WO2023071216A1 - 一种无线充电的发射端、接收端及无线充电系统 - Google Patents

一种无线充电的发射端、接收端及无线充电系统 Download PDF

Info

Publication number
WO2023071216A1
WO2023071216A1 PCT/CN2022/098323 CN2022098323W WO2023071216A1 WO 2023071216 A1 WO2023071216 A1 WO 2023071216A1 CN 2022098323 W CN2022098323 W CN 2022098323W WO 2023071216 A1 WO2023071216 A1 WO 2023071216A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving end
transmitting
lcc
inductance
wireless charging
Prior art date
Application number
PCT/CN2022/098323
Other languages
English (en)
French (fr)
Inventor
王书阳
武志贤
刘彦丁
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22885124.2A priority Critical patent/EP4344022A1/en
Publication of WO2023071216A1 publication Critical patent/WO2023071216A1/zh
Priority to US18/582,151 priority patent/US20240195224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the technical field of wireless charging for automobiles, in particular to a wireless charging transmitter, receiver and wireless charging system.
  • the charging methods of electric vehicles include contact charging and wireless charging, and wireless charging will become the development direction of electric vehicle charging in the future because of its convenient use, no sparks and no risk of electric shock.
  • the wireless charging system for electric vehicles includes a transmitter and a receiver. The transmitter is located on the ground, and the receiver is located on the vehicle. The receiver charges the power battery pack of the electric vehicle.
  • the transmitting end includes an inverter, a transmitting end compensation network and a transmitting coil; the receiving end includes a receiving coil, a receiving end compensation network and a rectifier.
  • the DC voltage at the transmitting end is converted by the inverter to generate high-frequency alternating current, which flows through the compensation network at the transmitting end and the transmitting coil to generate a high-frequency magnetic field, which is coupled to the induced electromotive force at the receiving coil, and is rectified by the rectifier to form a direct current to charge the power battery pack.
  • the function of the transmitter compensation network is to resonate with the transmitter coil through the inductance and/or capacitor, to compensate the reactive component in the line, so that the DC input side is as purely resistive as possible, thereby improving the efficiency of the entire wireless charging system.
  • the function of the compensation network at the receiving end is similar, and the compensation network at the receiving end resonates with the receiving coil.
  • the ground clearance of the vehicle chassis varies greatly due to different models, that is, the distance between the transmitter and the receiver varies with different models.
  • the chassis ground clearance of SUVs is generally larger and the chassis ground clearance of sedans is generally smaller.
  • This difference will lead to the need for wireless charging systems to achieve efficient power transfer over a wide range of offsets.
  • the offset between the charging coil located on the vehicle and the receiving coil located on the ground will affect the coupling coefficient between the transmitting end and the receiving end, as well as the self-inductance of the transmitting coil and the self-inductance of the receiving coil.
  • the present application provides a wireless charging transmitting end, receiving end and wireless charging system, which have a wide coupling range and are suitable for different vehicle models with high charging efficiency.
  • This application provides a wireless charging transmitter, including: an inverter, a transmitter LCC network, a transmitter coil, a switch circuit, and a transmitter controller; the inverter converts the DC power at the input terminal into AC power and transmits it to the transmitter compensation network; The LCC network at the transmitting end compensates the alternating current and sends it to the transmitting coil; the switch circuit is connected to the LCC network at the transmitting end; the transmitting coil transmits the received alternating current in the form of an alternating magnetic field to receive it at the receiving end, and the receiving end includes the receiving end LCC Network; when the real part of the first output impedance of the inverter is greater than the real part of the second output impedance of the inverter, the transmitter controller controls the switch circuit to operate to make the wireless charging system work on the bilateral LCC network; at the first output When the real part of the impedance is less than or equal to the real part of the second output impedance, the control switch circuit operates to make the wireless charging system work in the unilateral LCC network; the
  • the wireless charging system When the coupling between the transmitting coil and the receiving coil of the wireless charging system is good, that is, M is large, if the wireless charging system adopts a bilateral LCC network, it is difficult for the switching tube in the inverter at the transmitting end to achieve ZVS, and the switching tube is in a hard switching state Severe heat generation, increased power consumption, and may not be able to operate normally. Therefore, the transmitter controller controls the transmitter LCC network not to participate in the work, that is, the wireless charging system works on a unilateral LCC network, and the inductance of the transmitter coil is inductive, so it is easy to realize the inversion ZVS of the switching tube in the converter, thereby reducing power consumption and improving the efficiency of wireless charging.
  • the transmitting end provided by the embodiment of the present application can ensure higher charging efficiency when the coupling between the transmitting end and the receiving end is good, and can also ensure higher charging efficiency when the coupling between the transmitting end and the receiving end is low.
  • Efficiency so that the transmitter has a wide coupling range, so that it can be applied to charging electric vehicles of different models and can ensure high charging efficiency.
  • the switch circuit including two switches as an example, the hardware implementation is simple and the control is convenient; the transmitter LCC includes: a first inductor, a first capacitor and a compensation capacitor; the switch circuit includes: a first A switch and a second switch; the circuit can control whether the LCC at the transmitting end participates in the work in different states of the switch.
  • the first end of the first inductance is connected to the midpoint of the first bridge arm of the inverter, the second end of the first inductance is connected to the first end of the transmitting coil through the compensation capacitor; the second end of the transmitting coil is connected to the inverter
  • the midpoint of the second bridge arm of the device the first end of the first capacitor is connected to the second end of the first inductor, the second end of the first capacitor is connected to the first end of the second switch, and the second end of the second switch is connected to The second end of the transmitting coil;
  • the first end of the first switch is connected to the first end of the first inductor, and the second end of the first switch is connected to the first end of the transmitting coil;
  • the transmitting end controller is specifically used for the first output impedance When the real part of is greater than the real part of the second output impedance, the first switch is controlled to be turned off, and the second switch is closed to make the wireless charging system work on a bilateral LCC network; it is also specifically used for the real
  • the method of obtaining the first output impedance is not limited in the present application, and may be obtained by the transmitting end or the receiving end.
  • the following describes the case of obtaining the first output impedance by the transmitting end.
  • the controller at the transmitting end is further configured to, according to the first inductance in the LCC network at the transmitting end, the second inductance in the LCC network at the receiving end, the load impedance at the receiving end, and the mutual inductance between the transmitting end and the receiving end Obtain the first output impedance.
  • the method of obtaining the second output impedance is not limited in the present application, and may be obtained by the transmitting end or by the receiving end. The following describes the case of obtaining the second output impedance by the transmitting end.
  • the controller at the transmitting end is further configured to obtain the second output impedance according to the second inductance in the LCC network at the receiving end, the load impedance at the receiving end, and the mutual inductance between the transmitting end and the receiving end.
  • This application does not limit the method of obtaining mutual inductance.
  • a possible implementation method is introduced below.
  • the controller at the transmitting end according to the first inductor in the LCC network at the transmitting end, the second inductor in the LCC network at the receiving end, the current of the second inductor,
  • the input voltage of the inverter and the phase shift angle of the inverter obtain mutual inductance;
  • the phase shift angle of the inverter is the phase difference between the output voltage and the output current of the inverter.
  • the transmitter controller is further configured to obtain the load impedance of the receiver according to the output voltage and preset current of the receiver.
  • the preset current can be set according to empirical values, which is not specifically limited in the present application.
  • the output voltage of the receiving end can be obtained by sampling, and the load impedance can be obtained by dividing the output voltage obtained by sampling by the preset current.
  • the transmitter controller is specifically configured to obtain the first output impedance Zin_re1 through the following formula:
  • L 1 represents the inductance value of the first inductor
  • L 2 represents the inductance value of the second inductor
  • M represents the mutual inductance
  • R 0 represents the output impedance
  • the transmitter controller is specifically configured to obtain the second output impedance Zin_re2 through the following formula:
  • L 2 represents the inductance value of the second inductor
  • M represents the mutual inductance
  • R 0 represents the output impedance
  • the transmitter controller is specifically used to obtain the mutual inductance M through the following formula:
  • L 1 represents the inductance of the first inductor
  • L 2 represents the inductance of the second inductor
  • I L2 represents the inductance of the second inductor
  • V dc represents the input voltage of the inverter
  • represents the phase shift angle
  • the above uses the transmitting end as the execution subject, and the transmitting end compares the real part of the first output impedance and the real part of the second output impedance, and controls the switching circuit action according to the comparison result to switch between the bilateral LCC network and the unilateral LCC network.
  • the receiving end can also be used as the execution subject, and the receiving end compares the real part of the first output impedance and the real part of the second output impedance, and sends the comparison result to the transmitting end, or sends an instruction to the transmitting end according to the comparison result,
  • the transmitter directly controls the action of the switch circuit to switch between the bilateral LCC network and the unilateral LCC network.
  • Other actions performed by the above transmitting end can also be performed by the receiving end.
  • this application also provides a wireless charging receiving end. The advantages of the above implementations are also applicable to The receiving end will not be repeated here.
  • the receiving end includes: a receiving coil, a receiving end LCC network, a rectifier and a receiving end controller;
  • the network is used to compensate the received AC power and then send it to the rectifier;
  • the rectifier is used to rectify the received AC power into DC power to charge the load;
  • the receiving end controller is used to control the first output impedance of the inverter at the transmitting end When the real part is greater than the real part of the second output impedance, send a bilateral LCC network command to the transmitter, so that the transmitter LCC network participates in the work.
  • the wireless charging system works on the bilateral LCC network; when the real part of the first output impedance is less than or equal to the second output When the real part of the impedance, send a unilateral LCC network command to the transmitter, so that the transmitter LCC network exits the work wireless charging system works on the unilateral LCC;
  • the bilateral LCC network includes the transmitter LCC network and the receiver LCC network, and the unilateral LCC network Including the receiving end LCC network;
  • the first output impedance is the output impedance of the inverter when the wireless charging system works on the bilateral LCC network;
  • the second output impedance is the output impedance of the inverter when the wireless charging system works on the unilateral LCC network.
  • the following describes the specific way of obtaining the first output impedance by the receiving end, a possible implementation, and the receiving end controller is also used for the first inductance in the LCC network at the transmitting end, the second inductance in the LCC network at the receiving end, The load impedance of the receiving end and the mutual inductance between the transmitting end and the receiving end obtain the first output impedance.
  • the receiving end controller is also used to obtain the second inductance in the receiving end LCC network, the load impedance of the receiving end, and the transmitting end and receiving end The mutual inductance between obtains the second output impedance.
  • the controller at the receiving end is also used to The current, the input voltage of the inverter and the phase shift angle of the inverter obtain the mutual inductance; the phase shift angle of the inverter is the phase difference between the output voltage and the output current of the inverter.
  • the receiver controller is further configured to obtain the load impedance of the receiver according to the output voltage and the preset current of the receiver.
  • controller at the receiving end is specifically configured to obtain the first output impedance Zin_re1 through the following formula:
  • L 1 represents the inductance value of the first inductor
  • L 2 represents the inductance value of the second inductor
  • M represents the mutual inductance
  • R 0 represents the output impedance
  • controller at the receiving end is specifically configured to obtain the second output impedance Zin_re2 through the following formula:
  • L 2 represents the inductance value of the second inductor
  • M represents the mutual inductance
  • R 0 represents the output impedance
  • controller at the receiving end is specifically used to obtain the mutual inductance M through the following formula:
  • L 1 represents the inductance of the first inductor
  • L 2 represents the inductance of the second inductor
  • I L2 represents the inductance of the second inductor
  • V dc represents the input voltage of the inverter
  • represents the phase shift angle
  • the present application provides a wireless charging system, including the transmitting end described above and the receiving end described above; the transmitting end is used to perform wireless charging for the receiving end.
  • the transmitting end or receiving end or system can switch whether the transmitting end LCC network participates in the work according to the needs of the wireless charging system.
  • the coupling between the transmitting coil and the receiving coil is poor, that is, the mutual inductance M is small, in order to realize the zero-voltage switching ZVS of the switching tube of the inverter, control the LCC network at the transmitting end to participate in the work, and the wireless charging system works in the bilateral LCC network, which can be Achieve high wireless charging efficiency.
  • the wireless charging system When the coupling between the transmitting coil and the receiving coil of the wireless charging system is good, that is, M is large, if the wireless charging system adopts a bilateral LCC network, it is difficult for the switching tube in the inverter at the transmitting end to achieve ZVS, and the switching tube is in a hard switching state Severe heat generation, increased power consumption, and may not be able to operate normally. Therefore, the transmitter controller controls the transmitter LCC network not to participate in the work, that is, the wireless charging system works on a unilateral LCC network, and the inductance of the transmitter coil is inductive, so it is easy to realize the inversion ZVS of the switching tube in the converter, thereby reducing power consumption and improving the efficiency of wireless charging.
  • the transmitting end provided by the embodiment of the present application can ensure higher charging efficiency when the coupling between the transmitting end and the receiving end is good, and can also ensure higher charging efficiency when the coupling between the transmitting end and the receiving end is low.
  • Efficiency so that the transmitter has a wide coupling range, so that it can be applied to charging electric vehicles of different models and can ensure high charging efficiency.
  • FIG. 1 is a schematic diagram of a wireless charging system for an electric vehicle provided by the present application
  • FIG. 2 is a schematic circuit diagram of a wireless charging system provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of the electric vehicle wireless charging system provided in Fig. 2;
  • FIG. 4 is a schematic diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 5 is a waveform diagram of an output voltage of an inverter provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a transmitting end provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another transmitting end provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a wireless charging system provided by an embodiment of the present application including a unilateral LCC;
  • FIG. 9 is a schematic diagram of the output impedance of the inverter in a bilateral LCC network provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the output impedance of the inverter in a unilateral LCC network provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of another wireless charging system provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a short-circuited output terminal of the receiving terminal in the wireless charging system provided by the embodiment of the present application;
  • FIG. 13 is a flow chart of a wireless charging method provided by an embodiment of the present application.
  • FIG. 14 is a flow chart of another wireless charging method provided by an embodiment of the present application.
  • Words such as “first” and “second” in the following descriptions are used for description purposes only, and should not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature. In the description of the present application, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense, for example, “connection” can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • coupled may be an electrical connection for signal transmission.
  • Coupling can be a direct electrical connection, or an indirect electrical connection through an intermediary.
  • FIG. 1 this figure is a schematic diagram of a wireless charging system for an electric vehicle provided by the present application.
  • the receiving end 1000a of wireless charging is located on the electric vehicle 1000, and the transmitting end 1001a of wireless charging is located at the wireless charging station 1001 on the ground.
  • the charging process of the wireless charging system is that the receiving end 1000a of wireless charging and the transmitting end 1001a of wireless charging complete the transmission of electric energy in a wireless form to charge the power battery pack.
  • the wireless charging station 1001 may be a fixed wireless charging station, a fixed wireless charging parking space, or a wireless charging road.
  • the transmitting end 1001a of wireless charging may be set on the ground or buried under the ground (the figure shows the situation that the transmitting end 1001a of wireless charging is buried under the ground).
  • the receiving terminal 1000a of wireless charging can be integrated at the bottom of the electric vehicle 1000.
  • the electric vehicle 1000 enters the wireless charging range of the transmitting terminal 1001a of wireless charging, the electric vehicle 1000 can be charged through wireless charging.
  • the power receiving module and the rectifying circuit of the wireless charging receiving end 1000a can be integrated or separated, and this application does not make specific limitations on this.
  • the rectifier in the rectifying circuit is usually placed in the car .
  • the power transmitting module and the inverter of the wireless charging transmitting end 1001a can be integrated together or separated.
  • non-contact charging can be that the receiving end 1000a of wireless charging and the transmitting end 1001a of wireless charging perform energy transmission through electric field or magnetic field coupling, specifically electric field induction, magnetic induction, magnetic resonance, or wireless radiation.
  • the electric vehicle 1000 and the wireless charging station 1001 can also charge bidirectionally, that is, the wireless charging station 1001 can charge the electric vehicle 1000 through the charging power supply, and the electric vehicle 1000 can also discharge to the charging power supply.
  • FIG. 2 the figure is a schematic circuit diagram of a wireless charging system provided by an embodiment of the present application.
  • the wireless charging system includes a wireless charging transmitter (hereinafter referred to as the transmitter) and a wireless charging receiver (hereinafter referred to as the receiver).
  • the transmitter is on the ground and the receiver is on the vehicle.
  • the transmitting end includes: an inverter H1, a transmitting end compensation network 100 and a transmitting coil Lp.
  • the inverter H1 may include four controllable switch tubes, namely Q1-Q4, and the inverter H1 inverts the DC power output by the DC power supply into AC power.
  • the transmitter compensation network 100 compensates the alternating current output by the inverter H1 and supplies it to the transmitter coil Lp.
  • the transmitting coil Lp transmits the alternating current compensated by the compensation network 100 at the transmitting end in the form of an alternating magnetic field.
  • the receiving end includes: a receiving coil Ls, a receiving end compensation network 200 and a power converter H2.
  • the receiving coil Ls receives the electromagnetic energy emitted by the transmitting coil Lp in the form of an alternating magnetic field.
  • the compensation network 200 at the receiving end compensates the alternating current received by the receiving coil Ls and sends it to the power converter H2.
  • the power converter H2 may include four controllable switch tubes, namely S1-S4, which are used to convert the AC power compensated by the compensation network 200 at the receiving end into DC power for the load Charge.
  • the load is the on-board power battery pack.
  • the transmitter controller 101 controls the switch tube of the inverter, and the receiver controller 201 controls the switch tube of the rectifier.
  • the communication module 300 at the receiving end performs wireless communication with the communication module 400 at the transmitting end.
  • FIG. 3 is a schematic structural diagram of the wireless charging system for electric vehicles provided in FIG. 2 .
  • the wireless charging transmitter 1001a shown in the figure includes: a transmission transformation module 1001a1, a power transmission module 1001a2, a transmission control module 1001a3, a communication module 1001a4, an authentication management module 1001a5 and a storage module 1001a6.
  • the receiving end 1000a of wireless charging includes: a power receiving module 1000a2, a receiving control module 1000a3, a receiving conversion module 1000a1, a vehicle communication module 1000a4, an energy storage management module 1000a5 and an energy storage module 1000a6.
  • the receiving transformation module 1000a1 can be connected to the energy storage module 1000a6 through the energy storage management module 1000a5, and the received energy can be charged to the energy storage module 1000a6, and further used for driving the electric vehicle.
  • the energy storage management module 1000a5 and the energy storage module 1000a6 may be located inside the wireless charging receiving end 1000a, or outside the wireless charging receiving end 1000a, which is not specifically limited in this embodiment of the present application.
  • the power receiving module 1000a2 includes a receiving coil.
  • the transmission conversion module 1001a1 can be connected to an external power source, and converts AC or DC power obtained from the external power source into high-frequency AC power.
  • the transmission conversion module 1001a1 includes at least a power factor correction unit and an inverter.
  • the transmission conversion module 1001a1 includes at least an inverter.
  • the power factor correction unit is used to make the input current phase of the wireless charging system consistent with the grid voltage phase, reduce the harmonic content of the wireless charging system, and increase the power factor value, so as to reduce the pollution of the wireless charging system to the grid and improve reliability.
  • the power factor correction unit can also increase or decrease the output voltage of the power factor correction unit according to the requirement of the subsequent stage.
  • the inverter converts the voltage output by the power factor correction unit into a high-frequency AC voltage and then acts on the power transmitting module 1001a2.
  • the high-frequency AC voltage can improve the transmission efficiency and transmission distance.
  • the external power source can be located inside or outside the wireless charging transmitter 1001a.
  • the power transmission module 1001a2 is used to transmit the alternating current output by the transmission conversion module 1001a1 in the form of an alternating magnetic field.
  • the power transmitting module 1001a2 includes a transmitting coil.
  • the transmission control module 1001a3 can control the adjustment of the voltage, current and frequency conversion parameters of the transmission conversion module 1001a1 according to the transmission power requirements of the actual wireless charging, so as to control the voltage and current output adjustment of the high-frequency alternating current in the power transmission module 1001a2.
  • the communication module 1001a4 and the vehicle communication module 1000a4 realize wireless communication between the wireless charging transmitter 1001a and the wireless charging receiver 1000a, including power control information, fault protection information, power on/off information, mutual authentication information, etc.
  • the wireless charging transmitter 1001a can receive information such as the attribute information of the electric vehicle, charging request, and mutual authentication information sent by the wireless charging receiver 1000a; on the other hand, the wireless charging transmitter 1001a can also send wireless charging The receiving end 1000a sends wireless charging transmission control information, mutual authentication information, wireless charging historical data information, and the like.
  • the above wireless communication methods may include but not limited to Bluetooth, Wireless-Fidelity (WiFi), Zigbee, Radio Frequency Identification (RFID), Long Range , Lora) wireless technology, near field communication technology (Near Field Communication, NFC) in any one or a combination of more.
  • the communication module 1001a4 can also communicate with the smart terminal of the user of the electric vehicle, and the user realizes remote authentication and user information transmission through the communication function.
  • the authentication management module 1001a5 is used for interactive authentication and authority management between the wireless charging transmitter 1001a and the electric vehicle in the wireless charging system.
  • the storage module 1001a6 is used to store the charging process data, interactive authentication data (such as interactive authentication information) and authority management data (such as authority management information) of the wireless charging transmitter 1001a, wherein the interactive authentication data and authority management data can be
  • the settings may also be set by the user, which is not specifically limited in this embodiment of the present application.
  • the power receiving module 1000a2 receives the electromagnetic energy emitted by the power transmitting module 1001a2 in the form of an alternating magnetic field.
  • the structural combinations of the compensation circuits of the power transmitting module 1001a2 and the power receiving module 1000a2 in the wireless charging system include S-S type, P-P type, S-P type, P-S type, LCL-LCL type, LCL-P type and LCC-LCC type, etc. At present, most of them use a bilateral LCC network. In the embodiment of this application, it is introduced that both the transmitting end and the receiving end are LCC compensation circuits as an example, that is, LCC-LCC.
  • the roles of the wireless charging transmitter 1001a and the wireless charging receiver 1000a can be interchanged, that is, the wireless charging receiver 1000a can also charge the wireless charging transmitter 1001a in turn.
  • the receiving conversion module 1000a1 converts the electromagnetic energy received by the power receiving module 1000a2 into the DC power required for charging the energy storage module 1000a6.
  • the receiving conversion module 1000a1 includes at least a compensation circuit and a rectifier, wherein the rectifier converts the high-frequency resonance current and voltage received by the power receiving module into direct current.
  • the receiving control module 1000a3 can adjust parameters such as voltage, current and frequency of the receiving conversion module 1000a1 according to the actual wireless charging receiving power requirement.
  • the distance between the receiving end on the vehicle and the transmitting end on the ground is different, resulting in changes in the coupling coefficient between the transmitting coil and the receiving coil.
  • the technical solution provided by the embodiment of the present application can make the coupling coefficient between the transmitting end and the receiving end adjusted according to the different vehicle models, that is, the transmitting end and the receiving end have a wide coupling range, and the coupling coefficient between the transmitting end and the receiving end can be guaranteed in different scenarios High charging efficiency.
  • the ground of a car is low, the distance between the receiving end and the transmitting end is relatively close, and the coupling coefficient is large; the ground of an off-road vehicle is high, the distance between the receiving end and the transmitting end is relatively long, and the coupling coefficient is small.
  • the technical solution provided by the embodiment of the present application can adjust the compensation network according to the size of the coupling coefficient, and then adjust the appropriate impedance, and then adjust the phase difference between the output voltage and the output current of the inverter at the transmitting end, so that the switching of the inverter The tube realizes zero voltage switching (ZVS, Zero Voltage Switch), thereby reducing power consumption and improving wireless charging efficiency.
  • the architecture of the compensation network is adjusted according to the impedance of the inverter, so that the wireless charging system can switch between bilateral LCC and unilateral LCC, that is, the LCC compensation network at the transmitting end sometimes Participate in work, and sometimes you can not participate in work.
  • the wireless charging system is a bilateral LCC; when the LCC at the transmitting end does not participate in the work, the wireless charging system is a unilateral LCC.
  • FIG. 4 this figure is a schematic diagram of a wireless charging system provided by an embodiment of the present application.
  • the transmitting end includes the transmitting end LCC network
  • the receiving end includes the receiving end LCC network
  • the transmitting end LCC network includes: a first inductor L1, a first capacitor C1 and a compensation capacitor Cp;
  • the first end of the first inductance L1 is connected to the midpoint of the first bridge arm of the inverter, and the second end of the first inductance L1 is connected to the first end of the transmitting coil Lp through the compensation capacitor Cp; the second end of the transmitting coil Lp is connected to At the midpoint of the second bridge arm of the inverter, the first end of the first capacitor C1 is connected to the second end of the first inductor L1, and the second end of the first capacitor C1 is connected to the second end of the transmitting coil Lp; the inverter
  • the first bridge arm of the inverter includes the first switching tube Q1 and the second switching tube Q2 connected in series.
  • the second bridge arm includes a third switch tube Q3 and a fourth switch tube Q4, and the common end of Q3 and Q4 is the midpoint of the second bridge arm.
  • the LCC network at the receiving end includes: a second inductor, a second capacitor, and a compensation capacitor Cs;
  • the first end of the compensation capacitor Cs is connected to the first end of the receiving coil Ls
  • the second end of the compensation capacitor Cs is connected to the first end of the second inductance L2
  • the second end of the second inductance L2 is connected to the center of the first bridge arm of the rectifier point
  • the first end of the second capacitor C2 is connected to the second end of the compensation capacitor Cs
  • the second end of the second capacitor C2 is connected to the second end of the receiving coil Ls
  • the second end of the receiving coil Ls is connected to the second bridge arm of the rectifier midpoint of .
  • R load in Fig. 4 represents the load of the receiving end.
  • the output side of the receiving end realizes the current source characteristic.
  • the current of the transmitting coil does not change with the load, and the current of the transmitting coil does not change with the relative position between the transmitting coil and the receiving coil, so that the control decoupling between the transmitting end and the receiving end can be achieved, that is, the controller at the transmitting end controls the transmission The electrical parameters of the receiving end, and the controller of the receiving end controls the electrical parameters of the receiving end.
  • the relative position change between the transmitting coil and the receiving coil has little influence on the wireless charging system.
  • the inductance and capacitance of the LCC network at the transmitting end and the inductance and capacitance of the LCC network at the receiving end will be matched in places where the coupling is relatively poor, such as when the relative position between the transmitting coil and the receiving coil is far away, so as to meet the output power of the wireless charging system Require.
  • the equivalent impedance Zin seen by the inverter is:
  • Ro is the load impedance of the receiving end, that is, the impedance of the load.
  • Zin is inversely proportional to the square of the coupling coefficient k, that is, when the relative position between the transmitting coil and the receiving coil is close, k increases and Zin decreases, where M is the distance between the transmitting coil and the receiving coil mutual inductance between.
  • the output voltage Vin of the inverter is generally controlled by phase-shifting control between the first bridge arm and the second bridge arm of the inverter.
  • Vin is small and the input voltage Vdc of the inverter remains unchanged. It is necessary to control the phase shift angles of the four switching tubes Q1-Q4 of the inverter to be adjusted to be very small, and the waveform shown in FIG. 5 is generated accordingly.
  • FIG. 5 the figure is a waveform diagram of an output voltage of an inverter provided in an embodiment of the present application.
  • Vdc in Fig. 5 is the input voltage of the inverter, that is, the DC voltage.
  • the transmitting LCC network and the receiving LCC network are always connected in the circuit and always participate in the work, that is, the wireless charging system always works in a bilateral LCC architecture.
  • the reflection impedance of the output terminal of the inverter is small, the inverter It is difficult for the switching tube of the switch to achieve ZVS, and the power consumption is relatively high.
  • the transmitting end provided in the embodiment of the present application is provided with a switching circuit at the transmitting end, and the controller of the transmitting end can control the operation of the switching circuit as required, thereby controlling whether the LCC network of the transmitting end participates in the work,
  • the controller of the transmitting end can control the operation of the switching circuit as required, thereby controlling whether the LCC network of the transmitting end participates in the work.
  • this figure is a schematic diagram of a transmitting end provided by an embodiment of the present application.
  • the LCC network at the transmitting end includes: a first inductor L1, a first capacitor C1 and a compensation capacitor Cp.
  • the inverter is used to convert the DC power at the input end into AC power and transmit it to the compensation network at the transmitter end; in this embodiment, a full bridge circuit formed by the inverter including four switch tubes Q1-Q4 is taken as an example for illustration.
  • the LCC network at the transmitting end is used to compensate the alternating current and send it to the transmitting coil Lp; the switch circuit 100 is connected to the LCC network at the transmitting end;
  • the transmitting coil Lp is used to transmit the received alternating current in the form of an alternating magnetic field to be received by the receiving end.
  • the receiving end includes an LCC network at the receiving end; the LCC network at the receiving end is the same as that in FIG.
  • the controller 200 is configured to control the switch circuit 100 to operate to make the wireless charging system work on a bilateral LCC network when the real part of the first output impedance of the inverter is greater than the real part of the second output impedance;
  • the control switch circuit 100 operates to make the wireless charging system work in the unilateral LCC network;
  • the bilateral LCC network includes the transmitting end LCC network and the receiving end LCC network, and the unilateral LCC network includes the receiving end LCC network network;
  • the first output impedance is the output impedance of the inverter when the wireless charging system works on a bilateral LCC;
  • the second output impedance is the output impedance of the inverter when the wireless charging system works on a single-sided LCC.
  • FIG. 7 is a schematic diagram of another transmitting end provided in the embodiment of the present application.
  • the switch circuit includes: a first switch S1 and a second switch S2;
  • the first end of the first inductance L1 is connected to the midpoint of the first bridge arm of the inverter, and the second end of the first inductance L1 is connected to the first end of the transmitting coil Lp through the compensation capacitor Cp; the second end of the transmitting coil Lp is connected to At the midpoint of the second bridge arm of the inverter, the first end of the first capacitor C1 is connected to the second end of the first inductor L1, the second end of the first capacitor C1 is connected to the first end of the second switch S2, and the second The second end of the switch S2 is connected to the second end of the transmitting coil Lp;
  • the first end of the first switch S1 is connected to the first end of the first inductor L1, and the second end of the first switch S1 is connected to the first end of the transmitting coil Lp;
  • the controller is specifically used to control the first switch S1 to open and the second switch S2 to close when the real part of the first output impedance is greater than the real part of the second output impedance; it is also specifically used for the real part of the first output impedance to be less than or equal to When the real part of the second output impedance is used, the first switch S1 is controlled to be closed and the second switch S2 is opened.
  • the output impedance of the inverter refers to the impedance seen from the output terminal of the inverter.
  • FIG. 9 is a schematic diagram of the output impedance of the inverter in a bilateral LCC network provided by the embodiment of the present application.
  • Zin in FIG. 9 represents the output impedance of the inverter, that is, the impedance reflected to the output terminal of the inverter.
  • the wireless charging system When S1 in Figure 7 is open and S2 is closed, the wireless charging system includes a bilateral LCC network.
  • Zin is larger, higher power transmission efficiency can be achieved with a lower coupling coefficient.
  • the impedance Zin reflected to the inverter bridge is inversely proportional to the square of the mutual inductance M.
  • the coupling coefficient is large, that is, the emission
  • the corresponding Zin decreases, resulting in a small phase shift angle between the output voltage and output current of the inverter, the switching tube cannot achieve ZVS, and the output current of the inverter
  • the effective value Iin_rms increases, causing the overall loss of the transmitter to increase.
  • the transmitting end LCC network is disconnected from the transmitting end, and the wireless charging system includes a unilateral LCC network, that is, only the receiving end LCC network.
  • Zin is small and the coupling coefficient is high, higher power transmission efficiency can be achieved.
  • the coupling coefficient is high, since there is no LCC network at the transmitting end, the transmitting coil presents a large inductance, and the output current of the inverter lags behind the output voltage, so the ZVS of the switching tube can be easily realized.
  • there is no LCC network at the transmitter there are fewer inductance and capacitance components, and the loss caused by these components can be avoided, which can further reduce the overall power consumption of the transmitter.
  • the following describes how to obtain Zin when the wireless charging system includes a unilateral LCC.
  • FIG. 10 it is a schematic diagram of an output impedance of an inverter in a single-sided LCC network provided by an embodiment of the present application.
  • Zin is proportional to the square of the mutual inductance M.
  • the coupling coefficient is small, that is, when the relative position between the transmitting coil and the receiving coil is far away, Zin decreases, and the phase shift angle between the output voltage and output current of the inverter decreases, and the switching tube is not easy to realize ZVS, Iin_rms increases, and the overall loss of the transmitter increases.
  • this figure is a schematic diagram of another wireless charging system provided by an embodiment of the present application.
  • the first end of the third switch S3 added at the receiving end is connected to the second end of the second inductor L2, and the second end of the third switch S2 is connected to the second end of the receiving coil Ls.
  • this figure is a schematic diagram of the output end of the receiving end being short-circuited in the wireless charging system provided by the embodiment of the present application.
  • the third switch S3 is closed first, and the output impedance is 0; the first switch S1 is opened, and the second switch S2 is closed, at this time, it becomes a bilateral LCC compensation mode.
  • Vdc is the input voltage of the inverter.
  • the current I1 flowing through the transmitting coil Lp is:
  • the current IL2 flowing through the second inductor L2 is:
  • IL2 can be collected by the current sensor, L1, L2, Vdc, ⁇ are all known, and the mutual inductance M between the transmitting coil and the receiving coil can be obtained as:
  • the mutual inductance M between the transmitting coil and the receiving coil may also be referred to as the mutual inductance between the transmitting end and the receiving end.
  • the mutual inductance M can also be obtained by other methods, such as measuring the voltage across the second inductance L2 and the current of the transmitting coil, where the voltage across the second inductance L2 can be measured by opening the output end of the LCC network at the receiving end
  • the open circuit voltage is the voltage at both ends of L2.
  • the mutual inductance M can be understood as the mutual inductance of the transformer.
  • the transmitting coil and the receiving coil are the primary side and the secondary side of the transformer respectively.
  • the mutual inductance M is proportional to the voltage at both ends of L2 and inversely proportional to the current of the transmitting coil. .
  • the output load Ro of the receiving end can be obtained, and the actual output impedance Zin of the inverter corresponding to the double-sided LCC and the single-sided LCC can be calculated according to formulas (1) and (2).
  • Parts Zin_re1 and Zin_re2 are formula (3) and formula (4) respectively:
  • the wireless charging system works on a bilateral LCC network, that is, S1 is disconnected and S2 is closed;
  • the wireless charging system works on a unilateral LCC network, that is, S1 is closed and S2 is disconnected;
  • the transmitter provided in the embodiment of the present application can switch whether the LCC network of the transmitter participates in the work according to the needs of the wireless charging system.
  • the coupling between the transmitting coil and the receiving coil is poor, that is, M is small
  • the LCC network at the transmitting end is controlled to participate in the work, and the wireless charging system works in the bilateral LCC network, which can achieve higher Wireless charging efficiency.
  • the wireless charging system When the coupling between the transmitting coil and the receiving coil of the wireless charging system is good, that is, M is large, if the wireless charging system adopts a bilateral LCC network, it is difficult for the switching tube in the inverter at the transmitting end to achieve ZVS, and the switching tube is in a hard switching state Severe heat generation, increased power consumption, and may not be able to operate normally. Therefore, the transmitter controller controls the transmitter LCC network not to participate in the work, that is, the wireless charging system works on a unilateral LCC network, and the inductance of the transmitter coil is inductive, so it is easy to realize the inversion ZVS of the switching tube in the converter, thereby reducing power consumption and improving the efficiency of wireless charging.
  • the transmitting end provided by the embodiment of the present application can ensure higher charging efficiency when the coupling between the transmitting end and the receiving end is good, and can also ensure higher charging efficiency when the coupling between the transmitting end and the receiving end is low.
  • Efficiency so that the transmitter has a wide coupling range, so that it can be applied to charging electric vehicles of different models and can ensure high charging efficiency.
  • the embodiment of the present application further provides a wireless charging receiving end, which will be described in detail below.
  • the transmitting terminal provided by the above embodiment uses the transmitting terminal as the execution subject, and the transmitting terminal compares the real part of the first output impedance and the real part of the second output impedance, and controls the switching circuit action according to the comparison result to switch the bilateral LCC network. Or unilateral LCC network work.
  • the receiving end can also be used as the execution subject, and the receiving end compares the real part of the first output impedance and the real part of the second output impedance, and sends the comparison result to the transmitting end, or sends an instruction to the transmitting end according to the comparison result,
  • the transmitter directly controls the action of the switch circuit to switch between the bilateral LCC network and the unilateral LCC network.
  • Other actions performed by the transmitter in the above embodiments can also be performed by the receiver, which will be described in detail below. For specific working principles, please refer to the introduction of the above embodiments of the transmitter, which are only briefly introduced here and will not be described in detail.
  • the receiving end controller is further configured to obtain the first output impedance according to the first inductance in the LCC network at the transmitting end, the second inductance in the LCC network at the receiving end, the load impedance at the receiving end, and the mutual inductance between the transmitting end and the receiving end.
  • the receiver controller is further configured to obtain the second output impedance according to the second inductance in the LCC network of the receiver, the load impedance of the receiver, and the mutual inductance between the transmitter and the receiver.
  • the receiving end controller is also used to obtain the first inductor in the LCC network at the transmitting end, the second inductor in the LCC network at the receiving end, the current of the second inductor, the input voltage of the inverter, and the phase shift angle of the inverter.
  • Mutual inductance; the phase shift angle of the inverter is the phase difference between the output voltage and the output current of the inverter.
  • the receiver controller is also used to obtain the load impedance of the receiver according to the output voltage and preset current of the receiver.
  • the receiver controller is specifically used to obtain the first output impedance Zin_re1 through the following formula:
  • L 1 represents the inductance value of the first inductor
  • L 2 represents the inductance value of the second inductor
  • M represents the mutual inductance
  • R 0 represents the output impedance
  • the receiver controller is specifically used to obtain the second output impedance Zin_re2 through the following formula:
  • L 2 represents the inductance value of the second inductor
  • M represents the mutual inductance
  • R 0 represents the output impedance
  • the receiver controller is specifically used to obtain the mutual inductance M through the following formula:
  • L 1 represents the inductance of the first inductor
  • L 2 represents the inductance of the second inductor
  • I L2 represents the inductance of the second inductor
  • V dc represents the input voltage of the inverter
  • represents the phase shift angle
  • the embodiment of the present application also provides a wireless charging system, that is, the wireless charging system includes a transmitting end and a receiving end, wherein the transmitting end can be the above embodiment
  • the introduced transmitting end controls the switching between bilateral LCC and unilateral LCC, or the receiving end realizes the switching between bilateral LCC and unilateral LCC.
  • the receiving end in the wireless charging system provided by the embodiment of the present application can refer to the transmitting end provided in the above embodiment, wherein the receiving end includes: a rectifier, a receiving end LCC network and a receiving end Coil Ls.
  • the rectifier is introduced by taking a full-bridge rectifier as an example.
  • the rectifier includes four switch tubes S1-S4, wherein S1 and S2 are connected in series to form the first bridge arm of the rectifier, and S3 and S4 are connected in series to form the second bridge arm of the rectifier.
  • the receiving coil Ls is used to receive electric energy from the transmitting coil Lp and transmit it to the receiving end LCC network;
  • the LCC network at the receiving end is used to compensate the received AC power and send it to the rectifier;
  • the rectifier is used to rectify the received alternating current into direct current to charge the load Rload.
  • the LCC network at the receiving end includes a compensation capacitor Cs, a second capacitor C2, and a second inductor L2, wherein the first end of the compensation capacitor Cs is connected to the first end of the receiving coil Ls, and the second end of Cs is connected to the first end of the second inductor L2. end, the second end of L2 is connected to the midpoint of the first bridge arm of the rectifier, that is, the midpoint of S1 and S2; the first end of the second capacitor C2 is connected to the second end of Cs, and the second end of C2 is connected to the second end of Ls The end, that is, the receiving end is also the LCC network.
  • the LCC network at the transmitting end is controlled not to work, and only the LCC network at the receiving end is working, that is, the unilateral LCC network, thereby realizing the switching of the transmitting end.
  • Realizing ZVS can also ensure high charging efficiency of the wireless charging system.
  • both the transmitting end LCC network and the receiving end LCC network work, that is, the bilateral LCC network, so as to ensure that the switching tube at the transmitting end realizes ZVS, thereby ensuring the charging efficiency of the wireless charging system is high.
  • the wireless charging system works in bilateral LCC mode; when the transmitter charges an electric vehicle with a higher chassis, the LCC network at the transmitter does not participate Work, the wireless charging system works in unilateral LCC mode.
  • the embodiment of the present application also provides a wireless charging method, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 13 the figure is a flowchart of a wireless charging method provided by an embodiment of the present application.
  • the wireless charging method provided in the embodiment of the present application is applied to the wireless charging transmitting end provided in the above embodiment; for details, please refer to the transmitting end shown in Figure 6, and the transmitting end includes: an inverter, a transmitting end LCC network, and a transmitting coil and the switch circuit; the output end of the inverter is connected to the transmitting coil through the transmitting end LCC network; the switching circuit is connected to the transmitting end LCC network; the specific connection relationship of the transmitting end will not be detailed here.
  • the method includes:
  • the switch circuit When the real part of the first output impedance of the inverter is greater than the real part of the second output impedance, control the switch circuit to operate to make the wireless charging system work in a bilateral LCC network;
  • the bilateral LCC network includes a transmitting-end LCC network and a receiving-end LCC Network; that is, comparing the real part of the first output impedance and the real part of the second output impedance, and determining whether the LCC network at the transmitting end participates in the work according to the size relationship.
  • the LCC network at the transmitting end is controlled not to work, and only the LCC network at the receiving end works, that is, the unilateral LCC network, so that the switching tube at the transmitting end can realize ZVS , which can also ensure a higher charging efficiency of the wireless charging system.
  • both the transmitting end LCC network and the receiving end LCC network work, that is, the bilateral LCC network, so as to ensure that the switching tube at the transmitting end realizes ZVS, thereby ensuring the charging efficiency of the wireless charging system is high.
  • the wireless charging system works in bilateral LCC mode; when the transmitter charges an electric vehicle with a higher chassis, the LCC network at the transmitter does not participate Work, the wireless charging system works in unilateral LCC mode.
  • the switch circuit includes: a first switch and a second switch;
  • the transmitting end LCC includes: a first inductor, a first capacitor, and a compensation capacitor; the first end of the first inductor is connected to the midpoint of the first bridge arm of the inverter, and the first The second end of the inductor is connected to the first end of the transmitting coil through the compensation capacitor;
  • the second end of the transmitting coil is connected to the midpoint of the second bridge arm of the inverter, and the first end of the first capacitor is connected to the second end of the first inductor ,
  • the second end of the first capacitor is connected to the first end of the second switch, the second end of the second switch is connected to the second end of the transmitting coil;
  • the first end of the first switch is connected to the first end of the first inductor, and the first The second end of the switch is connected to the first end of the transmitting coil;
  • Control the action of the switch circuit to make the wireless charging system work on the bilateral LCC network including:
  • Control the action of the switch circuit to make the wireless charging system work on the unilateral LCC network including:
  • the first switch is controlled to be closed, and the second switch is opened to make the wireless charging system work on a unilateral LCC network.
  • the controller at the transmitting end may control the states of the first switch and the second switch to determine whether the LCC network at the transmitting end participates in the work.
  • FIG. 14 is a flow chart of another wireless charging method provided by an embodiment of the present application.
  • S1401 Close the third switch at the receiving end, turn off the first switch at the transmitting end, and close the second switch at the transmitting end, that is, the output end of the receiving end is short-circuited, and the wireless charging system works on a bilateral LCC network.
  • S1402 The input voltage of the inverter is a given value, and the inverter is controlled to work at the preset phase shift angle, where the preset phase shift angle is only a small angle, and the wireless charging system is not charging the load at this time .
  • S1403 Collect the current of the second inductor of the LCC network at the receiving end;
  • S1405 Obtain the real part of the first output impedance according to the load impedance, mutual inductance, first inductance, and second inductance of the receiving end, and obtain the real part of the second output impedance according to the load impedance, mutual inductance, and second inductance of the receiving end;
  • the LCC network at the transmitting end is controlled not to work, and only the LCC network at the receiving end works, that is, the unilateral LCC network, so as to realize the switching of the transmitting end
  • the tube realizes ZVS, which can also ensure a high charging efficiency of the wireless charging system.
  • both the transmitting end LCC network and the receiving end LCC network work, that is, the bilateral LCC network, so as to ensure that the switching tube at the transmitting end realizes ZVS, thereby ensuring the charging efficiency of the wireless charging system is high.
  • the wireless charging system works in bilateral LCC mode; when the transmitter charges an electric vehicle with a higher chassis, the LCC network at the transmitter does not participate Work, the wireless charging system works in unilateral LCC mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

提供了一种无线充电的发射端(1001a)、接收端(1000a)及无线充电系统,发射端(1001a)包括:逆变器输出端连接发射端补偿网络;发射端LCC网络输出端连接发射线圈(Lp);开关电路(100)与发射端LCC网络连接;接收端(1000a)包括接收端LCC网络;发射端(1001a)控制器(200)在逆变器的第一输出阻抗的实部大于逆变器的第二输出阻抗的实部时,控制开关电路(100)动作使无线充电系统工作于双边LCC网络;在第一输出阻抗的实部小于等于第二输出阻抗的实部时,控制开关电路(100)动作使无线充电系统工作于单边LCC网络;第一输出阻抗为无线充电系统工作于双边LCC网络时逆变器的输出阻抗;第二输出阻抗为无线充电系统工作于单边LCC网络时逆变器的输出阻抗,具有较宽耦合范围,不同车型均有较高充电效率。

Description

一种无线充电的发射端、接收端及无线充电系统
本申请要求于2021年10月28日提交中国国家知识产权局、申请号为202111266323.1、发明名称为“无线充电的发射端、接收端及无线充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车无线充电技术领域,尤其涉及一种无线充电的发射端、接收端及无线充电系统。
背景技术
随着现代社会能源短缺和环境污染问题的加剧,电动汽车作为新能源汽车受到了各界的广泛关注。电动汽车的动力来源于动力电池组,动力电池组需要充电。
目前,电动汽车的充电方式包括接触式充电和无线充电,而无线充电方式由于使用方便,无火花以及触电危险,因此成为未来电动汽车充电的发展方向。电动汽车的无线充电系统包括发射端和接收端,发射端位于地面,接收端位于车上,接收端为电动汽车的动力电池组进行充电。发射端包括逆变器、发射端补偿网络和发射线圈;接收端包括接收线圈、接收端补偿网络和整流器。发射端的直流电压经过逆变器逆变产生高频交流电,流经发射端补偿网络与发射线圈,产生高频磁场,在接收线圈处耦合出感应电动势,经过整流器整流形成直流电给动力电池组充电。其中,发射端补偿网络的作用均是通过电感和/或电容与发射线圈进行谐振,补偿线路中的无功分量,使直流输入侧尽量呈现纯阻性,从而提高整个无线充电系统的效率。接收端补偿网络的作用类似,接收端补偿网络与接收线圈进行谐振。
但是,无线充电系统在实际充电时,因为车型不同,造成车辆底盘离地间隙有较大差异,即发射端和接收端之间的距离随着车型不同而有所差异。例如,SUV的底盘离地间隙一般较大而轿车的底盘离地间隙一般较小。这种差异将会导致无线充电系统需要在很宽的偏移范围内均实现高效的功率传输。位于车上的充电线圈和位于地上的接收线圈之间的偏移将影响发射端和接收端之间的耦合系数,也会影响发射线圈的自感和接收线圈的自感。
因此,如何能够使无线充电系统能够适用于各自不同的车型时均具有较高的充电效率,是本领域技术人员需要解决的技术问题。
发明内容
为了解决以上技术问题,本申请提供一种无线充电的发射端、接收端及无线充电系统,具有较宽的耦合范围,适用于不同的车型时均具有较高的充电效率。
本申请提供一种无线充电的发射端,包括:逆变器、发射端LCC网络、发射线圈、开关电路和发射端控制器;逆变器将输入端的直流电转换为交流电传输给发射端补偿网络;发射端LCC网络将交流电进行补偿后输送给发射线圈;开关电路与发射端LCC网络连接;发射线圈将收到的交流电以交变磁场的形式发射出去以使接收端接收,接收端包括接收端LCC网络;发射端控制器在逆变器的第一输出阻抗的实部大于逆变器的第二输出阻抗的实部时,控制开关电路动作使无线充电系统工作于双边LCC网络; 在第一输出阻抗的实部小于等于第二输出阻抗的实部时,控制开关电路动作使无线充电系统工作于单边LCC网络;双边LCC网络包括发射端LCC网络和接收端LCC网络,单边LCC网络包括接收端LCC网络;第一输出阻抗为无线充电系统工作于双边LCC网络时逆变器的输出阻抗;第二输出阻抗为无线充电系统工作于单边LCC网络时逆变器的输出阻抗。
由于该发射端添加了开关电路,可以根据无线充电系统的需要通过开关电路来切换发射端LCC网络是否参与工作。当发射线圈和接收线圈之间耦合较差时,即M较小,为了逆变器的开关管实现零电压开关ZVS,控制发射端LCC网络参与工作,无线充电系统工作在双边LCC网络,可以实现较高的无线充电效率。当无线充电系统的发射线圈和接收线圈之间耦合较好时,即M较大,如果无线充电系统采用双边LCC网络,则发射端的逆变器中开关管难以实现ZVS,开关管处于硬开关状态发热严重,增加功耗,而且可能无法正常运行,因此,发射端控制器控制发射端LCC网络不参与工作,即无线充电系统工作在单边LCC网络,发射线圈的电感呈现感性,因此轻松实现逆变器中开关管的ZVS,从而降低功耗,提升无线充电的效率。因此,本申请实施例提供的发射端,可以在发射端和接收端之间耦合较好时保证较高的充电效率,也可以在发射端和接收端之间耦合较低时保证较高的充电效率,从而使发射端具有较宽的耦合范围,从而可以适用于为不同车型的电动汽车充电均可以保证较高的充电效率。
下面介绍一种开关电路的具体实现方式,以开关电路包括两个开关为例,硬件实现简单,控制方便;发射端LCC包括:第一电感、第一电容和补偿电容;开关电路包括:第一开关和第二开关;该电路可以在开关的不同状态控制发射端的LCC是否参与工作。具体地,第一电感的第一端连接逆变器的第一桥臂的中点,第一电感的第二端通过补偿电容连接发射线圈的第一端;发射线圈的第二端连接逆变器的第二桥臂的中点,第一电容的第一端连接第一电感的第二端,第一电容的第二端连接第二开关的第一端,第二开关的第二端连接发射线圈的第二端;第一开关的第一端连接第一电感的第一端,第一开关的第二端连接发射线圈的第一端;发射端控制器,具体用于第一输出阻抗的实部大于第二输出阻抗的实部时,控制第一开关断开,第二开关闭合使无线充电系统工作于双边LCC网络;还具体用于第一输出阻抗的实部小于等于第二输出阻抗的实部时,控制第一开关闭合,第二开关断开使无线充电系统工作于单边LCC网络。
本申请中不限定第一输出阻抗的获得方式,可以由发射端来获得,也可以由接收端来获得,下面介绍由发射端来获得第一输出阻抗的情况。一种可能的实现方式,发射端控制器,还用于根据发射端LCC网络中的第一电感、接收端LCC网络中的第二电感、接收端的负载阻抗以及发射端和接收端之间的互感获得第一输出阻抗。
本申请中不限定第二输出阻抗的获得方式,可以由发射端来获得,也可以由接收端来获得,下面介绍由发射端来获得第二输出阻抗的情况。一种可能的实现方式,发射端控制器,还用于根据接收端LCC网络中的第二电感、接收端的负载阻抗以及发射端和接收端之间的互感获得第二输出阻抗。
本申请不限定互感的获得方式,下面介绍一种可能的实现方式,发射端控制器, 根据发射端LCC网络中的第一电感、接收端LCC网络中的第二电感、第二电感的电流、逆变器的输入电压和逆变器的移相角获得互感;逆变器的移相角为逆变器的输出电压与输出电流之间的相位差。
一种可能的实现方式,发射端控制器,还用于根据接收端的输出电压和预设电流获得接收端的负载阻抗。其中,预设电流可以根据经验值来设置,本申请不做具体限定,接收端的输出电压可以采样获得,利用采样获得的输出电压除以预设电流便可以获得负载阻抗。
一种可能的实现方式,发射端控制器,具体用于通过以下公式获得第一输出阻抗Zin_re1:
Figure PCTCN2022098323-appb-000001
其中,L 1表示第一电感的感值,L 2表示第二电感的感值,M表示互感,R 0表示输出阻抗。
一种可能的实现方式,发射端控制器,具体用于通过以下公式获得第二输出阻抗Zin_re2:
Figure PCTCN2022098323-appb-000002
其中,L 2表示第二电感的感值,M表示互感,R 0表示输出阻抗。
一种可能的实现方式,发射端控制器,具体用于通过以下公式获得互感M:
Figure PCTCN2022098323-appb-000003
其中,L 1表示第一电感的感值,L 2表示第二电感的感值,I L2表示第二电感的电感,V dc表示逆变器的输入电压,θ表示移相角。
以上是以发射端作为执行主体,发射端来比较第一输出阻抗的实部和第二输出阻抗的实部大小,根据比较结果控制开关电路动作,来切换双边LCC网络还是单边LCC网络工作。应该理解,也可以接收端作为执行主体,接收端来比较第一输出阻抗的实部和第二输出阻抗的实部大小,将比较结果发送给发射端,或者根据比较结果发送指令给发射端,发射端直接控制开关电路动作,来切换双边LCC网络还是单边LCC网络工作。以上发射端执行的其他动作也可以由接收端来执行,基于以上实施例提供的一种无线充电的发射端,本申请还提供一种无线充电的接收端,以上各个实现方式的优点同样适用于接收端,在此不再赘述。
下面具体介绍接收端的实现方式,接收端包括:接收线圈、接收端LCC网络、整流器和接收端控制器;接收线圈,用于从发射端的发射线圈接收电能并输送给接收端LCC网络;接收端LCC网络,用于将接收的交流电进行补偿后输送给整流器;整流器,用于将接收的交流电整流为直流电为负载进行充电;接收端控制器,用于在发射端的逆变器的第一输出阻抗的实部大于第二输出阻抗的实部时,向发射端发送双边LCC网络指令,使发射端LCC网络参与工作无线充电系统工作于双边LCC网络;在第一输出阻抗的实部小于等于第二输出阻抗的实部时,向发射端发送单边LCC网络指令,使发 射端LCC网络退出工作无线充电系统工作于单边LCC;双边LCC网络包括发射端LCC网络和接收端LCC网络,单边LCC网络包括接收端LCC网络;第一输出阻抗为无线充电系统工作于双边LCC网络时逆变器的输出阻抗;第二输出阻抗为无线充电系统工作于单边LCC网络时逆变器的输出阻抗。
下面介绍由接收端获得第一输出阻抗的具体方式,一种可能的实现方式,接收端控制器,还用于根据发射端LCC网络中的第一电感、接收端LCC网络中的第二电感、接收端的负载阻抗以及发射端和接收端之间的互感获得第一输出阻抗。
下面介绍由接收端获得第二输出阻抗的具体方式,一种可能的实现方式,接收端控制器,还用于根据接收端LCC网络中的第二电感、接收端的负载阻抗以及发射端和接收端之间的互感获得第二输出阻抗。
本申请不限定互感的方式,下面介绍一种可能的实现方式,接收端控制器,还用于根据发射端LCC网络中的第一电感、接收端LCC网络中的第二电感、第二电感的电流、逆变器的输入电压和逆变器的移相角获得互感;逆变器的移相角为逆变器的输出电压与输出电流之间的相位差。
一种可能的实现方式,接收端控制器,还用于根据接收端的输出电压和预设电流获得接收端的负载阻抗。
一种可能的实现方式,接收端控制器,具体用于通过以下公式获得第一输出阻抗Zin_re1:
Figure PCTCN2022098323-appb-000004
其中,L 1表示第一电感的感值,L 2表示第二电感的感值,M表示互感,R 0表示输出阻抗。
一种可能的实现方式,接收端控制器,具体用于通过以下公式获得第二输出阻抗Zin_re2:
Figure PCTCN2022098323-appb-000005
其中,L 2表示第二电感的感值,M表示互感,R 0表示输出阻抗。
一种可能的实现方式,接收端控制器,具体用于通过以下公式获得互感M:
Figure PCTCN2022098323-appb-000006
其中,L 1表示第一电感的感值,L 2表示第二电感的感值,I L2表示第二电感的电感,V dc表示逆变器的输入电压,θ表示移相角。
本申请提供一种无线充电系统,包括以上介绍的发射端和以上介绍的接收端;发射端用于为接收端进行无线充电。
本申请至少具有以下优点:
该发射端或接收端或系统,可以根据无线充电系统的需要来切换发射端LCC网络是否参与工作。当发射线圈和接收线圈之间耦合较差时,即互感M较小,为了逆变器的开关管实现零电压开关ZVS,控制发射端LCC网络参与工作,无线充电系统工作在 双边LCC网络,可以实现较高的无线充电效率。当无线充电系统的发射线圈和接收线圈之间耦合较好时,即M较大,如果无线充电系统采用双边LCC网络,则发射端的逆变器中开关管难以实现ZVS,开关管处于硬开关状态发热严重,增加功耗,而且可能无法正常运行,因此,发射端控制器控制发射端LCC网络不参与工作,即无线充电系统工作在单边LCC网络,发射线圈的电感呈现感性,因此轻松实现逆变器中开关管的ZVS,从而降低功耗,提升无线充电的效率。因此,本申请实施例提供的发射端,可以在发射端和接收端之间耦合较好时保证较高的充电效率,也可以在发射端和接收端之间耦合较低时保证较高的充电效率,从而使发射端具有较宽的耦合范围,从而可以适用于为不同车型的电动汽车充电均可以保证较高的充电效率。
附图说明
图1为本申请提供的电动汽车无线充电系统的示意图;
图2为本申请实施例提供的一种无线充电系统的电路示意图;
图3为图2提供的电动汽车无线充电系统的结构示意图;
图4为本申请实施例提供的一种无线充电系统的示意图;
图5为本申请实施例提供的一种逆变器的输出电压的波形图;
图6为本申请实施例提供的一种发射端的示意图;
图7为本申请实施例提供的又一种发射端的示意图;
图8为本申请实施例提供的一种无线充电系统包括单边LCC的示意图;
图9为本申请实施例提供的一种双边LCC网络时逆变器的输出阻抗的示意图;
图10为本申请实施例提供的一种单边LCC网络时逆变器的输出阻抗的示意图;
图11为本申请实施例提供另一种无线充电系统的示意图;
图12为本申请实施例提供的无线充电系统中接收端的输出端被短路的示意图;
图13为本申请实施例提供的一种无线充电的方法流程图;
图14为本申请实施例提供的又一种无线充电的方法流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
以下说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“耦接”可以是实现信号传输的电性连接的方式。“耦接”可以是直接的电性连接,也可以通过中间媒介间接电性连接。
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先结合附图介绍该技术方案的应用场景。
参见图1,该图为本申请提供的电动汽车无线充电系统的示意图。
无线充电的接收端1000a位于电动汽车1000上,无线充电的发射端1001a位于地面的无线充电站1001。
目前,无线充电系统的充电过程是无线充电的接收端1000a和无线充电的发射端1001a通过无线形式来完成电能的传递,给动力电池组充电。
无线充电站1001具体可以为固定无线充电站、固定无线充电停车位或无线充电道路等。无线充电的发射端1001a可以设置在地面上或者埋于地面下(图中所示为无线充电的发射端1001a埋于地面下的情况)。
无线充电的接收端1000a可以集成在电动汽车1000的底部,当电动汽车1000进入无线充电的发射端1001a的无线充电范围时,即可通过无线充电方式对电动汽车1000进行充电。无线充电的接收端1000a的功率接收模块和整流电路可以集成在一起,也可以分离,本申请对此不作具体限定,当功率接收模块和整流电路分离时,整流电路中的整流器通常放在车内。
无线充电的发射端1001a的功率发射模块和逆变器可以集成在一起,也可以分离。此外,非接触式充电可以是无线充电的接收端1000a和无线充电的发射端1001a通过电场或磁场耦合方式进行能量传输,具体可为电场感应、磁感应、磁共振或无线辐射等方式,本申请实施例对此不做具体限制。电动汽车1000和无线充电站1001还可以双向充电,即无线充电站1001通过充电电源向电动汽车1000充电,也可以由电动汽车1000向充电电源放电。
参见图2,该图为本申请实施例提供的一种无线充电系统的电路示意图。
无线充电系统包括无线充电的发射端(以下简称发射端)和无线充电的接收端(以下简称接收端)。通常,发射端位于地面,接收端位于车辆上。
其中,发射端包括:逆变器H1、发射端补偿网络100和发射线圈Lp。
以逆变器H1为全桥逆变器为例,逆变器H1可以包括四个可控开关管,分别为Q1-Q4,逆变器H1将直流电源输出的直流电逆变为交流电。
发射端补偿网络100将逆变器H1输出的交流电进行补偿后输送给发射线圈Lp。
发射线圈Lp将发射端补偿网络100补偿后的交流电以交变磁场的形式发射。
接收端包括:接收线圈Ls、接收端补偿网络200和功率变换器H2。
接收线圈Ls以交变磁场的形式接收发射线圈Lp发射的电磁能量。
接收端补偿网络200将接收线圈Ls接收的交流电进行补偿后输送给功率变换器H2。
以功率变换器H2为全桥整流器H2为例,功率变换器H2可以包括四个可控开关管,分别为S1-S4,用于将接收端补偿网络200补偿后的交流电转换为直流电以给负载充电。对于电动汽车来说,负载为车载动力电池组。
发射端控制器101对逆变器的开关管进行控制,接收端控制器201对整流器的开关管进行控制。
接收端的通信模块300与发射端的通信模块400进行无线通信。
参见图3,该图为图2提供的电动汽车无线充电系统的结构示意图。
该图示出的无线充电的发射端1001a包括:发射变换模块1001a1、功率发射模块1001a2、发射控制模块1001a3、通讯模块1001a4、认证管理模块1001a5和存储模块1001a6。
无线充电的接收端1000a包括:功率接收模块1000a2、接收控制模块1000a3、接收变换模块1000a1、车辆通讯模块1000a4、储能管理模块1000a5和储能模块1000a6。此外,接收变换模块1000a1可以通过储能管理模块1000a5和储能模块1000a6连接,将接收到的能量对储能模块1000a6充电,进一步用于电动汽车的驱动。储能管理模块1000a5和储能模块1000a6可以位于无线充电的接收端1000a的内部,也可以位于无线充电接收端1000a外部,本申请实施例对此不作具体限制。功率接收模块1000a2包括接收线圈。
发射变换模块1001a1可以与外部电源连接,将从外部电源中获取的交流电或直流电转换为高频交流电,当外部电源的输入为交流电时,发射变换模块1001a1至少包括功率因数校正单元和逆变器。当外部电源的输入为直流电时,发射变换模块1001a1至少包括逆变器。其中,功率因数校正单元用于使无线充电系统的输入电流相位与电网电压相位一致,减小无线充电系统的谐波含量,提高功率因数值,以减少无线充电系统对电网的污染,提高可靠性。功率因数校正单元还可根据后级需求,升高或者降低功率因数校正单元的输出电压。逆变器将功率因数校正单元输出的电压转换成高频交流电压后作用在功率发射模块1001a2上,高频交流电压可以提高发射效率及传输距离。外部电源可以位于无线充电的发射端1001a内部或外部。
功率发射模块1001a2用于将发射变换模块1001a1输出的交流电以交变磁场的形式进行发射。功率发射模块1001a2包括发射线圈。
发射控制模块1001a3可以根据实际无线充电的发射功率需求,控制发射变换模块1001a1的电压、电流和频率变换参数调节,以控制功率发射模块1001a2中高频交流电的电压和电流输出调节。
通讯模块1001a4和车辆通讯模块1000a4实现无线充电的发射端1001a和无线充电的接收端1000a之间的无线通讯,包括功率控制信息、故障保护信息、开关机信息、交互认证信息等。一方面,无线充电的发射端1001a可以接收无线充电的接收端1000a发送的电动汽车的属性信息、充电请求和交互认证信息等信息;另一方面,无线充电的发射端1001a还可向无线充电的接收端1000a发送无线充电发射控制信息、交互认证信息、无线充电历史数据信息等。具体地,上述无线通讯的方式可以包括但不仅限于蓝牙(Bluetooth)、无线宽带(Wireless-Fidelity,WiFi)、紫蜂协议(Zigbee)、射频识别技术(Radio Frequency Identification,RFID)、远程(Long Range,Lora)无线技术、近距离无线通信技术(Near Field Communication,NFC)中的任意一种或多种的组合。进一步地,通讯模块1001a4还可以与电动汽车的所属用户的智能终端进行通讯,所属用户通过通讯功能实现远程认证和用户信息传输。
认证管理模块1001a5用于无线充电系统中无线充电的发射端1001a与电动汽车的交互认证和权限管理。
存储模块1001a6用于存储无线充电的发射端1001a的充电过程数据、交互认证数据(例如交互认证信息)和权限管理数据(例如权限管理信息)等,其中,交互认证数据和权限管理数据可为出厂设置也可为用户自行设置的,本申请实施例对此不作具体限制。
功率接收模块1000a2以交变磁场的形式接收功率发射模块1001a2发射的电磁能量。无线充电系统中的功率发射模块1001a2和功率接收模块1000a2的补偿电路的结构组合形式有S-S型、P-P型、S-P型、P-S型、LCL-LCL型、LCL-P型和LCC-LCC型等,目前大部分采用双边LCC网络,本申请实施例中以发射端和接收端均为LCC补偿电路为例进行介绍,即LCC-LCC。无线充电的发射端1001a和无线充电的接收端1000a可以角色互换,即无线充电的接收端1000a也可以反过来给无线充电的发射端1001a充电。
接收变换模块1000a1将功率接收模块1000a2接收的电磁能量转换成为储能模块1000a6充电所需要的直流电。接收变换模块1000a1至少包括补偿电路和整流器,其中整流器将功率接收模块接收的高频谐振电流和电压转换成直流电。
接收控制模块1000a3能够根据实际无线充电的接收功率需求,调节接收变换模块1000a1的电压、电流和频率等参数。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。可以理解的是,以下实施例中的“第一”和“第二”等词语仅是为了方便解释说明,并不构成对于本申请的限定。
在实际应用中,随着电动汽车的车型不同,则位于车上的接收端与位于地面的发射端之间的距离有所差异,造成发射线圈和接收线圈之间的耦合系数发生变化。本申请实施例提供的技术方案,可以使发射端和接收端之间的耦合系数随着车型的不同而有所调整,即发射端和接收端具有较宽的耦合范围,在不同的场景均保证较高的充电效率。例如,轿车地盘较低,接收端与发射端之间的距离较近,耦合系数较大;越野车的地盘较高,接收端和发射端之间的距离较远,耦合系数较小。本申请实施例提供的技术方案可以根据耦合系数的大小来调整补偿网络,进而调整合适的阻抗,进而调整发射端的逆变器的输出电压和输出电流之间的相位差,使逆变器的开关管实现零电压开关(ZVS,Zero Voltage Switch),从而降低功耗,提高无线充电效率。本申请实施例为了实现逆变器的ZVS,具体根据逆变器的阻抗大小来调整补偿网络的架构,使无线充电系统可以在双边LCC和单边LCC之间切换,即发射端的LCC补偿网络有时参与工作,有时可以不参与工作。当发射端的LCC参与工作时,无线充电系统为双边LCC;当发射端的LCC不参与工作时,无线充电系统为单边LCC。
下面结合附图介绍本申请实施例提供的发射端的具体实现方式。
首先介绍当发射端和接收的补偿网络均为LCC的具体实现方式。
参见图4,该图为本申请实施例提供的一种无线充电系统的示意图。
从图4中可以看出,发射端包括发射端LCC网络,接收端包括接收端LCC网络。
发射端LCC网络包括:第一电感L1、第一电容C1和补偿电容Cp;
第一电感L1的第一端连接逆变器的第一桥臂的中点,第一电感L1的第二端通过补偿电容Cp连接发射线圈Lp的第一端;发射线圈Lp的第二端连接逆变器的第二桥臂的中点,第一电容C1的第一端连接第一电感L1的第二端,第一电容C1的第二端连接发射线圈Lp的第二端;逆变器的第一桥臂包括串联的第一开关管Q1和第二开关管Q2,从图4中可以看出,Q1和Q2的公共端为第一桥臂的中点,同理逆变器的第二桥臂包括第三开关管Q3和第四开关管Q4,Q3和Q4的公共端为第二桥臂的中点。
接收端LCC网络包括:第二电感、第二电容和补偿电容Cs;
补偿电容Cs的第一端连接接收线圈Ls的第一端,补偿电容Cs的第二端连接第二电感L2的第一端,第二电感L2的第二端连接整流器的第一桥臂的中点,第二电容C2的第一端连接补偿电容Cs的第二端,第二电容C2的第二端连接接收线圈Ls的第二端;接收线圈Ls的第二端连接整流器的第二桥臂的中点。图4中R load表示接收端的负载。
下面介绍无线充电系统中采用双边LCC的优势。
第一、接收端的输出侧实现电流源特性。
第二、发射线圈的电流不随负载变化,及发射线圈的电流不随发射线圈与接收线圈之间的相对位置变化而变化,从而能够达到发射端和接收端的控制解耦,即发射端的控制器控制发射端的电气参数,接收端的控制器控制接收端的电气参数。
第三、发射线圈和接收线圈之间的相对位置变化对无线充电系统影响较小。
发射端LCC网络的电感电容和接收端LCC网络的电感电容均会在耦合相对较差的地方进行匹配,例如发射线圈和接收线圈之间的相对位置较远时,从而满足无线充电系统的输出功率要求。
当发射线圈和接收线圈之间的相对位置较近时,假设此时双边LCC网络完全匹配,即
Figure PCTCN2022098323-appb-000007
---原边LCC网络完全匹配
Figure PCTCN2022098323-appb-000008
---副边LCC网络完全匹配
由逆变器看出去的等效阻抗Zin为:
Figure PCTCN2022098323-appb-000009
其中
Figure PCTCN2022098323-appb-000010
其中,Ro为接收端的负载阻抗,即负载的阻抗大小。
从上式中可以看出,Zin和耦合系数k的平方成反比,即当发射线圈和接收线圈之间的相对位置近时,k增大,Zin减小,其中M为发射线圈和接收线圈之间的互感。当无线充电系统需要的功率恒定时;
Figure PCTCN2022098323-appb-000011
随着Rin的减小,Vin势必也需要减小。
目前,一般通过对逆变器的第一桥臂和第二桥臂之间的移相控制来控制逆变器的输出电压Vin,当Vin很小而逆变器的输入电压Vdc不变时,需要控制逆变器的四个开关管Q1~Q4的移相角调节到很小,随之产生如图5所示的波形。
参见图5,该图为本申请实施例提供的一种逆变器的输出电压的波形图。
图5中的Vdc为逆变器的输入电压,即直流电压。
从图中可以看出,Vin的高电平持续时间很短,逆变器的输出电压的基波分量过零点超前较多,即逆变器的输出电压和输出电流之间的相位差较大,使逆变器的开关管较难实现ZVS。另外,由于Vin减小,对应的电流有效值Irms便会增大,因此导致开关管的损耗增加。
传统的无线充电系统中,发射端LCC网络和接收LCC网络一直连接在电路中,一直参与工作,即无线充电系统一直工作在双边LCC架构,当逆变器的输出端的反射阻抗较小时,逆变器的开关管难以实现ZVS,功耗较高。
本申请实施例提供的发射端为了实现逆变器中开关管的ZVS,在发射端设置了开关电路,发射端的控制器可以根据需要来控制开关电路动作,从而控制发射端LCC网络是否参与工作,下面结合附图介绍具体的工作原理。
参见图6,该图为本申请实施例提供的一种发射端的示意图。
图6与图4的区别是发射端添加了开关电路,而且将接收端的电路简化,即将接收端LCC网络的输出侧等效为一个纯阻性的负载,用电阻Ro表示。K表示发射线圈Lp和接收线圈Ls之间的耦合系数。
发射端LCC网络包括:第一电感L1、第一电容C1和补偿电容Cp。
逆变器,用于将输入端的直流电转换为交流电传输给发射端补偿网络;本实施例中以逆变器包括四个开关管Q1-Q4形成的全桥电路为例进行说明。
发射端LCC网络,用于将交流电进行补偿后输送给发射线圈Lp;开关电路100与发射端LCC网络连接;
发射线圈Lp,用于将收到的交流电以交变磁场的形式发射出去以使接收端接收,接收端包括接收端LCC网络;接收端LCC网络与图4中相同在此不再赘述。
控制器200,用于在逆变器的第一输出阻抗的实部大于第二输出阻抗的实部时,控制开关电路100动作使无线充电系统工作于双边LCC网络;在第一输出阻抗的实部小于等于第二输出阻抗的实部时,控制开关电路100动作使无线充电系统工作于单边LCC网络;双边LCC网络包括发射端LCC网络和接收端LCC网络,单边LCC网络包括接收端LCC网络;第一输出阻抗为无线充电系统工作于双边LCC时逆变器的输出阻抗;第二输出阻抗为无线充电系统工作于单边LCC时逆变器的输出阻抗。
开关电路的一种实现方式可以参见图7,该图为本申请实施例提供的又一种发射端的示意图。
如图7所示,开关电路包括:第一开关S1和第二开关S2;
第一电感L1的第一端连接逆变器的第一桥臂的中点,第一电感L1的第二端通过补偿电容Cp连接发射线圈Lp的第一端;发射线圈Lp的第二端连接逆变器的第二桥 臂的中点,第一电容C1的第一端连接第一电感L1的第二端,第一电容C1的第二端连接第二开关S2的第一端,第二开关S2的第二端连接发射线圈Lp的第二端;
第一开关S1的第一端连接第一电感L1的第一端,第一开关S1的第二端连接发射线圈Lp的第一端;
控制器,具体用于第一输出阻抗的实部大于第二输出阻抗的实部时,控制第一开关S1断开,第二开关S2闭合;还具体用于第一输出阻抗的实部小于等于第二输出阻抗的实部时,控制第一开关S1闭合,第二开关S2断开。
从图7中可以看出,当第一开关S1断开,第二开关S2闭合时,发射端LCC网络参与工作,连接在逆变器的输出端和发射线圈Lp之间。当第一开关S1闭合时,S1将L1和Cp旁路,即被短路;第二开关S2断开时,C1也断开与其他器件的连接,因此,发射端LCC网络退出工作,发射端没有阻抗匹配网络,仅留下逆变器和发射线圈,即无线充电系统变为单边LCC架构,仅存在接收端LCC网络,参见图8,该图为本申请实施例提供的一种无线充电系统包括单边LCC的示意图。
从图8中可以看出,当S1闭合,S2断开时,发射端LCC网络从发射端中断开,无线充电系统仅存在接收端LCC网络。
为了使本领域技术人员理解本申请实施例提供的技术方案的原理,下面介绍方案的推导过程。
由于逆变器的输出电压和输出电流之间的关系取决于逆变器的输出阻抗,逆变器的输出阻抗是指从逆变器的输出端看出去的阻抗。下面分别结合附图介绍双边LCC时逆变器的输出阻抗与单边LCC时逆变器的输出阻抗的获取方式。
参见图9,该图为本申请实施例提供的一种双边LCC网络时逆变器的输出阻抗的示意图。
图9中的Zin表示逆变器的输出阻抗,即反射到逆变器的输出端的阻抗。
当图7中的S1断开,S2闭合时,无线充电系统包括双边LCC网络。当Zin较大时,耦合系数较低的情况下能够实现较高的电能传输效率。
假设接收端的负载阻抗不变,对于双边LCC补偿网络,当匹配网络完全匹配时,根据公式(1)反射给逆变桥的阻抗Zin反比于互感M的平方,当耦合系数很大时,即发射线圈和接收线圈之间的相对位置较近时,相应的Zin减小,导致逆变器的输出电压和输出电流之间的移相角较小,开关管无法实现ZVS,逆变器的输出电流的有效值Iin_rms增大,造成发射端的整体损耗增大。相反,当耦合系数很小时,即发射线圈和接收线圈之间的相对位置较远时,Zin增大,逆变器的输出电压和输出电流之间的移相角增大,开关管容易实现ZVS,Iin_rms减小,发射端的整体损耗减小。
当图7中的S1闭合,S2断开时,发射端LCC网络从发射端断开,无线充电系统包括单边LCC网络,即仅包括接收端LCC网络。当Zin较小,耦合系数较高时能够实现较高的电能传输效率。在耦合系数较高时,由于发射端没有LCC网络,发射线圈呈现较大的感性,逆变器的输出电流滞后输出电压,因此可以轻松实现开关管的ZVS。另外,因为发射端没有LCC网络,因此少了电感电容元器件,避免这些元器件带来的 损耗,可以进一步降低发射端的整体功耗。
下面介绍无线充电系统包括单边LCC时Zin的获取方式。
参见图10,该图为本申请实施例提供的一种单边LCC网络时逆变器的输出阻抗的示意图。
假设接收端的负载阻抗Ro不变,对于单边LCC网络,反射给逆变桥的阻抗Zin如公式(2)所示;
Figure PCTCN2022098323-appb-000012
由公式(2)可知,Zin正比于互感M的平方,耦合系数越大,Zin越大,逆变器的输出电压和输出电流之间的移相角越大,开关管容易实现ZVS,Iin_rms减小,发射端的整体损耗减小。相反,当耦合系数很小时,即发射线圈和接收线圈之间的相对位置较远时,Zin减小,逆变器的输出电压和输出电流之间的移相角减小,开关管不容易实现ZVS,Iin_rms增大,发射端的整体损耗增大。
结合图9和图10的分析可知,双边LCC网络和单边LCC网络对应的Zin的变换趋势正好相反,适用的情况的正好相反。
下面结合附图介绍双边LCC网络和单边LCC网络的切换原则,为了方便理解,在接收端LCC网络的输出端增加第三开关。
参见图11,该图为本申请实施例提供另一种无线充电系统的示意图。
接收端增加的第三开关S3的第一端连接第二电感L2的第二端,第三开关S2的第二端连接接收线圈Ls的第二端。
从图11可以看出,当第三开关S2闭合时,接收端的负载阻抗被短路。
参见图12,该图为本申请实施例提供的无线充电系统中接收端的输出端被短路的示意图。
如图12所示,在无线充电系统对负载放电之前,先闭合第三开关S3,输出阻抗为0;断开第一开关S1,闭合第二开关S2,此时变成双边LCC补偿模式。
由于此时无线充电系统不为负载放电,因此为了节能,可以控制逆变器的输出电压和输出电流之间一个较小的移相角θ,则此时逆变器的输出电压Vin为:
Figure PCTCN2022098323-appb-000013
其中,Vdc为逆变器的输入电压。
根据发射端LCC网络的特性,根据谐振原理,流过发射线圈Lp的电流I1为:
Figure PCTCN2022098323-appb-000014
根据接收端LCC网络的特性,根据谐振原理,流过第二电感L2的电流IL2为:
Figure PCTCN2022098323-appb-000015
上式中,IL2可以通过电流传感器采集得到,L1,L2,Vdc,θ均为已知,可以获得发射线圈与接收线圈之间的互感M大小为:
Figure PCTCN2022098323-appb-000016
应该理解,发射线圈与接收线圈之间的互感M也可以称为发射端和接收端之间的互感。互感M除了以上的计算方式以外,还可以通过其他方式获得,例如测量第二电感L2两端的电压和发射线圈的电流,其中第二电感L2两端的电压可以将接收端LCC网络的输出端开路测量开路电压即为L2两端的电压,互感M可以理解为变压器的互感,发射线圈和接收线圈分别为变压器的原边和副边,互感M与L2两端的电压成正比,与发射线圈的电流成反比。
根据无线充电系统的接收端的实际输出电压和预设电流获得接收端的输出负载Ro,可以根据公式(1)和(2)计算出双边LCC和单边LCC分别对应逆变器的输出阻抗Zin的实部Zin_re1和Zin_re2,分别为公式(3)和公式(4):
Figure PCTCN2022098323-appb-000017
Figure PCTCN2022098323-appb-000018
分析公式(3)和公式(4)可以看出,对于双边LCC来说,Zin_re1的大小与互感M成反比,即发射端和接收端之间耦合越好,则Zin_re1越小。对于单边LCC来说,Zin_re2的大小与互感M成正比,即发射端和接收端之间耦合越好,则Zin_re2越大。
比较双边LCC网络对应的Zin_re1和单边LCC网络对应的Zin_re2,从而决定无线充电系统工作在双边LCC网络还是单边LCC网络。
当Zin_re1>Zin_re2时,无线充电系统工作于双边LCC网络,即S1断开,S2闭合;
当Zin_re1<Zin_re2时,无线充电系统工作于单边LCC网络,即S1闭合,S2断开;
当无线充电系统选择LCC网络时,再断开S3,无线充电系统进入正常充电模式。
本申请实施例提供的发射端,可以根据无线充电系统的需要来切换发射端LCC网络是否参与工作。当发射线圈和接收线圈之间耦合较差时,即M较小,为了逆变器的开关管实现ZVS,控制发射端LCC网络参与工作,无线充电系统工作在双边LCC网络,可以实现较高的无线充电效率。当无线充电系统的发射线圈和接收线圈之间耦合较好时,即M较大,如果无线充电系统采用双边LCC网络,则发射端的逆变器中开关管难以实现ZVS,开关管处于硬开关状态发热严重,增加功耗,而且可能无法正常运行,因此,发射端控制器控制发射端LCC网络不参与工作,即无线充电系统工作在单 边LCC网络,发射线圈的电感呈现感性,因此轻松实现逆变器中开关管的ZVS,从而降低功耗,提升无线充电的效率。因此,本申请实施例提供的发射端,可以在发射端和接收端之间耦合较好时保证较高的充电效率,也可以在发射端和接收端之间耦合较低时保证较高的充电效率,从而使发射端具有较宽的耦合范围,从而可以适用于为不同车型的电动汽车充电均可以保证较高的充电效率。
基于以上实施例提供的一种无线充电的发射端,本申请实施例还提供一种无线充电的接收端,下面进行详细介绍。
以上实施例提供的发射端,是以发射端作为执行主体,发射端来比较第一输出阻抗的实部和第二输出阻抗的实部大小,根据比较结果控制开关电路动作,来切换双边LCC网络还是单边LCC网络工作。应该理解,也可以接收端作为执行主体,接收端来比较第一输出阻抗的实部和第二输出阻抗的实部大小,将比较结果发送给发射端,或者根据比较结果发送指令给发射端,发射端直接控制开关电路动作,来切换双边LCC网络还是单边LCC网络工作。以上实施例中发射端执行的其他动作也可以由接收端来执行,下面详细介绍,具体的工作原理可以参见以上发射端实施例的介绍,在此仅简要介绍,不做详细赘述。
接收端控制器,还用于根据发射端LCC网络中的第一电感、接收端LCC网络中的第二电感、接收端的负载阻抗以及发射端和接收端之间的互感获得第一输出阻抗。
接收端控制器,还用于根据接收端LCC网络中的第二电感、接收端的负载阻抗以及发射端和接收端之间的互感获得第二输出阻抗。
接收端控制器,还用于根据发射端LCC网络中的第一电感、接收端LCC网络中的第二电感、第二电感的电流、逆变器的输入电压和逆变器的移相角获得互感;逆变器的移相角为逆变器的输出电压与输出电流之间的相位差。
接收端控制器,还用于根据接收端的输出电压和预设电流获得接收端的负载阻抗。
接收端控制器,具体用于通过以下公式获得第一输出阻抗Zin_re1:
Figure PCTCN2022098323-appb-000019
其中,L 1表示第一电感的感值,L 2表示第二电感的感值,M表示互感,R 0表示输出阻抗。
接收端控制器,具体用于通过以下公式获得第二输出阻抗Zin_re2:
Figure PCTCN2022098323-appb-000020
其中,L 2表示第二电感的感值,M表示互感,R 0表示输出阻抗。
接收端控制器,具体用于通过以下公式获得互感M:
Figure PCTCN2022098323-appb-000021
其中,L 1表示第一电感的感值,L 2表示第二电感的感值,I L2表示第二电感的电感,V dc表示逆变器的输入电压,θ表示移相角。
基于以上实施例提供的一种无线充电系统的发射端和接收端,本申请实施例还提 供一种无线充电系统,即该无线充电系统包括发射端和接收端,其中发射端可以为以上实施例介绍的发射端实现控制双边LCC和单边LCC的切换,或由接收端实现双边LCC和单边LCC的切换。
继续参见图4,本申请实施例提供的无线充电系统中的接收端,无线充电系统包括的发射端可以参见以上实施例提供的发射端,其中,接收端包括:整流器、接收端LCC网络和接收线圈Ls。其中,整流器以全桥整流器为例进行介绍,图中整流器包括S1-S4四个开关管,其中S1和S2串联形成整流器的第一桥臂,S3和S4串联形成整流器的第二桥臂。
接收线圈Ls,用于从发射线圈Lp接收电能并输送给接收端LCC网络;
接收端LCC网络,用于将接收的交流电进行补偿后输送给整流器;
整流器,用于将接收的交流电整流为直流电为负载Rload进行充电。
接收端LCC网络包括补偿电容Cs、第二电容C2和第二电感L2,其中,补偿电容Cs的第一端连接接收线圈Ls的第一端,Cs的第二端连接第二电感L2的第一端,L2的第二端连接整流器第一桥臂的中点,即S1和S2的中点;第二电容C2的第一端连接Cs的第二端,C2的第二端连接Ls的第二端,即接收端也是LCC网络。
本申请实施例提供的无线充电系统,发射端和接收端之间的耦合较差时,控制发射端LCC网络不工作,仅接收端LCC网络工作,即单边LCC网络,从而实现发射端的开关管实现ZVS,这样也可以保证无线充电系统的充电效率较高。发射端和接收端之间耦合较好时,发射端LCC网络和接收端LCC网络均工作,即双边LCC网络,从而保证发射端的开关管实现ZVS,从而保证无线充电系统的充电效率较高。例如,当发射端为底盘较低的电动汽车充电时,发射端LCC网络参与工作,无线充电系统工作在双边LCC模式;当发射端为底盘较高的电动汽车充电时,发射端LCC网络不参与工作,无线充电系统工作在单边LCC模式。
基于以上实施例提供的一种无线充电的发射端、接收端和无线充电系统,本申请实施例还提供一种无线充电的方法,下面结合附图进行详细介绍。
参见图13,该图为本申请实施例提供的一种无线充电的方法流程图。
本申请实施例提供的无线充电的方法,应用于以上实施例提供的无线充电的发射端;具体可以参见图6所示的发射端,发射端包括:逆变器、发射端LCC网络、发射线圈和开关电路;逆变器的输出端通过发射端LCC网络连接发射线圈;开关电路连接发射端LCC网络;在此不再具体赘述发射端的具体连接关系。
该方法包括:
S1301:获得逆变器的第一输出阻抗的实部和第二输出阻抗的实部;第一输出阻抗为无线充电系统工作于双边LCC时逆变器的输出阻抗;第二输出阻抗为无线充电系统工作于单边LCC时逆变器的输出阻抗;即分别获得双边LCC和单边LCC对应的逆变器的输出阻抗的实部。
S1302:在逆变器的第一输出阻抗的实部大于第二输出阻抗的实部时,控制开关电路动作使无线充电系统工作于双边LCC网络;双边LCC网络包括发射端LCC网络和 接收端LCC网络;即比较第一输出阻抗的实部和第二输出阻抗的实部的大小,根据大小关系决定发射端LCC网络是否参与工作。由于第一输出阻抗的实部与第二输出阻抗的实部与M的关系正好相反,第一输出阻抗的实部与M成反比,第二输出阻抗的实部与M成正比,因此,第一输出阻抗的实部和第二输出阻抗的实部大小关系不同时,采取不同的LCC网络。
S1303:在第一输出阻抗的实部小于等于第二输出阻抗的实部时,控制开关电路动作使无线充电系统工作于单边LCC网络;单边LCC网络包括接收端LCC网络。
本申请实施例提供的方法,发射端和接收端之间的耦合较差时,控制发射端LCC网络不工作,仅接收端LCC网络工作,即单边LCC网络,从而实现发射端的开关管实现ZVS,这样也可以保证无线充电系统的充电效率较高。发射端和接收端之间耦合较好时,发射端LCC网络和接收端LCC网络均工作,即双边LCC网络,从而保证发射端的开关管实现ZVS,从而保证无线充电系统的充电效率较高。例如,当发射端为底盘较低的电动汽车充电时,发射端LCC网络参与工作,无线充电系统工作在双边LCC模式;当发射端为底盘较高的电动汽车充电时,发射端LCC网络不参与工作,无线充电系统工作在单边LCC模式。
下面介绍发射端的开关电路的一种具体实现方式。开关电路包括:第一开关和第二开关;发射端LCC包括:第一电感、第一电容和补偿电容;第一电感的第一端连接逆变器的第一桥臂的中点,第一电感的第二端通过补偿电容连接发射线圈的第一端;发射线圈的第二端连接逆变器的第二桥臂的中点,第一电容的第一端连接第一电感的第二端,第一电容的第二端连接第二开关的第一端,第二开关的第二端连接发射线圈的第二端;第一开关的第一端连接第一电感的第一端,第一开关的第二端连接发射线圈的第一端;
控制开关电路动作使无线充电系统工作于双边LCC网络,具体包括:
控制第一开关断开,第二开关闭合使无线充电系统工作于双边LCC网络;
控制开关电路动作使无线充电系统工作于单边LCC网络,具体包括:
控制第一开关闭合,第二开关断开使无线充电系统工作于单边LCC网络。
具体地,发射端控制器可以控制第一开关和第二开关的状态来决定发射端LCC网络是否参与工作。
下面结合附图介绍本申请实施例提供的方法的一种具体实现过程。
参见图14,该图为本申请实施例提供的又一种无线充电的方法流程图。
S1401:闭合接收端的第三开关、断开发射端的第一开关、闭合发射端的第二开关,即接收端的输出端短路,并且无线充电系统工作在双边LCC网络。
S1402:逆变器的输入电压为给定值,控制逆变器工作在预设移相角,其中,预设移相角为一个较小的角度即可,此时无线充电系统未给负载充电。
S1403:采集接收端LCC网络的第二电感的电流;
S1404:根据第一电感、第二电感、第二电感的电流、预设移相角和逆变器的输入电压获得发射线圈和接收线圈之间的互感;
S1405:根据接收端的负载阻抗、互感、第一电感和第二电感获得第一输出阻抗的实部,根据接收端的负载阻抗、互感和第二电感获得第二输出阻抗的实部;
S1406:当第一输出阻抗的实部大于第二输出阻抗的实部时,控制第一开关断开,第二开关闭合;当第一输出阻抗的实部小于等于第二输出阻抗的实部时,控制第一开关闭合,第二开关断开。
S1407:断开第三开关,无线充电系统正常向负载充电。
本申请实施例提供的无线充电的方法,发射端和接收端之间的耦合较差时,控制发射端LCC网络不工作,仅接收端LCC网络工作,即单边LCC网络,从而实现发射端的开关管实现ZVS,这样也可以保证无线充电系统的充电效率较高。发射端和接收端之间耦合较好时,发射端LCC网络和接收端LCC网络均工作,即双边LCC网络,从而保证发射端的开关管实现ZVS,从而保证无线充电系统的充电效率较高。例如,当发射端为底盘较低的电动汽车充电时,发射端LCC网络参与工作,无线充电系统工作在双边LCC模式;当发射端为底盘较高的电动汽车充电时,发射端LCC网络不参与工作,无线充电系统工作在单边LCC模式。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本申请技术方案保护的范围内。

Claims (18)

  1. 一种无线充电的发射端,其特征在于,包括:逆变器、发射端LCC网络、发射线圈、开关电路和发射端控制器;
    所述逆变器,用于将输入端的直流电转换为交流电传输给所述发射端补偿网络;
    所述发射端LCC网络,用于将所述交流电进行补偿后输送给所述发射线圈;所述开关电路与所述发射端LCC网络连接;
    所述发射线圈,用于将收到的交流电以交变磁场的形式发射出去以使接收端接收,所述接收端包括接收端LCC网络;
    所述发射端控制器,用于在所述逆变器的第一输出阻抗的实部大于所述逆变器的第二输出阻抗的实部时,控制所述开关电路动作使所述无线充电系统工作于双边LCC网络;在所述第一输出阻抗的实部小于等于所述第二输出阻抗的实部时,控制所述开关电路动作使所述无线充电系统工作于单边LCC网络;所述双边LCC网络包括所述发射端LCC网络和所述接收端LCC网络,所述单边LCC网络包括所述接收端LCC网络;所述第一输出阻抗为所述无线充电系统工作于双边LCC网络时所述逆变器的输出阻抗;所述第二输出阻抗为所述无线充电系统工作于单边LCC网络时所述逆变器的输出阻抗。
  2. 根据权利要求1所述的发射端,其特征在于,所述发射端LCC包括:第一电感、第一电容和补偿电容;所述开关电路包括:第一开关和第二开关;
    所述第一电感的第一端连接所述逆变器的第一桥臂的中点,所述第一电感的第二端通过所述补偿电容连接所述发射线圈的第一端;所述发射线圈的第二端连接所述逆变器的第二桥臂的中点,所述第一电容的第一端连接所述第一电感的第二端,所述第一电容的第二端连接所述第二开关的第一端,所述第二开关的第二端连接所述发射线圈的第二端;
    所述第一开关的第一端连接所述第一电感的第一端,所述第一开关的第二端连接所述发射线圈的第一端;
    所述发射端控制器,具体用于所述第一输出阻抗的实部大于第二输出阻抗的实部时,控制所述第一开关断开,所述第二开关闭合使所述无线充电系统工作于双边LCC网络;还具体用于所述第一输出阻抗的实部小于等于所述第二输出阻抗的实部时,控制所述第一开关闭合,所述第二开关断开使所述无线充电系统工作于单边LCC网络。
  3. 根据权利要求1或2所述的发射端,其特征在于,所述发射端控制器,还用于根据所述发射端LCC网络中的第一电感、所述接收端LCC网络中的第二电感、所述接收端的负载阻抗以及所述发射端和所述接收端之间的互感获得所述第一输出阻抗。
  4. 根据权利要求1-3任一项所述的发射端,其特征在于,所述发射端控制器,还用于根据所述接收端LCC网络中的第二电感、所述接收端的负载阻抗以及所述发射端和所述接收端之间的互感获得所述第二输出阻抗。
  5. 根据权利要求3或4所述的发射端,其特征在于,所述发射端控制器,还用于根据所述发射端LCC网络中的第一电感、所述接收端LCC网络中的第二电感、所述第二电感的电流、所述逆变器的输入电压和所述逆变器的移相角获得所述互感;所述逆 变器的移相角为所述逆变器的输出电压与输出电流之间的相位差。
  6. 根据权利要求4-5任一项所述的发射端,其特征在于,所述发射端控制器,还用于根据所述接收端的输出电压和预设电流获得所述接收端的负载阻抗。
  7. 根据权利要求3或5任一项所述的发射端,其特征在于,所述发射端控制器,具体用于通过以下公式获得所述第一输出阻抗Zin_re1:
    Figure PCTCN2022098323-appb-100001
    其中,L 1表示所述第一电感的感值,L 2表示所述第二电感的感值,M表示所述互感,R 0表示所述输出阻抗。
  8. 根据权利要求4-6任一项所述的发射端,其特征在于,所述发射端控制器,具体用于通过以下公式获得所述第二输出阻抗Zin_re2:
    Figure PCTCN2022098323-appb-100002
    其中,L 2表示所述第二电感的感值,M表示所述互感,R 0表示所述输出阻抗。
  9. 根据权利要求5所述的发射端,其特征在于,所述发射端控制器,具体用于通过以下公式获得所述互感M:
    Figure PCTCN2022098323-appb-100003
    其中,L 1表示所述第一电感的感值,L 2表示所述第二电感的感值,I L2表示所述第二电感的电感,V dc表示所述逆变器的输入电压,θ表示所述移相角。
  10. 一种无线充电的接收端,其特征在于,所述接收端包括:接收线圈、接收端LCC网络、整流器和接收端控制器;
    所述接收线圈,用于从发射端的发射线圈接收电能并输送给所述接收端LCC网络;
    所述接收端LCC网络,用于将接收的交流电进行补偿后输送给所述整流器;
    所述整流器,用于将接收的交流电整流为直流电为负载进行充电;
    所述接收端控制器,用于在所述发射端的逆变器的第一输出阻抗的实部大于第二输出阻抗的实部时,向所述发射端发送双边LCC网络指令,使所述发射端LCC网络参与工作所述无线充电系统工作于双边LCC网络;在所述第一输出阻抗的实部小于等于所述第二输出阻抗的实部时,向所述发射端发送单边LCC网络指令,使所述发射端LCC网络退出工作所述无线充电系统工作于单边LCC;所述双边LCC网络包括所述发射端LCC网络和所述接收端LCC网络,所述单边LCC网络包括所述接收端LCC网络;所述第一输出阻抗为所述无线充电系统工作于双边LCC网络时所述逆变器的输出阻抗;所述第二输出阻抗为所述无线充电系统工作于单边LCC网络时所述逆变器的输出阻抗。
  11. 根据权利要求10所述的接收端,其特征在于,所述接收端控制器,还用于根据所述发射端LCC网络中的第一电感、所述接收端LCC网络中的第二电感、所述接收端的负载阻抗以及所述发射端和所述接收端之间的互感获得所述第一输出阻抗。
  12. 根据权利要求10或11所述的接收端,其特征在于,所述接收端控制器,还用于根据所述接收端LCC网络中的第二电感、所述接收端的负载阻抗以及所述发射端和 所述接收端之间的互感获得所述第二输出阻抗。
  13. 根据权利要求10-12任一项所述的接收端,其特征在于,所述接收端控制器,还用于根据所述发射端LCC网络中的第一电感、所述接收端LCC网络中的第二电感、所述第二电感的电流、所述逆变器的输入电压和所述逆变器的移相角获得所述互感;所述逆变器的移相角为所述逆变器的输出电压与输出电流之间的相位差。
  14. 根据权利要求11或12所述的接收端,其特征在于,所述接收端控制器,还用于根据所述接收端的输出电压和预设电流获得所述接收端的负载阻抗。
  15. 根据权利要求3或5任一项所述的发射端,其特征在于,所述接收端控制器,具体用于通过以下公式获得所述第一输出阻抗Zin_re1:
    Figure PCTCN2022098323-appb-100004
    其中,L 1表示所述第一电感的感值,L 2表示所述第二电感的感值,M表示所述互感,R 0表示所述输出阻抗。
  16. 根据权利要求4-6任一项所述的接收端,其特征在于,所述接收端控制器,具体用于通过以下公式获得所述第二输出阻抗Zin_re2:
    Figure PCTCN2022098323-appb-100005
    其中,L 2表示所述第二电感的感值,M表示所述互感,R 0表示所述输出阻抗。
  17. 根据权利要求5所述的接收端,其特征在于,所述接收端控制器,具体用于通过以下公式获得所述互感M:
    Figure PCTCN2022098323-appb-100006
    其中,L 1表示所述第一电感的感值,L 2表示所述第二电感的感值,I L2表示所述第二电感的电感,V dc表示所述逆变器的输入电压,θ表示所述移相角。
  18. 一种无线充电系统,其特征在于,包括权利要求1-9任一项所述的发射端和权利要求10-17任一项所述的接收端;
    所述发射端用于为所述接收端进行无线充电。
PCT/CN2022/098323 2021-10-28 2022-06-13 一种无线充电的发射端、接收端及无线充电系统 WO2023071216A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22885124.2A EP4344022A1 (en) 2021-10-28 2022-06-13 Transmitting end and receiving end for wireless charging, and wireless charging system
US18/582,151 US20240195224A1 (en) 2021-10-28 2024-02-20 Wireless Charging Transmitter, Wireless Charging Receiver, and Wireless Charging System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111266323.1A CN114142623B (zh) 2021-10-28 2021-10-28 一种无线充电的发射端、接收端及无线充电系统
CN202111266323.1 2021-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/582,151 Continuation US20240195224A1 (en) 2021-10-28 2024-02-20 Wireless Charging Transmitter, Wireless Charging Receiver, and Wireless Charging System

Publications (1)

Publication Number Publication Date
WO2023071216A1 true WO2023071216A1 (zh) 2023-05-04

Family

ID=80395780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098323 WO2023071216A1 (zh) 2021-10-28 2022-06-13 一种无线充电的发射端、接收端及无线充电系统

Country Status (4)

Country Link
US (1) US20240195224A1 (zh)
EP (1) EP4344022A1 (zh)
CN (1) CN114142623B (zh)
WO (1) WO2023071216A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780791A (zh) * 2023-08-25 2023-09-19 成都斯普奥汀科技有限公司 一种基于磁共振技术的无线充电宝系统
CN117614154A (zh) * 2023-12-11 2024-02-27 浙江智行微电子有限公司 一种新型车载无线充系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142623B (zh) * 2021-10-28 2023-09-29 华为数字能源技术有限公司 一种无线充电的发射端、接收端及无线充电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301904A (zh) * 2018-11-02 2019-02-01 东南大学 一种高阶复合式补偿网络的电池无线充电系统
CN109474082A (zh) * 2018-12-07 2019-03-15 华中科技大学 一种基于变补偿网络结构的双向无线电能传输系统及方法
CN110149012A (zh) * 2019-04-17 2019-08-20 中国电力科学研究院有限公司 一种低偏移敏感度的无线电能传输系统补偿网络切换控制方法及系统
CN111478458A (zh) * 2020-05-20 2020-07-31 温州大学 一种无线电能传输系统及其恒流恒压控制方法
KR20200137626A (ko) * 2019-05-31 2020-12-09 인천대학교 산학협력단 무선 전력 송신용 lcc 인버터 및 그 동작 방법
CN112366777A (zh) * 2020-11-05 2021-02-12 中国科学院电工研究所 一种基于变次级结构的恒流恒压感应式无线充电系统
CN114142623A (zh) * 2021-10-28 2022-03-04 华为数字能源技术有限公司 一种无线充电的发射端、接收端及无线充电系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746462B (zh) * 2013-07-11 2016-01-20 重庆米亚车辆技术有限公司 一种用于无线电能传输的双边lcc补偿网络及其调谐方法
US10298057B2 (en) * 2015-04-01 2019-05-21 The Regents Of The University Of Michigan Double-sided LCLC-compensated topology for capacitive power transfer
US20200195043A1 (en) * 2017-07-26 2020-06-18 The Regents Of The University Of Colorado, A Body Variable Compensation Inverter Circuit and Related Techniques
CN109245536A (zh) * 2018-08-24 2019-01-18 李建科 一种适用于双向近场电能传输的电路拓扑结构
CN111697799B (zh) * 2020-07-29 2021-08-24 中惠创智(深圳)无线供电技术有限公司 一种无线充电系统及其逆变器的零电压开关控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301904A (zh) * 2018-11-02 2019-02-01 东南大学 一种高阶复合式补偿网络的电池无线充电系统
CN109474082A (zh) * 2018-12-07 2019-03-15 华中科技大学 一种基于变补偿网络结构的双向无线电能传输系统及方法
CN110149012A (zh) * 2019-04-17 2019-08-20 中国电力科学研究院有限公司 一种低偏移敏感度的无线电能传输系统补偿网络切换控制方法及系统
KR20200137626A (ko) * 2019-05-31 2020-12-09 인천대학교 산학협력단 무선 전력 송신용 lcc 인버터 및 그 동작 방법
CN111478458A (zh) * 2020-05-20 2020-07-31 温州大学 一种无线电能传输系统及其恒流恒压控制方法
CN112366777A (zh) * 2020-11-05 2021-02-12 中国科学院电工研究所 一种基于变次级结构的恒流恒压感应式无线充电系统
CN114142623A (zh) * 2021-10-28 2022-03-04 华为数字能源技术有限公司 一种无线充电的发射端、接收端及无线充电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780791A (zh) * 2023-08-25 2023-09-19 成都斯普奥汀科技有限公司 一种基于磁共振技术的无线充电宝系统
CN116780791B (zh) * 2023-08-25 2023-11-07 成都斯普奥汀科技有限公司 一种基于磁共振技术的无线充电宝系统
CN117614154A (zh) * 2023-12-11 2024-02-27 浙江智行微电子有限公司 一种新型车载无线充系统

Also Published As

Publication number Publication date
CN114142623B (zh) 2023-09-29
EP4344022A1 (en) 2024-03-27
CN114142623A (zh) 2022-03-04
US20240195224A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
WO2023071216A1 (zh) 一种无线充电的发射端、接收端及无线充电系统
CN109327065B (zh) 无线充电系统的接收端、方法、用电终端、发射端及系统
CN110450656B (zh) 一种基于差分电感的电动汽车无线充电闭环控制系统
WO2020134230A1 (zh) 一种无线充电系统的接收端、发射端及无线充电系统
CN107618388B (zh) 一种电动汽车无线充电系统
CN108448693B (zh) 用于agv的无线电能传输系统及其控制方法
CN110979042B (zh) 无线充电接收装置、无线充电控制方法无线充电系统
CN108448692A (zh) 一种具有偏移自适应性的电动汽车无线充电拓扑结构
WO2021120726A1 (zh) 一种无线充电的发射端、接收端、方法和系统
CN110429718B (zh) 一种基于一次侧参数辨识的无线电能传输系统恒流/恒压控制方法
CN112219333B (zh) 无线充电发射装置、发射方法及无线充电系统
CN211236016U (zh) 一种无线电能传输恒压或恒流输出的频率在线检测电路
WO2015035924A1 (zh) 无线充电装置与方法以及使用该装置的移动终端
CN110554236A (zh) 一种无线电能传输恒压或恒流输出的频率在线检测方法
WO2021248953A1 (zh) 一种无线充电的接收端、方法及电子设备
CN111478458A (zh) 一种无线电能传输系统及其恒流恒压控制方法
CN108162775A (zh) 用于恒功率充电的电动汽车无线能量传输装置
CN109904937A (zh) 一种无线电能传输系统平面折角型线圈设计方法
US20230417945A1 (en) Foreign object detection apparatus and method, and wireless charging transmit-end device
CN210404849U (zh) 一种半桥谐振逆变型磁耦合谐振式无线充电电源
CN111654118B (zh) 基于倍压整流器的动态无线供电系统功率波动抑制方法
CN114665535B (zh) 恒流恒压输出自主切换的抗偏移无线充电系统
JP5888201B2 (ja) 受電機器、及び非接触電力伝送装置
CN210806860U (zh) 一种具有恒压输出特性的无线电能传输系统
Wu et al. Constant output design for double-sided LCC WPT system based on switch controlled capacitor and novel active rectifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885124

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885124

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885124

Country of ref document: EP

Effective date: 20231220

NENP Non-entry into the national phase

Ref country code: DE