coverage, long-distance transmission, flexible networking, convenient deployment, and freedom from geographical conditions. They have been widely used in maritime communications, positioning and navigation, Various fields such as disaster relief, scientific experiment, video broadcasting and earth observation.
  • the ground network and satellite network are integrated with each other and complement each other's strengths to form a seamless global sea, land, air, space, and ground integrated communication network to meet the ubiquitous business needs of users.
  • the next-generation satellite network generally presents an ultra-dense and heterogeneous trend: First, the scale of the satellite network has grown from 66 in the Iridium constellation to 720 in the Oneweb constellation, and finally extended to the 12,000+ Starlink ultra-dense low-orbit satellite constellation; Secondly, the satellite network presents heterogeneous characteristics. From the traditional single-layer communication network to the multi-layer communication network, the functions of the communication satellite network are also becoming more complicated and diversified, gradually compatible and supporting navigation enhancement, earth observation, multi-dimensional information Track processing and other functions.
  • Integrated communication and navigation is the potential development direction of next-generation communication networks (including satellite networks and terrestrial networks), and ICaN can achieve complementary advantages in communication and navigation.
  • the terminal equipment obtains its own position information through passive positioning, which can greatly simplify the position management function of the dynamic network (especially the satellite network).
  • the existing synchronization signal block (synchronization signal and PBCH block, SSB) broadcast signal design is mainly for communication networks, and is not suitable for the next generation of integrated satellite networks for communication and navigation; in addition, the existing cellular independent positioning technology is to some extent It needs to rely on a specific reference signal, such as positioning reference signal (positioning reference signal, PRS).
  • PRS uses a 31-length Gold sequence, which has poor confidentiality and sub-optimal sequence cross-correlation. The number of PRS sequences is limited, up to 32, and it is not suitable for large-scale satellite networks.
  • This application provides a signal transmission method, which can be applied to the next-generation integrated satellite network for communication and navigation.
  • a method for designing a broadcast signal includes: acquiring a first sequence, where the first sequence is an n-level m sequence, and the n is a positive even number; from any position of the first sequence Begin to perform cyclic sampling every first interval to obtain a second sequence, which is an n/2-level m sequence; perform cyclic shift on the second sequence to obtain a sequence of first-level synchronization signals; At any position of the first sequence, sampling is performed every second interval to obtain a third sequence.
  • the third sequence is an n-level m sequence; the Kasami sequence is determined according to the first sequence and the third sequence; The Kasami sequence determines the sequence of the navigation signal; the broadcast signal is determined, and the broadcast signal includes the primary synchronization signal and the navigation signal.
  • a design method for the sequence of the broadcast signal of the ICaN system which can support the terminal equipment to complete the navigation/positioning function according to the instruction broadcast signal, without the support of the global navigation satellite system (GNSS), and complete the network automatic Positioning, to solve the pain points of the next-generation satellite dynamic networking;
  • the navigation sequence adopts Kasami sequence design, with a large number of sequences, supporting the navigation signal broadcast of the ultra-dense satellite communication system, improving positioning performance and good cross-correlation;
  • the navigation signal sequence And the communication signal sequence adopts a coupling design, which is convenient for error detection and confidential communication.
  • the first interval is 2 (n/2) +1; the second interval is 2 (n/2+1) +1.
  • the determining the Kasami sequence according to the first sequence and the third sequence includes: combining the first sequence, the second sequence, and the Performing the modulo 2 addition operation on the third sequence to obtain the first Kasami sequence; and the determining the sequence of the navigation signal according to the Kasami sequence includes: determining according to the first Kasami sequence or the truncated sequence of the first Kasami sequence The sequence of the navigation signal.
  • the navigation sequence adopts the Kasami sequence design, with a large number of sequences, supports the broadcast of the navigation signal of the ultra-dense satellite communication system, improves positioning performance and has good cross-correlation.
  • the determining the Kasami sequence according to the first sequence and the third sequence includes: performing modulo 2 addition to the first sequence and the third sequence Operation to obtain the second Kasami sequence; and the determining the sequence of the navigation signal according to the Kasami sequence includes: determining the sequence of the navigation signal according to the second Kasami sequence or a truncated sequence of the second Kasami sequence.
  • the navigation sequence adopts the Kasami sequence design, with a large number of sequences, supports the broadcast of the navigation signal of the ultra-dense satellite communication system, improves positioning performance and has good cross-correlation.
  • the acquiring the first sequence includes: acquiring according to the primitive polynomial of the first sequence and the initial state of the shift register that generates the first sequence The first sequence.
  • a fourth sequence is determined according to the second sequence, and the fourth sequence is a Gold sequence; the fourth sequence is cyclically shifted to obtain the second A sequence of synchronization signals, wherein the broadcast signal includes the secondary synchronization signal.
  • the determining a fourth sequence according to the second sequence, the fourth sequence being a Gold sequence includes: determining the first sequence according to the second sequence The primitive polynomial of the second sequence; the primitive polynomial of the fifth sequence is determined according to the primitive polynomial of the second sequence, and the fifth sequence and the second sequence are the preferred pair sequences that can form the Gold sequence; according to the The primitive polynomial of the fifth sequence and the initial state of the shift register that generates the fifth sequence determine the fifth sequence; the fourth sequence is determined according to the second sequence and the fifth sequence.
  • the initial state of the shift register that generates the first sequence is (1,1,1,1,1,1,1,1,1,1,1,1)
  • the initial state of the shift register in the fifth sequence is (0,0,0,0,0,0,1).
  • the navigation and positioning performance is improved without changing the existing NR protocol communication and broadcast signals, and can support an ultra-dense satellite network of 10,000+ satellites.
  • the third sequence is generated The initial state of the shift register is (0,0,0,0,0,0,1).
  • the navigation and positioning performance is improved, and it can support an ultra-dense satellite network of 10,000+ satellites.
  • a signal transmission method comprising: a network device broadcasting a navigation reference signal and a communication signal, the navigation reference signal includes a navigation sequence, the navigation sequence is determined by the first sequence and the third sequence
  • the communication signal includes a first-level synchronization signal, and the first-level synchronization signal is a sequence determined after a second sequence is cyclically shifted, wherein the first sequence is an n-level m sequence, and the n Is a positive even number, the second sequence is an n/2-level m sequence obtained by cyclic sampling at every first interval from any position in the first sequence, and the third sequence is a sequence from the first sequence At any position, the n-level m-sequence obtained by cyclic sampling every second interval is started, and the navigation reference signal is used for the communication device to determine its own position information.
  • the network equipment broadcasts the broadcast signal of the ICaN system, and the terminal equipment can broadcast the signal according to the instructions to complete the navigation/positioning function, without GNSS support, complete the network self-positioning, and solve the pain points of the next-generation satellite dynamic networking; at the same time,
  • the navigation sequence adopts the Kasami sequence design, which has a large number of sequences, supports the broadcast of the navigation signal of the ultra-dense satellite communication system, improves the positioning performance and has good cross-correlation; in addition, the navigation signal sequence and the communication signal sequence adopt a coupling design, which is convenient for error detection and secure communication .
  • the first interval is 2 (n/2) +1; the second interval is 2 (n/2+1) +1.
  • the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence, including: the navigation sequence is the first sequence, the first sequence The second sequence and the third sequence are subjected to a modulo 2 addition operation to obtain the first Kasami sequence or the truncated sequence of the first Kasami sequence.
  • the navigation sequence adopts the Kasami sequence design, with a large number of sequences, supports the broadcast of the navigation signal of the ultra-dense satellite communication system, improves positioning performance and has good cross-correlation.
  • the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence, including: the navigation sequence is the first sequence and the first sequence A modulo-2 addition operation is performed on the three sequences to obtain the second Kasami sequence or the truncated sequence of the second Kasami sequence.
  • the navigation sequence adopts the Kasami sequence design, with a large number of sequences, supports the broadcast of the navigation signal of the ultra-dense satellite communication system, improves positioning performance and has good cross-correlation.
  • the first sequence is a sequence determined according to the primitive polynomial of the first sequence and the initial state of the shift register that generates the first sequence.
  • the communication signal includes a secondary synchronization signal
  • the secondary synchronization signal is a sequence determined after a fourth sequence is cyclically shifted, wherein the The fourth sequence is a Gold sequence determined according to the second sequence.
  • the fourth sequence is a Gold sequence determined according to the second sequence, including: the fourth sequence is based on the second sequence and the fifth sequence.
  • the initial state of the shift register of the five sequence is determined, and the primitive polynomial of the fifth sequence is determined according to the primitive polynomial of the second sequence.
  • the initial state of the shift register that generates the first sequence is (1,1,1,1,1,1,1,1,1,1,1,1)
  • the initial state of the shift register in the fifth sequence is (0,0,0,0,0,0,1).
  • the navigation and positioning performance is improved without changing the existing NR protocol communication and broadcast signals, and can support an ultra-dense satellite network of 10,000+ satellites.
  • the third sequence is generated The initial state of the shift register is (0,0,0,0,0,0,1).
  • the navigation and positioning performance is improved, and it can support an ultra-dense satellite network of 10,000+ satellites.
  • the method further includes: the network device receives a positioning request sent by the terminal device; and the network device broadcasts a navigation reference signal, including: The navigation reference signal is periodically broadcast on the frequency resource, where the first time-frequency resource is a fixed time-frequency resource; or the network device broadcasts the navigation reference signal on the second time-frequency resource on demand according to the positioning request, where the second time-frequency resource
  • the resource is a configurable time-frequency resource.
  • the time-frequency resource (that is, the second time-frequency resource) occupied by sending the navigation reference signal is flexibly and configurable, which can improve the utilization rate of the time-frequency resource compared to the periodic broadcasting method.
  • a signal transmission method includes: a communication device receiving navigation reference signals and communication signals of multiple cells broadcast by multiple network devices, where the navigation reference signals include a navigation sequence, and the navigation sequence Is a Kasami sequence determined by the first sequence and the third sequence, the communication signal includes a primary synchronization signal, and the primary synchronization signal is a sequence determined after the second sequence is cyclically shifted, wherein the first The sequence is an n-level m-sequence, where n is a positive even number, the second sequence is an n/2-level m-sequence obtained by cyclically sampling at every first interval from any position in the first sequence.
  • the three-sequence is an n-level m-sequence obtained by cyclic sampling at every second interval from any position of the first sequence; the communication device according to the navigation reference signal of at least two of the multiple cells The navigation sequence determines the location information of the communication device.
  • the first interval is 2 (n/2) +1; the second interval is 2 (n/2+1) +1.
  • the navigation sequence is a Kasami sequence determined by the first sequence and the third sequence, including:
  • the navigation sequence is a modulo-2 addition operation of the first sequence, the second sequence, and the third sequence to obtain the first Kasami sequence or the truncated sequence of the first Kasami sequence.
  • the navigation sequence is a Kasami sequence determined by the first sequence and the third sequence, including:
  • the navigation sequence is a second Kasami sequence or a truncated sequence of the second Kasami sequence by performing a modulo 2 addition operation on the first sequence and the third sequence.
  • the first sequence is a sequence determined according to the primitive polynomial of the first sequence and the initial state of the shift register that generates the first sequence.
  • the communication signal includes a secondary synchronization signal
  • the secondary synchronization signal is a sequence determined after a fourth sequence is cyclically shifted, wherein the The fourth sequence is a Gold sequence determined according to the second sequence.
  • the fourth sequence is a Gold sequence determined based on the second sequence, including: the fourth sequence is based on the second sequence and the fifth sequence.
  • the initial state of the shift register of the five sequence is determined, and the primitive polynomial of the fifth sequence is determined according to the primitive polynomial of the second sequence.
  • the initial state of the shift register that generates the first sequence is (1,1,1,1,1,1,1,1,1,1,1,1)
  • the initial state of the shift register in the fifth sequence is (0,0,0,0,0,0,1).
  • the third sequence is generated The initial state of the shift register is (0,0,0,0,0,0,1).
  • the terminal device sends a positioning request to the multiple network devices; and the terminal device receives navigation reference signals of multiple cells broadcast by the multiple network devices , Including: the terminal device periodically receives, on a first time-frequency resource, the navigation reference signals of the multiple cells sent by the multiple network devices according to the positioning request, where the first time-frequency resource is Fixed time-frequency resources; or the terminal device receives, on the second time-frequency resource, the navigation reference signals of the multiple cells sent by the multiple network devices according to the positioning request, wherein the second The time-frequency resource is a configurable time-frequency resource.
  • a communication device in a fourth aspect, has a function of implementing the method in the first aspect or any possible implementation manner thereof.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions. For example, the processing unit.
  • the present application provides a communication device that has a function of implementing the method in the second aspect or any possible implementation manner thereof.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions. For example: processing unit, receiving unit, sending unit, etc.
  • the present application provides a communication device that has a function of implementing the method in the third aspect or any possible implementation manner thereof.
  • the functions described can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions. For example: processing unit, receiving unit, sending unit, etc.
  • the present application provides a communication device that includes at least one processor, at least one processor is coupled to at least one memory, at least one memory is used to store computer programs or instructions, and at least one processor is used to call from at least one memory And run the computer program or instruction to make the communication device execute the method in the first aspect or any possible implementation manner thereof.
  • the present application provides a communication device that includes at least one processor, at least one processor is coupled to at least one memory, at least one memory is used to store computer programs or instructions, and at least one processor is used to call from at least one memory And run the computer program or instruction to make the communication device execute the method in the second aspect or any possible implementation manner thereof.
  • the communication device may be a network device.
  • the present application provides a communication device that includes at least one processor, at least one processor is coupled to at least one memory, at least one memory is used to store computer programs or instructions, and at least one processor is used to call from at least one memory And run the computer program or instruction to make the communication device execute the method in the second aspect or any possible implementation manner thereof.
  • the communication device may be a terminal device.
  • this application provides a computer-readable storage medium in which computer instructions are stored. When the computer instructions are run on a computer, the computer-readable The method is executed.
  • the present application provides a computer-readable storage medium having computer instructions stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the second aspect or any possible implementation manner thereof The method in is executed.
  • this application provides a computer-readable storage medium that stores computer instructions.
  • the computer instructions run on a computer, the third aspect or any possible implementation manner thereof The method in is executed.
  • the present application provides a computer program product, the computer program product includes computer program code, when the computer program code is run on a computer, such as the first aspect or any of its possible implementation manners The method is executed.
  • this application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer program code is The method is executed.
  • the present application provides a computer program product, the computer program product comprising computer program code, when the computer program code is run on a computer, such as the third aspect or any of its possible implementation manners The method is executed.
  • the present application provides a chip including a processor and a communication interface, the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes the signal to The method in the first aspect or any possible implementation manner thereof is executed.
  • the present application provides a chip including a processor and a communication interface.
  • the communication interface is used to receive a signal and transmit the signal to the processor.
  • the processor processes the signal to The method in the second aspect or any possible implementation manner thereof is executed.
  • the present application provides a chip including a processor and a communication interface.
  • the communication interface is used to receive a signal and transmit the signal to the processor.
  • the processor processes the signal to The method in the third aspect or any possible implementation manner thereof is executed.
  • this application provides a wireless communication system, including the communication devices described in the eighth and ninth aspects.
  • Fig. 1 is an example of a communication system suitable for an embodiment of the present application.
  • Fig. 2 is a schematic block diagram of a method for designing a broadcast signal provided by the present application.
  • Fig. 3 is a flowchart of a method for designing a broadcast signal sequence proposed by this application.
  • Figure 4 is a schematic diagram of the generated primary synchronization signal sequence (3 lines).
  • Figure 5 is a schematic diagram of the generated secondary synchronization signal sequence (6 lines).
  • Figure 6 is a schematic diagram of the generated navigation sequence.
  • Fig. 7 is a schematic diagram of interaction of a signal broadcasting method proposed by the present application.
  • Fig. 8 is a design framework diagram of the periodic broadcast of the navigation sequence provided by the present application.
  • Figure 9 is a design framework diagram of the navigation sequence on-demand broadcast provided by this application.
  • FIG. 10 is a schematic block diagram of a communication device 1000 provided by this application.
  • FIG. 11 is a schematic block diagram of a communication device 2000 provided by this application.
  • FIG. 12 is a schematic block diagram of the communication device 3000 provided by this application.
  • FIG. 13 is a schematic structural diagram of the communication device 10 provided by this application.
  • FIG. 14 is a schematic structural diagram of the communication device 20 provided by this application.
  • FIG. 15 is a schematic structural diagram of the communication device 30 provided by this application.
  • NTN non-terrestrial network
  • HAPS high altitude platform
  • ICaN ICaN systems
  • global navigation satellite systems global navigation satellite systems
  • system GNSS
  • Satellite communication systems can be integrated with traditional mobile communication systems.
  • the mobile communication system may be a fourth-generation (4th generation, 4G) communication system (for example, a long-term evolution (LTE) system), and worldwide interoperability for microwave access (WiMAX) communication System, the fifth generation (5G) communication system (for example, the new radio (NR) system), and the future mobile communication system, etc.
  • 4G fourth-generation
  • LTE long-term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G for example, the new radio (NR) system
  • future mobile communication system etc.
  • the access point uses multiple beams to cover the service area, and different beams can communicate through one or more of time division, frequency division, and space division.
  • the access point provides communication and navigation services to the terminal equipment by broadcasting communication signals and navigation signals, and the access point connects to the core network equipment.
  • the access point is not limited to satellite base stations or ground base stations.
  • the access point can be deployed on high-altitude platforms or satellites.
  • the satellite may be a non-geostationary earth (NGEO) satellite or a geostationary earth (GEO) satellite.
  • NGEO non-geostationary earth
  • GEO geostationary earth
  • the access point may be an evolved base station (evolutional Node B, eNB or eNodeB) in LTE; or a base station in a 5G network or a future evolved public land mobile network (PLMN), a broadband network service gateway (broadband network gateway, BNG), aggregation switch, or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc., which are not specifically limited in the embodiment of the application.
  • eNB evolved Node B
  • PLMN public land mobile network
  • BNG broadband network gateway
  • 3GPP non-third generation partnership project
  • the base stations in the embodiments of the present application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, next-generation base stations (gNodeB, gNB), baseband Unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc., which are not specifically limited in the embodiment of the present application.
  • the satellite mentioned in the embodiments of the present application may also be a satellite base station or a network side device mounted on the satellite.
  • the terminal devices mentioned in the embodiments of this application include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem. Specifically, they may refer to user equipment (user equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device can also be a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, and a wireless local loop (wireless local loop).
  • SIP session initiation protocol
  • WLL wireless loop
  • PDA personal digital assistant
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, industrial control (industrial control) wireless terminal, unmanned driving (self-driving) wireless terminal, remote medical (remote medical) wireless terminal, Wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, 5G networks, or future communication networks In the terminal equipment and so on.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • unmanned driving self-driving
  • remote medical remote medical
  • Wireless terminals in smart grids wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, 5G networks, or future communication networks In the terminal equipment and so on.
  • the access point and core network equipment are mentioned in Figure 1.
  • the network devices mentioned in the following embodiments all refer to access points (or access network devices), for example, satellite base stations.
  • m sequence short for the longest linear shift register sequence.
  • the m sequence can be generated by a binary linear feedback shift register, which is mainly composed of n serial registers, a shift pulse generator and a modulo-2 adder.
  • n (n ⁇ 2) is the number of stages of the shift register
  • the n-stage shift register has a total of 2 n states, except for all 0 states, there are still 2 n -1 states, so it The maximum length of the code sequence that can be generated is 2 n -1 bits.
  • Gold sequence a pseudo-random sequence with better characteristics proposed on the basis of m-sequence, which is composed of two preferred pairs of m-sequences with the same code length and the same code clock rate by modulo-2 addition.
  • Kasami sequence a spreading sequence constructed on the basis of the m sequence. It is a new sequence obtained by modulo two addition to the m sequence and its different sampled sequences. Kasami sequences include Kasami large collection sequences and Kasami small collection sequences.
  • Cyclic shift is the process of turning the value into binary and then cyclically moving. Cyclic shift is to put the shifted low bit to the high bit of the number (rotate right) or put the shifted high bit to the low bit of the number (rotate left). Shift left, and shift right are all operations on integers.
  • the broadcast signal includes a communication signal and a navigation signal, where the communication signal includes a primary synchronization signal (synchronization signal, SS).
  • SS primary synchronization signal
  • n-level m sequence can be directly given, and the length of the m sequence is 2 n -1.
  • the first sequence may also be obtained according to the primitive polynomial and the initial state of the shift register that generates the first sequence.
  • S202 starting from any position in the first sequence, perform cyclic sampling at every first interval to obtain a second sequence, which is an n/2-level m sequence.
  • any position here may be the first position, the second position, the fifth position or other positions in the first sequence.
  • the first interval may be 2 (n/2) +1, or other sampling intervals, as long as the second sequence obtained after sampling is an n/2-level m sequence.
  • S203 Perform a cyclic shift on the second sequence to obtain a sequence of the primary synchronization signal.
  • the communication signal also includes a secondary synchronization signal.
  • the sequence of the secondary synchronization signal can be realized by the following methods:
  • the primitive polynomial A is determined by looking up the table, and the fifth sequence is determined according to the primitive polynomial A and the initial state of the shift register that generates the fifth sequence.
  • the sequence is a preferred pair sequence that can constitute the Gold sequence;
  • the fourth sequence is determined according to the second sequence and the fifth sequence, where the fourth sequence is an n/2-level Gold sequence.
  • S204 starting from any position in the first sequence, perform cyclic sampling every second interval to obtain a third sequence, which is an n-level m sequence.
  • any position here may be the first position, the second position, the fifth position or other positions in the first sequence.
  • the second interval may be 2 (n/2+1) +1, or other sampling intervals, as long as the third sequence obtained after sampling is an n-level m sequence.
  • S205 Determine the Kasami sequence according to the first sequence and the third sequence, and determine the navigation sequence according to the Kasami sequence.
  • the first sequence, the second sequence, and the third sequence are added modulo 2 to obtain the Kasami large set sequence (that is, the first Kasami sequence), and the Kasami large set sequence or the Kasami large set sequence is truncated
  • the sequence is used as the navigation sequence.
  • the first sequence and the third sequence are modulo 2 addition operation to obtain the Kasami small set sequence (ie the second Kasami sequence), and the Kasami small set sequence or the truncated sequence of the Kasami small set sequence is used as the navigation sequence.
  • the length of the truncated sequence may be determined based on the number of satellites, positioning accuracy, or clock frequency.
  • the truncated sequence can be a continuous sequence in the Kasami sequence (Kasami large collection sequence or Kasami small collection sequence), or multiple discontinuous sequences in the Kasami sequence.
  • the first sequence is a 14-level m sequence
  • the length of the Kasami sequence is 16383
  • the truncated sequence can be 1-300 or 3000-5000 or 12000-13000 or 1-300 in the Kasami sequence , 3000-5000 digits and the union of 12000-13000 digits, this application does not specifically limit this.
  • a design method for the sequence of the broadcast signal of the ICaN system which can support the terminal equipment to complete the navigation/positioning function according to the instruction broadcast signal, without GNSS support, complete the network self-positioning, and solve the pain points of the next-generation satellite dynamic networking ;
  • the navigation sequence adopts the Kasami sequence design, which has a large number of sequences, supports the broadcast of the navigation signal of the ultra-dense satellite communication system, improves the positioning performance and has good cross-correlation; in addition, the navigation signal sequence and the communication signal sequence adopt a coupled design to facilitate error detection And confidential communications.
  • the broadcast signal block may be a synchronization signal block (synchronization signal and PBCH block, SSB), where the SSB includes a primary synchronization signal (primary synchronization signal, PSS) and/or a secondary synchronization signal (secondary synchronization signal).
  • PSS primary synchronization signal
  • secondary synchronization signal secondary synchronization signal
  • the design of the communication signal in FIG. 2 includes but is not limited to the SSB of the existing NR.
  • this application provides a sequence design method in which the primary SS is the same as the PSS and the secondary SS is the same as the SSS in the ICaN.
  • FIG. 3 is a flowchart of the method for designing a broadcast signal proposed by the present application. Specifically, the steps for generating sequences where the primary SS is the same as the PSS and the secondary SS is the same as the SSS in the ICaN are:
  • this application provides a method for solving primitive polynomials of m-sequences after cyclic sampling.
  • the specific steps include:
  • the length of the sequence of 2n is as follows (from the 2nd position to the nth position, there are n-1 consecutive 0 sequences):
  • ak+1 , ak+2 ,..., ak+n-1 represent the last n-1 bits of a sequence of 2n in length that meet the above conditions.
  • the sequence a, a', and a'' are added modulo 2 to obtain the Kasami large set sequence (that is, an example of the first Kasami sequence), and the Kasami large set sequence or the truncated sequence of the Kasami large set sequence As a navigation sequence.
  • the sequence a and a ⁇ are added modulo 2 to obtain the Kasami small set sequence (that is, an example of the second Kasami sequence), and the Kasami small set sequence or the truncated sequence of the Kasami small set sequence is used as the navigation sequence.
  • the navigation and positioning performance is improved, and it can support an ultra-dense satellite network of 10,000+ satellites.
  • this application provides a sequence design method in which the primary SS is different from the PSS and the secondary SS is the same as the SSS in the ICaN.
  • the sequence generation process is the same as that in Figure 3.
  • the specific steps include:
  • FIG. 4 is a schematic diagram of the generated primary synchronization signal sequence (3 lines).
  • sequence c is a Gold sequence, where the sequence c constructed according to the above method is different from the sequence of the SSS of NR, see Figure 5, Figure 5 is the generated secondary synchronization signal sequence (6) Schematic diagram.
  • a sequence design method in which the first-level SS is different from the PSS and the second-level SS is different from the SSS is given, which improves the navigation and positioning performance and can support an ultra-dense satellite network of 10,000+ satellites.
  • FIG. 7 is a schematic diagram of interaction of a signal transmission method proposed in the present application.
  • a terminal device that is, an example of a communication device receives navigation reference signals and communication signals broadcast by multiple network devices.
  • the network device broadcasts the navigation reference signal and the communication signal to the terminal device.
  • the navigation reference signal includes a navigation sequence
  • the communication signal includes a primary synchronization signal
  • the primary synchronization signal includes a sequence of a primary synchronization signal.
  • the communication signal includes a secondary synchronization signal
  • the secondary synchronization signal includes a sequence of secondary synchronization signals
  • the network device periodically broadcasts the communication signal and system message, and correspondingly, the terminal device periodically receives the communication signal and system message.
  • the sequence of the primary synchronization signal, and the sequence of the secondary synchronization signal please refer to the above description, and will not be repeated here.
  • FIG. 8 is a design framework diagram of the periodic broadcast of the navigation sequence provided by the present application.
  • the communication signal SSB broadcast on the network side includes a primary SS and a secondary SS.
  • the navigation signal is periodically broadcast in the first time-frequency resource, where the first time-frequency resource is the navigation sequence in Figure 8 Time domain resources corresponding to the time domain and frequency domain resources corresponding to the frequency domain.
  • the terminal device sends a positioning request to multiple network devices.
  • the network device receives the positioning request.
  • the network device periodically broadcasts and sends the navigation of the cell on the first time-frequency resource according to the positioning request.
  • Reference signal the terminal device periodically receives the navigation reference signals of multiple cells broadcast by multiple network devices on the first time-frequency resource, where the first time-frequency resource is a fixed time-frequency resource.
  • FIG. 9 is a design framework diagram of the on-demand broadcast of the navigation sequence provided by the present application.
  • the communication signal SSB broadcast on the network side also includes the primary SS and secondary SS shown in Figure 8.
  • the navigation reference signal is broadcast on demand in the second time-frequency resource, where the second time-frequency resource It is the time domain resource corresponding to the time domain and the frequency domain resource corresponding to the frequency domain of the navigation reference signal in FIG. 9.
  • the terminal device sends a positioning request to the network device.
  • the network device receives the positioning request.
  • the network device broadcasts the navigation reference signal of the cell on the second time-frequency resource on demand according to the positioning request.
  • the terminal device receives the navigation reference signals of multiple cells sent by multiple network devices on the second time-frequency resource on demand, where the time-frequency resource (ie, the second time-frequency resource) occupied by the transmission of the navigation reference signal is flexibly configurable, Compared with periodic broadcasting, the utilization rate of time-frequency resources can be improved.
  • a four-color or eight-color multiplexing method may be used between different cells in the multiple cells to perform frequency division broadcast navigation reference signals.
  • the terminal device determines location information of the terminal device according to the navigation sequence in the navigation reference signals of at least two cells of the multiple cells.
  • the terminal device needs to determine its own location information according to the navigation reference signals sent by at least two different network devices. Therefore, the at least two cells here are cells under at least two different network devices.
  • the terminal device may calculate the pseudorange or the time delay difference according to the received navigation sequences of at least two of the multiple different cells, and establish a differential positioning equation accordingly, based on a positioning algorithm (for example, the Gauss-Newton method) Resolve its own location information.
  • a positioning algorithm for example, the Gauss-Newton method
  • the terminal equipment can complete the navigation/positioning function according to the instruction broadcast signal, without GNSS support, complete the network self-positioning, and solve the pain points of the next-generation satellite dynamic networking; in addition, the navigation sequence cross-correlation is better than the existing gold sequence , And the number of sequences is large, suitable for ultra-dense satellite networks.
  • FIG. 10 is a schematic block diagram of a communication device 1000 provided by this application. As shown in FIG. 6, the communication device 1000 includes a processing unit 1100.
  • the processing unit 1100 is configured to obtain a first sequence, where the first sequence is an n-level m sequence, where n is a positive and even number; the processing unit 1100 is further configured to start from any position in the first sequence every first sequence. Perform cyclic sampling at intervals to obtain a second sequence, where the second sequence is an n/2-level m sequence; the processing unit 1100 is further configured to perform a cyclic shift on the second sequence to obtain a sequence of a first-level synchronization signal; The unit 1100 is also used to perform cyclic sampling every second interval from any position in the first sequence to obtain a third sequence, which is an n-level m sequence; the processing unit 1100 is also used to The first sequence and the third sequence determine the Kasami sequence; the processing unit 1100 is further configured to determine the sequence of the navigation signal according to the Kasami sequence; the processing unit 1100 is further configured to determine the broadcast signal, and the broadcast signal includes The primary synchronization signal and the navigation signal.
  • the first interval is 2 (n/2) +1; the second interval is 2 (n/2+1) +1.
  • the processing unit 1100 is specifically configured to: perform a modulo 2 addition operation on the first sequence, the second sequence, and the third sequence to obtain the first Kasami sequence;
  • the first Kasami sequence or the truncated sequence of the first Kasami sequence determines the sequence of the navigation signal.
  • the processing unit 1100 is specifically configured to: perform a modulo 2 addition operation on the first sequence and the third sequence to obtain a second Kasami sequence; according to the second Kasami sequence or the first sequence The truncated sequence of the Kasami sequence determines the sequence of the navigation signal.
  • the processing unit 1100 is specifically configured to obtain the first sequence according to the primitive polynomial of the first sequence and the initial state of the shift register that generates the first sequence.
  • the processing unit 1100 is specifically configured to: determine a fourth sequence according to the second sequence, where the fourth sequence is a Gold sequence; perform cyclic shift on the fourth sequence to obtain two A sequence of secondary synchronization signals, wherein the broadcast signal includes the secondary synchronization signal.
  • the processing unit 1100 is specifically configured to: determine the primitive polynomial of the second sequence according to the second sequence; determine the primitive polynomial of the fifth sequence according to the primitive polynomial of the second sequence
  • the original polynomial, the fifth sequence and the second sequence are the preferred pair sequences that can form the Gold sequence; the original polynomial of the fifth sequence and the initial state of the shift register that generated the fifth sequence are determined The fifth sequence; the fourth sequence is determined according to the second sequence and the fifth sequence.
  • the initial state of the shift register that generates the first sequence is (1,1,1,1,1,1,1,1,1,1,1,1), and the second sequence
  • the initial state of the bit register is (0,0,0,0,0,0,1).
  • the initial state of the stage m sequence shift register is (1,1,1,1,1,1,1,1,1,1,1,1)
  • the initial shift register of the third sequence is generated
  • the state is (0,0,0,0,0,0,1).
  • the communication device may further include a receiving unit 1200 and a sending unit 1300.
  • the receiving unit 1200 and the sending unit 1300 can also be integrated into one transceiver unit, which has both receiving and sending functions. limited.
  • the receiving unit 1200 in the communication device 1000 may be a receiver, and the sending unit 1300 may be a transmitter.
  • the receiver and transmitter can also be integrated into one transceiver.
  • the communication device 1000 may be a chip or an integrated circuit.
  • the receiving unit 1200 and the sending unit 1300 may be communication interfaces or interface circuits.
  • the receiving unit 1200 is an input interface or an input circuit
  • the sending unit 1300 is an output interface or an output circuit.
  • processing unit 1100 is used to perform processing and/or operations that need to be implemented in FIGS. 2 and 3 in addition to the actions of sending and receiving.
  • the processing unit 1100 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include at least one processor and at least one memory, where the at least one memory is used to store a computer program, and the at least one processor reads and executes the computer program stored in the at least one memory, so that The communication device 1000 executes operations and/or processes that need to be performed in FIG. 2 and FIG. 3.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the processing device may also be a chip or an integrated circuit.
  • the processing device includes a processing circuit/logic circuit and an interface circuit.
  • the interface circuit is used to receive signals and/or data and transmit the signals and/or data to the processing circuit.
  • the processing circuit processes the signals and/or data. / Or data, so that the operations and/or processes performed in FIG. 2 and FIG. 3 are performed.
  • FIG. 11 is a schematic block diagram of a communication device 2000 provided by this application.
  • the communication device 2000 includes a receiving unit 2200 and a sending unit 2300.
  • the sending unit 2300 is configured to broadcast a navigation reference signal and a communication signal, the navigation reference signal includes a navigation sequence, the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence, and the communication signal includes a primary synchronization signal ,
  • the first-level synchronization signal is a sequence determined after cyclically shifting the second sequence, wherein the first sequence is an n-level m sequence, the n is a positive even number, and the second sequence is from the An n/2-level m sequence obtained by cyclically sampling every first interval from any position in the first sequence, and the third sequence is obtained by cyclically sampling every second interval from any position in the first sequence n-level m sequence, the navigation reference signal is used for the communication device to determine position information.
  • the first interval is 2 (n/2) +1; the second interval is 2 (n/2+1) +1.
  • the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence, including: the navigation sequence is the first sequence, the second sequence, and the first sequence.
  • the modular 2 addition operation is performed on the three sequences to obtain the first Kasami sequence or the truncated sequence of the first Kasami sequence.
  • the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence, including: the navigation sequence is modulo 2 addition to the first sequence and the third sequence.
  • the second Kasami sequence or the truncated sequence of the second Kasami sequence is obtained by operation.
  • the first sequence is a sequence determined according to the primitive polynomial of the first sequence and the initial state of the shift register that generates the first sequence.
  • the communication signal includes a secondary synchronization signal
  • the secondary synchronization signal is a sequence determined after a fourth sequence is cyclically shifted, wherein the fourth sequence is based on the The Gold sequence determined by the second sequence.
  • the fourth sequence is a Gold sequence determined according to the second sequence, including: the fourth sequence is a Gold sequence determined according to the second sequence and the fifth sequence, wherein, the fifth sequence and the second sequence are a preferred pair sequence that can form a Gold sequence, and the fifth sequence is based on the primitive polynomial of the fifth sequence and the shift register that generates the fifth sequence
  • the primitive polynomial of the fifth sequence is determined according to the primitive polynomial of the second sequence.
  • the initial state of the shift register that generates the first sequence is (1,1,1,1,1,1,1,1,1,1,1,1), and the second sequence
  • the initial state of the bit register is (0,0,0,0,0,0,1).
  • the initial state of the stage m sequence shift register is (1,1,1,1,1,1,1,1,1,1,1,1)
  • the initial shift register of the third sequence is generated
  • the state is (0,0,0,0,0,0,1).
  • the receiving unit 2200 is configured to receive a positioning request sent by a terminal device; and the sending unit 2300 is specifically configured to: periodically broadcast the navigation on the first time-frequency resource according to the positioning request.
  • Reference signal wherein the first time-frequency resource is a fixed time-frequency resource; or broadcasting a navigation reference signal on a second time-frequency resource according to the positioning request, wherein the second time-frequency resource is configurable Time-frequency resources.
  • the receiving unit 2200 and the sending unit 2300 can also be integrated into one transceiver unit, which has both receiving and sending functions, which is not limited here.
  • the communication apparatus 2000 may be a satellite or a network device in the method embodiment.
  • the receiving unit 2200 may be a receiver
  • the sending unit 2300 may be a transmitter.
  • the receiver and transmitter can also be integrated into one transceiver.
  • the communication device 2000 may be a chip or an integrated circuit in a satellite or a network device.
  • the receiving unit 2200 and the sending unit 2300 may be communication interfaces or interface circuits.
  • the receiving unit 2200 is an input interface or an input circuit
  • the sending unit 2300 is an output interface or an output circuit.
  • the communication device 2000 may further include a processing unit 2100.
  • the processing unit 2100 is configured to perform processing and/or operations implemented inside the network device in addition to sending and receiving actions.
  • the processing unit 2100 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include at least one processor and at least one memory, where the at least one memory is used to store a computer program, and the at least one processor reads and executes the computer program stored in the at least one memory, so that The communication device 2000 executes operations and/or processing performed by the network device in each method embodiment.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the processing device may also be a chip or an integrated circuit.
  • the processing device includes a processing circuit/logic circuit and an interface circuit.
  • the interface circuit is used to receive signals and/or data and transmit the signals and/or data to the processing circuit.
  • the processing circuit processes the signals and/or data. / Or data, so that operations performed by the network device in each method embodiment are executed.
  • the communication device 3000 includes a processing unit 3100, a receiving unit 3200, and a sending unit 3300.
  • the receiving unit 3200 is configured to receive navigation reference signals and communication signals of multiple cells broadcast by multiple network devices, where the navigation reference signals include a navigation sequence, and the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence ,
  • the communication signal includes a primary synchronization signal, the primary synchronization signal is a sequence determined after a second sequence is cyclically shifted, wherein the first sequence is an n-level m sequence, and the n is a positive even number ,
  • the second sequence is an n/2-level m sequence obtained by cyclic sampling at every first interval from any position in the first sequence, and the third sequence is an m sequence starting from any position in the first sequence N-level m-sequence obtained by cyclic sampling every second interval;
  • the processing unit 3100 determines the position of the terminal equipment equipped with the device according to the navigation sequence in the navigation reference signal of at least two of the multiple cells information.
  • the first interval is 2 (n/2) +1; the second interval is 2 (n/2+1) +1.
  • the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence, including: the navigation sequence is the first sequence, the second sequence, and the first sequence.
  • the modular 2 addition operation is performed on the three sequences to obtain the first Kasami sequence or the truncated sequence of the first Kasami sequence.
  • the navigation sequence is a Kasami sequence determined by a first sequence and a third sequence, including: the navigation sequence is modulo 2 addition to the first sequence and the third sequence.
  • the second Kasami sequence or the truncated sequence of the second Kasami sequence is obtained by operation.
  • the first sequence is a sequence determined according to the primitive polynomial of the first sequence and the initial state of the shift register that generates the first sequence.
  • the communication signal includes a secondary synchronization signal
  • the secondary synchronization signal is a sequence determined after a fourth sequence is cyclically shifted, wherein the fourth sequence is based on the The Gold sequence determined by the second sequence.
  • the fourth sequence is a Gold sequence determined according to the second sequence, including: the fourth sequence is a Gold sequence determined according to the second sequence and the fifth sequence, wherein, the fifth sequence and the second sequence are a preferred pair sequence that can form a Gold sequence, and the fifth sequence is based on the primitive polynomial of the fifth sequence and the shift register that generates the fifth sequence The initial state of is determined, and the primitive polynomial of the fifth sequence is determined according to the primitive polynomial of the second sequence.
  • the initial state of the shift register that generates the first sequence is (1,1,1,1,1,1,1,1,1,1,1,1), and the second sequence
  • the initial state of the bit register is (0,0,0,0,0,0,1).
  • the initial state of the stage m sequence shift register is (1,1,1,1,1,1,1,1,1,1,1,1)
  • the initial shift register of the third sequence is generated
  • the state is (0,0,0,0,0,0,1).
  • the sending unit 3300 is configured to send positioning requests to the multiple network devices; and the receiving unit 3200 is specifically configured to: periodically receive the multiple network devices on the first time-frequency resource.
  • the receiving unit 3200 and the sending unit 3300 can also be integrated into one transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the communication apparatus 3000 may be a terminal device in the method embodiment.
  • the receiving unit 3200 may be a receiver
  • the sending unit 3300 may be a transmitter.
  • the receiver and transmitter can also be integrated into one transceiver.
  • the communication device 3000 may be a chip or an integrated circuit of a terminal device.
  • the receiving unit 3200 and the sending unit 3300 may be communication interfaces or interface circuits.
  • the receiving unit 3200 is an input interface or an input circuit
  • the sending unit 3300 is an output interface or an output circuit.
  • the communication device 3000 may further include a processing unit 3100.
  • the processing unit 3100 is configured to perform processing and/or operations implemented inside the terminal device in addition to sending and receiving actions.
  • the processing unit 3100 may be a processing device.
  • the function of the processing device can be realized by hardware, or by hardware executing corresponding software.
  • the processing device may include at least one processor and at least one memory, where the at least one memory is used to store a computer program, and the at least one processor reads and executes the computer program stored in the at least one memory, so that The communication device 3000 executes operations and/or processing performed by the terminal device in each method embodiment.
  • the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
  • the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
  • the processing device may also be a chip or an integrated circuit.
  • the processing device includes a processing circuit/logic circuit and an interface circuit.
  • the interface circuit is used to receive signals and/or data and transmit the signals and/or data to the processing circuit.
  • the processing circuit processes the signals and/or data. / Or data, so that operations performed by the terminal device in each method embodiment are executed.
  • the communication device 10 includes: one or more processors 11, one or more memories 12 and one or more communication interfaces 13.
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the terminal device executes the Processes and/or operations are executed.
  • the processor 11 may have the function of the processing unit 1100 shown in FIG. 10, and the communication interface 13 may have the function of the receiving unit 1200 and/or the sending unit 1300 shown in FIG.
  • the processor 11 may be used to execute processing or operations that need to be executed internally in FIGS. 2 and 3, and the communication interface 13 is used to execute the sending and/or receiving actions that need to be executed in FIGS. 2 and 3.
  • the communication interface 13 in the communication device 10 may be a transceiver.
  • the transceiver may include a receiver and a transmitter.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip or an integrated circuit.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • FIG. 14 is a schematic structural diagram of the communication device 20 provided by this application.
  • the communication device 20 includes: one or more processors 21, one or more memories 22 and one or more communication interfaces 23.
  • the processor 21 is used to control the communication interface 23 to send and receive signals
  • the memory 22 is used to store a computer program
  • the processor 21 is used to call and run the computer program from the memory 22, so that the computer program executed by the network device in the various method embodiments of the present application Processes and/or operations are executed.
  • the processor 21 may have the function of the processing unit 2100 shown in FIG. 11, and the communication interface 23 may have the function of the receiving unit 2200 and/or the sending unit 2300 shown in FIG. 11.
  • the processor 21 may be used to perform the processing or operation performed internally by the network device in FIG. 4, and the communication interface 23 is used to perform the sending and/or receiving actions performed by the network device in FIG.
  • the communication device 20 may be a network device in the method embodiment.
  • the communication interface 23 may be a transceiver.
  • the transceiver may include a receiver and a transmitter.
  • the processor 21 may be a baseband device, and the communication interface 23 may be a radio frequency device.
  • the communication device 20 may be a chip or an integrated circuit installed in a network device.
  • the communication interface 23 may be an interface circuit or an input/output interface.
  • the memory and the processor in the foregoing device embodiments may be physically independent units, or the memory and the processor may be integrated together, which is not limited herein.
  • the communication device 30 includes: one or more processors 31, one or more memories 32 and one or more communication interfaces 33.
  • the processor 31 is used to control the communication interface 33 to send and receive signals
  • the memory 32 is used to store a computer program
  • the processor 31 is used to call and run the computer program from the memory 32, so that the terminal device executes the Processes and/or operations are executed.
  • the processor 31 may have the function of the processing unit 3100 shown in FIG. 12, and the communication interface 33 may have the function of the receiving unit 3200 and/or the sending unit 3300 shown in FIG.
  • the processor 31 may be used to execute the processing or operation executed internally by the terminal device in FIG. 4, and the communication interface 33 may be used to execute the sending and/or receiving actions executed by the terminal device in FIG.
  • the communication device 30 may be a terminal device in the method embodiment.
  • the communication interface 33 may be a transceiver.
  • the transceiver may include a receiver and a transmitter.
  • the processor 31 may be a baseband device, and the communication interface 33 may be a radio frequency device.
  • the communication device 30 may be a chip or an integrated circuit installed in a terminal device.
  • the communication interface 33 may be an interface circuit or an input/output interface.
  • the memory and the processor in the foregoing device embodiments may be physically independent units, or the memory and the processor may be integrated together, which is not limited herein.
  • the present application also provides a computer-readable storage medium that stores computer instructions.
  • the operations performed by the terminal device in the method embodiments of the present application are And/or the process is executed.
  • the present application also provides a computer-readable storage medium in which computer instructions are stored.
  • the computer instructions are executed on a computer, the operations performed by the network device in the various method embodiments of the present application and/ Or the process is executed.
  • the application also provides a computer program product.
  • the computer program product includes computer program code or instructions. When the computer program code or instructions run on a computer, the operation and/ Or the process is executed.
  • the application also provides a computer program product.
  • the computer program product includes computer program code or instructions.
  • the operations and/or processes performed by the network device in the method embodiments of the application are Be executed.
  • this application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the operation and/or processing performed by the terminal device in any method embodiment is executed.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may also include the memory.
  • the application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the operation and/or processing performed by the network device in any method embodiment is executed.
  • the chip may also include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may also include the memory.
  • the present application also provides a communication device (for example, a chip), including a processor and a communication interface, the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes The signal enables the operation and/or processing performed by the terminal device in any method embodiment to be executed.
  • a communication device for example, a chip
  • the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes The signal enables the operation and/or processing performed by the terminal device in any method embodiment to be executed.
  • the present application also provides a communication device (for example, a chip), including a processor and a communication interface, where the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes the Signal, so that operations and/or processing performed by the network device in any method embodiment are executed.
  • a communication device for example, a chip
  • the communication interface is used to receive a signal and transmit the signal to the processor, and the processor processes the Signal, so that operations and/or processing performed by the network device in any method embodiment are executed.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is configured to execute a computer program or instruction stored in the at least one memory, The operation and/or processing performed by the terminal device in any method embodiment is executed.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled with at least one memory, and the at least one processor is configured to execute a computer program or instruction stored in the at least one memory, so that any The operations and/or processing performed by the network device in a method embodiment are performed.
  • this application also provides a communication device including a processor, a memory, and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the terminal device can perform operations and/or processing performed by the terminal device in any method embodiment. .
  • the application also provides a communication device, including a processor, a memory, and a transceiver.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the terminal device can perform operations and/or processing performed by the network device in any method embodiment. .
  • this application also provides a wireless communication system, including the terminal device and the network device in the embodiment of this application.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has the ability to process signals.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the processor can be a general-purpose processor, digital signal processor (digital signal processor, DSP), application-specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable Logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware encoding processor, or executed and completed by a combination of hardware and software modules in the encoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static RAM static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM)
  • direct rambus RAM DRRAM
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • a and/or B can mean: A alone exists, and both A and B exist at the same time. There are three cases of B. Among them, A, B, and C can all be singular or plural, and are not limited.
  • words such as “first” and “second” are used to distinguish the same items or similar items that have substantially the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信号传输的方法及装置,网络设备广播导航参考信号和通信信号,通信信号中的通信序列和导航参考信号中的导航序列使用同一偶数级m序列进行耦合设计,支持终端设备根据广播信号完成通信导航一体化功能,提升定位性能,解决下一代卫星动态组网的痛点;此外,本申请中的导航序列采用kasami序列,互相关性优于现有的Gold序列,且序列个数多,适用于超密卫星网络。

Description

信号传输的方法和通信装置
本申请要求于2020年6月11日提交中国国家知识产权局、申请号为202010530482.7、申请名称为“一种信号传输的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星网络,更具体地,涉及一种信号传输的方法和通信装置。
背景技术
卫星通信等非地面通信网络(non-terrestrial networks,NTN)具有全球覆盖、远距离传输、组网灵活、部署方便和不受地理条件限制等显著优点,已经被广泛应用于海上通信、定位导航、抗险救灾、科学实验、视频广播和对地观测等多个领域。地面网络和卫星网络等相互融合,取长补短,共同构成全球无缝覆盖的海、陆、空、天、地一体化综合通信网,满足用户无处不在的多种业务需求。
下一代卫星网络总体呈现超密、异构的趋势:首先,卫星网络的规模从铱星星座的66颗发展到Oneweb星座的720颗,并最终延展到12000+的Starlink超密低轨卫星星座;其次,卫星网络呈现异构特性,从传统的单层通信网络发展到多层通信网络,通信卫星网络的功能也趋向复杂化、多样化,逐渐兼容并支持导航增强、对地观测、多维信息在轨处理等功能。
通信、导航一体化(integrated communication and navigation,ICaN)是下一代通信网络(包括卫星网络和地面网络)的潜在发展方向,ICaN可以能够实现通信和导航的优势互补。终端设备通过被动定位获得自身的位置信息,可以极大简化动态网络(尤其是卫星网络)的位置管理功能。
但是,现有的同步信号块(synchronization signal and PBCH block,SSB)广播信号的设计主要针对通信网络,不适用于下一代通信导航一体化卫星网络;此外,现有蜂窝独立定位技术在某种程度上需要依靠特定的参考信号,如定位参考信号(positioning reference signal,PRS)。PRS采用长度为31的Gold序列,保密性差,序列互相关性次优,且PRS序列数目受限,最多为32条,也不适用于大规模卫星网络。
发明内容
本申请提供一种信号传输的方法,能够适用于下一代通信导航一体化卫星网络。
第一方面,提供了一种广播信号设计的方法,该方法包括:获取第一序列,所述第一序列为n级m序列,所述n为正偶数;从所述第一序列的任何位置开始每隔第一间隔进行循环抽样,得到第二序列,所述第二序列为n/2级m序列;对所述第二序列进行循环移位,得到一级同步信号的序列;从所述第一序列的任何位置开始每隔第二间隔进行循环抽 样,得到第三序列,所述第三序列为n级m序列;根据所述第一序列和所述第三序列确定Kasami序列;根据所述Kasami序列确定导航信号的序列;确定所述广播信号,所述广播信号包括所述一级同步信号和所述导航信号。
上述技术方案中,给出了ICaN系统广播信号的序列的设计方法,可支持终端设备按照指示广播信号完成导航/定位功能,无需全球导航卫星系统(global navigation satellite system,GNSS)支持,完成网络自定位,解决下一代卫星动态组网的痛点;同时,导航序列采用Kasami序列设计,序列个数多,支持超密卫星通信系统导航信号广播,提升定位性能且互相关性好;另外,导航信号序列和通信信号序列采用耦合设计,便于检错及保密通信。
结合第一方面,在第一方面的某些实现方式中,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第一序列和所述第三序列确定Kasami序列,包括:将所述第一序列、所述第二序列和所述第三序列进行模2加运算,得到第一Kasami序列;以及所述根据所述Kasami序列确定导航信号的序列,包括:根据所述第一Kasami序列或者所述第一Kasami序列的截断序列确定所述导航信号的序列。
上述技术方案中,导航序列采用Kasami序列设计,序列个数多,支持超密卫星通信系统导航信号广播,提升定位性能且互相关性好。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第一序列和所述第三序列确定Kasami序列,包括:将所述第一序列和第三序列进行模2加运算,得到第二Kasami序列;以及所述根据所述Kasami序列确定导航信号的序列,包括:根据所述第二Kasami序列或者所述第二Kasami序列的截断序列确定所述导航信号的序列。
上述技术方案中,导航序列采用Kasami序列设计,序列个数多,支持超密卫星通信系统导航信号广播,提升定位性能且互相关性好。
结合第一方面,在第一方面的某些实现方式中,所述获取第一序列,包括:根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态获取所述第一序列。
结合第一方面,在第一方面的某些实现方式中,根据所述第二序列确定第四序列,所述第四序列为Gold序列;对所述第四序列进行循环移位,得到二级同步信号的序列,其中,所述广播信号包括所述二级同步信号。
结合第一方面,在第一方面的某些实现方式中,所述根据所述第二序列确定第四序列,所述第四序列为Gold序列,包括:根据所述第二序列确定所述第二序列的本原多项式;根据所述第二序列的本原多项式确定第五序列的本原多项式,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列;根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定所述第五序列;根据所述第二序列和所述第五序列确定所述第四序列。
结合第一方面,在第一方面的某些实现方式中,当n=14时,所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 4+x 7,所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为 (0,0,0,0,0,0,1)。
上述技术方案中,在不改变现有NR协议通信广播信号的前提下,提升了导航定位性能,可支撑10000+卫星的超密卫星网络。
结合第一方面,在第一方面的某些实现方式中,当所述n=14时,所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 6+x 7,所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
上述技术方案中,提升了导航定位性能,可支撑10000+卫星的超密卫星网络。
第二方面,提供了一种信号传输的方法,该方法包括:网络设备广播导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列,导航参考信号用于通信装置确定自己的位置信息。在本申请的技术方案中,网络设备广播ICaN系统广播信号,终端设备可按照指示广播信号完成导航/定位功能,无需GNSS支持,完成网络自定位,解决下一代卫星动态组网的痛点;同时,导航序列采用Kasami序列设计,序列个数多,支持超密卫星通信系统导航信号广播,提升定位性能且互相关性好;另外,导航信号序列和通信信号序列采用耦合设计,便于检错及保密通信。
结合第二方面,在第二方面的某些实现方式中,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
结合第二方面,在第二方面的某些实现方式中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
上述技术方案中,导航序列采用Kasami序列设计,序列个数多,支持超密卫星通信系统导航信号广播,提升定位性能且互相关性好。
结合第二方面,在第二方面的某些实现方式中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
上述技术方案中,导航序列采用Kasami序列设计,序列个数多,支持超密卫星通信系统导航信号广播,提升定位性能且互相关性好。
结合第二方面,在第二方面的某些实现方式中,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
结合第二方面,在第二方面的某些实现方式中,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,所述第四序列是根据所述第二序列确定的Gold序列。
结合第二方面,在第二方面的某些实现方式中,所述第四序列是根据所述第二序列确定的Gold序列,包括:所述第四序列是根据所述第二序列和第五序列确定的Gold序列, 其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定的,所述第五序列的本原多项式是根据所述第二序列的本原多项式确定的。
结合第二方面,在第二方面的某些实现方式中,当n=14时,所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 4+x 7,所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
上述技术方案中,在不改变现有NR协议通信广播信号的前提下,提升了导航定位性能,可支撑10000+卫星的超密卫星网络。
结合第二方面,在第二方面的某些实现方式中,当所述n=14时,所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 6+x 7,所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
上述技术方案中,提升了导航定位性能,可支撑10000+卫星的超密卫星网络。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备接收终端设备发送的定位请求;以及网络设备广播导航参考信号,包括:网络设备根据定位请求在第一时频资源上周期性广播导航参考信号,其中,第一时频资源为固定的时频资源;或者网络设备根据定位请求在第二时频资源上按需广播导航参考信号,其中,第二时频资源为可配置的时频资源。
上述技术方案中,发送导航参考信号占用的时频资源(即第二时频资源)灵活可配,相比于周期性广播的方式可以提高时频资源的利用率。
第三方面,提供了一种信号传输的方法,该方法包括:通信装置接收多个网络设备广播的多个小区的导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列;所述通信装置根据所述多个小区中的至少两个小区的导航参考信号中的导航序列确定所述通信装置的位置信息。
结合第三方面,在第三方面的某些实现方式中,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
结合第三方面,在第三方面的某些实现方式中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
结合第三方面,在第三方面的某些实现方式中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
结合第三方面,在第三方面的某些实现方式中,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
结合第三方面,在第三方面的某些实现方式中,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,所述第四序列是根据所述第二序列确定的Gold序列。
结合第三方面,在第三方面的某些实现方式中,所述第四序列是根据所述第二序列确定的Gold序列,包括:所述第四序列是根据所述第二序列和第五序列确定的Gold序列,其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定,所述第五序列的本原多项式是根据所述第二序列的本原多项式确定的。
结合第三方面,在第三方面的某些实现方式中,当n=14时,所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 4+x 7,所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
结合第三方面,在第三方面的某些实现方式中,当所述n=14时,所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 6+x 7,所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
结合第三方面,在第三方面的某些实现方式中,所述终端设备向所述多个网络设备发送定位请求;以及所述终端设备接收多个网络设备广播的多个小区的导航参考信号,包括:所述终端设备在第一时频资源上周期性接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第一时频资源为固定的时频资源;或者所述终端设备在所述第二时频资源上接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第二时频资源为可配置的时频资源。
第三方面或其任意实现方式的方法的有益技术效果可以参见第二方面或其任意实现方式的方法相应技术方案的说明,不再赘述。
第四方面,提供一种通信装置,所述通信装置具有实现第一方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。例如,处理单元。
第五方面,本申请提供一种通信装置,所述通信装置具有实现第二方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。例如:处理单元、接收单元、发送单元等。
第六方面,本申请提供一种通信装置,所述通信装置具有实现第三方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软 件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。例如:处理单元、接收单元、发送单元等。
第七方面,本申请提供一种通信设备,包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信设备执行第一方面或其任意可能的实现方式中的方法。
第八方面,本申请提供一种通信设备,包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信设备执行第二方面或其任意可能的实现方式中的方法。
在一个示例中,该通信设备可以为网络设备。
第九方面,本申请提供一种通信设备,包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信设备执行第二方面或其任意可能的实现方式中的方法。
在一个示例中,该通信设备可以为终端设备。
第十方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面或其任意可能的实现方式中的方法被执行。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第二方面或其任意可能的实现方式中的方法被执行。
第十二方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第三方面或其任意可能的实现方式中的方法被执行。
第十三方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面或其任意可能的实现方式中的方法被执行。
第十四方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第二方面或其任意可能的实现方式中的方法被执行。
第十五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第三方面或其任意可能的实现方式中的方法被执行。
第十六方面,本申请提供一种芯片,包括处理器和通信接口,所述通信接口用于接收信号,并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得如第一方面或其任意可能的实现方式中的方法被执行。
第十七方面,本申请提供一种芯片,包括处理器和通信接口,所述通信接口用于接收信号,并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得如第二方面或 其任意可能的实现方式中的方法被执行。
第十八方面,本申请提供一种芯片,包括处理器和通信接口,所述通信接口用于接收信号,并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得如第三方面或其任意可能的实现方式中的方法被执行。
第十九方面,本申请提供一种无线通信系统,包括如第八方面和第九方面所述的通信设备。
附图说明
图1为适用于本申请实施例的通信系统的示例。
图2是本申请提供的广播信号设计的方法的示意性框图。
图3是本申请提出的广播信号序列设计的方法的流程图。
图4为生成的一级同步信号序列(3条)的示意图。
图5为生成的二级同步信号序列(6条)的示意图。
图6为生成的导航序列的示意图。
图7是本申请提出的一种信号广播的方法的交互示意图。
图8是本申请提供的导航序列周期性广播的设计框架图。
图9是本申请提供的导航序列按需广播的设计框架图。
图10为本申请提供的通信装置1000的示意性框图。
图11为本申请提供的通信装置2000的示意性框图。
图12为本申请提供的通信装置3000的示意性框图。
图13为本申请提供的通信装置10的示意性结构图。
图14为本申请提供的通信装置20的示意性结构图。
图15为本申请提供的通信装置30的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案可以应用于卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)系统,例如,ICaN系统、全球导航卫星系统(global navigation satellite system,GNSS)等。
卫星通信系统可以与传统的移动通信系统相融合。例如:所述移动通信系统可以为第四代(4th generation,4G)通信系统(例如,长期演进(long term evolution,LTE)系统),全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)通信系统(例如,新无线(new radio,NR)系统),以及未来的移动通信系统等。
参见图1,图1为适用于本申请实施例的通信系统的示例。如图1,接入点采用多个波束覆盖服务区域,不同的波束可通过时分、频分和空分中的一种或多种进行通信。接入点通过广播通信信号和导航信号向终端设备提供通信和导航服务,接入点接入到核心网设备。其中,接入点不限于卫星基站或地面基站。所述接入点可以部署于高空平台或者卫星。卫星可以是为非静止轨道(non-geostationary earth orbit,NGEO)卫星或静止轨道 (geostationary earth orbit,GEO)卫星。
所述接入点可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、下一代基站(gNodeB,gNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,本申请实施例对此不作具体限定。本申请实施例中提及的卫星,也可以为卫星基站,或者为搭载在卫星上的网络侧设备。
本申请实施例中提及的终端设备,包括各种具有无限通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,具体可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络或者未来通信网络中的终端设备等。
另外,图1中提及了接入点和核心网设备。除非特别说明,下文各实施例中提及的网络设备均是指接入点(也或者说,接入网设备),例如,卫星基站。
为便于理解本申请实施例,首先对本申请中涉及到的术语作简单说明。
1、m序列:最长线性移位寄存器序列的简称。m序列可由二进制线性反馈移位寄存器产生,它主要由n个串联的寄存器、移位脉冲产生器和模2加法器组成。第i(0≤i≤n-1)级移位寄存器的状态用a i表示,其中a i=0或1,反馈线的连接状态用c i表示,c i=1表示此线接通(参加反馈),c i=0表示此线断开。在二进制移位寄存器中,若n(n≥2)为移位寄存器的级数,n级移位寄存器共有2 n个状态,除去全0状态外还剩下2 n-1个状态,因此它能产生的最大长度的码序列为2 n-1位。
2、Gold序列:在m序列基础上提出的一种特性较好的伪随机序列,它是由两个码长相等、码时钟速率相同的m序列优选对通过模2相加而构成的。
3、kasami序列:在m序列基础上构造出来的扩频序列,它是由m序列及其不同取样后的序列进行模二加构造得到的新序列。Kasami序列包括Kasami大集合序列和Kasami小集合序列。
4、循环移位:循环移位就是把数值变成二进制,然后循环移动的过程。循环移位就是将移出的低位放到该数的高位(循环右移)或把移出的高位放到该数的低位(循环左移), 左移,和右移动都是对整数进行的操作。
参见图2,图2是本申请提供的广播信号设计的方法的示意性框图。该广播信号包括通信信号和导航信号,其中,通信信号包括一级同步信号(synchronization signal,SS)。
S201,获取第一序列。
其中,第一序列为n级m序列,n为正偶数,例如:n=2、8、10、14等;
可选的,可以直接给定一个具体的n级m序列,该m序列的长度为2 n-1。
可选的,也可以根据本原多项式和产生第一序列的移位寄存器的初始状态获取第一序列,本申请中可以根据不同的本原多项式和不同的初始状态生成不同的第一序列。例如:根据一个本原多项式f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14以及该本原多项式对应的移位寄存器的初始状态(1,1,1,1,1,1,1,1,1,1,1,1,1,1),即可确定一个具体的14级m序列,该m序列的长度为2 14-1(即16384-1)。
S202,从第一序列的任何位置开始每隔第一间隔进行循环抽样,得到第二序列,第二序列为n/2级m序列。
应理解,这里的任何位置可以是第一序列的第一位、第二位、第五位或其他位置。
可选的,第一间隔可以为2 (n/2)+1,也可以为其他抽样间隔,只需满足抽样之后得到的第二序列为n/2级m序列即可。
S203,对第二序列进行循环移位,得到一级同步信号的序列。
可选的,通信信号还包括二级同步信号。例如:二级同步信号的序列可以通过以下方法实现:
(1)根据抽样后得到的第二序列确定第二序列的本原多项式;
(2)基于第二序列的本原多项式通过查表确定本原多项式A,根据本原多项式A和产生第五序列的移位寄存器的初始状态确定第五序列,其中,第五序列与第二序列为能够构成Gold序列的优选对序列;
应理解,与第二序列能够构成Gold序列的第五序列可能存在多个,即构造的优选对的本原多项式A可能存在多个,在实际应用中,可根据具体情况选择合适的本原多项式A,本申请对此不作限定。
(3)根据第二序列和第五序列确定第四序列,其中,第四序列为n/2级Gold序列。
(4)对所述第四序列进行循环移位,即可得到二级同步信号的序列。
S204,从第一序列的任何位置开始每隔第二间隔进行循环抽样,得到第三序列,第三序列为n级m序列。
应理解,这里的任何位置可以是第一序列的第一位、第二位、第五位或其他位置。
可选的,第二间隔可以为2 (n/2+1)+1,也可以为其他抽样间隔,只需满足抽样之后得到的第三序列为n级m序列即可。
S205,根据第一序列和第三序列确定Kasami序列,根据所述Kasami序列确定导航序列。
在一种实现方式中,将第一序列、第二序列和第三序列进行模2加运算,得到Kasami大集合序列(即第一Kasami序列),将Kasami大集合序列或者Kasami大集合序列的截断序列作为导航序列。
在另一种实现方式中,将第一序列和第三序列进行模2加运算,得到Kasami小集合 序列(即第二Kasami序列),将Kasami小集合序列或者Kasami小集合序列的截断序列作为导航序列。
可选的,截断序列的长度可以基于卫星数量、定位精度或者时钟频率来确定。
可选的,截断序列可以取Kasami序列(Kasami大集合序列或Kasami小集合序列)中连续的一段序列,也可以取Kasami序列中多段不连续的序列。例如:当第一序列为14级m序列时,Kasami序列的长度为16383,截断序列可以为Kasami序列中的1-300位或者3000-5000位或者12000-13000位或者也可以为1-300位、3000-5000位和12000-13000位的并集,本申请对此不做具体限定。
上述技术方案中,给出了ICaN系统广播信号的序列的设计方法,可支持终端设备按照指示广播信号完成导航/定位功能,无需GNSS支持,完成网络自定位,解决下一代卫星动态组网的痛点;同时,导航序列采用Kasami序列设计,序列个数多,支持超密卫星通信系统导航信号广播,提升定位性能且互相关性好;另外,导航信号序列和通信信号序列采用耦合设计,便于检错及保密通信。
在不同的通信系统中,广播信号的结构及其名称可以不同。例如,作为一个示例,在NR中,广播信号块可以为同步信号块(synchronization signal and PBCH block,SSB),其中,SSB包括主同步信号(primary synchronization signal,PSS)和/或辅同步信号(secondary synchronization signal,SSS)信号等。
图2中的通信信号的设计包含但不限于现有NR的SSB,作为一种示例,本申请给出一种ICaN中一级SS与PSS相同且二级SS与SSS相同的序列设计方法。
参见图3,图3是本申请提出的广播信号设计的方法的流程图。具体地,ICaN中一级SS与PSS相同且二级SS与SSS相同的序列的生成步骤为:
(1)生成一个14级m序列a(即第一序列的一例,长度为16384-1),序列a的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生序列a的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1)。
应理解,本原多项式中的x i仅指明其反馈系数c i的值(c i=1或0),x本身的取值并无实际意义,也不需要去计算x的值。例如,若本原多项式为f(x)=1+x+x 4,则它仅表示x 0,x 1和x 4的反馈系数c 0=c 1=c 4=1,其余为零。
(2)对序列a进行(2 7+1)循环抽样,得到一级SS对应的序列a'(即第二序列的一例),并求解序列a'的本原多项式为f 1(x)=1+x 4+x 7,该本原多项式与NR的PSS相同。
下面,本申请给出一种求解循环抽样后m序列本原多项式的方法,具体步骤包括:
a)构造总长度为2n的序列,其中,n为m序列S的级数,序列S的本原多项式为:
f 1(x)=1+C 1x 1+C 2x 2+…+C nx n
该长度为2n的序列具体如下(从第2位到第n位为n-1个连续的0序列):
1(a k-n),0,0,0,…0,1(a k),a k+1,a k+2,…,a k+n-1
其中a k+1,a k+2,…,a k+n-1表示符合上述条件的长度为2n序列的后n-1位。
需要说明的是,上述a i(k+1≤i≤k+n-1)的取值为0或1。
b)基于上述长度为2n的序列,构造以下方程式,其中,
Figure PCTCN2021097886-appb-000001
表示进行模2加运算:
Figure PCTCN2021097886-appb-000002
Figure PCTCN2021097886-appb-000003
Figure PCTCN2021097886-appb-000004
Figure PCTCN2021097886-appb-000005
c)求解b)中的方程,可得系数:
C 1=a k+1
Figure PCTCN2021097886-appb-000006
Figure PCTCN2021097886-appb-000007
d)将c)中求解的系数带入本原多项式f 1(x)=1+C 1x 1+C 2x 2+…+C nx n中,即可得到抽样后的m序列S的本原多项式。
(3)基于序列a'的本原多项式确定能够生成Gold序列的优选对序列b(即第五序列的一例)的本原多项式,选定序列b的本原多项式为f 2(x)=1+x+x 7,产生序列b的移位寄存器的初始状态为(0,0,0,0,0,0,1),根据序列a'和序列b构造二级SS对应的序列c(即第四序列的一例),序列c为Gold序列,其中,根据上述方式构造的序列c与NR的SSS的序列相同。
(4)导航序列产生方法:对序列a进行(2 8+1)循环抽样,得到序列a〃(即第三序列的一例)。
在一种实现方式中,将序列a、a'和a〃进行模2加运算,得到Kasami大集合序列(即第一Kasami序列的一例),将Kasami大集合序列或者Kasami大集合序列的截断序列作为导航序列。
在另一种实现方式中,将序列a和a〃进行模2加运算,得到Kasami小集合序列(即第二Kasami序列的一例),将Kasami小集合序列或者Kasami小集合序列的截断序列作为导航序列。
在本实施例中,在不改变现有NR协议通信广播信号的前提下,提升了导航定位性能,可支撑10000+卫星的超密卫星网络。
作为另一种示例,本申请给出一种ICaN中一级SS与PSS不相同且二级SS与也不SSS相同的序列设计方法。序列的生成过程与图3的流程相同,具体步骤包括:
(1)生成一个14级m序列a(即第一序列的另一例,长度为16384-1),序列a的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生序列a的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1);
(2)对序列a进行(2 7+1)循环抽样,得到一级SS对应的序列a'(即第二序列的另一例),并求解其本原多项式为f 1(x)=1+x 6+x 7,该本原多项式与NR的PSS不相同,参见图4,图4为生成的一级同步信号序列(3条)的示意图。
(3)基于序列a'的本原多项式查表确定能够生成Gold序列的优选对序列b(即第五序列的另一例)的本原多项式,选定序列b的本原多项式为f 2(x)=1+x 3+x 7,产生序列b的移位寄存器的初始状态为(0,0,0,0,0,0,1),根据序列a'和序列b构造二级SS对应的序列c(即第四序列的另一例),序列c为Gold序列,其中,根据上述方式构造的序列c与NR的SSS的序列不相同,参见图5,图5为生成的二级同步信号序列(6条)的示意图。
(4)导航序列产生方法:对序列a进行(2 8+1)循环抽样,得到序列a〃(即第三序列的另一例)。例如:将序列a、a'和a〃进行模2加运算,得到Kasami大集合序列(即第一 Kasami序列的一例),将Kasami大集合序列作为导航序列。对Kasami大集合序列进行循环移位,每个移位对应一个卫星的标识,即可支持16383个卫星,参见图6,图6为生成的导航序列的示意图。由于生成的导航序列较长,所以图6只给出了该导航序列的前300位示意图。
应理解,本实施只是示例性的给出了一种一级SS与PSS不同且二级SS与SSS不同的序列设计方法,还有其它多种该序列的设计方法,本申请不再一一列举。
在本实施例中,给出了一种一级SS与PSS不同且二级SS与SSS不同的序列设计方法,提升了导航定位性能,可支撑10000+卫星的超密卫星网络。
参见图7,图7是本申请提出的一种信号传输的方法的交互示意图。
S710,终端设备(即通信装置的一例)接收多个网络设备广播的导航参考信号和通信信号。
对应的,网络设备向终端设备广播导航参考信号和通信信号。其中,导航参考信号包括导航序列,通信信号包括一级同步信号,一级同步信号包括一级同步信号的序列。
可选的,该通信信号包括二级同步信号,二级同步信号包括二级同步信号的序列。
可选的,网络设备周期性广播通信信号和系统消息,对应的,终端设备周期性接收通信信号和系统消息。
关于导航序列、一级同步信号的序列和二级同步信号的序列的设计方法描述参见上文的描述,这里不再赘述。参见图8,图8是本申请提供的导航序列周期性广播的设计框架图。如图8所示,网络侧广播的通信信号SSB包含一级SS和二级SS,导航信号在第一时频资源中周期性广播,其中,第一时频资源为图8中的导航序列在时域对应的时域资源和在频域对应的频域资源。
在一种实现方式中,终端设备向多个网络设备发送定位请求,对应的,网络设备接收该定位请求,同时,网络设备根据该定位请求在第一时频资源上周期性广播发送小区的导航参考信号;终端设备在第一时频资源上周期性接收多个网络设备广播的多个小区的导航参考信号,其中,第一时频资源为固定的时频资源。
参见图9,图9是本申请提供的导航序列按需广播的设计框架图。如图9所示,网络侧广播的通信信号SSB也包括图8中所示的一级SS和二级SS,导航参考信号在第二时频资源中按需广播,其中,第二时频资源为图9中的导航参考信号在时域对应的时域资源和在频域对应的频域资源。
在另一种实现方式中,终端设备向网络设备发送定位请求,对应的,网络设备接收该定位请求,同时,网络设备根据该定位请求在第二时频资源上按需广播小区的导航参考信号;终端设备在第二时频资源上按需接收多个网络设备发送的多个小区的导航参考信号,其中,发送导航参考信号占用的时频资源(即第二时频资源)灵活可配,相比于周期性广播的方式可以提高时频资源的利用率。
可选的,多个小区中不同的小区间可采用四色或八色复用的方式进行分频广播导航参考信号。
可选的,关于导航参考信号的其他设计可以参考现有的蜂窝网络的PRS参考信号的设计,这里不再赘述。
S720,终端设备根据多个小区中的至少两个小区的导航参考信号中的导航序列确定终 端设备的位置信息。
需要说明的是,终端设备需要根据至少两个不同的网络设备发送的导航参考信号确定自己的位置信息,因此,这里的至少两个小区为至少两个不同网络设备下的小区。
可选的,终端设备可以根据接收到的多个不同小区中的至少两个小区的导航序列计算伪距或时延差,并据此建立差分定位方程,基于定位算法(例如高斯-牛顿法)解析出自身的位置信息。
上述技术方案中,终端设备可以按照指示广播信号完成导航/定位功能,无需GNSS支持,完成网络自定位,解决下一代卫星动态组网的痛点;此外,导航序列互相关性优于现有gold序列,且序列个数多,适用于超密卫星网络。
以上对本申请提供的广播信号设计的方法进行了详细说明,下面介绍本申请提供的通信装置。
参见图10,图10为本申请提供的通信装置1000的示意性框图。如图6,通信装置1000包括处理单元1100。
处理单元1100,用于获取第一序列,所述第一序列为n级m序列,所述n为正偶数;处理单元1100,还用于从所述第一序列的任何位置开始每隔第一间隔进行循环抽样,得到第二序列,所述第二序列为n/2级m序列;处理单元1100,还用于对所述第二序列进行循环移位,得到一级同步信号的序列;处理单元1100,还用于从所述第一序列的任何位置开始每隔第二间隔进行循环抽样,得到第三序列,所述第三序列为n级m序列;处理单元1100,还用于根据所述第一序列和所述第三序列确定Kasami序列;处理单元1100,还用于根据所述Kasami序列确定导航信号的序列;处理单元1100,还用于确定所述广播信号,所述广播信号包括所述一级同步信号和所述导航信号。
可选地,在一个实施例中,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
可选地,在一个实施例中,处理单元1100具体用于:将所述第一序列、所述第二序列和所述第三序列进行模2加运算,得到第一Kasami序列;根据所述第一Kasami序列或者所述第一Kasami序列的截断序列确定所述导航信号的序列。
可选地,在一个实施例中,处理单元1100具体用于:将所述第一序列和第三序列进行模2加运算,得到第二Kasami序列;根据所述第二Kasami序列或者所述第二Kasami序列的截断序列确定所述导航信号的序列。
可选地,在一个实施例中,处理单元1100具体用于:根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态获取所述第一序列。
可选地,在一个实施例中,处理单元1100具体用于:根据所述第二序列确定第四序列,所述第四序列为Gold序列;对所述第四序列进行循环移位,得到二级同步信号的序列,其中,所述广播信号包括所述二级同步信号。
可选地,在一个实施例中,处理单元1100具体用于:根据所述第二序列确定所述第二序列的本原多项式;根据所述第二序列的本原多项式确定第五序列的本原多项式,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列;根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定所述第五序列;根据所述第二序列和所述第五序列确定所述第四序列。
可选地,在一个实施例中,当n=14时,所述第一序列的本原多项式为 f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 4+x 7,所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
可选地,在一个实施例中,当所述n=14时,所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 6+x 7,所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
可选地,该通信装置还可以包括接收单元1200和发送单元1300,在以上各实现方式中,接收单元1200和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
可选地,作为一个示例,通信装置1000中的接收单元1200可以为接收器,发送单元1300可以为发射器。接收器和发射器也可以集成为一个收发器。
可选地,作为另一个示例,通信装置1000可以为芯片或集成电路。在这种情况下,接收单元1200和发送单元1300可以为通信接口或者接口电路。例如,接收单元1200为输入接口或输入电路,发送单元1300为输出接口或输出电路。
在各示例中,处理单元1100用于执行除了发送和接收的动作之外图2和图3中需要实现的处理和/或操作。
处理单元1100可以为处理装置。其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置1000执行图2和图3中需要执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,在一些示例中,处理装置还可以为芯片或集成电路。例如,处理装置包括处理电路/逻辑电路和接口电路,接口电路用于接收信号和/或数据,并将所述信号和/或数据传输至所述处理电路,所述处理电路处理所述信号和/或数据,使得图2和图3中执行的操作和/或处理被执行。
参见图11,图11为本申请提供的通信装置2000的示意性框图。如图11,通信装置2000包括接收单元2200和发送单元2300。
发送单元2300,用于广播导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列,所述导航参考信号用于通信装置确定位置信息。
可选地,在一个实施例中,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
可选地,在一个实施例中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
可选地,在一个实施例中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
可选地,在一个实施例中,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
可选地,在一个实施例中,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,所述第四序列是根据所述第二序列确定的Gold序列。
可选地,在一个实施例中,所述第四序列是根据所述第二序列确定的Gold序列,包括:所述第四序列是根据所述第二序列和第五序列确定的Gold序列,其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定的,所述第五序列的本原多项式是根据所述第二序列的本原多项式确定的。
可选地,在一个实施例中,当n=14时,所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 4+x 7,所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
可选地,在一个实施例中,当所述n=14时,所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 6+x 7,所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
可选地,在一个实施例中,接收单元2200,用于接收终端设备发送的定位请求;以及发送单元2300具体用于:根据所述定位请求在第一时频资源上周期性广播所述导航参考信号,其中,所述第一时频资源为固定的时频资源;或者根据所述定位请求在第二时频资源上广播导航参考信号,其中,所述第二时频资源为可配置的时频资源。
在以上各实现方式中,接收单元2200和发送单元2300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
可选地,作为一个示例,通信装置2000可以为方法实施例中的卫星或者网络设备。在这种情况下,接收单元2200可以为接收器,发送单元2300可以为发射器。接收器和发射器也可以集成为一个收发器。
可选地,作为另一个示例,通信装置2000可以为卫星或网络设备中的芯片或集成电路。在这种情况下,接收单元2200和发送单元2300可以为通信接口或者接口电路。例如,接收单元2200为输入接口或输入电路,发送单元2300为输出接口或输出电路。
可选地,该通信装置2000还可以包括处理单元2100,在各示例中,处理单元2100用于执行除了发送和接收的动作之外由网络设备内部实现的处理和/或操作。
处理单元2100可以为处理装置。其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置2000执行各方法实施例中由网络设备执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,在一些示例中,处理装置还可以为芯片或集成电路。例如,处理装置包括处理电路/逻辑电路和接口电路,接口电路用于接收信号和/或数据,并将所述信号和/或数据传输至所述处理电路,所述处理电路处理所述信号和/或数据,使得各方法实施例中由网络设备执行的操作被执行。
参见图12,图12为本申请提供的通信装置3000的示意性框图。如图12,通信装置3000包括处理单元3100、接收单元3200和发送单元3300。
接收单元3200,用于接收多个网络设备广播的多个小区的导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列;处理单元3100,根据所述多个小区中的至少两个小区的导航参考信号中的导航序列确定配置有所述装置的终端设备的位置信息。
可选地,在一个实施例中,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
可选地,在一个实施例中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
可选地,在一个实施例中,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
可选地,在一个实施例中,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
可选地,在一个实施例中,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,所述第四序列是根据所述第二序列确定的Gold序列。
可选地,在一个实施例中,所述第四序列是根据所述第二序列确定的Gold序列,包括:所述第四序列是根据所述第二序列和第五序列确定的Gold序列,其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定,所述第五序列的本原 多项式是根据所述第二序列的本原多项式确定的。
可选地,在一个实施例中,当n=14时,所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 4+x 7,所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
可选地,在一个实施例中,当所述n=14时,所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),所述第二序列的本原多项式为f 1(x)=1+x 6+x 7,所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
可选地,在一个实施例中,发送单元3300,用于向所述多个网络设备发送定位请求;以及接收单元3200具体用于:在第一时频资源上周期性接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第一时频资源为固定的时频资源;或者在所述第二时频资源上接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第二时频资源为可配置的时频资源。
在以上各实现方式中,接收单元3200和发送单元3300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
可选地,作为一个示例,通信装置3000可以为方法实施例中的终端设备。在这种情况下,接收单元3200可以为接收器,发送单元3300可以为发射器。接收器和发射器也可以集成为一个收发器。
可选地,作为另一个示例,通信装置3000可以为终端设备的芯片或集成电路。在这种情况下,接收单元3200和发送单元3300可以为通信接口或者接口电路。例如,接收单元3200为输入接口或输入电路,发送单元3300为输出接口或输出电路。
可选地,该通信装置3000还可以包括处理单元3100,在各示例中,处理单元3100用于执行除了发送和接收的动作之外由终端设备内部实现的处理和/或操作。
处理单元3100可以为处理装置。其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置3000执行各方法实施例中由终端设备执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,在一些示例中,处理装置还可以为芯片或集成电路。例如,处理装置包括处理电路/逻辑电路和接口电路,接口电路用于接收信号和/或数据,并将所述信号和/或数据传输至所述处理电路,所述处理电路处理所述信号和/或数据,使得各方法实施例中由终端设备执行的操作被执行。
参见图13,图13为本申请提供的通信装置10的示意性结构图。如图13,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处 理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得本申请各方法实施例中由终端设备执行的流程和/或操作被执行。
例如,处理器11可以具有图10中所示的处理单元1100的功能,通信接口13可以具有图10中所示的接收单元1200和/或发送单元1300的功能。具体地,处理器11可以用于执行图2和图3中需要内部执行的处理或操作,通信接口13用于执行图2和图3中需要执行的发送和/或接收的动作。
在一种实现方式中,通信装置10中的通信接口13可以为收发器。收发器可以包括接收器和发射器。可选地,处理器11可以为基带装置,通信接口13可以为射频装置。在另一种实现中,通信装置10可以为芯片或者集成电路。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
参见图14,图14为本申请提供的通信装置20的示意性结构图。如图14,通信装置20包括:一个或多个处理器21,一个或多个存储器22以及一个或多个通信接口23。处理器21用于控制通信接口23收发信号,存储器22用于存储计算机程序,处理器21用于从存储器22中调用并运行该计算机程序,以使得本申请各方法实施例中由网络设备执行的流程和/或操作被执行。
例如,处理器21可以具有图11中所示的处理单元2100的功能,通信接口23可以具有图11中所示的接收单元2200和/或发送单元2300的功能。具体地,处理器21可以用于执行图4中由网络设备内部执行的处理或操作,通信接口23用于执行图7中由网络设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置20可以为方法实施例中的网络设备。在这种实现方式中,通信接口23可以为收发器。收发器可以包括接收器和发射器。可选地,处理器21可以为基带装置,通信接口23可以为射频装置。在另一种实现中,通信装置20可以为安装在网络设备中的芯片或者集成电路。在这种实现方式中,通信接口23可以为接口电路或者输入/输出接口。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不做限定。
参见图15,图15为本申请提供的通信装置30的示意性结构图。如图15,通信装置30包括:一个或多个处理器31,一个或多个存储器32以及一个或多个通信接口33。处理器31用于控制通信接口33收发信号,存储器32用于存储计算机程序,处理器31用于从存储器32中调用并运行该计算机程序,以使得本申请各方法实施例中由终端设备执行的流程和/或操作被执行。
例如,处理器31可以具有图12中所示的处理单元3100的功能,通信接口33可以具有图12中所示的接收单元3200和/或发送单元3300的功能。具体地,处理器31可以用于执行图4中由终端设备内部执行的处理或操作,通信接口33用于执行图7中由终端设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置30可以为方法实施例中的终端设备。在这种实现方式中,通信接口33可以为收发器。收发器可以包括接收器和发射器。可选地,处理器31可以为基带装置,通信接口33可以为射频装置。在另一种实现中,通信装置30可以为安装 在终端设备中的芯片或者集成电路。在这种实现方式中,通信接口33可以为接口电路或者输入/输出接口。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不做限定。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由终端设备执行的操作和/或流程被执行。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由终端设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由网络设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种通信装置(例如,可以为芯片),包括处理器和通信接口,所述通信接口用于接收信号并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
本申请还提供一种通信装置(例如,可以为芯片),包括处理器和通信接口,所述通信接口用于接收信号并将所述信号传输至所述处理器,所述处理器处理所述信号,以使得任意一个方法实施例中由网络设备执行的操作和/或处理被执行。
此外,本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得任意一个方法实施例中由网络设备执行的操作和/或处理被执行。
此外,本申请还提供一种通信设备,包括处理器、存储器和收发器。其中,存储器用 于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使终端设备执行任意一个方法实施例中由终端设备执行的操作和/或处理。
本申请还提供一种通信设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使终端设备执行任意一个方法实施例中由网络设备执行的操作和/或处理。
此外,本申请还提供一种无线通信系统,包括本申请实施例中的终端设备和网络设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,A、B以及C均可以为单数或者复数,不作限定。
在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (51)

  1. 一种信号传输的方法,其特征在于,包括:
    网络设备广播导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,
    所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列;
    所述导航参考信号用于通信装置确定位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
  3. 根据权利要求1或2所述的方法,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
  4. 根据权利要求1或2所述的方法,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,
    所述第四序列是根据所述第二序列确定的Gold序列。
  7. 根据权利要求6所述的方法,其特征在于,所述第四序列是根据所述第二序列确定的Gold序列,包括:
    所述第四序列是根据所述第二序列和第五序列确定的Gold序列,其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定的,所述第五序列的本原多项式是根据所述第二序列的本原多项式确定的。
  8. 根据权利要求7所述的方法,其特征在于,当n=14时,
    所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 4+x 7
    所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  9. 根据权利要求7所述的方法,其特征在于,当所述n=14时,
    所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位 寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 6+x 7
    所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备接收终端设备发送的定位请求;以及
    所述网络设备广播导航参考信号,包括:
    所述网络设备根据所述定位请求在第一时频资源上周期性广播所述导航参考信号,其中,所述第一时频资源为固定的时频资源;或者所述网络设备根据所述定位请求在第二时频资源上按需广播所述导航参考信号,其中,所述第二时频资源为可配置的时频资源。
  11. 一种信号传输的方法,其特征在于,包括:
    通信装置接收多个网络设备广播的多个小区的导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,
    所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列;
    所述通信装置根据所述多个小区中的至少两个小区的导航参考信号中的导航序列确定所述通信装置的位置信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
  13. 根据权利要求11或12所述的方法,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
  14. 根据权利要求11或12所述的方法,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,
    所述第四序列是根据所述第二序列确定的Gold序列。
  17. 根据权利要求16所述的方法,其特征在于,所述第四序列是根据所述第二序列确定的Gold序列,包括:
    所述第四序列是根据所述第二序列和第五序列确定的Gold序列,其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序 列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定,所述第五序列的本原多项式是根据所述第二序列的本原多项式确定的。
  18. 根据权利要求17所述的方法,其特征在于,当n=14时,
    所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 4+x 7
    所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  19. 根据权利要求17所述的方法,其特征在于,当所述n=14时,
    所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 6+x 7
    所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  20. 根据权利要求11至19中任一项所述的方法,其特征在于,所述终端设备向所述多个网络设备发送定位请求;以及
    所述终端设备接收多个网络设备广播的多个小区的导航参考信号,包括:
    所述终端设备在第一时频资源上周期性接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第一时频资源为固定的时频资源;或者
    所述终端设备在所述第二时频资源上按需接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第二时频资源为可配置的时频资源。
  21. 一种广播信号设计的方法,其特征在于,包括:
    获取第一序列,所述第一序列为n级m序列,所述n为正偶数;
    从所述第一序列的任何位置开始每隔第一间隔进行循环抽样,得到第二序列,所述第二序列为n/2级m序列;对所述第二序列进行循环移位,得到一级同步信号的序列;
    从所述第一序列的任何位置开始每隔第二间隔进行循环抽样,得到第三序列,所述第三序列为n级m序列;
    根据所述第一序列和所述第三序列确定Kasami序列;
    根据所述Kasami序列确定导航信号的序列;
    确定所述广播信号,所述广播信号包括所述一级同步信号和所述导航信号。
  22. 根据权利要求21所述的方法,其特征在于,所述第一间隔为2 (n/2)+1,所述第二间隔为2 (n/2+1)+1。
  23. 根据权利要求22所述的方法,其特征在于,所述根据所述第一序列和所述第三序列确定Kasami序列,包括:
    将所述第一序列、所述第二序列和所述第三序列进行模2加运算,得到第一Kasami序列;以及
    所述根据所述Kasami序列确定导航信号的序列,包括:
    根据所述第一Kasami序列或者所述第一Kasami序列的截断序列确定所述导航信号的序列。
  24. 一种通信装置,其特征在于,包括:
    发送单元,用于广播导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,
    所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列;
    所述导航参考信号用于通信装置确定位置信息。
  25. 根据权利要求24所述的装置,其特征在于,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
  26. 根据权利要求24或25所述的装置,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
  27. 根据权利要求24或25所述的装置,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
  28. 根据权利要求24至27中任一项所述的装置,其特征在于,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
  29. 根据权利要求24至28中任一项所述的装置,其特征在于,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,
    所述第四序列是根据所述第二序列确定的Gold序列。
  30. 根据权利要求29所述的装置,其特征在于,所述第四序列是根据所述第二序列确定的Gold序列,包括:
    所述第四序列是根据所述第二序列和第五序列确定的Gold序列,其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定的,所述第五序列的本原多项式是根据所述第二序列的本原多项式确定的。
  31. 根据权利要求30所述的装置,其特征在于,当n=14时,
    所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 4+x 7
    所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  32. 根据权利要求30所述的装置,其特征在于,当所述n=14时,
    所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 6+x 7
    所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  33. 根据权利要求24至32中任一项所述的装置,其特征在于,
    还包括接收单元,用于接收终端设备发送的定位请求;以及
    所述发送单元具体用于:根据所述定位请求在第一时频资源上周期性广播所述导航参考信号,其中,所述第一时频资源为固定的时频资源;或者根据所述定位请求在第二时频资源上按需广播所述导航参考信号,其中,所述第二时频资源为可配置的时频资源。
  34. 一种通信装置,其特征在于,包括:
    接收单元,用于接收多个网络设备广播的多个小区的导航参考信号和通信信号,所述导航参考信号包括导航序列,所述导航序列是由第一序列和第三序列确定的Kasami序列,所述通信信号包括一级同步信号,所述一级同步信号是由第二序列进行循环移位后确定的序列,其中,
    所述第一序列为n级m序列,所述n为正偶数,所述第二序列为从所述第一序列的任何位置开始每隔第一间隔进行循环抽样得到的n/2级m序列,所述第三序列为从所述第一序列的任何位置开始每隔第二间隔进行循环抽样得到的n级m序列;
    处理单元,根据所述多个小区中的至少两个小区的导航参考信号中的导航序列确定配置有所述装置的终端设备的位置信息。
  35. 根据权利要求34所述的装置,其特征在于,所述第一间隔为2 (n/2)+1;所述第二间隔为2 (n/2+1)+1。
  36. 根据权利要求34或35所述的装置,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列、所述第二序列和所述第三序列进行模2加运算得到第一Kasami序列或者所述第一Kasami序列的截断序列。
  37. 根据权利要求34或35所述的装置,其特征在于,所述导航序列是由第一序列和第三序列确定的Kasami序列,包括:
    所述导航序列为所述第一序列和所述第三序列进行模2加运算得到第二Kasami序列或者所述第二Kasami序列的截断序列。
  38. 根据权利要求34至37中任一项所述的装置,其特征在于,所述第一序列为根据所述第一序列的本原多项式和产生所述第一序列的移位寄存器的初始状态确定的序列。
  39. 根据权利要求34至38中任一项所述的装置,其特征在于,所述通信信号包括二级同步信号,所述二级同步信号是由第四序列进行循环移位后确定的序列,其中,
    所述第四序列是根据所述第二序列确定的Gold序列。
  40. 根据权利要求39所述的装置,其特征在于,所述第四序列是根据所述第二序列确定的Gold序列,包括:
    所述第四序列是根据所述第二序列和第五序列确定的Gold序列,其中,所述第五序列与所述第二序列为能够构成Gold序列的优选对序列,所述第五序列是根据所述第五序列的本原多项式和产生所述第五序列的移位寄存器的初始状态确定,所述第五序列的本原多项式是根据所述第二序列的本原多项式确定的。
  41. 根据权利要求40所述的装置,其特征在于,当n=14时,
    所述第一序列的本原多项式为f(x)=1+x 8+x 9+x 10+x 11+x 13+x 14,产生所述第一序列的移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 4+x 7
    所述第五序列的本原多项式为f 2(x)=1+x+x 7,产生所述第五序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  42. 根据权利要求41所述的装置,其特征在于,当所述n=14时,
    所述第一序列的本原多项式为f(x)=1+x+x 3+x 5+x 14,产生所述14级m序列移位寄存器的初始状态为(1,1,1,1,1,1,1,1,1,1,1,1,1,1),
    所述第二序列的本原多项式为f 1(x)=1+x 6+x 7
    所述第三序列的本原多项式为f 2(x)=1+x 3+x 7,产生所述第三序列的移位寄存器的初始状态为(0,0,0,0,0,0,1)。
  43. 根据权利要求34至42中任一项所述的装置,其特征在于,还包括发送单元,用于向所述多个网络设备发送定位请求;以及
    所述接收单元具体用于:在第一时频资源上周期性接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第一时频资源为固定的时频资源;或者在所述第二时频资源上按需接收所述多个网络设备根据所述定位请求发送的所述多个小区的导航参考信号,其中,所述第二时频资源为可配置的时频资源。
  44. 一种通信装置,其特征在于,包括用于实现如权利要求21至23中任一项所述的方法的单元。
  45. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置,实现如权利要求1至10中任一项所述的方法,或者,实现如权利要求11至20中任一项所述的方法,或者,实现如权利要求21至23中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至10中任一项所述的方法被执行,或者,如权利要求11至20中任一项所述的方法被执行,或者,如权利要求21至23中任一项所述的方法被执行。
  47. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得如权利要求1至10中任一项所述的方法被执行,或者,如权利要求11至20中任一项所述的方法被执行,或者,如权利要求21至23中任一项所述的方法被执行。
  48. 一种通信装置,用于执行权利要求1至10中任一项所述的方法。
  49. 一种通信装置,用于执行权利要求11至20中任一项所述的方法。
  50. 一种通信装置,用于执行权利要求21至23中任一项所述的方法。
  51. 一种通信系统,包括如权利要求24至33中任一项所述的通信装置以及如权利要求34至43中任一项所述的通信装置。
PCT/CN2021/097886 2020-06-11 2021-06-02 信号传输的方法和通信装置 WO2021249256A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21821954.1A EP4156549A4 (en) 2020-06-11 2021-06-02 SIGNAL TRANSMISSION METHOD AND COMMUNICATION APPARATUS
US18/078,810 US20230123363A1 (en) 2020-06-11 2022-12-09 Signal Transmission Method and Communications Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010530482.7A CN113810094B (zh) 2020-06-11 2020-06-11 一种信号传输的方法和通信装置
CN202010530482.7 2020-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/078,810 Continuation US20230123363A1 (en) 2020-06-11 2022-12-09 Signal Transmission Method and Communications Apparatus

Publications (1)

Publication Number Publication Date
WO2021249256A1 true WO2021249256A1 (zh) 2021-12-16

Family

ID=78845301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097886 WO2021249256A1 (zh) 2020-06-11 2021-06-02 信号传输的方法和通信装置

Country Status (4)

Country Link
US (1) US20230123363A1 (zh)
EP (1) EP4156549A4 (zh)
CN (1) CN113810094B (zh)
WO (1) WO2021249256A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441927A (zh) * 2022-08-09 2022-12-06 北京交通大学 一种空天地一体化网络中的卫星星座设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344584A (zh) * 2008-08-26 2009-01-14 清华大学 一种导航定位的方法
CN101432635A (zh) * 2006-05-03 2009-05-13 纳夫科姆技术公司 用于卫星导航接收机的自适应代码发生器
US20140233610A1 (en) * 2013-02-20 2014-08-21 Commissariat A L'energie Atomique Et Aux Ene Alt Method of acquiring a gps signal by iterative decoding
CN106405575A (zh) * 2016-08-24 2017-02-15 北京华力创通科技股份有限公司 一种gps系统的p码生成器、生成系统及方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5636123A (en) * 1994-07-15 1997-06-03 Rich; Richard S. Traffic alert and collision avoidance coding system
US6674398B2 (en) * 2001-10-05 2004-01-06 The Boeing Company Method and apparatus for providing an integrated communications, navigation and surveillance satellite system
KR100938756B1 (ko) * 2007-07-06 2010-01-26 엘지전자 주식회사 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
KR101738162B1 (ko) * 2009-04-10 2017-05-22 엘지전자 주식회사 무선 통신 시스템에서 포지셔닝 참조 신호 전송 방법 및 장치
KR101685173B1 (ko) * 2009-07-13 2016-12-12 주식회사 팬택 무선통신 시스템에서의 시퀀스 생성 방법 및 그 장치
US9100781B2 (en) * 2010-07-16 2015-08-04 Lg Electronics Inc. Method and apparatus for transmitting location estimation message in wireless communication system
JP5791806B2 (ja) * 2011-08-16 2015-10-07 ヨーロピアン スペース エージェンシー 疑似ランダム雑音系列に基づく拡散符号を使用したナビゲーションシステム
EP2674780B1 (en) * 2012-06-15 2014-08-27 Astrium Limited Processing of signals to provide a delay Doppler map
CN106165323B (zh) * 2014-03-04 2018-10-12 Lg电子株式会社 接收用于接收发现参考信号的控制信息的方法及其装置
EP3133881B1 (en) * 2014-05-04 2019-03-20 Huawei Technologies Co., Ltd. Synchronization signal transceiving method, apparatus and device
CN115277337A (zh) * 2017-03-03 2022-11-01 苹果公司 用于同步信号的传输的方法、基站及介质
CN108809878B (zh) * 2017-05-04 2024-05-17 华为技术有限公司 同步信号的发送方法、同步信号的接收方法及相关设备
CN108809587B (zh) * 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
CN109392080A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 传输同步信号的方法和装置
CN109391577B (zh) * 2017-08-11 2021-08-13 华为技术有限公司 一种信号处理方法及装置
CN110972236B (zh) * 2018-09-27 2022-04-08 大唐移动通信设备有限公司 一种节能信号传输方法、终端和网络侧设备
US11617143B2 (en) * 2019-11-08 2023-03-28 Qualcomm Incorporated Sidelink broadcast channel transmission
US11778572B2 (en) * 2020-05-22 2023-10-03 Qualcomm Incorporated Lite SL-SS (sidelink synchronization signal) transmission for on demand S-SSB (sidelink synchronization signal block)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101432635A (zh) * 2006-05-03 2009-05-13 纳夫科姆技术公司 用于卫星导航接收机的自适应代码发生器
CN101344584A (zh) * 2008-08-26 2009-01-14 清华大学 一种导航定位的方法
US20140233610A1 (en) * 2013-02-20 2014-08-21 Commissariat A L'energie Atomique Et Aux Ene Alt Method of acquiring a gps signal by iterative decoding
CN106405575A (zh) * 2016-08-24 2017-02-15 北京华力创通科技股份有限公司 一种gps系统的p码生成器、生成系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156549A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115441927A (zh) * 2022-08-09 2022-12-06 北京交通大学 一种空天地一体化网络中的卫星星座设计方法
CN115441927B (zh) * 2022-08-09 2023-09-22 北京交通大学 一种空天地一体化网络中的卫星星座设计方法

Also Published As

Publication number Publication date
EP4156549A1 (en) 2023-03-29
CN113810094B (zh) 2022-11-25
CN113810094A (zh) 2021-12-17
US20230123363A1 (en) 2023-04-20
EP4156549A4 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2016112548A1 (zh) 一种位置信息获取方法和设备
JP2020503758A (ja) 非直交データ伝送方法およびデバイス
WO2021109816A1 (zh) 随机接入前导的传输方法、装置及存储介质
CN106998569A (zh) 一种识别同步信息的方法和装置
WO2021249256A1 (zh) 信号传输的方法和通信装置
EP3637884B1 (en) Method and device for transmitting signal
WO2023169131A1 (zh) 一种定位方法、装置及计算机可读存储介质
US20220287082A1 (en) Random access method and apparatus, network device, terminal, and storage medium
WO2022017130A1 (zh) 一种波束信息指示方法及装置
WO2022052826A1 (zh) 卫星系统跳波束的方法和通信装置
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
CN109842938A (zh) 一种信息指示方法和装置
CN109417819B (zh) 传输系统信息的方法、网络设备、终端设备和存储介质
CN111464276B (zh) 一种信号发送、接收方法及装置
JP6669278B2 (ja) リソースマッピング方法、装置及び通信システム
US20230156640A1 (en) Communication method and apparatus and computer-readable storage medium
WO2023143620A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2024077446A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023050393A1 (zh) 一种随机接入响应窗口的确定方法及其装置
CN108989005A (zh) 一种指示信息的传输方法及装置
WO2024032192A1 (zh) 通信方法及相关装置
US10938458B2 (en) Method for indicating precoding information, user equipment, and access network entity
CN116419374A (zh) 网络切片选择方法、装置以及通信设备
JP2022160633A (ja) アクセス方法及び伝送ポイント
TW202408206A (zh) 對經譯碼假性隨機序列的產生

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021821954

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE