WO2021246809A1 - 디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법 - Google Patents

디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법 Download PDF

Info

Publication number
WO2021246809A1
WO2021246809A1 PCT/KR2021/006961 KR2021006961W WO2021246809A1 WO 2021246809 A1 WO2021246809 A1 WO 2021246809A1 KR 2021006961 W KR2021006961 W KR 2021006961W WO 2021246809 A1 WO2021246809 A1 WO 2021246809A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
flow rate
conversion rate
control method
alcohol
Prior art date
Application number
PCT/KR2021/006961
Other languages
English (en)
French (fr)
Inventor
추연욱
정재훈
이성규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180005057.9A priority Critical patent/CN114341097A/zh
Priority to JP2022518289A priority patent/JP2022548988A/ja
Priority to EP21818350.7A priority patent/EP3998249A4/en
Priority to US17/639,031 priority patent/US20220402853A1/en
Publication of WO2021246809A1 publication Critical patent/WO2021246809A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices

Definitions

  • the present invention relates to a method of controlling the conversion rate in a reactor to reach a target conversion rate in a continuous production process of a diester-based composition.
  • Phthalate-based plasticizers accounted for 92% of the global plasticizer market by the 20th century (Mustafizur Rahman and Christopher S. Brazel "The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges" Progress in Polymer Science 2004, 29, 1223-1248), mainly used to give flexibility, durability, and cold resistance to polyvinyl chloride (hereinafter referred to as PVC) and to improve processability by lowering the viscosity when melting. From hard products such as pipes to soft products that are soft and stretchable and can be used for food packaging, blood bags, and flooring, it is more closely related to real life than any other material and is widely used for applications where direct contact with the human body is inevitable. .
  • PVC polyvinyl chloride
  • the terephthalate-based plasticizer is not only at the same level in terms of physical properties as the phthalate-based plasticizer, but is also spotlighted as a material free from environmental problems, and various types of terephthalate-based plasticizers are being developed.
  • research on facilities for manufacturing such terephthalate-based plasticizers are also being actively conducted. is being requested
  • research on a process that allows the production of a plasticizer composition to be carried out continuously and efficiently by using a continuous reactor away from the process using a conventional batch reactor is active, and the continuous process can be operated more efficiently and economically. research is also needed.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1354141
  • Non-Patent Document 1 Mustachalur Rahman and Christopher S. Brazel “The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges” Progress in Polymer Science 2004, 29, 1223-1248
  • Non-Patent Document 2 N. R. Janjua et al. "Systemic Uptake of Diethyl Phthalate, Dibutyl Phthalate, and Butyl Paraben Following Whole-body Topical Application and Reproductive and Thyroid Hormone Levels in Humans" Environmental Science and Technology 2007, 41, 5564-5570
  • the present invention simply predicts the conversion rate of the reactor from the flow rate of the feed input to the reactor and the flow rate of the product water generated in the reactor in the continuous manufacturing process of the diester-based composition, and through the predicted conversion rate for each reactor in the manufacturing process We want to provide a way to control the reaction and overall reaction.
  • the present invention is a continuous manufacturing process of a diester-based composition for preparing a diester-based composition by reacting a dicarboxylic acid with an alcohol,
  • the present invention provides a reaction control method in which the expected conversion is calculated through the following Equations 1 to 4:
  • FR is the ratio of the product water flow rate to the feed flow rate of dicarboxylic acid and alcohol (product water flow rate/feed flow rate),
  • P is the pressure in the reactor (kg/cm 2 g).
  • the reaction control method of the present invention when using the reaction control method of the present invention, in the continuous production process of the diester composition, in particular, in a case where a plurality of reactors are connected in series and process variable control in each reactor is important, the feed flow rate at the time of initial input and the reactor It is possible to easily control the conversion rate of the reactor from the flow rate of the produced water, thereby enabling control and optimization of the reaction in the overall process.
  • a plurality of reactors are connected in series, by appropriately setting the target conversion rate in each reactor, energy or raw materials that are unnecessarily lost can be minimized to enable eco-friendly and economical process operation.
  • Ester plasticizer compounds which can be exemplified as phthalate-based plasticizers, are generally prepared through a conventional batch reactor. Specifically, the entire amount of carboxylic acid and alcohol, which are raw materials for the reaction, was completely introduced into the reactor in the batch type reactor, and then the reaction was carried out until the desired final conversion rate without additional reaction raw materials was added, and the plasticizer composition corresponding to the final product was not - The whole amount was obtained at one time consecutively.
  • the inventor of the present invention can predict the conversion rate in the reactor with a small error from the flow rate of feed and produced water that can be easily checked and controlled by the operator during continuous manufacturing process operation, and the predicted conversion rate
  • the present invention that can control the conversion rate of the reactor close to the actual target value was completed by using it.
  • a method for controlling the reaction in a continuous manufacturing process of a diester-based composition comprising the step (S2) of calculating the expected conversion rate and the step (S3) of controlling the temperature and pressure of the reactor so that the calculated expected conversion rate approaches the target conversion rate to provide.
  • the generated water flow rate it can be monitored through a reflux device provided in the reactor.
  • the esterification reaction between dicarboxylic acid and alcohol forms water as a by-product, and since the temperature at which the esterification reaction is performed is higher than the boiling point of water, gaseous water is continuously generated during the reaction. Although such product water does not participate in the reaction, it needs to be removed from the inside of the reactor because it becomes a factor hindering heat transfer into the reactor. It is common to provide a reflux device to remove the product water.
  • the reflux device may include a water stripper column connected to the upper part of the reactor.
  • the gaseous product water introduced into the reflux device through the upper part of the reactor is liquefied again in the column, some reaction raw materials vaporized together with the product water are also liquefied together, and the mixed liquid generated in this process is separated by a separate facility, such as a bed separator. It can be separated into reaction raw material and product water through The separated reaction raw material can be recycled by being put back into the reactor, and the product water is discharged to the outside.
  • the generated water flow rate monitored in the present invention corresponds to the flow rate of the generated water discharged to the outside during this process, and the flow rate of the generated water can be monitored with a general facility used for flow rate measurement.
  • the flow rate of product water monitored in this step may mean substantially the entire amount of product water generated in each reactor.
  • the value can be selected by the person who intends to operate the process, and the operator considers the number and size of the reactor, and the composition ratio or amount of the diester-based composition to be finally obtained.
  • the flow rate of carboxylic acid and alcohol can be selected.
  • the flow rate of the dicarboxylic acid and alcohol does not have to be considered more, but when a plurality of reactors are connected in series, only a part of the dicarboxylic acid and alcohol initially input is transferred to the next reactor.
  • the amount of dicarboxylic acid and alcohol converted into Specifically, for the reactor after the second reactor, it can be monitored by calculating the flow rates of alcohol and dicarboxylic acid input through the conversion rate predicted from the preceding reactor.
  • the flow rate of dicarboxylic acid input to the first reactor is 100 kg/hr
  • the flow rate of alcohol is 200 kg/hr
  • the result of monitoring is that the flow rate of generated water in the first reactor measured is 50 kg/hr, and this formula to be described later If it is assumed that the predicted conversion rate in the first reactor calculated using 1 to 4 is 50%, the flow rate of dicarboxylic acid input to the second reactor is 50% of the first dicarboxylic acid flow rate 100 kg/hr converted and the remaining 50% 50kg/hr corresponding to, the alcohol flow rate input to the second reactor will be 100kg/hr remaining after 50% of the first alcohol input 200kg/hr flow rate is converted.
  • the expected conversion rate of each reactor can be obtained in the next step.
  • the molar ratio between the dicarboxylic acid and the alcohol may be 1:1.5 to 1:4, preferably 1:1.8 to 1:3.8, particularly preferably 1:1.9 to 1:3.5.
  • the weight ratio between the dicarboxylic acid and the alcohol may vary depending on the molecular weight of the dicarboxylic acid and the alcohol, but when the weight ratio is converted into a molar ratio, it is preferably within the above range. Since one molecule of dicarboxylic acid reacts with two molecules of alcohol, the entire amount of the input reaction raw material is converted into a reaction product, and the molar ratio between dicarboxylic acid and alcohol from the viewpoint that an excess of alcohol may be added for smooth reaction. is preferably within the above range, and there is an advantage that the error between the expected conversion rate and the actual conversion rate is particularly small when within the above range.
  • the expected conversion rate (EC) of the reactor can be calculated. Specifically, the larger the ratio of the flow rate of the product water to the feed flow rate of dicarboxylic acid and alcohol means that the reaction proceeds more, the flow rate ratio becomes a factor in determining the expected conversion rate.
  • the temperature and pressure in the reactor may shift the equilibrium of the reaction, and thus may act as factors determining the expected conversion rate in each reactor.
  • the expected conversion rate may be calculated through Equations 1 to 4:
  • FR is the ratio of the product water flow rate to the feed flow rate of dicarboxylic acid and alcohol (product water flow rate/feed flow rate),
  • P is the pressure in the reactor (kg/cm 2 g).
  • Equation 1 is an expression for calculating the expected conversion rate from the flow rate ratio
  • Equations 2 to 4 indicate that the coefficients or constants of Equation 1, A, B, and C, are values that change depending on the pressure in the reactor.
  • Equation 1 FR is a ratio of the flow rate of generated water generated in the reactor to the flow rate of dicarboxylic acid and alcohol feed, and is an indicator indicating how much generated water is generated compared to the combined flow rate of dicarboxylic acid and alcohol input to the reactor .
  • the inventor of the present invention found that the actual conversion rate is correlated with the result of a quadratic function using the FR value as a variable, and derived Equation 1 above.
  • Equation 2 to 4 were derived.
  • the step of controlling the temperature and pressure of the reactor so that the expected conversion rate calculated using the expected conversion value derived in the previous expected conversion calculation step approaches the target conversion rate may be performed later.
  • the specific value of the target conversion rate may vary depending on the composition components and composition ratios in the final composition desired by the person implementing the invention, the number or size of reactors, and specific process conditions actually applied, and the practitioner may
  • the pressure and/or temperature of each reactor may be adjusted in real time so that the value of the conversion rate approaches the target conversion rate.
  • Equation 1 For example, in the case of pressure control, as confirmed from Equations 2 to 4 above, the coefficient and constant in Equation 1 change depending on the pressure in the reactor, so the expected conversion rate is higher or lower by appropriately controlling the pressure. You can control it to
  • temperature control depending on whether the reaction is exothermic or endothermic or other reaction conditions, temperature control may lead to control of the conversion rate, and using this point, the temperature of each reactor can be adjusted so that the expected conversion rate approaches the target conversion rate. .
  • the temperature in the reactor may be 180 to 240°C, preferably 200 to 220°C.
  • the conversion rate control is easy, and there is an advantage in that the error between the expected conversion rate and the actual conversion rate is small.
  • the pressure in the reactor that is, P in Equations 1 to 4 may be 0.1 to 1.0 kg/cm 2 g, preferably 0.2 to 0.8 kg/cm 2 g.
  • P in Equations 1 to 4 may be 0.1 to 1.0 kg/cm 2 g, preferably 0.2 to 0.8 kg/cm 2 g.
  • the reaction control method of the present invention may further include the step (S4) of re-monitoring the changed feed flow rate and product water flow rate after controlling the temperature and pressure of the reactor.
  • the reaction control method of the present invention does not finish the control at once, but monitors the change according to the control result again, and uses the monitoring result as a basis for the control again to reduce the control error by repeating the control. .
  • the reaction control method of the present invention it is possible to repeatedly feed back the control result by going through the re-monitoring step, and accordingly, the reaction control can be performed with high accuracy.
  • the feed flow rate and the product water flow rate obtained as a result of the re-monitoring may be used as the variables of step S2, and accordingly, more accurate reaction control through the circulation of steps S2-S3-S4-S2 can be done
  • the continuous manufacturing process to which the reaction control method of the present invention can be applied may include one reactor, but preferably includes a plurality of reactors connected in series. This is because, as described above, it is difficult to achieve a sufficient conversion rate with only one reactor in a continuous process, but it does not mean that the present invention cannot be applied to a continuous production process having only one reactor, and even for one reactor Equations 1 to 4 can be effectively applied.
  • the dicarboxylic acid applicable to the reaction control method of the present invention may be at least one selected from the group consisting of phthalic acid, isophthalic acid, terephthalic acid and cyclohexane-1,4-dicarboxylic acid, and the alcohol may be a C4 to C12 alcohol. .
  • the advantage is that the error between the expected conversion and the actual conversion is particularly small when the dicarboxylic acids and alcohols are of this kind.
  • Terephthalic acid and 2-ethylhexanol were selected as reaction raw materials, and the effectiveness of the reaction control method of the present invention was confirmed through ASPEN PLUS, a simulation program. Specifically, the respective flow rates of terephthalic acid and 2-ethylhexanol were set to 13,000 kg/hr and 8,000 kg/hr, and when the ratio was converted into a molar ratio, it was set to 1:2. The flow rate of the product water was calculated from the conversion rate.
  • One CSTR reactor was used as the reactor, and how the actual conversion rate changes for a total of 20 examples with different pressures and temperatures, and in that case, the expected conversion rates calculated from Equations 1 to 4 are summarized in Table 1 below. did
  • the conversion rate of the reactor can be changed close to the target conversion rate through temperature and pressure control based on this.
  • whether the actual conversion rate approaches the target conversion rate as a result of temperature and pressure control can also be checked through monitoring after control and calculation of the expected conversion rate, so that continuous feedback on the process is possible simply by using the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 반응기 내로 투입되는 피드와 반응기 내에서 생성되는 생성수의 유량으로부터 반응의 전환율을 예상할 수 있고, 이를 통해 반응기의 전환율을 용이하게 제어할 수 있는 반응 제어 방법에 관한 것이다.

Description

디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법
관련 출원과의 상호 인용
본 출원은 2020년 6월 5일자 한국 특허 출원 제 10-2020-0068019호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 디에스테르계 조성물의 연속 제조 공정에서 반응기 내 전환율이 목표 전환율에 도달할 수 있도록 제어하는 방법에 관한 것이다.
프탈레이트계 가소제는 20세기까지 세계 가소제 시장의 92%를 차지하고 있었으며(Mustafizur Rahman and Christopher S.Brazel "The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges" Progress in Polymer Science 2004, 29, 1223-1248 참고), 주로 폴리염화비닐(이하, PVC라 함)에 유연성, 내구성, 내한성 등을 부여하고 용융 시 점도를 낮추어 가공성을 개선하기 위하여 사용되는 첨가물로서, PVC에 다양한 함량으로 투입되어 단단한 파이프와 같은 경질 제품에서부터 부드러우면서도 잘 늘어나 식품 포장재 및 혈액백, 바닥재 등에 사용될 수 있는 연질 제품에 이르기까지 그 어떤 재료보다도 실생활과 밀접한 연관성을 갖으며 인체와의 직접적인 접촉이 불가피한 용도로 널리 사용되고 있다.
그러나 프탈레이트계 가소제의 PVC와 상용성 및 뛰어난 연질 부여성에도 불구하고, 최근 프탈레이트계 가소제가 함유된 PVC 제품의 실생활 사용 시 제품 외부로 조금씩 유출되어 내분비계 장애(환경호르몬) 추정 물질 및 중금속 수준의 발암 물질로 작용할 수 있다는 유해성 논란이 제기되고 있다(N. R. Janjua et al. "Systemic Uptake of Diethyl Phthalate, Dibutyl Phthalate, and Butyl Paraben Following Whole-body Topical Application and Reproductive and Thyroid Hormone Levels in Humans" Environmental Science and Technology 2007, 41, 5564-5570 참조). 특히, 1960년대 미국에서 프탈레이트계 가소제 중 그 사용량이 가장 많은 디에틸헥실 프탈레이트(di-(2-ethylhexyl) phthalate, DEHP)가 PVC 제품 외부로 유출된다는 보고가 발표된 이후로 1990년대에 들어 환경호르몬에 대한 관심이 더해져 프탈레이트계 가소제의 인체 유해성에 대한 다양한 연구를 비롯하여 범 세계적인 환경규제가 이루어지기 시작하였다.
이에 많은 연구진들은 프탈레이트계 가소제 유출로 인한 환경호르몬 문제 및 환경규제에 대응하고자, 프탈레이트계 가소제 제조시 사용되는 무수프탈산이 배제된 새로운 비프탈레이트계 대체 가소제를 개발하거나 프탈레이트계 가소제의 유출을 억제하여 인체 위해성을 현저히 줄임은 물론 환경기준에도 부합할 수 있는 유출억제 기술을 개발하고자 연구를 진행해 나가고 있다.
한편, 비프탈레이트계 가소제로서, 테레프탈레이트계 가소제는 프탈레이트계 가소제와 물성적인 측면에서 동등 수준일 뿐만 아니라, 환경적 문제에서 자유로운 물질로 각광 받고 있으며, 다양한 종류의 테레프탈레이트계 가소제가 개발되고 있는 실정이며, 물성이 우수한 테레프탈레이트계 가소제를 개발하는 연구는 물론 이러한 테레프탈레이트계 가소제를 제조하기 위한 설비에 관한 연구도 활발하게 진행되고 있으며, 공정 설계의 측면에서 보다 효율적이고 경제적이며 간소한 공정의 설계가 요구되고 있다. 특히 기존의 회분식 반응기를 이용하던 공정에서 벗어나 연속 반응기를 이용함으로써 가소제 조성물의 제조가 연속적 및 효율적으로 수행될 수 있도록 하는 공정에 대한 연구가 활발하며, 연속 공정을 더욱 효율적 및 경제적으로 운전할 수 있는 방법에 대한 연구 역시 필요한 상황이다.
선행기술문헌
(특허문헌 1) 대한민국 등록특허공보 제10-1354141호
(비특허문헌 1) Mustafizur Rahman and Christopher S. Brazel "The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges" Progress in Polymer Science 2004, 29, 1223-1248
(비특허문헌 2) N. R. Janjua et al. "Systemic Uptake of Diethyl Phthalate, Dibutyl Phthalate, and Butyl Paraben Following Whole-body Topical Application and Reproductive and Thyroid Hormone Levels in Humans" Environmental Science and Technology 2007, 41, 5564-5570
본 발명은 디에스테르계 조성물의 연속 제조 공정에서 반응기로 투입되는 피드의 유량과 반응기 내에서 생성되는 생성수의 유량으로부터 반응기의 전환율을 간단히 예측하고, 예측된 전환율을 통해 제조 공정에서의 각 반응기 별 반응과 전체적인 반응을 제어할 수 있는 방법을 제공하고자 한다.
상기한 과제를 해결하기 위하여, 본 발명은 디카복실산과 알코올을 반응시켜 디에스테르계 조성물을 제조하는 디에스테르계 조성물의 연속 제조 공정에 있어서,
반응기로 투입되는 디카복실산 및 알코올의 피드 유량과 반응기 내에서 생성되는 생성수 유량을 모니터링하는 단계(S1), 모니터링 결과 얻어진 피드 유량 및 생성수 유량과 반응기 내 압력과 온도를 이용하여 반응기 내 예상 전환율을 계산하는 단계(S2) 및 계산된 예상 전환율이 목표 전환율에 가까워지도록 반응기의 온도 및 압력을 제어하는 단계(S3)를 포함하는 디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법을 제공한다.
또한, 본 발명은 상기 반응 제어 방법에 있어서, 상기 예상 전환율은 하기 수학식 1 내지 4를 통해 계산되는 것인 반응 제어 방법을 제공한다:
[수학식 1]
EC = A*FR2 + B*FR+C
[수학식 2]
A = 7.365P + 10.415
[수학식 3]
B = -1.3163P + 19.461
[수학식 4]
C = 0.0609P + 0.0435
상기 수학식 1 내지 4에서,
EC는 예상 전환율이고,
FR은 디카복실산 및 알코올의 피드 유량에 대한 생성수 유량의 비(생성수 유량/피드 유량)이며,
P는 반응기 내 압력(kg/cm2g)이다.
본 발명의 반응 제어 방법을 이용할 경우, 디에스테르계 조성물의 연속 제조 공정, 특히 복수 개의 반응기가 직렬 연결되어 각 반응기에서의 공정 변수 제어가 중요한 경우에 있어서, 최초 투입 시의 피드 유량과 반응기 내에서 생성되는 생성수의 유량으로부터 손쉽게 반응기의 전환율을 제어할 수 있고, 이에 따라 전제적인 공정에서의 반응 제어 및 최적화가 가능하게 할 수 있다. 또한 복수 개의 반응기가 직렬 연결된 경우, 각 반응기에서의 목표 전환율을 적절하게 설정함으로써 불필요하게 손실되는 에너지 또는 원료를 최소화하여 친환경적이면서도 경제적인 공정 운전이 가능하게끔 할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
프탈레이트계 가소제로 예시될 수 있는 에스테르계 가소제 화합물들은 종래 회분식 반응기를 통해 제조되는 것이 일반적이었다. 구체적으로, 회분식 반응기에 반응 원료가 되는 카복실산과 알코올 전량을 완전히 반응기로 투입시킨 후, 추가 반응 원료의 투입 없이 목적하는 최종 전환율에 이르기까지 반응을 수행시켰으며, 최종 제품에 해당하는 가소제 조성물은 비-연속적으로 1회에 전량 수득되었다.
이와 같은 종래 방법의 경우, 안정적으로 1회에 다량의 가소제 조성물을 수득할 수 있는 장점이 있었으나, 반응 종료 이후 반응기의 수세 등을 비롯한 추가 처리가 필요하기 때문에 반응기가 실제로 가동되지 못하는 시간이 많았으며, 이에 따라 실제 공정 설비를 100%로 가동시키지 못한다는 단점이 있었다. 따라서, 기존의 회분식 반응기를 이용한 비-연속 제조 공정을 더욱 효율적인 연속 제조 공정으로 변경하여야 할 필요성이 있었다.
다만, 1개의 반응기를 통해 연속 제조 공정을 구현할 경우 충분한 전환율을 달성할 수 없기 때문에 연속 제조 공정에서는 복수 개의 반응기를 직렬 연결하여 사용하여야 한다. 그러나 복수 개의 반응기를 직렬 연결하여 사용하는 경우에는 각 반응기 별로 적절한 반응 조건을 만들어 주어야 하고, 각 반응기에서의 전환율 역시 적절하게 제어하여야만 최종적으로 제조되는 가소제 조성물의 우수한 물성을 확보할 수 있기 때문에, 공정 운전의 난이도가 높고, 최적의 공정 조건을 찾기까지 많은 시행착오를 거쳐야 하는 또 다른 문제점이 존재하였다.
이러한 문제점에 착안하여 연구한 결과, 본 발명의 발명자는 연속 제조 공정 운전 시 운전자가 쉽게 확인하고 제어할 수 있는 피드 및 생성수의 유량으로부터 반응기 내 전환율을 작은 오차로 예측할 수 있고, 예측된 전환율을 이용하여 반응기의 전환율을 실제 목표하는 값에 가깝게 제어할 수 있는 본 발명을 완성하였다.
구체적으로, 반응기로 투입되는 디카복실산 및 알코올의 피드 유량과 반응기 내에서 생성되는 생성수 유량을 모니터링하는 단계(S1), 모니터링 결과 얻어진 피드 유량 및 생성수 유량과 반응기 내 압력과 온도를 이용하여 반응기 내 예상 전환율을 계산하는 단계(S2) 및 계산된 예상 전환율이 목표 전환율에 가까워지도록 반응기의 온도 및 압력을 제어하는 단계(S3)를 포함하는 디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법을 제공한다.
이하에서, 본 발명의 반응 제어 방법을 단계 별로 나누어 설명한다.
모니터링 단계(S1)
본 발명을 이용하여 전환율을 제어하기 위해서는 가장 먼저 반응기로 투입되는 피드, 즉 디카복실산과 알코올의 유량과 해당 반응기에서 생성되는 생성수의 유량을 모니터링하여야 한다. 본 단계에서 확인된 디카복실산, 알코올 및 생성수의 유량은 이후 단계에서 반응기의 전환율을 예측하는 것에 중요한 인자가 된다.
구체적으로 생성수 유량의 경우, 반응기에 구비된 환류 장치를 통해 모니터링할 수 있다. 디카복실산과 알코올 사이의 에스테르화 반응은 부산물로 물을 형성하고, 에스테르화 반응이 수행되는 온도는 물의 끓는점보다 높은 온도이기 때문에 반응 도중 지속적으로 기체 상태의 생성수가 발생된다. 이러한 생성수는 반응에 참여하지는 않지만, 반응기 내부로의 열전달을 방해하는 요인이 되기 때문에 반응기 내부로부터 제거될 필요가 있고, 기체 상태의 생성수, 즉 수증기는 반응기의 상부에 위치하기 때문에 반응기 상부에 환류 장치를 구비하여 생성수를 제거하는 것이 일반적이다.
상기 환류 장치로는 공정 기술 분야에서 흔히 적용되는 것들을 사용할 수 있다. 예컨대, 상기 환류 장치는 반응기 상부와 연결된 워터 스트리퍼 칼럼을 포함하는 것일 수 있다. 반응기 상부를 통해 환류 장치로 유입된 기체 상태의 생성수는 칼럼에서 다시 액화되고, 생성수와 함께 기화된 일부 반응 원료들도 함께 액화되며, 이 과정에서 생성된 혼합 액체는 별도 설비, 예컨대 층분리기를 통해 반응 원료와 생성수로 분리될 수 있다. 분리된 반응 원료는 다시 반응기로 투입되어 재활용할 수 있고, 생성수는 외부로 배출되게 된다. 본 발명에서 모니터링하는 생성수 유량은 이 과정 중 외부로 배출되는 생성수의 유량에 해당하며, 유량 측정에 사용되는 일반적인 설비로 상기 생성수 유량을 모니터링할 수 있다.
한편, 생성수 중 일부는 기화되지 않고 반응기에 잔존하거나 반응 원료 및 반응 생성물과 함께 다음 반응기로 이송되어 외부로 유출되지 않을 수 있으나, 반응이 수행되는 온도는 물의 끓는점보다 상당 수준 높은 온도이기 때문에 외부로 유출되지 않는 생성수의 양은 실질적으로 매우 미미하다. 따라서, 본 단계에서 모니터링하는 생성수 유량은 실질적으로 각 반응기에서 생성되는 생성수의 전량을 의미하는 것일 수 있다.
알코올과 디카복실산 유량의 경우, 공정을 운전하려는 자가 선택할 수 있는 값으로, 운전자는 반응기의 개수, 크기, 최종적으로 수득하고자 하는 디에스테르계 조성물의 조성비나 양 등을 고려하여, 반응기로 투입되는 디카복실산과 알코올의 유량을 선택할 수 있다.
반응기가 1개일 때, 상기 디카복실산과 알코올의 유량은 더 고려할 요소가 없으나, 복수 개의 반응기가 직렬 연결된 경우에 대해서는 최초로 투입된 디카복실산과 알코올 중 일부만이 다음 반응기로 이송되기 때문에 전단 반응기에서 반응하여 생성물로 전환된 디카복실산과 알코올의 양을 추가로 고려하여야 한다. 구체적으로, 2번째 반응기 이후의 반응기에 대해서는, 그 전단 반응기로부터 예측된 전환율을 통해 투입되는 알코올과 디카복실산의 유량을 계산하여 모니터링 할 수 있다.
예컨대, 첫 번째 반응기로 투입되는 디카복실산의 유량이 100kg/hr이고, 알코올의 유량은 200kg/hr이며, 모니터링 결과 측정된 첫 번째 반응기에서의 생성수 유량이 50kg/hr이고, 이와 후술할 수학식 1 내지 4을 이용하여 계산된 첫 번째 반응기에서의 예측 전환율이 50%라고 가정한다면, 두 번째 반응기로 투입되는 디카복실산의 유량은 최초로 투입된 디카복실산 유량 100kg/hr 중 50%가 전환되고 남은 50%에 해당하는 50kg/hr, 두 번째 반응기로 투입되는 알코올 유량은 최초로 투입된 알코올 유량 200kg/hr 중 50%가 전환되고 남은 100kg/hr일 것이다.
상기에서 예상한 각 반응기로 투입되는 디카복실산 및 알코올 유량과 반응기로부터 생성되어 배출되는 생성수 유량을 이용하여, 다음 단계에서 각 반응기의 예상 전환율을 구할 수 있다.
한편 디카복실산과 알코올 사이의 몰 비는 1:1.5 내지 1:4일 수 있고, 바람직하게는 1:1.8 내지 1:3.8, 특히 바람직하게는 1:1.9 내지 1:3.5일 수 있다. 상기 디카복실산과 알코올 사이의 중량비는 디카복실산과 알코올의 분자량에 따라 달라질 수 있겠으나, 그 중량비를 몰 비로 환산하였을 때에는 상기 범위인 것이 바람직하다. 1 분자의 디카복실산은 2 분자의 알코올과 반응하기 때문에, 투입되는 반응 원료 전량이 반응 생성물로 전환되며, 반응의 원활한 진행을 위해 알코올이 과량 투입될 수 있다는 관점에서 디카복실산과 알코올 사이의 몰 비는 상기 범위인 것이 바람직하며, 상기 범위 내일 때 예상 전환율과 실제 전환율 사이의 오차가 특히 작다는 이점이 있다.
예상 전환율 계산 단계(S2)
상기 모니터링 단계에서 확인한 디카복실산, 알코올 및 생성수의 유량과 반응기 내 온도와 압력으로부터, 해당 반응기의 예상 전환율(EC)을 계산할 수 있다. 구체적으로, 디카복실산 및 알코올의 피드 유량에 대한 생성수 유량의 비가 클수록 반응이 더욱 많이 진행되었음을 의미하므로, 상기 유량비는 예상 전환율을 결정하는 한 인자가 된다. 또한 반응기 내 온도와 압력은 반응의 평형을 이동시킬 수 있으므로 각 반응기 내에서의 예상 전환율을 결정하는 인자로 작용할 수 있다.
더욱 구체적으로, 상기 예상 전환율은 하기 수학식 1 내지 4를 통해 계산되는 것일 수 있다:
[수학식 1]
EC = A*FR2 + B*FR+C
[수학식 2]
A = 7.365P + 10.415
[수학식 3]
B = -1.3163P + 19.461
[수학식 4]
C = 0.0609P + 0.0435
상기 수학식 1 내지 4에서,
EC는 예상 전환율이고,
FR은 디카복실산 및 알코올의 피드 유량에 대한 생성수 유량의 비(생성수 유량/피드 유량)이며,
P는 반응기 내 압력(kg/cm2g)이다.
상기 수학식 1은 유량비로부터 예상 전환율을 계산하기 위한 식이며, 상기 수학식 2 내지 4는 수학식 1의 계수 또는 상수인 A, B 및 C 값이 반응기 내 압력에 따라 변화하는 값임을 나타낸 것이다.
수학식 1에서, FR은 디카복실산 및 알코올 피드의 유량에 대한 반응기 내에서 생성된 생성수 유량의 비로, 반응기로 투입되는 디카복실산과 알코올의 합산 유량 대비 어느 정도의 생성수가 생성되었는 지를 나타내는 지표이다. 본 발명의 발명자는 실제 전환율이 상기 FR 값을 변수로 하는 이차 함수 결과값과 상관성이 있음을 발견하여 상기 수학식 1을 도출하였다. 또한, 상기 수학식 1에서의 계수 및 상수는 반응기 내 압력에 따라 달라짐으로부터, 수학식 2 내지 4를 도출하였다.
상기 수학식 1 내지 4를 이용하여 예상 전환율을 계산할 경우, 실제 전환율과 매우 가까운 예상 전환율 값이 도출되며, 이를 통해 각 반응기에서의 전환율을 제어할 수 있다.
전환율 제어 단계(S3)
앞선 예상 전환율 계산 단계에서 도출된 예상 전환율 값을 이용하여 계산된 예상 전환율이 목표 전환율에 가까워지도록 반응기의 온도 및 압력을 제어하는 단계가 이후 수행될 수 있다.
목표 전환율의 구체적인 값은 발명을 실시하는 자가 목적하는 최종 조성물에서의 조성 성분 및 조성비, 반응기의 개수나 크기, 실제 적용되는 구체적인 공정 조건에 따라 달라질 수 있으며, 실시자는 앞선 단계에서 실시간으로 도출되는 예상 전환율의 값이 목표 전환율에 가까워지도록 각 반응기의 압력 및/또는 온도를 실시간 조절할 수 있다.
예컨대, 압력 조절의 경우 앞선 수학식 2 내지 4로부터 확인하였듯이, 반응기 내 압력에 따라 수학식 1에서의 계수 및 상수가 달라지게 되므로, 압력을 적절하게 제어함으로써 예상 전환율이 더 높아지거나, 더 낮아지게끔 제어할 수 있다.
온도 조절의 경우, 반응의 발열 또는 흡열 여부나 기타 다른 반응 조건에 따라 온도 조절이 전환율의 조절로 이어질 수 있고, 이러한 점을 이용하여 예상 전환율이 목표 전환율에 가까워지도록 각 반응기의 온도를 조절할 수 있다.
본 단계 중 각 반응기의 온도와 압력을 조절하는 경우나 최초로 반응기의 온도와 압력을 설정하는 경우에 있어서, 반응기 내 온도는 180 내지 240℃일 수 있고, 바람직하게는 200 내지 220℃일 수 있다. 상술한 범위 내의 온도가 적용될 때 전환율 제어가 용이하면서도 예상 전환율과 실제 전환율 사이의 오차가 적다는 장점이 있다.
또한, 반응기 내 압력, 즉 수학식 1 내지 4에서의 P는 0.1 내지 1.0kg/cm2g일 수 있고, 바람직하게는 0.2 내지 0.8kg/cm2g일 수 있다. 온도의 경우와 마찬가지로, 상술한 범위 내의 압력이 적용될 때 전환율 제어가 용이하면서도 예상 전환율과 실제 전환율 사이의 오차가 적다는 장점이 있다.
재모니터링 단계(S4)
본 발명의 반응 제어 방법은 반응기의 온도 및 압력 제어 이후 변화된 피드 유량 및 생성수 유량을 재모니터링하는 단계(S4)를 더 포함할 수 있다.
본 발명의 반응 제어 방법은 1회에 제어를 마무리하는 것이 아니라, 제어 결과에 따른 변화를 다시 모니터링하고, 그 모니터링 결과를 다시 제어를 위한 바탕으로 삼아 제어를 반복함으로써 제어의 오차를 줄이는 것일 수 있다.
구체적으로, 앞선 단계를 통해 계산된 예상 전환율을 이용하여 각 반응기 별 온도와 압력을 제어하였다고 하더라도, 바로 각 반응기 별 전환율이 목표 전환율에 근사하게 되는 것은 아니다. 따라서, 본 발명의 반응 제어 방법에서는 상기 재모니터링 단계를 거침으로써 제어 결과를 반복적으로 피드백할 수 있게 되고, 그에 따라 높은 정확도로 반응 제어를 수행할 수 있다.
본 재모니터링 단계에 있어서, 재모니터링 결과 얻어진 피드 유량 및 생성수 유량은 S2 단계의 변수로 사용되는 것일 수 있고, 이에 따라, S2-S3-S4-S2 단계의 순환을 통해 더욱 정확도 높은 반응 제어를 수행할 수 있다.
본 발명의 반응 제어 방법이 적용될 수 있는 연속 제조 공정은 1개의 반응기를 구비한 것일 수도 있으나, 바람직하게는 직렬 연결된 복수 개의 반응기를 구비한 것이다. 이는 앞서 설명한 바와 같이, 연속 공정에서 1개의 반응기만으로 충분한 전환율을 달성하기 어렵다는 점 때문이나, 본 발명이 1개의 반응기만을 구비한 연속 제조 공정에 적용될 수 없음을 의미하는 것은 아니며, 1개의 반응기에 대해서도 수학식 1 내지 4가 유효하게 적용될 수 있다.
본 발명의 반응 제어 방법에 적용될 수 있는 디카복실산은 프탈산, 이소프탈산, 테레프탈산 및 사이클로헥산-1,4-디카복실산으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 알코올은 C4 내지 C12 알코올일 수 있다. 디카복실산과 알코올이 이러한 종류일 때 예상 전환율과 실제 전환율 사이의 오차가 특히 적다는 이점이 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위를 한정하기 위한 것이 아니다.
실시예 1 내지 20
반응 원료로는 테레프탈산과 2-에틸헥산올을 선택하였으며, 시뮬레이션 프로그램인 ASPEN PLUS를 통해 본 발명의 반응 제어 방법이 유효성을 가짐을 확인하였다. 구체적으로, 테레프탈산과 2-에틸헥산올의 각 유량은 13,000kg/hr과 8,000kg/hr으로 설정하였으며, 그 비율을 몰 비로 환산하였을 때 1:2가 되도록 하였다. 생성수의 유량은 전환율로부터 계산하였다. 반응기로는 1개의 CSTR 반응기를 사용하였으며, 압력과 온도를 달리한 총 20개의 실시예에 대해 실제 전환율이 어떻게 달라지는 지와 그 경우 수학식 1 내지 4로부터 계산되는 예상 전환율을 구하여 하기 표 1로 정리하였다.
반응 압력
(kg/cm2g)
유량비 및 전환율 반응 온도(℃)
200 205 210 215 220
0.8 실시예 번호 1 2 3 4 5
유량비
(생성수/피드)
0.04274 0.04704 0.05103 0.05470 0.05804
실제 전환율(%) 52.401 57.072 61.465 65.553 69.309
예상 전환율(%) 52.415 57.088 61.479 65.565 69.324
전환율 차이 0.014 0.016 0.014 0.012 0.015
0.6 실시예 번호 6 7 8 9 10
유량비
(생성수/피드)
0.04309 0.04733 0.05127 0.05491 0.05821
실제 전환율(%) 52.426 57.089 61.478 65.566 69.318
예상 전환율(%) 52.435 57.102 61.489 65.576 69.331
전환율 차이 0.009 0.013 0.011 0.010 0.013
0.4 실시예 번호 11 12 13 14 15
유량비
(생성수/피드)
0.04343 0.04761 0.05151 0.05511 0.05838
실제 전환율(%) 52.446 57.104 61.497 65.578 69.326
예상 전환율(%) 52.455 57.115 61.507 65.587 69.337
전환율 차이 0.009 0.011 0.010 0.009 0.011
0.2 실시예 번호 16 17 18 19 20
유량비
(생성수/피드)
0.04377 0.04789 0.05175 0.05530 0.05855
실제 전환율(%) 52.468 57.122 61.511 65.586 69.335
예상 전환율(%) 52.479 57.135 61.521 65.596 69.346
전환율 차이 0.011 0.013 0.010 0.010 0.011
상기 표 1에서 확인할 수 있는 바와 같이, 본 발명의 수학식 1 내지 4를 통해 계산된 예상 전환율은 실제 전환율과 비교하여 거의 유사한 값을 나타내었으며, 그 오차 범위 역시 0.01% 수준에 불과하여 높은 정확성으로 반응기의 전환율을 예상할 수 있음을 확인하였다.
따라서, 본 발명을 통해 전환율을 예상한 후, 이를 기반으로 하여 온도 및 압력 제어를 통해 반응기의 전환율을 목표 전환율에 가깝게 변화시킬 수 있다. 또한, 온도 및 압력 제어의 결과 실제 전환율이 목표 전환율에 가까워졌는 지 역시 제어 이후의 모니터링 및 예상 전환율 계산을 통해 확인할 수 있어, 본 발명을 이용할 경우 간단하게 공정에 대한 연속적인 피드백이 가능하다.

Claims (12)

  1. 디카복실산과 알코올을 반응시켜 디에스테르계 조성물을 제조하는 디에스테르계 조성물의 연속 제조 공정에 있어서,
    반응기로 투입되는 디카복실산 및 알코올의 피드 유량과 반응기 내에서 생성되는 생성수 유량을 모니터링하는 단계(S1);
    모니터링 결과 얻어진 피드 유량 및 생성수 유량과 반응기 내 압력과 온도를 이용하여 반응기 내 예상 전환율을 계산하는 단계(S2); 및
    계산된 예상 전환율이 목표 전환율에 가까워지도록 반응기의 온도 및 압력을 제어하는 단계(S3);를 포함하는 디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법.
  2. 제1항에 있어서,
    상기 예상 전환율은 하기 수학식 1 내지 4를 통해 계산되는 것인 반응 제어 방법:
    [수학식 1]
    EC = A*FR2 + B*FR+C
    [수학식 2]
    A = 7.365P + 10.415
    [수학식 3]
    B = -1.3163P + 19.461
    [수학식 4]
    C = 0.0609P + 0.0435
    상기 수학식 1 내지 4에서,
    EC는 예상 전환율이고,
    FR은 디카복실산 및 알코올의 피드 유량에 대한 생성수 유량의 비(생성수 유량/피드 유량)이며,
    P는 반응기 내 압력(kg/cm2g)이다.
  3. 제1항에 있어서,
    반응기의 온도 및 압력 제어 이후 변화된 피드 유량 및 생성수 유량을 재모니터링하는 단계(S4);를 더 포함하는 반응 제어 방법.
  4. 제3항에 있어서,
    재모니터링 결과 얻어진 피드 유량 및 생성수 유량을 S2 단계의 변수로 사용하는 것인 반응 제어 방법.
  5. 제1항에 있어서,
    디카복실산과 알코올 사이의 몰 비는 1:1.5 내지 1:4인 반응 제어 방법.
  6. 제1항에 있어서,
    상기 연속 제조 공정은 직렬 연결된 복수 개의 반응기를 구비하는 것인 반응 제어 방법.
  7. 제1항에 있어서,
    상기 반응기 내 온도는 180 내지 240℃인 반응 제어 방법.
  8. 제7항에 있어서,
    상기 반응기 내 온도는 200 내지 220℃인 반응 제어 방법.
  9. 제2항에 있어서,
    상기 P는 0.1 내지 1.0kg/cm2g인 반응 제어 방법.
  10. 제9항에 있어서,
    상기 P는 0.2 내지 0.8kg/cm2g인 반응 제어 방법.
  11. 제1항에 있어서,
    상기 디카복실산은 프탈산, 이소프탈산, 테레프탈산 및 사이클로헥산-1,4-디카복실산으로 이루어진 군에서 선택되는 1종 이상인 반응 제어 방법.
  12. 제1항에 있어서,
    상기 알코올은 C4 내지 C12 알코올인 반응 제어 방법.
PCT/KR2021/006961 2020-06-05 2021-06-03 디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법 WO2021246809A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180005057.9A CN114341097A (zh) 2020-06-05 2021-06-03 用于控制二酯类组合物的连续生产过程中的反应的方法
JP2022518289A JP2022548988A (ja) 2020-06-05 2021-06-03 ジエステル系組成物の連続製造工程での反応制御方法
EP21818350.7A EP3998249A4 (en) 2020-06-05 2021-06-03 REACTION CONTROL METHOD FOR A CONTINUOUS PREPARATION PROCESS OF A DIESTER BASED COMPOSITION
US17/639,031 US20220402853A1 (en) 2020-06-05 2021-06-03 Method for Controlling Reaction in Continuous Production Process of Diester-Based Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0068019 2020-06-05
KR20200068019 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021246809A1 true WO2021246809A1 (ko) 2021-12-09

Family

ID=78831252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006961 WO2021246809A1 (ko) 2020-06-05 2021-06-03 디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법

Country Status (6)

Country Link
US (1) US20220402853A1 (ko)
EP (1) EP3998249A4 (ko)
JP (1) JP2022548988A (ko)
KR (1) KR20210151703A (ko)
CN (1) CN114341097A (ko)
WO (1) WO2021246809A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306936A (ja) * 1989-05-22 1990-12-20 Kao Corp 自動エステル化方法
JPH06247899A (ja) * 1993-02-26 1994-09-06 Mitsubishi Kasei Corp テレフタル酸の連続エステル化方法
CN203971948U (zh) * 2014-06-17 2014-12-03 何小艳 一种新型酯化反应专用反应釜
KR101663586B1 (ko) * 2016-04-28 2016-10-10 애경유화주식회사 차별화 된 반응 온도 제어를 이용하여 반응 전환 속도를 높인 디옥틸테레프탈레이트의 제조방법
CN107032985A (zh) * 2017-04-07 2017-08-11 苏州安利化工有限公司 加快酯化反应方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813785B2 (ja) * 1987-09-11 1996-02-14 東洋紡績株式会社 エステル化方法
JP2007153814A (ja) * 2005-12-06 2007-06-21 Mitsubishi Chemicals Corp ジカルボン酸ジエステルの製造方法
KR101354141B1 (ko) 2011-03-08 2014-01-27 한화케미칼 주식회사 나노브러쉬형 친환경 대체가소제 화합물 및 단일반응기 공정을 이용한 이의 제조방법
TWI466863B (zh) * 2013-03-21 2015-01-01 Chang Chun Plastics Co Ltd 對苯二甲酸二(2-乙基己酯)之製造方法
WO2016046120A1 (de) * 2014-09-24 2016-03-31 Basf Se Verfahren zur herstellung von terephthalsäurediestern mit rückalkohol-anreicherung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306936A (ja) * 1989-05-22 1990-12-20 Kao Corp 自動エステル化方法
JPH06247899A (ja) * 1993-02-26 1994-09-06 Mitsubishi Kasei Corp テレフタル酸の連続エステル化方法
CN203971948U (zh) * 2014-06-17 2014-12-03 何小艳 一种新型酯化反应专用反应釜
KR101663586B1 (ko) * 2016-04-28 2016-10-10 애경유화주식회사 차별화 된 반응 온도 제어를 이용하여 반응 전환 속도를 높인 디옥틸테레프탈레이트의 제조방법
CN107032985A (zh) * 2017-04-07 2017-08-11 苏州安利化工有限公司 加快酯化反应方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MUSTAFIZUR RAHMANCHRISTOPHER S. BRAZEL: "The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges", PROGRESS IN POLYMER SCIENCE, vol. 29, 2004, pages 1223 - 1248, XP002711921, DOI: 10.1016/J.PROGPOLYMSCI.2004.10.001
N. R. JANJUA ET AL.: "Systemic Uptake of Diethyl Phthalate, Dibutyl Phthalate, and Butyl Paraben Following Whole-body Topical Application and Reproductive and Thyroid Hormone Levels in Humans", ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 41, 2007, pages 5564 - 5570
See also references of EP3998249A4

Also Published As

Publication number Publication date
KR20210151703A (ko) 2021-12-14
US20220402853A1 (en) 2022-12-22
CN114341097A (zh) 2022-04-12
JP2022548988A (ja) 2022-11-22
EP3998249A1 (en) 2022-05-18
EP3998249A4 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
WO2019050281A1 (ko) 에스터 조성물의 제조 시스템 및 이를 이용한 에스터 조성물의 제조 방법
WO2020204558A1 (ko) 에스터계 조성물의 제조방법 및 제조 시스템
WO2014204055A1 (ko) 연속식 고상중합 장치 및 방법
WO2011081385A2 (ko) 트리클로로실란의 정제 방법 및 정제 장치
WO2016047955A1 (ko) 염화비닐계 중합체 및 이의 제조방법
WO2021246809A1 (ko) 디에스테르계 조성물의 연속 제조 공정에서의 반응 제어 방법
WO2018056666A1 (ko) 복합 가소제 조성물, 이의 제조방법, 및 이를 이용한 고분자 수지 조성물
WO2020204555A1 (ko) 에스터계 조성물의 제조 시스템 및 방법
WO2017074055A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2021002707A1 (ko) 열교환 시스템 및 이를 포함하는 디에스터계 조성물 제조 시스템
WO2020130255A1 (ko) 방향족 비닐 화합물-비닐시안 화합물 중합체의 제조방법 및 제조장치
WO2021002700A1 (ko) 디에스터계 물질의 연속식 제조방법
WO2020251266A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2013070043A1 (ko) 트리할로실란의 정제 장치
WO2021002705A1 (ko) 디에스터계 물질의 제조 유닛 및 이를 포함하는 디에스터계 물질의 제조 시스템
WO2021002702A1 (ko) 디에스터계 물질의 제조 유닛 및 이를 포함하는 디에스터계 물질의 제조 시스템
WO2021060749A1 (ko) 디에스터계 조성물의 제조 시스템 및 제조방법
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020111475A1 (ko) 가압 구간을 포함하는 테레프탈레이트계 조성물의 제조방법
WO2019112293A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2019132210A1 (ko) 사이클로도데센의 제조 방법 및 이의 합성 장치
WO2022108050A1 (ko) 디에스터계 물질의 제조방법
WO2023090634A1 (ko) 송전선용 고내열성 알루미늄 합금 도체 및 그 제조 방법
WO2022108051A1 (ko) 디에스터계 화합물의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021818350

Country of ref document: EP

Effective date: 20220214

ENP Entry into the national phase

Ref document number: 2022518289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE