WO2021248635A1 - 具有薄的铝合金镀层的镀层钢板及其涂镀方法 - Google Patents

具有薄的铝合金镀层的镀层钢板及其涂镀方法 Download PDF

Info

Publication number
WO2021248635A1
WO2021248635A1 PCT/CN2020/102906 CN2020102906W WO2021248635A1 WO 2021248635 A1 WO2021248635 A1 WO 2021248635A1 CN 2020102906 W CN2020102906 W CN 2020102906W WO 2021248635 A1 WO2021248635 A1 WO 2021248635A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
steel sheet
thickness
base steel
fealsi
Prior art date
Application number
PCT/CN2020/102906
Other languages
English (en)
French (fr)
Inventor
易红亮
周澍
熊小川
Original Assignee
育材堂(苏州)材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 育材堂(苏州)材料科技有限公司 filed Critical 育材堂(苏州)材料科技有限公司
Priority to CA3185460A priority Critical patent/CA3185460A1/en
Priority to BR112022025079A priority patent/BR112022025079A2/pt
Priority to US18/008,576 priority patent/US20230235439A1/en
Priority to BR212022024841U priority patent/BR212022024841U2/pt
Priority to EP20940247.8A priority patent/EP4148160A4/en
Priority to KR1020237000157A priority patent/KR20230022425A/ko
Priority to CN202080104181.6A priority patent/CN116157544A/zh
Priority to JP2022575401A priority patent/JP2023538178A/ja
Publication of WO2021248635A1 publication Critical patent/WO2021248635A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a coated steel sheet with a thin aluminum alloy coating layer and a coating method thereof.
  • CN108588612A proposes to use thin-coated sheets to obtain hot-stamped components, in which the initial coating thickness of the coated steel sheet before hot-stamping is 3-19 ⁇ m.
  • problems such as large fluctuations in the thickness of the coating, unstable production and partial plating leakage are prone to occur during the production process.
  • the coated steel sheet blank is first heated to 880-960°C for heat preservation, so that the Fe in the base steel and the Al in the initial coating layer mutually diffuse to form Fe-Al intermetallic compounds on the side of the coating layer.
  • a high-Al content interdiffusion layer is formed between the substrate and the Fe-Al intermetallic compound layer. Since Fe diffuses into the coating layer to form Fe-Al intermetallic compounds, the diffusion rate is much higher than the diffusion rate of Al into the matrix. Therefore, as the diffusion continues, a large amount of Fe diffuses into the coating layer, and the vacancies in the interdiffusion layer are not Replenish in time to form the Kirkendall hole.
  • the present invention is made in view of the above-mentioned problems existing in the prior art, and one of the objectives is to provide a coated steel sheet for hot stamping with a thin aluminum alloy coating, which can eliminate plating leakage and make the coated steel sheet obtain Hot stamping forming parts have excellent resistance spot welding performance.
  • the aluminum alloy coating on at least one surface of the coated steel sheet of the present invention has a coating thickness of 5 to 14 ⁇ m, wherein the aluminum alloy coating includes an FeAlSi suppression layer close to the base steel sheet and an Al alloy layer on its outer side, wherein ,
  • the thickness of the FeAlSi suppression layer is not more than 60% of the thickness of the plating layer and is 1.5-6.0 ⁇ m, and the diameter of the Kirkendall holes within 2 ⁇ m from the interface of the FeAlSi suppression layer and the base steel to the base steel is less than 2.5 ⁇ m,
  • the number of Kirkendall holes with a diameter of 0.5 ⁇ m or more and 2.5 ⁇ m or less does not exceed 15/35 ⁇ m, preferably does not exceed 10/35 ⁇ m, and more preferably does not exceed 5/35 ⁇ m.
  • the thickness of the FeAlSi suppression layer By reducing the thickness of the FeAlSi suppression layer, the leakage of plating is eliminated and the fluctuation of the thickness of the plating layer is reduced, and the production stability is improved.
  • the Kirkendall holes in the matrix steel near the interface are few and small, it is beneficial to further suppress the formation of large-size holes in the hot stamping process, thereby improving the resistance spot welding performance of subsequent hot stamping forming components.
  • the plating thickness of the aluminum alloy plating layer on at least one surface is 6-13 ⁇ m, and the thickness of the FeAlSi suppression layer is not more than 50% of the plating thickness and 1.5-5.0 ⁇ m.
  • the diameter of the Kirkendall holes within 2 ⁇ m is 2.5 ⁇ m or less, and the number of Kirkendall holes with a diameter of 0.5 ⁇ m or more and 2.5 ⁇ m or less does not exceed 13/35 ⁇ m; and further preferably, the Kirkendall holes The number of Kirkendall holes with a diameter of 2.0 ⁇ m or less, and a diameter of 0.5 ⁇ m or more and 2.0 ⁇ m or less does not exceed 15/35 ⁇ m, and preferably does not exceed 10/35 ⁇ m, and more preferably does not exceed 5/ 35 ⁇ m.
  • the coating thickness of the aluminum alloy coating layer on at least one surface is 7-12 ⁇ m, wherein the thickness of the FeAlSi suppression layer is not more than 40% of the coating thickness and is 2.45-3.95 ⁇ m, and the thickness between the interface and the base steel is 2 ⁇ m
  • the diameter of the Kirkendall holes within is 2.5 ⁇ m or less, and the number of Kirkendall holes with a diameter of 0.5 ⁇ m or more and 2.5 ⁇ m or less does not exceed 13/35 ⁇ m; and further preferably, the Kirkendall holes are The number of Kirkendall holes with a diameter of 2.0 ⁇ m or less, and a diameter of 0.5 ⁇ m or more and 2.0 ⁇ m or less does not exceed 15/35 ⁇ m, preferably does not exceed 10/35 ⁇ m, and more preferably does not exceed 5/35 ⁇ m .
  • the smaller and fewer Kirkendall holes further improve the resistance spot welding performance of subsequent hot stamping forming components.
  • the thickness of the plating layer, the thickness of the FeAlSi suppression layer, and the thickness of the Al alloy layer are respectively the average of at least 3 corresponding measured values.
  • the base steel plate contains the following ingredients in weight percentage: 0.05 to 0.45 % C, 0.5-10% Mn, 0-0.01% B, 0-0.4% Nb+Ti+V, 0.01-2% Si, 0.01-2% Al, 0.01-5% Cr+ Ni+Mo+Cu, 0-2% Cr, 0-2% Ni, 0-2% Mo and 0-2% Cu, and the balance is Fe and unavoidable impurity elements.
  • the base steel plate contains the following components in weight percentage: 0.09-0.39% of C, 0.6-3.5% of Mn, 0-0.004% of B, 0-0.4% of Nb+Ti+V, 0.01-2 % Si, 0.01-2% Al, 0.01-5% Cr+Mo+Ni+Cu and 0-2% Cr, 0-2% Ni, 0-2% Mo and 0-2% Cu, and the balance is Fe and unavoidable impurity elements.
  • the base steel plate contains the following components in weight percentage: 0.18 to 0.39% of C, 0.6 to 3.5% Mn, 0 ⁇ 0.004% B, 0.05 ⁇ 0.3% Nb+Ti+V, 0.01 ⁇ 2% Si, 0.01 ⁇ 2% Al, 0.01 ⁇ 5% Cr+Mo+Ni+Cu and 0-2% Cr, 0-2% Ni, 0-2% Mo and 0-2% Cu, and the balance is Fe and unavoidable impurity elements.
  • the thickness of the base steel plate is 0.5-3.0 mm.
  • Another object according to the present invention is to provide a coating method for coating a thin aluminum alloy coating on a base steel sheet for hot stamping, which can eliminate plating leakage and make the hot stamped formed member obtained from the coated steel sheet have excellent Resistance spot welding performance.
  • the composition of the plating solution includes by weight: 9%-12% Si, 4% or less Fe, the remainder Al and unavoidable impurities.
  • Si in the plating solution is 9.2% to 11.2% by weight.
  • the coating method according to the present invention includes:
  • the pretreated base steel sheet is heated and then cooled to a temperature in the range of 610 to 650°C, preferably, in the range of 620 to 645°C, more preferably, in the range of 625 to 639°C, still more preferably, 625 to 635°C
  • the predetermined temperature within the range;
  • the base steel plate cooled to the predetermined temperature in b) is immersed in the heated plating solution for 2-7 seconds for hot dip plating.
  • the plating solution temperature is higher than the predetermined temperature and maintained at 630 ⁇ 670°C, preferably, 640 ⁇ 660°C;
  • the above coating method can be completed in a continuous hot dip coating process.
  • the pretreatment of the base steel plate includes, for example, degreasing, water washing, descaling, warm water washing, plating assistance, and drying.
  • the heating of the base steel sheet can be achieved by methods such as induction heating and heating furnace.
  • the temperature of the plating solution is higher than the predetermined temperature when the steel sheet enters the plating solution (that is, the temperature of the steel sheet in the pot) by 5-20°C, more preferably, 7-15°C.
  • the cooling rate of the steel plate in step e) is preferably not less than 5°C/s.
  • the aforementioned predetermined temperature may be any range or specific value taken from the range of 610 to 650°C, such as any range of 610 to 620°C, 635 to 650°C, 635 to 645°C, or such as 612°C, 614 °C, 616°C, 618°C, 620°C, 622°C, 624°C, 626°C, 628°C, 630°C, 632°C, 634°C, 636°C, 638°C, 640°C, 642°C, 644°C, 646°C, Any value such as 648°C.
  • the coated steel sheet obtained by the coating method of the present invention has a coating thickness of 5 to 14 ⁇ m, preferably 6 to 13 ⁇ m, and more preferably 7 to 12 ⁇ m, wherein the thickness of the FeAlSi suppression layer in the coating is not more than 60% of the thickness of the coating.
  • the diameter of the Kirkendall holes within 2 ⁇ m from the interface of the FeAlSi suppression layer and the base steel to the base steel is 2.5 ⁇ m or less, among which the diameter of the Kirkendall holes is 0.5 ⁇ m or more and 2.5 ⁇ m or less
  • the number of holes does not exceed 15/35 ⁇ m, preferably does not exceed 13/35 ⁇ m, and more preferably does not exceed 5/35 ⁇ m; and further preferably, the diameter of the Kirkendall hole is 2.0 ⁇ m or less, and the diameter The number of Kirkendall holes above 0.5 ⁇ m and below 2.0 ⁇ m does not exceed 15/35 ⁇ m, preferably does not exceed 10/35 ⁇ m, and more preferably does not exceed 5/35 ⁇ m.
  • the temperature of the plating solution in the aluminum pan and the temperature of the steel plate when entering the aluminum pan is reduced, the Si content in the plating solution is increased, and the residence time of the steel plate in the plating solution is shortened.
  • the effect inhibits the mutual diffusion between Fe in the substrate and Al in the coating, so that the obtained coating has a stable coating thickness and eliminates plating leakage; on the other hand, it inhibits the interface near the FeAlSi suppression layer and the substrate steel.
  • the formation of Kirkendall holes in the base steel results in fewer holes and smaller diameters, thereby improving the resistance spot welding performance of the hot stamped forming component made of the plated steel sheet.
  • Fig. 1 is an SEM photograph of a partial coating morphology of a coated steel sheet according to Example 5 of the present invention
  • Fig. 2 is an SEM photograph of a partial coating morphology of a coated steel sheet of Comparative Example 4;
  • Figure 3 is a photo of a typical missing plating defect of the plated steel sheet of Comparative Example 4;
  • Example 4 is a metallographic photograph of the partial coating morphology of the coating samples of Example 5 and Comparative Example 4 after hot stamping;
  • FIG. 5 shows the test results of spot welding performance of the coating samples of Example 5 and Comparative Example 4 after hot stamping.
  • the invention provides a coated steel sheet for hot stamping forming and a coating method thereof.
  • Fe in the surface of the base steel and Al and Si in the plating solution will undergo an alloying reaction, thereby forming a FeSiAl intermetallic alloy compound layer on the surface of the base steel, that is, a FeAlSi inhibitory layer.
  • a FeSiAl intermetallic alloy compound layer on the surface of the base steel
  • the mutual diffusion of Fe and Al is significantly reduced.
  • an Al alloy layer whose thickness is adjusted by air knife purging.
  • the Al alloy layer should not be too thick. It is thin, so it is necessary to obtain a thin FeAlSi suppression layer on the surface of the steel sheet during coating to ensure a sufficient thickness of the Al alloy layer.
  • FeAlSi suppression layer in the hot-dip coating layer also fully illustrates the process of hot-dip coating.
  • Kirkendall holes Through a large number of microscopic observations by the inventor, it is found that there are indeed a large number of Kirkendall holes within 2 ⁇ m from the interface of the FeAlSi suppression layer and the base steel to the base steel.
  • the size of the holes is much smaller than the size of the holes after hot stamping, so it is not easy to find .
  • the present invention believes that the thicker the FeAlSi suppression layer, the more Fe diffuses to the outside, the easier it is to form Kirkendall holes, while reducing the thickness of the FeAlSi suppression layer can reduce the diffusion of Fe atoms in the base steel to the outside, thereby reducing the Kirkendall The formation of holes.
  • the present invention found that in the subsequent hot stamping process, the Kirkendall effect holes formed in the hot dip plating process are very easy to grow up quickly, significantly increasing the resistance of the plating layer during spot welding, thereby causing spark splash during welding, which is serious Affect the resistance spot welding performance of hot stamping forming components. Therefore, in order to ensure the resistance spot welding performance of the final part, the present invention expects to achieve the purpose of suppressing the formation of Kirkendall holes by controlling the hot-dip plating conditions.
  • the method of the present invention aims to obtain a thin FeAlSi suppression layer and suppress the formation of Kirkendall holes in the base steel near the interface between the FeAlSi suppression layer and the base steel, so as to improve the stability of the coating thickness and eliminate the leakage of plating. Condition and improve the resistance spot welding performance of components formed by subsequent hot stamping of plated steel sheets.
  • the plating solution used in the present invention contains by weight: 9%-12% Si, 4% or less Fe, the balance being Al or Al alloy, and unavoidable impurities.
  • the Si content in the plating solution is 9.2% to 11.2% by weight.
  • the coating method of the coated steel sheet for hot stamping forming according to the present invention specifically includes:
  • the base steel plate cooled to the predetermined temperature in b) is immersed in the heated plating solution for 2-7 seconds for hot dip plating.
  • the plating solution temperature is higher than the predetermined temperature and maintained at 630 ⁇ 670°C, preferably, 640 ⁇ 660°C;
  • the pretreatment of the base steel sheet includes, for example, degreasing, washing with water, descaling, washing with warm water, assisting plating, and drying.
  • the temperature of the plating solution is 5-20°C higher than the predetermined temperature at which the steel sheet enters the plating solution, more preferably, 7-20°C.
  • the cooling rate of the steel plate in step e) is preferably not less than 5°C/s.
  • the plating solution selects a high Si content.
  • the Si content in the plating solution increases, the lower the melting point of the plating solution is, which is beneficial to reduce the temperature of the plating solution, thereby inhibiting the mutual diffusion of Al and Fe atoms to obtain a reduced FeAlSi suppression layer thickness, slowing down the hot dip plating process and The formation and growth of Kirkendall holes near the surface of the base steel plate during the subsequent hot stamping process of the coated steel plate. Therefore, the Si content is not less than 9%. However, the Si content should not be too high. Excessive Si content will increase the resistivity of the alloyed layer in the steel plate after hot stamping of the coated steel sheet, and reduce the welding performance of the hot stamped component. Therefore, the Si content should not exceed 12%.
  • the Si content of the present invention is 9.2% to 11.2%.
  • the present invention proposes to reduce the temperature of the plating solution and the predetermined temperature at which the steel plate enters the plating solution (that is, the temperature at which the steel plate enters the pot) to suppress the formation of Kirkendall holes.
  • the predetermined temperature at which the steel plate enters the plating solution that is, the temperature at which the steel plate enters the pot.
  • Experimental data shows that when the steel plate enters the plating solution at a predetermined temperature higher than 655°C, more large-sized Kirkendall holes are formed in the base steel near the above-mentioned interface. In contrast, during hot-dip plating, in order to ensure the plateability of the steel sheet and prevent the occurrence of problems such as surface leakage, the predetermined temperature at which the steel sheet enters the plating solution should not be too low. Experimental data shows that when the steel plate enters the plating solution at a predetermined temperature lower than 610°C, the plating leakage is serious.
  • the predetermined temperature at which the steel sheet enters the plating solution is designed to be 610-650°C, preferably 620-645°C, more preferably 620-639°C, and still more preferably 625-635°C.
  • reducing the temperature of the plating solution is beneficial to inhibit the alloying reaction between Fe, Al and Si atoms to form a thin inhibition layer.
  • the plating The liquid temperature should not be too low. Therefore, the temperature of the plating solution is designed to be higher than the predetermined temperature and is 630 to 670°C, preferably 640 to 660°C.
  • the present invention proposes to shorten the residence time of the steel sheet in the plating solution.
  • a too long residence time will promote the continuation of the inter-diffusion of Fe and Al, leading to the thickening of the FeAlSi suppression layer and the formation of Kirkendall holes.
  • the second is that the length of the production line is limited, and if the residence time is too long, the production line will inevitably need to reduce the operating speed, which affects production efficiency and increases costs. Therefore, the residence time of the steel plate in the plating solution needs to be controlled at 2 to 7 seconds.
  • the thickness of the Al alloy layer is controlled by maintaining the high-strength purging of the air knife to obtain a thin aluminum alloy coated steel sheet. Therefore, after the base steel sheet leaves the plating solution and before the plating solution on at least one surface is solidified, the excess plating solution on the at least one surface is removed by air knife purging to control the thickness of the plating layer on the at least one surface. Subsequently, the steel sheet is cooled to room temperature at a cooling rate of preferably not less than 5° C./s to obtain a coated steel sheet having a thin aluminum alloy coating layer.
  • the invention specifically points out that the above-mentioned predetermined temperature is adopted. Coating is performed in a way that the temperature is lower than the bath temperature.
  • the predetermined temperature is lower than the temperature of the plating solution by 5° C. or more, which is beneficial to reduce the interface reaction rate and reduce the Kirkendall holes while ensuring the coating performance.
  • an excessively large temperature difference between the steel sheet and the plating solution will cause the plating solution temperature to be unstable. Therefore, the present invention designs that the temperature difference does not exceed 20°C, preferably, the temperature difference is 7°C-15°C.
  • a coated steel sheet for hot stamping forming with a thin aluminum alloy coating layer is obtained by the above method of the present invention, and the thickness of the coated steel sheet is 0.5-3.0 mm.
  • the plating thickness of the aluminum alloy plating layer is 5 to 14 ⁇ m, preferably 6 to 13 ⁇ m, more preferably 7 to 12 ⁇ m.
  • the above-mentioned aluminum alloy coating has a unique coating structure, which includes:
  • the FeAlSi suppression layer close to the base steel, wherein the thickness of the FeAlSi suppression layer is not more than 60% of the thickness of the coating and 1.5-6 ⁇ m, preferably not more than 50% of the thickness of the coating and 1.5-5 ⁇ m, more preferably not more than the thickness of the coating 40% and 2.45 ⁇ 3.95 ⁇ m; from the interface of FeAlSi suppression layer and base steel to 2 ⁇ m in the base steel, the diameter of the Kirkendall hole is 2.5 ⁇ m or less, among which the diameter is 0.5 ⁇ m or more and 2.5 ⁇ m or less
  • the number of Kirkendall holes does not exceed 15/35 ⁇ m, preferably does not exceed 13/35 ⁇ m, and more preferably does not exceed 5/35 ⁇ m.
  • the diameter of the Kirkendall holes is less than 2.0 ⁇ m, and the number of Kirkendall holes with a diameter of 0.5 ⁇ m or more and less than 2.0 ⁇ m does not exceed 13/35 ⁇ m, preferably not more than 10/35 ⁇ m. , And more preferably no more than 5/35 ⁇ m; and
  • FeAlSi suppression layer when the steel sheet is immersed in the plating solution bath FeSiAl alloy compound layer and Al atoms and Si atoms of Fe atoms to form a steel sheet surface by main components including Fe 2 SiAl 7, wherein, the elements Si and Al and Si
  • the mass ratio of the sum of the elements is greater than 0.12, which is higher than the Si content in the bath.
  • the thickness of the Al alloy layer is adjusted by an air knife to achieve different thicknesses of the Al-Si coating.
  • the base steel plate contains the following ingredients in weight percentage: 0.05 to 0.45 % C, 0.5-10% Mn, 0-0.01% B, 0-0.4% Nb+Ti+V, 0.01-2% Si, 0.01-2% Al, 0.01-5% Cr+ Ni+Mo+Cu, 0-2% Cr, 0-2% Ni, 0-2% Mo and 0-2% Cu, and unavoidable impurity elements.
  • the Kirkendall holes in the base steel near the interface between the FeAlSi suppression layer and the base steel are small in diameter and small in number, which helps to reduce the amount of the coating in the hot stamping forming member during the hot stamping process.
  • the formation of large-size holes ensures that the components have good resistance spot welding performance.
  • a thin FeAlSi suppression layer means a thicker Al alloy layer, which is beneficial to air knife control, improves the stability of the coating thickness and prevents the occurrence of plating leakage.
  • test base steel plate has the composition shown in Table 1, and the corresponding manufacturing process is as follows:
  • Hot rolling heat the billet to 1120 ⁇ 1280°C for hot rolling, the total reduction of hot rolling is more than 50%, and the final rolling temperature is above 800°C to obtain a hot rolled steel sheet, which is crimped below 700°C, Form hot-rolled steel coils, and pickling the hot-rolled coils to remove the oxide scale generated during the hot rolling process;
  • Cold rolling cold-rolling the hot-rolled coils that have been pickled, with a cold rolling reduction of 30% to 70%, to obtain 1.4mm cold-rolled steel coils.
  • Base steel 1 0.10 0.20 2.5 0.0031 0.04 0.22 / 0.04 / Base steel 2 0.21 0.25 1.4 0.0022 0.04 0.25 / 0.04 / Base steel 3 0.34 0.61 1.9 0.0025 0.65 0.15 0.04 ⁇ 0.06
  • the obtained base steel sheet is coated according to the coating process in Table 2.
  • the target thickness of the coating layer is 8-12 ⁇ m, and the plating solution contains by weight: 9%-12% Si, 4% or less Fe, and the balance is Al Or Al alloy and inevitable impurities.
  • the coating process in Table 2 takes into account the temperature of the plating solution, the predetermined temperature at which the steel plate enters the plating solution (that is, the temperature of the steel plate into the pot), the temperature difference between the plating solution and the steel plate, the hot dip plating time, and the Si content in the plating solution. The influence of parameters.
  • the surface skip plating mentioned in this article includes any one of exposing the base steel plate and exposing the FeAlSi suppression layer.
  • the thickness of the coating and the thickness of the FeAlSi suppression layer in it are determined: select 5 positions at 1/6, 1/3, 1/2, 2/3 and 5/6 of the width of the steel coil, and use the scanning electron microscope (SEM) Under ), measure the thickness of the FeAlSi suppression layer and the thickness of the coating, and average the measurement results at 5 positions and give the deviation.
  • the maximum diameter of the Kirkendall holes near the interface between the base steel and the coating does not exceed 2 ⁇ m, and the number is generally not more than 13/35 ⁇ m, which is beneficial to improve the resistance spot welding performance of the coated steel sheet after hot stamping.
  • the temperature of the plating solution in Example 5 and the temperature of the steel plate entering the pot differ by 7°C, and the difference in Example 8 is 5°C.
  • the number of Kirkendall holes in Example 8 is 8/35 ⁇ m, and the number of Kirkendall holes in Example 5 is 5/35 ⁇ m. It can be seen that an appropriate amount of temperature difference is beneficial to further reduce the formation of Kirkendall holes.
  • Figure 1 is an SEM photograph of a partial coating morphology of a coated steel sheet according to Example 5 of the present invention.
  • the coating thickness is about 9.0 ⁇ m.
  • the thickness of the FeAlSi suppression layer is about 3.2 ⁇ m, and the diameter of the Kirkendall hole does not exceed 2.5. ⁇ m, where the number of Kirkendall holes with a diameter in the range of 0.5 ⁇ m to 2.5 ⁇ m is about 5/35 ⁇ m.
  • Figure 2 is a SEM photograph of the partial coating morphology of the coated steel sheet of Comparative Example 4.
  • the coating thickness is about 8.6 ⁇ m, of which the thickness of the FeAlSi suppression layer is about 6.7 ⁇ m, and the Kirkendall holes with a diameter of 0.5 ⁇ m to 2.5 ⁇ m The number is about 29/35 ⁇ m.
  • Example 5 and Comparative Example 4 The coating process parameters of Example 5 and Comparative Example 4 are different only in the temperature of the steel plate entering the pot, and Comparative Example 4 has a significantly higher temperature of the steel plate entering the pot. Therefore, in Comparative Example 4, more Kirkendall holes and a thicker FeAlSi suppression layer were caused by the high steel plate entering temperature. It can be seen that the high steel plate entering the pot temperature is undesirable.
  • FIG. 3 is a photo of a typical missing plating defect of the plated steel sheet of Comparative Example 4.
  • FIG. It can be clearly seen that in some areas, the leakage of plating is serious. This is because compared with Example 5, the higher steel plate entry temperature of Comparative Example 4 accelerates the diffusion, which makes the FeAlSi suppression layer thicker and the corresponding Al alloy layer thinner, so the air knife purging requirements are high. It is difficult to control, so the plating is missed.
  • Each comparative example exhibits different degrees of missing plating defects and has large and many Kirkendall holes. The reasons are as follows: In Comparative Example 1, the Si content in the aluminum plating solution is too low; in Comparative Example 2, the steel plate is in the aluminum plating solution. The residence time is too long; in Comparative Example 4, the temperature of the steel plate entering the pot is too high; and in Comparative Example 6, the temperature of the plating solution is too high.
  • the thickness of the FeAlSi suppression layer finally obtained reaching 6.6 ⁇ 7.5 ⁇ m, which makes the thickness of the Al alloy layer thinner and the thickness measurement results at different positions vary greatly, and the thickness uniformity is poor, resulting in The final coating thickness fluctuates significantly and there is a local leakage phenomenon, which affects the production stability of the steel sheet.
  • the number of Kirkendall pores in the inner diameter of the substrate steel near the interface between the base steel and the FeAlSi suppression layer in the range of 0.5 ⁇ m to 2.5 ⁇ m is relatively large, reaching 17 to 29/35 ⁇ m. These large Kirkens The Dal hole weakens the resistance spot welding performance of the hot stamping forming component obtained subsequently.
  • Comparative Example 3 due to the low temperature of the steel plate entering the pot, and the surface temperature of the steel plate close to the freezing point of the Al-Si alloy, the plateability of the steel plate is poor, and there is a problem of plating leakage in many areas. Large deviations also indicate that the obtained FeAlSi suppression layer thickness and coating thickness control are extremely uneven. In Comparative Example 5, since the temperature of the plating solution was too low, the fluidity and uniformity of the plating solution were poor. This also leads to poor coating quality, uneven coating thickness (large deviation), and partial plating leakage.
  • the combined effect of the various ranges of the Si content in the plating solution selected by the present invention, the temperature of the steel plate entering the pot, the temperature of the plating solution, and the hot-dip plating time not only eliminates the leakage of plating, but also reduces the number of large-size Kirkendall holes, and improves Yield rate of coated steel sheet.
  • the resistance spot welding performance of subsequent hot stamping forming components is also affected by the combined effect of the Si content in the plating solution, the temperature of the steel plate into the pot, the temperature of the plating solution and the hot-dip plating time.
  • the hot stamping simulation was performed on the thin-coated plates of Example 5 and Comparative Example 4. The heating process was completed in a tube furnace in the laboratory, the heating temperature was 930° C., and the holding time was 240 s. Subsequently, the heated sample plate was taken out and placed in a hot stamping forming simulation device and cooled to below 100°C in 8-10 seconds. Observation of the coating morphology of the obtained hot stamping and forming sample, the result is shown in Figure 4.
  • the final coating thickness of Example 5 is about 20 ⁇ m, and the thickness of the interdiffusion layer is about 8.55 ⁇ m; while the final coating thickness of Comparative Example 4 is about 16.42 ⁇ m, and the thickness of the interdiffusion layer is about It is 9.83 ⁇ m.
  • the Kirkendall holes in Comparative Example 4 have basically formed a linear distribution. This corresponds to the data in Table 3. Among them, the initial number of Kirkendall holes with diameters between 0.5 ⁇ m and 2.5 ⁇ m in Example 5 and Comparative Example 4 are 5/35 ⁇ m and 29/35 ⁇ m, respectively.
  • the maximum diameter is 0.65 ⁇ m, and the maximum diameter of the initial hole in Comparative Example 4 is 1.71 ⁇ m.
  • the initial large-size Kirkendall holes in Comparative Example 4 are relatively large, so the holes in Comparative Example 4 are obviously more serious after the same hot stamping process.
  • the resistance spot welding experiment was performed on the obtained hot stamping plate.
  • the welding method and evaluation standard refer to the "AWS D8.9M: 2012" standard. Single pulse welding is selected.
  • the welding parameters are as follows: electrode cap end diameter 7mm, electrode pressure 5.5kN, electrode
  • the preload time is 400ms, the welding time is 360ms, and the post-welding holding time is 200ms.
  • Figure 5 shows the spot welding evaluation results of two plated steel sheets after hot stamping. It can be seen from the figure that the spot weldable current range of the hot stamping sample plate of Example 5 is 1.2kA, and the minimum welding current that produces spatter is 7.8kA.
  • the spot welding current range of the hot stamping sample plate of Comparative Example 4 is 0.8kA, and the minimum welding current that produces spatter is 7.4kA.
  • the hot stamping sample plate of Comparative Example 4 has a narrow weldable current range and low spatter current.
  • the experimental results show that the significant Kirkendall holes in Comparative Example 4 increase the contact resistance of the coating, making it easy to generate sparks during spot welding even at a small welding current, which leads to a reduction in the weldable current range of the steel plate.
  • obtaining a coated steel sheet with few and small Kirkendall holes (Example 5) through the present invention improves the resistance spot welding performance of the hot stamped component.
  • the coating thickness of the aluminum alloy coating of the coated steel sheet of the present invention is 5 to 14 ⁇ m
  • the FeAlSi suppression layer has a thickness of 1.5 to 6 ⁇ m and not more than 60% of the coating thickness.
  • the diameter of the Kirkendall holes is 2.5 ⁇ m or less, and the number of the Kirkendall holes with a diameter of 0.5 ⁇ m or more and 2.5 ⁇ m or less does not exceed 15/35 ⁇ m.
  • the aluminum alloy plated steel sheet with the above-mentioned coating characteristics can be made into a hot stamped forming member with excellent resistance spot welding performance.
  • the coating method for producing the coated steel sheet according to the present invention ensures the uniformity of the coating thickness, avoids the occurrence of surface leakage, and at the same time inhibits the formation of large-size Kirkendall holes, and ensures the good quality of hot stamping forming components Resistance spot welding performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及具有薄的铝合金镀层的镀层钢板及其涂镀方法。本发明的镀层钢板用于热冲压成形,该镀层钢板的镀层厚度为5~14μm,其中,铝合金镀层包括靠近基体钢板的FeAlSi抑制层和在其外侧的Al合金层,其中,FeAlSi抑制层的厚度不大于镀层厚度的60%且为1.5~6.0μm,从FeAlSi抑制层与基体钢的界面至基体钢内的2μm内的柯肯达尔孔洞的直径在2.5μm以下,其中直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过15个/35μm。本发明还公开了在热冲压用的基体钢板上涂镀薄的铝合金镀层的涂镀方法,其能够消除漏镀并使得由镀层钢板获得的热冲压成形构件具有优异的电阻点焊性能。

Description

具有薄的铝合金镀层的镀层钢板及其涂镀方法 技术领域
本发明涉及具有薄的铝合金镀层的镀层钢板及其涂镀方法。
背景技术
近年来,随着能源环保、碰撞法规以及乘员被动安全等方面的要求日益严苛,热冲压成形工艺被越来越多地应用到汽车构件的设计和生产制造中。为了改善铝硅镀层板的热冲压成形构件的强韧性,CN108588612A提出利用薄镀层板获得热冲压构件,其中镀层钢板在热冲压成形前的初始镀层厚度为3~19μm。然而,在生产薄镀层板时发现,生产过程中易出现镀层厚度波动大、生产不稳定和局部漏镀的问题。
此外,在热冲压成形过程中,镀层钢板坯料首先被加热至880~960℃进行保温,使得基体钢中的Fe和初始镀层中的Al发生相互扩散在镀层一侧形成Fe-Al金属间化合物,在基体与Fe-Al金属间化合物层之间形成高Al含量的相互扩散层。由于Fe向镀层扩散形成Fe-Al金属间化合物的扩散速度远高于Al向基体中的扩散速度,因此,随着扩散的继续进行,大量Fe扩散至镀层中,相互扩散层中的空位得到不及时补充,从而形成柯肯达尔孔洞。这些柯肯达尔孔洞所在区域的电阻较高,因此在焊接过程中容易发生火花飞溅,焊接性能下降。CN108588612A已经发现利用薄的初始镀层能够一定程度上抑制在热冲压成形过程中的相互扩散,因此,与厚的初始镀层相比,可以预期薄的初始镀层将在一定程度上抑制热冲压过程中的柯肯达尔孔洞的形成及长大,这有利于改善热冲压成形构件的电阻点焊性能。
然而,本申请发明人发现,即使采用薄的初始镀层,电阻点焊性能仍存在进一步提升的空间。
发明内容
本发明是鉴于现有技术中存在的上述问题做出的,目的之一在于提供一种具有薄的铝合金镀层的热冲压用的镀层钢板,其能够消除漏镀并使得由该镀层钢板获得的热冲压成形构件具有优异的电阻点焊性能。
为实现上述目的,本发明的镀层钢板在至少一个表面上的铝合金镀层的镀层厚度为5~14μm,其中,铝合金镀层包括靠近基体钢板的FeAlSi抑制层和在其外侧的Al合金层,其中,FeAlSi抑制层的厚度不大于镀层厚度的60%且为1.5~6.0μm,从所述FeAlSi抑制层与基体钢的界面至基体钢内的2μm内的柯肯达尔孔洞的直径在2.5μm以下,其中直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过15个/35μm,优选地不 超过10个/35μm,更优选地不超过5个/35μm。
通过减薄FeAlSi抑制层的厚度消除了漏镀状况并减小了镀层厚度的波动,提高了生产稳定性。另外,由于在上述界面附近基体钢内柯肯达尔孔洞较少且小,故而有利于进一步抑制热冲压过程中大尺寸孔洞的形成,从而改善了后续热冲压成形构件的电阻点焊性能。
优选地,至少一个表面上的铝合金镀层的镀层平厚度为6~13μm,其中,FeAlSi抑制层的厚度不大于镀层厚度的50%且为1.5~5.0μm,在所述界面至基体钢内的2μm内的柯肯达尔孔洞的直径在2.5μm以下,并且直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过13个/35μm;以及进一步优选地,所述柯肯达尔孔洞的直径在2.0μm以下,并且直径在0.5μm以上且在2.0μm以下的柯肯达尔孔洞的数量不超过15个/35μm,且优选地不超过10个/35μm,更优选地不超过5个/35μm。
优选地,至少一个表面上的铝合金镀层的镀层厚度为7~12μm,其中,FeAlSi抑制层的厚度不大于镀层厚度的40%且为2.45~3.95μm,在所述界面至基体钢内的2μm内的柯肯达尔孔洞的直径在2.5μm以下,并且直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过13个/35μm;以及进一步优选地,所述柯肯达尔孔洞的直径在2.0μm以下,并且直径在0.5μm以上且在2.0μm以下的柯肯达尔孔洞的数量不超过15个/35μm,优选地不超过10个/35μm,且更优选地不超过5个/35μm。
更小更少的柯肯达尔孔洞进一步改善了后续热冲压成形构件的电阻点焊性能。
在本文中,除非另有说明,否则镀层厚度、FeAlSi抑制层的厚度及Al合金层的厚度分别为至少3个相应的测量值的平均值。
为满足热冲压成形工艺对钢板淬透性的要求,在热冲压构件中形成以马氏体为主的微观组织并达到900MPa~2200MPa的强度,基体钢板以重量百分比计包含以下成分:0.05~0.45%的C,0.5~10%的Mn,0~0.01%的B,0~0.4%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Ni+Mo+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及余量为Fe及不可避免的杂质元素。
优选地,所述基体钢板以重量百分比计包含以下成分:0.09~0.39%的C,0.6~3.5%的Mn,0~0.004%的B,0~0.4%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Mo+Ni+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及余量为Fe及不可避免的杂质元素。
更优选地,为满足在热冲压构件中形成以马氏体为主的微观组织并达到1400MPa~2100MPa的强度,所述基体钢板以重量百分比计包含以下成分:0.18~0.39%的 C,0.6~3.5%的Mn,0~0.004%的B,0.05~0.3%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Mo+Ni+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及余量为Fe及不可避免的杂质元素。
优选地,所述基体钢板的厚度为0.5~3.0mm。
根据本发明的另一目的在于提供一种在热冲压用的基体钢板上涂镀薄的铝合金镀层的涂镀方法,其能够消除漏镀并使得由镀层钢板获得的热冲压成形构件具有优异的电阻点焊性能。
为实现上述目的,在本发明的涂镀方法中,镀液组成包含以重量计:9%~12%Si、4%以下的Fe、余量为Al以及不可避免的杂质。
优选地,镀液中Si以重量计为9.2%~11.2%。
根据本发明的涂镀方法包括:
a)在涂镀前,预处理基体钢板;
b)将经预处理的基体钢板加热后冷却到在610~650℃范围内,优选地,620~645℃范围内,更优选地,625~639℃范围内,进一步优选地,625~635℃范围内的预定温度;
c)将b)中冷却至所述预定温度的基体钢板浸入在加热的镀液中2~7秒以进行热浸镀,在该过程中,镀液温度高于所述预定温度且保持在630~670℃,优选地,640~660℃;
d)在基体钢板离开镀液后且在至少一个表面上的镀液凝固前,通过气刀吹扫来移除至少一个表面上多余的镀液以控制所述至少一个表面上的镀层厚度;及
e)将钢板冷却至室温以获得具有薄的铝合金镀层的镀层钢板。
上述涂镀方法能在连续热浸镀工艺流程中完成。预处理基体钢板例如包括脱脂、水洗、除垢、温水洗、助镀及烘干等。在上述钢板的热浸镀铝的过程中,基体钢板的加热能通过感应加热、加热炉等方法实现。优选地,镀液温度高于钢板进入镀液时的预定温度(即钢板入锅温度)5~20℃,更优选地,7~15℃。在步骤e)中钢板的冷却速度优选不低于5℃/s。此外,本领域技术人员将理解,上述各个区间内的任一范围或任一值都适用于本发明。例如,上述预定温度可以为取自610~650℃范围内的任一范围或具体数值,例如610~620℃,635~650℃,635~645℃中的任一范围,或者诸如612℃、614℃、616℃、618℃、620℃、622℃、624℃、626℃、628℃、630℃、632℃、634℃、636℃、638℃、640℃、642℃、644℃、646℃、648℃等任一数值。
通过本发明的涂镀方法获得的镀层钢板具有5~14μm,优选地,6~13μm,以及更优选地7~12μm的镀层厚度,其中,镀层中的FeAlSi抑制层的厚度不大于镀层厚度的 60%且在1.5~6μm的范围内,优选地,不大于镀层厚度的50%且在1.5~5.0μm的范围内,以及更优选地,不大于镀层厚度的40%且在2.45~3.95μm的范围内;其中,从所述FeAlSi抑制层与基体钢的界面至基体钢内的2μm内的柯肯达尔孔洞的直径在2.5μm以下,其中,直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过15个/35μm,优选地不超过13个/35μm,且更优选地不超过5个/35μm;以及进一步优选地,所述柯肯达尔孔洞的直径在2.0μm以下,并且直径在0.5μm以上且在2.0μm以下的柯肯达尔孔洞的数量不超过15个/35μm,优选地不超过10个/35μm,且更优选地不超过5个/35μm。
在本发明的方法中,降低了铝锅中的镀液温度和入铝锅时的钢板温度、提高了镀液中的Si含量并且缩短了钢板在镀液中的停留时间,这些影响因素的共同作用抑制了基体中的Fe和镀层中的Al之间的相互扩散,使得获得的镀层一方面具有稳定的镀层厚度并消除漏镀;另一方面抑制了靠近FeAlSi抑制层与基体钢的界面处在基体钢内柯肯达尔孔洞的形成,使得孔洞较少且直径较小,从而改善了由该镀层钢板制成的热冲压成形构件的电阻点焊性能。
附图说明
图1是根据本发明的实施例5的镀层钢板的局部镀层形貌的SEM照片;
图2是对比例4的镀层钢板的局部镀层形貌的SEM照片;
图3是对比例4的镀层钢板的典型漏镀缺陷照片;
图4是实施例5和对比例4的镀层样板热冲压后的局部镀层形貌的金相照片;
图5是实施例5和对比例4的镀层样板热冲压后的点焊性能测试结果。
具体实施方式
下面将参考示例性实施例来更详细地描述本发明。以下实施例或实验数据旨在示例性地说明本发明,本领域的技术人员应该清楚的是本发明不限于这些实施例或实验数据。
本发明提供了一种用于热冲压成形的镀层钢板及其涂镀方法。
在热浸镀铝过程中,基体钢表面中的Fe和镀液中的Al、Si会发生合金化反应,从而在基体钢表面形成FeSiAl金属间合金化合物层,即FeAlSi抑制层。伴随着FeAlSi抑制层在基体钢表面形成,Fe和Al的相互扩散被显著降低。FeAlSi抑制层外侧是Al合金层,其厚度根据气刀吹扫来调节。生产薄镀层板时,在镀层厚度确定的情况下,如镀层中的Al合金层过薄将导致连续生产时钢板的镀层厚度不稳定以及频繁出现局部漏镀现象等问题,因此Al合金层不宜过薄,故而需要在涂镀时在钢板表面获得薄的FeAlSi抑制层以确保足够的Al 合金层厚度。
此外,在现有技术中,相比于热冲压的加热过程,由于钢板进入镀液前的温度为700℃以下且热浸镀时间仅为几秒钟,因此,通常认为在热浸镀过程中合金元素的扩散较慢,不会出现柯肯达尔效应。然而,经过本发明发明人的深入研究发现,由于热浸镀过程中钢基体外侧为液态铝,因此,Fe原子仍可以快速地与液态铝中的Al和Si反应形成金属间化合物(FeAlSi抑制层)。柯肯达尔效应的本质即是Fe向外侧扩散的速率远大于Al向铁基体中扩散的速率所导致,而热浸镀镀层中几微米的FeAlSi抑制层的存在也充分说明了热浸镀过程中确实存在着Fe向外侧扩散的现象,即存在形成柯肯达尔孔洞的可能。通过本发明人大量地微观观察发现,在FeAlSi抑制层与基体钢的界面至基体钢内的2μm内确实存在大量的柯肯达尔孔洞,其尺寸远小于热冲压成形之后孔洞的尺寸,所以不易发现。本发明认为,FeAlSi抑制层越厚,说明Fe向外侧扩散越多,越容易形成柯肯达尔孔洞,而降低FeAlSi抑制层厚度可以减少基体钢中的Fe原子向外侧的扩散,从而减少柯肯达尔孔洞的形成。
同时,本发明发现,在后续热冲压过程中,热浸镀过程中形成的柯肯达尔效应孔洞极易快速长大,显著增加点焊时镀层的电阻,从而造成焊接时易发生火花飞溅,严重影响热冲压成形构件的电阻点焊性能。因此,为保证最终零件的电阻点焊性能,本发明期望通过控制热浸镀条件来达到抑制柯肯达尔孔洞的形成的目的。
为此,本发明的方法旨在获得薄的FeAlSi抑制层并抑制在基体钢内靠近FeAlSi抑制层与基体钢的界面处的柯肯达尔孔洞的形成,以改善镀层厚度的稳定性、消除漏镀状况以及提高由镀层钢板后续热冲压成形的构件的电阻点焊性能。
本发明所使用的镀液包含以重量计:9%~12%Si、4%以下的Fe、余量为Al或Al合金以及不可避免的杂质。
优选地,镀液中的Si含量以重量计为9.2%~11.2%。
根据本发明的用于热冲压成形的镀层钢板的涂镀方法具体包括:
a)在涂镀前,预处理基体钢板;
b)将经预处理的基体钢板加热后冷却到在610~650℃,优选地,620~645℃,更优选地,625~639℃,进一步优选地,625~635℃范围内的预定温度;
c)将b)中冷却至所述预定温度的基体钢板浸入在加热的镀液中2~7秒以进行热浸镀,在该过程中,镀液温度高于所述预定温度且保持在630~670℃,优选地,640~660℃;
d)在基体钢板离开镀液后且在至少一个表面上的镀液凝固前,通过气刀吹扫来移除至少一 个表面上多余的镀液以控制所述至少一个表面上的镀层厚度;及
e)将钢板冷却至室温以获得具有薄的铝合金镀层的镀层钢板。
在上述方法中,预处理基体钢板例如包括脱脂、水洗、除垢、温水洗、助镀及烘干等。在步骤c)中,优选地,镀液温度高于钢板进入镀液的预定温度5~20℃,更优选地,7~20℃。在步骤e)中钢板的冷却速度优选不低于5℃/s。
在本发明的方法中,镀液选择高的Si含量。随着镀液中的Si含量的提高,镀液的熔点越低,有利于降低镀液温度,从而抑制Al和Fe原子的相互扩散以获得减小的FeAlSi抑制层厚度,减缓热浸镀过程以及镀层钢板后续热冲压成形过程中基体钢板表面附近的柯肯达尔孔洞的形成和长大。因此,Si含量不低于9%。但Si含量也不宜过高,过高的Si含量会提高镀层钢板热冲压之后钢板镀层中合金化层的电阻率,降低其热冲压成形构件的焊接性能,因此,Si含量不能超过12%。优选地,本发明的Si含量为9.2%~11.2%。
其次,本发明提出降低镀液温度和钢板进入镀液的预定温度(即钢板入锅温度)以抑制柯肯达尔孔洞的形成。如前所述,在形成FeSiAl抑制层的过程中,基体钢中的Fe原子向镀液中扩散形成FeSiAl金属间化合物,与此同时,Al原子向Fe基体中扩散。Fe原子和Al原子在基体中的扩散以空位机制进行,即金属原子与空位交换位置实现扩散,当Al原子进入基体中的速率不足以弥补从基体中扩散走的Fe原子的数量的情况下,在基体中即会因空位的聚集形成孔洞。因此,抑制FeAlSi抑制层的厚度和生长速率即可从本质上抑制柯肯达尔效应孔洞的生成。众所周知,温度对于扩散速度有显著的影响,因此,降低镀液温度和钢板进入镀液的预定温度能抑制柯肯达尔孔洞的生成。一方面考虑的是降低钢板进入镀液的预定温度,在高的温度下Fe和Al原子二者的扩散速率差异增大,使得形成更多大尺寸的柯肯达尔孔洞。实验数据表明,在钢板进入镀液的预定温度高于655℃的情况下,在基体钢内靠近上述界面处明显形成更多大尺寸的柯肯达尔孔洞。相对地,在热浸镀时,为保证钢板的可镀性,防止表面漏镀等问题的产生,钢板进入镀液的预定温度也不宜过低。实验数据表明,在钢板进入镀液的预定温度低于610℃的情况下,漏镀严重。故而,根据本发明,钢板进入镀液的预定温度设计为610~650℃,优选地,620~645℃,更优选地,620~639℃,进一步优选地,625~635℃。另一方面考虑的是降低镀液温度有利于抑制Fe、Al和Si原子之间的合金化反应,以形成薄的抑制层,但是,相对的,为保证镀液的流动性和均匀性,镀液温度也不宜过低。故而,镀液温度设计成高于所述预定温度且为630~670℃,优选地,640~660℃。
再者,本发明提出缩短钢板在镀液中的停留时间。一是过长的停留时间会促进Fe和 Al的相互扩散继续,导致FeAlSi抑制层增厚和柯肯达尔孔洞形成。二是产线长度有限,停留时间过长则势必需要产线降低运行速度,这影响生产效率并增加了成本。因此,钢板在镀液中的停留时间需控制在:2~7秒。
最后,通过维持气刀的高强度吹扫控制Al合金层厚度从而获得薄的铝合金镀层钢板。因此,在基体钢板离开镀液后且在至少一个表面上的镀液凝固前,通过气刀吹扫来移除至少一个表面上多余的镀液以控制所述至少一个表面上的镀层厚度。随后,将钢板以优选不低于5℃/s的冷速冷却至室温以获得具有薄的铝合金镀层的镀层钢板。
另外,优选地,兼顾相对高的镀液温度确保涂镀性和低的钢板进入镀液的预定温度确保低的界面反应速率及减少柯肯达尔孔洞的形成,本发明中特别指出,采用上述预定温度低于镀液温度的方式进行涂镀。优选地,预定温度低于镀液温度5℃以上有利于在保证涂镀性的同时减小界面反应速率以减少柯肯达尔孔洞。同时由于过大的钢板与镀液的温度差会导致镀液温度不稳定,因此,本发明设计该温度差不超过20℃,优选地,该温度差为7℃~15℃。
通过本发明的上述方法获得一种具有薄的铝合金镀层的热冲压成形用的镀层钢板,其厚度为0.5~3.0mm。在该钢板的任一表面上,铝合金镀层的镀层厚度为5~14μm,优选地6~13μm,更优选地7~12μm。
上述铝合金镀层具有独特的镀层结构,其包括:
靠近基体钢的FeAlSi抑制层,其中,FeAlSi抑制层的厚度不大于镀层厚度的60%且为1.5~6μm,优选地不大于镀层厚度的50%且为1.5~5μm,更优选地不大于镀层厚度的40%且为2.45~3.95μm;从FeAlSi抑制层与基体钢的界面至基体钢内的2μm内,柯肯达尔孔洞的直径在2.5μm以下,其中直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过15个/35μm,优选地不超过13个/35μm,且更优选地不超过5个/35μm。进一步优选地,所述柯肯达尔孔洞的直径在2.0μm以下,并且直径在0.5μm以上且在2.0μm以下的柯肯达尔孔洞的数量不超过13个/35μm,优选地不超过10个/35μm,且更优选地不超过5个/35μm;和
在FeAlSi抑制层外侧的Al合金层。
FeAlSi抑制层是在钢板浸入镀液时通过镀液中的Al原子和Si原子与钢板表面的Fe原子反应形成的FeSiAl合金化合物层,主要构成包括Fe 2SiAl 7,其中,Si元素与Si和Al元素总和的质量比大于0.12,高于镀液中的Si含量。Al合金层的厚度通过气刀调节以实现不同铝硅镀层厚度。
为满足热冲压成形工艺对钢板淬透性的要求,在热冲压构件中形成以马氏体为主的微观组织并达到900MPa~2200MPa的强度,基体钢板以重量百分比计包含以下成分:0.05~0.45%的C,0.5~10%的Mn,0~0.01%的B,0~0.4%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Ni+Mo+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及不可避免的杂质元素。
在本发明的镀层钢板中,在FeAlSi抑制层与基体钢的界面附近在基础钢内的柯肯达尔孔洞直径小且数量少,有助于在热冲压成形加工中减少热冲压成形构件的镀层中的大尺寸孔洞的形成,进而保证构件具有良好的电阻点焊性能。在镀层厚度确定时,薄的FeAlSi抑制层则意味着更厚的Al合金层,这有益于气刀控制,提高镀层厚度的稳定性并防止漏镀现象出现。
作为示例,试验用基体钢板具有表1所示的成分,其相应的制造工艺如下:
a)炼钢:按照表1中成分由真空感应炉、电炉或转炉冶炼,利用连铸技术生产铸坯,或直接采用薄板坯连铸连轧工艺;
b)热轧:将钢坯加热至1120~1280℃进行热轧,热轧总压下量在50%以上,在800℃以上进行终轧温度,得到热轧钢板,并在700℃以下进行卷曲,形成热轧钢卷,并对热轧卷进行酸洗以清除热轧过程中产生的氧化皮;及
c)冷轧:将经过酸洗的热轧卷进行冷轧,冷轧压下量为30%~70%,得到1.4mm的冷轧钢卷。
表1基体钢板的化学组成
(wt%,余量为Fe和其他不可避免杂质元素)
基体钢板 C Si Mn B Al Cr Nb Ti V
基体钢1 0.10 0.20 2.5 0.0031 0.04 0.22 / 0.04 /
基体钢2 0.21 0.25 1.4 0.0022 0.04 0.25 / 0.04 /
基体钢3 0.34 0.61 1.9 0.0025 0.65 0.15 0.04 0.06
将所得的基体钢板按照表2中的涂镀工艺进行涂镀,镀层厚度的目标为8~12μm,其中镀液以重量计包含:9%~12%Si、4%以下Fe、余量为Al或Al合金以及不可避免的杂质。表2中的涂镀工艺综合考虑了镀液温度、钢板进入镀液的预定温度(即钢板入锅温度)、镀液和钢板温差、热浸镀时间、镀液中Si含量等热浸镀过程参数的影响。
表2涂镀工艺参数列表
Figure PCTCN2020102906-appb-000001
经上述涂镀工艺处理后,对钢卷进行宏观表面质量检查,以检测表面漏镀情况。需要指出的是,本文中提到的表面漏镀情况包括露出基体钢板和露出FeAlSi抑制层中的任一种情况。同时,镀层厚度及其中FeAlSi抑制层的厚度的确定:选取钢卷宽度的1/6、1/3、1/2、2/3和5/6处的5个位置,并在扫描电镜(SEM)下对FeAlSi抑制层的厚度和镀层厚度进行测量,并对5个位置的测量结果求平均值并给出偏差。
柯肯达尔孔洞的数量的确定方法:在SEM的视场中,沿基体钢表面,对长度为35μm的范围内的柯肯达尔孔洞进行计数并测量其直径。柯肯达尔孔洞的直径的确定方法:在相同的视场下,测量孔洞的最长直径和最短直径,并将两者之和的一半作为孔洞直径。
镀层结构、宏观表面以及柯肯达尔孔洞数量的统计结果见表3。
表3镀层结构、宏观表面以及柯肯达尔孔洞数量情况
Figure PCTCN2020102906-appb-000002
*对比例3和对比例5漏镀太过严重,以上数值取自部分可测量区域,不能反映镀层的整体状态。
综合实施例1~8可知,目标镀层厚度在8~12μm时,根据本发明的方法获得的FeAlSi抑制层的厚度控制在约2.9~4.1μm,使得Al合金镀层的厚度控制在约5.1~8μm,其中,FeAlSi抑制层占镀层厚度的约29%~45%。在这种情况下,尽管钢板的镀层厚度较薄,但在生产过程中,由于FeAlSi抑制层的厚度相对较薄,仍能够通过气刀吹扫调节Al合金层的厚度以较容易地实现目标镀层厚度的控制,因此,最后所得镀层的厚度波动小且无漏镀现象。此外,基体钢与镀层的界面附近的柯肯达尔孔洞的最大直径不超过2μm,数量普遍不多于13个/35μm,有利于改善镀层钢板在热冲压后的电阻点焊性能。例如,对比实施例5和实施例8的数据,实施例5中的镀液温度和钢板入锅温度相差7℃,实施例8相差5℃。实施例8的柯肯达尔孔洞的数量为8个/35μm,实施例5的柯肯达尔孔洞的数量为5个/35μm。可见,适量的温差有利于进一步减少柯肯达尔孔洞的形成。
图1是根据本发明的实施例5的镀层钢板的局部镀层形貌的SEM照片,镀层厚度约 为9.0μm,其中,FeAlSi抑制层的厚度约为3.2μm,柯肯达尔孔洞的直径未超过2.5μm,其中,直径在0.5μm~2.5μm范围内的柯肯达尔孔洞的个数约为5个/35μm。
图2是对比例4的镀层钢板的局部镀层形貌的SEM照片,镀层厚度约为8.6μm,其中,FeAlSi抑制层的厚度约为6.7μm,直径在0.5μm~2.5μm的柯肯达尔孔洞的数量约为29个/35μm。
实施例5和对比例4的涂镀工艺参数仅钢板入锅温度不同,其中对比例4具有明显高的钢板入锅温度。因此对比例4更多的柯肯达尔孔洞以及更厚的FeAlSi抑制层是由于高的钢板入锅温度导致的。由此可知,高的钢板入锅温度是非期望的。
图3是对比例4的镀层钢板的典型漏镀缺陷照片。可以明显看出在某些区域中,漏镀情况严重。这是因为与实施例5相比,对比例4的较高钢板入锅温度加速了扩散,使得生成的FeAlSi抑制层较厚,相应的Al合金层较薄,所以对气刀吹扫要求高,控制难度大,故而出现漏镀。
各个对比例呈现不同程度的漏镀缺陷并且具有大且多的柯肯达尔孔洞,原因如下:对比例1中,镀铝液中的Si含量太低;对比例2中,钢板在镀铝液中停留时间过长;对比例4中,钢板入锅温度过高;及对比例6中,镀液温度过高。上述4种情况均导致最后获得的FeAlSi抑制层的厚度偏厚,达到了6.6~7.5μm,使得Al合金层的厚度较薄且不同位置的厚度测量结果偏差极大,厚度均匀性较差,导致最终的镀层厚度出现明显的波动且局部存在漏镀现象,影响了钢板的生产稳定性。此外,上述4种情况下,靠近基体钢与FeAlSi抑制层的界面在基体钢内直径在0.5μm~2.5μm的柯肯达尔孔洞数量较多,达到17~29个/35μm,这些大的柯肯达尔孔洞削弱了后续获得的热冲压成形构件的电阻点焊性能。由此,可见Si含量偏低、停留时间长、钢板入锅温度及镀液温度高都将有利于扩散发生,导致更多更大的柯肯达尔孔洞的形成。因此,必须同时控制这四者以在其协同作用下抑制柯肯达尔孔洞的形成。
此外,在对比例3中,由于钢板入锅温度偏低,钢板表面温度接近Al-Si合金的凝固点,因此,钢板可镀性较差,较多区域存在漏镀问题。较大的偏差也表明所获得的FeAlSi抑制层厚度以及镀层厚度控制极不均匀。对比例5中,由于镀液温度过低,所以镀液的流动性和均匀性均较差。这同样导致涂镀质量差,镀层厚度不均匀(偏差较大),局部存在漏镀现象。
结合上述以及表2和表3的数据可知,镀液中Si含量、钢板入锅温度、镀液温度及热浸镀时间均对镀层的厚度均匀性、漏镀及柯肯达尔孔洞的形成有明显影响。任一条件超出 预定范围都将导致镀层厚度不均、漏镀或更多柯肯达尔孔洞的形成和长大,削弱产品的性能。本发明所选的镀液中Si含量、钢板入锅温度、镀液温度及热浸镀时间各个范围的共同作用既消除了漏镀状况又减少了大尺寸的柯肯达尔孔洞的数量,改善了镀层钢板的成品率。
相应地,后续热冲压成形构件的电阻点焊性能也受到镀液中Si含量、钢板入锅温度、镀液温度及热浸镀时间共同作用的影响。以下仅以实施例5和对比例4为例来说明涂镀工艺对热冲压成形构件的电阻点焊性能的影响。对实施例5和对比例4的薄镀层板进行热冲压模拟,加热过程在实验室的管式炉内完成,加热温度为930℃,保温时间为240s。随后,将加热的样板取出后放入热冲压成形模拟装置中于8~10s内冷却至100℃以下。对获得的热冲压成形样板进行镀层形貌观察,结果见图4所示。
由图4可知,同样的热冲压条件下,实施例5的最终镀层厚度为约20μm,相互扩散层厚度约为8.55μm;而对比例4的最终镀层厚度为约16.42μm,相互扩散层厚度约为9.83μm。另外,对比例4的柯肯达尔孔洞已基本形成线状分布。这与表3的数据相对应,其中,实施例5和对比例4初始的直径在0.5μm~2.5μm的柯肯达尔孔洞数量分别为5个/35μm和29个/35μm,且实施例5的最大直径为0.65μm,而对比例4的初始孔洞最大直径为1.71μm。对比例4初始的大尺寸的柯肯达尔孔洞相对较多,所以在经过相同的热冲压成形工艺后对比例4的孔洞明显更严重。
对获得的热冲压平板进行电阻点焊实验,焊接方法和评价标准参考《AWS D8.9M:2012》标准,选择单次脉冲焊接,焊接参数如下:电极帽端面直径7mm,电极压力5.5kN,电极预压时间400ms,焊接时间360ms,焊后保持时间200ms。图5是两个镀层钢板热冲压后的点焊评价结果。由图可知,实施例5的热冲压样板点焊可焊电流范围为1.2kA,产生飞溅的最小焊接电流为7.8kA。相对的,对比例4的热冲压样板点焊可焊电流范围为0.8kA,产生飞溅的最小焊接电流为7.4kA。明显地,对比例4的热冲压样板的可焊电流范围窄,飞溅电流小。实验结果表明,对比例4中显著的柯肯达尔孔洞增加了镀层的接触电阻,使得点焊时即使在较小的焊接电流下也容易产生火花飞溅,从而导致钢板的可焊电流范围减小。相对的,通过本发明获得具有少且小的柯肯达尔孔洞的镀层钢板(实施例5)改善了热冲压成形构件的电阻点焊性能。
综上所述,本发明的镀层钢板的铝合金镀层的镀层厚度为5~14μm,其中,FeAlSi抑制层厚度为1.5~6μm且不大于镀层厚度的60%,从所述FeAlSi抑制层与基体钢的界面至基体钢内的2μm内,柯肯达尔孔洞的直径在2.5μm以下,其中直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过15个/35μm。具有上述镀层特征的铝合金 镀层钢板能够制成具有优异电阻点焊性能的热冲压成形构件。根据本发明的用于生产该镀层钢板的涂镀方法保证了镀层厚度的均匀性,避免了表面漏镀的发生,同时抑制了大尺寸柯肯达尔孔洞的形成,保证了热冲压成形构件的良好的电阻点焊性能。
以上实施例和实验数据旨在示例性地说明本发明,本领域的技术人员应该清楚的是本发明不仅限于这些实施例,在不脱离本发明保护范围的情况下,可以进行各种变更。

Claims (13)

  1. 一种具有铝合金镀层的热冲压成形用的镀层钢板,其包括基体钢板及涂镀在其至少一个表面上的铝合金镀层,
    基体钢板以重量百分比计包含以下成分:0.05~0.45%的C,0.5~10%的Mn,0~0.01%的B,0~0.4%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Ni+Mo+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及余量为Fe及不可避免的杂质元素;
    所述铝合金镀层的镀层厚度为5~14μm,
    其中,所述铝合金镀层包括:靠近基体钢的FeAlSi抑制层;及在所述FeAlSi抑制层外侧的Al合金层;
    其中,所述FeAlSi抑制层的厚度不大于镀层厚度的60%,并且所述FeAlSi抑制层的厚度为1.5~6μm;
    其中,从所述FeAlSi抑制层与基体钢的界面至基体钢内的2μm内,柯肯达尔孔洞的直径在2.5μm以下,其中,直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过15个/35μm。
  2. 根据权利要求1所述的镀层钢板,其中,基体钢板以重量百分比计包含以下成分:0.09~0.39%的C,0.6~3.5%的Mn,0~0.004%的B,0~0.4%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Mo+Ni+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及余量为Fe及不可避免的杂质元素。
  3. 根据权利要求1所述的镀层钢板,其中,基体钢板以重量百分比计包含以下成分:0.18~0.39%的C,0.6~3.5%的Mn,0~0.004%的B,0.05~0.25%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Mo+Ni+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及余量为Fe及不可避免的杂质元素。
  4. 根据权利要求1所述的镀层钢板,其中,所述铝合金镀层的镀层厚度为6~13μm,所述FeAlSi抑制层的厚度不大于镀层厚度的50%并且所述FeAlSi抑制层的厚度为1.5~5μm。
  5. 根据权利要求1所述的镀层钢板,其中,所述铝合金镀层的镀层厚度为7~12μm,所述FeAlSi抑制层的厚度不大于镀层厚度的40%并且所述FeAlSi抑制层厚度为2.45~3.95μm。
  6. 根据权利要求1至5中任一项所述的镀层钢板,从所述FeAlSi抑制层与基体钢的界面至基体钢内的2μm内,直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过13个/35μm。
  7. 根据权利要求1至5中任一项所述的镀层钢板,从所述FeAlSi抑制层与基体钢的界面至 基体钢内的2μm内,直径在0.5μm以上且在2.5μm以下的柯肯达尔孔洞的数量不超过10个/35μm。
  8. 根据权利要求1至5中任一项所述的镀层钢板,从所述FeAlSi抑制层与基体钢的界面至基体钢内的2μm内,所述柯肯达尔孔洞的直径在2.0μm以下,并且直径在0.5μm以上且在2.0μm以下的柯肯达尔孔洞的数量不超过10个/35μm。
  9. 根据权利要求1至5中任一项所述的镀层钢板,其中,所述基体钢板的厚度为0.5~3.0mm。
  10. 一种将薄的铝合金镀层涂镀到热冲压成形用的基体钢板的至少一个表面上的涂镀方法,其包括:
    a)在涂镀前,预处理所述基体钢板;
    b)将经预处理的基体钢板加热后冷却到在610~650℃范围内的预定温度;
    c)将b)中冷却至所述预定温度的基体钢板浸入在加热的镀液中2~7秒以进行热浸镀,其中,所述镀液的组成包含以重量计:9%~12%Si;及余量为Al或Al合金以及不可避免的杂质,在该过程中,镀液温度高于所述预定温度且保持在630~670℃;
    d)在所述基体钢板离开所述镀液后且在所述基体钢板的至少一个表面上的镀液凝固前,通过气刀吹扫来移除所述至少一个表面上多余的镀液以控制所述至少一个表面上的镀层厚度;及
    e)将所述基体钢板冷却至室温以获得具有薄的铝合金镀层的镀层钢板,
    其中,基体钢板以重量百分比计包含以下成分:0.05~0.45%的C,0.5~10%的Mn,0~0.01%的B,0~0.4%的Nb+Ti+V,0.01~2%的Si,0.01~2%的Al,0.01~5%的Cr+Ni+Mo+Cu且0~2%的Cr、0~2%的Ni、0~2%的Mo及0~2%的Cu,以及余量为Fe及不可避免的杂质元素。
  11. 根据权利要求10所述的方法,其中,所述预定温度在620~639℃的范围内,所述镀液温度高于所述预定温度5~20℃。
  12. 根据权利要求11所述的方法,其中,所述预定温度在625~635℃的范围内,所述镀液温度高于所述预定温度7~15℃。
  13. 根据权利要求10至12中任一项所述的方法,其中,所述热浸镀铝液中Si的含量以重量计为9.2%~11.2%。
PCT/CN2020/102906 2020-06-08 2020-07-20 具有薄的铝合金镀层的镀层钢板及其涂镀方法 WO2021248635A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3185460A CA3185460A1 (en) 2020-06-08 2020-07-20 Coated steel sheet with thin aluminium alloy coating and coating method thereof
BR112022025079A BR112022025079A2 (pt) 2020-06-08 2020-07-20 Chapa de aço revestida com fino revestimento de liga de alumínio e método para o seu revestimento
US18/008,576 US20230235439A1 (en) 2020-06-08 2020-07-20 Coated steel sheet with thin aluminium alloy coating and coating method thereof
BR212022024841U BR212022024841U2 (pt) 2020-06-08 2020-07-20 Chapa de aço revestida com fino revestimento de liga de alumínio e método para o seu revestimento
EP20940247.8A EP4148160A4 (en) 2020-06-08 2020-07-20 COATED STEEL SHEET WITH THIN ALUMINUM ALLOY COATING AND COATING METHOD THEREOF
KR1020237000157A KR20230022425A (ko) 2020-06-08 2020-07-20 얇은 알루미늄 합금 코팅을 갖는 코팅된 스틸 시트 및 그 코팅 방법
CN202080104181.6A CN116157544A (zh) 2020-06-08 2020-07-20 具有薄的铝合金镀层的镀层钢板及其涂镀方法
JP2022575401A JP2023538178A (ja) 2020-06-08 2020-07-20 薄いアルミニウム合金めっきを有するめっき鋼板およびそのめっき方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010509706.6A CN111394679B (zh) 2020-06-08 2020-06-08 具有薄的铝合金镀层的镀层钢板及其涂镀方法
CN202010509706.6 2020-06-08

Publications (1)

Publication Number Publication Date
WO2021248635A1 true WO2021248635A1 (zh) 2021-12-16

Family

ID=71433691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102906 WO2021248635A1 (zh) 2020-06-08 2020-07-20 具有薄的铝合金镀层的镀层钢板及其涂镀方法

Country Status (8)

Country Link
US (1) US20230235439A1 (zh)
EP (1) EP4148160A4 (zh)
JP (1) JP2023538178A (zh)
KR (1) KR20230022425A (zh)
CN (2) CN111394679B (zh)
BR (2) BR112022025079A2 (zh)
CA (1) CA3185460A1 (zh)
WO (1) WO2021248635A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4324950A1 (de) * 2022-08-18 2024-02-21 ThyssenKrupp Steel Europe AG Stahl mit verbesserten verarbeitungseigenschaften zur umformung bei erhöhten temperaturen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394679B (zh) * 2020-06-08 2020-08-28 育材堂(苏州)材料科技有限公司 具有薄的铝合金镀层的镀层钢板及其涂镀方法
CN111893377B (zh) * 2020-07-13 2021-10-26 首钢集团有限公司 一种1900MPa级高强韧性热冲压用铝硅镀层钢板及其制备方法
CN113106338B (zh) * 2021-03-22 2022-02-11 北京科技大学 一种超高强度高塑性热冲压成形钢的制备方法
WO2023214731A1 (ko) * 2022-05-06 2023-11-09 주식회사 포스코 열간 프레스 성형 부재 및 이의 제조방법
KR20240048616A (ko) * 2022-10-06 2024-04-16 주식회사 포스코 내금형소착성이 우수한 알루미늄 도금강판, 이를 이용한 열간 성형 부재 및 이들의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145645A (zh) * 1995-02-24 1997-03-19 日新制钢株式会社 热镀铝钢板及其制造方法和合金层控制装置
CN102011082A (zh) * 2010-11-12 2011-04-13 上海大学 Al-Zn-Si-Mg合金镀层的热浸镀工艺方法
JP2013166977A (ja) * 2012-02-14 2013-08-29 Nisshin Steel Co Ltd 陽極酸化絶縁処理用溶融Al系めっき鋼板およびその製造法
CN108588612A (zh) 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
CN111394679A (zh) * 2020-06-08 2020-07-10 育材堂(苏州)材料科技有限公司 具有薄的铝合金镀层的镀层钢板及其涂镀方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361588B (zh) * 2012-03-30 2016-04-06 鞍钢股份有限公司 低铝低镁系锌铝镁镀层钢板生产方法及其镀层钢板
CN103952653B (zh) * 2014-04-18 2016-06-01 河北钢铁股份有限公司 热冲压成形钢用抗高温氧化镀层材料以及热浸渡工艺
EP3623493B1 (en) * 2018-02-15 2023-12-20 Nippon Steel Corporation Fe-al plated hot-stamped member and method for producing fe-al plated hot-stamped member
CN110484820A (zh) * 2019-09-05 2019-11-22 首钢集团有限公司 一种高强韧性热冲压用铝硅镀层钢板及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145645A (zh) * 1995-02-24 1997-03-19 日新制钢株式会社 热镀铝钢板及其制造方法和合金层控制装置
CN102011082A (zh) * 2010-11-12 2011-04-13 上海大学 Al-Zn-Si-Mg合金镀层的热浸镀工艺方法
JP2013166977A (ja) * 2012-02-14 2013-08-29 Nisshin Steel Co Ltd 陽極酸化絶縁処理用溶融Al系めっき鋼板およびその製造法
CN108588612A (zh) 2018-04-28 2018-09-28 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
CN111394679A (zh) * 2020-06-08 2020-07-10 育材堂(苏州)材料科技有限公司 具有薄的铝合金镀层的镀层钢板及其涂镀方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4324950A1 (de) * 2022-08-18 2024-02-21 ThyssenKrupp Steel Europe AG Stahl mit verbesserten verarbeitungseigenschaften zur umformung bei erhöhten temperaturen
WO2024038037A1 (de) * 2022-08-18 2024-02-22 Thyssenkrupp Steel Europe Ag Stahl mit verbesserten verarbeitungseigenschaften zur umformung bei erhöhten temperaturen

Also Published As

Publication number Publication date
BR212022024841U2 (pt) 2023-01-03
EP4148160A1 (en) 2023-03-15
CN111394679A (zh) 2020-07-10
CA3185460A1 (en) 2021-12-16
CN116157544A (zh) 2023-05-23
CN111394679B (zh) 2020-08-28
US20230235439A1 (en) 2023-07-27
EP4148160A4 (en) 2023-03-15
BR112022025079A2 (pt) 2022-12-27
KR20230022425A (ko) 2023-02-15
JP2023538178A (ja) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2021248635A1 (zh) 具有薄的铝合金镀层的镀层钢板及其涂镀方法
JP4449795B2 (ja) 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法
RU2603762C2 (ru) Гальванизированный стальной лист для формовки в горячем состоянии
CA2605486C (en) Hot dip galvannealed steel sheet and method of production of the same
KR101721483B1 (ko) 프레스 가공용 용융 아연 도금 강판
US20090280350A1 (en) Steel sheet having high plane integration and method of production of same
WO2014103279A1 (ja) 溶融亜鉛めっき鋼板
US20230086620A1 (en) Steel sheet plated with al-fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof
JP2012125824A (ja) 高強度鋼板用の連続鋳造鋳片およびその連続鋳造方法、ならびに高強度鋼板
US20230374639A1 (en) Galvanized steel sheet, electrodeposition-coated steel sheet, automotive part, method of producing electrodeposition-coated steel sheet, and method of producing galvanized steel sheet
KR102010083B1 (ko) 내식성이 향상된 고내식 철-알루미늄계 합금도금강판, 그 제조방법 및 그로부터 제조된 열간 프레스 성형 부재
JP2021535281A (ja) 熱間成形性及び耐食性に優れたアルミニウム−亜鉛合金めっき鋼板及びその製造方法
WO2021002415A1 (ja) ホットスタンプ用亜鉛めっき鋼板、ホットスタンプ用亜鉛めっき鋼板の製造方法およびホットスタンプ成形体
JP2619550B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP4325442B2 (ja) 溶融亜鉛系めっき鋼材の製造方法
US20230392226A1 (en) Hot-pressed member, steel sheet for hot pressing, and methods for producing the hot-pressed member and the steel sheet for hot pressing
JP5206114B2 (ja) 加工性、めっき密着性、耐食性、および外観品位に優れた合金化溶融亜鉛めっき鋼板
KR101188065B1 (ko) 도금 밀착성과 스폿 용접성이 우수한 용융아연도금강판 및 그 제조방법
CA2107560C (en) Al-si-cr-plated steel sheet excellent in corrosion resistance and production thereof
JPH10158784A (ja) 高強度熱延鋼板
WO2022161049A1 (zh) 一种镀铝钢板、热成形部件及制造方法
JP2978096B2 (ja) めっき性に優れた高強度溶融亜鉛めっき鋼板
JP7235165B2 (ja) Fe系皮膜付き素材冷延鋼板、Fe系皮膜付き素材冷延鋼板の製造方法、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法、および合金化溶融亜鉛めっき鋼板の製造方法
JPH10168581A (ja) アルミ系めっき鋼板または燃料タンク用アルミ系めっき鋼板
JP4507813B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3185460

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022575401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 212022024841

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 212022024841

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020940247

Country of ref document: EP

Effective date: 20221209

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025079

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022025079

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221208

ENP Entry into the national phase

Ref document number: 20237000157

Country of ref document: KR

Kind code of ref document: A

Ref document number: 212022024841

Country of ref document: BR

Effective date: 20221205

NENP Non-entry into the national phase

Ref country code: DE