WO2021248953A1 - 一种无线充电的接收端、方法及电子设备 - Google Patents

一种无线充电的接收端、方法及电子设备 Download PDF

Info

Publication number
WO2021248953A1
WO2021248953A1 PCT/CN2021/080675 CN2021080675W WO2021248953A1 WO 2021248953 A1 WO2021248953 A1 WO 2021248953A1 CN 2021080675 W CN2021080675 W CN 2021080675W WO 2021248953 A1 WO2021248953 A1 WO 2021248953A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier circuit
charging
bridge arm
switching tube
receiving end
Prior art date
Application number
PCT/CN2021/080675
Other languages
English (en)
French (fr)
Inventor
肖辅荣
舒为亮
刘其堂
范永滔
刘彦丁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21822130.7A priority Critical patent/EP4152562A4/en
Publication of WO2021248953A1 publication Critical patent/WO2021248953A1/zh
Priority to US18/062,887 priority patent/US20230103414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • This application relates to the field of wireless charging technology, and in particular to a wireless charging receiving end, method, and electronic device.
  • NFC Near Field Communication
  • a mobile phone can use the NFC function to wirelessly charge the battery of the watch with the energy of its own battery.
  • the NFC wireless charging system includes a transmitting end and a receiving end. Both the transmitting end and the receiving end are equipped with their own matching circuits.
  • the parameters of the matching circuit are designed according to the receiving end when charging at the rated power. The purpose is for the receiving end to charge the battery with the rated power. When charging, the matching circuit is at a better operating point, which in turn makes the charging efficiency of the receiving end higher.
  • the power of the battery at the receiving end becomes larger and larger, and the receiving end no longer charges the battery with a rated power, but instead charges the battery with a charging power lower than the rated power.
  • the matching circuit deviates from the optimal operating point, resulting in lower charging efficiency at the receiving end.
  • the present application provides a wireless charging receiving end, method and electronic device, which can improve the charging efficiency of the wireless charging receiving end.
  • a wireless charging receiving end is provided.
  • the receiving end is used to charge the battery with the energy provided by the transmitting end.
  • the rectifier circuit in the receiving end includes at least one controllable switch tube; the charging power of the controller is less than When the power threshold is preset, the input impedance of the rectifier circuit is reduced by controlling the switching state of the controllable switch tube, thereby reducing the influence of the increase of the input impedance of the rectifier circuit on the charging efficiency.
  • the controller is forcibly reducing the input impedance of the rectifier circuit to adapt to the changing charging power. Therefore, the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the receiving end includes: a receiving coil, a matching circuit, a rectifier circuit, and a controller; the input end of the matching circuit is connected to the receiving coil, and the output end of the matching circuit is connected to the input end of the rectifier circuit; the receiving coil is used to receive the transmission from the transmitting end.
  • the matching circuit is used to match the AC power to the input end of the rectifier circuit; the rectifier circuit includes a controllable switch tube, and the rectifier circuit is used to rectify the input AC power into DC power under the control of the controller To the charging control circuit; the controller is used to control the switching state of the controllable switch tube when the charging power for charging the battery is less than the preset power threshold, so as to reduce the input impedance of the rectifier circuit.
  • the input impedance of the rectifier circuit When the charging power is low, the input impedance of the rectifier circuit will increase. This solution forces the input impedance of the rectifier circuit to be reduced by controlling the switching state of the controllable switch tube to suppress the effect of the increase of the input impedance of the rectifier current on the charging efficiency. Therefore, the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the controller can control the controllable switch to be turned on within the preset time period, so that the rectifier circuit is bypassed, so that the input current of the rectifier circuit cannot be reached within the preset time period. Entering the DC bus, the output voltage of the rectifier circuit will decrease, which in turn reduces the input impedance of the rectifier circuit.
  • the controller can obtain the preset time period according to the difference between the charging power and the preset power threshold, and the preset time period and the difference are equal to In a positive proportional relationship, the controller can continuously adjust the input impedance of the rectifier circuit through a preset time period.
  • the rectifier circuit includes at least one bridge arm composed of at least one diode, and the controllable switch is connected in parallel with the at least one diode.
  • the controller can control the controllable switch to be turned on when the charging power is less than the preset power threshold, so as to realize the bypass of the rectifier circuit to reduce the input impedance of the rectifier circuit.
  • the rectifier circuit is a full-bridge rectifier circuit, and the rectifier circuit includes a first bridge arm and a second bridge arm connected in parallel; The midpoint is connected to the positive output end of the matching circuit, and the midpoint of the second bridge arm is connected to the negative output end of the matching circuit; the controllable switch is located in at least one of the first bridge arm and the second bridge arm.
  • the rectifier circuit includes: a first switch tube; the first switch tube is located in the first bridge arm or the second bridge arm; The tube is a high-frequency switching tube.
  • the controller controls the first switching tube to be turned on, it no longer controls the first switching tube to be frequently turned on or off, so as to reduce the loss generated when the first switching tube is turned on or off. Therefore, the controller can control the first switching tube to be always on when the charging power is less than the preset power threshold, reducing the loss generated when the first switching tube is turned on or off, and further reducing the loss generated by the rectifier circuit.
  • the loss generated when the current flows through the high-frequency switching tube is lower than the loss when flowing through the diode.
  • the controller controls the first switching tube to be turned on until the wireless charging is completed.
  • the input current of the rectifier circuit passes through the first switch tube, which further reduces the loss generated by the rectifier circuit.
  • the rectifier circuit includes the following two controllable switching tubes; the first switching tube and the second switching tube; the first switching tube is located in the first The lower half of the bridge arm; the second switch tube is located in the lower half of the second bridge arm; because the difference between the charging power and the preset power threshold is positively correlated with the preset time period, when the difference is greater, the preset Set the larger time period.
  • the controller can realize continuous adjustment of the input impedance of the rectifier circuit according to the preset time period of the first switch tube and the preset time period of the second switch tube.
  • the controller can obtain the size of the preset time period according to the difference between the charging power and the preset power threshold to achieve continuous adjustment of the input impedance of the rectifier circuit, thereby reducing the input impedance of the rectifier circuit Impact on the charging efficiency of the receiving end.
  • the controller may control the first switching tube to be turned on for a preset period of time when the charging power of the battery is less than the preset power threshold and the input current of the rectifier circuit is positive; When the power threshold and the input current of the rectifier circuit are negative, the second switch tube is controlled to be turned on for a predetermined period of time.
  • the rectifier circuit is a full-bridge rectifier circuit and includes the following four controllable switching tubes; the first switching tube, the second switching tube, and the second switching tube The third switch tube and the fourth switch tube; the first switch tube is located in the lower half of the first bridge arm; the second switch tube is located in the lower half of the second bridge arm; the third switch tube is located on the upper half of the first bridge arm Half bridge arm, the fourth switch tube is located in the upper half of the second bridge arm; when the polarity of the input current of the rectifier circuit is positive, the controller controls the second switch tube to turn on and the fourth switch tube to turn off.
  • the controller controls the first switching tube to turn on, controls the third switching tube to turn off, first controls the second switching tube to turn on for a preset period of time and then turns off, with a delay preset
  • the fourth switching tube is controlled to be turned on, and when the input current becomes zero, the first switching tube and the fourth switching tube are controlled to be turned off. At this time, the first switching tube, the second switching tube, the third switching tube, and the fourth switching tube are all in an off state.
  • the controller can obtain the size of the preset time period according to the difference between the charging power and the preset power threshold to achieve continuous adjustment of the input impedance of the rectifier circuit, thereby reducing the input impedance of the rectifier circuit and the receiving The impact of the charging efficiency of the terminal.
  • a wireless charging control method is provided, which is applied to the receiving end of wireless charging, and the receiving end is used to charge the battery with the energy provided by the transmitting end.
  • the battery power is getting larger and larger, the receiving end no longer charges the battery with the rated power, but charges the battery with a charging power lower than the rated power.
  • the charging power of the battery will become smaller, and the output impedance of the rectifier circuit will become larger.
  • the input impedance of the rectifier circuit is positively correlated with the output impedance, and the input impedance will also become larger.
  • the parameters of the matching circuit are designed according to the receiving end when the battery is charged with rated power.
  • the receiving end includes: a receiving coil, a matching circuit, and a rectifier circuit;
  • the rectifier circuit includes a controllable switch tube;
  • the method includes:
  • the control rectifier circuit rectifies the input AC power to DC power and provides it to the charging control circuit;
  • the switching state of the controllable switch tube is controlled to reduce the input impedance of the rectifier circuit.
  • the rectifier circuit when the charging power is less than the preset power threshold, the rectifier circuit is bypassed by adjusting the controllable switch to turn on, thereby reducing the input impedance of the rectifier circuit, thereby reducing the input of the rectifier circuit.
  • the controllable switch tube can be controlled to be turned on within the preset time period, so that the rectifier circuit is bypassed, so that the input current of the rectifier circuit cannot enter the DC within the preset time period.
  • the output voltage of the rectifier circuit will decrease, which in turn reduces the input impedance of the rectifier circuit.
  • the preset time period can be obtained according to the difference between the charging power and the preset power threshold, and the preset time period is proportional to the difference. , And then the controller can continuously adjust the input impedance of the rectifier circuit through a preset time period.
  • the rectifier circuit includes at least one bridge arm composed of at least one diode, and the controllable switch is connected in parallel with the at least one diode. The two ends of a diode; when the charging power is less than the preset power threshold, the controllable switch is controlled to be turned on to realize the bypass of the rectifier circuit to reduce the input impedance of the rectifier circuit.
  • the rectifier circuit is a full-bridge rectifier circuit, and the rectifier circuit includes a first bridge arm and a second bridge arm connected in parallel; The midpoint is connected to the positive output end of the matching circuit, and the midpoint of the second bridge arm is connected to the negative output end of the matching circuit; the controllable switch is located in at least one of the first bridge arm and the second bridge arm.
  • the rectifier circuit includes: a first switch tube; the first switch tube is located in the first bridge arm or the second bridge arm; The tube is a high-frequency switching tube. After the first switching tube is controlled to be turned on, the first switching tube is no longer controlled to be frequently turned on or off, so as to reduce the loss generated when the first switching tube is turned on or off. Therefore, when the charging power is less than the preset power threshold, the first switching tube is controlled to be turned on all the time, which reduces the loss generated when the first switching tube is turned on or off, and further reduces the loss generated by the rectifier circuit.
  • the loss generated when the current flows through the high-frequency switch tube is lower than the loss when it flows through the diode.
  • the first switch tube is controlled to be turned on until the wireless charging is completed. Therefore, in the subsequent charging When the power is less than the preset power threshold, the input current of the rectifier circuit passes through the first switch tube, which further reduces the loss generated by the rectifier circuit.
  • the rectifier circuit includes the following two controllable switching tubes; the first switching tube and the second switching tube; the first switching tube is located in the first The lower half of the bridge arm; the second switch tube is located in the lower half of the second bridge arm; because the difference between the charging power and the preset power threshold is positively correlated with the preset time period, when the difference is greater, the preset Set the larger time period. According to the preset time period of the first switch tube and the preset time period of the second switch tube, the continuous adjustment of the input impedance of the rectifier circuit is realized.
  • the size of the preset time period can be obtained according to the difference between the charging power and the preset power threshold to achieve continuous adjustment of the input impedance of the rectifier circuit, thereby reducing the input impedance of the rectifier circuit and the receiver The impact of the charging efficiency of the terminal.
  • the first switch tube when the charging power of the battery is less than the preset power threshold and the input current of the rectifier circuit is positive, the first switch tube is controlled to be turned on for a preset period of time; when the charging power of the battery is less than the preset power threshold, and the rectifier circuit When the input current of is negative, the second switch tube is controlled to be turned on for a preset period of time.
  • the rectifier circuit is a full-bridge rectifier circuit and includes the following four controllable switching tubes; the first switching tube, the second switching tube, and the second switching tube The third switch tube and the fourth switch tube; the first switch tube is located in the lower half of the first bridge arm; the second switch tube is located in the lower half of the second bridge arm; the third switch tube is located on the upper half of the first bridge arm Half bridge arm, the fourth switch tube is located in the upper half of the second bridge arm; when the polarity of the input current of the rectifier circuit is positive, the second switch tube is controlled to be turned on, and the fourth switch tube is controlled to be turned off.
  • the first switching tube is turned on for a preset period of time and then turned off. After a preset time delay, the third switching tube is controlled to be turned on. When the input current becomes zero, the second switching tube and the third switching tube are controlled to be turned off. At this time, the first switching tube, the second switching tube, the third switching tube, and the fourth switching tube are all in an off state.
  • the first switching tube When the polarity of the input current of the rectifier circuit is negative, the first switching tube is controlled to be turned on, the third switching tube is controlled to be turned off, and the second switching tube is controlled to be turned on for a preset period of time and then turned off, after a delay of a preset time , And then control the fourth switching tube to turn on, when the input current becomes zero, control the first switching tube and the fourth switching tube to turn off.
  • the first switching tube, the second switching tube, the third switching tube, and the fourth switching tube are all in an off state.
  • the size of the preset time period can be obtained according to the difference between the charging power and the preset power threshold to achieve continuous adjustment of the input impedance of the rectifier circuit, thereby reducing the input impedance of the rectifier circuit to charge the receiving end The impact of efficiency.
  • an electronic device including the receiving end provided in the above-mentioned first aspect.
  • the rectifier circuit at the receiving end includes at least one controllable switch tube; when the charging power of the battery is less than a preset power threshold, the controller reduces the input impedance of the rectifier circuit by controlling the switching state of the controllable switch tube. When the charging power is low, the input impedance of the rectifier circuit will increase.
  • This solution forces the input impedance of the rectifier circuit to be reduced by controlling the switching state of the controllable switch tube to suppress the effect of the increase of the input impedance of the rectifier current on the charging efficiency. Therefore, the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • FIG. 1A is a schematic diagram of an NFC wireless charging system provided by this application.
  • FIG. 1B is a schematic diagram of another NFC wireless charging system provided by this application.
  • FIG. 2 is a schematic diagram of another NFC wireless charging system provided by this application.
  • FIG. 3 is a schematic diagram of a receiving end of NFC wireless charging provided by this application.
  • Figure 4 is a working flow chart of a receiving end provided by this application.
  • FIG. 5A is a curve diagram of impedance characteristics varying with charging power provided by this application.
  • Fig. 5B is a graph of charging efficiency varying with charging power provided by this application.
  • FIG. 6 is a schematic diagram of another NFC wireless charging receiving end provided by this application.
  • FIG. 7 is another working flow chart of the receiving end provided by this application.
  • FIG. 8 is a schematic diagram of another NFC wireless charging receiving end provided by this application.
  • FIG. 9 is a working flow chart of another receiving end provided by this application.
  • FIG. 10 is a working sequence diagram of a controllable switch tube provided by this application.
  • FIG. 11 is a schematic diagram of another NFC wireless charging receiving end provided by this application.
  • FIG. 12 is another working flow chart of the receiving end provided by this application.
  • FIG. 13 is a working sequence diagram of another controllable switch tube provided by this application.
  • FIG. 14 is a flowchart of a wireless charging method provided by this application.
  • FIG. 15 is a flowchart of another wireless charging method provided by this application.
  • FIG. 16 is a flowchart of another wireless charging method provided by this application.
  • FIG. 17 is a flowchart of another wireless charging method provided by this application.
  • the electronic devices can be mobile phones, tablets, computers with wireless transceiver functions, and smart wearable products (for example, smart Watches, smart bracelets, headsets, etc.), virtual reality (VR, virtual reality) terminal equipment, augmented reality (AR, augmented reality) terminal equipment, etc.
  • smart wearable products for example, smart Watches, smart bracelets, headsets, etc.
  • VR virtual reality
  • AR augmented reality
  • the mobile phone uses the NFC function to wirelessly charge the battery of the smart watch with the energy of its own battery.
  • This application can be applied to electronic devices with NFC function, and the NFC function is used for NFC wireless charging between electronic devices.
  • This application does not specifically limit wireless charging as NFC wireless charging, and can also be applied to other wireless charging networks with matching circuits or other wireless charging networks with impedance conversion.
  • NFC wireless charging as an example to introduce this application in detail Technical solutions.
  • FIG. 1A is a schematic diagram of an NFC wireless charging system provided by this application.
  • the NFC wireless charging system includes: a transmitting terminal 1000 for NFC wireless charging and a receiving terminal 2000 for NFC wireless charging.
  • the transmitting end of NFC wireless charging is referred to as the transmitting end for short below, and the receiving end of NFC wireless charging is referred to as the receiving end for short.
  • the transmitting terminal 1000 is used to transfer the energy provided by the transmitting terminal battery to the receiving terminal 2000.
  • the receiving end 2000 is used to charge the received energy to the battery of the receiving end.
  • the transmitting end 1000 is a mobile phone
  • the receiving end 2000 is a smart watch.
  • the smart watch enters the NFC wireless charging range of the mobile phone, the mobile phone wirelessly charges the smart watch through the NFC wireless charging method.
  • FIG. 1B is a schematic diagram of another NFC wireless charging system provided by this application.
  • FIG. 1B shows a side view when the receiving end 2000 and the transmitting end 1000 are close to each other.
  • This application does not limit the approach of the receiving end 2000 and the transmitting end 1000.
  • the approaching manner may be that one side of the receiving end 2000 and one side of the transmitting end 1000 are close to each other.
  • the NFC wireless charging interactive authentication can be started. After the authentication is passed, the mobile phone starts to wirelessly charge the smart watch.
  • the battery power of the smart watch will become larger and larger, the charging power of the battery will become smaller, and the output impedance of the rectifier circuit will become larger. Since the output impedance of the rectifier circuit is positively correlated with the input impedance, The input impedance of the rectifier circuit will also increase.
  • the parameters of the matching circuit are designed to charge the smart watch at rated power, as the charging power decreases, the input impedance of the rectifier circuit will increase, and the matching circuit will deviate from the optimal operating point, resulting in a decrease in the charging efficiency of the smart watch .
  • this application provides a receiving end for NFC wireless charging.
  • the rectifier circuit in the receiving end includes at least one controllable switch tube; when the charging power is less than the preset power threshold, the controller reduces the input impedance of the rectifier circuit by controlling the switching state of the controllable switch tube, thereby reducing the input of the rectifier circuit The effect of increased impedance on charging efficiency.
  • the controller is forcibly reducing the input impedance of the rectifier circuit to adapt to the changing charging power. Therefore, the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the following first introduces the working principle of the NFC wireless charging system including the receiving end and the transmitting end.
  • FIG. 2 is a schematic diagram of another NFC wireless charging system provided by this application.
  • the transmitting end includes: a power conversion module 1002, a DC/AC inverter module 1003, an electromagnetic interference (EMI, Electromagnetic Interference) filter 1004, a transmission matching circuit 1005, a transmission coil 1006, an NFC communication transmission module 1007, and a transmission control module 1008.
  • EMI Electromagnetic Interference
  • the input end of the power conversion module 1002 is connected to the battery 1001, and the output end of the power conversion module 1002 is connected to the input end of the DC/AC inverter module 1003.
  • the power conversion module 1002 is used for step-up conversion or step-down conversion after obtaining energy from the battery 1001, and provides a suitable input voltage to the DC/AC inverter module 1003.
  • the present application does not specifically limit the form of the power conversion module 1002.
  • the power conversion module 1002 may be independent, and the power conversion module 1002 may also be integrated with the DC/AC inverter module in one chip. In some scenarios, the power conversion module 1002 may not be required for step-up conversion or step-down conversion, and the input end of the DC/AC inverter module 1003 is directly connected to the battery 1001.
  • the DC/AC inverter module 1003 is used to convert the direct current input from the power conversion module 1002 into alternating current with a preset frequency.
  • the preset frequency can be between 10MHz and 20MHz.
  • the preset frequency can be 13.56MHz.
  • the DC/AC inverter module 1003 is also used to modulate the communication signal before the NFC communication transmitter module 1007 transmits the communication signal.
  • the NFC communication transmitter module 1007 is used to transmit modulated communication signals, and also used to demodulate the communication signals transmitted by the receiving end to realize the information interaction between the transmitting end and the receiving end, such as charging voltage, charging current, and battery temperature And other information. This application does not specifically limit the form of the NFC communication transmission module 1007.
  • the NFC communication transmission module 1007 may be independent, and the NFC communication transmission module 1007 may also be integrated with the DC/AC inverter module in one chip.
  • the input terminal of the EMI filter 1004 is connected to the output terminal of the DC/AC inverter module 1003.
  • the EMI filter is used to suppress the harmonic signal output by the DC/AC inverter module 1003, so as to reduce the signal interference caused by the harmonic signal entering the transmitting coil 1006.
  • the input terminal of the transmission matching circuit 1005 is connected to the output terminal of the EMI filter 1004.
  • the transmitting matching circuit 1005 is used to transform the impedance reflected from the receiving end to the transmitting end, so that the output impedance of the DC/AC inverter module 1003 is within a preset range, so as to ensure the normal operation of the DC/AC inverter module 1003.
  • the transmitting coil 1006 is connected to the output terminal of the transmitting matching circuit 1005.
  • the transmitting coil 1006 is used to transfer the energy provided by the transmitting end to the receiving end in the form of magnetic induction.
  • the transmitting control module 1008 monitors and controls the working status of the transmitting terminal to ensure the normal operation of the transmitting terminal.
  • the receiving end includes: a charging control circuit 2002, a rectifier circuit 2003, an EMI filter 2004, a receiving matching circuit 2005, a receiving coil 2006, an NFC communication receiving module 2007, and a receiving control module 2008.
  • the receiving coil 2006 is connected to the input terminal of the receiving matching circuit 2005.
  • the receiving coil 2006 is used to receive the energy transferred from the transmitting end in the form of magnetic induction.
  • the output terminal of the receiving matching circuit 2005 is connected to the input terminal of the EMI filter 2004.
  • the receiving matching circuit 2005 is used to transform the load impedance of the receiving end, so that the input impedance of the rectifying circuit 2003 is within a preset range, so as to improve the charging efficiency of the NFC wireless charging system.
  • the output end of the EMI filter 2004 is connected to the input end of the finishing circuit 2003.
  • the EMI filter 2004 is used to suppress the harmonic signal generated by the rectifier circuit 2003 and reduce the signal interference caused by the harmonic signal entering the receiving coil 2006.
  • the output terminal of the rectifier circuit 2003 is connected to the input terminal of the charging control circuit 2002.
  • the rectifier circuit 2003 is used to convert the input AC power into DC power.
  • the rectifier circuit 2003 includes a controllable switch tube.
  • the rectifier circuit 2003 changes the input impedance of the rectifier circuit under the control of the receiving control module 2008.
  • the input impedance of the rectifier circuit 2003 will increase, and the matching circuit 2005 will deviate from the optimal operating point, and the charging efficiency of the receiving end will decrease. Therefore, when the charging power is lower than the preset power threshold, the input impedance of the rectifier circuit 2003 needs to be reduced to adapt to the changing charging power.
  • the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the output terminal of the charge control circuit 2002 is connected to the battery 2001.
  • the charging control circuit 2002 is used to charge the battery and also to control the charging state of the battery to ensure that the charging voltage and charging current during the NFC wireless charging process are within the calibration range of the battery 2001.
  • the NFC communication receiving module 2007 is used to demodulate the communication signal transmitted by the transmitting terminal to realize the information exchange between the transmitting terminal and the receiving terminal, such as information such as charging voltage, charging current, and battery temperature.
  • the receiving control module 2008 monitors and controls the working state of the receiving end, and is also used to adjust the input impedance of the rectifier circuit 2003 by controlling the switching state of the controllable switch tube according to the charging power of the battery during the NFC wireless charging process.
  • FIG. 3 is a schematic diagram of a receiving end of NFC wireless charging provided by this application.
  • the receiving end includes: a receiving coil Lrx, a matching circuit 300, a rectifier circuit 400 and a controller 500.
  • FIG. 3 is only an example of the topological structure of the matching circuit 300.
  • the input terminal of the matching circuit 300 is connected to the receiving coil Lrx, and the output terminal of the matching circuit 300 is connected to the input terminal of the rectifier circuit 400.
  • an EMI filter 600 is connected in series between the matching circuit 300 and the rectifier circuit 400.
  • the matching circuit 300 includes a first capacitor C11s, a second capacitor C12s, a third capacitor C21s, and a fourth capacitor C22s.
  • the matching circuit 300 is used to match the alternating current output from the receiving coil Lrx and then send it to the input end of the rectifier circuit 400.
  • FIG. 3 is only an example of the topology of the EMI filter 600.
  • the EMI filter 600 includes a fourth capacitor C01s, a fifth capacitor C02s, a first inductor L01s, and a second inductor L02s.
  • the first end of C21s is grounded, the second end of C21s is connected to the first end of C11s, the second end of C11s is connected to the first end of C01s, the second end of C01s is grounded, and the first end of L01s is connected to the first end of C01s.
  • the second terminal of L01s is connected to the positive input terminal of the rectifier circuit 400.
  • the first end of C22s is grounded, the second end of C22s is connected to the first end of C12s, the second end of C12s is connected to the first end of C02s, the second end of C02s is grounded, and the first end of L02s is connected to the first end of C02s.
  • the second terminal of L02s is connected to the negative input terminal of the rectifier circuit 400.
  • the receiving coil Lrx and the transmitting coil at the transmitting end receive the energy emitted by the transmitting end and output alternating current by means of magnetic field coupling.
  • the rectifier circuit 400 includes at least one controllable switch tube.
  • the rectifier circuit 400 rectifies the input AC power into DC power under the control of the controller 500 and provides the charging control circuit 700 to the charging control circuit 700.
  • the rectifier circuit 400 may include four controllable switch tubes, may also include two controllable switch tubes, or may also include one controllable switch tube.
  • the output terminal of the rectifier circuit 400 is connected in parallel with a DC bus capacitor Cdc.
  • the input terminal of the charging control circuit 700 is connected to the output terminal of the rectifier circuit 400, and the output terminal of the charging control circuit 700 is connected to the battery.
  • the charging control circuit 700 may be a charging control chip, or a charging control circuit built with basic electrical components.
  • the charging control circuit 700 charges the battery under the control of the controller 500.
  • the receiving end Since the matching circuit 300 at the receiving end is designed to charge the battery with rated power at the receiving end, the receiving end will not always charge the battery at the rated power during the charging process. As the charging time increases, the battery level at the receiving end will increase. The higher the value, the lower the charging power of the battery, the larger the output impedance of the rectifier circuit 400, the positive correlation between the output impedance of the rectifier circuit 400 and the input impedance, and the larger the input impedance of the rectifier circuit 400. Therefore, when the charging power is less than the preset power threshold, the input impedance of the rectifier circuit needs to be adjusted to adapt to the changing charging power and improve the charging efficiency.
  • the controller 500 reduces the input impedance of the rectifier circuit 400 by controlling the switching state of the controllable switch tube. For example, the controller 500 controls at least one controllable switch tube to be turned on for a predetermined period of time, so that the rectifier circuit 400 is bypassed, and the energy at the input end of the rectifier circuit cannot be transferred to the DC bus.
  • the input current of the rectifier circuit cannot enter the DC bus within a preset period of time, so the output voltage of the rectifier circuit will decrease, thereby reducing the input impedance of the rectifier circuit.
  • the input impedance of the rectifier circuit will increase.
  • This solution forces the input impedance of the rectifier circuit to be reduced by controlling the controllable switch to conduct for a preset period of time, so as to suppress the increase of the input impedance of the rectifier circuit to charge Due to the influence of efficiency, the matching circuit 300 still works at a better operating point. Therefore, the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the charging power can be calculated by detecting the battery voltage and the charging current Ichg, that is, the battery voltage is multiplied by the charging current Ichg, and the charging power can also be obtained by detecting the DC bus voltage Vdc output by the rectifier circuit 400 and The charging current Ichg is calculated, that is, the DC bus voltage Vdc is multiplied by the charging current Ichg.
  • the charging power can also be directly obtained from the charging control chip, which can directly provide the charging power of the battery.
  • the receiving end also includes an NFC communication circuit 800.
  • the NFC communication circuit 800 is used to exchange charging information and control information with the transmitter.
  • the NFC communication circuit 800 receives the control information sent by the transmitter, and when the control information indicates the end of charging, the controller 500 controls the receiver to end the charging according to the control information.
  • FIG. 4 is a working flowchart of a receiving end provided by this application.
  • the workflow at the receiving end includes:
  • S401 NFC wireless charging interactive authentication.
  • the transmitter Before the transmitter can wirelessly charge the receiver, it needs to perform the NFC wireless charging interactive authentication. After the NFC wireless charging interactive authentication is completed, the NFC wireless charging can be started.
  • the receiving end communicates with the transmitting end through the NFC communication circuit 800 to obtain charging information and control information to perform NFC wireless charging interactive authentication.
  • the battery power at the receiving end is low, and the receiving end charges the battery with the rated power.
  • the matching circuit at the receiving end is also designed when the receiving end charges the battery with the rated power.
  • the controller controls the controllable switch to turn off without changing the input impedance of the rectifier circuit.
  • the receiving end will not always charge the battery with the rated power. As the charging time increases, the battery power becomes larger and larger, and the charging power will also change.
  • the receiving end needs to obtain the real-time charging power of the battery to determine whether the matching circuit 300 deviates from the optimal operating point, and then the controller 500 reduces the input of the rectifier circuit 400 by controlling the switching state of the controllable switch in the rectifier circuit 400 impedance.
  • the controller 500 controls at least one controllable switch tube to be turned on for a preset period of time, so that the rectifier circuit 400 is bypassed, and energy cannot be transferred to the DC bus through the rectifier circuit 400.
  • the input current of the rectifier circuit cannot enter the DC bus within the preset time period, so the output voltage of the rectifier circuit will decrease, thereby reducing the input impedance of the rectifier circuit.
  • the charging power can be calculated by detecting the battery voltage and the charging current Ichg, that is, the battery voltage is multiplied by the charging current Ichg, and the charging power can also be calculated by detecting the DC bus voltage Vdc and the charging current Ichg output by the rectifier circuit 400, that is, the DC bus voltage Vdc Multiplied by the charging current Ichg, the charging power can also be obtained directly from the charging control chip, and the charging control chip can directly provide the charging power of the battery.
  • S404 Determine whether the charging power is less than the preset power threshold; if yes, execute S405; if not, execute S403.
  • the controller compares the charging power with the preset power threshold to determine whether the charging power is less than the preset power threshold.
  • the preset power threshold can be any value between 20%-40% of the rated charging power, for example, the preset power is 33% of the rated power. .
  • the controller 500 at the receiving end needs to control the switching state of the controllable switch in the rectifier circuit 400 to reduce the input impedance of the rectifier circuit 400.
  • the calculation formula of the output impedance of the rectifier circuit 400 is as follows:
  • V o is the charging power
  • V dc is the output voltage of the rectifier circuit 400. From the above equation, when the output voltage of the rectifier circuit 400. V dc approximately constant, if the change in the charging power P o, the output of the rectifier circuit 400 will change the impedance R L. As the battery power at the receiving end becomes larger and larger, Po will become smaller, and when V dc is approximately constant, R L will become larger.
  • the input impedance R rec of the rectifier circuit 400 is positively correlated with R L. When R L becomes larger, R rec will also become larger, so that the matching circuit 300 will deviate from the optimal operating point and the charging efficiency of the receiving end will decrease.
  • the controller 500 needs to adjust the R rec of the rectifier circuit 400 to adapt to the changed Po and improve the charging efficiency of the receiving end.
  • the controller 500 reduces the R rec of the rectifier circuit 400 by controlling the switching state of the controllable switch tube.
  • the controller 500 controls the switching state of the controllable switch tube to forcibly reduce the R rec of the rectifier circuit 400 to suppress the influence of the increase of R rec on the charging efficiency. Therefore, the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • S406 Determine whether to end the NFC wireless charging; if so, perform S407.
  • the controller 500 at the receiving end determines whether to end the NFC wireless charging according to real-time charging information and/or control instruction information. For example, when the charging information indicates that the battery at the receiving end is full, the controller 500 ends the NFC wireless charging, or when the control instruction information indicates that the NFC wireless charging ends, the controller 500 ends the NFC wireless charging.
  • the charging information can be generated by the charging control circuit 700, and the control instruction information can be obtained through the NFC communication circuit 800.
  • S407 End NFC wireless charging.
  • the controller determines that the NFC wireless charging ends, it ends the NFC wireless charging.
  • FIG. 5A is a curve diagram of impedance characteristics varying with charging power provided by this application.
  • the unit C is the unit of charging power.
  • the charging power is 1C
  • the charging power is 0.33C
  • the equivalent loop impedance of the receiving end Z in (R in +jX in )
  • R in is the real part
  • X in is the imaginary part
  • the imaginary part is positive to indicate inductance
  • the imaginary part is negative to indicate capacitive.
  • the broken line A is the change curve of R in with the charging power after adjusting the input impedance of the rectifier circuit
  • the solid line B is the change curve of R in with the charging power when the input impedance of the rectifier circuit is not adjusted
  • the dotted line C is the input of the adjusted rectifier circuit.
  • the variation curve of X in with the charging power the solid line D is the variation curve of X in with the charging power when the input impedance of the rectifier circuit is not adjusted.
  • the charging power is less than the preset power threshold (for example: 0.33C) and the input impedance of the rectifier circuit is lowered, R in becomes larger, and the efficiency ⁇ rxcoil of the receiving coil becomes larger.
  • the amplitude of X in becomes smaller, the power factor of the transmitting coil to the receiving coil becomes larger. Therefore, after adjusting the input impedance of the rectifier circuit, the charging efficiency of the receiving end can be improved.
  • FIG. 5A describes the change of the input impedance of the rectifier circuit in the present application with the charging power.
  • the following describes the change of the charging efficiency of the receiving end in the present application with the charging power in conjunction with FIG. 5B.
  • FIG. 5B is a graph of charging efficiency versus charging power provided by this application.
  • the battery power becomes larger and larger, and the receiving end no longer charges the battery with the rated power, but charges the battery with a charging power lower than the rated power, and the charging power of the battery will change. If it is smaller, the output impedance of the rectifier circuit will become larger. Since the input impedance of the rectifier circuit is positively correlated with the output impedance, the input impedance will also become larger.
  • the parameters of the matching circuit are designed according to the receiving end when the battery is charged with rated power. When the charging power of the battery becomes smaller, the input impedance of the rectifier circuit becomes larger, which will cause the matching circuit to deviate from the optimal operating point.
  • the controller needs to adjust the input impedance of the rectifier circuit to adapt to the changing charging power and improve the charging efficiency.
  • the controller at the receiving end reduces the input impedance of the rectifier circuit by controlling the controllable switch tube to be turned on for a preset period of time, so that the rectifier circuit is bypassed.
  • the controller at the receiving end forcibly reduces the input impedance of the rectifier circuit by controlling the controllable switch to turn on, so as to suppress the influence of the increase of the input impedance of the rectifier circuit on the charging efficiency.
  • the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the rectifier circuit may include one bridge arm or two bridge arms. Each bridge arm includes at least one diode.
  • the following takes the rectifier circuit as a full-bridge rectifier circuit including two bridge arms as an example for detailed introduction.
  • This application does not limit the number of controllable switch tubes in the rectifier circuit, and there may be one or more controllable switch tubes.
  • the number of controllable switch tubes is taken as an example for detailed introduction.
  • FIG. 6 is a schematic diagram of another NFC wireless charging receiving end provided by this application.
  • the rectifier circuit 400 at the receiving end includes a first bridge arm and a second bridge arm connected in parallel.
  • the midpoint of the first bridge arm is connected to the positive input end of the matching circuit 300, and the midpoint of the second bridge arm is connected to the negative input end of the matching circuit 300.
  • the rectifier circuit 400 includes a controllable switch tube.
  • controllable switch tube can be located on the first bridge arm, and the controllable switch tube can also be located on the second bridge arm.
  • controllable switch tube is located in the first bridge arm below. Take an example for introduction.
  • the first bridge arm includes a first diode D2 and a third diode D1
  • the second bridge arm includes a second diode D4 and a fourth diode D3
  • the controllable switch tube is the first switch tube S2.
  • the positive pole of D2 is connected to the negative pole of D1
  • the positive pole of D2 is connected to the positive input terminal of the matching circuit 300
  • the negative pole of D2 is connected to the negative pole of D4
  • the positive pole of D4 is connected to the negative pole of D3
  • the positive pole of D4 is connected to the negative input terminal of the matching circuit 300.
  • the positive terminal is connected to the positive terminal of D1.
  • S2 is connected in parallel at both ends of D2.
  • S2 can also be connected in parallel at both ends of D1. In order to make the controllable switch easier to be driven, the following takes S2 in parallel at both ends of D2 as an example.
  • the controller reduces the input impedance of the rectifier circuit 400 by controlling the switching state of S2 to make the matching circuit 300 works at a better operating point, and when the charging power is less than the preset power threshold, the receiving end improves the charging efficiency.
  • Gs2 is the pulse control signal of S2.
  • S2 When Gs2 is at a high level, S2 is turned on, and when Gs2 is at a low level, S2 is turned off.
  • the controller 500 controls S2 to be turned on all the time, so as to reduce the input impedance of the rectifier circuit 400.
  • the controller 500 controls S2 to be turned on by controlling Gs2 to be high. Subsequently, in conjunction with the working flowchart of the receiving end, it will be described in detail that the controller 500 reduces the input impedance of the rectifier circuit to improve the charging efficiency of the receiving end.
  • FIG. 7 is another working flowchart of the receiving end provided by this application.
  • S701-S704 are similar to S401-S404, and S706-S707 are similar to S406-S407.
  • S701-S704 are similar to S401-S404, and S706-S707 are similar to S406-S407.
  • Embodiment 1 of the receiving end and FIG. 4, which will not be repeated here. The following introduces the difference from the first embodiment of the receiving end.
  • the controller 500 at the receiving end needs to control the switching state of the controllable switch in the rectifier circuit 400 to reduce the input impedance of the rectifier circuit 400.
  • the controller 500 controls the disconnection of S2, and the rectifier circuit 400 is a full-bridge rectifier circuit.
  • the calculation formula of the input impedance of the rectifier circuit 400 is:
  • V dc is the voltage across the DC bus capacitor Cdc
  • I chg is the charging current
  • R rec is the input impedance of the rectifier circuit.
  • the controller 500 controls S2 to be turned on, and the rectifier circuit is a half-wave rectifier circuit.
  • the calculation formula of the input impedance of the rectifier circuit 400 is:
  • V dc is the voltage across the DC bus capacitor Cdc
  • I chg is the charging current
  • R rec is the input impedance of the rectifier circuit.
  • the controller 500 can adjust the input impedance of the rectifier circuit 400 by controlling the switching state of S2.
  • the controller 500 controls S2 to be turned on, and adjusts the rectifier circuit 400 to a half-wave rectifier circuit, so that the input impedance of the rectifier circuit 400 becomes smaller, so as to suppress the influence of the increase of the input impedance of the rectifier circuit 400 on the charging efficiency.
  • the controller 500 reduces the input impedance of the rectifier circuit 400 so that the matching circuit 300 still works at a better operating point. Therefore, the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the controller 500 controls S2 to be turned on all the time.
  • the controller 500 adjusts the rectifier circuit 400 to a half-wave rectifier circuit by controlling the S2 to be turned on, so that the input impedance of the rectifier circuit 400 is reduced.
  • the input current flows in from the positive input terminal of the rectifier circuit 400, passes through S2 and D4 in turn, and flows out from the positive pole of D4, so that the rectifier circuit 400 is bypassed and the input current does not enter the DC bus. .
  • the input current flows in from the negative input terminal of the rectifier circuit 400, passes through D3, Cdc, and S2 in turn, and flows out from S2. After the current passes through Cdc, the energy is transferred to the charging control circuit 700.
  • the controller 500 controls S2 to be turned on until the NFC wireless charging ends. Since S2 is a high-frequency switching tube, after the controller 500 controls S2 to be turned on, it no longer controls S2 to be frequently turned on or off, so as to reduce the loss generated when S2 is turned on or off. Therefore, the controller 500 can control S2 to be turned on all the time when the charging power is less than the preset power threshold, so as to reduce the loss generated when S2 is turned on or off, and further reduce the loss generated by the rectifier circuit 400.
  • the loss generated when the current flows through the high-frequency switch tube is lower than the loss when the diode flows through the diode.
  • the controller controls S2 to turn on until the end of the NFC wireless charging.
  • the input current of the rectifier circuit passes through S2, which further reduces the loss generated by the rectifier circuit.
  • controllable switch tubes described in the above embodiment is one.
  • the number of controllable switch tubes is two as an example for detailed introduction.
  • FIG. 8 is a schematic diagram of another NFC wireless charging receiving end provided by this application.
  • the rectifier circuit 400 at the receiving end includes a first bridge arm and a second bridge arm connected in parallel.
  • the midpoint of the first bridge arm is connected to the positive input terminal of the matching circuit 300, and the midpoint of the second bridge arm is connected to the negative input terminal of the matching circuit 300.
  • the rectifier circuit 400 includes the following two controllable switching tubes, a first switching tube S2 and a second switching tube S4.
  • S2 can be located on the upper half of the first bridge arm, S4 can be located on the upper half of the second bridge arm; S2 can be located on the lower half of the first bridge arm, S4 can be located at the lower half of the second bridge arm.
  • S2 can be located on the lower half of the first bridge arm and S4 at the lower half of the second bridge as an example.
  • the lower half of the first bridge arm is a first diode D2
  • S2 is connected in parallel to both ends of D2
  • the lower half of the second bridge arm is a second diode D4, and S4 is connected in parallel to both ends of D4.
  • S2 When S2 is located at the lower half of the first bridge arm and S4 is located at the lower half of the second bridge arm, S2 and S4 are easier to be driven.
  • the controller 500 reduces the power of the rectifier circuit 400 by controlling the switching state of S2 and the switching state of S4.
  • the input impedance makes the matching circuit 300 work at a better operating point, and the receiving end improves the charging efficiency when the charging power is less than the preset power threshold.
  • Gs2 is the pulse control signal of S2
  • Gs4 is the pulse control signal of S4.
  • the controller 500 controls S2 to be turned on by controlling Gs2 to be a high level, and controls S2 to be turned off by controlling Gs2 to be a low level. Similarly, the controller 500 can also control the on and off of S4 by controlling Gs4.
  • the controller 500 controls S2 to be turned on for a preset time period by controlling Gs2 to be high; When it is negative, the S4 is controlled to be turned on for a predetermined period of time by controlling Gs4 to be high.
  • S2 or S4 is turned on, the rectifier circuit 400 is bypassed, thereby reducing the input impedance of the rectifier circuit.
  • the difference between the charging power and the preset power threshold is positively correlated with the preset time period.
  • the specific calculation formula for the preset time period can be obtained through offline test fitting.
  • FIG. 9 is a working flowchart of another receiving end provided by this application.
  • S901-S904 are similar to S401-S404, and S907-S908 are similar to S406-S407.
  • S901-S904 are similar to S401-S404, and S907-S908 are similar to S406-S407.
  • Embodiment 1 of the receiving end and FIG. 4, which will not be repeated here. The following introduces the difference from the first embodiment of the receiving end.
  • S905 Obtain a preset time period according to the difference between the charging power and the preset power threshold.
  • the controller After obtaining the real-time charging power through S903, the controller obtains the preset time period t on according to the difference between the charging power and the preset power threshold.
  • the specific calculation formula of t on can be obtained by offline test fitting. The smaller the difference, the smaller the t on ; the larger the difference, the greater the t on .
  • t on In order to avoid negative current when the input current I rec of the rectifier circuit is positive, causing additional loss, t on needs to be less than the upper limit value tonmax , and the specific value of the upper limit value tonmax is not specifically limited. Those skilled in the art can Select any value that meets the conditions according to actual needs. For example, tonmax is one third of the time period corresponding to the timing of the input current Irec of the rectifier circuit.
  • S906 Adjust the switching state of the first switching tube and the switching state of the second switching tube according to the polarity of the input current of the rectifier circuit and the preset time period.
  • the controller 500 can control the switching state of S2 and the switching state of S4 by detecting the polarity of the input current of the rectifier circuit 400, so as to reduce the input impedance of the rectifier circuit 400.
  • the input impedance of the rectifier circuit 400 may become larger. Accordingly, the controller 500 requires the input current is positive, the control S2 is turned on to change the path of t on the input current, the time t on the input current flows from the positive input terminal of the rectifier circuit 400 sequentially after S2 and D4 , Flows out from the positive pole of D4, so that the rectifier circuit 400 is bypassed, and the input current does not enter the DC bus.
  • the control S4 turns t on the input current path is changed, in the time t on, the input current flows from the negative input terminal of the rectifier circuit, after sequentially through S4 and D2, D2 from The positive pole of ⁇ flows out, so that the rectifier circuit 400 is bypassed, and the input current does not enter the DC bus.
  • the controller 500 may be adjusted on the size of the input impedance of the rectifier circuit 400 by adjusting S2 and S4 are turned t.
  • FIG. 10 is a working sequence diagram of a controllable switch tube provided by this application.
  • Gs2 is the pulse control signal of the first switching tube
  • Gs4 is the pulse control signal of the second switching tube
  • the controller can control the on and off of the first switching tube by controlling Gs2.
  • the controller can also control the on and off of the second switching tube by controlling Gs4.
  • I rec is the input current of the rectifier circuit.
  • the controller controls the first switching tube to be turned on , and then controls the first switching tube to be turned off.
  • the controller controls the second switching tube to be turned on , and then controls the second switching tube to be turned off.
  • the difference between the charging power and the preset power threshold is positively correlated with t on , and when the difference is larger, the t on is larger.
  • the controller may be implemented in a continuous adjustment of the input impedance of the rectifier circuit according to t on t on of the first switch and the second switch tube.
  • t on When t on is larger, the input voltage of the rectifier circuit is smaller, and when the charging power is constant, the input impedance of the rectifier circuit is smaller.
  • the smaller the t on the greater the input voltage of the rectifier circuit, and the greater the input impedance of the rectifier circuit when the charging power remains unchanged.
  • the controller can obtain the value of t on according to the difference between the charging power and the preset power threshold to achieve continuous adjustment of the input impedance of the rectifier circuit, thereby reducing the input impedance of the rectifier circuit and the receiving The impact of the charging efficiency of the terminal. Therefore, the matching circuit is still at a better operating point, and the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the controller not only reduces the input impedance of the rectifier circuit by controlling the switching state of the first switching tube and the switching state of the second switching tube when the charging power is less than the preset power threshold; it can also reduce the input impedance of the rectifier circuit when the charging power is greater than the preset power threshold.
  • the input impedance of the rectifier circuit is reduced by controlling the switching state of the first switching tube and the switching state of the second switching tube to adapt to the change of the charging power, thereby improving the charging efficiency of the receiving end when the charging power is greater than the preset power threshold. Therefore, the matching circuit is always at a better operating point, and the receiving end can improve the charging efficiency during the entire process of NFC wireless charging.
  • controllable switch tubes described in the above embodiment is one or two.
  • the number of controllable switch tubes is four as an example for detailed introduction.
  • FIG. 11 is a schematic diagram of another NFC wireless charging receiving end provided by this application.
  • the rectifier circuit 400 at the receiving end includes a first bridge arm and a second bridge arm connected in parallel.
  • the midpoint of the first bridge arm is connected to the positive input terminal of the matching circuit 300, and the midpoint of the second bridge arm is connected to the negative input terminal of the matching circuit 300.
  • the rectifier circuit 400 includes the following four controllable switching tubes, a first switching tube S2, a second switching tube S4, a third switching tube S1, and a fourth switching tube S3.
  • S2 is located on the lower half of the first bridge arm
  • S4 is located on the lower half of the second bridge arm
  • S1 is located on the upper half of the first bridge arm
  • S3 is located on the upper half of the second bridge arm.
  • the lower half of the first bridge arm is the first diode D2, and S2 is connected in parallel to both ends of D2.
  • the lower half of the second bridge arm is the second diode D4, and S4 is connected in parallel to both ends of D4.
  • the upper half of the first bridge arm is the third pole tube D1, and S1 is connected in parallel to both ends of D1.
  • the upper half of the second bridge arm is the fourth diode D3, and S3 is connected in parallel with both ends of D3.
  • the controller 500 controls the switching state of S1, the switching state of S2, the switching state of S3, and The switch state of S4 reduces the input impedance of the rectifier circuit 400, so that the matching circuit 300 works at a better operating point, and the receiving end improves the charging efficiency when the charging power is less than the preset power threshold.
  • Gs1 is the pulse control signal of S1
  • Gs2 is the pulse control signal of S2
  • Gs3 is the pulse control signal of S3
  • Gs4 is the pulse control signal of S4.
  • the controller 500 controls S1 to be turned on by controlling Gs1 to be a high level, and controls S1 to be turned off by controlling Gs1 to be a low level.
  • the controller 500 can also control the conduction and disconnection of S2 by controlling Gs2, control the conduction and disconnection of S3 by controlling Gs3, and control the conduction and disconnection of S4 by controlling Gs4.
  • the controller 500 controls S4 to turn on and S3 to turn off; first controls S2 to turn on for a preset period of time, and then controls S1 until the rectifier circuit The input current of 400 crosses zero.
  • the controller 500 controls S1 to turn off and S2 to turn on; first controls S4 to turn on for a preset period of time, and then controls S3 until the input current of the rectifier circuit 400 crosses zero.
  • FIG. 12 is another working flow chart of the receiving end provided in this application.
  • S1201-S1205 are similar to S901-S905
  • S1207-S1208 are similar to S907-S908.
  • Embodiment 3 of the receiving end and FIG. 9 and will not be repeated here. The following introduces the difference from the third embodiment of the receiving end.
  • S1206 Adjust the switching state of the first switching tube, the switching state of the second switching tube, the switching state of the third switching tube, and the switching state of the fourth switching tube according to the polarity of the input current of the rectifier circuit and the preset time period.
  • the controller 500 can control the switch state of S1, the switch state of S2, the switch state of S3, and the switch state of S4 by detecting the polarity of the input current of the rectifier circuit 400 to reduce the input impedance of the rectifier circuit 400.
  • the controller 500 needs to control S4 to turn on and S3 to turn off; first control S2 to turn on for a preset period of time, and then control S1 to turn on until the input current of the rectifier circuit crosses zero.
  • the controller 500 can change the path of the input current by controlling the switch state of S1, the switch state of S2, the switch state of S3, and the switch state of S4. Within a preset period of time, the current flows through S2 and S4 in turn, and flows from S4. , So that the rectifier circuit 400 is bypassed, and the current does not enter the DC bus.
  • the controller 500 When the input current is negative, the controller 500 needs to control S2 to be on and S1 to be off; first to control S4 to be on for a preset period of time, and then to control S3 to be on until the input current of the rectifier circuit crosses zero.
  • the controller 500 can change the path of the input current by controlling the switch state of S1, the switch state of S2, the switch state of S3, and the switch state of S4.
  • the input current passes through S4 and S2 in turn, starting from S2. Flow out, so that the rectifier circuit 400 is bypassed, and the input current does not enter the DC bus.
  • the input current of the rectifier circuit cannot enter the DC bus within a preset period of time, so the output voltage of the rectifier circuit will decrease, thereby reducing the input impedance of the rectifier circuit.
  • the size controller 500 may be adjusted on the input impedance of the rectifier circuit 400 by adjusting S2 and S4 are turned t.
  • FIG. 13 is a working sequence diagram of another controllable switch tube provided by this application.
  • Gs1 is the pulse control signal of the third switching tube
  • Gs2 is the pulse control signal of the first switching tube
  • Gs3 is the pulse control signal of the fourth switching tube
  • Gs4 is the pulse control signal of the second switching tube
  • Gs1 is the high voltage Normally, the third switching tube is turned on. When Gs1 is low, the third switching tube is turned off.
  • the controller can control the turning on and off of the third switching tube by controlling Gs1.
  • the controller can also control Gs2 controls the on and off of the first switch tube
  • Gs3 controls the on and off of the fourth switch tube
  • Gs4 controls the on and off of the second switch tube.
  • I rec is the input current of the rectifier circuit.
  • the controller controls the second switching tube to turn on, controls the fourth switching tube to turn off, and first controls the first switching tube to turn on for a preset period of time t on and then turn off
  • the third switching tube is controlled to be turned on, and when I rec becomes zero, the second switching tube and the third switching tube are controlled to be turned off.
  • the first switching tube, the second switching tube, the third switching tube, and the fourth switching tube are all in an off state.
  • the controller controls the first switching tube to turn on, controls the third switching tube to turn off, first controls the second switching tube to turn on and then turns off, with a preset delay
  • the fourth switching tube is controlled to be turned on, and when I rec becomes zero, the first switching tube and the fourth switching tube are controlled to be turned off. At this time, the first switching tube, the second switching tube, the third switching tube, and the fourth switching tube are all in an off state.
  • the controller may be implemented in a continuous adjustment of the input impedance of the rectifier circuit according to t on t on of the first switch and the second switch tube.
  • t on When t on is larger, the input voltage of the rectifier circuit is smaller, and when the charging power is constant, the input impedance of the rectifier circuit is smaller.
  • the smaller the t on the greater the input voltage of the rectifier circuit, and the greater the input impedance of the rectifier circuit when the charging power remains unchanged.
  • the controller can obtain the magnitude of t on according to the difference between the charging power and the preset power threshold to achieve continuous adjustment of the input impedance of the rectifier circuit, thereby reducing the input impedance of the rectifier circuit and the receiver The impact of the charging efficiency of the terminal. Therefore, the matching circuit is still at a better operating point, and the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • the controller not only reduces the rectifier circuit by controlling the switching state of the first switching tube, the switching state of the second switching tube, the switching state of the third switching tube, and the switching state of the fourth switching tube when the charging power is less than the preset power threshold.
  • the input impedance can also be controlled by the switching state of the first switching tube, the switching state of the second switching tube, the switching state of the third switching tube, and the switching state of the fourth switching tube when the charging power is greater than the preset power threshold.
  • the input impedance of the rectifier circuit is reduced to adapt to changes in the charging power, thereby improving the charging efficiency of the receiving end when the charging power is greater than the preset power threshold. Therefore, the receiving end can improve the charging efficiency during the entire process of NFC wireless charging.
  • the controller 500 directly reduces the input impedance of the rectifier circuit 400 by controlling the switching states of S1, S2, S3, and S4.
  • the embodiments of the present application also provide a wireless charging method.
  • the present application is not specifically limited to NFC wireless charging.
  • NFC wireless charging is taken as an example to introduce the technical solution of the present application. .
  • the embodiment of the present application also provides a wireless charging method, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 14 is a flowchart of a wireless charging method provided by this application.
  • the wireless charging method provided in this embodiment is applied to the receiving end of NFC wireless charging.
  • the receiving end uses the energy provided by the transmitting end to charge the battery.
  • the receiving end includes a receiving coil, a matching circuit, and a finishing circuit; the rectifier circuit includes at least one Control switch; the receiving end can refer to the receiving end shown in Figure 3, which will not be repeated here.
  • the method includes:
  • the control rectification circuit rectifies the input AC power to DC power and provides it to the charging control circuit.
  • the receiving coil at the receiving end will output AC power after receiving the energy emitted by the transmitting end. Therefore, the finishing circuit needs to rectify the alternating current into direct current and provide it to the charging control circuit so that the charging control circuit can charge the battery.
  • the specific process of NFC wireless charging please refer to Embodiment 1 of the receiving end and FIG. 4, which will not be repeated here.
  • the battery power becomes larger and larger, and the receiving end no longer charges the battery with the rated power, but charges the battery with a charging power lower than the rated power.
  • the charging power of the battery If it becomes smaller, the output impedance of the rectifier circuit becomes larger. Since the input impedance of the rectifier circuit is positively correlated with the output impedance, the input impedance will also become larger.
  • the parameters of the matching circuit are designed according to the receiving end when the battery is charged with rated power. When the charging power of the battery becomes smaller, the input impedance of the rectifier circuit becomes larger, which will cause the matching circuit to deviate from the optimal operating point.
  • the rectifier circuit when the charging power is less than the preset power threshold, the rectifier circuit is bypassed by adjusting the conduction of the controllable switch tube, thereby reducing the input impedance of the rectifier circuit, thereby reducing the rectifier circuit
  • FIG. 15 is a flowchart of another wireless charging method provided by this application.
  • the wireless charging method provided in this embodiment is applied to the receiving end of NFC wireless charging.
  • the receiving end uses the energy provided by the transmitting end to charge the battery.
  • the receiving end includes a receiving coil, a matching circuit, and a finishing circuit; the rectifier circuit includes a first switch
  • the receiving end can refer to the receiving end shown in Figure 6, which will not be repeated here.
  • the method includes:
  • the control rectification circuit rectifies the input AC power to DC power and provides it to the charging control circuit.
  • the receiving coil at the receiving end will output AC power after receiving the energy emitted by the transmitting end. Therefore, the finishing circuit needs to rectify the alternating current into direct current and provide it to the charging control circuit so that the charging control circuit can charge the battery.
  • the specific process of NFC wireless charging please refer to the second embodiment of the receiving end and FIG. 7, which will not be repeated here.
  • the input impedance of the rectifier circuit can be reduced by controlling the switching state of the controllable switch tube.
  • the rectifier circuit includes the first switch tube
  • the first switch tube is controlled to be turned on until the end of the NFC wireless charging, so as to reduce the input impedance of the rectifier circuit.
  • the first switching tube is a high-frequency switching tube.
  • the first switching tube is controlled to be turned on until the end of the NFC wireless charging, and the first switching tube is no longer controlled to be frequently turned on and off, which can reduce the turning on or off of the first switching tube. Time loss. Therefore, the first switch tube is controlled to be turned on until the end of the NFC wireless charging, so as to further reduce the loss generated by the rectifier circuit.
  • the loss generated when the current flows through the high-frequency switch tube is lower than the loss when it flows through the diode.
  • the first switch tube S2 is controlled to be turned on until the end of the NFC wireless charging. In the subsequent NFC wireless charging process, the current passes through the first switching tube S2 to further reduce the loss generated by the rectifier circuit 400.
  • FIG. 16 is a flowchart of another wireless charging method provided by this application.
  • the wireless charging method provided in this embodiment is applied to the receiving end of NFC wireless charging.
  • the receiving end uses the energy provided by the transmitting end to charge the battery.
  • the receiving end includes a receiving coil, a matching circuit, and a finishing circuit; the rectifier circuit includes a first switch
  • the receiving end can refer to the receiving end shown in Fig. 8, and will not be repeated here.
  • the method includes:
  • the control rectification circuit rectifies the input AC power to DC power and provides it to the charging control circuit.
  • the receiving coil at the receiving end will output AC power after receiving the energy emitted by the transmitting end. Therefore, the finishing circuit needs to rectify the alternating current into direct current and provide it to the charging control circuit so that the charging control circuit can charge the battery.
  • the specific process of NFC wireless charging please refer to the third embodiment of the receiving end and FIG. 9, which will not be repeated here.
  • S1602 When the charging power of the battery is less than the preset power threshold and the input current of the rectifier circuit is positive, control the first switching tube to conduct for a preset period of time; when the charging power of the battery is less than the preset power threshold, and the rectifier circuit When the input current is negative, the second switch tube is controlled to be turned on for a preset period of time.
  • the first switch tube When the charging power is less than the preset power threshold, if the input current of the rectifier circuit is positive, the first switch tube is controlled to be turned on for a preset period of time; if the input current of the rectifier circuit is negative, the second switch tube is controlled to be turned on for a predetermined period of time. Set the time period. The preset time period is obtained based on the difference between the charging power and the preset power threshold, and the preset time period is positively correlated with the difference.
  • Embodiment 3 of the receiving end and FIGS. 9-10 please refer to Embodiment 3 of the receiving end and FIGS. 9-10, which will not be repeated here.
  • the first switching tube when the charging power is less than the preset power threshold, the first switching tube can be turned on for a preset period of time and the second switching tube is turned on for a preset period of time to realize the connection to the rectifier circuit. Continuous adjustment of input impedance.
  • the larger the preset time period the smaller the input voltage of the rectifier circuit, and the smaller the input impedance of the rectifier circuit when the charging power remains unchanged. Therefore, when the charging power is less than the preset power threshold, the preset time period can be obtained according to the difference between the charging power and the preset power threshold.
  • the receiving end can improve the charging efficiency of the receiving end when the charging power is less than the preset power threshold.
  • the input impedance of the rectifier circuit can be reduced by controlling the switching state of the first switching tube and the switching state of the second switching tube, so as to improve the charging power when the charging power is greater than the preset power threshold.
  • the charging efficiency of the receiving end Therefore, the receiving end can improve the charging efficiency during the entire process of NFC wireless charging.
  • FIG. 17 is a flowchart of another wireless charging method provided by this application.
  • the wireless charging method provided in this embodiment is applied to the receiving end of NFC wireless charging.
  • the receiving end uses the energy provided by the transmitting end to charge the battery.
  • the receiving end includes a receiving coil, a matching circuit, and a finishing circuit;
  • the rectifier circuit includes a first switch Tube, second switching tube, third switching tube, and fourth switching tube; the receiving end can refer to the receiving end shown in FIG. 11, which will not be repeated here.
  • the method includes:
  • the control rectification circuit rectifies the input AC power to DC power and provides it to the charging control circuit.
  • the receiving coil at the receiving end will output AC power after receiving the energy emitted by the transmitting end. Therefore, the finishing circuit needs to rectify the alternating current into direct current and provide it to the charging control circuit so that the charging control circuit can charge the battery.
  • the specific process of NFC wireless charging please refer to Embodiment 4 of the receiving end and FIG. 12, which will not be repeated here.
  • S1702 Determine whether the charging power is less than a preset power threshold; if so, perform S1703.
  • S1703 Determine whether the input current of the rectifier circuit is positive; if yes, execute S1704; if not, execute S1705.
  • the path of the current flowing through the rectifier circuit is different.
  • the path of the current flowing through the rectifier circuit can be referred to the fourth embodiment of the receiving end and FIG. 11, which will not be repeated here.
  • S1704 Control the second switching tube to be turned on and the fourth switching tube to turn off; first control the first switching tube to be turned on for a preset period of time, and then control the third switching tube to turn on until the input current of the rectifier circuit crosses zero.
  • S1705 Control the first switching tube to be turned on, and the third switching tube to turn off; first control the second switching tube to be turned on for a preset period of time, and then control the fourth switching tube to turn on until the input current of the rectifier circuit crosses zero
  • the first switching tube can be turned on for a preset time period, the second switching tube is turned on for a preset time period, and the third switching tube is switched on.
  • the state and the switch state of the fourth switch tube realize continuous adjustment of the input impedance of the rectifier circuit.
  • the rectification can be reduced by controlling the switching state of the first switching tube, the switching state of the second switching tube, the switching state of the third switching tube, and the switching state of the fourth switching tube.
  • the input impedance of the circuit; the preset time period can also be obtained when the charging power is greater than the preset power threshold, and the switch state of the first switch tube, the switch state of the second switch tube, and the switch of the third switch tube are controlled according to the preset time period
  • the state and the switch state of the fourth switch tube are used to reduce the input impedance of the rectifier circuit, thereby improving the charging efficiency of the receiving end when the charging power is greater than the preset power threshold. Therefore, the receiving end can improve the charging efficiency during the entire process of NFC wireless charging.
  • an embodiment of the present application also provides an electronic device, which may be a mobile phone, a tablet, a computer with wireless transceiver function, or a smart wearable product (for example, Smart watches, smart bracelets, headsets, etc.), virtual reality (VR, virtual reality) terminal equipment, augmented reality (AR, augmented reality) terminal equipment, etc.
  • the electronic device includes the receiving end described in any of the above embodiments. The receiving end uses the energy provided by the transmitting end to charge the battery of the electronic device.
  • the electronic device includes the receiving end introduced in the above embodiment, and the rectifying circuit of the receiving end includes at least one controllable switch tube.
  • the controller controls the switching state of the controllable switch tube. Reduce the input impedance of the rectifier circuit.
  • the controller of the receiving end can reduce the input impedance of the rectifier circuit by controlling the switching state of the controllable switch tube. When the charging power is low, the input impedance of the rectifier circuit will increase.
  • This solution controls the switching state of the controllable switch tube to forcefully reduce the input impedance of the rectifier circuit to suppress the effect of the increase of the input impedance of the rectifier current on the charging efficiency. Therefore, the electronic device including the receiving end can improve the charging efficiency when the charging power is less than the preset power threshold.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of the associated objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B , Where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电的接收端、方法及电子设备,接收端用于利用发射端提供的能量对电池进行充电,包括:接收线圈、匹配电路(300)、整流电路(400)和控制器(500);匹配电路(300)的输入端连接接收线圈,匹配电路(300)的输出端连接整流电路(400)的输入端;接收线圈,用于接收发射端发射的能量并输出交流电;匹配电路(300),用于将交流电进行匹配后输送给整流电路(400)的输入端;整流电路(400)包括可控开关管,整流电路(400)用于在控制器(500)的控制下将输入的交流电整流为直流电提供给充电控制电路(700);控制器(500),用于在给电池充电的充电功率小于预设功率阈值时,控制可控开关管的开关状态,以降低整流电路(400)的输入阻抗。接收端可以在充电功率小于预设功率阈值时,提高充电效率。

Description

一种无线充电的接收端、方法及电子设备
本申请要求于2020年06月08日提交中国国家知识产权局、申请号为2020105119563、发明名称为“一种无线充电的接收端、方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线充电技术领域,尤其涉及一种无线充电的接收端、方法及电子设备。
背景技术
目前,很多电子设备具有近场通信(NFC,Near Field Communication)功能,电子设备之间可以利用NFC功能进行无线充电,例如:手机可以利用NFC功能将自身电池的能量给手表的电池进行无线充电。
NFC无线充电系统包括发射端和接收端,发射端和接收端均配置有各自的匹配电路,匹配电路的参数是根据接收端以额定功率充电时设计的,目的是为了接收端以额定功率对电池充电时,匹配电路处于较优工作点,进而使接收端的充电效率较高。
但是,随着充电时间的增加,接收端的电池的电量越来越大,接收端不再以额定功率为电池充电,而是以低于额定功率的充电功率对电池充电。此时,匹配电路偏离较优工作点,从而导致接收端的充电效率较低。
申请内容
为了解决以上技术问题,本申请提供一种无线充电的接收端、方法及电子设备,能够提高无线充电的接收端的充电效率。
第一方面,提供了一种无线充电的接收端,该接收端用于利用发射端提供的能量对电池进行充电,接收端中的整流电路包括至少一个可控开关管;控制器在充电功率小于预设功率阈值时,通过控制可控开关管的开关状态来降低整流电路的输入阻抗,从而降低整流电路的输入阻抗变大对充电效率的影响。控制器在将整流电路的输入阻抗强制性降低,以适应变化的充电功率。因此,接收端可以在充电功率小于预设功率阈值时,提高充电效率。具体地,该接收端包括:接收线圈、匹配电路、整流电路和控制器;匹配电路的输入端连接接收线圈,匹配电路的输出端连接整流电路的输入端;接收线圈,用于接收发射端发射的能量并输出交流电;匹配电路,用于将交流电进行匹配后输送给整流电路的输入端;整流电路包括可控开关管,整流电路用于在控制器的控制下将输入的交流电整流为直流电提供给充电控制电路;控制器,用于在给电池充电的充电功率小于预设功率阈值时,控制可控开关管的开关状态,以降低整流电路的输入阻抗。充电功率较低时,整流电路的输入阻抗会变大,本方案通过控制可控开关管的开关状态强制性降低整流电路的输入阻抗,以抑制整流电流的输入阻抗变大对于充电效率的影响。因此,该接收端可以在充电功率小于预设功率阈值时,提高充电效率。
在第一方面的第一种可能的实现方式中,整流电路被旁路后,整流电路的输入端能量无法传递到直流母线。因此,控制器可以在充电功率小于预设功率阈值时,控制可控开关 管在预设时间段内导通,以使整流电路被旁路,从而整流电路的输入电流在预设时间段内无法进入直流母线,整流电路的输出电压会降低,进而使整流电路的输入阻抗降低。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,控制器可以根据充电功率与预设功率阈值的差值获得预设时间段,预设时间段与差值成正比例关系,进而控制器可以通过预设时间段对整流电路的输入阻抗进行连续调节。
结合第一方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,整流电路包括至少一个二极管组成的至少一个桥臂,可控开关管并联在至少一个二极管的其中一个二极管的两端;控制器可以在充电功率小于预设功率阈值时,控制可控开关管导通,以实现对整流电路的旁路来降低整流电路的输入阻抗。
结合第一方面第三种可能的实现方式,在第四种可能的实现方式中,整流电路为全桥整流电路,整流电路包括并联的第一桥臂和第二桥臂;第一桥臂的中点连接匹配电路的正输出端,第二桥臂的中点连接匹配电路的负输出端;可控开关管位于第一桥臂和第二桥臂中的至少一个桥臂。
结合第一方面第四种可能的实现方式,在第五种可能的实现方式中,整流电路包括:第一开关管;第一开关管位于第一桥臂或第二桥臂;由于第一开关管为高频开关管,控制器控制第一开关管导通后,不再控制第一开关管频繁导通或断开,降低第一开关管导通或断开时产生的损耗。因此,控制器可以在充电功率小于预设功率阈值时,控制第一开关管一直导通,降低第一开关管导通或断开时产生的损耗,进一步降低了整流电路产生的损耗。并且,电流流过高频开关管时产生的损耗比流过二极管时产生的损耗低,在充电功率小于预设功率阈值时,控制器控制第一开关管导通直至结束无线充电,因此,在后续充电功率小于预设功率阈值时,整流电路的输入电流经过第一开关管,进一步降低了整流电路产生的损耗。
结合第一方面第四种可能的实现方式,在第六种可能的实现方式中,整流电路包括以下两个可控开关管;第一开关管和第二开关管;第一开关管位于第一桥臂的下半桥臂;第二开关管位于第二桥臂的下半桥臂;由于充电功率和预设功率阈值的差值与预设时间段正相关,当差值越大时,预设时间段越大。控制器可以根据第一开关管的预设时间段和第二开关管的预设时间段来实现对整流电路的输入阻抗的连续调节。预设时间段越大时,整流电路的输入电压越小,当充电功率不变时,整流电路的输入阻抗越小。预设时间段越小时,整流电路的输入电压越大,当充电功率不变时,整流电路的输入阻抗越大。因此,控制器可以在充电功率小于预设功率阈值时,根据充电功率和预设功率阈值的差值获取预设时间段的大小来实现连续调节整流电路的输入阻抗,从而减少整流电路的输入阻抗对接收端的充电效率的影响。具体地,控制器可以在电池的充电功率小于预设功率阈值,且整流电路的输入电流为正时,控制第一开关管导通预设时间段;还用于在电池的充电功率小于预设功率阈值,且整流电路的输入电流为负时,控制第二开关管导通预设时间段。
结合第一方面第四种可能的实现方式,在第七种可能的实现方式中,整流电路为全桥整流电路且包括以下四个可控开关管;第一开关管、第二开关管、第三开关管和第四开关管;第一开关管位于第一桥臂的下半桥臂;第二开关管位于第二桥臂的下半桥臂;第三开 关管位于第一桥臂的上半桥臂,第四开关管位于第二桥臂的上半桥臂;当整流电路的输入电流的极性为正时,控制器控制第二开关管导通,控制第四开关管断开,先控制第一开关管导通预设时间段后断开,延迟预设时间后,再控制第三开关管导通,当输入电流变为零时,控制第二开关管和第三开关管断开。此时,第一开关管、第二开关管、第三开关管和第四开关管均处于断开状态。当整流电路的输入电流的极性为负时,控制器控制第一开关管导通,控制第三开关管断开,先控制第二开关管导通预设时间段后断开,延迟预设时间后,再控制第四开关管导通,当输入电流变为零时,控制第一开关管和第四开关管断开。此时,第一开关管、第二开关管、第三开关管和第四开关管均处于断开状态。在充电功率小于预设功率阈值时,控制器可以根据充电功率和预设功率阈值的差值获取预设时间段的大小来实现连续调节整流电路的输入阻抗,从而减少整流电路的输入阻抗对接收端的充电效率的影响。
第二方面,提供了一种无线充电的控制方法,应用于无线充电的接收端,接收端用于利用发射端提供的能量对电池进行充电,在无线充电过程中,随着充电时间的增加,电池电量越来越大,接收端不再以额定功率给电池充电,而是以比额定功率小的充电功率给电池充电,电池的充电功率会变小,则整流电路的输出阻抗变大,由于整流电路的输入阻抗与输出阻抗正相关,则输入阻抗也会变大。而匹配电路的参数是根据接收端以额定功率给电池充电时设计的,电池的充电功率变小后,整流电路的输入阻抗变大,会使匹配电路偏离较优工作点。因此,在充电功率小于预设功率阈值时,需要控制可控开关管的开关状态来降低整流电路的输入阻抗。具体地,该接收端包括:接收线圈、匹配电路和整流电路;整流电路包括可控开关管;
该方法包括:
控制整流电路将输入的交流电整流为直流电提供给充电控制电路;
在给电池充电的充电功率小于预设功率阈值时,控制可控开关管的开关状态,以降低整流电路的输入阻抗。
采用本方案的无线充电的方法,在充电功率小于预设功率阈值时,通过调整可控开关管导通,以使整流电路被旁路,从而降低整流电路的输入阻抗,从而降低整流电路的输入阻抗变大对接收端的充电效率的影响。因此,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
结合第二方面,在第一种可能的实现方式中,由于整流电路被旁路后,整流电路的输入端能量无法传递到直流母线。因此,可以在充电功率小于预设功率阈值时,控制可控开关管在预设时间段内导通,以使整流电路被旁路,从而整流电路的输入电流在预设时间段内无法进入直流母线,整流电路的输出电压会降低,进而使整流电路的输入阻抗降低。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,可以根据充电功率与预设功率阈值的差值获得预设时间段,预设时间段与差值成正比例关系,进而控制器可以通过预设时间段对整流电路的输入阻抗进行连续调节。
结合第二方面第一种或第二种可能的实现方式,在第三种可能的实现方式中,整流电路包括至少一个二极管组成的至少一个桥臂,可控开关管并联在至少一个二极管的其中一 个二极管的两端;在充电功率小于预设功率阈值时,控制可控开关管导通,以实现对整流电路的旁路来降低整流电路的输入阻抗。
结合第二方面第三种可能的实现方式,在第四种可能的实现方式中,整流电路为全桥整流电路,整流电路包括并联的第一桥臂和第二桥臂;第一桥臂的中点连接匹配电路的正输出端,第二桥臂的中点连接匹配电路的负输出端;可控开关管位于第一桥臂和第二桥臂中的至少一个桥臂。
结合第二方面第四种可能的实现方式,在第五种可能的实现方式中,整流电路包括:第一开关管;第一开关管位于第一桥臂或第二桥臂;由于第一开关管为高频开关管,控制第一开关管导通后,不再控制第一开关管频繁导通或断开,降低第一开关管导通或断开时产生的损耗。因此,在充电功率小于预设功率阈值时,控制第一开关管一直导通,降低第一开关管导通或断开时产生的损耗,进一步降低了整流电路产生的损耗。并且,电流流过高频开关管时产生的损耗比流过二极管时产生的损耗低,在充电功率小于预设功率阈值时,控制第一开关管导通直至结束无线充电,因此,在后续充电功率小于预设功率阈值时,整流电路的输入电流经过第一开关管,进一步降低了整流电路产生的损耗。
结合第二方面第四种可能的实现方式,在第六种可能的实现方式中,整流电路包括以下两个可控开关管;第一开关管和第二开关管;第一开关管位于第一桥臂的下半桥臂;第二开关管位于第二桥臂的下半桥臂;由于充电功率和预设功率阈值的差值与预设时间段正相关,当差值越大时,预设时间段越大。根据第一开关管的预设时间段和第二开关管的预设时间段来实现对整流电路的输入阻抗的连续调节。预设时间段越大时,整流电路的输入电压越小,当充电功率不变时,整流电路的输入阻抗越小。预设时间段越小时,整流电路的输入电压越大,当充电功率不变时,整流电路的输入阻抗越大。因此,可以在充电功率小于预设功率阈值时,根据充电功率和预设功率阈值的差值获取预设时间段的大小来实现连续调节整流电路的输入阻抗,从而减少整流电路的输入阻抗对接收端的充电效率的影响。具体地,在电池的充电功率小于预设功率阈值,且整流电路的输入电流为正时,控制第一开关管导通预设时间段;在电池的充电功率小于预设功率阈值,且整流电路的输入电流为负时,控制第二开关管导通预设时间段。
结合第二方面第四种可能的实现方式,在第七种可能的实现方式中,整流电路为全桥整流电路且包括以下四个可控开关管;第一开关管、第二开关管、第三开关管和第四开关管;第一开关管位于第一桥臂的下半桥臂;第二开关管位于第二桥臂的下半桥臂;第三开关管位于第一桥臂的上半桥臂,第四开关管位于第二桥臂的上半桥臂;当整流电路的输入电流的极性为正时,控制第二开关管导通,控制第四开关管断开,先控制第一开关管导通预设时间段后断开,延迟预设时间后,再控制第三开关管导通,当输入电流变为零时,控制第二开关管和第三开关管断开。此时,第一开关管、第二开关管、第三开关管和第四开关管均处于断开状态。当整流电路的输入电流的极性为负时,控制第一开关管导通,控制第三开关管断开,先控制第二开关管导通预设时间段后断开,延迟预设时间后,再控制第四开关管导通,当输入电流变为零时,控制第一开关管和第四开关管断开。此时,第一开关管、第二开关管、第三开关管和第四开关管均处于断开状态。在充电功率小于预设功率 阈值时,可以根据充电功率和预设功率阈值的差值获取预设时间段的大小来实现连续调节整流电路的输入阻抗,从而减少整流电路的输入阻抗对接收端的充电效率的影响。
第三方面,提供了一种电子设备,包括上述第一方面提供的接收端。
从以上技术方案可以看出,本申请至少具有以下优点:
由于接收端的匹配电路是按照充电时的额定功率进行设计,但是充电过程中,不可能一直以额定功率充电,因此,在充电功率小于预设功率阈值时,需要调整整流电路的输入阻抗,以适应变化的充电功率,提高充电效率。具体地,该接收端的整流电路包括至少一个可控开关管;控制器在电池的充电功率小于预设功率阈值时,通过控制可控开关管的开关状态来降低整流电路的输入阻抗。充电功率较低时,整流电路的输入阻抗会变大,本方案通过控制可控开关管的开关状态强制性降低整流电路的输入阻抗,以抑制整流电流的输入阻抗变大对于充电效率的影响。因此,该接收端可以在充电功率小于预设功率阈值时,提高充电效率。
附图说明
图1A为本申请提供的一种NFC无线充电系统的示意图;
图1B为本申请提供的另一种NFC无线充电系统的示意图;
图2为本申请提供的又一种NFC无线充电系统的示意图;
图3为本申请提供的一种NFC无线充电的接收端的示意图;
图4为本申请提供的一种接收端的工作流程图;
图5A为本申请提供的一种阻抗特性随充电功率变化的曲线图;
图5B为本申请提供的一种充电效率随充电功率变化的曲线图;
图6为本申请提供的又一种NFC无线充电的接收端的示意图;
图7为本申请提供的又一种接收端的工作流程图;
图8为本申请提供的另一种NFC无线充电的接收端的示意图;
图9为本申请提供的另一种接收端的工作流程图;
图10为本申请提供的一种可控开关管的工作时序图;
图11为本申请提供的再一种NFC无线充电的接收端的示意图;
图12为本申请提供的再一种接收端的工作流程图;
图13为本申请提供的另一种可控开关管的工作时序图;
图14为本申请提供的一种无线充电的方法流程图;
图15为本申请提供的又一种无线充电的方法流程图;
图16为本申请提供的另一种无线充电的方法流程图;
图17为本申请提供的再一种无线充电的方法流程图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先介绍本申请的应用场景。
本申请不具体限定应用场景,可以为电子设备使用NFC无线充电的任何场景,电子设备可以为手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、智能 穿戴产品(例如,智能手表、智能手环、耳机等)、虚拟现实(VR,virtual reality)终端设备、增强现实(AR,augmented reality)终端设备等。例如,手机利用NFC功能将自身电池的能量给智能手表的电池进行无线充电。
本申请可以适用于具有NFC功能的电子设备,电子设备之间利用NFC功能进行NFC无线充电。
本申请不具体限定无线充电为NFC无线充电,也可以适用于其他有匹配电路的无线充电网络或其他有阻抗变换的无线充电网络,为了便于说明,下面以NFC无线充电为例,详细介绍本申请的技术方案。
参见图1A,该图为本申请提供的一种NFC无线充电系统的示意图。
NFC无线充电系统包括:NFC无线充电的发射端1000和NFC无线充电的接收端2000。
为了描述方便,以下NFC无线充电的发射端简称为发射端,NFC无线充电的接收端简称为接收端。
发射端1000,用于将发射端电池提供的能量传递给接收端2000。
接收端2000,用于将接收到的能量给接收端的电池进行充电。
例如,发射端1000为手机,接收端2000为智能手表,当智能手表进入到手机的NFC无线充电范围时,手机通过NFC无线充电的方式给智能手表无线充电。
参见图1B,该图为本申请提供的另一种NFC无线充电系统的示意图。
图1B展示了接收端2000与发射端1000接近时的侧视图。
本申请不限定接收端2000与发射端1000的接近方式。接近方式可以为接收端2000的一侧与发射端1000的一侧相互接近。
当智能手表与手机接近时,即可开始NFC无线充电交互认证,认证通过后,手机开始给智能手表进行无线充电。
手机给智能手表无线充电的初期,智能手表的电池电量较少,智能手表的电池的充电功率较大。
但是,随着充电时间的增加,智能手表的电池电量会越来越大,电池的充电功率会变小,整流电路的输出阻抗会变大,由于整流电路的输出阻抗与输入阻抗正相关,因此整流电路的输入阻抗也会变大。当匹配电路的参数是根据智能手表以额定功率充电设计时,随着充电功率的变小整流电路的输入阻抗会变大,由此匹配电路会偏离较优工作点,导致智能手表的充电效率降低。
为了解决上述技术问题,本申请提供了一种NFC无线充电的接收端。该接收端中的整流电路包括至少一个可控开关管;控制器在充电功率小于预设功率阈值时,通过控制可控开关管的开关状态来降低整流电路的输入阻抗,从而降低整流电路的输入阻抗变大对充电效率的影响。控制器在将整流电路的输入阻抗强制性降低,以适应变化的充电功率。因此,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
为了便于理解,下面先介绍包括接收端和发射端的NFC无线充电系统的工作原理。
参见图2,该图为本申请提供的又一种NFC无线充电系统的示意图。
发射端包括:功率变换模块1002、DC/AC逆变模块1003、电磁干扰(EMI,Electromagnetic Interference)滤波器1004、发射匹配电路1005、发射线圈1006、NFC通信发射模块1007和发射控制模块1008。
功率变换模块1002的输入端与电池1001连接,功率变换模块1002的输出端与DC/AC逆变模块1003的输入端连接。
功率变换模块1002,用于从电池1001获取能量后升压变换或降压变换,给DC/AC逆变模块1003提供合适的输入电压。本申请不具体限定功率变换模块1002的形式,功率变换模块1002可以是独立的,功率变换模块1002也可以是与DC/AC逆变模块集成在一个芯片中。在一些场景中,也可以不需要功率变换模块1002升压变换或降压变换,DC/AC逆变模块1003的输入端直接与电池1001连接。
DC/AC逆变模块1003,用于将功率变换模块1002输入的直流电变换为预设频率的交流电,本领域技术人员可以根据实际需要选择预设频率的大小,预设频率可以为10MHz-20MHz中的任一数值,例如,预设频率可以为13.56MHz。
DC/AC逆变模块1003,还用于在NFC通信发射模块1007发射通信信号前,对通信信号调制。
NFC通信发射模块1007,用于发射调制后的通信信号,还用于对接收端发射的通信信号解调,以实现发射端与接收端之间的信息交互,例如充电电压、充电电流和电池温度等信息。本申请不具体限定NFC通信发射模块1007的形式,NFC通信发射模块1007可以是独立的,NFC通信发射模块1007也可以是与DC/AC逆变模块集成在一个芯片中。
EMI滤波器1004的输入端连接DC/AC逆变模块1003的输出端。
EMI滤波器,用于抑制DC/AC逆变模块1003输出的谐波信号,以减少谐波信号进入发射线圈1006后引起的信号干扰。
发射匹配电路1005的输入端连接EMI滤波器1004的输出端。
发射匹配电路1005,用于将接收端反射到发射端的阻抗进行变换处理,使DC/AC逆变模块1003的输出阻抗处于预设范围内,以确保DC/AC逆变模块1003的正常工作。
发射线圈1006与发射匹配电路1005的输出端连接。
发射线圈1006,用于将发射端提供的能量以磁感应的形式传递给接收端。
发射控制模块1008,用监控和控制发射端的工作状态,以确保发射端的正常工作。
接收端包括:充电控制电路2002、整流电路2003、EMI滤波器2004、接收匹配电路2005、接收线圈2006、NFC通信接收模块2007和接收控制模块2008。
接收线圈2006与接收匹配电路2005的输入端连接。
接收线圈2006,用于以磁感应的形式接收发射端传递的能量。
接收匹配电路2005的输出端与EMI滤波器2004的输入端连接。
接收匹配电路2005,用于对接收端的负载阻抗变换处理,使整流电路2003的输入阻抗处于预设范围内,以提高NFC无线充电系统的充电效率。
EMI滤波器2004的输出端与整理电路2003的输入端连接。
EMI滤波器2004,用于抑制整流电路2003产生的谐波信号,减少谐波信号进入接收线圈2006后引起的信号干扰。
整流电路2003的输出端与充电控制电路2002的输入端连接。
整流电路2003,用于将输入的交流电转换为直流电。整流电路2003包括可控开关管。整流电路2003在接收控制模块2008的控制下,改变整流电路的输入阻抗。在充电功率低于预设功率阈值时,将会导致整流电路2003的输入阻抗变大,进而匹配电路2005会偏离较优工作点,接收端的充电效率会降低。因此,在充电功率低于预设功率阈值时,需要降低整流电路2003的输入阻抗,以适应变化的充电功率。通过控制可控开关管的开关状态强制性降低整流电路的输入阻抗,以降低整流电路的输入阻抗变大对充电效率的影响。因此,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
充电控制电路2002的输出端与电池2001连接。
充电控制电路2002,用于对电池充电,还用于控制电池的充电状态,确保NFC无线充电过程中的充电电压和充电电流等信息在电池2001的标定范围内。
NFC通信接收模块2007,用于对发射端发射的通信信号解调,以实现发射端与接收端之间的信息交互,例如充电电压、充电电流和电池温度等信息。
接收控制模块2008,用监控和控制接收端的工作状态,还用于根据NFC无线充电过程中电池的充电功率,控制可控开关管的开关状态来调整整流电路2003的输入阻抗。
结合以上介绍的是NFC无线充电系统的工作原理,下面具体介绍本申请提供的接收端。
接收端实施例一:
参见图3,该图为本申请提供的一种NFC无线充电的接收端的示意图。
接收端包括:接收线圈Lrx、匹配电路300、整流电路400和控制器500。
本申请不具体限定匹配电路300的拓扑结构,本领域技术人员可以根据实际需要,选择相应的匹配电路300的拓扑结构。图3中仅是匹配电路300的拓扑结构的一种举例。
匹配电路300的输入端连接接收线圈Lrx,匹配电路300的输出端连接整流电路400的输入端。为了抑制整流电路400产生的谐波信号,减少谐波信号进入接收线圈Lrx后引起的信号干扰,在匹配电路300与整流电路400之间串联EMI滤波器600。
匹配电路300包括第一电容C11s、第二电容C12s、第三电容C21s和第四电容C22s。
匹配电路300,用于将接收线圈Lrx输出的交流电进行匹配后输送给整流电路400的输入端。
本申请不具体限定EMI滤波器600的拓扑结构,本领域技术人员可以根据实际需要,选择相应的EMI滤波器600的拓扑结构,图3中仅是EMI滤波器600的拓扑结构的一种举例。
EMI滤波器600包括第四电容C01s、第五电容C02s、第一电感L01s和第二电感L02s。
C21s的第一端接地,C21s的第二端连接C11s的第一端,C11s的第二端连接C01s的第一端,C01s的第二端接地,L01s的第一端连接C01s的第一端,L01s的第二端连接整流电路400的正输入端。C22s的第一端接地,C22s的第二端连接C12s的第一端,C12s的第二端连接C02s的第一端,C02s的第二端接地,L02s的第一端连接C02s的第一端,L02s的第二端连接整流电路400的负输入端。
接收线圈Lrx与发射端的发射线圈通过磁场耦合的方式,接收发射端发射的能量并输出交流电。
整流电路400包括至少一个可控开关管。
整流电路400在控制器500的控制下将输入的交流电整流为直流电提供给充电控制电路700。
本申请不限定整流电路400的类型,例如,整流电路400可以包括四个可控开关管,也可以包括两个可控开关管,还可以包括一个可控开关管。
整流电路400的输出端并联有直流母线电容Cdc。
充电控制电路700的输入端连接整流电路400的输出端,充电控制电路700的输出端连接电池。
充电控制电路700可以为充电控制芯片,也可以为基础电气元件搭建的充电控制电路。充电控制电路700在控制器500的控制下给电池进行充电。
由于接收端的匹配电路300是按照接收端以额定功率给电池充电时设计的,但是充电过程中,接收端不会一直以额定功率给电池充电,随着充电时间的增加,接收端的电池电量会越来越大,电池的充电功率会变小,整流电路400的输出阻抗会变大,整流电路400的输出阻抗与输入阻抗正相关,整流电路400的输入阻抗也会变大。因此,在充电功率小于预设功率阈值时,需要调整整流电路的输入阻抗,以适应变化的充电功率,提高充电效率。在电池的充电功率小于预设功率阈值时,控制器500通过控制可控开关管的开关状态来降低整流电路400的输入阻抗。例如,控制器500通过控制至少一个可控开关管导通预设时间段,以使整流电路400被旁路,整流电路的输入端的能量无法传递到直流母线。整流电路的输入电流在预设时间段内无法进入直流母线,所以整流电路的输出电压会降低,进而使整流电路的输入阻抗降低。充电功率较低时,整流电路的输入阻抗会变大,本方案通过控制可控开关管导通预设时间段来强制性降低整流电路的输入阻抗,以抑制整流电路的输入阻抗变大对充电效率的影响,从而匹配电路300仍然工作在较优工作点。因此,该接收端可以在充电功率小于预设功率阈值时,提高充电效率。
本申请不具体限定充电功率的获取方式,充电功率可以通过检测电池电压和充电电流Ichg计算得到,即电池电压乘以充电电流Ichg,充电功率也可以通过检测整流电路400输出的直流母线电压Vdc和充电电流Ichg计算得到,即直流母线电压Vdc乘以充电电流Ichg,充电功率还可以直接从充电控制芯片获取,充电控制芯片可以直接提供电池的充电功率。
为了实现接收端与发射端之间的信息交互,接收端还包括NFC通讯电路800。
NFC通讯电路800,用于与发射端进行充电信息与控制信息的交互。例如,NFC通讯电路800接收发射端发送的控制信息,当控制信息指示结束充电时,则控制器500根据控制信息控制接收端结束充电。
为了便于理解,下面结合接收端的工作流程图详细介绍本申请的技术方案。
参见图4,该图为本申请提供的一种接收端的工作流程图。
接收端的工作流程包括:
S401:NFC无线充电交互认证。
发射端给接收端无线充电之前,需要先进行NFC无线充电交互认证,NFC无线充电交互认证完成后,再开始NFC无线充电。
结合图3,接收端通过NFC通讯电路800与发射端进行通讯,获取充电信息和控制信息,以进行NFC无线充电交互认证。
S402:开始NFC无线充电。
NFC无线充电初期,接收端的电池的电量较低,接收端以额定功率给电池充电。而接收端的匹配电路也是以接收端以额定功率给电池充电时设计的,当接收端以额定功率给电池充电时,接收端的匹配电路会处于较优工作点,接收端的充电效率较高。此时,控制器控制可控开关管断开,不改变整流电路的输入阻抗。
S403:获取实时的充电功率。
结合图3,开始NFC无线充电后,接收端不会一直以额定功率给电池充电,随着充电时间的增加,电池电量越来越大,充电功率也会发生变化。
当电池电量越大时,充电功率越小。当充电功率变小后会引起整流电路400的输入阻抗变大,从而匹配电路300会偏离较优工作点。因此,接收端需要获取电池的实时的充电功率,以确定匹配电路300是否偏离较优工作点,进而控制器500通过控制整流电路400中的可控开关管的开关状态来降低整流电路400的输入阻抗。例如,控制器500控制至少一个可控开关管导通预设时间段,以使整流电路400被旁路,能量无法通过整流电路400传递到直流母线。整流电路的输入电流在预设时间段内无法进入直流母线,所以整流电路的输出电压会降低,从而使整流电路的输入阻抗降低。
充电功率可以通过检测电池电压和充电电流Ichg计算得到,即电池电压乘以充电电流Ichg,充电功率也可以通过检测整流电路400输出的直流母线电压Vdc和充电电流Ichg计算得到,即直流母线电压Vdc乘以充电电流Ichg,充电功率还可以直接从充电控制芯片获取,充电控制芯片可以直接提供电池的充电功率。
S404:判断充电功率是否小于预设功率阈值;若是,则执行S405;若否,则执行S403。
接收端获取充电功率后,控制器将充电功率和预设功率阈值进行比较,以判断充电功率是否小于预设功率阈值。本领域技术人员可以根据实际需要,选择预设功率阈值的大小,预设功率阈值可以为额定充电功率的20%-40%之间的任一数值,例如,预设功率为额定功率的33%。
S405:调整可控开关管的开关状态。
结合图3,当充电功率小于预设功率阈值时,接收端的控制器500需要控制整流电路400中的可控开关管的开关状态来降低整流电路400的输入阻抗。
整流电路400的输出阻抗的计算公式如下:
Figure PCTCN2021080675-appb-000001
其中,P o为充电功率,V dc为整流电路400的输出电压。由上述公式可知,整流电路400的输出电压V dc近似不变时,若充电功率P o变化,则整流电路400的输出阻抗R L也会发生变化。随着接收端的电池电量越来越大,P o会变小,V dc近似不变时,则R L变大。而整流电路400的输入阻抗R rec与R L正相关,当R L变大时R rec也会变大,从而使匹配电路300偏离较优工作点,接收端的充电效率会降低。
因此,在充电功率小于预设功率阈值时,控制器500需要调节整流电路400的R rec,以适应变化的P o,提高接收端的充电效率。控制器500通过控制可控开关管的开关状态来降低整流电路400的R rec。在P o变小时,控制器500通过控制可控开关管的开关状态强制性降低整流电路400的R rec,以抑制R rec变大对充电效率的影响。因此,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
S406:判断是否结束NFC无线充电;若是,则执行S407。
结合图3,接收端的控制器500根据实时的充电信息和/或控制指令信息判断是否结束NFC无线充电。例如,当充电信息指示接收端的电池电量为满电量时,控制器500则结束NFC无线充电,或者,当控制指令信息指示结束NFC无线充电时,控制器500则结束NFC无线充电。其中,充电信息可以由充电控制电路700生成,控制指令信息可以通过NFC通讯电路800获取。
S407:结束NFC无线充电。
控制器判断结束NFC无线充电后,结束NFC无线充电。
以上介绍了接收端的工作流程,下面结合图5A介绍本申请中整流电路的输入阻抗随充电功率的变化。
参见图5A,该图为本申请提供的一种阻抗特性随充电功率变化的曲线图。
其中,单位C为充电功率的单位,例如:充电功率为额定功率时,充电功率为1C,电功率为额定功率的33%时,充电功率为0.33C。接收端等效回路阻抗Z in=(R in+jX in),R in为实部,X in为虚部,虚部为正表示感性,虚部为负表示容性。虚线A为调整整流电路的输入阻抗后,R in随充电功率的变化曲线,实线B为没有调整整流电路的输入阻抗时,R in随充电功率的变化曲线,虚线C为调整整流电路的输入阻抗后,X in随充电功率的变化曲线,实线D为没有调整整流电路的输入阻抗时,X in随充电功率的变化曲线。
由图5A可知,当充电功率小于预设功率阈值(例如:0.33C)且没有调整整流电路的输入阻抗时,R in变小,X in的幅值变大。当R in变小时,接收线圈的效率η rxcoil=(R in-R ac)/R in变低。X in的幅值变大时,发射线圈给接收线圈传输功率的功率因数变小,进而NFC无线充电系统的充电效率较低。而当充电功率小于预设功率阈值(例如:0.33C)且调低整流电路的输入阻抗后,R in变大,则接收线圈的效率η rxcoil变大。X in的幅值变小,则发射线圈给接收线圈传输功率的功率因数变大,因此,调整整 流电路的输入阻抗后,可以提高接收端的充电效率。
图5A中介绍的是本申请中整流电路的输入阻抗随充电功率的变化,下面结合图5B说明本申请中接收端充电效率随充电功率的变化。
参见图5B,该图为本申请提供的一种充电效率随充电功率变化的曲线图。
其中,虚线E为调整整流电路的输入阻抗后,接收线圈的效率η rxcoil随充电功率的变化曲线,实线F为没有调整整流电路的输入阻抗时,接收线圈的效率η rxcoil随充电功率的变化曲线,虚线G为调整整流电路的输入阻抗后,接收端的充电效率随充电功率的变化曲线,实线H为没有调整整流电路的输入阻抗时,接收端的充电效率随充电功率的变化曲线。
由图5B可知,当充电功率小于预设功率阈值(例如:0.33C)时,与没有调整整流电路的输入阻抗的情况相比,调整整流电路的输入阻抗后,η rxcoil和接收端的充电效率均较高。
在本申请中,随着充电时间的增加,电池电量越来越大,接收端不再以额定功率给电池充电,而是以比额定功率小的充电功率给电池充电,电池的充电功率会变小,则整流电路的输出阻抗变大,由于整流电路的输入阻抗与输出阻抗正相关,则输入阻抗也会变大。而匹配电路的参数是根据接收端以额定功率给电池充电时设计的,电池的充电功率变小后,整流电路的输入阻抗变大,会使匹配电路偏离较优工作点。因此,在充电功率小于预设功率阈值时,控制器需要调整整流电路的输入阻抗,以适应变化的充电功率,提高充电效率。具体地,接收端的控制器通过控制可控开关管导通预设时间段,以使整流电路被旁路,来降低整流电路的输入阻抗。充电功率较低时,接收端的控制器通过控制可控开关管导通来强制性降低整流电路的输入阻抗,以抑制整流电路的输入阻抗变大对充电效率的影响。因此,接收端在充电功率小于预设功率阈值时,将整流电路的输入阻抗调低后,匹配电路仍然工作在较优工作点。进而接收端可以在充电功率小于预设功率阈值时,提高充电效率。
本申请不限定整流电路的具体形式,整流电路可以包括一个桥臂,也可以包括两个桥臂,每个桥臂包括至少一个二极管,可控开关管并联在至少一个二极管的其中一个二极管的两端,为了方便说明,下面以整流电路为包括两个桥臂的全桥整流电路为例进行详细介绍。
本申请不限定整流电路中可控开关管的个数,可控开关管可以为一个,也可以为多个。下面在接收端实施例二中以可控开关管的个数为一个为例进行详细介绍。
接收端实施例二:
参见图6,该图为本申请提供的又一种NFC无线充电的接收端的示意图。
该接收端的整流电路400包括并联的第一桥臂和第二桥臂,第一桥臂的中点连接匹配电路300的正输入端,第二桥臂的中点连接匹配电路300的负输入端。整流电路400包括可控开关管。
本申请不限定可控开关管的具体位置,可控开关管可以位于第一桥臂,可控开关管也可以位于第二桥臂,为了方便说明,以下以可控开关管位于第一桥臂为例,进行 介绍。
第一桥臂包括第一二极管D2和第三二极管D1,第二桥臂包括第二二极管D4和第四二极管D3,可控开关管为第一开关管S2。
D2的正极连接D1的负极,D2的正极连接匹配电路300的正输入端,D2的负极连接D4的负极,D4的正极连接D3的负极,D4的正极连接匹配电路300的负输入端,D3的正极连接D1的正极。S2并联在D2两端。此外,S2也可以并联在D1两端,为了使可控开关管更容易被驱动,以下以S2并联在D2两端为例进行介绍。
充电功率小于预设功率阈值时,整流电路400的输入阻抗会变大,匹配电路300偏离较优工作点,因此,控制器通过控制S2的开关状态来降低整流电路400的输入阻抗,使匹配电路300工作在较优工作点,接收端在充电功率小于预设功率阈值时,提高充电效率。
Gs2为S2的脉冲控制信号,Gs2为高电平时,S2导通,Gs2为低电平时,S2断开。在充电功率小于预设功率阈值时,控制器500控制S2一直导通,以降低整流电路400的输入阻抗。例如,控制器500通过控制Gs2为高电平来控制S2导通。后续结合接收端的工作流程图,详细介绍控制器500降低整流电路的输入阻抗,以提高接收端的充电效率。
参见图7,该图为本申请提供的又一种接收端的工作流程图。
其中,S701-S704与S401-S404相类似,S706-S707与S406-S407相类似,具体内容参见接收端实施例一及图4,此处不再赘述。以下介绍的是与接收端实施例一中不同之处。
S705:调整第一开关管的开关状态。
结合图6,当充电功率小于预设功率阈值时,接收端的控制器500需要控制整流电路400中的可控开关管的开关状态来降低整流电路400的输入阻抗。
NFC无线充电过程中,充电功率大于预设功率阈值时,控制器500控制S2的断开,整流电路400为全桥整流电路。此时整流电路400的输入阻抗的计算公式为:
Figure PCTCN2021080675-appb-000002
其中,V dc为直流母线电容Cdc两端的电压,I chg为充电电流,R rec为整流电路的输入阻抗。
充电功率小于预设功率阈值时,控制器500控制S2导通,整流电路为半波整流电路。此时整流电路400的输入阻抗的计算公式为:
Figure PCTCN2021080675-appb-000003
其中,V dc为直流母线电容Cdc两端的电压,I chg为充电电流,R rec为整流电路的输入阻抗。
由上述S2导通时与S2断开时的整流电路400的输入阻抗的计算公式可知,S2的开关状态不同时,整流电路400的输入阻抗相差四倍。因此,控制器500可以通过控制S2的开关状态来调整整流电路400的输入阻抗。
充电功率小于预设功率阈值时,整流电路400的输入阻抗会变大,匹配电路300偏离较优工作点。控制器500控制S2导通,将整流电路400调整为半波整流电路,使整流电路400的输入阻抗变小,以抑制整流电路400的输入阻抗变大给充电效率带来的影响。在充电功率小于预设功率阈值时,控制器500将整流电路400的输入阻抗降低后,使匹配电路300仍然工作较优工作点。因此,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
此外,充电功率小于预设功率阈值时,控制器500控制S2一直导通。控制器500通过控制S2导通,将整流电路400调整为半波整流电路,使整流电路400的输入阻抗降低。整流电路的输入电流的正半周期时,输入电流由整流电路400的正输入端流入,依次经过S2和D4,从D4的正极流出,以使整流电路400被旁路,输入电流不进入直流母线。输入电流的负半周期时,输入电流由整流电路400的负输入端流入,依次经过D3、Cdc和S2,从S2流出。电流经过Cdc后,将能量传递给充电控制电路700。
在充电功率小于预设功率阈值时,控制器500控制S2导通直至结束NFC无线充电。由于S2为高频开关管,控制器500控制S2导通后,不再控制S2频繁导通或断开,降低S2导通或断开时产生的损耗。因此,控制器500可以在充电功率小于预设功率阈值时,控制S2一直导通,降低S2导通或断开时产生的损耗,进一步降低了整流电路400产生的损耗。
并且,电流流过高频开关管时产生的损耗比流过二极管时产生的损耗低,在充电功率小于预设功率阈值时,控制器控制S2导通直至结束NFC无线充电,因此,在后续充电功率小于预设功率阈值时,整流电路的输入电流经过S2,进一步降低了整流电路产生的损耗。
以上实施例介绍的可控开关管个数为一个,下面在接收端实施例三中以可控开关管的个数为两个为例进行详细介绍。
接收端实施例三:
参见图8,该图为本申请提供的另一种NFC无线充电的接收端的示意图。
该接收端的整流电路400包括并联的第一桥臂和第二桥臂。第一桥臂的中点连接匹配电路300的正输入端,第二桥臂的中点连接匹配电路300的负输入端。
整流电路400包括以下两个可控开关管,第一开关管S2和第二开关管S4。
本申请不限定S2和S4的具体位置,S2可以位于第一桥臂的上半桥臂,S4可以位于第二桥臂的上半桥臂;S2可以位于第一桥臂的下半桥臂,S4可以位于第二桥臂的下半桥臂。为了方便说明,以下以S2位于第一桥臂的下半桥臂,S4位于第二桥臂的下半桥臂为例,进行介绍。
第一桥臂的下半桥臂为第一二极管D2,S2并联在D2两端,第二桥臂的下半桥臂为第二二极管D4,S4并联在D4两端。
S2位于第一桥臂的下半桥臂,S4位于第二桥臂的下半桥臂时,S2和S4更容易被驱动。
充电功率小于预设功率阈值时,整流电路400的输入阻抗会变大,匹配电路300 偏离较优工作点,因此,控制器500通过控制S2的开关状态和S4的开关状态来降低整流电路400的输入阻抗,使匹配电路300工作在较优工作点,接收端在充电功率小于预设功率阈值时,提高充电效率。
图8中,Gs2为S2的脉冲控制信号,Gs4为S4的脉冲控制信号。控制器500通过控制Gs2为高电平来控制S2导通,通过控制Gs2为低电平来控制S2断开。同理,控制器500也可以通过控制Gs4来控制S4的导通与断开。
在充电功率小于预设功率阈值,控制器500在整流电路400的输入电流为正时,通过控制Gs2为高电平来控制S2导通预设时间段;控制器500在整流电路400的输入电流为负时,通过控制Gs4为高电平来控制S4导通预设时间段,在S2或S4导通时,整流电路400被旁路,从而降低整流电路的输入阻抗。
充电功率与预设功率阈值的差值与预设时间段正相关,充电功率与预设功率阈值的差值越大,则预设时间段越长。因此,控制器500根据充电功率与预设功率阈值的差值获取预设时间段。预设时间段的具体计算公式可以通过离线测试拟合得到。
为了便于理解,下面结合接收端的工作流程图详细介绍本申请的技术方案。
参见图9,该图为本申请提供的另一种接收端的工作流程图。
其中,S901-S904与S401-S404相类似,S907-S908与S406-S407相类似,具体内容参见接收端实施例一及图4,此处不再赘述。以下介绍的是与接收端实施例一中不同之处。
S905:根据充电功率与预设功率阈值的差值获取预设时间段。
通过S903获取实时的充电功率后,控制器根据充电功率与预设功率阈值的差值获取预设时间段t on。t on的具体计算公式可以通过离线测试拟合得到。差值越小,t on越小;差值越大,则t on越大。为了避免整流电路的输入电流I rec为正时出现负电流,造成额外的损耗,t on需要小于上限值t onmax,不申请不具体限定上限值t onmax的具体值,本领域技术人员可以根据实际需要选择任意符合条件的值,例如:t onmax为整流电路的输入电流I rec为正时对应的时段的三分之一。
S906:根据整流电路的输入电流的极性和预设时间段,调整第一开关管的开关状态和第二开关管的开关状态。
结合图8,第一开关管S2和第二开关管S4断开时,整流电路的输入电流的极性不同时,电流流过整流电路的路径不同。当输入电流为正时,输入电流依次流过第三二极管D1、直流母线电容Cdc和第二二极管D4,从D4的正极流出。当输入电流为负时,输入电流依次流过第四二极管D3、直流母线电容Cdc和第一二极管D2,从D2的正极流出。因此,控制器500可以通过检测整流电路400的输入电流的极性来控制S2的开关状态和S4的开关状态,以降低整流电路400的输入阻抗。
具体地,在充电功率小于预设功率阈值时,整流电路400的输入阻抗会变大。因此,控制器500需要在输入电流为正时,控制S2导通t on来改变输入电流的路径,在t on时间内,输入电流由整流电路400的正输入端流入,依次经过S2和D4后,从D4的正极流出,以使整流电路400被旁路,输入电流不进入直流母线。控制器500需要在输入电流为 负时,控制S4导通t on来改变输入电流的路径,在t on时间内,输入电流由整流电路的负输入端流入,依次经过S4和D2后,从D2的正极流出,以使整流电路400被旁路,输入电流不进入直流母线。控制器500可以通过调节S2和S4导通的t on大小来调节整流电路400的输入阻抗。
参见图10,该图为本申请提供的一种可控开关管的工作时序图。
其中,Gs2为第一开关管的脉冲控制信号,Gs4为第二开关管的脉冲控制信号,Gs2为高电平时,第一开关管导通,Gs2为低电平时,第一开关管断开,控制器可以通过控制Gs2来控制第一开关管的导通与断开,同理,控制器也可以通过控制Gs4来控制第二开关管的导通与断开。I rec为整流电路的输入电流。
当整流电路的输入电流I rec的极性为正时,控制器控制第一开关管导通t on,然后控制第一开关管断开。
当整流电路的输入电流I rec的极性为负时,控制器控制第二开关管导通t on,然后控制第二开关管断开。
充电功率和预设功率阈值的差值与t on正相关,当差值越大时,t on越大。控制器可以根据第一开关管的t on和第二开关管的t on来实现对整流电路的输入阻抗的连续调节。t on越大时,整流电路的输入电压越小,当充电功率不变时,整流电路的输入阻抗越小。t on越小时,整流电路的输入电压越大,当充电功率不变时,整流电路的输入阻抗越大。因此,控制器可以在充电功率小于预设功率阈值时,根据充电功率和预设功率阈值的差值获取t on的大小来实现连续调节整流电路的输入阻抗,从而减少整流电路的输入阻抗对接收端的充电效率的影响。因此,匹配电路仍然处于较优工作点,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
此外,控制器不仅在充电功率小于预设功率阈值时,通过控制第一开关管的开关状态和第二开关管的开关状态来降低整流电路的输入阻抗;也可以在充电功率大于预设功率阈值时,通过控制第一开关管的开关状态和第二开关管的开关状态来降低整流电路的输入阻抗,以适应充电功率的变化,从而可以改善充电功率大于预设功率阈值时接收端的充电效率。因此,匹配电路始终处于较优工作点,接收端可以在NFC无线充电的整个过程中,提高充电效率。
以上实施例介绍的可控开关管个数为一个或两个,下面在接收端实施例四中以可控开关管的个数为四个为例进行详细介绍。
接收端实施例四:
参见图11,该图为本申请提供的再一种NFC无线充电的接收端的示意图。
该接收端的整流电路400包括并联的第一桥臂和第二桥臂。第一桥臂的中点连接匹配电路300的正输入端,第二桥臂的中点连接匹配电路300的负输入端。
整流电路400包括以下四个可控开关管,第一开关管S2、第二开关管S4、第三开关管S1和第四开关管S3。S2位于第一桥臂的下半桥臂,S4位于第二桥臂的下半桥臂,S1位于第一桥臂的上半桥臂,S3位于第二桥臂的上半桥臂。
具体的,第一桥臂的下半桥臂为第一二极管D2,S2并联在D2两端。第二桥臂的 下半桥臂为第二二极管D4,S4并联在D4两端。第一桥臂的上半桥臂为第三极管D1,S1并联在D1两端。第二桥臂的上半桥臂为第四二极管D3,S3并联在D3两端。
充电功率小于预设功率阈值时,整流电路400的输入阻抗会变大,匹配电路300偏离较优工作点,因此,控制器500通过控制S1的开关状态、S2的开关状态、S3的开关状态和S4的开关状态来降低整流电路400的输入阻抗,使匹配电路300工作在较优工作点,接收端在充电功率小于预设功率阈值时,提高充电效率。
图11中,Gs1为S1的脉冲控制信号,Gs2为S2的脉冲控制信号,Gs3为S3的脉冲控制信号,Gs4为S4的脉冲控制信号。控制器500通过控制Gs1为高电平来控制S1导通,Gs1为低电平来控制S1断开。同理,控制器500也可以通过控制Gs2来控制S2的导通与断开,通过控制Gs3来控制S3的导通与断开,通过控制Gs4来控制S4的导通与断开。
在充电功率小于预设功率阈值时,控制器500在整流电路400的输入电流为正时:控制S4导通,S3断开;先控制S2导通预设时间段,然后再控制S1直至整流电路400的输入电流过零。
控制器500在整流电路400的输入电流为负时:控制S1断开,S2导通;先控制S4导通预设时间段,然后再控制S3直至整流电路400的输入电流过零。
为了便于理解,下面结合接收端的工作流程图详细介绍本申请的技术方案。
参见图12,该图为本申请提供的再一种接收端的工作流程图。
其中,S1201-S1205与S901-S905相类似,S1207-S1208与S907-S908相类似,具体内容参见接收端实施例三及图9,此处不再赘述。以下介绍的是与接收端实施例三中不同之处。
S1206:根据整流电路的输入电流的极性和预设时间段,调整第一开关管的开关状态、第二开关管的开关状态、第三开关管的开关状态和第四开关管的开关状态。
结合图11,第一开关管S2、第二开关管S4、第三开关管S1和第四开关管S3均断开时,整流电路的输入电流的极性不同时,输入电流流过整流电路的路径不同。当输入电流为正时,输入电流由整流电路的正输入端流入,依次流过第三二极管D1、直流母线电容Cdc和第二二极管D4,从D4的正极流出。当输入电流为负时,输入电流由整流电路的负输入端流入依次流过第四二极管D3、直流母线电容Cdc和第一二极管D2,从D2的正极流出。因此,控制器500可以通过检测整流电路400的输入电流的极性来控制S1的开关状态、S2的开关状态、S3的开关状态和S4的开关状态,以降低整流电路400的输入阻抗。
在充电功率小于预设功率阈值时,整流电路400的输入阻抗会变大。因此,控制器500需要在输入电流为正时:控制S4导通,S3断开;先控制S2导通预设时间段,然后再控制S1导通直至整流电路的输入电流过零。控制器500可以通过控制S1的开关状态、S2的开关状态、S3的开关状态和S4的开关状态,来改变输入电流的路径,在预设时间段内,电流依次经过S2和S4,从S4流出,以使整流电路400被旁路,电流不进入直流母线。
控制器500需要在输入电流为负时:控制S2导通,S1断开;先控制S4导通预设时间段,然后再控制S3导通直至整流电路的输入电流过零。控制器500可以通过控制S1的开关状态、S2的开关状态、S3的开关状态和S4的开关状态,来改变输入电流的路径,在预设时间段内,输入电流依次经过S4和S2,从S2流出,以使整流电路400被旁路,输入电流不进入直流母线。
整流电路的输入电流在预设时间段内无法进入直流母线,所以整流电路的输出电压会降低,进而使整流电路的输入阻抗降低。
进而,控制器500可以通过调节S2和S4导通的t on大小来调节整流电路400的输入阻抗。
参见图13,该图为本申请提供的另一种可控开关管的工作时序图。
其中,Gs1为第三开关管的脉冲控制信号,Gs2为第一开关管的脉冲控制信号,Gs3为第四开关管的脉冲控制信号,Gs4为第二开关管的脉冲控制信号,Gs1为高电平时,第三开关管导通,Gs1为低电平时,第三开关管断开,控制器可以通过控制Gs1来控制第三开关管的导通与断开,同理,控制器也可以通过控制Gs2来控制第一开关管的导通与断开,Gs3来控制第四开关管的导通与断开,Gs4来控制第二开关管的导通与断开。I rec为整流电路的输入电流。
当整流电路的输入电流I rec的极性为正时,控制器控制第二开关管导通,控制第四开关管断开,先控制第一开关管导通预设时间段t on后断开,延迟预设时间后,再控制第三开关管导通,当I rec变为零时,控制第二开关管和第三开关管断开。此时,第一开关管、第二开关管、第三开关管和第四开关管均处于断开状态。
当整流电路的输入电流I rec的极性为负时,控制器控制第一开关管导通,控制第三开关管断开,先控制第二开关管导通t on后断开,延迟预设时间后,再控制第四开关管导通,当I rec变为零时,控制第一开关管和第四开关管断开。此时,第一开关管、第二开关管、第三开关管和第四开关管均处于断开状态。
控制器控制可控开关管断开时,可能会存在可控开关管不完全断开的情况,会使整流电路的输入端短路。因此,控制器在控制第二开关管断开后,需要先延迟预设时间,再控制第四可控开关管导通。
控制器可以根据第一开关管的t on和第二开关管的t on来实现对整流电路的输入阻抗的连续调节。t on越大时,整流电路的输入电压越小,当充电功率不变时,整流电路的输入阻抗越小。t on越小时,整流电路的输入电压越大,当充电功率不变时,整流电路的输入阻抗越大。因此,在充电功率小于预设功率阈值时,控制器可以根据充电功率和预设功率阈值的差值获取t on的大小来实现连续调节整流电路的输入阻抗,从而减少整流电路的输入阻抗对接收端的充电效率的影响。因此,匹配电路仍然处于较优工作点,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
控制器不仅在充电功率小于预设功率阈值时,通过控制第一开关管的开关状态、第二开关管的开关状态、第三开关管的开关状态和第四开关管的开关状态来降低整流电路的输入阻抗;也可以在充电功率大于预设功率阈值时,通过控制第一开关管的开关 状态、第二开关管的开关状态、第三开关管的开关状态和第四开关管的开关状态来降低整流电路的输入阻抗,以适应充电功率的变化,从而可以改善充电功率大于预设功率阈值时接收端的充电效率。因此,接收端可以在NFC无线充电的整个过程中,提高充电效率。
此外,结合图11,在整流电路400中,可以利用S1代替D1,S2代替D2,S3代替D3和S4代替D4,控制器500控制S1、S2、S3和S4的开关状态,实现将交流电转换为直流电的目的;控制器500直接通过控制S1、S2、S3和S4的开关状态来降低整流电路400的输入阻抗。
基于以上各实施例提供的接收端,本申请实施例还提供一种无线充电的方法,本申请不具体限定为NFC无线充电,为了便于说明,以NFC无线充电为例进行介绍本申请的技术方案。
方法实施例一:
本申请实施例还提供一种无线充电的方法,下面结合附图进行详细介绍。
参见图14,该图为本申请提供的一种无线充电的方法流程图。
本实施例提供的无线充电的方法,应用于NFC无线充电的接收端,接收端利用发射端提供的能量对电池进行充电,接收端包括接收线圈、匹配电路和整理电路;整流电路包括至少一个可控开关管;接收端可以参见图3所示的接收端,此处不再赘述。
该方法包括:
S1401:控制整流电路将输入的交流电整流为直流电提供给充电控制电路。
在NFC无线充电的过程中,接收端的接收线圈接收到发射端发射的能量后,会输出交流电。因此,整理电路需要将交流电整流为直流电提供给充电控制电路,以便充电控制电路给电池充电。NFC无线充电的具体过程可以参见接收端实施例一及图4,此处不再赘述。
S1402:在电池的充电功率小于预设功率阈值时,控制可控开关管的开关状态,以降低整流电路的输入阻抗。
在NFC无线充电过程中,随着充电时间的增加,电池电量越来越大,接收端不再以额定功率给电池充电,而是以比额定功率小的充电功率给电池充电,电池的充电功率会变小,则整流电路的输出阻抗变大,由于整流电路的输入阻抗与输出阻抗正相关,则输入阻抗也会变大。而匹配电路的参数是根据接收端以额定功率给电池充电时设计的,电池的充电功率变小后,整流电路的输入阻抗变大,会使匹配电路偏离较优工作点。因此,在充电功率小于预设功率阈值时,需要控制可控开关管的开关状态来降低整流电路的输入阻抗。具体控制方法可以参见本申请接收端实施例一以及图3-图4,此处不再赘述。
采用本方案的NFC无线充电的方法,在充电功率小于预设功率阈值时,通过调整可控开关管导通,以使整流电路被旁路,从而降低整流电路的输入阻抗,从而降低整流电路的输入阻抗变大对接收端的充电效率的影响。因此,接收端可以在充电功率小于预设功率阈值时,提高充电效率。
方法实施例二:
参见图15,该图为本申请提供的又一种无线充电的方法流程图。
本实施例提供的无线充电的方法,应用于NFC无线充电的接收端,接收端利用发射端提供的能量对电池进行充电,接收端包括接收线圈、匹配电路和整理电路;整流电路包括第一开关管;接收端可以参见图6所示的接收端,此处不再赘述。
该方法包括:
S1501:控制整流电路将输入的交流电整流为直流电提供给充电控制电路。
在NFC无线充电的过程中,接收端的接收线圈接收到发射端发射的能量后,会输出交流电。因此,整理电路需要将交流电整流为直流电提供给充电控制电路,以便充电控制电路给电池充电。NFC无线充电的具体过程可以参见接收端实施例二及图7,此处不再赘述。
S1502:在电池的充电功率小于预设功率阈值时,控制第一开关管一直导通,以降低整流电路的输入阻抗。
由S1402可知,在充电功率小于预设功率阈值时,可以通过控制可控开关管的开关状态,降低整流电路的输入阻抗。而整流电路包括第一开关管时,在充电功率小于预设功率阈值时,控制第一开关管一直导通直至结束NFC无线充电,以降低整流电路的输入阻抗。控制第一开关管的具体过程可以参见接收端实施例二及图6-图7,此处不再赘述。
此外,第一开关管为高频开关管,控制第一开关管导通直至结束NFC无线充电,不再控制第一开关管频繁导通与断开,可以降低第一开关管导通或断开时产生的损耗。因此,控制第一开关管一直导通直至结束NFC无线充电,进一步降低整流电路产生的损耗。
结合图7,电流流过高频开关管时产生的损耗比流过二极管时产生的损耗低,在充电功率小于预设功率阈值时,控制第一开关管S2导通直至结束NFC无线充电,因此,在后续的NFC无线充电过程中,电流经过第一开关管S2,进一步降低整流电路400产生的损耗。
方法实施例三:
参见图16,该图为本申请提供的另一种无线充电的方法流程图。
本实施例提供的无线充电的方法,应用于NFC无线充电的接收端,接收端利用发射端提供的能量对电池进行充电,接收端包括接收线圈、匹配电路和整理电路;整流电路包括第一开关管和第二开关管;接收端可以参见图8所示的接收端,此处不再赘述。
该方法包括:
S1601:控制整流电路将输入的交流电整流为直流电提供给充电控制电路。
在NFC无线充电的过程中,接收端的接收线圈接收到发射端发射的能量后,会输出交流电。因此,整理电路需要将交流电整流为直流电提供给充电控制电路,以便充电控制电路给电池充电。NFC无线充电的具体过程可以参见接收端实施例三及图9, 此处不再赘述。
S1602:在电池的充电功率小于预设功率阈值,且整流电路的输入电流为正时,控制第一开关管导通预设时间段;在电池的充电功率小于预设功率阈值,且整流电路的输入电流为负时,控制第二开关管导通预设时间段。
整流电路的输入电流的极性不同时,电流流过整流电路的路径不同。因此,需要先获取整流电路的输入电流的极性,然后根据整流电路的输入电流的极性,控制第一开关管的开关状态和第二开关管的开关状态来降低整流电路的输入阻抗。
在充电功率小于预设功率阈值时,若整流电路的输入电流为正,则控制第一开关管导通预设时间段;若整流电路的输入电流为负,则控制第二开关管导通预设时间段。其中,预设时间段是根据充电功率和预设功率阈值的差值获取,预设时间段与差值正相关。控制第一开关管和第二开关管的具体过程可以参见接收端实施例三及图9-图10,此处不再赘述。
采用本方案的NFC无线充电的方法,在充电功率小于预设功率阈值时,可以通过控制第一开关管导通预设时间段和第二开关管导通预设时间段来实现对整流电路的输入阻抗的连续调节。预设时间段越大时,整流电路的输入电压越小,当充电功率不变时,整流电路的输入阻抗变小。因此,可以在充电功率小于预设功率阈值时,根据充电功率和预设功率阈值的差值获取预设时间段,通过控制第一开关管导通预设时间段和第二开关管导通预设时间段,来实现连续调节整流电路的输入阻抗,从而减少整流电路的输入阻抗对接收端的充电效率的影响。因此,在采用本方案的NFC无线充电方法后,接收端可以在充电功率小于预设功率阈值时,提高接收端的充电效率。
此外,在充电功率大于预设功率阈值时,也可以通过控制第一开关管的开关状态和第二开关管的开关状态来降低整流电路的输入阻抗,从而可以改善充电功率大于预设功率阈值时接收端的充电效率。因此,接收端可以在NFC无线充电的整个过程中,提高充电效率。
方法实施例四:
参见图17,该图为本申请提供的再一种无线充电的方法流程图。
本实施例提供的无线充电的方法,应用于NFC无线充电的接收端,接收端利用发射端提供的能量对电池进行充电,接收端包括接收线圈、匹配电路和整理电路;整流电路包括第一开关管、第二开关管、第三开关管和第四开关管;接收端可以参见图11所示的接收端,此处不再赘述。
该方法包括:
S1701:控制整流电路将输入的交流电整流为直流电提供给充电控制电路。
在NFC无线充电的过程中,接收端的接收线圈接收到发射端发射的能量后,会输出交流电。因此,整理电路需要将交流电整流为直流电提供给充电控制电路,以便充电控制电路给电池充电。NFC无线充电的具体过程可以参见接收端实施例四及图12,此处不再赘述。
S1702:判断充电功率是否小于预设功率阈值;若是,则执行S1703。
判断充电功率是否小于预设功率阈值的具体方式可以参见接收端实施例四及图12, 此处不再赘述。
S1703:判断整流电路的输入电流是否为正;若是,则执行S1704;若否,则执行S1705。
当整流电路的输入电流的极性不同时,电流流过整流电路的路径不同。电流流过整流电路的路径可以参见接收端实施例四及图11,此处不再赘述。
当整流电路的输入电流的极性不同时,需要控制不同的可控开关管的开关状态来降低整流电路的输入阻抗。
S1704:控制第二开关管导通,第四开关管断开;先控制第一开关管导通预设时间段,再控制第三开关管导通直至整流电路的输入电流过零。
S1705:控制第一开关管导通,第三开关管断开;先控制第二开关管导通预设时间段,再控制第四开关管导通直至整流电路的输入电流过零
控制第一开关管的开关状态、第二开关管的开关状态、第三开关管的开关状态和第四开关管的开关状态的具体过程可以参见接收端实施例四及图12-13,此处不再赘述。
采样本方案的NFC无线充电方法,在充电功率小于预设功率阈值时,可以通过控制第一开关管导通预设时间段、第二开关管导通预设时间段、第三开关管的开关状态和第四开关管的开关状态来实现对整流电路的输入阻抗的连续调节。
此外,不仅可以在充电功率小于预设功率阈值时,通过控制第一开关管的开关状态、第二开关管的开关状态、第三开关管的开关状态和第四开关管的开关状态来降低整流电路的输入阻抗;也可以在充电功率大于预设功率阈值时获取预设时间段,根据预设时间段控制第一开关管的开关状态、第二开关管的开关状态、第三开关管的开关状态和第四开关管的开关状态来降低整流电路的输入阻抗,从而可以改善充电功率大于预设功率阈值时接收端的充电效率。因此,接收端可以在NFC无线充电的整个过程中,提高充电效率。
电子设备实施例一:
基于以上实施例提供的接收端,本申请实施例还提供一种电子设备,该电子设备可以为手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、智能穿戴产品(例如,智能手表、智能手环、耳机等)、虚拟现实(VR,virtual reality)终端设备、增强现实(AR,augmented reality)终端设备等。该电子设备包括以上任意实施例介绍的接收端。接收端利用发射端提供的能量对电子设备的电池进行充电。
该电子设备包括以上实施例中介绍的接收端,该接收端的整流电路包括至少一个可控开关管,控制器在电池的充电功率小于预设功率阈值时,通过控制可控开关管的开关状态来降低整流电路的输入阻抗。
由于接收端的匹配电路是按照充电时的额定功率进行设计,但是充电过程中,不可能一直以额定功率充电,因此,在充电功率小于预设功率阈值时,需要调整整流电路的输入阻抗,以适应变化的充电功率,提高充电效率。具体地,该接收端的控制器可以通过控制可控开关管的开关状态来降低整流电路的输入阻抗。充电功率较低时,整流电路的输入阻抗会变大,本方案通过控制可控开关管的开关状态强制性降低整流 电路的输入阻抗,以抑制整流电流的输入阻抗变大对于充电效率的影响。因此,包括该接收端的电子设备可以在充电功率小于预设功率阈值时,提高充电效率。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,仅是本申请的较佳实施例而已,并非对本申请作任何形式上的限制。虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请。任何熟悉本领域的技术人员,在不脱离本申请技术方案范围情况下,都可利用上述揭示的方法和技术内容对本申请技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (17)

  1. 一种无线充电的接收端,其特征在于,用于利用发射端提供的能量对电池进行充电,包括:接收线圈、匹配电路、整流电路和控制器;
    所述匹配电路的输入端连接所述接收线圈,所述匹配电路的输出端连接所述整流电路的输入端;
    所述接收线圈,用于接收所述发射端发射的能量并输出交流电;
    所述匹配电路,用于将所述交流电进行匹配后输送给所述整流电路的输入端;
    所述整流电路包括可控开关管,所述整流电路用于在所述控制器的控制下将输入的交流电整流为直流电提供给充电控制电路;
    所述控制器,用于在给所述电池充电的充电功率小于预设功率阈值时,控制所述可控开关管的开关状态,以降低所述整流电路的输入阻抗。
  2. 根据权利要求1所述的接收端,其特征在于,所述控制器,具体用于在所述充电功率小于预设功率阈值时,控制所述可控开关管在预设时间段内导通,以使所述整流电路被旁路。
  3. 根据权利要求2所述的接收端,其特征在于,所述控制器,具体用于根据所述充电功率与所述预设功率阈值的差值获得所述预设时间段,所述预设时间段与所述差值成正比例关系。
  4. 根据权利要求2或3所述的接收端,其特征在于,所述整流电路包括至少一个二极管组成的至少一个桥臂,所述可控开关管并联在所述至少一个二极管的其中一个二极管的两端;
    所述控制器,用于在所述充电功率小于预设功率阈值时,控制所述可控开关管导通,以实现对所述整流电路的旁路来降低所述整流电路的输入阻抗。
  5. 根据权利要求4所述的接收端,其特征在于,所述整流电路为全桥整流电路,所述整流电路包括并联的第一桥臂和第二桥臂;所述第一桥臂的中点连接所述匹配电路的正输出端,所述第二桥臂的中点连接所述匹配电路的负输出端;所述可控开关管位于所述第一桥臂和所述第二桥臂中的至少一个桥臂。
  6. 根据权利要求5所述的接收端,其特征在于,所述整流电路包括:第一开关管;所述第一开关管位于所述第一桥臂或所述第二桥臂;所述控制器,用于在充电功率小于预设功率阈值时,控制所述第一开关管导通所述预设时间段。
  7. 根据权利要求5所述的接收端,其特征在于,所述整流电路包括以下两个可控开关管;第一开关管和第二开关管;所述第一开关管位于所述第一桥臂的下半桥臂;所述第二开关管位于所述第二桥臂的下半桥臂;
    所述控制器,用于在所述电池的充电功率小于预设功率阈值,且所述整流电路的输入电流为正时,控制所述第一开关管导通所述预设时间段;还用于在所述电池的充电功率小于预设功率阈值,且所述整流电路的输入电流为负时,控制所述第二开关管导通所述预设时间段。
  8. 根据权利要求5所述的接收端,其特征在于,所述整流电路为全桥整流电路且包括 以下四个可控开关管;第一开关管、第二开关管、第三开关管和第四开关管;
    所述第一开关管位于所述第一桥臂的下半桥臂;所述第二开关管位于所述第二桥臂的下半桥臂;所述第三开关管位于所述第一桥臂的上半桥臂,所述第四开关管位于所述第二桥臂的上半桥臂;
    所述控制器,用于在所述电池的充电功率小于预设功率阈值,且所述整流电路的输入电流为正时:控制所述第二开关管导通,所述第四开关管断开;先控制所述第一开关管导通所述预设时间段,再控制所述第三开关管导通直至所述整流电路的输入电流过零;
    所述控制器,还用于在所述电池的充电功率小于预设功率阈值,且所述整流电路的输入电流为负时:控制所述第三开关管断开,所述第一开关管导通;先控制所述第二开关管导通所述预设时间段,再控制所述第四开关管导通直至所述整流电路的输入电流过零。
  9. 一种无线充电的控制方法,其特征在于,应用于无线充电的接收端,所述接收端用于利用发射端提供的能量对电池进行充电,所述接收端包括:接收线圈、匹配电路和整流电路;所述整流电路包括可控开关管;
    该方法包括:
    控制整流电路将输入的交流电整流为直流电提供给充电控制电路;
    在给所述电池充电的充电功率小于预设功率阈值时,控制所述可控开关管的开关状态,以降低所述整流电路的输入阻抗。
  10. 根据权利要求9所述的方法,其特征在于,所述控制所述可控开关管的开关状态,以降低所述整流电路的输入阻抗包括:
    控制所述可控开关管在预设时间段内导通,以使所述整流电路被旁路。
  11. 根据权利要求10所述的方法,其特征在于,所述预设时间段通过所述充电功率与所述预设功率阈值的差值获得,所述预设时间段与所述差值成正比例关系。
  12. 根据权利要求10或11所述的方法,其特征在于,所述整流电路包括至少一个二极管组成的至少一个桥臂,所述可控开关管并联在所述至少一个二极管的其中一个二极管的两端;所述控制所述可控开关管的开关状态,以降低所述整流电路的输入阻抗包括:
    控制所述可控开关管导通,以实现对所述整流电路的旁路来降低整流电路的输入阻抗。
  13. 根据权利要求12所述的方法,其特征在于,所述整流电路为全桥整流电路,所述整流电路包括并联的第一桥臂和第二桥臂;所述第一桥臂的中点连接所述匹配电路的正输出端,所述第二桥臂的中点连接所述匹配电路的负输出端;所述可控开关管位于所述第一桥臂和所述第二桥臂中的至少一个桥臂。
  14. 根据权利要求13所述的方法,其特征在于,所述整流电路包括:第一开关管;所述第一开关管位于所述第一桥臂或所述第二桥臂;所述控制所述可控开关管中的至少一个导通预设时间段包括:
    控制所述第一开关管导通所述预设时间段。
  15. 根据权利要求13所述的方法,其特征在于,所述整流电路包括以下两个可控开关管;第一开关管和第二开关管;所述第一开关管位于所述第一桥臂的下半桥臂;所述第二开关管位于所述第二桥臂的下半桥臂;所述控制所述可控开关管中的至少一个导通预设时 间段包括:
    在所述整流电路的输入电流为正时,控制所述第一开关管导通所述预设时间段;
    在所述整流电路的输入电流为负时,控制所述第二开关管导通所述预设时间段。
  16. 根据权利要求13所述的方法,其特征在于,所述整流电路为全桥整流电路且包括以下四个可控开关管;第一开关管、第二开关管、第三开关管和第四开关管;所述第一开关管位于所述第一桥臂的下半桥臂;所述第二开关管位于所述第二桥臂的下半桥臂;所述第三开关管位于所述第一桥臂的上半桥臂,所述第四开关管位于所述第二桥臂的上半桥臂;所述控制所述可控开关管中的至少一个导通预设时间段包括:
    在所述整流电路的输入电流为正时:控制所述第二开关管导通,所述第四开关管断开;先控制所述第一开关管导通所述预设时间段,再控制所述第三开关管导通直至所述整流电路的输入电流过零;
    在所述整流电路的输入电流为负时:控制所述第三开关管断开,所述第一开关管导通;先控制所述第二开关管导通所述预设时间段,再控制所述第四开关管导通直至所述整流电路的输入电流过零。
  17. 一种电子设备,其特征在于,包括权利要求1-8任一项所述的接收端。
PCT/CN2021/080675 2020-06-08 2021-03-15 一种无线充电的接收端、方法及电子设备 WO2021248953A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21822130.7A EP4152562A4 (en) 2020-06-08 2021-03-15 WIRELESS CHARGING RECEIVING END, WIRELESS CHARGING METHOD AND ELECTRONIC DEVICE
US18/062,887 US20230103414A1 (en) 2020-06-08 2022-12-07 Receive End for Wireless Charging, Wireless Charging Method, and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010511956.3 2020-06-08
CN202010511956.3A CN111817448B (zh) 2020-06-08 2020-06-08 一种无线充电的接收端、方法及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/062,887 Continuation US20230103414A1 (en) 2020-06-08 2022-12-07 Receive End for Wireless Charging, Wireless Charging Method, and Electronic Device

Publications (1)

Publication Number Publication Date
WO2021248953A1 true WO2021248953A1 (zh) 2021-12-16

Family

ID=72845972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080675 WO2021248953A1 (zh) 2020-06-08 2021-03-15 一种无线充电的接收端、方法及电子设备

Country Status (4)

Country Link
US (1) US20230103414A1 (zh)
EP (1) EP4152562A4 (zh)
CN (1) CN111817448B (zh)
WO (1) WO2021248953A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687600B (zh) * 2018-12-20 2021-07-20 美的集团(上海)有限公司 电子装置、无线输电接收电路及通信方法和无线输电系统
CN111817448B (zh) * 2020-06-08 2022-07-22 华为技术有限公司 一种无线充电的接收端、方法及电子设备
WO2022170460A1 (zh) * 2021-02-09 2022-08-18 深圳市汇顶科技股份有限公司 无线充电装置
CN117477803B (zh) * 2023-12-28 2024-03-15 中国人民解放军国防科技大学 逆变谐振恒功率无线充电系统和控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779672A (zh) * 2015-04-21 2015-07-15 东南大学 一种适用于电池性负载的无线充电系统
CN107431385A (zh) * 2015-03-18 2017-12-01 曼珀斯有限公司 无线电力接收器
CN109327065A (zh) * 2018-12-06 2019-02-12 华为技术有限公司 无线充电系统的接收端、方法、用电终端、发射端及系统
CN109874361A (zh) * 2015-12-01 2019-06-11 三星电子株式会社 无线功率接收器和用于控制无线功率接收器的方法
JP2019103386A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
CN111817448A (zh) * 2020-06-08 2020-10-23 华为技术有限公司 一种无线充电的接收端、方法及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952322B2 (en) * 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
US9831684B2 (en) * 2014-08-08 2017-11-28 Texas Instruments Incorporated Adaptive rectifier and method of operation
CN107666187B (zh) * 2017-10-30 2018-08-21 华南理工大学 无线能量传输接收电路及应用该电路的无线能量传输系统
KR20190069982A (ko) * 2017-12-12 2019-06-20 주식회사 지니틱스 거리에 따라 최대전력전달 및 최대효율을 가질 수 있는 능동형 정류기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431385A (zh) * 2015-03-18 2017-12-01 曼珀斯有限公司 无线电力接收器
CN104779672A (zh) * 2015-04-21 2015-07-15 东南大学 一种适用于电池性负载的无线充电系统
CN109874361A (zh) * 2015-12-01 2019-06-11 三星电子株式会社 无线功率接收器和用于控制无线功率接收器的方法
JP2019103386A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
CN109327065A (zh) * 2018-12-06 2019-02-12 华为技术有限公司 无线充电系统的接收端、方法、用电终端、发射端及系统
CN111817448A (zh) * 2020-06-08 2020-10-23 华为技术有限公司 一种无线充电的接收端、方法及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4152562A4

Also Published As

Publication number Publication date
US20230103414A1 (en) 2023-04-06
EP4152562A1 (en) 2023-03-22
CN111817448B (zh) 2022-07-22
CN111817448A (zh) 2020-10-23
EP4152562A4 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2021248953A1 (zh) 一种无线充电的接收端、方法及电子设备
US20220302762A1 (en) Hybrid wireless power transmitting system and method therefor
WO2020114077A1 (zh) 无线充电系统的接收端、方法、用电终端、发射端及系统
EP3609040A1 (en) Wireless charging system, apparatus, method and device to be charged
US20220271571A1 (en) To-be-charged device, wireless charging device, and wireless charging method
EP3130070B1 (en) Inductive power transfer converters and system
US11482941B2 (en) Phase alignment circuit and method of receive end, and receive end
CN111740509B (zh) 基于调压控制的无线充电方法及系统
WO2019223003A1 (zh) 无线充电接收装置及移动终端
US9912194B2 (en) Wireless power apparatus and operation method thereof
WO2021244086A1 (zh) 一种电子设备及其控制方法
US20230065766A1 (en) Electronic Device, Wireless Charging Receive Apparatus, Control Method, and Wireless Charging System
WO2021227652A1 (zh) 无线充电设备和待充电设备
CN111478458A (zh) 一种无线电能传输系统及其恒流恒压控制方法
WO2024051086A1 (zh) 一种电力接收装置、电力发送装置及电力传输方法
CN110635545A (zh) 一种基于单管电路实现恒流恒压无线充电的装置及方法
US20240106274A1 (en) Charging control method, electronic device, and wireless charging system
CN113991889A (zh) 一种无线电能传输功率控制方法及系统
CN108879982A (zh) 双稳态原边恒流磁感应耦合无线充电装置及其使用方法
JP2015109724A (ja) 非接触電力伝送装置及び受電機器
US20220029461A1 (en) Power Matching Method and Apparatus for Wireless Charging, and Wireless Charging Apparatus
CN112928786A (zh) 一种无线充电装置与无线充电方法
WO2023246059A1 (zh) 充电电路、电子设备、充电系统及充电控制方法
JP6569799B2 (ja) 受電器、及び、電力伝送システム
CN114946115A (zh) 充电器和控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021822130

Country of ref document: EP

Effective date: 20221214

NENP Non-entry into the national phase

Ref country code: DE