WO2023246059A1 - 充电电路、电子设备、充电系统及充电控制方法 - Google Patents

充电电路、电子设备、充电系统及充电控制方法 Download PDF

Info

Publication number
WO2023246059A1
WO2023246059A1 PCT/CN2022/142485 CN2022142485W WO2023246059A1 WO 2023246059 A1 WO2023246059 A1 WO 2023246059A1 CN 2022142485 W CN2022142485 W CN 2022142485W WO 2023246059 A1 WO2023246059 A1 WO 2023246059A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
charging
voltage
switch unit
switch
Prior art date
Application number
PCT/CN2022/142485
Other languages
English (en)
French (fr)
Inventor
郭红光
李建国
罗璇
田晨
张加亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023246059A1 publication Critical patent/WO2023246059A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a charging circuit, electronic equipment, charging system and charging control method.
  • Embodiments of the present application provide a charging circuit, electronic device, charging system and charging control method.
  • An embodiment of the present application provides a charging circuit for use in electronic devices.
  • the charging circuit includes:
  • a resonant circuit configured to convert the received direct current signal into an alternating current signal
  • a transformer circuit including a primary coil and a secondary coil.
  • the primary coil is connected to the output end of the resonant circuit.
  • the primary coil is coupled to the secondary coil.
  • the transformer circuit is configured to pass through the primary coil.
  • the first voltage of the alternating current signal is transformed with the secondary coil to obtain a second voltage.
  • the second voltage is used to provide electrical energy to the electrical device; the second voltage is less than or equal to the first voltage. Voltage.
  • the resonant circuit operates at a fixed resonant frequency.
  • the number of turns of the primary coil is N times the number of turns of the secondary coil, and N is a number greater than 1.
  • the resonant circuit includes: a resonant capacitor Cr, a resonant inductor Lr, and an excitation inductor Lm connected in series;
  • the first end of the primary coil is connected to the second end of the resonant inductor Lr and the first end of the exciting inductor Lm, and the second output of the primary coil is connected to the second end of the exciting inductor Lm. .
  • the charging circuit provided by the embodiment of the present application also includes a switching circuit
  • the output end of the switch circuit is connected to the input end of the resonant circuit;
  • the switch circuit includes at least two switch units;
  • the switching circuit is used to alternately open the first group of switching units and the second group of switching units in the at least two switching units according to the switching frequency, so that the resonant circuit converts the received direct current signal into an alternating current signal. ;
  • the switching frequency is determined based on the resonant frequency of the resonant circuit.
  • the switch circuit includes a first switch unit and a second switch unit; the first group of switch units includes the first switch unit, and the second group of switch units includes the second switch unit;
  • the first switch unit and the second switch unit are connected in series, the first end of the first switch unit is connected to the forward voltage input port of the charging interface, and the second end of the first switch unit is connected to the third The first ends of the two switch units are connected, and the second end of the second switch unit is connected to the negative voltage input port of the charging interface;
  • the first input end of the resonant circuit is connected to the second end of the first switch unit and the first end of the second switch unit, and the second input end of the resonant circuit is connected to the second switch unit. The second end of the connection.
  • the switch circuit includes first to fourth switch units, the first group of switch units includes the first switch unit and the fourth switch unit, and the second group of switch units includes the second switching unit and the third switching unit;
  • the first switch unit is connected in series with the second switch unit, the third switch unit is connected in series with the fourth switch unit, and the first switch unit and the second switch unit are connected with the third switch unit.
  • the switch unit and the fourth switch unit are connected in parallel;
  • the first end of the first switch unit and the first end of the third switch unit are connected to the forward voltage input port of the charging interface, and the second end of the first switch unit is connected to the second switch unit.
  • the first end of the third switch unit is connected to the first end of the fourth switch unit, the second end of the second switch unit, and the second end of the fourth switch unit are connected.
  • the terminal is connected to the negative voltage input port of the charging interface;
  • the first input end of the resonant circuit is connected to the second end of the first switch unit and the first end of the second switch unit, and the second input end of the resonant circuit is connected to the third switch unit.
  • the second end is connected to the first end of the fourth switch unit.
  • each of the at least two switch units includes a switch tube, a first diode and a first capacitor
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes a charging circuit and a power device.
  • the charging circuit includes a resonant circuit and a transformer circuit;
  • the resonant circuit is configured to convert the received direct current signal into an alternating current signal
  • the transformer circuit includes a primary coil and a secondary coil.
  • the primary coil is connected to the output end of the resonant circuit.
  • the primary coil is coupled to the secondary coil.
  • the secondary coil is connected to the power source. device connection;
  • the transformer circuit is configured to transform the first voltage of the alternating current signal through the primary coil and the secondary coil to obtain a second voltage, where the second voltage is used to provide electrical energy to the electrical device;
  • the second voltage is less than or equal to the first voltage.
  • Embodiments of the present application also provide a charging system, which includes: a power supply terminal and an electronic device;
  • the power supply end is configured to convert alternating current signals into direct current signals and output them to the electronic device;
  • the electronic equipment includes a charging circuit and a power device, wherein the charging circuit includes a resonant circuit and a transformer circuit, the resonant circuit is configured to convert a received direct current signal into an alternating current signal; the transformer circuit includes a primary coil and a secondary coil, the primary coil is connected to the output end of the resonant circuit, the primary coil is coupled to the secondary coil, and the transformer circuit is configured to communicate with the secondary through the primary coil
  • the coil transforms the first voltage of the alternating current signal to obtain a second voltage.
  • the second voltage is used to provide electric energy to the electrical device; the second voltage is less than or equal to the first voltage.
  • Embodiments of the present application also provide a charging control method, which is applied to the above charging circuit or electronic device.
  • the method includes:
  • the first voltage of the alternating current signal is transformed through the primary coil and the secondary coil of the transformer circuit to obtain a second voltage.
  • the second voltage is used to provide electric energy to the electrical device; the second voltage is less than or equal to the first voltage.
  • Embodiments of the present application provide a charging circuit.
  • the charging circuit specifically includes a resonant circuit and a transformer circuit.
  • the resonant circuit is configured to convert a received direct current signal into an alternating current signal.
  • the transformer circuit includes a primary coil and a secondary coil. , the primary coil is connected to the output end of the resonant circuit, the primary coil is coupled to the secondary coil, and the transformer circuit is configured to transform the first voltage of the alternating current signal through the primary coil and the secondary coil to obtain The second voltage is less than or equal to the first voltage, and the second voltage is used to provide electric energy to the electrical device. It can be seen that the charging circuit provided by the embodiment of the present application can isolate the electrical device from the external power supply end through the coupling relationship of the coil.
  • the external power supply point when the external power supply point outputs high power and voltage, it passes through the primary coil in the transformer circuit.
  • the voltage of the electrical device By isolating and reducing the voltage of the secondary coil, the voltage of the electrical device can be maintained in a stable state, thus improving the reliability of the charging circuit.
  • the charging circuit provided by the embodiment of the present application can increase the charging power while ensuring the reliability of the device.
  • Figure 1A is a schematic diagram of the operation of the first half cycle of a charge pump circuit in the related art
  • Figure 1B is a schematic diagram of the operation of the second half cycle of a charge pump circuit in the related art
  • FIG. 2 is a schematic structural diagram of a charging circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram 2 of the structure of a charging circuit provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram 3 of the structure of a charging circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram 4 of the structure of a charging circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram 5 of the structure of a charging circuit provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram 6 of the structural composition of a charging circuit provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram 2 of the structural composition of an electronic device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram 3 of the structure of an electronic device provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram 4 of the structure of an electronic device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a charging system provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a charging control method provided by an embodiment of the present application.
  • the charging circuit of smart terminals is a charge pump (Charge Pump, CP) circuit.
  • the CP circuit continuously opens the switch to charge the capacitor, and closes the switch to redistribute the capacitor charge to halve the input voltage, and provide the halved voltage to the battery for charging.
  • Figure 1A is a schematic diagram of the operation of the CP circuit in the first half of a working cycle
  • Figure 1B is a schematic diagram of the operation of the CP circuit in the second half of a working cycle.
  • the CP circuit turns on the switching tubes QCH1, QCL1, QDH2 and QDL2 in the first half cycle to charge the capacitors C1 and C2.
  • the series voltage of the capacitors C1 and C2 is VDD.
  • the CP circuit turns on the switching transistors QDH1, QDL1, QCH2, and QCL2 to redistribute the charges on the capacitor C1 and the capacitor C2 so that the intermediate voltage is close to 1/2VDD. After multiple cycles, the output voltage stabilizes at 1/2VDD, thus realizing the half-voltage function.
  • CP circuit has the advantages of simple setup and high efficiency and is widely used. Since halving the voltage of the CP circuit will cause the current to double, as the charging power increases, the current of the CP circuit will also increase. Furthermore, the switching tubes and capacitors in the CP circuit will age over time, causing the devices to short-circuit or open-circuit, causing the output voltage to increase. Moreover, the capacitor is directly connected in parallel with the battery. When the battery voltage exceeds the threshold, there is a risk of fire and explosion. Therefore, the current CP charging technology cannot meet the reliability requirements.
  • the charging circuit specifically includes a resonant circuit and a transformer circuit.
  • the resonant circuit is configured to convert a received direct current signal into an alternating current signal.
  • the transformer circuit includes a primary coil and a transformer circuit.
  • a secondary coil is connected to the output end of the resonant circuit, the primary coil is coupled to the secondary coil, and the transformer circuit is configured to transform the first voltage of the alternating current signal through the primary coil and the secondary coil. The voltage is transformed to obtain a second voltage, the second voltage is less than or equal to the first voltage, and the second voltage is used to provide electric energy to the electrical device.
  • the charging circuit provided by the embodiment of the present application can isolate the electrical device from the external power supply terminal through the coupling relationship of the coil. In this way, when the adapter outputs high power and voltage, it passes through the primary coil and secondary coil in the transformer circuit. Through the isolation and voltage reduction processing of the secondary coil, the voltage of the electrical device can be maintained in a stable state, thereby improving the reliability of the charging circuit. In this way, the charging circuit provided by the embodiment of the present application can increase the charging power while ensuring the reliability of the device.
  • the charging circuit provided by the embodiment of the present application can be applied to the electronic device provided by the embodiment of the present application, and the electronic device is a receiving end of charging power.
  • Electronic devices provided by embodiments of this application may include mobile phones, mobile power supplies, electric vehicles, laptops, drones, tablets, e-books, e-cigarettes, wearable devices (such as watches, bracelets, smart glasses, etc.), robots (such as sweeping robots, floor washing machines, etc.), wireless headsets, Bluetooth speakers, wireless mice, etc., the embodiments of the present application are not limited to these.
  • the adapter in the embodiment of the present application is a supply end or source end of charging electric energy.
  • the embodiment of the present application provides a charging circuit, which may include a resonant circuit 21 and a transformer circuit 22.
  • the transformer circuit 22 includes a primary coil 221 and a secondary coil 222.
  • the primary coil 221 and the secondary coil 222 are coupled. .
  • the output end of the resonant circuit 21 is connected to the primary coil 221 of the transformer circuit 22 .
  • the input end of the resonant circuit 21 can receive a direct current signal provided by an external power supply terminal such as a charger or an adapter, and the resonant circuit 21 is configured to convert the received direct current signal into an alternating current signal.
  • the AC signal converted by the resonant circuit 21 can drive the primary coil 221 and the secondary coil 222 in the transformer circuit 22 to generate electromagnetic induction, thereby reducing the first voltage to obtain the second voltage.
  • the transformer circuit 22 may be a DC transformer DCX.
  • the secondary coil 222 of the transformer circuit 22 can be connected to an electrical device. After the transformer circuit 22 converts the first voltage into a second voltage, the charging circuit can use the second voltage to supply power to the electrical device.
  • the power-consuming device may be a battery, a processor, a display screen, and other devices that require power, and the embodiments of the present application do not limit this.
  • the voltage input by the external power supply terminal to the charging circuit may be higher than the input voltage in the related art, for example, higher than 30 volts (V).
  • V volts
  • the external power supply terminal is isolated from the electrical device.
  • the secondary coil 222 is not directly connected to the primary coil 221, so the input voltage is high. It will not affect the electrical devices on the secondary coil side.
  • the voltage input by the external charging terminal to the charging circuit can be higher.
  • the circuit input to the charging circuit will be smaller, which can improve the charging system. efficiency, and reduce the diameter of the cable line between the external charging terminal and the charging circuit, making the cable line thinner, thereby reducing costs and fundamentally solving the problem of high-power charging.
  • the charging circuit provided by the embodiment of the present application isolates the electrical device from the external power supply terminal through the coupling relationship between the primary coil 221 and the secondary coil 222. In this way, when the external power supply terminal outputs high power and voltage, After the primary coil and secondary coil are isolated and stepped down in the transformer circuit, the voltage of the electrical device can be maintained in a stable state, thereby improving the reliability of the charging circuit. In this way, the charging circuit provided by the embodiment of the present application can increase the charging power while ensuring the reliability of the device.
  • the resonant circuit 21 in the embodiment of the present application can operate at a fixed resonant frequency. That is to say, the resonant circuit 21 can always work at the resonant frequency. In this way, the impedance of the resonant circuit 21 can be minimized, thereby maximizing the gain of the input voltage and output voltage of the resonant circuit and improving the charging efficiency of the charging circuit.
  • the resonant circuit 21 can always work at the resonant frequency, maximizing the gain of the input voltage and the output voltage of the resonant circuit 21, and improving the charging efficiency of the charging circuit.
  • the charging circuit provided by the embodiment of the present application can improve the charging power and charging efficiency while ensuring the reliability of the device.
  • the ratio between the number of turns of the primary coil 221 and the number of turns of the secondary coil 222 is N:1, and N is a number greater than or equal to 1.
  • the ratio between the number of turns of the primary coil 221 and the number of turns of the secondary coil 222 has a correlation relationship with the first voltage and the second voltage.
  • the ratio of the number of turns of the primary coil 221 to the number of turns of the secondary coil 222 is the same as the ratio of the first voltage to the second voltage.
  • the turns ratio between the primary coil 221 and the secondary coil 222 can be designed according to different charging requirements, so that the first voltage of the alternating current signal output by the resonant circuit 21 is converted into a suitable second voltage for use. electrical device for power supply. For example, if the output power of the external power supply terminal is increased to 200W and the first voltage is increased to 20V, the number of turns of the primary coil 221 can be designed to be 4 times the number of turns of the secondary coil 222, and then the second voltage can be 5V.
  • the charging circuit provided by the embodiment of the present application can achieve voltage matching through the windings of the primary coil 221 and the secondary coil 222 .
  • the external power supply terminal outputs higher power (for example, greater than 150W) and higher voltage (for example, 30-50v)
  • higher power for example, greater than 150W
  • higher voltage for example, 30-50v
  • the resonant circuit 21 may include a resonant capacitor Cr, a resonant inductor Lr, and an excitation inductor Lm connected in series; wherein, the first end of the primary coil 221 is connected to the first end of the resonant inductor Lr. The two ends are connected to the first end of the exciting inductor Lm, and the second input of the primary coil 221 is connected to the second end of the exciting inductor Lm.
  • the magnetic inductor Lm may have the same structure as the primary coil 221 . That is to say, the exciting inductor in the embodiment of the present application can also use the primary coil 221 to achieve corresponding functions without requiring an additional inductor.
  • the resonant circuit in the embodiment of the present application may be an LLC resonant circuit and form a DCX-LLC resonant converter together with the transformer circuit. It has the advantages of traditional DCX-LLC resonant converter and can achieve high efficiency in a wide range.
  • the charging circuit provided by the embodiment of the present application may further include a switch circuit 23 .
  • the output terminal of the switch circuit 23 may be connected to the input terminal of the resonant circuit 21 .
  • the switch circuit 23 includes at least two switch units, and the switch circuit 23 is configured to alternately turn on the first group of switch units and the second group of switch units in the at least two switch units according to the switching frequency to supply the resonant circuit.
  • the received direct current signal is converted into an alternating current signal; the switching frequency is determined based on the resonant frequency.
  • the switch circuit 23 may include two or more switch units.
  • the switch circuit 23 may include two switch units, four switch units, or six switch units, etc., which are not limited in this embodiment of the present application.
  • At least two switch units in the switch circuit 23 can be divided into two parts, a first group of switch units and a second group of switch units.
  • Each group of switch units includes at least one switch unit.
  • the number of switch units in the switch circuit 23 may be an even number.
  • the first group of switch units and the second group of switch units may include the same number of switch units.
  • the switch circuit 23 can drive the resonant circuit 21 to convert the received DC signal into an AC signal by alternately opening the first group of switch units and the second group of switch units in the switch circuit 23 .
  • the first group of switch units and the second group of switch units can be alternately closed and opened according to a certain switching frequency.
  • the charging circuit in the embodiment of the present application can convert the received direct current signal into an alternating current signal by controlling the switching frequency of each switching unit in the switching circuit 23 .
  • the switching frequency may be related to the resonant frequency at which the resonant circuit 21 operates. It should be understood that the charging circuit controls the opening and closing frequencies of each switch unit in 23 to make the resonant circuit 21 work at different frequencies. In practical applications, in order to make the resonant circuit 21 always operate at the resonant frequency and maximize the gain, the above-mentioned switching frequency can be designed according to the resonant frequency.
  • the resonant circuit 23 can always work at the resonant frequency, realizing high frequency of the resonant circuit 21, thereby improving the charging efficiency.
  • the topology of the switch circuit 23 may be a half-bridge topology.
  • the switch circuit 23 may include a first switch unit 231 and a second switch unit 232; the first group of switch units may include the first switch unit 231 , the above-mentioned second group of switch units may include the second switch unit 232 .
  • the first switch unit 231 may constitute the above-mentioned first group of switch units
  • the second switch unit 232 may constitute the above-mentioned second group of switch units.
  • the switch circuit 23 alternately turns on the first switch unit and the second switch unit according to the switching frequency, so that the resonant circuit converts the received DC signal into an AC signal.
  • the first switch unit 231 and the second switch unit 232 are connected in series, the first end of the first switch unit 231 is connected to the forward voltage input port of the charging interface, and the second end of the first switch unit 231 is connected to the second switch unit 232
  • the first end of the resonant circuit 23 is connected to the negative voltage input port of the charging interface; the second end of the second switch unit 232 is connected to the negative voltage input port of the charging interface; the first input end of the resonant circuit 23 is connected to the second end of the first switch unit 231, and the second switch unit
  • the first end of the resonant circuit 23 is connected to the first end of the resonant circuit 23 and the second end of the second switch unit 232 is connected.
  • the charging link in the embodiment of the present application may also include a charging interface.
  • the charging interface can be connected to an external power supply terminal through a charging cable and is used to receive the received DC signal.
  • the charging line may be a cable line. It should be understood that the charging interface includes a positive voltage input port and a negative voltage input port.
  • the charging interface is a TypeC interface.
  • the charging interface can also be any interface including power pins Vbus and GND.
  • the first input terminal of the resonant circuit 21 may be the first terminal of the resonant capacitor Cr, and the second input terminal of the resonant circuit 21 may be the second terminal of the exciting inductor Lm.
  • the input voltage of the resonant circuit 21 may be the midpoint voltage of the switching circuit 23 .
  • the midpoint voltage of the switch circuit 23 may be the voltage at the connection between the second end of the first switch unit 231 and the first end of the second switch unit 232 .
  • the switch circuit 23 shown in FIG. 5 can also step down the voltage input from the external power supply terminal. Under the action of the alternate opening and closing of the first switching unit and the second switching unit, the midpoint voltage of the charging circuit (ie, the first switching unit and the second switching unit) may be half of the input voltage at the charging interface.
  • the midpoint voltage of the switch circuit 23 can be 20V. If the number of turns of the primary coil 221 is If the number of turns of the primary coil 222 is 4 times, the secondary transformer circuit 22 can reduce the voltage of 20V to 5V, so that the charging voltage of the electrical device is 5V.
  • each switch unit may include a switch tube, a first diode and a first capacitor; wherein, the switch tube, the first diode and the first capacitor in each switch unit are connected in parallel. , specifically including: the source of the switch tube is connected to the anode of the first diode and the first end of the first capacitor, and the drain of the switch tube is connected to the cathode of the first diode and the second end of the first capacitor.
  • the drain of the switch tube, the cathode of the first diode, and the first end of the first capacitor together constitute the first end of the switch unit, and the source of the switch tube, the anode of the first diode, and The second terminals of the first capacitor jointly form the second terminal of the switch unit.
  • the switch transistor and the first diode in each switch unit can be set separately, or they can be integrated together, which is not limited in the embodiment of the present application.
  • the first switch unit 231 may include a switch Q1, a first diode D1, and a first capacitor C1.
  • the second switch unit 232 may include a switch transistor Q2, a first diode D2 and a first capacitor C2.
  • the switch tube Q1 and the switch tube Q2 are connected in series, and the source of the switch tube Q1 is connected to the drain of the switch tube Q2. Furthermore, the switch Q1 is connected in parallel with the first diode D1 and the first capacitor C1, and the switch Q2 is connected in parallel with the first diode D2 and the first capacitor C2.
  • drain of the switch Q1 is connected to the anode of the first diode D1 and the first end of the first capacitor C1, and the source of the switch Q1 is connected to the cathode of the first diode D1 and the first capacitor C1.
  • drain of the switch Q2 is connected to the anode of the first diode D2 and the first end of the first capacitor C2, and the source of the switch Q2 is connected to the cathode of the first diode D2 and the first capacitor C2. The second end of the connection.
  • the drain of the switch Q1 is also connected to the forward voltage port of the charging interface, and the source of the switch Q2 is also connected to the forward voltage port of the charging interface.
  • the switch Q2 when the switch Q2 is turned off, the first diode D1 can be turned on through the action of the first capacitor C2, thereby turning on the diode Q1.
  • the switch Q1 when the switch Q1 is turned off, the first diode D2 can be turned on through the action of the first capacitor D1, thereby turning on the diode Q2. In this way, the switch Q1 and the switch Q2 can be turned on at zero voltage, thereby improving the charging efficiency.
  • the switch Q1 and the first diode D1 can be set separately or integrated together.
  • the switch Q2 and the first diode D2 can be set separately or integrated together. This is not done in the embodiment of the present application. limit.
  • the topology of the switch circuit 23 may also be a full-bridge topology.
  • the switch circuit 23 includes four switch units, which are a first switch unit 231, a second switch unit 232, a third switch unit 233, and a fourth switch unit.
  • the first group of switch units includes a first switch unit 231 and a fourth switch unit 234
  • the second group of switch units includes a second switch unit 232 and a third switch unit 233 .
  • the first switch unit 231 and the fourth switch unit 234 serve as a set of switch units
  • the second switch unit 232 and the third switch unit 233 serve as a set of switch units
  • the two sets of switch units are turned on alternately to work.
  • the first switch unit 231 and the second switch unit 232 are connected in series, the third switch unit 233 and the fourth switch unit 234 are connected in series, and the first switch unit 231 and the second switch unit 232 are connected with the third switch unit 233 and the fourth switch unit 234 in parallel.
  • the first end of the first switch unit 231 and the first end of the third switch unit 233 are connected to the forward voltage input port of the charging interface, and the second end of the first switch unit 231 is connected to the first end of the second switch unit 232 connection, the second end of the third switch unit 233 is connected to the first end of the fourth switch unit 234, the second end of the second switch unit 232, and the second end of the fourth switch unit 234 are connected to the negative voltage of the charging interface Input port connection.
  • the first input end of the resonant circuit 21 is connected to the second end of the first switch unit 231 and the first end of the second switch unit 232 , and the second input end of the resonant circuit 21 is connected to the second end of the third switch unit 233 . terminal, and the first terminal of the fourth switch unit 234 is connected.
  • the charging link in the embodiment of the present application may also include a charging interface.
  • the charging interface can be connected to an external power supply terminal through a cable line and is used to receive a DC signal provided by the external power supply terminal. It should be understood that the charging interface includes a positive voltage input port and a negative voltage input port.
  • the charging interface is a TypeC interface.
  • the first input terminal of the resonant circuit 21 may be the first terminal of the resonant capacitor Cr, and the second input terminal of the resonant circuit 21 may be the second terminal of the exciting inductor Lm.
  • the input voltage of the resonant circuit 21 may be the midpoint voltage of the switching circuit 23 .
  • the midpoint voltage of the switch circuit 23 may be the connection point between the second end of the first switch unit 231 and the first end of the second switch unit 232, and the second end of the third switch unit 233 and the fourth end.
  • the midpoint voltage is the same as the voltage input at the charging interface.
  • each switch unit may include a switch tube, a first diode and a first capacitor; wherein, the switch tube, the first diode and the first capacitor in each switch unit are connected in parallel. , specifically including: the source of the switch tube is connected to the anode of the first diode and the first end of the first capacitor, and the drain of the switch tube is connected to the cathode of the first diode and the second end of the first capacitor.
  • the drain of the switch tube, the cathode of the first diode, and the first end of the first capacitor together constitute the first end of the switch unit, and the source of the switch tube, the anode of the first diode, and The second terminals of the first capacitor jointly form the second terminal of the switch unit.
  • switch transistor and the first diode in each switch unit in the embodiment of the present application can be set separately, or they can be integrated together, which is not limited in the embodiment of the present application.
  • the first switch unit 231 may include a switch transistor Q1, a first diode D1, and a first capacitor C1.
  • the second switch unit 232 may include a switch transistor Q2, a first diode D2 and a first capacitor C2.
  • the third switch unit 233 may include a switch transistor Q3, a first diode D3 and a first capacitor C3.
  • the fourth switch unit 234 may include a switch transistor Q4, a first diode D4 and a first capacitor C4.
  • the switch tube Q1 and the switch tube Q2 are connected in series, the source of the switch tube Q1 is connected with the drain of the switch tube Q2, and the switch tube Q3 and the switch tube Q4 are connected in series, and the source of the switch tube Q3 is connected with the drain of the switch tube Q4. connect.
  • the switch Q1 is connected in parallel with the first diode D1 and the first capacitor C1
  • the switch Q2 is connected in parallel with the first diode D2 and the first capacitor C2.
  • the switch Q3 is connected in parallel with the first diode D3 and the first capacitor C3
  • the switch Q4 is connected in parallel with the first diode D4 and the first capacitor C4.
  • the drain of the switch Q1 is connected to the anode of the first diode D1 and the first end of the first capacitor C1, and the source of the switch Q1 is connected to the cathode of the first diode D1, and The second terminal of the first capacitor C1 is connected.
  • the drain of the switch Q2 is connected to the anode of the first diode D2 and the first terminal of the first capacitor C2.
  • the source of the switch Q2 is connected to the cathode of the first diode D2 and the first terminal of the first capacitor C2. Two-terminal connection.
  • the drain of the switch Q3 is connected to the anode of the first diode D3 and the first terminal of the first capacitor C3.
  • the source of the switch Q3 is connected to the cathode of the first diode D3 and the first terminal of the first capacitor C3. Two-terminal connection.
  • the drain of the switch Q4 is connected to the anode of the first diode D4 and the first terminal of the first capacitor C4.
  • the source of the switch Q4 is connected to the cathode of the first diode D4 and the first terminal of the first capacitor C4. Two-terminal connection.
  • the drain of switch Q1 and the drain of switch Q3 are also connected to the forward voltage port of the charging interface.
  • the source of switch Q2 and the drain of switch Q4 are also connected to the forward voltage port of the charging interface.
  • the first diode D1 and the first diode D4 when the switch Q2 and the switch Q3 are turned off, the first diode D1 and the first diode D4 can be turned on through the action of the first capacitor C2 and the second capacitor C3, thereby turning on the diodes. Q1 and diode Q4.
  • the switching tube Q1 and the switching tube Q4 when the switching tube Q1 and the switching tube Q4 are turned off, the first diode D2 and the first diode D3 can be turned on through the action of the first capacitor D1 and the first capacitor D4, thereby turning on the diode Q2 and the switching tube Q3, in this way, the switching transistor Q1 to the switching transistor Q4 can be opened at zero voltage, thereby improving the charging efficiency.
  • the switch Q1 and the first diode D1 can be set separately or integrated together.
  • the switch Q2 and the first diode D2 can be set separately or integrated together.
  • the switch Q3 and the first diode D2 can be set separately or integrated together.
  • the first diode D3 can be provided separately or integrated together.
  • the switching tube Q4 and the first diode D4 can be provided separately or integrated together. This is not limited in the embodiment of the present application.
  • the charging circuit provided by the embodiment of the present application also includes a rectifier circuit 24 , which is connected to the output end of the transformer circuit 22 ; the rectifier circuit 24 is configured to convert the third The two voltages are rectified to obtain the power supply voltage; the power supply voltage is configured to provide electric energy to the electrical device.
  • the input end of the rectifier circuit 24 may be connected to the secondary coil 222 of the transformer circuit 22 .
  • the output end of the rectifier circuit 24 can be connected to an electrical device.
  • the second voltage obtained after the voltage reduction process by the transformer circuit 22 belongs to AC power.
  • the rectifier circuit 24 in the embodiment of the present application can convert the second voltage belonging to AC power into a supply voltage of DC power. In this way, the charging circuit can use the obtained supply voltage to supply power to the electrical device.
  • the rectifier circuit 24 may include at least two second diodes and a second capacitor.
  • the rectifier circuit 24 may be a half-wave rectifier circuit, a full-wave rectifier circuit or a bridge rectifier circuit, which is not limited in the embodiment of the present application.
  • the rectifier circuit 24 may include a second diode D5, a second diode D6, and a second capacitor C5.
  • the anode of the second diode D5 is connected to the first end of the secondary coil 222
  • the cathode of the second diode is connected to the first end of the second capacitor C5
  • the anode of the second diode D6 is connected to the secondary coil 222
  • the second terminal is connected
  • the cathode of the second diode is connected to the cathode of the first diode and the first terminal of the second capacitor C5
  • the second terminal of the second capacitor is connected to the ground.
  • the electrical device may be connected in parallel with the second capacitor C5.
  • the charging circuit can use the rectifier circuit 24 to output a rectified signal to implement zero-current switching and achieve high charging efficiency in a wide range.
  • the resonant circuit and transformer circuit architecture (i.e. LLC-DCX architecture) provided by the embodiments of this application has natural power isolation advantages compared to the CP architecture. In the case of abnormality, damage, breakdown, etc. of system components, natural power isolation can be achieved. Isolation, and the breakdown voltage of the transformer circuit is much higher than the breakdown voltage of the switching tube and capacitor components, greatly improving the reliability.
  • the electronic device may include a charging circuit 80 and a power device 81 .
  • the charging circuit 80 may include a resonant circuit 21 and a transformer circuit 22.
  • the transformer circuit 22 includes a primary coil 221 and a secondary coil 222, and the primary coil 221 and the secondary coil 222 are coupled.
  • the output end of the resonant circuit 21 is connected to the primary coil 221 of the transformer circuit 22 .
  • the secondary coil 222 of the transformer circuit 22 is connected to the electrical device 81 .
  • the electronic device may further include: a direct charging circuit 82 , a step-down conversion BUCK circuit 83 , and a first control circuit 84 ;
  • the first control circuit 84 is configured to obtain the charging status information of the electric device 81, and select any one of the charging circuit 80, the direct charging circuit 82, and the BUCK circuit 83 to supply power to the electric device 81 based on the charging status information. .
  • the charging status of the electrical device can be detected, and an appropriate circuit can be selected to provide power to the electrical device 81 .
  • the charging status information may include the voltage, current, charging power at both ends of the electrical device 81 , as well as the temperature of the electrical device 81 , the capacitance of the electrical device 81 , etc., which are not limited in the embodiments of the present application. .
  • the electronic device may The charging circuit 80 provided in the embodiment of the present application is selected to provide power to the electrical device 81 .
  • the direct charging circuit 82 or the BUCK circuit 83 can be selected to supply power to the electrical device 81 .
  • the power-consuming device 81 in the embodiment of the present application can be a battery module or any device that needs to use electric energy, and the embodiment of the present application does not limit this.
  • the battery module may include at least one battery, and the battery may be a nickel-metal hydride battery or a lithium-ion battery, which is not limited in the embodiment of the present application.
  • the power-consuming device 81 may include two batteries connected in series, and the power-consuming device 81 may also include other numbers of batteries, which are not limited in this embodiment of the present application.
  • the charging status information obtained by the first control circuit 81 may include parameters such as voltage, current, charging power, battery temperature, and battery capacity of the battery module.
  • the electronic equipment may further include a second control circuit 85; the second control circuit 85 is configured to obtain the charging status of the electrical device 81 information.
  • the second control circuit 85 may also have a communication function, and may send the obtained charging status information to an external power supply terminal, so that the external power supply terminal can adjust the voltage of the DC signal it provides for the electronic device.
  • the second control circuit 85 can be a different control circuit from the first control circuit 84, and the function of the second control circuit 85 can also be realized by the first control circuit 84, or the first control circuit 84 and the second control circuit 84 can be combined.
  • the control circuit 85 is integrated into the same control circuit.
  • the external power supply terminal in the embodiment of the present application may be a power supply terminal capable of dynamically adjusting its output voltage.
  • the external power supply terminal in the embodiment of the present application may be a charger or adapter integrated with a controller.
  • the embodiments of this application do not limit this.
  • the second control circuit 85 can be connected to the controller of the external power supply terminal through a cable line, or the second control circuit 85 can be connected to the controller of the external power supply terminal through a specific interface.
  • the embodiments of this application do not limit this.
  • the second control circuit 85 can obtain the charging status information of the electrical device 81 and send the charging status information to the controller in the external power supply end. In this way, the controller in the external power supply end can control the external power supply. The voltage of the DC signal provided by the power supply end is adjusted to match the actual power demand of the electrical device 81 in the electronic device, thereby improving charging efficiency.
  • the second control circuit 85 after the second control circuit 85 obtains the charging status information, it may not send it to the external power supply terminal.
  • the electronic device determines the voltage currently required by the electrical device 81 based on the charging status information obtained by the second control circuit 85 , and directly requests the required voltage from the external power supply terminal through the second control circuit 85 .
  • the controller at the external power supply terminal after receiving the request, directly adjusts the voltage of the DC signal according to the requested voltage, so that the voltage of the adjusted DC signal matches the requested voltage, thereby improving charging efficiency.
  • the number of charging circuits 80 and power devices 81 in the electronic equipment may include multiple.
  • multiple charging circuits 80 can be connected in parallel, and the input end of each charging circuit 80 is connected to the charging interface to receive a DC signal provided by an external power supply end.
  • the output terminals of multiple charging circuits 80 are connected to multiple electrical devices 81 , and different charging circuits 80 can provide power to different electrical devices 81 .
  • Different power-consuming devices in the multiple power-consuming devices 81 may have different functions.
  • the multiple power-consuming devices 81 may include battery modules, display screens, processors, image acquisition devices, etc.
  • the embodiment of the present application is suitable for multiple power-consuming devices 81 . There are no restrictions on the type of electrical devices.
  • multiple charging circuits 80 may correspond to multiple electrical devices 81 one-to-one, that is, one charging circuit 80 corresponds to one electrical device 81 , and each charging circuit 80 supplies power to its corresponding electrical device 81 .
  • the charging circuit 80 can also have a many-to-one relationship with multiple electrical devices 81 , that is, one charging circuit 80 supplies power to multiple electrical devices 81 .
  • the embodiment of the present application provides multiple charging circuits 80 and multiple electrical devices. The correspondence between the devices 81 is not limited.
  • FIG. 11 only two charging circuits 80 and two power consuming devices 81 are shown in FIG. 11 .
  • the electronic device may also include other numbers of charging circuits and power consuming devices. Make restrictions.
  • the multiple power supply circuits 80 in the electronic equipment in the embodiment of the present application are independent of each other, and different charging circuits 80 can power different electrical devices 81 . That is to say, multiple electrical devices 81 can Power is supplied at the same time to improve power supply efficiency.
  • the electronic equipment provided by the embodiments of the present application can be charged using the DCX-LLC architecture, which can achieve high efficiency in a wide range; at the same time, the DCX-LLC architecture is composed of a primary coil and a secondary coil and can achieve voltage matching. and electrical isolation to improve system reliability.
  • the voltage input by the adapter to the charging circuit can be higher.
  • the circuit input to the charging circuit will be smaller, which can improve the external charging system. efficiency, and reduce the diameter of the cable line between the external charging terminal and the charging circuit, making the cable line thinner, thereby reducing costs and fundamentally solving the problem of high-power charging.
  • the DCX-LLC structure can achieve high frequency, and its small size can realize the optimization of the entire charging power system, with higher efficiency, smaller size and lower cost.
  • the charging system may include a power supply end 1201 and an electronic device 1202;
  • the power supply terminal 1201 is configured to convert the alternating current signal into a direct current signal and output it to the electronic device 1202;
  • the Electronic device 1202 includes a charging circuit 80 and a power device 81.
  • the charging circuit 80 includes a resonant circuit 21 and a transformer circuit 22.
  • the resonant circuit 21 is configured to convert a received direct current signal into an alternating current signal;
  • the circuit 22 includes a primary coil 221 and a secondary coil 222.
  • the primary coil 221 is connected to the output end of the resonant circuit 222.
  • the primary coil 221 is coupled with the secondary line 222.
  • the transformer circuit 22 It is configured to transform the first voltage of the alternating current signal through the primary coil 221 and the secondary coil 222 to obtain a second voltage, and the second voltage is used to provide electric energy to the electrical device 81;
  • the second voltage is less than or equal to the first voltage.
  • the power supply terminal 1201 can be connected to the electronic device 1202 through a charging cable, and the power supply terminal 1201 provides a direct current signal to the electronic device 1202 through the charging cable.
  • the power supply end 1201 may include a first rectifier module, a transformer module, and a second rectifier module.
  • the first rectifier module can rectify the input alternating current (220V or 110V) into direct current.
  • the transformer module can transform the rectified DC power, for example, step down the 220V or 110V DC power.
  • the second rectifier module can be used to rectify the transformed direct current and output it to provide electric energy to the electronic device.
  • the transformer module in the power supply end 1201 needs to reduce the voltage of 220V or 110V to a relatively low value, such as the most common 5V, 10V, 20V, etc., and then provide it to the electronic device for charging.
  • the electronic equipment in the embodiment of the present application can isolate the electrical device inside the electronic equipment from the power supply end through the coupling relationship between the primary coil 221 and the secondary coil 222. In this way, when the power supply end outputs high power and voltage, after By isolating and reducing the voltage of the primary coil and the secondary coil in the transformer circuit, the voltage of the electrical device can be maintained in a stable state, and the electronic equipment has high charging reliability.
  • the power supply end 1201 of the charging system in the embodiment of the present application can improve charging efficiency by providing higher voltage (for example, voltage above 30V) to the electronic device.
  • the power supply end 1201 can choose a transformer module that reduces the voltage to a higher voltage, thereby avoiding the use of a transformer module that previously reduced the voltage to a low voltage, saving hardware costs and optimizing the structure and space of the power supply end content.
  • the increase in the output voltage of the power supply end can reduce the diameter of the charging cable under a certain power, further reducing the hardware cost and fundamentally solving the problem of high-power charging.
  • DCX-LLC in electronic equipment can achieve high frequency, improve charging efficiency, reduce the cost and cost of the charging system, and make the charging system more optimized.
  • the power supply end 1201 may also include a controller.
  • the controller in the power supply end 1201 can be connected to the second control circuit in the electronic device through a cable line or other specific interface.
  • the second control circuit 85 may send the obtained charging status information of the electrical device 81 to the controller in the power supply end. Further, the controller can adjust the voltage of the DC signal output to the electronic device based on the obtained charging status information, so that the voltage of the DC signal output by the power supply terminal 1201 can match the voltage actually required by the electrical device 81 in the electronic device. , further improving charging efficiency.
  • the second control circuit 85 may not send it to the external power supply terminal.
  • the electronic device determines the voltage currently required by the electrical device 81 based on the charging status information obtained by the second control circuit 85 , and directly requests the required voltage from the external power supply terminal through the second control circuit 85 .
  • the controller at the external power supply terminal directly adjusts the voltage of the DC signal according to the requested voltage, so that the voltage of the adjusted DC signal matches the requested voltage, thereby improving charging efficiency.
  • An embodiment of the present application also provides a charging control method, which can be applied to the charging circuit or electronic device in the above embodiment.
  • the charging control method in the embodiment of the present application may include the following steps:
  • Step 1001. Convert the received DC signal into an AC signal through the resonant circuit
  • Step 1002 Transform the first voltage of the alternating current signal through the primary coil and the secondary coil of the transformer circuit to obtain a second voltage.
  • the second voltage is used to provide electric energy to the electrical device; the third voltage The second voltage is less than or equal to the first voltage.
  • step 1001 the received direct current signal is converted into an alternating current signal through a resonant circuit, which can also be achieved through the following steps:
  • the first group of switching units and the second group of switching units in at least two switching units are alternately opened based on the switching frequency, so that the resonant circuit converts the received direct current signal into an alternating current signal; the switching frequency is based on the resonance The resonant frequency of the circuit is determined.
  • step 1002 transforms the first voltage of the alternating current signal through the primary coil and the secondary coil of the transformer circuit to obtain a second voltage
  • the following steps may also be implemented:
  • the second voltage is rectified by a rectifier circuit to obtain a supply voltage to provide electric energy to the electrical device.
  • any one of the charging circuit, the direct charging circuit, and the BUCK circuit is selected to supply power to the electrical device.
  • the charging control method in the embodiment of the present application may include the following steps:
  • the charging status information is sent to an external power supply terminal through the second control circuit, so that the external power supply terminal can adjust the voltage of the direct current signal provided by the external power supply terminal.
  • the charging control method in the embodiment of the present application may include the following steps:
  • the disclosed device can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the coupling, direct coupling, or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be electrical, mechanical, or other forms. of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例提供一种充电电路,应用于电子设备,包括:谐振电路,配置为将接收到的直流电信号转换为交流电信号;变压电路,包括初级线圈和次级线圈,所述初级线圈与所述谐振电路的输出端连接,所述初级线圈与所述次级线圈耦合,所述变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置提供电能;所述第二电压小于或等于所述第一电压。本申请实施例还提供一种电子设备、充电系统及充电控制方法。

Description

充电电路、电子设备、充电系统及充电控制方法
相关申请的交叉引用
本申请基于申请号为202210698490.1、申请日为2022年06月20日、发明名称为“充电电路、电子设备、充电系统及充电控制方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电子技术领域,尤其涉及一种充电电路、电子设备、充电系统及充电控制方法。
背景技术
随着近年来智能终端功能的不断强化,用户对智能终端的充电速度要求也越来越高。适配器的输出功率从之前的5瓦(W)至20W,提升到了65W以上,相应的,智能终端的输入电压和输入电流会随着外部供电端输出功率的增大而增大。电压和电流增大会对智能终端内部的器件的可靠性要求更高,因此,如何在提升充电功率的同时保证器件的可靠性,是目前亟待解决的技术问题。
发明内容
本申请实施例提供一种充电电路、电子设备、充电系统及充电控制方法。
本申请实施例提供一种充电电路,应用于电子设备,所述充电电路包括:
谐振电路,配置为将接收到的直流电信号转换为交流电信号;
变压电路,包括初级线圈和次级线圈,所述初级线圈与所述谐振电路的输出端连接,所述初级线圈与所述次级线圈耦合,所述变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置提供电能;所述第二电压小于或等于所述第一电压。
在本申请实施例中,所述谐振电路工作在固定的谐振频率上。
在本申请实施例中,所述初级线圈的匝数是所述次级线圈匝数的N倍,N为大于1的数。
在本申请实施例中,所述谐振电路包括:串联连接的谐振电容Cr,谐振电感Lr,和励磁电感Lm;
所述初级线圈的第一端与所述谐振电感Lr的第二端,以及所述励磁电感Lm的第一端连接,所述初级线圈的第二输与所述励磁电感Lm的第二端连接。
可选地,本申请实施例提供的充电电路还包括开关电路;
所述开关电路的输出端与所述谐振电路的输入端连接;所述开关电路包括至少两个开关单元;
所述开关电路,用于按照开关频率交替打开所述至少两个开关单元中的第一组开关单元和第二组开关单元,以供所述谐振电路将接收到的直流电信号转换为交流电信号;所述开关频率基于所述谐振电路的谐振频率确定。
可选地,所述开关电路包括第一开关单元和第二开关单元;所述第一组开关单元包括所述第一开关单元,所述第二组开关单元包括所述第二开关单元;
所述第一开关单元与所述第二开关单元串联,所述第一开关单元的第一端与充电接口的 正向电压输入端口连接,所述第一开关单元的第二端与所述第二开关单元的第一端连接,所述第二开关单元的第二端与所述充电接口的负向电压输入端口连接;
所述谐振电路的第一输入端与所述第一开关单元的第二端,以及所述第二开关单元的第一端连接,所述谐振电路的第二输入端与所述第二开关单元的第二端连接。
在本申请实施例中,所述开关电路包括第一开关单元至第四开关单元,所述第一组开关单元包括所述第一开关单元和第四开关单元,所述第二组开关单元包括第二开关单元和第三开关单元;
所述第一开关单元与所述第二开关单元串联,所述第三开关单元与所述第四开关单元串联,且所述第一开关单元和所述第二开关单元,与所述第三开关单元和所述第四开关单元并联;
所述第一开关单元的第一端,以及所述第三开关单元的第一端与充电接口的正向电压输入端口连接,所述第一开关单元的第二端与所述第二开关单元的第一端连接,所述第三开关单元的第二端与所述第四开关单元的第一端连接,所述第二开关单元的第二端,以及所述第四开关单元的第二端与所述充电接口的负向电压输入端口连接;
所述谐振电路的第一输入端与所述第一开关单元的第二端,以及所述第二开关单元的第一端连接,所述谐振电路的第二输入端与所述第三开关单元的第二端,以及所述第四开关单元的第一端连接。
在本申请实施例中,所述至少两个开关单元中的每个开关单元均包括开关管、第一二极管和第一电容;
本申请实施例提供一种电子设备,所述电子设备包括充电电路和用电装置,所述充电电路包括谐振电路和变压电路;
所述谐振电路,配置为将接收到的直流电信号转换为交流电信号;
所述变压电路,包括初级线圈和次级线圈,所述初级线圈与所述谐振电路的输出端连接,所述初级线圈与所述次级线圈耦合,所述次级线圈与所述用电装置连接;
所述变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置提供电能;所述第二电压小于或等于所述第一电压。
本申请实施例还提供一种充电系统,所述充电系统包括:供电端和电子设备;
所述供电端配置为将交流电信号转换为直流电信号,并输出给所述电子设备;
所述电子设备,包括充电电路和用电装置,其中,充电电路包括谐振电路和变压电路,所述谐振电路配置为将接收到的直流电信号转换为交流电信号;所述变压电路,包括初级线圈和次级线圈,所述初级线圈与所述谐振电路的输出端连接,所述初级线圈与所述次级线圈耦合,所述变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向所述用电装置提供电能;所述第二电压小于或等于所述第一电压。
本申请实施例还提供一种充电控制方法,该方法应用于上述充电电路或电子设备中,所述方法包括:
通过谐振电路,将接收到的直流电信号转换为交流电信号;
通过变压电路的初级线圈与次级线圈,将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置提供电能;所述第二电压小于或等于所述第一电压。
本申请实施例提供一种充电电路,该充电电路具体包括谐振电路和变压电路,其中,谐振电路配置为将接收到的直流电信号转换为交流电信号;变压电路包括初级线圈和次级线圈,初级线圈与谐振电路的输出端连接,初级线圈与次级线圈耦合,该变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,第二电压小于或等于第一电压,第二电压用于向用电装置提供电能。可以看出,本申请实施例提供的充电电路可以通过线圈的耦合关系,将用电装置与外部供电端进行隔离,这样,当外部供 电点输出高的功率和电压,经过变压电路中初级线圈和次级线圈的隔离和降压处理,用电装置的电压可以保持在稳定状态,从而提高充电电路的可靠性。如此,本申请实施例提供的充电电路可以在提升充电功率的同时保证器件的可靠性。
附图说明
图1A为相关技术中电荷泵电路一个工作周期中前半个周期的工作示意图;
图1B为相关技术中电荷泵电路一个工作周期中后半个周期的工作示意图;
图2为本申请实施例提供的一种充电电路的结构组成示意图一;
图3为本申请实施例提供的一种充电电路的结构组成示意图二;
图4为本申请实施例提供的一种充电电路的结构组成示意图三;
图5为本申请实施例提供的一种充电电路的结构组成示意图四;
图6为本申请实施例提供的一种充电电路的结构组成示意图五;
图7为本申请实施例提供的一种充电电路的结构组成示意图六;
图8为本申请实施例提供的一种电子设备的结构组成示意图一;
图9为本申请实施例提供的一种电子设备的结构组成示意图二;
图10为本申请实施例提供的一种电子设备的结构组成示意图三;
图11为本申请实施例提供的一种电子设备的结构组成示意图四;
图12为本申请实施例提供的一种充电系统的结构组成示意图;
图13为本申请实施例提供的一种充电控制方法的流程示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
实际应用中,智能终端的充电电路为电荷泵(Charge Pump,CP)电路。CP电路是通过不断打开开关给电容充电,关闭开关使电容电荷重新分配来实现输入电压减半,并将减半后的电压提供给电池进行充电。参考图1A和图1B所示的电路示意图,其中,图1A为CP电路一个工作周期中前半个周期的工作示意图,图1B为CP电路一个工作周期中后半个周期的工作示意图。
例如,参考图1A所示,CP电路在前半周期打开开关管QCH1、QCL1、QDH2和QDL2,给电容C1和电容C2进行充电,电容C1和电容C2的串联电压为VDD。参考图1B所示,CP电路在后半个周期通过打开开关管QDH1、QDL1、QCH2和QCL2,将电容C1和电容C2上的电荷重分配使中间电压接近1/2VDD。多周期后输出电压稳定为1/2VDD,由此实现半压功能。
CP电路具有设置简单,效率高等优点被大家广泛应用。由于CP电路将电压减半会导致电流的倍增,因此随着充电功率的升高,CP电路的电流也会随之升高。进一步地,CP电路中的开关管和电容随着时间的推移会老化导致器件短路或者开路,从而造成输出电压升高。并且,电容直接和电池并联,当电池电压超过阈值时就会起火爆炸的风险,所以目前的CP 充电技术无法满足可靠性要求。另外,随着外部供电端的功率增加,外部供电端的输出电流也会随之增大,并且要求电缆(cable)线的阻抗更小,因此需要提高cable线的直径,如此会造成硬件成本过高的问题。
基于此,本申请实施例提供一种充电电路,该充电电路具体包括谐振电路和变压电路,其中,谐振电路配置为将接收到的直流电信号转换为交流电信号,变压电路包括初级线圈和次级线圈,初级线圈与谐振电路的输出端连接,初级线圈与次级线圈耦合,该变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,第二电压小于或等于第一电压,第二电压用于向用电装置提供电能。可以看出,本申请实施例提供的充电电路可以通过线圈的耦合关系,将用电装置与外部供电端进行隔离,这样,当适配器输出高的功率和电压,经过变压电路中初级线圈和次级线圈的隔离和降压处理,用电装置的电压可以保持在稳定状态,从而提高充电电路的可靠性。如此,本申请实施例提供的充电电路可以在提升充电功率的同时保证器件的可靠性。
本申请实施例提供的充电电路可以应用于本申请实施例提供的电子设备中,该电子设备为充电电能的接收端。本申请实施例提供的电子设备可以包括手机、移动电源、电动汽车、笔记本电脑、无人机、平板电脑、电子书、电子烟、可穿戴设备(例如手表、手环、智能眼镜等)、机器人(例如扫地机器人、洗地机等)、无线耳机、蓝牙音箱、无线电鼠标等,本申请实施例对此不做限制。另外,本申请实施例中的适配器,为充电电能的提供端或源端。
参考图2所示,本申请实施例提供一种充电电路,可以包括谐振电路21和变压电路22,变压电路22包括初级线圈221和次级线圈222,初级线圈221和次级线圈222耦合。
其中,谐振电路21的输出端与变压电路22的初级线圈221连接。谐振电路21的输入端可以接收充电器、适配器等外部供电端提供的直流电信号,该谐振电路21配置为将接收到的直流电信号转换为交流电信号。这样,谐振电路21转换后的交流电信号可以驱使变压电路22中的初级线圈221和次级线圈222产生电磁感应,从而实现将第一电压进行降压,得到第二电压。也就是说,变压电路22可为直流变压器DCX。
应理解,变压电路22的次级线圈222可以连接用电装置,变压电路22将第一电压转换为第二电压后,充电电路可以利用该第二电压对用电装置进行供电。
可选地,用电装置可以是电池、处理器、显示屏等需要使用电能的装置,本申请实施例对此不做限制。
本申请实施例提供的充电电路中,外部供电端向充电电路输入的电压可以高于相关技术中的输入电压,例如高于30伏(V)。通过变压电路22中的初级线圈221和次级线圈222之间的耦合关系,将外部供电端与用电装置进行隔离,次级线圈222不会与初级线圈221直接连接,因此高的输入电压不会影响与次级线圈侧的用电装置。采用本申请实施例的充电电路的电子设备,外部充电端向充电电路输入的电压可以更高,在外部充电端充电功率一定的情况下,向充电电路输入的电路就越小,可以提高充电系统的效率,并降低外部充电端到充电电路之间的cable线的直径,使cable线更细,从而降低成本从根本上解决大功率充电的困扰。
由此可见,本申请实施例提供的充电电路,通过初级线圈221和次级线圈222的耦合关系,将用电装置与外部供电端进行隔离,这样,当外部供电端输出高的功率和电压,经过变压电路中初级线圈和次级线圈的隔离和降压处理,用电装置的电压可以保持在稳定状态,从而提高充电电路的可靠性。如此,本申请实施例提供的充电电路可以在提升充电功率的同时保证器件的可靠性。
在一些实施例中,相比于相关技术中谐振电路的工作频率随着负载的变化而变化,本申请实施例中的谐振电路21可以工作在固定的谐振频率上。也就是说,谐振电路21可以始终工作在谐振频率,这样,可以使得谐振电路21的阻抗最小,从而实现谐振电路的输入电压和输出电压的增益最大化,提高充电电路的充电效率。
也就是说,谐振电路21可以始终工作在谐振频率,使得谐振电路21的输入电压和输出 电压的增益最大化,提高充电电路的充电效率。如此,本申请实施例提供的充电电路可以在提升充电功率和充电效率的同时保证器件的可靠性。
在本申请一实施例中,初级线圈221的匝数与次级线圈222的匝数之间的比值为N:1,N为大于或等于1的数。
应理解,初级线圈221的匝数和次级线圈222的匝数之间的比值,与第一电压和第二电压具有关联关系。初级线圈221的匝数与次级线圈222的匝数比,与第一电压和第二电压的比值相同。
也就是说,可以根据不同的充电需求,设计初级线圈221和次级线圈222之间的匝数比,从而将谐振电路21输出的交流电信号的第一电压变换得到合适的第二电压给用电装置进行供电。示例性的,若外部供电端的输出功率提升至200W,第一电压提升至20V,可以设计初级线圈221的匝数为次级线圈222匝数的4倍,那么第二电压可以为5V。
由此可见,本申请实施例提供的充电电路可以通过初级线圈221和次级线圈222的绕组实现电压匹配。当外部供电端输出更大功率(例如大于150W)和更高电压时(例如30-50v)经过谐振电路21和变压电路22转换不同电压变换给用电装置供电。
在本申请一实施例中,参考图3所示,谐振电路21可以包括串联连接的谐振电容Cr,谐振电感Lr,和励磁电感Lm;其中,初级线圈221的第一端与谐振电感Lr的第二端,以及励磁电感Lm的第一端连接,初级线圈221的第二输与励磁电感Lm的第二端连接。
可选地,磁电感Lm可以与初级线圈221为同一结构。也就是说,本申请实施例中的励磁电感也可以利用初级线圈221实现相应的功能,不需要额外的电感。
可以理解的是,本申请实施例中的谐振电路可以是LLC谐振电路,与变压电路组成DCX-LLC谐振变换器。具有传统的DCX-LLC谐振变换器的优点,可以在宽范围内实现高效率。
在本申请一实施例中,参考图4所示,本申请实施例提供的充电电路还可以包括开关电路23。其中,开关电路23的输出端可以与谐振电路21的输入端连接。
其中,开关电路23包括至少两个开关单元,开关电路23,配置为按照开关频率交替打开所述至少两个开关单元中的第一组开关单元和第二组开关单元,以供所述谐振电路将接收到的直流电信号转换为交流电信号;所述开关频率基于所述谐振频率确定。
本申请实施例中,开关电路23可以包括两个或两个以上的开关单元。例如,开关电路23可以包括两个开关单元、四个开关单元、或者六个开关单元等,本申请实施例对此不做限制。
其中,开关电路23中的至少两个开关单元可以被划分为两个部分,第一组开关单元和第二组开关单元。其中,每组开关单元中包括至少一个开关单元。示例性的,开关电路23中开关单元的数量可以为偶数。这样,第一组开关单元和第二组开关单元中可以包括数量相同的开关单元。
应理解,开关电路23通过交替打开开关电路23中的第一组开关单元和第二组开关单元,可以驱动谐振电路21将接收到的直流电信号转换为交流电信号。其中,第一组开关单元和第二组开关单元可以按照一定的开关频率交替进行闭合和断开。
也就是说,本申请实施例中的充电电路可以通过控制开关电路23中各个开关单元的开关频率,将接收到的直流电信号转换为交流电信号。
需要说明的是,开关频率可以与谐振电路21工作的谐振频率相关。应理解,充电电路通过控制23中各个开关单元的开启和关闭的频率,使谐振电路21工作在不同的频率上。实际应用中,为了使谐振电路21始终工作在谐振频率上,实现增益最大化,上述开关频率可以根据谐振频率来设计。
本申请实施例中,通过设置开关电路23中开关单元的开关频率为谐振频率,可以使谐振电路23始终工作在谐振频率上,实现谐振电路21的高频化,从而提高充电效率。
基于上述实施例,在本申请一实施例中,开关电路23的拓扑结构可以为半桥拓扑结构。 参考图5所示的一种半桥DCX-LLC充电电路结构示意图,开关电路23可以包括第一开关单元231和第二开关单元232;上述第一组开关单元可以包括所述第一开关单元231,上述第二组开关单元可以包括所述第二开关单元232。
可以理解的是,第一开关单元231可以构成上述第一组开关单元,第二开关单元232可以构成上述第二组开关单元。本申请实施例中开关电路23按照开关频率交替打开第一开关单元和第二开关单元,以供所述谐振电路将接收到的直流电信号转换为交流电信号。
其中,第一开关单元231与第二开关单元232串联,第一开关单元231的第一端与充电接口的正向电压输入端口连接,第一开关单元231的第二端与第二开关单元232的第一端连接,第二开关单元232的第二端与充电接口的负向电压输入端口连接;谐振电路23的第一输入端与第一开关单元231的第二端,以及第二开关单元232的第一端连接,谐振电路23的第二输入端与第二开关单元232的第二端连接。
可以理解的是,本申请实施例中的充电链路还可以包括一充电接口。该充电接口可以通过充电线与外部供电端连接,用于接收接收到的直流电信号。其中,充电线可以为电缆(cable)线。应理解,该充电接口包括正向电压输入端口和负向电压输入端口。
可选地,充电接口为TypeC接口。充电接口也可为任何包括电源引脚Vbus和GND的接口。
另外,本申请实施例中,谐振电路21的第一输入端可以是谐振电容Cr的第一端,谐振电路21的第二输入端可以是励磁电感Lm的第二端。
谐振电路21的输入电压可以是开关电路23的中点电压。在本申请实施例中,开关电路23的中点电压可以是第一开关单元231的第二端和第二开关单元232的第一端连接处的电压。
在本申请实施例中,图5所示的开关电路23还可以将外部供电端输入的电压进行降压。在第一开关单元和第二开关单元的交替断开和闭合的作用下,充电电路的中点电压(即第一开关单元和第二开关单元)可以是充电接口处的输入电压的一半。
示例性的,在图5所示的半桥DCX-LLC充电电路结构示意图中,当外部供电端提供40V电压时,开关电路23的中点电压可以为20V,若初级线圈221的匝数是次级线圈222匝数的4倍,则次变压电路22可以将20V电压降到5V,这样用电装置的充电电压即为5V。
本申请实施例中,每个开关单元均可以包括一个开关管、一个第一二极管和一个第一电容;其中,每个开关单元中的开关管、第一二极管和第一电容并联,具体包括,开关管的源极与第一二极管的正极、以及第一电容的第一端连接,开关管的漏极与第一二极管的负极、以及第一电容的第二端连接;另外,开关管的漏极、第一二极管的负极、以及第一电容的第一端共同构成开关单元的第一端,开关管的源极、第一二极管的正极、以及第一电容的第二端共同构成开关单元的第二端。
需要说明的是,本申请实施例中,每个开关单元中的开关管和第一二极管可以分别单独设置,二者也可以集成在一起,本申请实施例对此不做限制。
例如,参考图5所示,第一开关单元231中可以包括开关管Q1、第一二极管D1、和第一电容C1。第二开关单元232中可以包括开关管Q2、第一二极管D2和第一电容C2。
其中,开关管Q1和开关管Q2串联,开关管Q1的源极与开关管Q2的漏极连接。并且,开关管Q1与第一二极管D1以及第一电容C1并联,开关管Q2与第一二极管D2以及第一电容C2并联。
另外,开关管Q1的漏极与第一二极管D1的正极,以及第一电容C1的第一端连接,开关管Q1的源极与第一二极管D1的负极,以及第一电容C1的第二端连接。并且,开关管Q2的漏极与第一二极管D2的正极,以及第一电容C2的第一端连接,开关管Q2的源极与第一二极管D2的负极,以及第一电容C2的第二端连接。
开关管Q1的漏极还与充电接口的正向电压端口连接,开关管Q2的源极还与充电接口的正向电压端口连接。
在本申请实施例中,当开关管Q2关闭时经过第一电容C2的作用可以使第一二极管D1导通,从而打开二极管Q1。同样地,当开关管Q1关闭时,经过第一电容D1作用可以是第一二极管D2导通,从而打开二极管Q2,如此实现零电压打开开关管Q1和开关管Q2,提升充电效率。
其中,开关管Q1与第一二极管D1可以单独设置,也可以集成在一起,开关管Q2与第一二极管D2可以单独设置,也可以集成在一起,本申请实施例对此不做限制。
在本申请一实施例中,开关电路23的拓扑结构还可以为全桥拓扑结构。参考图6所示的一种全桥DCX-LLC充电电路结构示意图,开关电路23包括四个开关单元,分别为第一开关单元231、第二开关单元232、第三开关单元233、以及第四开关单元234。第一组开关单元包括第一开关单元231和第四开关单元234,第二组开关单元包括第二开关单元232和第三开关单元233。
也就是说,第一开关单元231和第四开关单元234作为一组开关单元,第二开关单元232和第三开关单元233作为一组开关单元,两组开关单元交替打开进行工作。
第一开关单元231与第二开关单元232串联,第三开关单元233与第四开关单元234串联,且第一开关单元231和第二开关单元232,与第三开关单元233和第四开关单元234并联。
第一开关单元231的第一端,以及第三开关单元233的第一端与充电接口的正向电压输入端口连接,第一开关单元231的第二端与第二开关单元232的第一端连接,第三开关单元233的第二端与第四开关单元234的第一端连接,第二开关单元232的第二端,以及第四开关单元234的第二端与充电接口的负向电压输入端口连接。
另外,谐振电路21的第一输入端与第一开关单元231的第二端,以及第二开关单元232的第一端连接,谐振电路21的第二输入端与第三开关单元233的第二端,以及第四开关单元234的第一端连接。
可以理解的是,本申请实施例中的充电链路还可以包括一充电接口。该充电接口可以通过cable线与外部供电端连接,用于接收外部供电端提供的直流电信号。应理解,该充电接口包括正向电压输入端口和负向电压输入端口。
在一些实施例中,充电接口为TypeC接口。
另外,本申请实施例中,谐振电路21的第一输入端可以是谐振电容Cr的第一端,谐振电路21的第二输入端可以是励磁电感Lm的第二端。
谐振电路21的输入电压可以是开关电路23的中点电压。在本申请实施例中,开关电路23的中点电压可以是第一开关单元231的第二端和第二开关单元232的第一端连接处,以及第三开关单元233第二端和第四开关单元234的第一端连接处的电压。其中,全桥拓扑结构中,中点电压与充电接口处输入的电压相同。
本申请实施例中,每个开关单元均可以包括一个开关管、一个第一二极管和一个第一电容;其中,每个开关单元中的开关管、第一二极管和第一电容并联,具体包括,开关管的源极与第一二极管的正极、以及第一电容的第一端连接,开关管的漏极与第一二极管的负极、以及第一电容的第二端连接;另外,开关管的漏极、第一二极管的负极、以及第一电容的第一端共同构成开关单元的第一端,开关管的源极、第一二极管的正极、以及第一电容的第二端共同构成开关单元的第二端。
需要说明的是,本申请实施例中的每个开关单元中的开关管和第一二极管可以分别单独设置,二者也可以集成在一起,本申请实施例对此不做限制。
参考图6所示,第一开关单元231中可以包括开关管Q1、第一二极管D1、和第一电容C1。第二开关单元232中可以包括开关管Q2、第一二极管D2和第一电容C2。第三开关单元233中可以包括开关管Q3、第一二极管D3和第一电容C3。第四开关单元234中可以包括开关管Q4、第一二极管D4和第一电容C4。
其中,开关管Q1和开关管Q2串联,开关管Q1的源极与开关管Q2的漏极连接,并且, 开关管Q3和开关管Q4串联,开关管Q3的源极与开关管Q4的漏极连接。
另外,开关管Q1与第一二极管D1以及第一电容C1并联,开关管Q2与第一二极管D2以及第一电容C2并联。开关管Q3与第一二极管D3以及第一电容C3并联,开关管Q4与第一二极管D4以及第一电容C4并联。
本申请实施例中,开关管Q1的漏极与第一二极管D1的正极,以及第一电容C1的第一端连接,开关管Q1的源极与第一二极管D1的负极,以及第一电容C1的第二端连接。开关管Q2的漏极与第一二极管D2的正极,以及第一电容C2的第一端连接,开关管Q2的源极与第一二极管D2的负极,以及第一电容C2的第二端连接。开关管Q3的漏极与第一二极管D3的正极,以及第一电容C3的第一端连接,开关管Q3的源极与第一二极管D3的负极,以及第一电容C3的第二端连接。开关管Q4的漏极与第一二极管D4的正极,以及第一电容C4的第一端连接,开关管Q4的源极与第一二极管D4的负极,以及第一电容C4的第二端连接。
开关管Q1的漏极和开关管Q3的漏极还与充电接口的正向电压端口连接,开关管Q2的源极和开关管Q4的漏极还与充电接口的正向电压端口连接。
在本申请实施例中,当开关管Q2和开关管Q3关闭时经过第一电容C2和第二电容C3的作用可以使第一二极管D1以及第一二极管D4导通,从而打开二极管Q1和二极管Q4。同样地,当开关管Q1和开关管Q4关闭时,经过第一电容D1和第一电容D4作用可以使第一二极管D2和第一二极管D3导通,从而打开二极管Q2和开关管Q3,如此实现零电压打开开关管Q1至开关管Q4,提升充电效率。
本申请实施例中,开关管Q1与第一二极管D1可以单独设置,也可以集成在一起,开关管Q2与第一二极管D2可以单独设置,也可以集成在一起,开关管Q3与第一二极管D3可以单独设置,也可以集成在一起,开关管Q4与第一二极管D4可以单独设置,也可以集成在一起,本申请实施例对此不做限制。
在本申请一实施例中,参考图7所示,本申请实施例提供的充电电路中还包括整流电路24,该整流电路24与变压电路22的输出端连接;整流电路24配置为将第二电压进行整流处理,得到供电电压;供电电压配置为对用电装置提供电能。
应理解,整流电路24的输入端可以与变压电路22的次级线圈222连接。整流电路24的输出端可以连接用电装置。经过变压电路22降压处理后得到的第二电压属于交流电能。本申请实施例中的整流电路24可以将属于交流电能的第二电压转换为直流电能的供电电压。这样,充电电路可以利用得到的供电电压为用电装置进行供电。
在本申请一实施例中,整流电路24可以包括至少两个第二二极管和一个第二电容。整流电路24可以是半波整流电路、全波整流电路或者桥式整流电路,本申请实施例对此不做限制。
示例性的,参考图7所示,整流电路24可以包括第二二极管D5、第二二极管D6、以及第二电容C5。第二二极管D5的正极与次级线圈222的第一端连接,第二二极管的负极与第二电容C5的第一端连接,第二二极管D6的正极与次级线圈222的第二端连接,第二二极管的负极与第一二极管的负极和第二电容C5的第一端连接,第二电容的第二端接地。另外,用电装置可以与第二电容C5并联。
本申请实施例中,充电电路可以利用整流电路24输出整流信号,实现零电流开关,在宽范围内实现高的充电效率。
综上所述,现阶段高功率适配器时发展趋势,提高充电功率同时保证充电电路的可靠性是当前考虑的主要问题。本申请实施例提供的谐振电路和变压电路架构(即LLC-DCX架构)相较于CP架构具有天然的功率隔离优势,在系统器件异常、损坏、击穿等情况下,可以实现功率的自然隔离,并且变压电路的击穿电压远远高于开关管、电容元件的击穿电压,可靠性大大提高。
本申请一实施例还提供一种电子设备,参考图8所示,该电子设备可以包括充电电路80 和用电装置81。其中,充电电路80可以包括谐振电路21和变压电路22,变压电路22包括初级线圈221和次级线圈222,初级线圈221和次级线圈222耦合。
其中,谐振电路21的输出端与变压电路22的初级线圈221连接。变压电路22的次级线圈222与用电装置81连接。
本领域技术人员应当理解,本申请实施例的上述电子设备的相关描述可以参照本申请实施例的充电电路的相关描述进行理解。
在本申请一实施例中,参考图9所示,电子设备还可以包括:直充电路82、降压式变换BUCK电路83,以及第一控制电路84;
其中,第一控制电路84配置为获取用电装置81的充电状态信息,并基于充电状态信息选择充电电路80、直充电路82、和BUCK电路83中的任意一种对用电装置81进行供电。
应理解,在对用电装置81的供电过程中,可以对用电装置的充电状态进行检测,选择合适的电路为用电装置81进行供电。
在一些实施例中,充电状态信息可以包括用电装置81两端的电压、电流、充电功率,以及用电装置81的温度、用电装置81的电容量等,本申请实施例对此不做限制。
示例性的,当充电状态信息表征用电装置81两端的充电功率大于第一功率阈值(例如150W)和/或用电装置81两端的电压大于第一电压阈值(例如30V)时,电子设备可以选择本申请实施例提供的充电电路80为用电装置81进行供电。当充电状态信息表征用电装置81两端的充电功率小于第一功率阈值和用电装置81两端的电压小于第一电压阈值时,可以选择直充电路82或BUCK电路83为用电装置81进行供电。
本申请实施例中的用电装置81可以是电池模组,也可以是任何需要使用电能的装置,本申请实施例对此不做限制。当用电装置81为电池模组时,该电池模组可以包括至少一节电池,该电池可以是镍氢电池或者锂离子电池,本申请实施例对此不做限制。示例性的,参考图9所示,用电装置81可以包括两节串联的电池,用电装置81中还可以包括其他数量的电池,本申请实施例对此不做限制。在该场景,第一控制电路81获取的充电状态信息可以包括该电池模组的电压、电流、充电功率、电池温度、电池容量等参数。
基于图8所示的电子设备,在本申请一实施例中,参考图10所示,电子设备还可以包括第二控制电路85;该第二控制电路85配置为获取用电装置81的充电状态信息。第二控制电路85还可以具有通信功能,可以将获取到的充电状态信息发送给外部供电端,以供该外部供电端调整其为电子设备提供的直流电信号的电压。
需要说明的是,第二控制电路85可以是和第一控制电路84不同的控制电路,第二控制电路85的功能也可以由第一控制电路84实现,或者将第一控制电路84和第二控制电路85集成为同一个控制电路。
应理解,本申请实施例中的外部供电端,可以是能够动态调整其输出电压的供电端,示例性的,本申请实施例中的外部供电端可以是集成有控制器的充电器或者适配器,本申请实施例对此不做限制。
在一些实施例中,第二控制电路85可以通过cable线与外部供电端的控制器连接,或者第二控制电路85通过特定的接口与外部供电端中的控制器连接。本申请实施例对此不做限制。
在本申请一些实施例中,第二控制电路85可以获取用电装置81的充电状态信息,并将充电状态信息发送给外部供电端中的控制器,这样,外部供电端的控制器可以对该外部供电端提供的直流电信号的电压进行调整,以匹配电子设备中用电装置81的实际用电需求,以此提高充电效率。
在另一些实施例中,第二控制电路85获取到充电状态信息后,也可以不发送给外部供电端。电子设备根据第二控制电路85获取到的充电状态信息,确定当前用电装置81需要的电压,通过第二控制电路85直接向外部供电端请求所需要的电压。相应的,外部供电端的控制器接收到该请求后,直接根据请求的电压调整直流电信号的电压,使得调整后的直流电 信号的电压与请求的电压匹配,以此提高充电效率。
基于图8所示的电子设备,在本申请一实施例中,参考图11所示,电子设备中的充电电路80和用电装置81的数量可以包括多个。
本申请实施例中,通过多个充电电路80之间可以并联,每个充电电路80的输入端均与充电接口连接,接收外部供电端提供的直流电信号。
另外,多个充电电路80的输出端与多个用电装置81连接,且不同的充电电路80可以向不同的用电装置81供电。多个用电装置81中不同的用电装置功能可以不同,示例性的,多个用电装置81可以包括电池模组、显示屏、处理器、图像采集装置等,本申请实施例对多个用电装置的类型不做限制。
可选地,多个充电电路80可以与多个用电装置81一一对应,即一个充电电路80对应一个用电装置81,每个充电电路80为其对应的用电装置81供电。另外,充电电路80与多个用电装置81还可以是多对一的关系,即一个充电电路80为多个用电装置81供电,本申请实施例对多个充电电路80和多个用电装置81之间的对应关系不做限制。
在本申请实施例中,图11中仅示出了两个充电电路80和两个用电装置81,电子设备中还可以包括其他数量的充电电路和用电装置,本申请实施例对此不做限制。
由此可见,本申请实施例中的电子设备中多个供电电路80之间相互独立,且不同的充电电路80可以为不同的用电装置81供电,也就是说,多个用电装置81可以同时进行供电,提升供电效率。
综上所述,本申请实施例提供的电子设备可以利用DCX-LLC架构进行充电,可以在宽范围内实现高效率;同时DCX-LLC架构是由初级线圈和次级线圈构成,可以实现电压匹配和电气隔离,从而提高系统的可靠性。
采用本申请实施例的充电电路的电子设备,其适配器向充电电路输入的电压可以更高,在外部供电端充电功率一定的情况下,向充电电路输入的电路就越小,可以提高外部充电系统的效率,并降低外部充电端到充电电路之间的cable线的直径,使cable线更细,从而降低成本从根本上解决大功率充电的困扰。
此外,DCX-LLC结构可以实现高频化,小体积可以实现整个充电电源系统跟优化,效率更高,体积更小成本更低。
本申请一实施例还提供一种充电系统,参考图12所示,该充电系统可以包括供电端1201和电子设备1202;
供电端1201配置为将交流电信号转换为直流电信号,并输出给电子设备1202;
电子设备1202,包括充电电路80和用电装置81,其中,充电电路80包括谐振电路21和变压电路22,所述谐振电路21配置为将接收到的直流电信号转换为交流电信号;变压电路22,包括初级线圈221和次级线圈222,所述初级线圈221与所述谐振电路222的输出端连接,所述初级线圈221与所述次级线222圈耦合,所述变压电路22配置为通过所述初级线圈221与所述次级线圈222将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置81提供电能;所述第二电压小于或等于所述第一电压。
在一些实施例中,供电端1201可以通过充电线与电子设备1202连接,供电端1201通过充电线为电子设备1202提供直流电信号。
可选地,参考图12所示,供电端1201可以包括第一整流模块、变压模块和第二整流模块。其中,第一整流模块可以将输入的交流电(220V或110V)进行整流为直流电。变压模块可以对整流后的直流电进行变压,示例性的,将220V或110V的直流电进行降压。第二整流模块可以用于对变压后的直流电进行整流后输出,以向电子设备提供电能。
实际应用中,供电端1201中的变压模块需要将220V或者110V的电压降到一个比较低的值,例如,最常见的5V、10V、20V等,再提供给电子设备进行充电。
本申请实施例中的电子设备,可以通过初级线圈221和次级线圈222的耦合关系,将电子设备内部的用电装置与供电端进行隔离,这样,当供电端输出高的功率和电压,经过变压 电路中初级线圈和次级线圈的隔离和降压处理,用电装置的电压可以保持在稳定状态,电子设备具有较高的充电可靠性。
这样,本申请实施例中充电系统的供电端1201可以通过向电子设备提供更高的电压(例如30V以上的电压)来提高充电效率。也就是说,供电端1201可以选用电压降到较高电压的变压模组,从而避免使用之前将电压降低到低电压的变压模组,节约硬件成本并优化供电端内容的结构和空间。此外,供电端输出电压的提升,在功率一定的情况下可以降低充电线的直径,进一步降低硬件成本,从根本上解决大功率充电的困扰。并且,电子设备中的DCX-LLC可以实现高频化,提高充电效率的同时,降低充电系统的和成本,使充电系统更优化。
在一些实施例中,供电端1201中还可以包括控制器。其中,供电端1201中的控制器可以通过cable线,或其他特定接口与电子设备中的第二控制电路连接。
在一些实施例中,第二控制电路85可以将获取的用电装置81的充电状态信息发送给供电端中的控制器。进一步地,控制器可以基于获取到的充电状态信息,调整输出给电子设备的直流电信号的电压,以使得供电端1201输出的直流电信号的电压能够与电子设备中用电装置81实际需要的电压匹配,进一步提高充电效率。
在一些实施例中,第二控制电路85获取到充电状态信息后,也可以不发送给外部供电端。电子设备根据第二控制电路85获取到的充电状态信息,确定当前用电装置81需要的电压,通过第二控制电路85直接向外部供电端请求所需要的电压。相应的,外部供电端的控制器接收到该请求后,直接根据请求的电压调整直流电信号的电压,使得调整后的直流电信号的电压与请求的电压匹配,以此提高充电效率。
本申请一实施例还提供一种充电控制方法,可以应用于上述实施例中的充电电路或者电子设备。参考图13所述,本申请实施例中的充电控制方法可以包括以下步骤:
步骤1001、通过谐振电路,将接收到的直流电信号转换为交流电信号;
步骤1002、通过变压电路的初级线圈与次级线圈,将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置提供电能;所述第二电压小于或等于所述第一电压。
在一些实施例中,步骤1001中通过谐振电路,将接收到的直流电信号转换为交流电信号,还可以通过以下步骤实现:
基于开关频率交替打开至少两个开关单元中的第一组开关单元和第二组开关单元,以使所述谐振电路将接收到的直流电信号转换为交流电信号;所述开关频率基于所述谐振电路的谐振频率确定。
在一些实施例中,步骤1002通过变压电路的初级线圈与次级线圈,将所述交流电信号的第一电压进行变压得到第二电压之后,还可以实现以下步骤实现:
通过整流电路将所述第二电压进行整流处理,得到供电电压以对所述用电装置提供电能。
本申请实施例提供的充电控制方法应用于电子设备,且电子设备包括第一控制电路时,还可以执行以下步骤:
通过第一控制电路获取用电装置的充电状态信息;
基于所述充电状态信息选择充电电路、直充电路、和BUCK电路中的任意一种对用电装置进行供电。
在一些实施例中,在电子设备包括第二控制电路时,本申请实施例中的充电控制方法可以包括以下步骤:
通过第二控制电路获取用电装置的充电状态信息;
通过第二控制电路将所述充电状态信息发送给外部供电端,以供所述外部供电端对其提供的所述直流电信号的电压进行调整。
在一些实施例中,在电子设备中充电电路和所述用电装置的数量包括多个的情况下,本 申请实施例中的充电控制方法可以包括以下步骤:
通过不同的充电电路为不同的用电装置供电。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备还可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
需要说明的是:本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种充电电路,应用于电子设备,所述充电电路包括:
    谐振电路,配置为将接收到的直流电信号转换为交流电信号;
    变压电路,包括初级线圈和次级线圈,所述初级线圈与所述谐振电路的输出端连接,所述初级线圈与所述次级线圈耦合,所述变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置提供电能;所述第二电压小于或等于所述第一电压。
  2. 根据权利要求1所述的充电电路,其中,所述谐振电路工作在固定的谐振频率上。
  3. 根据权利要求1或2所述的充电电路,其中,所述充电电路还包括开关电路;
    所述开关电路的输出端与所述谐振电路的输入端连接;所述开关电路包括至少两个开关单元;
    所述开关电路,配置为按照开关频率交替打开所述至少两个开关单元中的第一组开关单元和第二组开关单元,基于所述开关频率交替打开所述至少两个开关单元中的第一组开关单元和第二组开关单元,所述谐振电路将接收到的直流电信号转换为交流电信号;所述开关频率基于所述谐振电路的谐振频率确定。
  4. 根据权利要求3所述的充电电路,其中,所述开关电路包括第一开关单元和第二开关单元;所述第一组开关单元包括所述第一开关单元,所述第二组开关单元包括所述第二开关单元;
    所述第一开关单元与所述第二开关单元串联,所述第一开关单元的第一端与充电接口的正向电压输入端口连接,所述第一开关单元的第二端与所述第二开关单元的第一端连接,所述第二开关单元的第二端与所述充电接口的负向电压输入端口连接;
    所述谐振电路的第一输入端与所述第一开关单元的第二端,以及所述第二开关单元的第一端连接,所述谐振电路的第二输入端与所述第二开关单元的第二端连接。
  5. 根据权利要求3所述的充电电路,其中,所述开关电路包括第一开关单元至第四开关单元,所述第一组开关单元包括所述第一开关单元和第四开关单元,所述第二组开关单元包括第二开关单元和第三开关单元;
    所述第一开关单元与所述第二开关单元串联,所述第三开关单元与所述第四开关单元串联,且所述第一开关单元和所述第二开关单元,与所述第三开关单元和所述第四开关单元并联;
    所述第一开关单元的第一端,以及所述第三开关单元的第一端与充电接口的正向电压输入端口连接,所述第一开关单元的第二端与所述第二开关单元的第一端连接,所述第三开关单元的第二端与所述第四开关单元的第一端连接,所述第二开关单元的第二端,以及所述第四开关单元的第二端与所述充电接口的负向电压输入端口连接;
    所述谐振电路的第一输入端与所述第一开关单元的第二端,以及所述第二开关单元的第一端连接,所述谐振电路的第二输入端与所述第三开关单元的第二端,以及所述第四开关单元的第一端连接。
  6. 根据权利要求3-5任一项所述的充电电路,其中,所述至少两个开关单元中的每个开关单元均包括开关管、第一二极管和第一电容;
    所述开关管、所述第一二极管和所述第一电容并联,所述开关管的源极与所述第一二极管的正极、以及第一电容的第一端连接,所述开关管的漏极与所述第一二极管的负极、以及所述第一电容的第二端连接;
    所述开关管的漏极、所述第一二极管的负极、以及所述第一电容的第一端共同构成开关单元的第一端,所述开关管的源极、所述第一二极管的正极、以及所述第一电容的第二端共同构成所述开关单元的第二端。
  7. 根据权利要求1-6任一项所述的充电电路,其中,所述充电电路还包括整流电路;
    所述整流电路与所述变压电路的输出端连接;
    所述整流电路配置为将所述第二电压进行整流处理,得到供电电压,所述供电电压用于对所述用电装置提供电能。
  8. 根据权利要求1-7任一项所述的充电电路,其中,所述充电电路还包括充电接口,所述充电接口配置为通过充电线与提供直流电信号的外部供电端连接。
  9. 根据权利要求1-8任一项所述的充电电路,其中,所述初级线圈的匝数是所述次级线圈匝数的N倍,N为大于1的数。
  10. 根据权利要求1-9任一项所述的充电电路,其中,所述谐振电路包括:串联连接的谐振电容Cr,谐振电感Lr,和励磁电感Lm;
    所述初级线圈的第一端与所述谐振电感Lr的第二端,以及所述励磁电感Lm的第一端连接,所述初级线圈的第二输与所述励磁电感Lm的第二端连接。
  11. 一种电子设备,所述电子设备包括充电电路和用电装置,所述充电电路包括谐振电路和变压电路;
    所述谐振电路,配置为将接收到的直流电信号转换为交流电信号;
    所述变压电路,包括初级线圈和次级线圈,所述初级线圈与所述谐振电路的输出端连接,所述初级线圈与所述次级线圈耦合,所述次级线圈与所述用电装置连接;
    所述变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向所述用电装置提供电能;所述第二电压小于或等于所述第一电压。
  12. 根据权利要求11所述的电子设备,其中,所述电子设备还包括:直充电路、降压式变换BUCK电路,以及第一控制电路;
    所述第一控制电路配置为获取所述用电装置的充电状态信息,并基于所述充电状态信息选择所述充电电路、所述直充电路、和所述BUCK电路中的任意一种对所述用电装置进行供电。
  13. 根据权利要求11或12所述的电子设备,其中,所述电子设备还包括第二控制电路;
    所述第二控制电路配置为获取所述用电装置的充电状态信息,并将所述充电状态信息发送给外部供电端,所述外部供电端对其提供的所述直流电信号的电压进行调整,或者,
    所述第二控制电路配置为获取所述用电装置的充电状态信息,并基于所述充电状态信息确定需要的电压,以及向所述外部供电端请求所需要的电压。
  14. 根据权利要求11-13任一项所述的电子设备,其中,所述充电电路和所述用电装置的数量包括多个;
    通过多个充电电路之间并联,接收外部供电端提供的直流电信号;
    所述多个充电电路的输出端与多个用电装置连接,其中,不同的充电电路为不同的用电装置供电。
  15. 一种充电系统,所述充电系统包括:供电端和电子设备;
    所述供电端配置为将交流电信号转换为直流电信号,并输出给所述电子设备;
    所述电子设备,包括充电电路和用电装置,其中,充电电路包括谐振电路和变压电路,所述谐振电路配置为将接收到的直流电信号转换为交流电信号;所述变压电路,包括初级线圈和次级线圈,所述初级线圈与所述谐振电路的输出端连接,所述初级线圈与所述次级线圈耦合,所述变压电路配置为通过所述初级线圈与所述次级线圈将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向所述用电装置提供电能;所述第二电压小于或等于所述第一电压。
  16. 根据权利要求15所述的充电系统,其中,所述供电端包括控制器,所述电子设备包括第二控制电路,所述控制器与所述第二控制电路连接;
    所述第二控制电路配置为获取所述用电装置的充电状态信息,并向所述控制器发送所述 充电状态信息;
    所述控制器基于所述充电状态信息,调整输出给所述电子设备的直流电信号的电压;或者,
    所述第二控制电路配置为获取所述用电装置的充电状态信息,并基于所述充电状态信息确定需要的电压,以及向所述外部供电端请求所需要的电压;
    所述控制器基于所请求的电压,调整输出给所述电子设备的直流电信号的电压。
  17. 一种充电控制方法,所述充电控制方法应用于如权1-10任一项所述的充电电路,或,应用于如权11-16任一项所述的电子设备中,所述方法包括:
    通过谐振电路,将接收到的直流电信号转换为交流电信号;
    通过变压电路的初级线圈与次级线圈,将所述交流电信号的第一电压进行变压得到第二电压,所述第二电压用于向用电装置提供电能;所述第二电压小于或等于所述第一电压。
  18. 根据权利要求17所述的方法,其中,所述通过谐振电路,将接收到的直流电信号转换为交流电信号,包括:
    基于开关频率交替打开至少两个开关单元中的第一组开关单元和第二组开关单元,使所述谐振电路将接收到的直流电信号转换为交流电信号;所述开关频率基于所述谐振电路的谐振频率确定。
  19. 根据权利要求17或18所述的方法,其中,所述通过变压电路的初级线圈与次级线圈,将所述交流电信号的第一电压进行变压得到第二电压之后,包括:
    通过整流电路将所述第二电压进行整流处理,得到供电电压,所述供电电压用于所述用电装置提供电能。
  20. 根据权利要求17所述的方法,其中,应用于电子设备,且电子设备包括第一控制电路时,所述方法包括:
    通过第一控制电路获取用电装置的充电状态信息;
    基于所述充电状态信息选择充电电路、直充电路、和BUCK电路中的任意一种对用电装置进行供电。
PCT/CN2022/142485 2022-06-20 2022-12-27 充电电路、电子设备、充电系统及充电控制方法 WO2023246059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210698490.1 2022-06-20
CN202210698490.1A CN117293939A (zh) 2022-06-20 2022-06-20 充电电路、电子设备、充电系统及充电控制方法

Publications (1)

Publication Number Publication Date
WO2023246059A1 true WO2023246059A1 (zh) 2023-12-28

Family

ID=89243197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142485 WO2023246059A1 (zh) 2022-06-20 2022-12-27 充电电路、电子设备、充电系统及充电控制方法

Country Status (2)

Country Link
CN (1) CN117293939A (zh)
WO (1) WO2023246059A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110786A (ja) * 2011-11-17 2013-06-06 Fuji Electric Co Ltd 電源装置
US20140160805A1 (en) * 2012-12-07 2014-06-12 Apple Inc. Hysteretic-mode pulse frequency modulated (hm-pfm) resonant ac to dc converter
CN204290733U (zh) * 2015-01-06 2015-04-22 山东鲁能智能技术有限公司 基于llc拓扑的超宽输出电压范围充电机
CN107431375A (zh) * 2015-05-25 2017-12-01 日立汽车系统株式会社 电源装置
US20180309372A1 (en) * 2017-04-21 2018-10-25 Infineon Technologies Austria Ag System and method for a switched mode converter
CN110601377A (zh) * 2018-06-12 2019-12-20 成都天府新区光启未来技术研究院 无线充电发射装置、接收装置、系统及谐振参数匹配方法
CN113726169A (zh) * 2020-05-25 2021-11-30 台达电子工业股份有限公司 宽输出电压范围的隔离式dc/dc转换器及其控制方法
CN113950790A (zh) * 2019-03-21 2022-01-18 西门子能源环球有限责任两合公司 具有次级振荡回路电容器的直流电压变换器,以及用于运行直流电压变换器的方法
WO2022059294A1 (ja) * 2020-09-16 2022-03-24 パナソニックIpマネジメント株式会社 電力変換装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110786A (ja) * 2011-11-17 2013-06-06 Fuji Electric Co Ltd 電源装置
US20140160805A1 (en) * 2012-12-07 2014-06-12 Apple Inc. Hysteretic-mode pulse frequency modulated (hm-pfm) resonant ac to dc converter
CN204290733U (zh) * 2015-01-06 2015-04-22 山东鲁能智能技术有限公司 基于llc拓扑的超宽输出电压范围充电机
CN107431375A (zh) * 2015-05-25 2017-12-01 日立汽车系统株式会社 电源装置
US20180309372A1 (en) * 2017-04-21 2018-10-25 Infineon Technologies Austria Ag System and method for a switched mode converter
CN110601377A (zh) * 2018-06-12 2019-12-20 成都天府新区光启未来技术研究院 无线充电发射装置、接收装置、系统及谐振参数匹配方法
CN113950790A (zh) * 2019-03-21 2022-01-18 西门子能源环球有限责任两合公司 具有次级振荡回路电容器的直流电压变换器,以及用于运行直流电压变换器的方法
CN113726169A (zh) * 2020-05-25 2021-11-30 台达电子工业股份有限公司 宽输出电压范围的隔离式dc/dc转换器及其控制方法
WO2022059294A1 (ja) * 2020-09-16 2022-03-24 パナソニックIpマネジメント株式会社 電力変換装置

Also Published As

Publication number Publication date
CN117293939A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
TWI655821B (zh) 用於終端的充電系統、充電方法以及電源適配器
WO2016048030A1 (en) Wireless power transmitter and wireless power receiver
US20220006303A1 (en) Charging and discharging control method, and device
CN109905042A (zh) 一种电源设备及其电源电路
WO2019128405A1 (zh) 无线充电接收装置、无线充电方法及设备
EP3843241A1 (en) Electronic device
WO2022155837A1 (zh) 一种谐振型交流/直流变换器、电子设备及适配器
CN106961220B (zh) 一种具有均流特性的高效并联llc谐振变换器
US20230065766A1 (en) Electronic Device, Wireless Charging Receive Apparatus, Control Method, and Wireless Charging System
WO2014180186A1 (zh) 一种无线充电终端及用户终端、无线充电方法
CN101304180B (zh) 复合式节能不断电系统及双向转换器模块与电力转换方法
CN109904913A (zh) 一种充电设备及其快速充电电路
WO2022206481A1 (zh) 一种电源转换电路和适配器
WO2021093704A1 (zh) 待充电设备、系统以及无线充电方法、存储介质
WO2022068375A1 (zh) 电源提供装置以及充电方法、系统、存储介质
CN106849297A (zh) 一种无线充电电路、无线充电器及无线充电系统
CN107634565A (zh) 一种锂电池无线充电电路
WO2022100269A1 (zh) 电源提供装置、电路控制方法及供电系统
WO2020124591A1 (zh) 电源提供装置、无线充电装置、系统及无线充电方法
WO2023246059A1 (zh) 充电电路、电子设备、充电系统及充电控制方法
US11780342B2 (en) On-board charging and discharging apparatus, charging and discharging system thereof, and electric vehicle
WO2021190339A1 (zh) 一种充电电路、方法、系统、电池和电子设备
CN107612348A (zh) 隔离式开关电源及其电子装置
WO2022170574A1 (zh) 一种直流转换器、电子设备和充电器
TWI810663B (zh) 多輸出的功率分配控制裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947794

Country of ref document: EP

Kind code of ref document: A1