WO2020114077A1 - 无线充电系统的接收端、方法、用电终端、发射端及系统 - Google Patents

无线充电系统的接收端、方法、用电终端、发射端及系统 Download PDF

Info

Publication number
WO2020114077A1
WO2020114077A1 PCT/CN2019/110545 CN2019110545W WO2020114077A1 WO 2020114077 A1 WO2020114077 A1 WO 2020114077A1 CN 2019110545 W CN2019110545 W CN 2019110545W WO 2020114077 A1 WO2020114077 A1 WO 2020114077A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier
branch
receiving end
wireless charging
charging system
Prior art date
Application number
PCT/CN2019/110545
Other languages
English (en)
French (fr)
Inventor
毛云鹤
刘彦丁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19892638.8A priority Critical patent/EP3843239A4/en
Publication of WO2020114077A1 publication Critical patent/WO2020114077A1/zh
Priority to US17/226,860 priority patent/US11901760B2/en

Links

Images

Classifications

    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to the technical field of power electronics, in particular to a receiving end, a method, a power terminal, a transmitting end and a system of a wireless charging system.
  • Electric vehicle battery charging methods usually include: contact charging and wireless charging.
  • the contact charging uses the metal contact of the plug and the socket to conduct electricity
  • the wireless charging uses the coupled electromagnetic field as a medium to realize the transmission of electrical energy.
  • contact charging has many advantages and becomes the mainstream way of charging electric vehicles in the future.
  • the wireless charging system When the wireless charging system is working, its output power needs to be adjusted, also known as impedance adjustment.
  • the output power of the wireless charging system is determined by the output power of the rectifier, and the equivalent impedance of the rectifier determines the output power of the rectifier. Therefore, generally adjusting the output power of the wireless charging system is achieved by adjusting the equivalent impedance of the rectifier, which is the bridge arm voltage of the rectifier divided by the input current of the rectifier. Therefore, in order to adjust the equivalent impedance of the rectifier, it can be realized by controlling the bridge arm voltage and the input current of the rectifier.
  • Controllable switch tubes are usually used in rectifiers, and allowing the controllable switch tubes to achieve zero voltage switching (ZVS, Zero, Voltage, Switch) effects can greatly reduce the switching losses of the controllable switch tubes and extend the life of the device.
  • ZVS means that when the controllable switch tube is turned off and on, the ideal value of the voltage across it is 0.
  • the voltage at both ends may be a relatively small voltage in practical applications. The smaller the voltage, the lower the power consumption.
  • the controllable switch of the rectifier realizes zero-voltage switching, the output power of the wireless charging system will be significantly reduced. Therefore, how to reduce or even avoid the impact on the output power of the wireless charging system while realizing the zero-voltage switch of the controllable switch tube has become a problem urgently needed to be solved by those skilled in the art.
  • the embodiments of the present invention provide a receiving end, a method, a power terminal, a transmitting end and a system of a wireless charging system, which can realize the zero voltage switching on the controllable switch tube of the rectifier. Under the premise of making the wireless charging system as efficient as possible.
  • an embodiment of the present application provides a receiving end of a wireless charging system, including: a receiving coil, a receiving end compensation circuit, a rectifier, and a controller; the receiving coil receives an alternating magnetic field and outputs alternating current; the receiving end compensation circuit is connected to the receiving Between the coil and the rectifier; the receiving end compensation circuit is used to compensate the alternating current output by the receiving coil and output the compensated alternating current to the rectifier; the receiving end compensation circuit and the receiving coil form a receiving end compensation network; the receiving end compensation network includes a first Branch, second branch and third branch; the first branch includes the receiving coil; the first branch and the second branch are both inductive branches and the reactance of the second branch is greater than the reactance of the first branch, The first branch is connected to the first input end of the rectifier through the second branch, the third branch is a capacitive branch, and the first end of the third branch is connected to the common end of the first branch and the second branch.
  • the second end of the three branches is connected to the second input end of the rectifier;
  • the rectifier includes a controllable switch tube, the rectifier is used to rectify the alternating current into the direct current;
  • the controller is used to adjust between the first and second bridge arms of the rectifier And the phase shift angle of the bridge arm voltage of the rectifier and the fundamental wave component of the input current of the rectifier, so that the controllable switching tube of the rectifier can achieve zero voltage switching.
  • This technical solution adjusts the magnitude of the fundamental component of the bridge arm voltage by adjusting the phase difference between the two bridge arms of the rectifier, so that the real part of the equivalent impedance of the rectifier can be adjusted.
  • the equivalent impedance of the rectifier includes the real part and the imaginary part, the real part refers to the resistance, and the imaginary part refers to the reactance.
  • This scheme adjusts the imaginary part of the equivalent impedance of the rectifier by adjusting the bridge arm voltage of the rectifier and the phase shift angle of the fundamental component of the input current.
  • the equivalent impedance of the rectifier can be regarded as pure
  • the resistive impedance can also make the controllable switch of the rectifier achieve the effect of ZVS.
  • an inductance compensation module is added to the input end of the rectifier to weaken the capacitive part of the equivalent impedance of the rectifier and reduce the reactive power of the wireless charging system, thereby improving the system efficiency of the wireless charging system.
  • the controller is specifically configured to: control the phase difference between the first and second bridge arms of the rectifier to be the target phase difference ⁇ ; and control the bridge arm voltage of the rectifier
  • the phase shift angle ⁇ of the fundamental component of the input current to the rectifier is ⁇ - ⁇ + ⁇ ; ⁇ is the target value; ⁇ is used to adjust the resistance of the equivalent impedance of the rectifier, and ⁇ is used to adjust the reactance of the equivalent impedance of the rectifier.
  • is obtained from an external command; and ⁇ is preset inside the controller.
  • is obtained from an external command, and ⁇ is preset inside the controller.
  • is obtained from an external command; and ⁇ is the internal preset of the controller.
  • is obtained from an external command, and ⁇ is preset inside the controller.
  • External commands can be obtained from a controller one level higher than the controller, such as the efficiency optimization controller of the wireless charging system.
  • the receiving end compensation network may include a receiving end LCL compensation network and an inductance compensation module.
  • the second branch includes an inductance compensation module and a sub-inductive branch, and the first branch, the third branch, and the sub-inductive branch form a In the LCL compensation network, the modulus values of the first branch, the third branch, and the sub-inductive branch are equal; the inductance compensation module is used to weaken the capacitive part of the equivalent impedance of the rectifier.
  • the first branch, the sub-inductive branch, and the third branch satisfy the following formula:
  • jX L1 is the reactance of the first branch
  • -jX C is the reactance of the third branch
  • jX L2 is the reactance of the sub-inductive branch.
  • the inductance L 2_comp of the inductance compensation module is 0.3 times to 3 times the theoretical inductance L, and the theoretical inductance L is obtained by the following formula:
  • ⁇ s is the angular frequency of the fundamental component of the alternating current of the rectifier
  • R dc is the equivalent load resistance of the wireless charging system at full power output.
  • 0.
  • the system uses a compensation inductance calculated based on the inductance of 120 degrees for ⁇ and ⁇ for 0, it is possible to change the range of the imaginary value of the imaginary part connected in series between the rectifier and the compensation inductor module when ⁇ or ⁇ takes different values. Smaller.
  • L 2_comp L, that is, when the inductance of the inductance compensation module takes the value L, the effect is better, taking into account the cost of the inductor and the effect of the capacitive part that weakens the equivalent impedance of the rectifier brought by the inductor.
  • the number of inductors included in the second branch is one.
  • the second branch includes an inductor
  • the volume of the circuit can be reduced, because the volume of the inductor is generally larger.
  • multiple inductors are integrated together, there is interference between the inductor and the inductor, and there is also magnetic leakage. Therefore, when including an inductor, both the signal transmission and the process cost are better.
  • the number of inductors included in the second branch is two, which are the first inductor and the second inductor respectively; in order to prevent electromagnetic interference, two inductors may be symmetrically arranged, respectively connected to the two input terminals of the rectifier, ie
  • the first branch is connected to the midpoint of the first bridge arm of the rectifier through the first inductor
  • the second end of the third branch is connected to the midpoint of the second bridge arm of the rectifier through the second inductor.
  • the reactance of the first inductor and the reactance of the second inductor are equal.
  • the reactance portion of the second branch that is greater than the first branch can be used to weaken the capacitive portion of the equivalent impedance of the rectifier.
  • the controller is also used to receive the compensation phase sent by the transmitter. After receiving the compensation phase, adjust ⁇ from the target value to the compensation phase; the compensation phase is the reactive current output by the transmitter according to the inverter of the transmitter The comparison result with the preset reactive current is obtained.
  • an embodiment of the present application further provides a control method of a receiving end, which is applied to a receiving end of a wireless charging system.
  • the receiving end includes: a receiving coil, a receiving end compensation circuit, a rectifier, and a controller;
  • the receiving coil is used to receive the alternating magnetic field and output alternating current; the receiving end compensation circuit is connected between the receiving coil and the rectifier; the receiving end compensation circuit is used to compensate the alternating current output by the receiving coil and output the compensated alternating current to the rectifier;
  • the receiving end compensation circuit and the receiving coil form a receiving end compensation network;
  • the receiving end compensation network includes a first branch, a second branch, and a third branch;
  • the first branch includes a receiving coil;
  • the first branch, and the second branch All are inductive branches and the reactance of the second branch is greater than the reactance of the first branch.
  • the first branch is connected to the first input of the rectifier through the second branch, the third branch is the capacitive branch, the third branch
  • the first end of the circuit is connected to the common end of the first branch and the second branch, and the second end of the third branch is connected to the second input end of the rectifier;
  • the rectifier includes a controllable switch tube, and the rectifier is used to rectify the alternating current into direct current ;
  • the method includes:
  • the phase difference between the first bridge arm and the second bridge arm of the rectifier is adjusted, and the phase shift angle of the bridge arm voltage of the rectifier and the fundamental wave component of the input current is adjusted, so that the controllable switch tube of the rectifier can achieve zero voltage switching.
  • This method adjusts the imaginary part of the equivalent impedance of the rectifier by adjusting the bridge arm voltage of the rectifier and the phase shift angle of the fundamental component of the input current.
  • the equivalent impedance of the rectifier can be regarded as pure
  • the resistive impedance can also make the controllable switch of the rectifier achieve the effect of ZVS.
  • an inductance compensation module is added to the input end of the rectifier to weaken the capacitive part of the equivalent impedance of the rectifier and reduce the reactive power of the wireless charging system, thereby improving the system efficiency of the wireless charging system.
  • adjusting the phase difference between the first and second bridge arms of the rectifier, and adjusting the phase shift angle of the bridge arm voltage of the rectifier and the fundamental component of the input current specifically including:
  • the phase difference between the first bridge arm and the second bridge arm of the control rectifier is the target phase difference ⁇ ; and the phase shift angle ⁇ of the bridge arm voltage of the control rectifier and the fundamental wave component of the input current of the rectifier is ⁇ - ⁇ + ⁇ ; ⁇ is a preset value; ⁇ is used to adjust the resistance of the equivalent impedance of the rectifier, and ⁇ is used to adjust the reactance of the equivalent impedance of the rectifier.
  • is obtained from an external command; ⁇ is preset inside the controller.
  • is obtained from an external command, and ⁇ is preset inside the controller.
  • the third possible implementation manner further includes:
  • the compensation phase sent by the transmitter to make ⁇ equal to the compensation phase; the compensation phase is obtained from the comparison between the reactive current output by the inverter at the transmitter and the preset reactive current.
  • an embodiment of the present application further provides a power consumption terminal, including a power consumption element, a battery, and the above receiving end;
  • the receiving end is used to charge the battery
  • the battery is used to power the power consuming components.
  • the power terminal can be any device that uses a wireless charging system, such as an electric car.
  • the receiving end is located on the electric vehicle, and the transmitting end is located on the ground.
  • an embodiment of the present application further provides a transmitting end of a wireless charging system, including: an inverter, a transmitting end compensation circuit, a transmitting coil, and a transmitting end controller;
  • Inverter used to invert the DC power output by the DC power source into AC power
  • Transmitter compensation circuit used to compensate the alternating current and output to the transmitter coil
  • Transmitting coil used to transmit alternating current in the form of alternating magnetic field
  • the transmitter coil and transmitter compensation circuit form the transmitter LCL compensation network
  • the controller at the transmitting end is used to send the compensation phase to the controller at the receiving end.
  • the compensation phase is obtained from the comparison between the reactive current output by the inverter at the transmitting end and the preset reactive current;
  • the rectifier adjusts the reactance of the equivalent impedance of the rectifier according to the compensation phase.
  • the transmitter controller can obtain the compensation phase and send it to the receiver controller when the controllable switch tube of the inverter loses ZVS, so as to adjust the reactive power reflected by the receiver to the transmitter through the receiver controller.
  • the reactive power at the terminal can be changed, the reactive current output by the inverter can be changed, so that the controllable switch of the inverter can achieve the effect of ZVS, even if the controllable switch of the inverter restores the ZVS function.
  • an embodiment of the present application provides a wireless charging system, including a transmitter and a receiver above; the transmitter includes an inverter, a compensation circuit for the transmitter, and a transmitter coil; and the inverter is used to output a DC power supply
  • the DC inverter of the inverter is alternating current;
  • the transmitting end compensation circuit is used to compensate the alternating current and output to the transmitting coil;
  • the transmitting coil is used to transmit the alternating current in the form of an alternating magnetic field; the transmitting coil and the transmitting coil form the transmitting end LCL compensation network .
  • an inductance compensation module is added to the input end of the rectifier to weaken the capacitive part of the equivalent impedance of the rectifier and reduce the reactive power of the wireless charging system, thereby improving the system efficiency of the wireless charging system.
  • the present invention has at least the following advantages:
  • the equivalent impedance of the rectifier determines the size of the output power of the rectifier, it further determines the size of the output power of the wireless charging system.
  • the equivalent impedance of the rectifier is the bridge arm voltage of the rectifier divided by the input current of the rectifier.
  • the technical solution provided by the embodiments of the present application adjusts the magnitude of the fundamental component of the bridge arm voltage by adjusting the phase difference between the two bridge arms of the rectifier, so that the real part of the equivalent impedance of the rectifier can be adjusted.
  • the equivalent impedance of the rectifier includes the real part and the imaginary part, the real part refers to the resistance, and the imaginary part refers to the reactance.
  • This scheme adjusts the imaginary part of the equivalent impedance of the rectifier by adjusting the bridge arm voltage of the rectifier and the phase shift angle of the fundamental component of the input current.
  • the equivalent impedance of the rectifier can be regarded as pure
  • the resistive impedance can also make the controllable switch of the rectifier achieve the effect of ZVS.
  • an inductance compensation module is added to the input end of the rectifier to weaken the capacitive part of the equivalent impedance of the rectifier and reduce the reactive power of the wireless charging system, thereby improving the system efficiency of the wireless charging system.
  • Figure 1 is an equivalent circuit diagram of a wireless charging system
  • FIG. 2 is a schematic diagram of a receiving end of a wireless charging system provided by an embodiment of the present application
  • FIG. 3 is an equivalent schematic diagram of a receiving coil and a transmitting coil of a wireless charging system provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram of a wireless charging system provided by an embodiment of the present application including an LCL compensation network;
  • 6a is a schematic diagram of integrating an inductance compensation module and an LCL compensation network provided by an embodiment of the present application;
  • 6b is a schematic diagram of yet another receiving end provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another receiving end provided by an embodiment of this application.
  • FIG. 8 is a waveform diagram corresponding to FIG. 7 provided by an embodiment of the present application.
  • FIG. 9 is a waveform diagram of an input current of a rectifier provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of the corresponding output working range (dotted area) when the wireless charging system provided by the embodiment of the present application charges the battery;
  • FIG. 11 is a schematic diagram of the change of the real part and the imaginary part of Z 1 with ⁇ provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of a receiving end of yet another wireless charging system provided by an embodiment of the present application.
  • FIG. 13 is a waveform diagram corresponding to adjustment ⁇ provided by an embodiment of the present application.
  • 15 is a comparison diagram of power factors of an inductance compensation module and an inductance compensation module provided by an embodiment of the present application;
  • 16 is a waveform diagram of the transmitting coil current and the receiving coil current, the bridge arm voltage of the rectifier, and the input current provided by the embodiment of the present application;
  • FIG. 17 is a schematic diagram of an electric vehicle provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a wireless charging system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a wireless charging system.
  • the wireless charging system shown in Figure 1 includes a transmitter and a receiver.
  • the wireless charging system can charge the electric terminal in a wireless manner, that is, the transmitting end and the receiving end are not connected by wire, but the electromagnetic energy is transmitted by wirelessly interacting with the alternating magnetic field.
  • the transmitting end of the wireless charging system generally includes: an inverter, a transmitting end compensation circuit, and a transmitting coil.
  • the role of the inverter is to invert the DC power output by the DC power source into AC power; the function of the transmitting end compensation circuit compensates the AC power and outputs it to the transmitting coil; the role of the transmitting coil transmits the AC power in the form of an alternating magnetic field, In order to make the receiving coil wirelessly receive the alternating magnetic field.
  • the embodiment of the present application introduces that both the transmitting end and the receiving end include an LCL compensation network.
  • the LCL compensation network is not an actually included device, but for theoretical analysis, the actual electrical components are equivalent to the LCL architecture.
  • the transmitting coil and the transmitting end compensation circuit are equivalent to the transmitting end LCL compensation network 100.
  • the receiving end compensation circuit are equivalent to the receiving end LCL compensation network 200.
  • the transmitting end includes an inverter H1 and an LCL compensation network 100, where L represents inductance and C represents capacitance. Since the power supply Ubus connected to the transmitting end is a DC power supply, the inverter H1 is required to invert the direct current into alternating current in order to transmit the alternating magnetic field generated by the alternating current through the transmitting coil of the transmitting end.
  • H1 in Figure 1 includes four controllable switch tubes, Q1-Q4.
  • the receiving end includes a receiving coil, a compensation circuit, and a rectifier H2; for theoretical analysis, the receiving coil and the compensation circuit are equivalent to the receiving end LCL compensation network, so the receiving coil and the compensation circuit are not shown in FIG. 1.
  • L2 in the inductive branch of the receiving end LCL compensation network 200 includes a receiving coil.
  • the receiving end compensation circuit is connected between the receiving coil and the rectifier H2; the receiving end compensation circuit compensates the alternating current output by the receiving coil, and outputs the compensated alternating current to the rectifier H2.
  • the receiving end can be regarded as including the rectifier H2 and the LCL compensation network 200.
  • the transmitting and receiving ends transmit an alternating magnetic field, and the two ends transmit electromagnetic energy in a wireless form.
  • the transmitting coil is used to transmit the alternating magnetic field
  • the receiving coil is used to receive the transmitting coil. The emitted alternating magnetic field.
  • the function of the rectifier is to rectify alternating current into direct current.
  • the rectifier H2 needs to include a controllable switch tube, and the equivalent impedance of the rectifier can be adjusted by adjusting the drive signal of the controllable switch tube of the rectifier.
  • the rectifier H2 may be a full-bridge rectifier.
  • the full-bridge rectifier may include four controllable switch tubes, or two controllable switch tubes.
  • the rectifier H2 in FIG. 1 includes four controllable switch tubes as an example, and the four controllable switch tubes are S1-S4, respectively.
  • the embodiment of the present application implements zero-voltage switching control on the controllable switch tube in the rectifier, so as to reduce the loss generated by the controllable switch tube in the working process.
  • the receiving end provided by the embodiment of the present application by specifically adjusting the equivalent impedance of the rectifier, can make the system efficiency of the wireless charging system as high as possible on the premise of ensuring that the controllable switch tube of the rectifier realizes zero-voltage switching.
  • the equivalent impedance of the rectifier is the bridge arm voltage of the rectifier divided by the input current of the rectifier.
  • the real part and imaginary part of the equivalent impedance of the rectifier can be adjusted, the real part refers to the resistance, and the imaginary part refers to the reactance. Make the imaginary part as small as possible and the real part as large as possible.
  • the embodiment of the present application adds an inductance compensation module to weaken the simultaneously increased imaginary part. To reduce the reactive power caused by the capacitive impedance, thereby improving the efficiency of the wireless charging system.
  • Embodiment 1 of the receiving end is a first embodiment of the receiving end:
  • FIG. 2 is a schematic diagram of a receiving end of a wireless charging system provided by an embodiment of the present application.
  • the transmitting end and receiving end of the wireless charging system generally include a compensation network.
  • the compensation network is a network formed by the compensation circuit and the coil equivalent together.
  • the transmitting end and the receiving end can use the same type of compensation network.
  • the compensation network at the transmitting end is not shown in FIG. 2 and only the compensation network at the receiving end is illustrated.
  • FIG. 1 has introduced that the receiving end includes a receiving coil, a receiving end compensation circuit, and a rectifier H2, which will not be repeated here.
  • the following mainly introduces the improvement points of the embodiments of the present application.
  • the wireless charging receiver provided by this embodiment further includes a controller 300;
  • the receiving-end compensation circuit and the receiving coil form a receiving-end compensation network 3000;
  • the receiving-end compensation network 310 includes a first branch A, a second branch B, and a third branch C;
  • the first One branch A includes the receiving coil; both the first branch A and the second branch B are inductive branches and the reactance of the second branch B is greater than the reactance of the first branch A, so
  • the first branch A is connected to the first input end of the rectifier H2 through the second branch B
  • the third branch C is a capacitive branch, and the first end of the third branch C is connected
  • the common end of the first branch A and the second branch B, and the second end of the third branch C is connected to the second input end of the rectifier H2.
  • the rectifier H2 includes two input terminals, namely the midpoint of the first bridge arm and the midpoint of the second bridge arm
  • the first bridge arm may be a bridge arm composed of S1 and S2
  • the second bridge arm may be S3 and S4 The bridge arm.
  • B is connected to the midpoint of the first bridge arm
  • C is connected to the midpoint of the second bridge arm.
  • A, B, and C may include one device or multiple devices, which are not specifically limited in the embodiments of the present application.
  • B may include two parts, that is, one part is connected to the midpoint of the first bridge arm, and the other part is connected to the midpoint of the second bridge arm, as long as it is on the loop where B is located.
  • first bridge arm and the second bridge arm are only relative concepts, and the two can be interchanged.
  • the compensation network 310 at the receiving end may have multiple implementation manners, which is not specifically limited in the embodiments of the present application. The following only exemplifies three implementations.
  • the first one is: the receiving end compensation network includes a receiving end LCL compensation network and an inductance compensation module.
  • the second type is: the inductance compensation module and the sub-inductive branch are integrated together, that is, the second branch includes an inductor.
  • the third type is: the second branch includes a first inductor and a second inductor; the first branch is connected to the midpoint of the first bridge arm of the rectifier through the first inductor, and the second end of the third branch passes through the second The inductor is connected to the midpoint of the second bridge arm of the rectifier.
  • the phase of the bridge arm voltage of the rectifier H2 can be controlled to lag the phase of the input current of the rectifier H2.
  • this will cause the equivalent impedance of the rectifier H2 to be capacitive, which in turn causes the phase difference between the transmitting coil current and the receiving coil current of the wireless charging system to be not equal to 90 degrees, reducing the transmission efficiency of the system. Because when the phase difference between the transmitting coil current and the receiving coil current is 90 degrees, the transmission efficiency of the system is higher.
  • the reactance of the second branch is greater than the reactance of the first branch, the first The reactance of the two branches can weaken the capacitive part of the equivalent impedance of the rectifier H2, so that the equivalent impedance of the rectifier H2 is close to resistive.
  • the rectifier H2 includes a controllable switch tube.
  • the rectifier H2 is used to rectify the alternating current from the receiving coil into a direct current.
  • H2 can be a full-bridge rectifier.
  • the four switch tubes of the full-bridge rectifier can be all controllable switch tubes or two of them. One is a controllable switch and the other two are diodes. In this embodiment, only four switch tubes are controllable switch tubes as an example for description. As shown in Figure 2, the four controllable switch tubes are S1, S2, S3 and S4.
  • the role of the controller 300 in this embodiment is to adjust the phase difference between the first and second bridge arms of the rectifier H2, and to adjust the phase shift angle between the fundamental component of the input current of the rectifier H2 and the bridge arm voltage, Therefore, the controllable switch tube of the rectifier H2 realizes zero voltage switching, and reduces the power consumption of the controllable switch tube.
  • phase difference between the first bridge arm and the second bridge arm of the rectifier H2 refers to the phase difference between the drive signals of the controllable switch tubes on the two bridge arms.
  • the bridge arm voltage is the voltage between the midpoint of the first bridge arm and the midpoint of the second bridge arm. Since the equivalent impedance of the rectifier H2 is equal to the bridge arm voltage divided by the input current, the amplitude of the fundamental voltage component of the bridge arm voltage can be adjusted by adjusting the phase difference between the first and second bridge arms of the rectifier H2.
  • the controller 300 may specifically adjust the phase difference and the phase shift angle by changing the driving signals output to S1-S4.
  • the loss of the transmitting coil and the receiving coil in the wireless charging system accounts for a relatively high proportion of the total loss of the system.
  • the following can be combined with FIG. 3 to analyze the realization conditions for achieving high system efficiency.
  • FIG. 3 is an equivalent schematic diagram of a receiving coil and a transmitting coil of a wireless charging system provided by an embodiment of the present application.
  • the current of the transmitting coil is I 1
  • M is the mutual inductance between the transmitting coil and the receiving coil
  • is the angular frequency of I 1
  • R 1 is the resistance of the transmitting coil
  • R 2 is the resistance of the receiving coil
  • L 1 is the transmitting coil Self-inductance
  • L 2 is the self-inductance of the receiving coil
  • k is the coupling coefficient between the transmitting coil and the receiving coil
  • X ss is the equivalent reactance of the load
  • R s is the equivalent resistance of the load
  • I 2 is the current of the receiving coil.
  • the current I 1 of the receiving coil is shown by the following formula
  • Z s is the equivalent load impedance of the induced voltage j ⁇ MI 1 of the receiving coil
  • X s and R s are the corresponding imaginary and real parts.
  • R s_max has nothing to do with the current I 1 of the transmitting coil; therefore, the output power can be adjusted by adjusting the current I 1 of the transmitting coil so that the wireless charging system reaches the target power P.
  • FIG. 4 is a schematic diagram of a wireless charging system provided by an embodiment of the present application including an LCL compensation network.
  • the receiving end uses the LCL compensation network, which meets the following conditions:
  • the impedance of L 2 and C comp2 in series, the impedance of C 2_filter and the impedance of L 2_filter are all equal, and the resonance frequency of L 2_filter and C 2_filter is equal to the operating frequency of the wireless charging system.
  • Z l is the imaginary part X l 0;
  • the fundamental component of the bridge arm voltage of the rectifier can be adjusted Amplitude and adjust the fundamental component of the bridge arm voltage and input current Adjust the phase shift angle between the size of.
  • adjusting the amplitude of the fundamental component of the bridge arm voltage of the rectifier can be achieved by adjusting the phase difference between the first bridge arm and the second bridge arm of the rectifier.
  • the receiving end compensation network 310 includes the receiving end LCL compensation network 200 and the inductance compensation module will be described below with reference to FIG. 5.
  • the receiving end LCL compensation network 200 includes: a first branch (L2 and a series capacitor C comp2 ) of the receiving end compensation network 310, a sub-inductive branch L2_filter and a third branch C2_filter;
  • the first branch may include C comp2 or may not include C comp2 .
  • C comp2 is the capacitance in the compensation circuit.
  • Different compensation circuits have different structures, and are not specifically limited in the embodiments of the present application.
  • the resistance R2 in FIG. 5 is not the actual resistance, but the equivalent resistance of the receiving coil.
  • the first branch is connected to the midpoint of the first bridge arm of the rectifier H2 through the sub-inductive branch L2_filter and the inductance compensation module L2_comp in sequence;
  • the first bridge arm in FIG. 5 is the bridge arm composed of S1 and S2
  • the second bridge arm is S3 The bridge arm composed of S4.
  • the first end of the third branch C2_filter is connected to the common end of the first branch and the sub-inductive branch, and the second end of the third branch C2_filter is connected to the midpoint of the second bridge arm of the rectifier;
  • the modulus values of the first branch, the sub-inductive branch L2_filter and the third branch C2_filter are all equal.
  • the sub-inductive branch and the inductance compensation module constitute a second branch.
  • each inductance in the LCL compensation network may be one or more inductances, or a combination of inductance and capacitance, which is not specifically limited in the embodiments of the present application.
  • the inductance compensation module L2_comp may include one inductance or multiple inductances, which is not specifically limited in the embodiments of the present application.
  • the first branch, sub-inductive branch and third branch meet the following formula:
  • jX L1 is the reactance of the first branch
  • the first branch includes the receiving coil
  • -jX C is the reactance of the third branch
  • jX L2 is the reactance of the sub-inductive branch.
  • the inductance and capacitance in the LCL compensation network satisfy formula (8), and the inductance compensation module added in the embodiment of the present application does not belong to the device in the LCL compensation network, and therefore, does not satisfy formula (8).
  • the inductance compensation module may be an inductor independent of the LCL compensation network, or it may be integrated with the LCL compensation network.
  • the inductance compensation module may be combined with the sub-inductive branch.
  • FIG. 6a It is a schematic diagram of the integration of the inductance compensation module and the LCL compensation network. That is, L2_comp is integrated with the sub-inductive branch L2_filter, and the integrated inductance is L2_comp+L2_filter.
  • the second branch B corresponding to the compensation network 310 at the receiving end includes only one inductor.
  • the integrated inductance no longer satisfies formula (8).
  • the integrated inductance is greater than L 2_filter in equation (8).
  • the inductance in the second branch of the compensation network at the receiving end may further include a first inductance and a second inductance, as shown in FIG. 6b.
  • the first branch is connected to the midpoint of the first bridge arm of the rectifier H2 through the first inductor L3, and the second end of the third branch is connected to the midpoint of the second bridge arm of the rectifier H2 through the second inductor L2.
  • the second branch is provided with two inductors connected to the two input terminals of the rectifier respectively to reduce electromagnetic interference and improve the quality of the input current.
  • the reactance of the first inductor and the reactance of the second inductor can be set equal.
  • the controller adjusts the phase difference between the first bridge arm and the second bridge arm of the rectifier, and adjusts the phase shift angle of the fundamental voltage component of the bridge arm voltage and the fundamental component of the input current, so that the rectifier's controllable switching tube Achieve zero voltage switching; specifically, the phase difference can be set as the adjustment object, and the phase shift angle can be set as the preset value. In addition, the phase difference may be set to a preset value, and the phase shift angle may be set to be adjusted.
  • FIG. 7 is a schematic diagram of another receiving end provided by an embodiment of the present application.
  • the controller 300 is specifically used to control the phase difference between the first and second bridge arms of the rectifier H2 as the target phase difference ⁇ ; ⁇ is used to adjust the resistance of the equivalent impedance of the rectifier, in this embodiment
  • the controller 300 receives the target phase difference ⁇ .
  • the phase shift angle ⁇ of the bridge arm voltage of the rectifier H2 and the fundamental component of the input current is ⁇ - ⁇ + ⁇ ; ⁇ is the first preset value; and ⁇ is the first preset value set inside the controller 300.
  • the controller 300 may preset ⁇ to a small positive value, for example, set ⁇ to A value between. ⁇ is used to adjust the reactance of the equivalent impedance of the rectifier.
  • the controller 300 can receive the target phase difference from the system efficiency controller (not shown in the figure).
  • the system efficiency controller is used to obtain the current system efficiency according to the output power and input power of the wireless charging system, if the current system efficiency is higher than the previous system efficiency Increase, the last target phase difference is increased by the first preset phase step as the current target phase difference is sent to the controller 300, if the current system efficiency is less than the previous system efficiency, the last target phase difference is reduced by the first Let the phase step size be sent to the controller 300 as the target phase difference this time.
  • the control of the rectifier H2 by the wireless charging system is a periodic loop control, and the system efficiency needs to be obtained according to the output power and the input power, and ⁇ is continuously adjusted until the optimal efficiency of the system is found.
  • the technical solution provided by the embodiments of the present application is only to realize the ZVS of the controllable switch tube of the rectifier H2 while ensuring the system efficiency during the cycle control process.
  • the specific method for obtaining and adjusting the system efficiency is not specifically limited in the embodiments of the present application.
  • FIG. 7 The working principle of FIG. 7 is described in detail below in conjunction with the waveform diagram shown in FIG. 8.
  • u2 represents the bridge arm voltage of the rectifier, which is a square wave
  • i2 represents the input current of the rectifier
  • U2 represents the fundamental wave component of u2
  • I2 represents the fundamental wave component of i2.
  • Ubat represents the amplitude of the bridge arm voltage of the rectifier.
  • Um represents the amplitude of U2.
  • In represents negative current.
  • In is negative, that is, the falling edge of I2 in the positive half of u2 is negative, and I2 is in The rising edge of negative half of u2 is positive.
  • the fundamental wave component of the bridge arm voltage and the fundamental wave component of the input current are used for the control in this embodiment.
  • S1 and S3 in FIG. 8 are the waveforms of the driving signals corresponding to the controllable switch tubes S1 and S3 in the rectifier.
  • phase of U2 lags the phase of I2.
  • the phase of u2 also lags the phase of I2, and the angle of the phase of u2 lags the phase of I2 by ⁇ , that is, the phase shift angle is ⁇ .
  • phase difference of the driving signals corresponding to S1 and S3 is ⁇ . Since S1 corresponds to the first bridge arm and S3 corresponds to the second bridge arm, the phase ratio of the first bridge arm can be known The second bridge arm leads by ⁇ .
  • the driving signals of S1 and S2 in the H bridge are complementary, and the driving signals of S3 and S4 are complementary.
  • the control of S2 and S4 will not be repeated here.
  • the receiving end provided by the embodiment of the present application implements the controllable switching of the rectifier by controlling the phase difference between the bridge arm voltage of the receiving end rectifier and the input current, and the phase shift angle between the first bridge arm and the second bridge arm Tube of ZVS.
  • is proportional to the ZVS effect of the zero-voltage switch of the controllable switch of the rectifier, that is, the larger the ⁇ , the easier it is to achieve the ZVS effect.
  • the input current of the rectifier can be collected by a current sensor, and then the collected input current can be filtered by a filter to filter out higher harmonics to obtain the input current fundamental component. Since the collected input current fundamental component is an analog signal, in order to transform into a digital signal that the controller can receive, a zero-crossing detector can be used to detect the zero-crossing of the input current fundamental component to obtain the input current fundamental component in digital form. Into the controller.
  • the fundamental component of the input current of the rectifier can also be obtained in other ways, which is not specifically limited in the embodiments of the present application.
  • FIG. 9 is a waveform diagram of the input current of the rectifier.
  • signal1 represents the input current of the rectifier
  • signal2 represents the fundamental component of the input current obtained by filtering signal1
  • signal3 represents the fundamental component of the input current in digital form obtained by performing zero-crossing detection on signal2, that is, a square wave.
  • phase difference between S1 and S3 is ⁇ .
  • the phase difference between the bridge arm voltage u2 and the input current fundamental component signal3 after zero-crossing detection is ⁇ .
  • an inductance compensation module is added on the basis of LCL compensation.
  • the value range of the inductance L 2_comp of the inductance compensation module may be 0.3 times to 3 times the theoretical inductance L.
  • the theoretical inductance L is obtained by the following formula:
  • ⁇ s is the angular frequency of the fundamental component of the input current of the rectifier
  • R dc is the equivalent load resistance of the wireless charging system at full power output.
  • you can set ⁇ 0.
  • the inductance compensation module L 2_comp can directly take the value of the theoretical inductance.
  • FIG. 10 is a schematic diagram of the corresponding output working range (dashed area) when the wireless charging system charges the battery.
  • a wireless charging system is used to charge the battery, for example, the battery is a power battery.
  • the electric terminal used for electric vehicles.
  • the resistive part R l of the equivalent impedance of the rectifier (including the capacitive imaginary part) is adjusted to be close to R l_max , and weakened by adding an inductance compensation module
  • the capacitive part Xl (which is a negative value) in the equivalent impedance of the rectifier.
  • the overall PF value PF comp of the series impedance Z comp of the compensation inductance and the rectifier is close to 1.
  • the rectifier realizes zero-voltage switching, the rectifier has a large equivalent imaginary part in the adjustment process, so the system efficiency cannot be optimized.
  • an inductance compensation module L 2_comp is added to weaken the imaginary part of the rectifier and improve the power factor PF value of Z comp .
  • the receiving end provided by this embodiment can also receive the compensation phase sent by the transmitting end when the controllable switch tube of the inverter of the transmitting end of the wireless charging system loses the ZVS effect, and after receiving the compensation phase, ⁇ is adjusted from the preset value to the compensation phase; the compensation phase is obtained by the transmitting end according to the comparison result of the reactive current output by the inverter of the transmitting end and the preset reactive current.
  • the transmitting end obtains the compensation phase according to the comparison result of the reactive current output by the inverter with the preset reactive current, which can be specifically: obtaining the reactive current output by the inverter; since the reactive current generally obtained is a negative number, therefore, The absolute value of the reactive current is compared with the preset reactive current, and the preset reactive current is a preset positive number. The absolute value of the obtained reactive current is compared with the preset reactive current, and when the absolute value of the reactive current is less than the preset reactive current, the control compensation phase is increased. When the absolute value of the reactive current is less than the preset reactive current, the control compensation phase decreases. When the absolute value of the reactive current is equal to the preset reactive current, the transmitting end does not send the compensation phase to the controller at the receiving end.
  • the controller adjusts its ⁇ to adjust the reactive power reflected to the transmitter.
  • the reactive power at the transmitter is changed, the reactive current output by the inverter can be changed, so that the controllable switch of the inverter can achieve ZVS. Effect, even if it restores the ZVS function.
  • the controllable switch tube of the inverter realizes the ZVS effect
  • the ⁇ at the receiving end is unchanged at a preset fixed value, and only when the controllable switch tube of the inverter loses the ZVS effect, it is transmitted.
  • the compensation phase transmitted at the terminal serves as ⁇ , which in turn enables the inverter's controllable switch to recover ZVS.
  • FIG. 12 is a schematic diagram of a receiving end of yet another wireless charging system provided by an embodiment of the present application.
  • Fig. 6 Fig. 7 and Fig. 12 are all introduced by taking the sub-inductive branch and the inductance compensation module as an example.
  • controller 300 controls the controller 300
  • the phase difference between the first bridge arm and the second bridge arm of the rectifier H2 can be controlled as a preset phase difference ⁇ ; the preset phase difference is used to adjust the resistance of the equivalent impedance of the rectifier.
  • is the control The value preset in the converter 300, and ⁇ is the value received by the controller 300 from the outside.
  • the controller 300 also controls the phase shift angle ⁇ of the bridge arm voltage of the rectifier H2 and the fundamental component of the input current to be ⁇ - ⁇ + ⁇ ; ⁇ Is the target value; the target value ⁇ is used to adjust the reactance of the equivalent impedance of the rectifier.
  • the controller 300 is used to receive a target value from a system efficiency controller (not shown).
  • the system efficiency controller is used to obtain the current system efficiency according to the output power and input power of the wireless charging system.
  • the last target value is kept unchanged and sent to the controller 300. If the current system efficiency is less than the last system efficiency, the last target value is reduced and sent to the controller 300.
  • the controller 300 sets ⁇ , which can be set according to experiment or experience, for example, setting greater than or equal to Less than or equal to a value between ⁇ . For example set to
  • the controllable switch tube of the inverter at the transmitting end will lose the ZVS effect.
  • the compensation network of the transmitting end and the receiving end both use the LCL compensation network
  • the receiving end provided in this embodiment can adjust the ⁇ to achieve ZVS for both the receiving end and the transmitting end, because when the receiving end adjusts ⁇ , it will change the receiving end The reactive power transmitted to the transmitting end, so that the inverter at the transmitting end realizes ZVS.
  • FIG. 13 is a waveform diagram corresponding to the adjustment ⁇ provided by an embodiment of the present application.
  • the drive signals of the controllable switch tubes S3 and S4 of the rectifier are complementary, and the drive signals of S1 and S2 are complementary, and the duty ratio of the drive signal is 50%.
  • the bridge arm voltage u2 of the rectifier phase locks the input current i2 of the rectifier, and the compensation network at the receiving end uses the LCL compensation network.
  • is the adjustment amount
  • the phase difference of the U2 fundamental wave component lagging the I2 fundamental wave component is ⁇
  • the fundamental wave amplitude of u2 is
  • FIG. 14 is a schematic diagram of the real and imaginary parts of Z l corresponding to the process of adjusting ⁇ .
  • the imaginary part has a larger imaginary part in the adjustment process, so the coil efficiency cannot be optimized. Although the ZVS of the rectifier can be achieved, the coil loss of the wireless charging system cannot be minimized.
  • the embodiment of the present application adds the inductance compensation module L 2_comp , that is, to weaken the imaginary part of the equivalent impedance of the rectifier, thereby improving the power factor and improving the system efficiency.
  • this figure is a comparison diagram of power factors of an inductance compensation module and a non-inductance compensation module provided by an embodiment of the present application.
  • the receiving end provided by the above embodiment of the present application can adjust the real part of the equivalent impedance of the rectifier, and ensure that the imaginary part is small. While optimizing the system efficiency, the controllable switch tube of the rectifier always ensures the ZVS effect.
  • FIG. 15 is a comparison diagram of power factor PF with increased compensation inductance and without increased compensation inductance.
  • adjusting ⁇ and ⁇ are fixed preset values.
  • the power factor PF value of Z comp and Z l when adjusted by ⁇ it can be seen from the figure that the power factor PF of Z comp is kept above 0.92 in the entire adjustment range, and a high power factor PF is realized.
  • this figure is a waveform diagram of the transmitting coil current and the receiving coil current, the bridge arm voltage of the rectifier, and the input current provided by an embodiment of the present application.
  • controllable switch tube of the second bridge arm can also achieve ZVS operation, thereby ensuring the first bridge arm of the rectifier And the controllable switch tube of the second bridge arm can realize the ZVS effect.
  • embodiments of the present application also provide a control method of the receiving end, which is applicable to the controller of the receiving end, which will be described in detail below.
  • the method for controlling the receiving end provided in this embodiment can be applied to the receiving end described in any of the above embodiments of the receiving end; the method may include the following steps:
  • the receiver controller can be used to adjust the phase difference between the first bridge arm and the second bridge arm of the rectifier, as well as adjust the phase shift angle of the bridge arm voltage of the rectifier and the fundamental wave component of the input current to make the rectifier controllable switch
  • the tube realizes ZVS, thereby reducing the power consumption generated by the controllable switching tube of the rectifier.
  • the controller controls the controllable switch of the rectifier to achieve ZVS, which can include the following two methods:
  • the phase difference between the two bridge arms of the rectifier is set as the target phase difference
  • is used to adjust the resistance of the equivalent impedance of the rectifier, that is, the drive signal to the controllable switch tube is adjusted to achieve two
  • the phase difference between the bridge arms is set as the target value.
  • the phase shift angle ⁇ of the bridge arm voltage of the rectifier and the fundamental component of the input current is ⁇ - ⁇ + ⁇ ; where ⁇ is a preset value; that is, ⁇ is a given value.
  • is used to adjust the reactance of the equivalent impedance of the rectifier.
  • the phase difference between the first bridge arm and the second bridge arm of the rectifier is a preset phase difference ⁇ ; ⁇ is used to adjust the resistance of the equivalent impedance of the rectifier, and the bridge arm of the rectifier is controlled
  • the phase shift angle ⁇ of the voltage and the fundamental wave component of the alternating current is ⁇ - ⁇ + ⁇ ; ⁇ is the target value; ⁇ is used to adjust the reactance of the equivalent impedance of the rectifier.
  • the rectifier is realized by adjusting the phase difference between the two bridge arms and adjusting the phase difference between the bridge arm voltage and the fundamental component of the input current Controllable switch tube ZVS.
  • the embodiment of the present application adds an inductance compensation module to the receiving end.
  • the real part and imaginary part of the equivalent impedance of the rectifier can be adjusted, the real part refers to the resistance, and the imaginary part refers to the reactance. Make the imaginary part as small as possible and the real part as large as possible.
  • the process of making the real part of the equivalent impedance of the rectifier as large as possible will inevitably increase the imaginary part. Therefore, the embodiment of the present application adds an inductance compensation module to weaken the simultaneously increased imaginary part. To reduce the reactive power caused by the capacitive impedance, thereby improving the efficiency of the wireless charging system.
  • is a given fixed value, but when the controllable switching tube in the inverter at the transmitting end loses ZVS, the method provided in the embodiment of the present application may further include the following steps:
  • the receiver controller receives the compensation phase sent by the transmitter, so that ⁇ is equal to the compensation phase; the compensation phase is a comparison of the reactive current output by the transmitter according to the inverter of the transmitter and a preset reactive current The result is obtained.
  • the receiver controller adjusts its ⁇ to adjust the reactive power reflected to the transmitter.
  • the reactive power at the transmitter is changed, the reactive current output by the inverter can be changed, so that the controllable switch of the inverter can be realized.
  • an embodiment of the present application further provides a power consumption terminal, which will be described in detail below with reference to the drawings.
  • the power consumption terminal provided in this embodiment includes a power consumption element, a battery, and a receiving end provided in any one of the above embodiments;
  • the receiving end is used to charge the battery
  • the battery is used to power the power consuming components.
  • the power terminal may be any terminal including a battery, and the receiving end is used to charge the battery, and the power is transmitted between the receiving end and the transmitting end in a wireless manner.
  • the power terminal may be an electric car.
  • Electric vehicles include batteries, which are used to provide driving energy for electric vehicles.
  • FIG. 17 is a schematic diagram of the electric terminal provided by the embodiment of the present application as an electric vehicle.
  • the receiving end 1001 may be located on the electric vehicle 1000, and the transmitting end 2000 is located on the ground, so as to realize wireless charging of the electric vehicle.
  • the receiving end provided by the embodiment of the present application can ensure higher charging efficiency and realize the ZVS effect of the rectifier.
  • the embodiment of the present application also provides a transmitting end corresponding to the receiving end provided in the above embodiment.
  • FIG. 1 has introduced that the transmitting end may include: an inverter, a transmitting end compensation circuit, a transmitting coil, and a transmitting end controller; Transformer, which is used to invert the DC power output by the DC power source into AC power; the transmitting end compensation circuit is used to compensate the AC power and output it to the transmitting coil; the transmitting coil is used to transmit the AC power in the form of an alternating magnetic field; Figure 1 does not show the transmitter coil and transmitter compensation circuit. Because the transmitter coil and transmitter compensation circuit constitute the transmitter LCL compensation network in Figure 1.
  • the controller at the transmitting end is used to send a compensation phase to the controller at the receiving end, where the compensation phase is the reactive current and the preset reactive current output by the controller at the transmitting end according to the inverter at the transmitting end
  • the comparison result is obtained; so that the controller at the receiving end adjusts the reactance of the equivalent impedance of the rectifier according to the compensation phase.
  • the transmitter controller can obtain the compensation phase and send it to the receiver controller when the controllable switch tube of the inverter loses ZVS, so as to adjust the reactive power reflected by the receiver to the transmitter through the receiver controller.
  • the reactive power at the terminal can be changed, the reactive current output by the inverter can be changed, so that the controllable switch of the inverter can achieve the effect of ZVS, even if the controllable switch of the inverter restores the ZVS function.
  • an embodiment of the present application further provides a wireless charging system, which will be described in detail below with reference to the drawings.
  • the wireless charging system provided in this embodiment includes a transmitting end and a receiving end provided in any of the above embodiments.
  • FIG. 18 is a schematic diagram of a wireless charging system provided by an embodiment of the present application.
  • the transmitting end inverter H1, the inverter H1 includes controllable switch tubes Q1-Q4, and the transmitting end further includes an LCL compensation network 100 and a transmitting coil Ct;
  • the transmitting coil Ct is used to send electromagnetic energy to the receiving end.
  • the receiving end includes a receiving coil Cr, and further includes an LCL compensation network 200 and a rectifier H2.
  • the rectifier H2 includes controllable switch tubes S1-S4.
  • the controller 300 at the receiving end performs wireless communication with the controller 400 at the transmitting end.
  • the wireless charging system provided in this embodiment may be a wireless charging system for electric vehicle applications, in which the receiving end is located on the electric vehicle, the transmitting end is located on the ground, and the transmitting end charges the battery at the receiving end through wireless charging.
  • the electric vehicle may be a hybrid vehicle or a pure electric vehicle.
  • the wireless charging system provided by the embodiment of the present application includes the receiving end provided by the above embodiment, because the receiving end can simultaneously enable the controllable switching tube of the rectifier to achieve the ZVS effect.
  • an inductance compensation module is added to the input end of the rectifier to weaken the capacitive part of the equivalent impedance of the rectifier and reduce the reactive power of the wireless charging system, thereby improving the system efficiency of the wireless charging system.
  • At least one (item) refers to one or more, and “multiple” refers to two or more.
  • “And/or” is used to describe the association relationship of related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: there are only A, only B, and A and B at the same time , Where A and B can be singular or plural.
  • the character “/” generally indicates that the related object is a "or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one (a) of a, b or c can be expressed as: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be a single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电系统的接收端、方法、用电终端、发射端及系统,接收端包括:接收线圈、接收端补偿电路、整流器和控制器;控制器调节整流器的第一桥臂和第二桥臂之间的相位差,调节整流器的桥臂电压和整流器的输入电流基波分量的移相角,以使整流器的可控开关管实现零电压开关。通过调节整流器的两个桥臂之间的相位差来调节桥臂电压的基波分量的大小,调节整流器的等效阻抗的实部。整流器的等效阻抗包括实部和虚部,实部指电阻,虚部指电抗。整流器的等效阻抗虚部很小时,整流器的等效阻抗看作纯阻性阻抗,可控开关管达到ZVS效果。电感补偿模块可以削弱等效阻抗的容性部分,降低无线充电系统的无功功率,提高无线充电系统的系统效率。

Description

无线充电系统的接收端、方法、用电终端、发射端及系统 技术领域
本发明涉及电力电子技术领域,尤其涉及一种无线充电系统的接收端、方法、用电终端、发射端及系统。
背景技术
随着现代社会能源短缺和环境污染问题的加剧,电动汽车作为新能源汽车一经推出便受到了各界的广泛关注。但现有电动汽车大多受到电池容量的限制,行驶里程较短,同时电动汽车的电池充电时间长、相应的充电站资源贫乏,成为制约电动汽车应用和普及的瓶颈。
电动汽车的电池充电方法通常包括:接触式充电和无线充电。其中,接触式充电采用插头与插座的金属接触来导电,无线充电是以耦合的电磁场为媒介实现电能的传递。与接触式充电相比,无线充电拥有众多优点,成为未来电动汽车充电的主流方式。
无线充电系统工作时需要调节其输出功率,又称阻抗调节。无线充电系统的输出功率由整流器的输出功率决定,而整流器的等效阻抗决定了整流器的输出功率的大小。因此,一般调节无线充电系统的输出功率是通过调节整流器的等效阻抗来实现,整流器的等效阻抗为整流器的桥臂电压除以整流器的输入电流。因此,为了调节整流器的等效阻抗,可以通过控制整流器的桥臂电压和输入电流来实现。
在整流器中通常会使用可控开关管,而让可控开关管实现零电压开关(ZVS,Zero Voltage Switch)效果能够大幅降低可控开关管的开关损耗,延长器件寿命。ZVS是指可控开关管在关断和导通时,其两端的电压理想数值为0,当然实际应用中两端的电压可能为比较小的一个电压,电压越小则功耗越低。然而,现有技术中,在使整流器的可控开关管实现零电压开关时,无线充电系统的输出功率会显著降低。因此,如何在实现可控开关管零电压开关的同时,减少甚至避免对无线充电系统输出功率的影响,成为亟待本领域技术人员解决的难题。
发明内容
为了解决现有技术中存在的以上技术问题,本发明实施例提供一种无线充电系统的接收端、方法、用电终端、发射端及系统,能够在保证整流器的可控开关管实现零电压开关的前提下,使无线充电系统的系统效率尽量高。
第一方面,本申请实施例提供一种无线充电系统的接收端,包括:接收线圈、接收端补偿电路、整流器和控制器;接收线圈接收交变磁场并输出交流电;接收端补偿电路连接在接收线圈与整流器之间;接收端补偿电路用于对接收线圈输出的交流电进行补偿,将补偿后的交流电输出给整流器;接收端补偿电路和接收线圈构成接收端补偿网络;接收端补偿网络包括第一支路、第二支路和第三支路;第一支路包括接收线圈;第一支路和第二支路均为感性支路且第二支路的电抗大于第一支路的电抗,第一支路通过第二支路连接整流器的第一输入端,第三支路为容性支路,第三支路的第一端连接第一支路和第二支路的公共端,第三支路的第二端连接整流器的第二输入端;整流器包括可控开关管,整流器用于将交流电整流为直流电;控制器,用于调节整流器的第一桥臂和第二桥臂之间的相位差,以及调节整流器的桥臂电压和整流器的输入电流基波分量的移相角,以使整流器的可控开关管实现零电压开关。
该技术方案通过调节整流器的两个桥臂之间的相位差来调节桥臂电压的基波分量的大小,从而可以调节整流器的等效阻抗的实部。而且整流器的等效阻抗包括实部和虚部,实部是指 电阻,虚部是指电抗。本方案通过调节整流器的桥臂电压和输入电流基波分量的移相角调节整流器的等效阻抗的虚部,当整流器的等效阻抗的虚部很小时,整流器的等效阻抗可以看作纯阻性阻抗,同时可以使整流器的可控开关管达到ZVS的效果。并且,在整流器的输入端增加了电感补偿模块,以削弱整流器的等效阻抗的容性部分,降低无线充电系统的无功功率,从而提高无线充电系统的系统效率。
在第一方面的第一种可能的实现方式中,控制器具体用于:控制整流器的第一桥臂和第二桥臂之间的相位差为目标相位差α;以及控制整流器的桥臂电压和整流器的输入电流基波分量的移相角β为π-α+σ;σ为目标值;α用于调节整流器的等效阻抗的电阻,σ用于调节整流器的等效阻抗的电抗。
本实施例中通过调整两个桥臂之间的相位差为目标相位差α;以及控制整流器的桥臂电压和整流器的输入电流基波分量的移相角β为π-α+σ;σ为目标值;从而实现整流器的可控开关管实现ZVS的同时,提供无线充电系统的传输效率。
结合第一方面及上述任一种可能的实现方式中,在第二种可能的实现方式中,α为从外部指令获得;σ为控制器内部预设。
结合第一方面及上述任一种可能的实现方式中,在第三种可能的实现方式中,σ为从外部指令获得,α为控制器内部预设。
以上列举了两种实现方式,一种是α为从外部指令获得;σ为制器内部预设。另一种为σ为从外部指令获得,α为控制器内部预设。外部指令可以从比控制器更高一级的控制器获得,例如无线充电系统的效率优化控制器。
可选地,接收端补偿网络可以包括接收端LCL补偿网络和电感补偿模块,具体为第二支路包括电感补偿模块和子感性支路,第一支路、第三支路和子感性支路构成一个LCL补偿网络,第一支路、第三支路和子感性支路的模值相等;其中电感补偿模块用来削弱整流器的等效阻抗的容性部分。
可选地,第一支路、子感性支路和第三支路满足以下公式:
jX L1=-jX C=jX L2
其中,jX L1为第一支路的电抗,-jX C为第三支路的电抗;jX L2为子感性支路的电抗。
可选地,电感补偿模块的电感L 2_comp为理论电感L的0.3倍-3倍,理论电感L通过以下公式获得:
Figure PCTCN2019110545-appb-000001
其中,ω s为整流器的交流电基波分量的角频率;
R dc为无线充电系统满功率输出时的负载等效电阻。
可选地,
Figure PCTCN2019110545-appb-000002
σ=0。当系统使用根据α取值为120度、σ取值为0计算出的电感量的补偿电感时,可以使当α或σ取不同数值时,整流器与补偿电感模块串联的虚部模值变化范围较小。
可选地,L 2_comp=L,即电感补偿模块的电感取值L时,效果较好,兼顾电感成本以及电感带来的削弱整流器的等效阻抗的容性部分的效果。
可选地,第二支路包括的电感数量为一个。当第二支路包括一个电感时,可以缩小电路的体积,由于电感的体积一般较大。而且多个电感集成在一起,电感和电感之间存在干扰,也存在漏磁,因此包括一个电感时无论从信号传输还是从工艺成本均较好。
可选地,第二支路包括的电感数量为两个,分别为第一电感和第二电感;为了防止电磁干扰,因此可以对称设置两个电感,分别连接在整流器的两个输入端,即第一支路通过第一电感连接整流器的第一桥臂的中点,第三支路的第二端通过第二电感连接整流器的第二桥臂的中点。
可选地,为了更好地抑制电磁干扰。第一电感的电抗和第二电感的电抗相等。
可选地,由于第二支路的电抗大于第一支路的电抗,因此第二支路的大于第一支路的电抗部分可以用于削弱整流器的等效阻抗的容性部分。
可选地,控制器,还用于接收发射端发送的补偿相位,当接收补偿相位之后,将σ从目标值调整为补偿相位;补偿相位为发射端根据发射端的逆变器输出的无功电流与预设无功电流的比较结果获得。
第二方面,本申请实施例还提供一种接收端的控制方法,应用于无线充电系统的接收端,接收端包括:接收线圈、接收端补偿电路、整流器和控制器;
接收线圈,用于接收交变磁场并输出交流电;接收端补偿电路连接在接收线圈与整流器之间;接收端补偿电路用于对接收线圈输出的交流电进行补偿,将补偿后的交流电输出给整流器;接收端补偿电路和接收线圈构成接收端补偿网络;接收端补偿网络包括第一支路、第二支路和第三支路;第一支路包括接收线圈;第一支路和第二支路均为感性支路且第二支路的电抗大于第一支路的电抗,第一支路通过第二支路连接整流器的第一输入端,第三支路为容性支路,第三支路的第一端连接第一支路和第二支路的公共端,第三支路的第二端连接整流器的第二输入端;整流器包括可控开关管,整流器用于将交流电整流为直流电;该方法包括:
调节整流器的第一桥臂和第二桥臂之间的相位差,以及调节整流器的桥臂电压和输入电流基波分量的移相角,以使整流器的可控开关管实现零电压开关。
该方法通过调节整流器的桥臂电压和输入电流基波分量的移相角调节整流器的等效阻抗的虚部,当整流器的等效阻抗的虚部很小时,整流器的等效阻抗可以看作纯阻性阻抗,同时可以使整流器的可控开关管达到ZVS的效果。并且,在整流器的输入端增加了电感补偿模块,以削弱整流器的等效阻抗的容性部分,降低无线充电系统的无功功率,从而提高无线充电系统的系统效率。
在第二方面的第一种实现方式中,调节整流器的第一桥臂和第二桥臂之间的相位差,以及调节整流器的桥臂电压和输入电流基波分量的移相角,具体包括:
控制整流器的第一桥臂和第二桥臂之间的相位差为目标相位差α;以及控制整流器的桥臂电压和整流器的输入电流基波分量的移相角β为π-α+σ;σ为预设值;α用于调节整流器的等效阻抗的电阻,σ用于调节整流器的等效阻抗的电抗。
结合第二方面及上述任一种可能的实现方式中,在第一种可能的实现方式中,α从外部指令获得;σ为控制器内部预设。
结合第一方面及上述任一种可能的实现方式中,在第二种可能的实现方式中,σ从外部指令获得,α为控制器内部预设。
结合第一方面及上述任一种可能的实现方式中,在第三种可能的实现方式中,还包括:
接收发射端发送的补偿相位,使σ等于补偿相位;补偿相位为发射端根据发射端的逆变器 输出的无功电流与预设无功电流的比较结果获得。
第三方面,本申请实施例还提供一种用电终端,包括耗电元件、电池以及以上的接收端;
接收端,用于为电池进行充电;
电池,用于为耗电元件供电。
该用电终端可以为使用无线充电系统的任何设备,例如为电动汽车。其中接收端位于电动汽车上,发射端位于地面。
第四方面,本申请实施例还提供一种无线充电系统的发射端,包括:逆变器、发射端补偿电路、发射线圈和发射端的控制器;
逆变器,用于将直流电源输出的直流电逆变为交流电;
发射端补偿电路,用于对交流电进行补偿后输出给发射线圈;
发射线圈,用于将交流电以交变磁场形式进行发射;
发射线圈和发射端补偿电路构成发射端LCL补偿网络;
发射端的控制器,用于向接收端的控制器发送补偿相位,补偿相位为发射端的控制器根据发射端的逆变器输出的无功电流与预设无功电流的比较结果获得;以使接收端的控制器根据补偿相位调节整流器的等效阻抗的电抗。
发射端控制器可以在判断逆变器的可控开关管失去ZVS时,获得补偿相位并发送给接收端控制器,从而通过接收端控制器调节接收端反射给发射端的无功功率,当改变发射端的无功功率时,可以改变逆变器输出的无功电流,从而使逆变器的可控开关管实现ZVS的效果,即使逆变器的可控开关管恢复ZVS功能。
第五方面,本申请实施例提供一种无线充电系统,包括发射端和以上的接收端;发射端包括:逆变器、发射端补偿电路和发射线圈;逆变器,用于将直流电源输出的直流电逆变为交流电;发射端补偿电路,用于对交流电进行补偿后输出给发射线圈;发射线圈,用于将交流电以交变磁场形式进行发射;发射线圈和发射线圈构成发射端LCL补偿网络。
由于该接收端同时可以使整流器的可控开关管达到ZVS的效果。并且,在整流器的输入端增加了电感补偿模块,以削弱整流器的等效阻抗的容性部分,降低无线充电系统的无功功率,从而提高无线充电系统的系统效率。
与现有技术相比,本发明至少具有以下优点:
由于整流器的等效阻抗决定了整流器的输出功率的大小,进而决定了无线充电系统的输出功率的大小。而整流器的等效阻抗为整流器的桥臂电压除以整流器的输入电流。本申请实施例提供的技术方案通过调节整流器的两个桥臂之间的相位差来调节桥臂电压的基波分量的大小,从而可以调节整流器的等效阻抗的实部。而且整流器的等效阻抗包括实部和虚部,实部是指电阻,虚部是指电抗。本方案通过调节整流器的桥臂电压和输入电流基波分量的移相角调节整流器的等效阻抗的虚部,当整流器的等效阻抗的虚部很小时,整流器的等效阻抗可以看作纯阻性阻抗,同时可以使整流器的可控开关管达到ZVS的效果。并且,在整流器的输入端增加了电感补偿模块,以削弱整流器的等效阻抗的容性部分,降低无线充电系统的无功功率,从而提高无线充电系统的系统效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根 据这些附图获得其它的附图。
图1为一种无线充电系统等效电路图;
图2为本申请实施例提供的一种无线充电系统的接收端示意图;
图3为本申请实施例提供的无线充电系统的接收线圈和发射线圈的等效示意图;
图4为本申请实施例提供的无线充电系统包括LCL补偿网络的示意图;
图5为本申请实施例提供的一种接收端的等效电路图;
图6a为本申请实施例提供的电感补偿模块和LCL补偿网络整合在一起的示意图;
图6b为本申请实施例提供的又一种接收端的示意图;
图7为本申请实施例提供的另一种接收端的示意图;
图8为本申请实施例提供的与图7对应的波形图;
图9为本申请实施例提供的整流器的输入电流的波形图;
图10为本申请实施例提供的无线充电系统为电池充电时对应的输出工作范围(虚线区域)示意图;
图11为本申请实施例提供的Z l的实部与虚部随α的变化示意图;
图12为本申请实施例提供的又一种无线充电系统的接收端示意图;
图13为本申请实施例提供的调节σ对应的波形图;
图14为本申请实施例提供的调节σ的过程对应的Z l的实部和虚部示意图;
图15为本申请实施例提供的有电感补偿模块和无电感补偿模块的功率因数对照图;
图16为本申请实施例提供的发射线圈电流和接收线圈电流以及整流器的桥臂电压和输入电流的波形图;
图17为本申请实施例提供的用电终端为电动汽车示意图;
图18为本申请实施例提供的一种无线充电系统的示意图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面首先介绍无线充电系统的工作原理。
参见图1,该图为一种无线充电系统的示意图。
图1所示的无线充电系统包括发射端和接收端。
无线充电系统可以给用电终端以无线形式进行充电,即发射端和接收端不是通过有线进行连接,而是通过无线进行交变磁场的交互来传递电磁能量。
实际应用中,无线充电系统的发射端一般包括:逆变器、发射端补偿电路和发射线圈。其中逆变器的作用是将直流电源输出的直流电逆变为交流电;发射端补偿电路的作用对交流电进行补偿后输出给发射线圈;发射线圈的作用将所述交流电以交变磁场形式进行发射,以使接收线圈通过无线形式接收交变磁场。本申请实施例介绍的是发射端和接收端均包括LCL补偿网络,LCL补偿网络并不是实际包括的器件,而是为了理论分析,将实际的电气元件等效为LCL的架构。对于发射端,将发射线圈和发射端补偿电路等效为发射端LCL补偿网络100。对于接收端,将接收线圈和接收端补偿电路等效为接收端LCL补偿网络200。
如图1所示,为了理论分析等效的电路图。发射端包括逆变器H1和LCL补偿网络100,其中的L表示电感,C表示电容。由于发射端连接的电源Ubus为直流电源,因此,需要逆变器H1将直流电逆变为交流电,才能通过发射端的发射线圈将交流电产生的交变磁场发射出去。图1中的H1包括四个可控开关管,分别为Q1-Q4。
实际应用中,接收端包括接收线圈、补偿电路和整流器H2;为了理论分析,将接收线圈和补偿电路等效为接收端LCL补偿网络,因此图1中未示出接收线圈和补偿电路。图1中接收端LCL补偿网络200中的感性支路中的L2包括接收线圈。实际应用中接收端补偿电路连接在接收线圈与整流器H2之间;接收端补偿电路对接收线圈输出的交流电进行补偿,将补偿后的交流电输出给整流器H2。
这样,接收端可以视为包括整流器H2和LCL补偿网络200。
由于该系统为无线充电系统,因此发射端和接收端传递的为交变磁场,两端通过无线形式进行电磁能量的传递,其中发射线圈用于发射交变磁场,而接收线圈用来接收发射线圈发射的交变磁场。
整流器的作用是交流电整流为直流电。为了实现整流器的等效阻抗可调节,因此整流器H2需要包括可控开关管,通过调节整流器的可控开关管的驱动信号来调节整流器的等效阻抗。
其中,整流器H2可以为全桥整流器,全桥整流器可以包括四个可控开关管,也可以包括两个可控开关管。以图1中的整流器H2包括四个可控开关管为例进行介绍,四个可控开关管分别为S1-S4。
本申请实施例对整流器中的可控开关管实现零电压开关控制,以降低可控开关管在工作过程中产生的损耗。
本申请实施例提供的接收端,具体通过调节整流器的等效阻抗,可以在保证整流器的可控开关管实现零电压开关的前提下,使无线充电系统的系统效率尽量高。由于整流器的等效阻抗为整流器的桥臂电压除以整流器的输入电流。为了使系统效率较高,可以调节整流器的等效阻抗的实部和虚部,实部是指电阻,虚部是指电抗。使其虚部尽量小,实部尽量大。但是,使整流器的等效阻抗的实部尽量大的过程中,难免会增大虚部,因此,本申请实施例增加了电感补偿模块,来削弱同时增大的虚部,利用电感补偿模块中的电感来削弱容性阻抗引起的无功功率,进而提高无线充电系统的效率。
为了使本领域技术人员更好地理解和实施本申请实施例提供的技术方案,下面结合附图对其实现方式进行详细说明。
接收端实施例一:
参见图2,该图为本申请实施例提供的一种无线充电系统的接收端示意图。
无线充电系统的发射端和接收端一般均包括补偿网络,补偿网络是补偿电路和线圈等效在一起形成的网络。一般发射端和接收端为了实现结构对称,可以采用相同类型的补偿网络。图2中未示出发射端补偿网络,仅示意接收端补偿网络。
图1已经介绍了接收端包括接收线圈、接收端补偿电路和整流器H2,在此不再赘述。下面主要介绍本申请实施例的改进点。本实施例提供的无线充电的接收端,还包括控制器300;
本实施例中,接收端补偿电路和所述接收线圈构成接收端补偿网络3000;所述接收端补偿网络310包括第一支路A、第二支路B和第三支路C;所述第一支路A包括所述接收线圈;所述第一支路A和第二支路B均为感性支路且所述第二支路B的电抗大于所述第一支路A的电抗,所述第一支路A通过所述第二支路B连接所述整流器H2的第一输入端,所述第三支路C为容性支路,所述第三支路C的第一端连接所述第一支路A和第二支路B的公共端,所述第三支路C的第二端连接所述整流器H2的第二输入端。其中,整流器H2包括两个输入端,即第一桥臂的中点和第二桥臂的中点,第一桥臂可以为S1和S2组成的桥臂,第二桥臂可以为S3和S4组成的桥臂。其中,图中B连接的是第一桥臂的中点,C连接的是第二桥臂的中 点。其中A、B和C可以包括一个器件,也可以包括多个器件,在本申请实施例中不做具体限定。另外,B可以包括两部分,即一部分连接在第一桥臂的中点,另一部分连接在第二桥臂的中点,只要在B所在的回路上即可。
另外,第一桥臂和第二桥臂仅是相对概念,两者可以互换。
接收端补偿网络310可以有多种实现方式,本申请实施例不做具体限定。下面仅举例三种实现方式,第一种为:接收端补偿网络包括接收端LCL补偿网络和电感补偿模块。第二种为:电感补偿模块和子感性支路整合在一起,即第二支路包括一个电感。第三种为:第二支路包括第一电感和第二电感;第一支路通过所述第一电感连接整流器的第一桥臂的中点,第三支路的第二端通过第二电感连接所述整流器的第二桥臂的中点。
为了使整流器H2的开关管实现ZVS,希望开关管工作时,其两端电压尽量小,越小则带来的功耗越低。具体可以通过控制整流器H2的桥臂电压的相位滞后于整流器H2的输入电流的相位。但是,这样又会导致整流器H2的等效阻抗为容性,进而导致无线充电系统的发射线圈电流和接收线圈电流之间的相位差不等于90度,降低了系统的传输效率。因为当发射线圈电流与接收线圈电流的相位差为90度时,系统的传输效率较高。
因此,为了保证发射线圈电流和接收线圈电流之间的相位差为90度,而且又使整流器H2达到ZVS效果,本申请实施例由于第二支路的电抗大于第一支路的电抗,因此第二支路的电抗可以削弱整流器H2的等效阻抗的容性部分,使整流器H2的等效阻抗接近阻性。
整流器H2包括可控开关管,整流器H2用于将来自接收线圈的交流电整流为直流电;其中H2可以为全桥整流器,全桥整流器的四个开关管可以全部为可控开关管,也可以其中两个为可控开关管,另两个为二极管。本实施例中仅以四个开关管均为可控开关管为例进行说明。如图2所示,四个可控开关管分别为S1、S2、S3和S4。
本实施例中控制器300的作用是调节整流器H2的第一桥臂和第二桥臂之间的相位差,以及调节整流器H2的输入电流基波分量和桥臂电压之间的移相角,从而使整流器H2的可控开关管实现零电压开关,降低可控开关管的功耗。
可以理解的是,整流器H2的第一桥臂和第二桥臂之间的相位差,是指两个桥臂上的可控开关管的驱动信号之间的相位差。
当整流器H2为全桥整流器时,桥臂电压为第一桥臂的中点和第二桥臂的中点之间的电压。由于整流器H2的等效阻抗等于桥臂电压除以输入电流,因此,可以通过调节整流器H2的第一桥臂和第二桥臂之间的相位差来调节桥臂电压基波分量的幅值。
具体实现时,控制器300具体可以通过改变输出给S1-S4的驱动信号来实现相位差和移相角的调节。
为了方便理解本申请实施例的应用场景,在无线充电系统中发射线圈和接收线圈的损耗占系统总损耗的比例较高,下面可以结合图3来分析使系统效率达到较高的实现条件。
参见图3,该图为本申请实施例提供的无线充电系统的接收线圈和发射线圈的等效示意图。
发射线圈的电流为I 1,M为发射线圈和接收线圈之间的互感,ω为I 1的角频率,R 1为发射线圈的电阻,R 2为接收线圈的电阻,L 1为发射线圈的自感,L 2为接收线圈的自感,k为发射线圈和接收线圈之间的耦合系数,X ss为负载等效电抗,R s为负载等效电阻,I 2为接收线圈的电流。
因此接收线圈的电流I 1如下公式所示,Z s为接收线圈的感应电压jωMI 1的等效负载阻 抗,X s,R s为其对应的虚部和实部。
X s=ωL 2+X ss  (1)
Z s=jX s+R s  (2)
系统线圈环节效率η如下公式所示:
Figure PCTCN2019110545-appb-000003
Figure PCTCN2019110545-appb-000004
由公式(2)可以看出当Z s的虚部X s为零,而且公式(3)看出R s取得最大值R s_max时系统效率达到最高。
Figure PCTCN2019110545-appb-000005
Figure PCTCN2019110545-appb-000006
由公式(5)可以看出,R s_max与发射线圈的电流I 1无关;因此可以通过调节发射线圈的电流I 1调节输出功率从而使无线充电系统达到目标功率P。
因此使系统效率达到较优的两个条件为:
1)虚部X s为0;和
2)调节负载等效阻抗Z s使其实部R s达到R s_max,则使系统效率最高。
下面结合补偿网络为LCL补偿网络时Z s与的整流器的等效阻抗的关系。
参见图4,该图为本申请实施例提供的无线充电系统包括LCL补偿网络的示意图。
接收端采用LCL补偿网络,LCL补偿网络满足以下条件:
L 2与C comp2串联的阻抗、C 2_filter的阻抗和L 2_filter的阻抗三者的模值均相等,且L 2_filter与C 2_filter的谐振频率等于无线充电系统的工作频率。
Figure PCTCN2019110545-appb-000007
为整流器的等效阻抗,式中
Figure PCTCN2019110545-appb-000008
分别为整流器的桥臂电压和输入电流的基波分量。
由图4可以获得Z s与Z l的关系为如下公式所示:
Figure PCTCN2019110545-appb-000009
由公式(2)可以看出当Z s=R s_max时,Z l为纯阻性(功率因数
Figure PCTCN2019110545-appb-000010
),且阻值为
Figure PCTCN2019110545-appb-000011
时系统效率最高。
因此系统效率最优的条件,在接收侧采用LCL补偿网络时,转化为如下关于Z l的两个条件:
1)Z l的虚部X l为0;
2)调节Z l使其实部R l达到R l_max,则使系统效率最高。
因此下面分析系统效率最优时,均只分析Z l的阻抗特性即可。
由于
Figure PCTCN2019110545-appb-000012
因此可以通过调节整流器的桥臂电压的基波分量
Figure PCTCN2019110545-appb-000013
的幅值以及,调节桥臂电压与输入电流的基波分量
Figure PCTCN2019110545-appb-000014
之间的移相角来调节
Figure PCTCN2019110545-appb-000015
的大小。其中,调节整流器的桥臂电压的基波分量的幅值可以通过调节整流器的第一桥臂和第二桥臂的相位差来实 现。
下面结合图5介绍接收端补偿网络310包括接收端LCL补偿网络200和电感补偿模块时的具体实现方式。
接收端LCL补偿网络200包括:接收端补偿网络310的第一支路(L2和串联的电容C comp2)、子感性支路L2_filter和第三支路C2_filter;
其中,第一支路可以包括C comp2,也可以不包括C comp2。当包括C comp2时,C comp2是补偿电路中的电容。不同的补偿电路的结构有所区别,本申请实施例中不做具体限定。
图5中的电阻R2并不是实际存在的电阻,而是接收线圈的等效电阻。
第一支路依次通过子感性支路L2_filter和电感补偿模块L2_comp连接整流器H2的第一桥臂的中点;图5中第一桥臂是S1和S2组成的桥臂,第二桥臂是S3和S4组成的桥臂。
第三支路C2_filter的第一端连接第一支路和子感性支路的公共端,第三支路C2_filter的第二端连接整流器的第二桥臂的中点;
第一支路、子感性支路L2_filter和第三支路C2_filter的模值均相等。
其中,子感性支路和电感补偿模块构成第二支路。
可以理解的是,实际应用中,LCL补偿网络中的各个电感可以为一个或多个电感,也可以为电感与电容的组合,本申请实施例中不做具体限定。
同理,电感补偿模块L2_comp可以包括一个电感,也可以包括多个电感,本申请实施例中也不做具体限定。
第一支路、子感性支路和第三支路满足以下公式:
jX L1=-jX C=jX L2  (8)
其中,jX L1为第一支路的电抗,第一支路包括接收线圈;-jX C为第三支路的电抗;jX L2为子感性支路的电抗。
需要说明的是,LCL补偿网络中的电感和电容满足公式(8),而本申请实施例增加的电感补偿模块不属于LCL补偿网络中的器件,因此,不满足公式(8)。
具体应用时,电感补偿模块可以为独立于LCL补偿网络之外的电感,也可以与LCL补偿网络集成在一起,例如电感补偿模块可以与子感性支路合二为一,具体可以参见图6a,为电感补偿模块和LCL补偿网络整合在一起的示意图。即L2_comp与子感性支路L2_filter整合在一起,整合后的电感为L2_comp+L2_filter。相当于接收端补偿网络310的第二支路B中仅包括一个电感。
但是,当电感补偿模块的电感与子感性支路的电感整合为一个电感时,整合在一起的电感已经不满足公式(8)。显然,整合在一起的电感大于公式(8)中的L 2_filter
另外,接收端补偿网络的第二支路中的电感还可以包括第一电感和第二电感,如图6b所示。第一支路通过第一电感L3连接整流器H2的第一桥臂的中点,第三支路的第二端通过第二电感L2连接整流器H2的第二桥臂的中点。第三支路设置两个电感分别连接在整流器的两个输入端是为了降低电磁干扰,提高输入电流的质量。为了达到较好的效果,可以设置第一电感的电抗和第二电感的电抗相等。
控制器通过调节整流器的第一桥臂和第二桥臂之间的相位差,以及调节整流器的桥臂电压基波分量和输入电流基波分量的移相角,以使整流器的可控开关管实现零电压开关;具体地,可以将相位差设为调节对象,将移相角设为预设值。另外,也可以将相位差设为预设值,将移相角设为调节对象。
下面首先介绍将相位差设为调节对象,将移相角设为预设值的实现方式。
接收端实施例二:
参见图7,该图为本申请实施例提供的另一种接收端的示意图。
本实施例提供的接收端,与实施例一相同的部分在此不再赘述。
本实施例中控制器300具体用于控制整流器H2的第一桥臂和第二桥臂之间的相位差为目标相位差α;α用于调节整流器的等效阻抗的电阻,本实施例中控制器300接收目标相位差α。以及控制整流器H2的桥臂电压和输入电流基波分量的移相角β为π-α+σ;σ为第一预设值;而σ为控制器300内部设置的第一预设值。控制器300可以预设σ为一个较小的正值,例如设σ为
Figure PCTCN2019110545-appb-000016
之间的一个值。σ用于调节整流器的等效阻抗的电抗。
控制器300可以从系统效率控制器(图中未示出)接收目标相位差,系统效率控制器用于根据无线充电系统的输出功率和输入功率获得当前系统效率,如果当前系统效率比上次系统效率增加,则将上次目标相位差增加第一预设相位步长作为本次目标相位差发送给控制器300,如果当前系统效率小于上次系统效率,则将上次目标相位差减少第一预设相位步长作为本次目标相位差发送给控制器300。
可以理解的是,无线充电系统对于整流器H2的控制属于周期性循环控制,需要根据输出功率和输入功率获得系统效率,不断调整α,直到寻找到系统的最优效率。而本申请实施例提供的技术方案仅是在该循环控制过程中,在保证系统效率的同时,实现整流器H2的可控开关管实现ZVS。对于系统效率的具体获得方式以及调节方式本申请实施例中不做具体限定。
下面结合图8所示的波形图来详细介绍图7的工作原理。
图8中u2表示整流器的桥臂电压,该桥臂电压为方波,i2表示整流器的输入电流,U2表示u2的基波分量,I2表示i2的基波分量。Ubat表示整流器的桥臂电压的幅值。Um表示U2的幅值。
In表示负电流。如果为了实现整流器的可控开关管达到ZVS,则需要控制In大于零,因此,本申请实施例中通过调节σ来实现In为负,即I2在u2的正半周的下降沿为负,I2在u2负半周的上升沿为正。
由于直接检测的桥臂电压和输入电流均包括高次谐波,因此,本实施例进行控制时利用的均是桥臂电压的基波分量和输入电流的基波分量。
图8中S1和S3为整流器中可控开关管S1和S3对应的驱动信号的波形。
从图8中可以看出,U2的相位滞后于I2的相位。u2的相位也滞后于I2的相位,并且u2的相位滞后于I2的相位的角度为β,即移相角为β。
另外,由于u2正半周对应的方波与S1对应的驱动信号的上升沿相同,因此,S1的驱动信号的上升沿也滞后于I2的相位的角度为β。
从图8中可以看出,S1和S3对应的驱动信号的相位差为α,由于S1对应的是第一桥臂,S3对应的是第二桥臂,因此,可知第一桥臂的相位比第二桥臂超前α。
另外,从图8可以看出,β=π-α+σ。
H桥中的S1和S2的驱动信号互补,S3和S4的驱动信号互补,对于S2和S4的控制在此不再赘述。
本申请实施例提供的接收端,通过控制接收端的整流器的桥臂电压与输入电流之间的相位差,以及第一桥臂和第二桥臂之间的移相角来实现整流器的可控开关管的ZVS。其中,σ正比于整流器的可控开关管的零电压开关ZVS效果,即σ越大,则越容易实现ZVS效果。
对于整流器的输入电流基波分量可以通过电流传感器采集整流器的输入电流,然后通过滤波器对采集的输入电流进行滤波,将高次谐波滤除,获得输入电流基波分量。由于采集的输入电流基波分量属于模拟信号,为了变换为控制器可以接收的数字信号,可以利用过零检测器对输入电流基波分量进行过零检测,获得数字形式的输入电流基波分量送入控制器。另外也可以通过其他方式获得整流器的输入电流基波分量,本申请实施例中不做具体限定。
具体可以参见图9,该图为整流器的输入电流的波形图。
图9中,signal1表示整流器的输入电流,signal2表示将signal1进行滤波后得到的输入电流基波分量,signal3表示对signal2进行过零检测获得的数字形式的输入电流基波分量,即方波。
从图9中可以看出,S1和S3之间的相位差为α。桥臂电压u2与过零检测后的输入电流基波分量signal3之间的相位差为β。
为了使本领域技术人员更好地理解本实施例的技术效果,下面继续结合图7进行原理说明。
以上已经介绍通过调节α可以调节
Figure PCTCN2019110545-appb-000017
的实部大小。Z l的表达式如下:
Figure PCTCN2019110545-appb-000018
本申请实施例在LCL补偿的基础上增加电感补偿模块,电感补偿模块的电感L 2_comp的取值范围可以为理论电感L的0.3倍-3倍,理论电感L通过以下公式获得:
Figure PCTCN2019110545-appb-000019
其中,ω s为整流器的输入电流基波分量的角频率;
R dc为无线充电系统满功率输出时的负载等效电阻。
在一种实现方式中,可以设置
Figure PCTCN2019110545-appb-000020
σ=0。
另外,电感补偿模块L 2_comp可以直接取值为理论电感。
参见图10,该图为无线充电系统为电池充电时对应的输出工作范围(虚线区域)示意图。
本实施例中以无线充电系统为电池充电,例如电池为动力电池。应用于用电终端为电动汽车。
从图10可以看出满功率输出时负载R dc的范围为R dc_min~R dc_max,实际可以根据需要优化的区域,取得R dc_min~R dc_max之间的某一值。
本实施例,在保证整流器的可控开关管实现ZVS的前提下,通过调节整流器的等效阻抗(含有容性虚部)的阻性部分R l使其接近R l_max,通过增加电感补偿模块削弱整流器的等效阻抗中的容性部分Xl(为负值)。
使整流器在整个实部R l调节过程中,补偿电感与整流器的串联阻抗Z comp的整体PF值PF comp接近1。
Z comp=R l+j(ω sL 2_comp+X l)
Figure PCTCN2019110545-appb-000021
当β=π-α+σ时,σ为一较小的正值常数。u2的基波分量滞后于i2的基波分量且相差为
Figure PCTCN2019110545-appb-000022
u2的基波幅值为
Figure PCTCN2019110545-appb-000023
可知Z l为阻容性。
参见图11,该图为Z l的实部与虚部随
Figure PCTCN2019110545-appb-000024
的变化示意图。
如果整流器的可控开关管实现零电压开关,整流器在调节过程中有较大的等效虚部,因此无法使系统效率最优。
因此本实施例增加电感补偿模块L 2_comp来削弱整流器的虚部,提高Z comp的功率因数PF值。
另外,本实施例提供的接收端,还可以在无线充电系统的发射端的逆变器的可控开关管失去ZVS效果时,接收发射端发送的补偿相位,当接收到所述补偿相位之后,将σ从所述预设值调整为所述补偿相位;所述补偿相位为所述发射端根据所述发射端的逆变器输出的无功电流与预设无功电流的比较结果获得。发射端根据逆变器输出的无功电流与预设无功电流的比较结果获得补偿相位,具体可以为:获得逆变器输出的无功电流;由于一般获得的无功电流为负数,因此,将无功电流的绝对值与预设无功电流进行比较,预设无功电流为预设正数。将获得的无功电流的绝对值与预设无功电流进行比较,当无功电流的绝对值小于预设无功电流时,控制补偿相位增大。当无功电流的绝对值小于预设无功电流时,控制补偿相位减小。当无功电流的绝对值等于预设无功电流时,发射端不向接收端的控制器发送补偿相位。
控制器调节自身的σ是为了调节反射到发射端的无功功率,当改变发射端的无功功率时,可以改变逆变器输出的无功电流,从而使逆变器的可控开关管实现ZVS的效果,即使其恢复ZVS功能。
本实施例提供的方式,在逆变器的可控开关管实现ZVS效果时,接收端的σ为预设固定值不变,只有当逆变器的可控开关管失去ZVS效果时,才以发射端发射的补偿相位作为σ,进而使逆变器的可控开关管恢复ZVS。
下面结合附图介绍将相位差设为预设值,将移相角设为调节对象。本实施例与接收端实施例二其余部分相似,仅是调节对象有所差别,因此,与接收端实施例二相同的部分在此不再赘述。
接收端实施例三:
参见图12,该图为本申请实施例提供的又一种无线充电系统的接收端示意图。
图6、图7和图12中均是以子感性支路和电感补偿模块整合在一起为例进行的介绍。
本实施例中,控制器300
具体可以控制整流器H2的第一桥臂和第二桥臂之间的相位差为预设相位差α;预设相位差用于调节整流器的等效阻抗的电阻,本实施例中,α为控制器300内部预设的值,而σ为控制器300从外部接收的值,控制器300还控制整流器H2的桥臂电压和输入电流基波分量的移相角β为π-α+σ;σ为目标值;目标值σ用于调节整流器的等效阻抗的电抗。
例如,控制器300,用于从系统效率控制器(图中未示出)接收目标值,系统效率控制器用于根据无线充电系统的输出功率和输入功率获得当前系统效率,如果当前系统效率比上次系统效率增加,则保持上次目标值不变发送给控制器300,如果当前系统效率小于上次系统效率,则减小上次目标值发送给控制器300。
其中,控制器300设置α,可以根据实验或者经验设置,例如设置大于或等于
Figure PCTCN2019110545-appb-000025
小于或等于π之间的一个值。例如设置为
Figure PCTCN2019110545-appb-000026
由于无线充电系统的接收端和发射端的相对位置不同,因此,当系统参数发生变化时,会导致发射端的逆变器的可控开关管失去ZVS效果。而当发射端和接收端的补偿网络均采用LCL补偿网络时,本实施例提供的接收端,可以通过调节σ使接收端和发射端均实现ZVS,因为当接收端调节σ时,会改变接收端发射到发射端的无功功率,从而使发射端的逆变器实现ZVS。
为了使本领域技术人员更好地理解本申请实施例提供的接收端,下面结合附图对其工作原理进行详细介绍。
参见图13,该图为本申请实施例提供的调节σ对应的波形图。
整流器的可控开关管S3和S4的驱动信号互补,S1和S2的驱动信号互补,驱动信号的占空比均为50%。
整流器的桥臂电压u2相位锁定整流器的输入电流i2,接收端的补偿网络采用LCL补偿网络。
本实施例中可以将α取为(0~π)中的某一固定值,为了方便分析取α=π。由于β为π-α+σ,因此,β=σ时。
本实施例中,σ为调节量。
如图13所示,U2基波分量滞后于I2基波分量的相位差为σ,u2的基波幅值为
Figure PCTCN2019110545-appb-000027
通过观察Z l公式,可以发现Z l为阻容性,而且调节σ就可以调节Z l的实部大小。随着σ的增大;即当调节Z l实部大小时,同时会导致虚部变化,无法通过调节α使Z l=R l_max来使系统线圈效率最优。
因此,对于第二桥臂上的可控开关管S3和S4,可以实现ZVS。
参见图14,该图为调节σ的过程对应的Z l的实部和虚部示意图。
S3和S4开关损耗较小,系统可以正常工作。因此当β=σ,调节σ的方案,可以实现整流器的所有可控开关管实现ZVS。虚部在调节过程中有较大的虚部,因此无法使线圈效率最优。虽然可以实现整流器的ZVS,但是也无法实现无线充电系统的线圈损耗最小。
因此,本申请实施例增加了电感补偿模块L 2_comp,即来削弱整流器的等效阻抗的虚部,从而提高功率因数,提高系统效率。
为了使本领域技术人员更好地理解本申请以上实施例增加电感补偿模块的有益效果,下面结合附图进行详细说明。
参见图15,该图为本申请实施例提供的有电感补偿模块和无电感补偿模块的功率因数对照图。
以上本申请实施例提供的接收端可以调节整流器的等效阻抗的实部,且保证虚部较小,在优化系统效率的同时,始终保证整流器的可控开关管实现ZVS效果。
图15为增加补偿电感与未增加补偿电感的功率因数PF对照图,以接收端实施例二为例,调节α,σ为固定的预设值。Z comp与Z l在通过α调节时的功率因数PF值,从图中可以看出Z comp的功率因数PF在整个调节范围内都保持在0.92以上,实现了较高的功率因数PF。
参见图16,该图为本申请实施例提供的发射线圈电流和接收线圈电流以及整流器的桥臂电压和输入电流的波形图。
图16为以上本申请实施例在接收端增加电感补偿模块后的线圈电流及整流器的桥臂电压u2及输入电流i2的波形,从中可以看出发射线圈电流与接收线圈电流的相位互差90度,即可以保证Z comp的功率因数PF值较高。
另外,可以通过观察u2与i2的波形可以看出,i2在u2正半周的下降沿为负,因此,第二桥臂的可控开关管也可以实现ZVS工作,从而保证整流器的第一桥臂和第二桥臂的可控开关管均可以实现ZVS效果。
以上接收端实施例二介绍的电感补偿模块的取值原则也同样适用于接收端实施例三,因此,在此不再赘述。
基于以上实施例提供的一种无线充电系统的接收端,本申请实施例还提供一种接收端的控制方法,该方法适用于接收端的控制器,下面进行详细介绍。
方法实施例:
本实施例提供的接收端的控制方法,可以应用于以上任意一个接收端实施例介绍的接收端;该方法可以包括以下步骤:
接收端控制器可以用于调节整流器的第一桥臂和第二桥臂之间的相位差,以及调节整流器的桥臂电压和输入电流基波分量的移相角,以使整流器的可控开关管实现ZVS,从而降低整流器的可控开关管产生的功耗。
控制器控制整流器的可控开关管实现ZVS,具体可以包括以下两种方式:
第一种,将整流器的两个桥臂之间的相位差设为目标相位差,α用于调节所述整流器的等效阻抗的电阻,即调节给可控开关管的驱动信号以实现两个桥臂之间的相位差设为目标值。同时控制整流器的桥臂电压和输入电流基波分量的移相角β为π-α+σ;其中σ为预设值;即σ是给定值。σ用于调节所述整流器的等效阻抗的电抗。
第二种,控制整流器的所述第一桥臂和第二桥臂之间的相位差为预设相位差α;α用于调节所述整流器的等效阻抗的电阻,且控制整流器的桥臂电压和所述交流电基波分量的移相角β为π-α+σ;σ为目标值;σ用于调节所述整流器的等效阻抗的电抗。
综上所述,无论是第一种还是第二种,均是通过调节两个桥臂之间的相位差,以及,调节桥臂电压与输入电流基波分量之间的相位差来实现整流器的可控开关管的ZVS。
本申请实施例除了以上控制方法以外,接收端中增加了电感补偿模块。原因是为了使系统效率较高,可以调节整流器的等效阻抗的实部和虚部,实部是指电阻,虚部是指电抗。使其虚部尽量小,实部尽量大。但是,使整流器的等效阻抗的实部尽量大的过程中,难免会增大虚部,因此,本申请实施例增加了电感补偿模块,来削弱同时增大的虚 部,利用电感补偿模块中的电感来削弱容性阻抗引起的无功功率,进而提高无线充电系统的效率。
另外,针对第一种调节方法,一般情况下σ是给定的固定值,但是当发射端的逆变器中的可控开关管失去ZVS时,本申请实施例提供的方法还可以包括以下步骤:
接收端控制器接收发射端发送的补偿相位,使σ等于所述补偿相位;所述补偿相位为所述发射端根据所述发射端的逆变器输出的无功电流与预设无功电流的比较结果获得。
接收端控制器调节自身的σ是为了调节反射到发射端的无功功率,当改变发射端的无功功率时,可以改变逆变器输出的无功电流,从而使逆变器的可控开关管实现ZVS的效果,即使逆变器的可控开关管恢复ZVS功能。
用电终端实施例:
基于以上实施例提供的一种无线充电系统的接收端,本申请实施例还提供一种用电终端,下面结合附图进行详细介绍。
本实施例提供的用电终端,包括耗电元件、电池以及以上任意一个实施例提供的接收端;
接收端,用于为电池进行充电;
电池,用于为耗电元件供电。
其中,用电终端可以为包括电池的任何终端,而接收端用于为电池进行充电,接收端与发射端之间通过无线方式进行电能的传递。
例如,用电终端可以为电动汽车。电动汽车包括电池,电池用于为电动汽车提供驱动能量。
具体可以参见图17,该图为本申请实施例提供的用电终端为电动汽车示意图。
而接收端1001可以位于电动汽车1000上,发射端2000位于地面,从而实现电动汽车的无线充电。
由于无线充电系统需要保证较高的充电效率,因此,本申请实施例提供的接收端,可以再保证较高的充电效率的同时,实现整流器的ZVS效果。
另外,本申请实施例还提供了与以上实施例提供的接收端对应的发射端,图1已经介绍了发射端可以包括:逆变器、发射端补偿电路、发射线圈和发射端控制器;逆变器,用于将直流电源输出的直流电逆变为交流电;发射端补偿电路,用于对交流电进行补偿后输出给所述发射线圈;发射线圈,用于将交流电以交变磁场形式进行发射;图1中没有示意出发射线圈和发射端补偿电路。因为发射线圈和发射端补偿电路构成了图1中的发射端LCL补偿网络。所述发射端的控制器,用于向所述接收端的控制器发送补偿相位,所述补偿相位为所述发射端的控制器根据所述发射端的逆变器输出的无功电流与预设无功电流的比较结果获得;以使所述接收端的控制器根据所述补偿相位调节所述整流器的等效阻抗的电抗。
发射端控制器可以在判断逆变器的可控开关管失去ZVS时,获得补偿相位并发送给接收端控制器,从而通过接收端控制器调节接收端反射给发射端的无功功率,当改变发射端的无功功率时,可以改变逆变器输出的无功电流,从而使逆变器的可控开关管实现ZVS的效果,即使逆变器的可控开关管恢复ZVS功能。
基于以上实施例提供的无线充电系统的接收端和用电终端,本申请实施例还提供一 种无线充电系统,下面结合附图对其进行详细说明。
无线充电系统实施例:
本实施例提供的无线充电系统,包括发射端和以上任意一个实施例提供的接收端。
具体可以参见图18,该图为本申请实施例提供的一种无线充电系统的示意图。
发射端逆变器H1,逆变器H1包括可控开关管Q1-Q4,发射端还包括LCL补偿网络100和发射线圈Ct;
发射线圈Ct,用于向接收端发送电磁能量。
接收端包括接收线圈Cr,还包括LCL补偿网络200和整流器H2,整流器H2包括可控开关管S1-S4。
其中,接收端的控制器300与发射端的控制器400进行无线通讯。
本实施例提供的无线充电系统可以为电动汽车应用的无线充电系统,其中接收端位于电动汽车上,发射端位于地面,发射端通过无线充电方式为接收端的电池进行充电。
可以理解的是,电动汽车可以为混合动力汽车,也可以为纯电动汽车。
本申请实施例提供的无线充电系统包括以上实施例提供的接收端,由于该接收端同时可以使整流器的可控开关管达到ZVS的效果。并且,在整流器的输入端增加了电感补偿模块,以削弱整流器的等效阻抗的容性部分,降低无线充电系统的无功功率,从而提高无线充电系统的系统效率。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (22)

  1. 一种无线充电系统的接收端,其特征在于,包括:接收线圈、接收端补偿电路、整流器和控制器;
    所述接收线圈,用于接收交变磁场并输出交流电;
    所述接收端补偿电路连接在所述接收线圈与所述整流器之间;所述接收端补偿电路用于对所述接收线圈输出的所述交流电进行补偿,将补偿后的所述交流电输出给所述整流器;
    所述接收端补偿电路和所述接收线圈构成接收端补偿网络;所述接收端补偿网络包括第一支路、第二支路和第三支路;所述第一支路包括所述接收线圈;所述第一支路和所述第二支路均为感性支路且所述第二支路的电抗大于所述第一支路的电抗,所述第一支路通过所述第二支路连接所述整流器的第一输入端,所述第三支路为容性支路,所述第三支路的第一端连接所述第一支路和所述第二支路的公共端,所述第三支路的第二端连接所述整流器的第二输入端;
    所述整流器包括可控开关管,所述整流器用于将所述交流电整流为直流电;
    所述控制器,用于调节所述整流器的第一桥臂和第二桥臂之间的相位差,以及调节所述整流器的桥臂电压和所述整流器的输入电流基波分量的移相角,以使所述整流器的可控开关管实现零电压开关。
  2. 根据权利要求1所述的无线充电系统的接收端,其特征在于,所述控制器具体用于:
    控制所述整流器的所述第一桥臂和所述第二桥臂之间的相位差为目标相位差α;以及控制所述整流器的所述桥臂电压和所述整流器的输入电流基波分量的移相角β为π-α+σ;所述σ为目标值;所述α用于调节所述整流器的等效阻抗的电阻,所述σ用于调节所述整流器的等效阻抗的电抗。
  3. 根据权利要求2所述的无线充电系统的接收端,其特征在于,所述α为从外部指令获得;所述σ为所述控制器内部预设。
  4. 根据权利要求2所述的无线充电系统的接收端,其特征在于,所述σ为从外部指令获得,所述α为所述控制器内部预设。
  5. 根据权利要求1-4任一项所述的无线充电系统的接收端,其特征在于,所述第二支路包括电感补偿模块和子感性支路,所述第一支路、所述第三支路和所述子感性支路构成一个LCL补偿网络,所述第一支路、所述第三支路和所述子感性支路的模值相等;
    所述电感补偿模块,用于削弱所述整流器的等效阻抗的容性部分。
  6. 根据权利要求5所述的无线充电系统的接收端,其特征在于,所述第一支路、所述子感性支路和所述第三支路满足以下公式:
    jX L1=-jX C=jX L2
    其中,所述jX L1为所述第一支路的电抗,所述-jX C为所述第三支路的电抗;所述jX L2为所述子感性支路的电抗。
  7. 根据权利要求5或6所述的无线充电系统的接收端,其特征在于,所述电感补偿模块的电感L 2_comp为理论电感L的0.3倍-3倍,所述理论电感L通过以下公式获得:
    Figure PCTCN2019110545-appb-100001
    其中,所述ω s为所述整流器的所述交流电基波分量的角频率;
    所述R dc为所述无线充电系统满功率输出时的负载等效电阻。
  8. 根据权利要求7所述的无线充电系统的接收端,其特征在于,在计算所述L时,所述
    Figure PCTCN2019110545-appb-100002
    所述σ=0。
  9. 根据权利要求8所述的无线充电系统的接收端,其特征在于,所述L 2_comp=L。
  10. 根据权利要求1-9任一项所述的无线充电系统的接收端,其特征在于,所述第二支路包括的电感数量为一个。
  11. 根据权利要求1-9任一项所述的无线充电系统的接收端,其特征在于,所述第二支路包括的电感数量为两个,分别为第一电感和第二电感;
    所述第一支路通过所述第一电感连接所述整流器的第一桥臂的中点,所述第三支路的第二端通过所述第二电感连接所述整流器的第二桥臂的中点。
  12. 根据权利要求11所述的无线充电系统的接收端,其特征在于,所述第一电感的电抗和所述第二电感的电抗相等。
  13. 根据权利要求1-4任一项所述的无线充电系统的接收端,其特征在于,所述第二支路,用于削弱所述整流器的等效阻抗的容性部分。
  14. 根据权利要求3所述的无线充电系统的接收端,其特征在于,所述控制器,还用于接收发射端发送的补偿相位,当接收所述补偿相位之后,将所述σ从目标值调整为所述补偿相位;所述补偿相位为所述发射端根据所述发射端的逆变器输出的无功电流与预设无功电流的比较结果获得。
  15. 一种接收端的控制方法,其特征在于,应用于无线充电系统的接收端,所述接收端包括接收线圈、接收端补偿电路、整流器和控制器;所述接收线圈,用于接收交变磁场并输出交流电;所述接收端补偿电路连接在所述接收线圈与所述整流器之间;所述接收端补偿电路用于对所述接收线圈输出的所述交流电进行补偿,将补偿后的所述交流电输出给所述整流器;所述接收端补偿电路和所述接收线圈构成接收端补偿网络;所述接收端补偿网络包括第一支路、第二支路和第三支路;所述第一支路包括所述接收线圈;所述第一支路和所述第二支路均为感性支路且所述第二支路的电抗大于所述第一支路的电抗,所述第一支路通过所述第二支路连接所述整流器的第一输入端,所述第三支路为容性支路,所述第三支路的第一端连接所述第一支路和所述第二支路的公共端,所述第三支路的第二端连接所述整流器的第二输入端;所述整流器包括可控开关管,所述整流器用于将所述交流电整流为直流电;
    所述控制方法包括:
    调节所述整流器的所述第一桥臂和所述第二桥臂之间的相位差,以及调节所述整流器的所述桥臂电压和所述输入电流基波分量的移相角,以使所述整流器的可控开关管实现零电压开关。
  16. 根据权利要求15所述的控制方法,其特征在于,所述调节所述整流器的第一桥臂和第二桥臂之间的相位差,以及调节所述整流器的桥臂电压和输入电流基波分量的移相角,具体包括:
    控制所述整流器的所述第一桥臂和所述第二桥臂之间的相位差为目标相位差α;以及控制所述整流器的所述桥臂电压和所述整流器的输入电流基波分量的移相角β为π-α+σ;所述σ为预设值;所述α用于调节所述整流器的等效阻抗的电阻,所述σ用于调节所述整流器的等效阻抗的电抗。
  17. 根据权利要求16所述的控制方法,其特征在于,所述α从外部指令获得;所述σ为所述控制器内部预设。
  18. 根据权利要求16所述的控制方法,其特征在于,所述σ从外部指令获得,所述α为所述控制器内部预设。
  19. 根据权利要求17所述的控制方法,其特征在于,还包括:
    接收发射端发送的补偿相位,使σ等于所述补偿相位;所述补偿相位为所述发射端根据所述发射端的逆变器输出的无功电流与预设无功电流的比较结果获得。
  20. 一种用电终端,其特征在于,包括耗电元件、电池以及权利要求1-14任一项所述的接收端;
    所述接收端,用于为所述电池进行充电;
    所述电池,用于为所述耗电元件供电。
  21. 一种无线充电系统的发射端,其特征在于,包括:逆变器、发射端补偿电路、发射线圈和发射端的控制器;
    所述逆变器,用于将直流电源输出的直流电逆变为交流电;
    所述发射端补偿电路,用于对所述交流电进行补偿后输出给所述发射线圈;
    所述发射线圈,用于将所述交流电以交变磁场形式进行发射;
    所述发射线圈和所述发射端补偿电路构成发射端LCL补偿网络;
    所述发射端的控制器,用于向所述接收端的控制器发送补偿相位,所述补偿相位为所述发射端的控制器根据所述发射端的逆变器输出的无功电流与预设无功电流的比较结果获得;以使所述接收端的控制器根据所述补偿相位调节所述整流器的等效阻抗的电抗。
  22. 一种无线充电系统,其特征在于,包括发射端和权利要求1-14任一项所述的接收端;
    所述发射端包括:逆变器、发射端补偿电路和发射线圈;
    所述逆变器,用于将直流电源输出的直流电逆变为交流电;
    所述发射端补偿电路,用于对所述交流电进行补偿后输出给所述发射线圈;
    所述发射线圈,用于将所述交流电以交变磁场形式进行发射;
    所述发射线圈和所述发射线圈构成发射端LCL补偿网络。
PCT/CN2019/110545 2018-12-06 2019-10-11 无线充电系统的接收端、方法、用电终端、发射端及系统 WO2020114077A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19892638.8A EP3843239A4 (en) 2018-12-06 2019-10-11 RECEPTION END AND TRANSMISSION END FOR WIRELESS CHARGING SYSTEM, PROCESS, ELECTRICAL TERMINAL AND WIRELESS CHARGING SYSTEM
US17/226,860 US11901760B2 (en) 2018-12-06 2021-04-09 Receive end and transmit end of wireless charging system, method, electrical terminal, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811488672.6A CN109327065B (zh) 2018-12-06 2018-12-06 无线充电系统的接收端、方法、用电终端、发射端及系统
CN201811488672.6 2018-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,860 Continuation US11901760B2 (en) 2018-12-06 2021-04-09 Receive end and transmit end of wireless charging system, method, electrical terminal, and system

Publications (1)

Publication Number Publication Date
WO2020114077A1 true WO2020114077A1 (zh) 2020-06-11

Family

ID=65256045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110545 WO2020114077A1 (zh) 2018-12-06 2019-10-11 无线充电系统的接收端、方法、用电终端、发射端及系统

Country Status (4)

Country Link
US (1) US11901760B2 (zh)
EP (1) EP3843239A4 (zh)
CN (1) CN109327065B (zh)
WO (1) WO2020114077A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285183A (zh) * 2021-12-08 2022-04-05 上海科技大学 一类模块化可重构的无线充电系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109327065B (zh) 2018-12-06 2020-02-21 华为技术有限公司 无线充电系统的接收端、方法、用电终端、发射端及系统
GB2580117A (en) * 2018-12-21 2020-07-15 Bombardier Primove Gmbh An antenna arrangement and a method of operating an antenna arrangement
CN109742863B (zh) * 2018-12-27 2023-06-20 华为技术有限公司 一种无线充电系统的接收端、发射端及无线充电系统
BR112021003019A2 (pt) 2019-03-27 2021-05-11 Huawei Technologies Co., Ltd. aparelho de transmissão de carregamento sem fio, método de transmissão, e sistema de carregamento sem fio
CN110228378B (zh) * 2019-05-30 2020-11-10 西安交通大学 一种用于电动汽车无线充电的双侧多环控制方法
CN110816321B (zh) * 2019-08-12 2022-11-11 华为技术有限公司 一种无线充电发射装置,发射方法及无线充电系统
JP7431957B2 (ja) * 2019-10-30 2024-02-15 華為技術有限公司 無線充電受信端、システムおよび制御方法
CN110954749B (zh) * 2019-11-06 2021-07-30 许继电源有限公司 一种用于实现频率跟踪的电动汽车无线充电相位检测电路
CN110949152B (zh) * 2019-12-20 2023-06-20 中兴新能源汽车有限责任公司 无线充电系统、方法及汽车无线充电装置
CN111342657B (zh) * 2020-03-20 2021-09-14 珠海格力电器股份有限公司 宽电压范围供电的稳压装置
CN111817448B (zh) * 2020-06-08 2022-07-22 华为技术有限公司 一种无线充电的接收端、方法及电子设备
KR20220020639A (ko) * 2020-08-12 2022-02-21 삼성전자주식회사 충전 회로를 전자 장치
CN112583285A (zh) * 2020-11-27 2021-03-30 中国科学院电工研究所 确定无线充电系统整流电路等效负载阻抗的方法及系统
WO2023131954A1 (en) * 2022-01-06 2023-07-13 B.G. Negev Technologies And Applications Ltd, At Ben Gurion University Generalized single-side compensation networks for inductive wireless power transfer systems
CN114172249B (zh) * 2022-01-10 2023-11-07 深圳威迈斯新能源股份有限公司 一种汽车无线充电系统及其控制方法
CN114792066B (zh) * 2022-03-15 2024-06-14 湖北工业大学 一种改进麻雀搜索算法的无线充电系统补偿网络优化方法
WO2024005515A1 (ko) * 2022-06-28 2024-01-04 삼성전자주식회사 무선으로 전력을 수신하는 전자 장치와 이의 동작 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814503A (zh) * 2011-06-27 2014-05-21 奥克兰联合服务有限公司 用于双向感应电能传输系统的负载控制
CN103843229A (zh) * 2011-08-04 2014-06-04 WiTricity公司 可调谐无线电源架构
US20140372780A1 (en) * 2013-06-12 2014-12-18 Central Japan Railway Company Power supply device
WO2017105256A1 (en) * 2015-12-18 2017-06-22 Powerbyproxi Limited Inductive power receiver
CN107069999A (zh) * 2017-06-08 2017-08-18 东南大学 双边lc网络的无线电能传输系统恒流输出的参数设置方法
CN109327065A (zh) * 2018-12-06 2019-02-12 华为技术有限公司 无线充电系统的接收端、方法、用电终端、发射端及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219892B (zh) * 2013-04-03 2015-07-08 华为技术有限公司 开关电源和开关电源控制方法
JP5941094B2 (ja) * 2014-04-22 2016-06-29 株式会社日本自動車部品総合研究所 非接触送受電システム
CN108141063B (zh) * 2015-08-06 2022-06-28 奥克兰大学服务有限公司 混合感应电力传输系统
CA3012325A1 (en) 2016-02-02 2017-08-10 Witricity Corporation Controlling wireless power transfer systems
US10173542B2 (en) * 2016-06-16 2019-01-08 Ford Global Technologies, Llc Wireless charging system coil alignment
CN106374529B (zh) * 2016-09-26 2018-11-27 国网上海市电力公司 分布式能源并网及无功补偿复合控制方法
CN106961221A (zh) * 2017-04-24 2017-07-18 哈尔滨工业大学 具有恒流输出特性的无线电能传输用lc/s补偿拓扑电路
US10784725B2 (en) * 2017-09-27 2020-09-22 Utah State University Vehicle misalignment measurement and compensation in dynamic wireless charging applications
CN107979298B (zh) 2017-12-13 2020-04-17 中国科学院电工研究所 一种无线充电系统整流桥负载等效阻抗计算方法
JP7431957B2 (ja) * 2019-10-30 2024-02-15 華為技術有限公司 無線充電受信端、システムおよび制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103814503A (zh) * 2011-06-27 2014-05-21 奥克兰联合服务有限公司 用于双向感应电能传输系统的负载控制
CN103843229A (zh) * 2011-08-04 2014-06-04 WiTricity公司 可调谐无线电源架构
US20140372780A1 (en) * 2013-06-12 2014-12-18 Central Japan Railway Company Power supply device
WO2017105256A1 (en) * 2015-12-18 2017-06-22 Powerbyproxi Limited Inductive power receiver
CN107069999A (zh) * 2017-06-08 2017-08-18 东南大学 双边lc网络的无线电能传输系统恒流输出的参数设置方法
CN109327065A (zh) * 2018-12-06 2019-02-12 华为技术有限公司 无线充电系统的接收端、方法、用电终端、发射端及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3843239A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285183A (zh) * 2021-12-08 2022-04-05 上海科技大学 一类模块化可重构的无线充电系统
CN114285183B (zh) * 2021-12-08 2023-08-18 上海科技大学 一类模块化可重构的无线充电系统

Also Published As

Publication number Publication date
EP3843239A4 (en) 2021-10-27
CN109327065A (zh) 2019-02-12
CN109327065B (zh) 2020-02-21
US20210226473A1 (en) 2021-07-22
US11901760B2 (en) 2024-02-13
EP3843239A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2020114077A1 (zh) 无线充电系统的接收端、方法、用电终端、发射端及系统
CN107618388B (zh) 一种电动汽车无线充电系统
WO2020134230A1 (zh) 一种无线充电系统的接收端、发射端及无线充电系统
CN111740509B (zh) 基于调压控制的无线充电方法及系统
CN108448693B (zh) 用于agv的无线电能传输系统及其控制方法
CN110544990B (zh) 基于并联整流电路的无人机无线充电系统效率提升方法
CN113659684A (zh) 副边cl/s恒流恒压ipt充电系统及其参数设计方法
CN216134292U (zh) 副边cl/s恒流恒压ipt充电系统
WO2023071216A1 (zh) 一种无线充电的发射端、接收端及无线充电系统
CN109831013A (zh) 一种恒流-恒压副边自动切换电路及谐振式无线电能传输系统
CN110401267A (zh) 一种半桥谐振逆变型磁耦合谐振式无线充电电源
CN112467891B (zh) 一种基于全桥半桥切换的ipt系统效率优化方法
CN110544975A (zh) 一种单管恒流恒压无线充电装置及其控制方法
CN110138097A (zh) 一种采用特殊拓扑结构实现恒流恒压磁感应式充电系统
CN112152330B (zh) 一种基于倍流整流&半桥逆变的ipt系统效率提升方法
CN111740510B (zh) 基于移相调节控制的无线充电方法及系统
CN112003387B (zh) 一种基于改进型s/s补偿网络的恒压恒流无线充电系统
CN112421734A (zh) 一种单级式高阶补偿恒流恒压无线充电装置及方法
CN115714542B (zh) 一种用于无线充电系统的双边lcc补偿网络参数调谐方法
CN115549254A (zh) 一种基于半桥驱动的无线电能传输控制系统及方法
CN115250013A (zh) 一种单管逆变感应耦合电能传输谐振频率点跟踪控制方法
CN112332505A (zh) 一种单管逆变恒流-恒压无线充电装置及方法
CN212627328U (zh) 基于调压控制的无线充电系统发射端、接收端及系统
CN212627330U (zh) 基于移相调节控制的无线充电系统发射端、接收端及系统
CN117767583A (zh) 一种自动实现恒流-恒压充电曲线的三线圈无线充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019892638

Country of ref document: EP

Effective date: 20210322

NENP Non-entry into the national phase

Ref country code: DE