WO2021246091A1 - Inspection device, component mounting system, and substrate manufacturing method - Google Patents

Inspection device, component mounting system, and substrate manufacturing method Download PDF

Info

Publication number
WO2021246091A1
WO2021246091A1 PCT/JP2021/016757 JP2021016757W WO2021246091A1 WO 2021246091 A1 WO2021246091 A1 WO 2021246091A1 JP 2021016757 W JP2021016757 W JP 2021016757W WO 2021246091 A1 WO2021246091 A1 WO 2021246091A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
identification information
mounting
unit
position detection
Prior art date
Application number
PCT/JP2021/016757
Other languages
French (fr)
Japanese (ja)
Inventor
正宏 木原
敬明 横井
昌弘 谷口
利彦 永冶
勝彦 赤坂
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022528490A priority Critical patent/JPWO2021246091A1/ja
Priority to CN202180039366.8A priority patent/CN115669256A/en
Publication of WO2021246091A1 publication Critical patent/WO2021246091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present disclosure relates to an inspection device for inspecting parts mounted on a substrate, a component mounting system including this inspection device, and a substrate manufacturing method using this component mounting system.
  • a component mounting system equipped with a component mounting device that holds (picks up) a component by a mounting head and mounts the component on a board and an inspection device that receives a board on which the component is mounted by the component mounting device and inspects the component is known.
  • the component mounting device detects the position of the component held by the mounting head as the holding component position, and mounts the component on the substrate based on the detected position of the holding component.
  • the inspection device detects the position of the component mounted on the board as the mounting component position, and based on the amount of positional deviation from the detected mounting component position reference position (target mounting coordinate set on the board). It is designed to judge the quality of the mounted state.
  • the amount of misalignment calculated by the inspection device is fed back to the component mounting device and used to correct the operating parameters of the mounting head when the component mounting device mounts the component on the substrate (see, for example, Patent Document 1 below). .
  • the inspection device of one aspect of the present disclosure is an inspection device that inspects a component mounted on a substrate, and includes a mounted component position detecting unit that detects the position of the component mounted on the board as a mounted component position, and the above-mentioned.
  • the position deviation amount calculation unit that calculates the position deviation amount of the mounting component position from the predetermined reference position detected by the mounting component position detection unit and the position deviation amount calculated by the position deviation amount calculation unit.
  • the first identification information which is the identification information of the component position detection method used when the mounting component position is detected by the mounting component position detecting unit and the quality determining unit that determines the quality of the mounting state of the component based on the above.
  • a first output unit that outputs the misalignment amount calculated by the misalignment amount calculation unit.
  • the component mounting system of another aspect of the present disclosure inspects a component mounting device that holds a component by a mounting head and mounts the held component on a substrate, and the component mounted on the substrate by the component mounting device.
  • a component mounting system including an inspection device for mounting, wherein the inspection device is provided with a mounting component position detection unit that detects the position of the component mounted on the substrate as a mounting component position, and a mounting component position detection unit.
  • the mounting of the component is based on the misalignment amount calculation unit that calculates the amount of misalignment of the detected mounting component position from the predetermined reference position and the misalignment amount calculated by the misalignment amount calculation unit.
  • the quality determination unit for determining the quality of the state, the first identification information which is the identification information of the component position detection method used when the mounting component position is detected by the mounting component position detecting unit, and the misalignment amount calculation.
  • a first output unit for outputting the position deviation amount calculated by the unit is provided.
  • Another aspect of the substrate manufacturing method of the present disclosure is a board manufacturing method for manufacturing a mounting board on which a component is mounted on the board, the component holding step of holding the component by a mounting head, and the component holding step of the component holding step.
  • the holding part position detection process that detects the position of the part held by the mounting head as the holding part position
  • the holding part position detection step that detects the part held by the mounting head.
  • a component mounting step of operating the mounting head to mount the component on the board a mounting component position detection step of detecting the position of the component mounted on the board as the mounting component position by the component mounting process, and a mounting component position.
  • the part is based on the position deviation calculation step of calculating the position deviation amount of the mounted component position detected in the detection step from the predetermined reference position and the position deviation amount calculated in the position deviation amount calculation step.
  • the first identification information which is the identification information of the component position detection method used when the mounting component position is detected
  • the position deviation amount calculation step which determines the quality of the mounting state.
  • the component position detection used when the first output step for outputting the misalignment amount and the first identification information output in the first output step are used when the holding component position is detected in the holding component position detection step.
  • the operation parameter is corrected, the component is mounted on the substrate by using the corrected operation parameter.
  • Another aspect of the substrate manufacturing method of the present disclosure is a board manufacturing method for manufacturing a mounting board on which a component is mounted on the board, the component holding step of holding the component by a mounting head, and the component holding step of the component holding step.
  • the holding part position detection process that detects the position of the part held by the mounting head as the holding part position
  • the holding part position detection step that detects the part held by the mounting head.
  • a component mounting step of operating the mounting head to mount the component on the board a mounting component position detection step of detecting the position of the component mounted on the board as the mounting component position by the component mounting process, and a mounting component position.
  • the part is based on the position deviation calculation step of calculating the position deviation amount of the mounted component position detected in the detection step from the predetermined reference position and the position deviation amount calculated in the position deviation amount calculation step.
  • the first identification information which is the identification information of the component position detection method used when the mounting component position is detected, and the position deviation amount calculation step, which determines the quality of the mounting state.
  • the operation parameter is corrected by using the correction value obtained based on the position shift amount calculated in the position shift amount calculation step.
  • the component mounting step when the operation parameter is corrected in the correction process, the component is mounted on the substrate by using the corrected operation parameter.
  • FIG. 1 is a configuration diagram of a component mounting system according to the first embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a component mounting device constituting the component mounting system according to the first embodiment of the present disclosure.
  • FIG. 3 is a block diagram showing a control system of the component mounting device according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram showing an example of a component position detection method used by the component mounting system according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram showing an example of mounting data stored in the component mounting device according to the first embodiment of the present disclosure.
  • FIG. 6 is a perspective view of an inspection device constituting the component mounting system according to the first embodiment of the present disclosure.
  • FIG. 7 is a block diagram showing a control system of the inspection device according to the first embodiment of the present disclosure.
  • FIG. 8 is a diagram showing an example of inspection reference data stored in the inspection apparatus according to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating the amount of misalignment of parts calculated by the inspection device according to the first embodiment of the present disclosure.
  • FIG. 10 is a diagram showing an example of misalignment amount data output by the inspection device according to the first embodiment of the present disclosure.
  • FIG. 11 is a block diagram showing a control system of the management device according to the first embodiment of the present disclosure.
  • FIG. 12 is a flowchart showing a flow of component mounting work executed by the component mounting device according to the first embodiment of the present disclosure.
  • FIG. 13 is a flowchart showing a flow of inspection work executed by the inspection apparatus according to the first embodiment of the present disclosure.
  • FIG. 14 is a flowchart showing a flow of management work executed by the management device according to the first embodiment of the present disclosure.
  • FIG. 15 is a flowchart showing a flow of correction work of operation parameters executed by the component mounting device in the correction processing step according to the first embodiment of the present disclosure.
  • FIG. 16 is a flowchart showing a flow of component mounting work executed by the component mounting device according to the second embodiment of the present disclosure.
  • FIG. 17 is a flowchart showing a flow of management work executed by the management device according to the second embodiment of the present disclosure.
  • FIG. 18 is a flowchart showing a flow of correction work of operating parameters executed by the component mounting device according to the second embodiment of the present disclosure.
  • the component mounting device and the inspection device each detect the position of the component by using a unique component position detection method.
  • the component mounting device detects the position of the holding component by using the position of the center of gravity of a plurality of leads of the component as the representative position of the component
  • the inspection device detects the position of the mounted component by using the position of the center of gravity of the body of the component as the representative position of the component. do.
  • the component position detection method used when the inspection device detects the position of the mounted component and the component position detection method used when the component mounting device detects the position of the holding component are different, the calculation is performed by the inspection device. If the amount of misalignment is directly fed back to the component mounting device to correct the operating parameters, the mounting accuracy of the component may decrease.
  • an object of the present disclosure is to provide an inspection device, a component mounting system, and a substrate manufacturing method capable of correcting operating parameters at the time of component mounting without deteriorating the component mounting accuracy.
  • FIG. 1 shows the configuration of the component mounting system 1 according to the first embodiment of the present disclosure.
  • the component mounting system 1 includes a component mounting device 11, an inspection device 12, and a management device 13.
  • the component mounting device 11 receives the board KB from the device on the upstream side (for example, a solder printing device), and performs the component mounting work of mounting the component BH on the board KB.
  • the component mounting device 11 detects the holding component position, which is the position of the held component BH (that is, before being mounted on the board KB).
  • the component BH is mounted so that the detected position of the holding component matches the target mounting coordinates set on the board KB.
  • the inspection device 12 is arranged on the downstream side of the component mounting device 11, receives the board KB carried out from the component mounting device 11, and performs an inspection work to inspect the mounted state of the component BH mounted on the board KB. .. In this inspection work, the inspection device 12 detects the position of the mounted component, which is the position of each component BH mounted on the board KB, and the detected mounted component position is the target mounting coordinate (reference position) set on the board KB. ), And then the quality of the mounted state on the board KB is determined.
  • the management device 13 is connected to the component mounting device 11 and the inspection device 12 in a communicable state.
  • the management device 13 acquires information from the component mounting device 11 and the inspection device 12 and manages the respective operations.
  • FIG. 2 is a perspective view of the component mounting device 11 constituting the component mounting system 1.
  • the component mounting device 11 includes a board transport path 21, a component supply unit 22, a mounting head 23, a head moving mechanism 24, a component recognition camera 25, a mounting device display input unit 26, and a mounting device control unit 27.
  • the board transport path 21 carries in, positions, and carries out the board KB.
  • the component supply unit 22 is composed of, for example, a tape feeder, and supplies the component BH to a predetermined position.
  • the mounting head 23 includes a nozzle 23N extending downward. The mounting head 23 can raise and lower the nozzle 23N and rotate it around the vertical axis, and can attract the component BH supplied by the component supply unit 22 to the lower end of the nozzle 23N.
  • the head moving mechanism 24 includes an XY beam mechanism including a fixed beam 24a and a moving beam 24b that is movable with respect to the fixed beam 24a.
  • the head moving mechanism 24 moves the mounting head 23 in a horizontal plane by combining an operation of moving the moving beam 24b with respect to the fixed beam 24a and an operation of moving the mounting head 23 with respect to the moving beam 24b.
  • the mounting head 23 moves in a horizontal plane, moves the nozzle 23N up and down and rotates, and sucks and releases the component BH by the nozzle 23N to hold (pick up) the component BH supplied by the component supply unit 22.
  • the held component BH is mounted on the board KB.
  • the component recognition camera 25 is provided between the substrate transport path 21 and the component supply unit 22 with the imaging field of view facing upward.
  • the component recognition camera 25 captures the component BH from below when the mounting head 23 having the component BH adsorbed on the lower end of the nozzle 23N passes above.
  • the image of the component BH obtained by imaging the component recognition camera 25, that is, the image of the component BH held by the mounting head 23 (holding component image) is the position of the component BH held by the mounting head 23 (holding component position). ) And the recognition of its component BH.
  • the mounting device display input unit 26 is composed of, for example, a touch panel.
  • the mounting device display input unit 26 accepts input operations by the operator, and notifies the operator of the work to be performed by the operator and various information by screen, voice, or the like.
  • FIG. 3 is a block diagram showing a control system of a component mounting device.
  • the mounting device control unit 27 includes a mounting device storage unit 31, a mounting processing unit 32, a holding component position calculation unit 33, a feedback processing unit 34, and a mounting device communication unit 35.
  • the production data 41 is stored in the mounting device storage unit 31.
  • the production data 41 includes the component data 41a, the mounting program 41b, the second identification information 41c, and the mounting data 41d.
  • the component data 41a is data that defines the target mounting coordinates of the component BH set on the board KB, the type of the component BH mounted on the target mounting coordinates, the mounting direction, and the like.
  • each part of the component mounting device 11 (part supply unit 22, mounting head 23, head moving mechanism 24, This is a control program that operates the component recognition camera 25, etc.).
  • the second identification information 41c is identification information of the component position detection method used when detecting the position of the holding component which is the position of the component BH held by the mounting head 23 (information for distinguishing from other component position detection methods).
  • the component position detection method is a method for detecting the representative position of the component BH required when detecting the position of the component BH.
  • FIG. 4 is a diagram showing an example of a component position detection method used by the component mounting system 1.
  • a detection method based on the "lead number" or "body” of a lead component having a plurality of lead RDs projecting to the side of the body BD of the above is prepared.
  • the component position detection method based on the "position of the electrode” of the chip component is a component position detection method in which the midpoint position between the positions of the centers of gravity of the two electrodes DK of the chip component is the representative position of the component BH. And the number "0001" is assigned as the identification information.
  • the component position detection method based on the "outer shape" of a chip component is a component position detection method in which the position of the center of gravity of the entire outer shape of the chip component is the representative position of the component, and the number "0002" is assigned as identification information. ing.
  • the component position detection method based on the "body” of a chip component is a component position detection method in which the position of the center of gravity of the body BD of the chip component is the representative position of the component BH, and the number "0003" is assigned as identification information.
  • the component position detection method based on the "lead number" of a lead component is a component position detection method in which the center of gravity of a plurality of lead RDs having a specific number is set as a representative position of the component BH among a plurality of lead RDs possessed by the lead component. It is a method, and a number "0004" is assigned as identification information.
  • the component position detection method based on the "body” of the lead component is a component position detection method in which the position of the center of gravity of the body BD is the representative position of the component BH, and the number "0005" is assigned as the identification information.
  • FIG. 5 shows an example of mounting data 41d.
  • the misalignment amount data 42 is stored in the mounting device storage unit 31.
  • the misalignment amount data 42 is data calculated by the inspection device 12 and sent through the management device 13 as described later.
  • the mounting processing unit 32 operates the board transport path 21, the component supply unit 22, the mounting head 23, and the head moving mechanism 24 based on the mounting program 41b stored in the mounting device storage unit 31.
  • the board transport path 21 carries in and positions the board KB
  • the component supply unit 22 supplies the component BH
  • the head moving mechanism 24 and the mounting head 23 operate in conjunction with each other to repeatedly execute the mounting turn.
  • the component BH is mounted on the board KB one after another.
  • the mounting head 23 holds the component BH (part holding operation), passes above the component recognition camera 25 (passing above the camera), and mounts the component BH (mounting operation). ) In this order.
  • the mounting head 23 moves above the component supply unit 22 and attracts the component BH supplied by the component supply unit 22 by the nozzle 23N.
  • the mounting head 23 passes above the component recognition camera 25 and causes the component recognition camera 25 to take an image of the component BH attracted to the nozzle 23N from below.
  • an image of the component BH held by the mounting head 23 (holding component image) is acquired, and the component BH is recognized.
  • the mounting head 23 moves above the board KB, and the component BH is mounted at the target mounting coordinates on the board KB based on the recognition result of the component BH.
  • the holding component position calculation unit 33 calculates the position (representative position) of the component BH based on the holding component image acquired by the image pickup of the component recognition camera 25. For the calculation of the position of the component BH, one component position detection method selected from the above-mentioned plurality of component position detection methods is used. In this way, the component recognition camera 25 and the holding component position calculation unit 33 constitute a holding component position detecting unit 45 that detects the holding component position, which is the position of the component BH held by the mounting head 23.
  • the feedback processing unit 34 performs feedback processing based on the feedback information output from the inspection device 12.
  • the main content of the feedback process is the correction of the operating parameters of the mounting head 23 when the component mounting device 11 mounts the component BH on the board KB.
  • the "operation parameter" is control data for operating the mounting head 23 so that the component BH is mounted at the target mounting coordinates on the board KB.
  • the feedback processing unit 34 will be described after the description of the inspection device 12 and the management device 13.
  • the mounting device communication unit 35 is connected to both the management device 13 and the inspection device 12 so as to be able to communicate (see FIG. 3).
  • the mounting device communication unit 35 receives the information detected by the inspection device 12 via the management device 13.
  • FIG. 6 is a perspective view of the inspection device 12 constituting the component mounting system 1.
  • the inspection device 12 includes a substrate transport unit 51, an inspection camera 52, a camera moving mechanism 53, an inspection device display input unit 54, and an inspection device control unit 55.
  • the board transfer unit 51 carries in, positions, and carries out the board KB.
  • the inspection camera 52 points the imaging field of view downward.
  • the camera moving mechanism 53 includes an XY beam mechanism provided with a fixed beam 53a and a moving beam 53b that is movable with respect to the fixed beam 53a.
  • the camera moving mechanism 53 moves the inspection camera 52 in a horizontal plane by combining an operation of moving the moving side beam 53b with respect to the fixed side beam 53a and an operation of moving the inspection camera 52 with respect to the moving side beam 53b. It is moved, and each component BH mounted on the substrate KB is imaged from above by the component mounting device 11.
  • the inspection device display input unit 54 is composed of, for example, a touch panel.
  • the inspection device display input unit 54 accepts the input operation by the operator, and notifies the operator of the work to be performed by the operator and various information by screen, voice, or the like.
  • FIG. 7 is a block diagram showing a control system of the inspection device 12.
  • the inspection device control unit 55 includes an inspection device storage unit 61, an inspection processing unit 62, a mounted component position calculation unit 63, a misalignment amount calculation unit 64, a quality determination unit 65, and an inspection device communication unit 66 ( It is equipped with a first output unit).
  • the inspection data 71 is stored in the inspection device storage unit 61.
  • the inspection data 71 includes inspection component data 71a, inspection program 71b, first identification information 71c, and inspection reference data 71d.
  • the inspection part data 71a is the same data as the part data 41a of the production data 41 stored in the inspection device storage unit 61.
  • each part (board transfer unit) of the inspection device 12 is inspected to check whether each part BH mounted on the board KB by the component mounting device 11 is mounted in a predetermined direction at the target mounting coordinates.
  • 51, inspection camera 52, camera movement mechanism 53, etc. is a control program that operates.
  • the first identification information 71c is the identification information of the component position detection method used when detecting the position of the mounted component, which is the position of the component BH mounted on the board KB.
  • the component position detection method used when detecting the position of the mounted component is the same as the component position detection method (FIG. 4) used here when detecting the position of the holding component, but when detecting the position of the mounted component. It is sufficient that at least a part of the component position detection method used and the component position detection method used for detecting the holding component position match (common).
  • FIG. 8 is a diagram showing an example of inspection standard data stored in the inspection device.
  • FIG. 8 shows an example of inspection reference data 71d.
  • the first identification information 71c that is, the component position detection method
  • the first identification information 71c that is, the component position detection method
  • the inspection processing unit 62 acquires an image (inspection image) of each component BH by capturing all of the plurality of component BHs mounted on the substrate KB with the inspection camera 52. At this time, the inspection processing unit 62 takes an image on the inspection camera 52 while moving the inspection camera 52 above the substrate KB positioned by the substrate transport unit 51 based on the inspection program 71b stored in the inspection device storage unit 61. Have the operation repeated.
  • the mounted component position calculation unit 63 calculates the position of the component BH (mounted component position) based on the inspection image acquired by the inspection camera 52.
  • the component position detection method used when detecting the mounted component position of the component BH is defined for each component BH (see the “identification information” column in FIG. 8), and the defined component position detection method reads out. And used.
  • the mounted component position calculation unit 63 of the inspection camera 52 and the inspection device control unit 55 constitutes a mounted component position detecting unit 67 that detects the mounted component position, which is the position of the component BH mounted on the board KB. ..
  • the mounted component position detecting unit 67 detects the mounted component position of each component BH by the component position detecting method corresponding to the first identification information 71c defined in the inspection reference data 71d.
  • the misalignment amount calculation unit 64 determines the position of the mounted component of each component BH on the board KB detected by the mounted component position detection unit 67, and the predetermined component BH (stored in the inspection device storage unit 61). The amount of misalignment from the reference position MZ (target mounting coordinates) of is calculated.
  • FIG. 9 is a diagram illustrating the amount of misalignment of parts calculated by the inspection device 12.
  • FIG. 9 is an example of the inspection image GZ, and shows a state in which the representative position ZP of the target component BH deviates from the reference position MZ. In FIG.
  • the reference position MZ on the substrate KB is represented by the coordinates of the X-axis and the Y-axis orthogonal to each other in the plane of the substrate KB, it is between the representative position ZP of the component BH and the position of the reference position MZ.
  • the amount of misalignment (DX, DY) of the component BH is obtained from the difference (DX) in the X-axis direction and the difference (DY) in the Y-axis direction.
  • FIG. 10 shows an example of the misalignment amount data 42 output by the inspection device 12.
  • the misalignment amount data 42 includes the number of the component BH to be inspected (serial number: A001, A002, ...) And the inspection result corresponding to the number of the component BH, that is, the detected misalignment amount of the component BH (misalignment amount data 42).
  • identification information first identification information
  • the amount of misalignment itself is shown, but it is shown by the coordinates of the detected position of the component BH (position of the mounted component), and the amount of misalignment of the component BH is obtained from the difference between the position of the mounted component and the reference position MZ. It may be.
  • the quality determination unit 65 makes a quality determination to determine the quality (whether or not the mounted state is good) of each component BH based on the position deviation amount calculated by the position deviation amount calculation unit 64. Specifically, the misalignment amount of the component BH calculated by the misalignment amount calculation unit 64 is compared with the allowable value determined corresponding to the component BH, and whether the misalignment amount is equal to or less than the allowable value. Judge whether or not.
  • the quality determination unit 65 determines that the mounting state of the component BH is good when the misalignment amount of the component BH is equal to or less than the allowable value, and the misalignment amount of the component BH is the allowable value. If it exceeds, it is determined that the mounting state of the component BH is defective. For example, in the case of the example of FIG. 9, if the permissible value of the misalignment amount is RX in the X-axis direction and RY in the Y-axis direction, the pass / fail determination unit 65 is when DX ⁇ RX and DY ⁇ RY. It is determined that the mounting state of the component BH is good. On the other hand, when the quality determination unit 65 determines that DX> RX or DY> RY, the mounting state of the component BH is defective. It is assumed that the allowable value data for each component BH is stored in the inspection device storage unit 61.
  • the inspection device communication unit 66 is connected to both the management device 13 and the component mounting device 11 so as to be able to communicate (see FIG. 7).
  • the inspection device communication unit 66 was calculated by the first identification information 71c, which is the identification information of the component position detection method used by the mounting component position detection unit 67 to detect the mounting component position, and the misalignment amount calculation unit 64.
  • the misalignment amount data 42 for each component BH information on the pass / fail determination result for each component BH on the substrate KB determined by the pass / fail determination unit 65 is output (transmitted to the management device 13).
  • FIG. 11 is a block diagram showing a control system of the management device 13.
  • the management device 13 includes a management device storage unit 81, an identification information determination unit 82, a management device communication unit 83, and a management device display input unit 84.
  • the management device storage unit 81 stores the production master data 91, which is the master data of the production data 41 stored in the mounting device storage unit 31 of the component mounting device 11, and the inspection device storage unit 61 of the inspection device 12.
  • the inspection master data 92 which is the master data of the inspection data 71, is stored.
  • the identification information determination unit 82 acquires the first identification information 71c output from the inspection device 12 and the second identification information 41c output from the component mounting device 11. Then, by comparing the first identification information 71c and the second identification information 41c, it is determined whether or not the first identification information 71c matches the second identification information 41c.
  • the inspection information 93 and the identification information determination result 94 are stored in the management device storage unit 81.
  • the inspection information 93 is data such as the result of inspection by the inspection device 12 (positional deviation amount data 42 for each component BH and the result of quality determination), and the identification information determination result 94 is determined by the identification information determination unit 82. It is the data of the result (identification information determination result).
  • the management device communication unit 83 is connected to both the component mounting device 11 and the inspection device 12 so as to be able to communicate with each other.
  • the management device communication unit 83 transmits (transfers) information such as the misalignment amount data 42 detected and sent by the inspection device 12 to the component mounting device 11.
  • the feedback processing unit 34 included in the mounting device control unit 27 of the component mounting device 11 will be described.
  • the feedback processing unit 34 includes a correction unit 43 and an information aggregation unit 44.
  • the correction unit 43 obtains the correction value of the operation parameter when the mounting head 23 mounts the component BH on the board KB based on the misalignment amount sent from the management device 13 (that is, calculated by the inspection device 12). , The operation parameter is corrected using the obtained correction value.
  • the result (identification information determination result) determined by the identification information determination unit 82 of the management device 13 is transmitted to the correction unit 43 of the component mounting device 11.
  • the correction unit 43 receives from the management device 13 the result that the first identification information 71c is determined to match the second identification information 41c
  • the correction unit 43 operates parameters based on the amount of misalignment sent from the management device 13.
  • the correction value of is calculated, and the operation parameter is corrected using the calculated correction value.
  • the correction unit 43 receives from the management device 13 the result that the first identification information 71c is determined not to match the second identification information 41c, the misalignment amount data of the component BH determined to be inconsistent is received. 42 is not used as data for calculating the correction value of the operation parameter.
  • the identification information determination result 94 is stored in the management device storage unit 81, when it is determined that the first identification information 71c does not match the second identification information 41c. , It is possible for the operator to confirm these determination results.
  • the identification information determination result 94 is stored in the management device storage unit 81 here, but it may be stored in another storage unit.
  • the information aggregation unit 44 aggregates information on the mounting accuracy of the component BH using the misalignment amount data 42 of each component BH sent from the inspection device 12 through the management device 13. Specifically, the information totaling unit 44 determines that the first identification information 71c matches the second identification information 41c in the identification information determination unit 82. Information on the mounting accuracy of the component BH is aggregated using the information of the misalignment amount data 42. On the other hand, the information totaling unit 44 determines that the first identification information 71c does not match the second identification information 41c in the identification information determination unit 82, and the position of the component BH sent by the inspection device 12 is determined by the information aggregation unit 44. The deviation information is not used as data for aggregating information on the mounting accuracy of the component BH.
  • the flowchart shown in FIG. 12 shows the flow of the component mounting work (a board manufacturing method for manufacturing a mounting board on which the component BH is mounted on the board KB) performed by the component mounting device 11 in the component mounting system 1.
  • the component mounting device 11 receives the board KB sent from the upstream side by the board transport path 21 and positions it at a predetermined component mounting work position (step ST1).
  • the identifier attached to the surface of the board KB is read and stored.
  • the mounting head 23 is moved above the component supply unit 22, and the component BH supplied by the component supply unit 22 is held (picked up) by the nozzle 23N (step ST2). . Parts holding process).
  • the mounting head 23 is moved to pass above the component recognition camera 25, and the component recognition camera 25 is made to acquire an image of the component BH (holding component image) (step ST3).
  • the component recognition camera 25 acquires the image of the holding component
  • the second identification information 41c corresponding to the component BH projected on the image of the holding component is acquired (step ST4).
  • the component mounting device 11 After the component mounting device 11 acquires the second identification information 41c, the component mounting device 11 detects the position of the holding component, which is the position of the component BH held by the mounting head 23, by the component position detection method corresponding to the acquired second identification information 41c. (Step ST5. Holding component position detection step). Then, after correcting the operation parameters in a predetermined case (step ST6, correction processing step), the component BH held by the mounting head 23 is mounted on the target mounting coordinates on the board KB (step ST7, component mounting step). ).
  • the component mounting device 11 mounts the component BH held by the mounting head 23 at the target mounting coordinates on the board KB, and then the component position detection unit 45 used when the holding component position detecting unit 45 detects the holding component position in step ST5.
  • the second identification information 41c which is the identification information of the above, is output to the management device 13 together with the information of the identifier of the board KB read in step ST1 (step ST8, the second output step). Then, when all the parts BH to be mounted on the board KB are mounted, the board KB is carried out to the inspection device 12 on the downstream side (step ST9), and the component mounting work per board KB is completed.
  • the flowchart shown in FIG. 13 shows the flow of inspection work performed by the inspection device 12.
  • the inspection device 12 first receives the board KB from the component mounting device 11 and carries it in, and positions the board KB at a predetermined inspection work position (step ST11 shown in FIG. 13).
  • the inspection device 12 reads and stores the identifier attached to the surface of the board KB.
  • the inspection camera 52 is moved by the camera moving mechanism 53 to acquire an image (inspection image) of the component BH mounted on the board KB (step ST12).
  • the inspection device 12 acquires the identification information (first identification information 71c) corresponding to the component position detection method corresponding to the component BH for which the inspection image has been acquired (step ST13).
  • the inspection device 12 After the inspection device 12 acquires the first identification information 71c, the inspection device 12 uses the component position detection method corresponding to the acquired first identification information 71c, and is the position of the component BH mounted on the substrate KB based on the inspection image. The position is detected (step ST14. Mounting component position detection step). Then, when the position of the mounted component is detected, the amount of misalignment of the detected position of the mounted component from the predetermined reference position (target mounting coordinate) is calculated (step ST15, step of calculating the amount of misalignment).
  • the inspection device 12 determines whether or not the component BH is mounted on the substrate KB based on the calculated amount of misalignment (step ST16, pass / fail determination step). After determining the quality of the mounted state of the component BH, the determination result of the quality of each component, the identification information of the component position detection method used when detecting the position of the mounted component (first identification information 71c), and the position deviation calculation step.
  • the information on the amount of misalignment calculated by the misalignment calculation unit 64 is output from the inspection device communication unit 66 to the management device 13 together with the information on the identifier of the board KB read in step ST11 (step ST17, first output step). ). Then, when all the component BHs to be inspected on the substrate KB are inspected, the substrate KB is carried out to the downstream side (step ST18), and the inspection work for each substrate KB is completed.
  • the flowchart shown in FIG. 14 shows the flow of management work performed by the management device 13.
  • the management device 13 first acquires (receives) information on the first identification information 71c output by the inspection device 12 in step ST17 and the amount of misalignment of the component BH (step ST21).
  • the identifier of the board KB is also acquired at the same time.
  • the component mounting device 11 acquires (receives) the second identification information 41c output in the second output step of step ST8 (step ST22).
  • the identifier of the board KB is also acquired at the same time.
  • the order of these steps ST21 and ST22 may be reversed.
  • the management device 13 When the management device 13 acquires the first identification information 71c and the second identification information 41c, the management device 13 confirms that the identifiers of the board KB are the same, and then the first identification information 71c matches the second identification information 41c. It is determined whether or not (step ST23; identification information determination step). Then, the result obtained by the determination (identification information determination result 94) and the information of the misalignment amount of the component BH acquired in step ST17 are transmitted (output) to the component mounting device 11 (step ST24).
  • the flowchart shown in FIG. 15 shows the flow of the operation parameter correction work executed by the component mounting device 11 in the above-mentioned step ST6 (correction processing step).
  • the component mounting device 11 performs the operation parameter correction work
  • first whether or not the identification information determination result 94 output by the management device 13 in step ST24, that is, the first identification information 71c matches the second identification information 41c.
  • Information on the determination result and the amount of misalignment of the component BH is acquired (step ST31).
  • the identification information determination result 94 and the information on the amount of misalignment of the component BH acquired here are obtained from the board KB on which the component mounting device 11 is performing the component mounting work or the inspection device 12 is performing the inspection work at that time. Is also about the previously processed substrate KB (identification information determination result 94 and misalignment amount information).
  • the identification information determination result 94 indicates that "the first identification information matches the second identification information". It is determined whether or not the content is shown (step ST32). As a result, when the identification information determination result 94 is the content indicating that "the first identification information matches the second identification information" (Yes (Y) in step ST32), the information on the amount of misalignment is fed back. Store as data (step ST33). Then, it is determined whether or not the required number of data has been collected (step ST34), and as a result, if the required number of data has been collected (Yes (Y) in step ST34), the correction value of the operation parameter is calculated. The operation parameters are corrected (step ST35), and the information on the mounting accuracy of the component BH is aggregated using the information on the amount of misalignment (step ST36).
  • the determination in step ST34 may be based on whether or not the number of substrate KB on which the component BH is mounted and the inspection thereof has reached a certain number, or the amount of misalignment exceeds a predetermined reference. Whether or not the number of the substrate KB has reached a certain number may be used as a reference.
  • the correction value of the operation parameter is calculated by obtaining the average of the misalignment amount of the number of data that has reached a certain number, and the operation parameter is corrected by the correction value.
  • step ST36 for example, changes in the amount of misalignment are aggregated along the time series, and data is created that can confirm the state in which the amount of misalignment is gradually reduced by correcting the operation parameters.
  • step ST32 when the identification information determination result 94 does not indicate that "the first identification information matches the second identification information" (No (N) in step ST32), that is, in the inspection device 12. If the component position detection method used when detecting the mounting component position of the component BH is different from the component position detection method used when detecting the holding component position of the component BH in the component mounting device 11, it matches. The amount of misalignment of the component BH determined not to be used is not used as data for calculating the correction value of the operation parameter in the component mounting device 11.
  • the component position detection method used when the inspection device 12 detects the mounting component position of the component BH is different from the component position detection method used when the component mounting device 11 detects the holding component position of the component BH.
  • using the misalignment amount of the component BH detected by the inspection device 12 as it is for correcting the operation parameter corrects the operation parameter by using the misalignment amount that is inaccurate for the component mounting device 11. This is to avoid a situation in which the misalignment becomes larger than before the correction.
  • the aggregated result may be inaccurate, so the aggregation itself is not performed.
  • the inspection device 12 of the component mounting system 1 has identification information (first) of the component position detection method used when detecting the position (mounting component position) of the component BH mounted on the substrate KB.
  • the identification information 71c) is output together with the amount of positional deviation from the reference position (target mounting coordinates) of the mounting component position.
  • the management device 13 is a component position detection method used when detecting the first identification information 71c output from the inspection device 12 and the position (holding component position) of the component BH held by the component mounting device 11 by the mounting head 23.
  • the identification information (second identification information 41c) is compared with the identification information (second identification information 41c), and it is determined whether or not the first identification information 71c matches the second identification information 41c (step ST32).
  • the determination result indicates that the first identification information 71c matches the second identification information 41c
  • the determination result is based on the misalignment amount of the component BH calculated by the inspection device 12.
  • the operation parameters are corrected using the obtained correction values (step ST35).
  • the determination result does not indicate that the first identification information 71c matches the second identification information 41c
  • the misalignment amount of the component BH is not used as data for calculating the correction value of the operation parameter. It has become like.
  • the operation parameter can be corrected only when the first identification information 71c matches the second identification information 41c, and the component BH in the component mounting device 11 can be corrected. It is possible to correct the operating parameters at the time of component mounting without deteriorating the mounting accuracy.
  • the component mounting device 11 executes the component mounting operation according to the flow shown in the flowchart of FIG. 16, and the inspection device 12 performs the inspection operation according to the flow shown in the flowchart of FIG. 13 as in the case of the first embodiment.
  • the management device 13 executes the management work according to the flow shown in the flowchart of FIG. Further, the component mounting device 11 executes the operation parameter correction work according to the flow shown in the flowchart of FIG.
  • FIG. 16 is a flowchart showing the flow of the component mounting work executed by the component mounting device 11.
  • the component mounting device 11 first transfers the substrate KB sent from the upstream side by the substrate transport path 21 as in the case of the first embodiment. It is received and positioned at a predetermined component mounting work position (step ST41). After the board KB is positioned by the board transfer path 21, the mounting head 23 is moved above the component supply section 22 and the component BH supplied by the component supply section 22 is held (picked up) by the nozzle 23N (step ST42. Holding process).
  • the mounting head 23 is moved to pass above the component recognition camera 25, and the component recognition camera 25 is made to acquire an image (holding component image) of the component BH (step ST43). Then, when the component recognition camera 25 acquires the holding component image, the second identification information 41c corresponding to the component BH projected on the holding component image is acquired (step ST44).
  • the component mounting device 11 After the component mounting device 11 acquires the second identification information 41c, the component mounting device 11 detects the position of the holding component, which is the position of the component BH held by the mounting head 23, by the component position detection method corresponding to the acquired second identification information 41c. (Step ST45. Holding component position detection step). Then, after correcting the operation parameters in a predetermined case (step ST46, correction processing step), the component BH held by the mounting head 23 is mounted on the target mounting coordinates on the board KB (step ST47, component mounting step). ).
  • step ST48 the board KB is carried out to the inspection device 12 on the downstream side (step ST48), and the component mounting work per board KB is completed. do.
  • step ST48 the component mounting work per board KB is completed.
  • FIG. 17 is a flowchart showing the flow of management work executed by the management device.
  • the inspection device 12 first outputs the first identification information 71c and the component BH in the first output step (see FIG. 13) of the step ST17.
  • Step ST51 the information on the amount of misalignment of the above is acquired (received).
  • the management device 13 determines whether or not the first identification information 71c is predetermined identification information corresponding to the specific component detection method (step ST52. Identification information determination). Process). Then, the result obtained by the determination (identification information determination result 94) and the information of the misalignment amount of the component BH acquired in step ST17 are transmitted (output) to the component mounting device 11 (step ST53).
  • the first identification information 71c matches the second identification information 41c in the step ST52 corresponding to the step ST23 in the first embodiment as in the case of the first embodiment. Instead of making a determination, it is determined whether or not the first identification information 71c is predetermined identification information.
  • predetermined identification information identification information indicating a component position detection method corresponding to the second identification information 41c in the first embodiment is usually set, and the data is stored in the management device storage unit 81. ..
  • FIG. 18 is a flowchart showing the flow of the operation parameter correction work executed by the component mounting device 11.
  • the identification information determination result that is, the first identification information
  • step ST53 the management work by the management device 13
  • information on the amount of misalignment of the component BH are acquired (step ST61).
  • the identification information determination result 94 and the information on the amount of misalignment of the component BH acquired here are the same as in the case of the first embodiment, at that time, the component mounting device 11 is performing the component mounting work, or the inspection device 12 Is about the substrate KB processed before the substrate KB being inspected (identification information determination result 94 and information on the amount of misalignment).
  • the identification information determination result indicates that "the first identification information is the predetermined identification information". Whether or not it is determined (step ST62).
  • the identification information determination result is the content indicating that "the first identification information is the predetermined identification information" (Y in step ST62)
  • the information on the amount of misalignment is stored as feedback data (Y).
  • Step ST63 it is determined whether or not the required number of data has been collected (step ST64), and as a result, when the required number of data has been collected (Y in step ST64), the correction value is calculated and the operation parameters are corrected.
  • Step ST65 the information on the mounting accuracy of the component BH is aggregated using the information on the amount of misalignment (step ST66).
  • the procedure of determination in step ST64 is the same as in the case of the first embodiment.
  • step ST62 when the identification information determination result 94 does not indicate that "the first identification information is the predetermined identification information" (N in step ST62), that is, the component BH is mounted in the inspection device 12. If the component position detection method used when detecting the component position is different from the component position detection method used when detecting the holding component position of the component BH in the component mounting device 11, the information is not predetermined identification information.
  • the amount of misalignment of the component BH determined to be is not used as data for calculating the correction value of the operation parameter in the component mounting device 11, and is not used as data for aggregating the information regarding the mounting accuracy of the component BH.
  • the inspection information 93 and the identification information determination result 94 are stored in the management device storage unit 81. Therefore, when it is determined that the first identification information 71c does not match the predetermined identification information, the operator can confirm these determination results.
  • the inspection device 12 of the component mounting system 1 has identification information (first) of the component position detection method used when detecting the position (mounting component position) of the component BH mounted on the substrate KB.
  • the identification information 71c) is output together with the amount of positional deviation from the reference position (target mounting coordinates) of the mounting component position.
  • the management device 13 compares the first identification information 71c output from the inspection device 12 with the predetermined identification information set in advance, and determines whether or not the first identification information 71c is the predetermined identification information. (Step ST62).
  • the determination result has the content indicating that the first identification information 71c is the predetermined identification information, it is obtained based on the misalignment amount of the component BH calculated by the inspection device 12.
  • the operation parameter is corrected using the correction value (step ST65).
  • the determination result does not include that the first identification information 71c is the predetermined identification information, the misalignment amount of the component BH is not used as the data for calculating the correction value of the operation parameter. It has become like.
  • the operation parameter can be corrected only when the first identification information 71c matches the predetermined identification information, and the component BH in the component mounting device 11 can be mounted. It is possible to correct the operating parameters at the time of mounting parts without deteriorating the accuracy.
  • the identification information (first identification information) of the component position detection method used when the inspection device 12 detects the position of the mounted component is output, and the first identification information is output.
  • the component mounting device 11 matches the identification information (second identification information) of the component position detection method used when detecting the position of the holding component, or whether or not the identification information is predetermined. It has become so.
  • the operation parameter when the mounting head 23 mounts the component BH on the board KB when the first identification information matches the second identification information, or when the first identification information is the predetermined identification information.
  • the first identification information does not match the second identification information, or if the first identification information does not match the predetermined identification information, it is determined that they do not match, or the identification information does not match.
  • Information on the amount of misalignment of the determined component BH is not used as data for calculating the correction value of the operation parameter. Therefore, when the component position detection method used when the mounting component position is detected in the inspection device 12 matches the component position detection method used when the holding component position is detected in the component mounting device 11. It is possible to correct the operation parameters only for the component BH, and it is possible to correct the operation parameters at the time of component mounting without deteriorating the mounting accuracy of the component BH.
  • the present disclosure is not limited to the above-mentioned ones, and various modifications and the like are possible.
  • the information on the amount of misalignment is stored in the storage unit (mounting device storage unit 31) included in the component mounting device 11, but the information on the amount of misalignment is stored in another device.
  • it may be stored in the storage unit (management device storage unit 81) of the management device 13.
  • the identification information determination unit 82 is provided in the management device 13, but may be provided in the component mounting device 11.
  • the management device 13 does not necessarily have to be provided, and the same effect can be obtained by giving the function of the management device 13 to the component mounting device 11 or the like.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.

Abstract

The present invention determines whether or not identification information (first identification information) in a component position detection method used when a mounting component position is detected by an inspection device coincides with identification information (second identification information) in a component position detection method used when a holding component position is detected by a component mounting device. When the first identification information coincides with the second identification information, an operation parameter when a mounting head mounts a component on a substrate is corrected on the basis of a misalignment amount calculated by the inspection device. However, when the first identification information does not coincide with the second identification information, the misalignment amount of a component for which the first identification information does not coincide with the second identification information is not used as data for calculating a correction value of the operation parameter.

Description

検査装置、部品装着システムおよび基板製造方法Inspection equipment, component mounting system and board manufacturing method
 本開示は、基板に装着された部品を検査する検査装置、この検査装置を含む部品装着システムおよびこの部品装着システムによる基板製造方法に関する。 The present disclosure relates to an inspection device for inspecting parts mounted on a substrate, a component mounting system including this inspection device, and a substrate manufacturing method using this component mounting system.
 従来、装着ヘッドにより部品を保持(ピックアップ)して基板に装着する部品装着装置と、部品装着装置により部品が装着された基板を受け取って部品を検査する検査装置とを備えた部品装着システムが知られている。部品装着システムにおいて部品装着装置は、装着ヘッドにより保持した部品の位置を保持部品位置として検出し、その検出した保持部品位置に基づいて部品を基板に装着するようになっている。また、検査装置は、基板に装着された部品の位置を装着部品位置として検出し、その検出した装着部品位置の基準位置(基板上に設定された目標装着座標)からの位置ずれ量に基づいて装着状態の良否を判定するようになっている。検査装置で算出された位置ずれ量は部品装着装置にフィードバックされ、部品装着装置が基板に部品を装着する際の装着ヘッドの動作パラメータの補正に利用される(例えば、下記の特許文献1参照)。 Conventionally, a component mounting system equipped with a component mounting device that holds (picks up) a component by a mounting head and mounts the component on a board and an inspection device that receives a board on which the component is mounted by the component mounting device and inspects the component is known. Has been done. In the component mounting system, the component mounting device detects the position of the component held by the mounting head as the holding component position, and mounts the component on the substrate based on the detected position of the holding component. In addition, the inspection device detects the position of the component mounted on the board as the mounting component position, and based on the amount of positional deviation from the detected mounting component position reference position (target mounting coordinate set on the board). It is designed to judge the quality of the mounted state. The amount of misalignment calculated by the inspection device is fed back to the component mounting device and used to correct the operating parameters of the mounting head when the component mounting device mounts the component on the substrate (see, for example, Patent Document 1 below). ..
特開2019-134051号公報Japanese Unexamined Patent Publication No. 2019-134051
 本開示の一態様の検査装置は、基板に装着された部品を検査する検査装置であって、前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出部と、前記装着部品位置検出部により検出された前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出部と、前記位置ずれ量算出部により算出された前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定部と、前記装着部品位置検出部により前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出部で算出された前記位置ずれ量を出力する第1出力部と、を備える。 The inspection device of one aspect of the present disclosure is an inspection device that inspects a component mounted on a substrate, and includes a mounted component position detecting unit that detects the position of the component mounted on the board as a mounted component position, and the above-mentioned. The position deviation amount calculation unit that calculates the position deviation amount of the mounting component position from the predetermined reference position detected by the mounting component position detection unit and the position deviation amount calculated by the position deviation amount calculation unit. The first identification information, which is the identification information of the component position detection method used when the mounting component position is detected by the mounting component position detecting unit and the quality determining unit that determines the quality of the mounting state of the component based on the above. And a first output unit that outputs the misalignment amount calculated by the misalignment amount calculation unit.
 本開示の他の一態様の部品装着システムは、装着ヘッドにより部品を保持し、その保持した部品を基板に装着する部品装着装置と、前記部品装着装置によって前記基板に装着された前記部品を検査する検査装置とを備えた部品装着システムであって、前記検査装置は、前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出部と、前記装着部品位置検出部により検出された前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出部と、前記位置ずれ量算出部により算出された前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定部と、前記装着部品位置検出部により前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出部で算出された前記位置ずれ量を出力する第1出力部と、を備える。 The component mounting system of another aspect of the present disclosure inspects a component mounting device that holds a component by a mounting head and mounts the held component on a substrate, and the component mounted on the substrate by the component mounting device. A component mounting system including an inspection device for mounting, wherein the inspection device is provided with a mounting component position detection unit that detects the position of the component mounted on the substrate as a mounting component position, and a mounting component position detection unit. The mounting of the component is based on the misalignment amount calculation unit that calculates the amount of misalignment of the detected mounting component position from the predetermined reference position and the misalignment amount calculated by the misalignment amount calculation unit. The quality determination unit for determining the quality of the state, the first identification information which is the identification information of the component position detection method used when the mounting component position is detected by the mounting component position detecting unit, and the misalignment amount calculation. A first output unit for outputting the position deviation amount calculated by the unit is provided.
 本開示の他の一態様の基板製造方法は、基板に部品が装着された実装基板を製造する基板製造方法であって、装着ヘッドにより部品を保持する部品保持工程と、前記部品保持工程で前記装着ヘッドにより保持された部品の位置を保持部品位置として検出する保持部品位置検出工程と、前記装着ヘッドにより保持された部品を前記保持部品位置検出工程で検出した前記保持部品位置に基づく動作パラメータで前記装着ヘッドを作動させて前記基板に装着する部品装着工程と、前記部品装着工程により前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出工程と、前記装着部品位置検出工程で検出した前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出工程と、前記位置ずれ量算出工程で算出した前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定工程と、前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出工程で算出された前記位置ずれ量を出力する第1出力工程と、前記第1出力工程で出力された前記第1識別情報が前記保持部品位置検出工程で前記保持部品位置が検出される際に用いられた部品位置検出方式の識別情報である第2識別情報と一致するか否かを判定する識別情報判定工程と、前記識別情報判定工程で前記第1識別情報が前記第2識別情報と一致すると判定された場合には前記位置ずれ量算出工程で算出された前記位置ずれ量に基づいて求めた補正値を用いて前記動作パラメータを補正する補正処理工程と、を含み、前記部品装着工程は、前記補正処理工程で前記動作パラメータが補正された場合にはその補正された前記動作パラメータを用いて前記部品を前記基板に装着する。 Another aspect of the substrate manufacturing method of the present disclosure is a board manufacturing method for manufacturing a mounting board on which a component is mounted on the board, the component holding step of holding the component by a mounting head, and the component holding step of the component holding step. With operating parameters based on the holding part position detection process that detects the position of the part held by the mounting head as the holding part position and the holding part position detection step that detects the part held by the mounting head. A component mounting step of operating the mounting head to mount the component on the board, a mounting component position detection step of detecting the position of the component mounted on the board as the mounting component position by the component mounting process, and a mounting component position. The part is based on the position deviation calculation step of calculating the position deviation amount of the mounted component position detected in the detection step from the predetermined reference position and the position deviation amount calculated in the position deviation amount calculation step. The first identification information, which is the identification information of the component position detection method used when the mounting component position is detected, and the position deviation amount calculation step, which determines the quality of the mounting state. The component position detection used when the first output step for outputting the misalignment amount and the first identification information output in the first output step are used when the holding component position is detected in the holding component position detection step. When the identification information determination step of determining whether or not the second identification information matches the identification information of the method and the identification information determination step determine that the first identification information matches the second identification information. Includes a correction processing step of correcting the operation parameter using a correction value obtained based on the misalignment amount calculated in the misalignment amount calculation step, and the component mounting step is the correction processing step. When the operation parameter is corrected, the component is mounted on the substrate by using the corrected operation parameter.
 本開示の他の一態様の基板製造方法は、基板に部品が装着された実装基板を製造する基板製造方法であって、装着ヘッドにより部品を保持する部品保持工程と、前記部品保持工程で前記装着ヘッドにより保持された部品の位置を保持部品位置として検出する保持部品位置検出工程と、前記装着ヘッドにより保持された部品を前記保持部品位置検出工程で検出した前記保持部品位置に基づく動作パラメータで前記装着ヘッドを作動させて前記基板に装着する部品装着工程と、前記部品装着工程により前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出工程と、前記装着部品位置検出工程で検出した前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出工程と、前記位置ずれ量算出工程で算出した前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定工程と、前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出工程で算出された前記位置ずれ量を出力する第1出力工程と、前記第1出力工程で出力された前記第1識別情報が所定の識別情報であるか否かを判定する識別情報判定工程と、前記識別情報判定工程で前記第1識別情報が前記所定の識別情報であると判定された場合には前記位置ずれ量算出工程で算出された前記位置ずれ量に基づいて求めた補正値を用いて前記動作パラメータを補正する補正処理工程と、を含み、前記部品装着工程は、前記補正処理工程で前記動作パラメータが補正された場合にはその補正された前記動作パラメータを用いて前記部品を前記基板に装着する。 Another aspect of the substrate manufacturing method of the present disclosure is a board manufacturing method for manufacturing a mounting board on which a component is mounted on the board, the component holding step of holding the component by a mounting head, and the component holding step of the component holding step. With operating parameters based on the holding part position detection process that detects the position of the part held by the mounting head as the holding part position and the holding part position detection step that detects the part held by the mounting head. A component mounting step of operating the mounting head to mount the component on the board, a mounting component position detection step of detecting the position of the component mounted on the board as the mounting component position by the component mounting process, and a mounting component position. The part is based on the position deviation calculation step of calculating the position deviation amount of the mounted component position detected in the detection step from the predetermined reference position and the position deviation amount calculated in the position deviation amount calculation step. The first identification information, which is the identification information of the component position detection method used when the mounting component position is detected, and the position deviation amount calculation step, which determines the quality of the mounting state. A first output step for outputting the amount of misalignment, an identification information determination step for determining whether or not the first identification information output in the first output step is predetermined identification information, and the identification information determination step. When it is determined that the first identification information is the predetermined identification information, the operation parameter is corrected by using the correction value obtained based on the position shift amount calculated in the position shift amount calculation step. In the component mounting step, when the operation parameter is corrected in the correction process, the component is mounted on the substrate by using the corrected operation parameter.
 本開示によれば、部品の装着精度を低下させることなく部品装着時の動作パラメータを補正できる。 According to the present disclosure, it is possible to correct the operating parameters at the time of component mounting without deteriorating the component mounting accuracy.
図1は、本開示の実施の形態1における部品装着システムの構成図である。FIG. 1 is a configuration diagram of a component mounting system according to the first embodiment of the present disclosure. 図2は、本開示の実施の形態1における部品装着システムを構成する部品装着装置の斜視図である。FIG. 2 is a perspective view of a component mounting device constituting the component mounting system according to the first embodiment of the present disclosure. 図3は、本開示の実施の形態1における部品装着装置の制御系統を示すブロック図である。FIG. 3 is a block diagram showing a control system of the component mounting device according to the first embodiment of the present disclosure. 図4は、本開示の実施の形態1における部品装着システムが用いる部品位置検出方式の例を示す図である。FIG. 4 is a diagram showing an example of a component position detection method used by the component mounting system according to the first embodiment of the present disclosure. 図5は、本開示の実施の形態1における部品装着装置に記憶されている装着データの例を示す図である。FIG. 5 is a diagram showing an example of mounting data stored in the component mounting device according to the first embodiment of the present disclosure. 図6は、本開示の実施の形態1における部品装着システムを構成する検査装置の斜視図である。FIG. 6 is a perspective view of an inspection device constituting the component mounting system according to the first embodiment of the present disclosure. 図7は、本開示の実施の形態1における検査装置の制御系統を示すブロック図である。FIG. 7 is a block diagram showing a control system of the inspection device according to the first embodiment of the present disclosure. 図8は、本開示の実施の形態1における検査装置に記憶されている検査基準データの例を示す図である。FIG. 8 is a diagram showing an example of inspection reference data stored in the inspection apparatus according to the first embodiment of the present disclosure. 図9は、本開示の実施の形態1における検査装置が算出する部品の位置ずれ量を説明する図である。FIG. 9 is a diagram illustrating the amount of misalignment of parts calculated by the inspection device according to the first embodiment of the present disclosure. 図10は、本開示の実施の形態1における検査装置が出力する位置ずれ量データの例を示す図である。FIG. 10 is a diagram showing an example of misalignment amount data output by the inspection device according to the first embodiment of the present disclosure. 図11は、本開示の実施の形態1における管理装置の制御系統を示すブロック図である。FIG. 11 is a block diagram showing a control system of the management device according to the first embodiment of the present disclosure. 図12は、本開示の実施の形態1における部品装着装置が実行する部品装着作業の流れを示すフローチャートである。FIG. 12 is a flowchart showing a flow of component mounting work executed by the component mounting device according to the first embodiment of the present disclosure. 図13は、本開示の実施の形態1における検査装置が実行する検査作業の流れを示すフローチャートである。FIG. 13 is a flowchart showing a flow of inspection work executed by the inspection apparatus according to the first embodiment of the present disclosure. 図14は、本開示の実施の形態1における管理装置が実行する管理作業の流れを示すフローチャートである。FIG. 14 is a flowchart showing a flow of management work executed by the management device according to the first embodiment of the present disclosure. 図15は、本開示の実施の形態1における部品装着装置が補正処理工程で実行する動作パラメータの補正作業の流れを示すフローチャートである。FIG. 15 is a flowchart showing a flow of correction work of operation parameters executed by the component mounting device in the correction processing step according to the first embodiment of the present disclosure. 図16は、本開示の実施の形態2における部品装着装置が実行する部品装着作業の流れを示すフローチャートである。FIG. 16 is a flowchart showing a flow of component mounting work executed by the component mounting device according to the second embodiment of the present disclosure. 図17は、本開示の実施の形態2における管理装置が実行する管理作業の流れを示すフローチャートである。FIG. 17 is a flowchart showing a flow of management work executed by the management device according to the second embodiment of the present disclosure. 図18は、本開示の実施の形態2における部品装着装置が実行する動作パラメータの補正作業の流れを示すフローチャートである。FIG. 18 is a flowchart showing a flow of correction work of operating parameters executed by the component mounting device according to the second embodiment of the present disclosure.
 (実施の形態1)
 本開示の実施の形態の説明に先立ち、従来の装置における問題点を簡単に説明する。従来の部品装着システムにおいて、部品装着装置と検査装置はそれぞれ独自の部品位置検出方式を用いて部品の位置を検出する。例えば、部品装着装置は部品が有する複数のリードの重心位置をその部品の代表位置として保持部品位置を検出し、検査装置は部品のボディの重心位置をその部品の代表位置として装着部品位置を検出する。しかしながら、検査装置が装着部品位置を検出する際に用いる部品位置検出方式と、部品装着装置が保持部品位置を検出する際に用いる部品位置検出方式とが異なる場合には、検査装置で算出された位置ずれ量をそのまま部品装着装置にフィードバックして動作パラメータの補正を行うと、却って部品の装着精度が低下するおそれがある。
(Embodiment 1)
Prior to the description of the embodiments of the present disclosure, problems in the conventional apparatus will be briefly described. In the conventional component mounting system, the component mounting device and the inspection device each detect the position of the component by using a unique component position detection method. For example, the component mounting device detects the position of the holding component by using the position of the center of gravity of a plurality of leads of the component as the representative position of the component, and the inspection device detects the position of the mounted component by using the position of the center of gravity of the body of the component as the representative position of the component. do. However, if the component position detection method used when the inspection device detects the position of the mounted component and the component position detection method used when the component mounting device detects the position of the holding component are different, the calculation is performed by the inspection device. If the amount of misalignment is directly fed back to the component mounting device to correct the operating parameters, the mounting accuracy of the component may decrease.
 そこで本開示は、部品の装着精度を低下させることなく部品装着時の動作パラメータを補正できる検査装置、部品装着システムおよび基板製造方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an inspection device, a component mounting system, and a substrate manufacturing method capable of correcting operating parameters at the time of component mounting without deteriorating the component mounting accuracy.
 以下に図面を用いて、本開示の一実施の形態を詳細に説明する。図1は本開示の実施の形態1における部品装着システム1の構成を示している。図1において、部品装着システム1は、部品装着装置11、検査装置12および管理装置13を備えている。 An embodiment of the present disclosure will be described in detail below with reference to the drawings. FIG. 1 shows the configuration of the component mounting system 1 according to the first embodiment of the present disclosure. In FIG. 1, the component mounting system 1 includes a component mounting device 11, an inspection device 12, and a management device 13.
 部品装着装置11は、上流側の装置(例えば半田印刷装置)から基板KBを受け取り、その基板KBに部品BHを装着する部品装着作業を行う。この部品装着作業において、部品装着装置11は、装着ヘッド23によって部品BHを保持した後、その保持した部品BHの(すなわち基板KBに装着される前の)位置である保持部品位置を検出し、その検出した保持部品位置が基板KB上に設定された目標装着座標に一致するようにして部品BHを装着する。 The component mounting device 11 receives the board KB from the device on the upstream side (for example, a solder printing device), and performs the component mounting work of mounting the component BH on the board KB. In this component mounting operation, after the component BH is held by the mounting head 23, the component mounting device 11 detects the holding component position, which is the position of the held component BH (that is, before being mounted on the board KB). The component BH is mounted so that the detected position of the holding component matches the target mounting coordinates set on the board KB.
 検査装置12は部品装着装置11の下流側に配置されており、部品装着装置11から搬出された基板KBを受け取って、その基板KBに装着された部品BHの装着状態を検査する検査作業を行う。この検査作業において、検査装置12は、基板KBに装着された各部品BHの位置である装着部品位置を検出し、その検出した装着部品位置が基板KB上に設定された目標装着座標(基準位置)からずれている位置ずれ量を検出したうえで、基板KBにおける装着状態の良否を判定する。 The inspection device 12 is arranged on the downstream side of the component mounting device 11, receives the board KB carried out from the component mounting device 11, and performs an inspection work to inspect the mounted state of the component BH mounted on the board KB. .. In this inspection work, the inspection device 12 detects the position of the mounted component, which is the position of each component BH mounted on the board KB, and the detected mounted component position is the target mounting coordinate (reference position) set on the board KB. ), And then the quality of the mounted state on the board KB is determined.
 管理装置13は部品装着装置11および検査装置12と通信可能な状態で繋がっている。管理装置13は部品装着装置11と検査装置12から情報を取得して、それぞれの動作を管理する。 The management device 13 is connected to the component mounting device 11 and the inspection device 12 in a communicable state. The management device 13 acquires information from the component mounting device 11 and the inspection device 12 and manages the respective operations.
 図2は、部品装着システム1を構成する部品装着装置11の斜視図である。図1および図2において、部品装着装置11は、基板搬送路21、部品供給部22、装着ヘッド23、ヘッド移動機構24、部品認識カメラ25、装着装置表示入力部26および装着装置制御部27を備えている。基板搬送路21は基板KBの搬入、位置決めおよび搬出を行う。部品供給部22は例えばテープフィーダから成り、所定の位置に部品BHを供給する。装着ヘッド23は下方に延びて設けられたノズル23Nを備えている。装着ヘッド23はノズル23Nを昇降および上下軸まわりに回転させることができるとともに、ノズル23Nの下端に部品供給部22が供給する部品BHを吸着させることができる。 FIG. 2 is a perspective view of the component mounting device 11 constituting the component mounting system 1. In FIGS. 1 and 2, the component mounting device 11 includes a board transport path 21, a component supply unit 22, a mounting head 23, a head moving mechanism 24, a component recognition camera 25, a mounting device display input unit 26, and a mounting device control unit 27. I have. The board transport path 21 carries in, positions, and carries out the board KB. The component supply unit 22 is composed of, for example, a tape feeder, and supplies the component BH to a predetermined position. The mounting head 23 includes a nozzle 23N extending downward. The mounting head 23 can raise and lower the nozzle 23N and rotate it around the vertical axis, and can attract the component BH supplied by the component supply unit 22 to the lower end of the nozzle 23N.
 図2において、ヘッド移動機構24は、固定ビーム24aと、固定ビーム24aに対して移動自在な移動ビーム24bとを備えたXYビーム機構から成る。ヘッド移動機構24は、固定ビーム24aに対して移動ビーム24bを移動させる動作と、移動ビーム24bに対して装着ヘッド23を移動させる動作とを組み合わせることによって、装着ヘッド23を水平面内で移動させる。装着ヘッド23は水平面内での移動動作、ノズル23Nの昇降および回転動作、ノズル23Nによる部品BHの吸着およびその解除動作を行うことで、部品供給部22が供給する部品BHの保持(ピックアップ)と、保持した部品BHの基板KBへの装着を行う。 In FIG. 2, the head moving mechanism 24 includes an XY beam mechanism including a fixed beam 24a and a moving beam 24b that is movable with respect to the fixed beam 24a. The head moving mechanism 24 moves the mounting head 23 in a horizontal plane by combining an operation of moving the moving beam 24b with respect to the fixed beam 24a and an operation of moving the mounting head 23 with respect to the moving beam 24b. The mounting head 23 moves in a horizontal plane, moves the nozzle 23N up and down and rotates, and sucks and releases the component BH by the nozzle 23N to hold (pick up) the component BH supplied by the component supply unit 22. , The held component BH is mounted on the board KB.
 図1および図2において、部品認識カメラ25は撮像視野を上方へ向けた状態で、基板搬送路21と部品供給部22との間に設けられている。部品認識カメラ25は、ノズル23Nの下端に部品BHを吸着させた装着ヘッド23が上方を通過するときに、その部品BHを下方から撮像する。部品認識カメラ25の撮像によって得られた部品BHの画像、すなわち装着ヘッド23に保持された部品BHの画像(保持部品画像)は、その部品BHの装着ヘッド23による保持状態の位置(保持部品位置)の検出およびその部品BHの認識等に用いられる。 In FIGS. 1 and 2, the component recognition camera 25 is provided between the substrate transport path 21 and the component supply unit 22 with the imaging field of view facing upward. The component recognition camera 25 captures the component BH from below when the mounting head 23 having the component BH adsorbed on the lower end of the nozzle 23N passes above. The image of the component BH obtained by imaging the component recognition camera 25, that is, the image of the component BH held by the mounting head 23 (holding component image) is the position of the component BH held by the mounting head 23 (holding component position). ) And the recognition of its component BH.
 装着装置表示入力部26は例えばタッチパネルから成る。装着装置表示入力部26は作業者による入力操作を受け入れるとともに、作業者が行うべき作業や種々の情報を画面や音声等で作業者に報知する。 The mounting device display input unit 26 is composed of, for example, a touch panel. The mounting device display input unit 26 accepts input operations by the operator, and notifies the operator of the work to be performed by the operator and various information by screen, voice, or the like.
 図3は、部品装着装置の制御系統を示すブロック図である。図3において、装着装置制御部27は、装着装置記憶部31、装着処理部32、保持部品位置算出部33、フィードバック処理部34および装着装置通信部35を備えている。図3に示すように、装着装置記憶部31には生産データ41が記憶されている。生産データ41には部品データ41a、装着プログラム41b、第2識別情報41cおよび装着データ41dが含まれている。 FIG. 3 is a block diagram showing a control system of a component mounting device. In FIG. 3, the mounting device control unit 27 includes a mounting device storage unit 31, a mounting processing unit 32, a holding component position calculation unit 33, a feedback processing unit 34, and a mounting device communication unit 35. As shown in FIG. 3, the production data 41 is stored in the mounting device storage unit 31. The production data 41 includes the component data 41a, the mounting program 41b, the second identification information 41c, and the mounting data 41d.
 部品データ41aは、基板KB上に設定された部品BHの目標装着座標、目標装着座標に装着される部品BHの種類、装着方向等を規定したデータである。装着プログラム41bは、目標装着座標に所定の種類の部品BHが所定の装着方向で装着されるようにするために部品装着装置11の各部(部品供給部22、装着ヘッド23、ヘッド移動機構24、部品認識カメラ25等)を動作させる制御プログラムである。 The component data 41a is data that defines the target mounting coordinates of the component BH set on the board KB, the type of the component BH mounted on the target mounting coordinates, the mounting direction, and the like. In the mounting program 41b, each part of the component mounting device 11 (part supply unit 22, mounting head 23, head moving mechanism 24, This is a control program that operates the component recognition camera 25, etc.).
 第2識別情報41cは、装着ヘッド23に保持された部品BHの位置である保持部品位置を検出する際に用いる部品位置検出方式の識別情報(他の部品位置検出方式と識別するための情報)である。部品位置検出方式は、部品BHの位置を検出する際に必要となる部品BHの代表位置を検出する方式である。図4は、部品装着システム1が用いる部品位置検出方式の例を示す図である。実施の形態1では、図4に示すように、部品BHのボディBDの両端に2つの電極DKがあるチップ部品の「電極の位置」、「外形」または「ボディ」に基づく検出方式、部品BHのボディBDの側方に張り出した複数のリードRDを有するリード部品の「リード番号」または「ボディ」に基づく検出方式等が用意されている。 The second identification information 41c is identification information of the component position detection method used when detecting the position of the holding component which is the position of the component BH held by the mounting head 23 (information for distinguishing from other component position detection methods). Is. The component position detection method is a method for detecting the representative position of the component BH required when detecting the position of the component BH. FIG. 4 is a diagram showing an example of a component position detection method used by the component mounting system 1. In the first embodiment, as shown in FIG. 4, a detection method based on the "electrode position", "outer shape" or "body" of a chip component having two electrode DKs at both ends of the body BD of the component BH, the component BH. A detection method based on the "lead number" or "body" of a lead component having a plurality of lead RDs projecting to the side of the body BD of the above is prepared.
 図4において、チップ部品の「電極の位置」に基づく部品位置検出方式は、そのチップ部品が有する2つの電極DKの重心位置間の中点位置をその部品BHの代表位置とする部品位置検出方式であり、識別情報として「0001」の番号が割り当てられている。チップ部品の「外形」に基づく部品位置検出方式は、そのチップ部品の全体の外形の重心位置をその部品の代表位置とする部品位置検出方式であり、識別情報として「0002」の番号が割り当てられている。チップ部品の「ボディ」に基づく部品位置検出方式は、そのチップ部品のボディBDの重心位置をその部品BHの代表位置とする部品位置検出方式であり、識別情報として「0003」の番号が割り当てられている。リード部品の「リード番号」に基づく部品位置検出方式は、そのリード部品が有する複数のリードRDのうち、特定の番号の複数のリードRDの重心位置をその部品BHの代表位置とする部品位置検出方式であり、識別情報として「0004」の番号が割り当てられている。リード部品の「ボディ」に基づく部品位置検出方式は、ボディBDの重心位置をその部品BHの代表位置とする部品位置検出方式であり、識別情報として「0005」の番号が割り当てられている。 In FIG. 4, the component position detection method based on the "position of the electrode" of the chip component is a component position detection method in which the midpoint position between the positions of the centers of gravity of the two electrodes DK of the chip component is the representative position of the component BH. And the number "0001" is assigned as the identification information. The component position detection method based on the "outer shape" of a chip component is a component position detection method in which the position of the center of gravity of the entire outer shape of the chip component is the representative position of the component, and the number "0002" is assigned as identification information. ing. The component position detection method based on the "body" of a chip component is a component position detection method in which the position of the center of gravity of the body BD of the chip component is the representative position of the component BH, and the number "0003" is assigned as identification information. ing. The component position detection method based on the "lead number" of a lead component is a component position detection method in which the center of gravity of a plurality of lead RDs having a specific number is set as a representative position of the component BH among a plurality of lead RDs possessed by the lead component. It is a method, and a number "0004" is assigned as identification information. The component position detection method based on the "body" of the lead component is a component position detection method in which the position of the center of gravity of the body BD is the representative position of the component BH, and the number "0005" is assigned as the identification information.
 図5は装着データ41dの一例を示している。装着データ41dには、装着対象とする部品BHの番号(通し番号:A001,A002,・・・)と、部品BHの番号に対応する目標装着座標(Xn,Yn)(n=1,2,3,・・・)、装着プログラム番号Sn(n=0001,0002,0003,・・・)および識別情報(第2識別情報41c)が書き込まれている。すなわち本実施の形態では、部品BHの位置の検出に用いる部品位置検出方式は部品BHごとに定められており、その定められた部品位置検出方式が第2識別情報41cを通じて読み出されるようになっている。 FIG. 5 shows an example of mounting data 41d. The mounting data 41d includes the number of the component BH to be mounted (serial number: A001, A002, ...) And the target mounting coordinates (Xn, Yn) (n = 1, 2, 3 corresponding to the number of the component BH). , ...), Wearing program number Sn (n = 0001, 0002, 0003, ...) And identification information (second identification information 41c) are written. That is, in the present embodiment, the component position detection method used for detecting the position of the component BH is defined for each component BH, and the defined component position detection method is read out through the second identification information 41c. There is.
 図3において、装着装置記憶部31には、位置ずれ量データ42が記憶される。位置ずれ量データ42は、後述するように検査装置12によって算出され、管理装置13を通じて送られてくるデータである。 In FIG. 3, the misalignment amount data 42 is stored in the mounting device storage unit 31. The misalignment amount data 42 is data calculated by the inspection device 12 and sent through the management device 13 as described later.
 装着処理部32は装着装置記憶部31に記憶された装着プログラム41bに基づいて、基板搬送路21、部品供給部22、装着ヘッド23およびヘッド移動機構24を作動させる。これにより基板搬送路21は基板KBの搬入および位置決めを行い、部品供給部22は部品BHを供給し、ヘッド移動機構24と装着ヘッド23は連動して作動して装着ターンを繰り返し実行する。これにより基板KBに部品BHが次々と装着されていく。 The mounting processing unit 32 operates the board transport path 21, the component supply unit 22, the mounting head 23, and the head moving mechanism 24 based on the mounting program 41b stored in the mounting device storage unit 31. As a result, the board transport path 21 carries in and positions the board KB, the component supply unit 22 supplies the component BH, and the head moving mechanism 24 and the mounting head 23 operate in conjunction with each other to repeatedly execute the mounting turn. As a result, the component BH is mounted on the board KB one after another.
 1回の装着ターンにおいて、装着ヘッド23は、部品BHを保持する動作(部品保持動作)、部品認識カメラ25の上方を通過する動作(カメラ上方通過動作)、部品BHを装着する動作(装着動作)をこの順序で実行する。部品保持動作では、装着ヘッド23は部品供給部22の上方に移動して部品供給部22が供給する部品BHをノズル23Nによって吸着する。カメラ上方通過動作では、装着ヘッド23は部品認識カメラ25の上方を通過して、ノズル23Nに吸着させた部品BHを部品認識カメラ25に下方から撮像させる。このカメラ上方通過動作において、装着ヘッド23に保持された部品BHの画像(保持部品画像)が取得され、部品BHが認識される。装着動作では、装着ヘッド23が基板KBの上方に移動し、部品BHの認識結果に基づいて基板KB上の目標装着座標に部品BHを装着する。 In one mounting turn, the mounting head 23 holds the component BH (part holding operation), passes above the component recognition camera 25 (passing above the camera), and mounts the component BH (mounting operation). ) In this order. In the component holding operation, the mounting head 23 moves above the component supply unit 22 and attracts the component BH supplied by the component supply unit 22 by the nozzle 23N. In the camera upper passage operation, the mounting head 23 passes above the component recognition camera 25 and causes the component recognition camera 25 to take an image of the component BH attracted to the nozzle 23N from below. In this camera upper passage operation, an image of the component BH held by the mounting head 23 (holding component image) is acquired, and the component BH is recognized. In the mounting operation, the mounting head 23 moves above the board KB, and the component BH is mounted at the target mounting coordinates on the board KB based on the recognition result of the component BH.
 保持部品位置算出部33は、部品認識カメラ25の撮像によって取得された保持部品画像に基づいて、部品BHの位置(代表位置)を算出する。この部品BHの位置の算出には、前述した複数の部品位置検出方式の中から選択されたひとつの部品位置検出方式が用いられる。このように部品認識カメラ25と保持部品位置算出部33は、装着ヘッド23に保持された部品BHの位置である保持部品位置を検出する保持部品位置検出部45を構成している。 The holding component position calculation unit 33 calculates the position (representative position) of the component BH based on the holding component image acquired by the image pickup of the component recognition camera 25. For the calculation of the position of the component BH, one component position detection method selected from the above-mentioned plurality of component position detection methods is used. In this way, the component recognition camera 25 and the holding component position calculation unit 33 constitute a holding component position detecting unit 45 that detects the holding component position, which is the position of the component BH held by the mounting head 23.
 フィードバック処理部34は、検査装置12から出力されるフィードバック情報に基づいてフィードバック処理を行う。フィードバック処理の主な内容は、部品装着装置11が基板KBに部品BHを装着する際の装着ヘッド23の動作パラメータの補正である。ここで「動作パラメータ」とは、基板KB上の目標装着座標に部品BHが装着されるように装着ヘッド23を動作させるための制御データである。フィードバック処理部34については、検査装置12および管理装置13の説明の後に説明する。 The feedback processing unit 34 performs feedback processing based on the feedback information output from the inspection device 12. The main content of the feedback process is the correction of the operating parameters of the mounting head 23 when the component mounting device 11 mounts the component BH on the board KB. Here, the "operation parameter" is control data for operating the mounting head 23 so that the component BH is mounted at the target mounting coordinates on the board KB. The feedback processing unit 34 will be described after the description of the inspection device 12 and the management device 13.
 装着装置通信部35は、管理装置13および検査装置12の双方と通信可能に繋がっている(図3参照)。装着装置通信部35は、検査装置12により検出される情報を、管理装置13を介して受信する。 The mounting device communication unit 35 is connected to both the management device 13 and the inspection device 12 so as to be able to communicate (see FIG. 3). The mounting device communication unit 35 receives the information detected by the inspection device 12 via the management device 13.
 図6は、部品装着システム1を構成する検査装置12の斜視図である。図1および図6において、検査装置12は、基板搬送部51、検査カメラ52、カメラ移動機構53、検査装置表示入力部54および検査装置制御部55を備えている。基板搬送部51は基板KBの搬入、位置決めおよび搬出を行う。検査カメラ52は撮像視野を下方に向けている。 FIG. 6 is a perspective view of the inspection device 12 constituting the component mounting system 1. In FIGS. 1 and 6, the inspection device 12 includes a substrate transport unit 51, an inspection camera 52, a camera moving mechanism 53, an inspection device display input unit 54, and an inspection device control unit 55. The board transfer unit 51 carries in, positions, and carries out the board KB. The inspection camera 52 points the imaging field of view downward.
 カメラ移動機構53は、固定側ビーム53aと、固定側ビーム53aに対して移動自在な移動側ビーム53bを備えたXYビーム機構から成る。カメラ移動機構53は、固定側ビーム53aに対して移動側ビーム53bを移動させる動作と、移動側ビーム53bに対して検査カメラ52を移動させる動作とを組み合わせることによって、検査カメラ52を水平面内で移動させ、部品装着装置11によって基板KBに装着された各部品BHを上方から撮像させる。 The camera moving mechanism 53 includes an XY beam mechanism provided with a fixed beam 53a and a moving beam 53b that is movable with respect to the fixed beam 53a. The camera moving mechanism 53 moves the inspection camera 52 in a horizontal plane by combining an operation of moving the moving side beam 53b with respect to the fixed side beam 53a and an operation of moving the inspection camera 52 with respect to the moving side beam 53b. It is moved, and each component BH mounted on the substrate KB is imaged from above by the component mounting device 11.
 検査装置表示入力部54は例えばタッチパネルから成る。検査装置表示入力部54は作業者による入力操作を受け入れるとともに、作業者が行うべき作業や種々の情報を画面や音声等で作業者に報知する。 The inspection device display input unit 54 is composed of, for example, a touch panel. The inspection device display input unit 54 accepts the input operation by the operator, and notifies the operator of the work to be performed by the operator and various information by screen, voice, or the like.
 図7は、検査装置12の制御系統を示すブロック図である。検査装置制御部55は、図7に示すように、検査装置記憶部61、検査処理部62、装着部品位置算出部63、位置ずれ量算出部64、良否判定部65および検査装置通信部66(第1出力部)を備えている。検査装置記憶部61には検査データ71が記憶されている。検査データ71には検査用部品データ71a、検査プログラム71b、第1識別情報71cおよび検査基準データ71dが含まれている。 FIG. 7 is a block diagram showing a control system of the inspection device 12. As shown in FIG. 7, the inspection device control unit 55 includes an inspection device storage unit 61, an inspection processing unit 62, a mounted component position calculation unit 63, a misalignment amount calculation unit 64, a quality determination unit 65, and an inspection device communication unit 66 ( It is equipped with a first output unit). The inspection data 71 is stored in the inspection device storage unit 61. The inspection data 71 includes inspection component data 71a, inspection program 71b, first identification information 71c, and inspection reference data 71d.
 検査用部品データ71aは、検査装置記憶部61に記憶された生産データ41の部品データ41aと同一のデータである。検査プログラム71bは、部品装着装置11によって基板KBに装着された各部品BHが、目標装着座標に所定の方向で装着されているかどうか等が検査されるために検査装置12の各部(基板搬送部51、検査カメラ52およびカメラ移動機構53等)を動作させる制御プログラムである。 The inspection part data 71a is the same data as the part data 41a of the production data 41 stored in the inspection device storage unit 61. In the inspection program 71b, each part (board transfer unit) of the inspection device 12 is inspected to check whether each part BH mounted on the board KB by the component mounting device 11 is mounted in a predetermined direction at the target mounting coordinates. 51, inspection camera 52, camera movement mechanism 53, etc.) is a control program that operates.
 第1識別情報71cは、基板KBに装着された部品BHの位置である装着部品位置を検出する際に用いる部品位置検出方式の識別情報である。装着部品位置の検出の際に用いられる部品位置検出方式は、ここでは保持部品位置の検出の際に用いられる部品位置検出方式(図4)と同じであるが、装着部品位置の検出の際に用いられる部品位置検出方式と保持部品位置の検出の際に用いられる部品位置検出方式は少なくも一部が一致(共通)していればよい。 The first identification information 71c is the identification information of the component position detection method used when detecting the position of the mounted component, which is the position of the component BH mounted on the board KB. The component position detection method used when detecting the position of the mounted component is the same as the component position detection method (FIG. 4) used here when detecting the position of the holding component, but when detecting the position of the mounted component. It is sufficient that at least a part of the component position detection method used and the component position detection method used for detecting the holding component position match (common).
 図8は、検査装置に記憶されている検査基準データの例を示す図である。図8は検査基準データ71dの一例を示している。検査基準データ71dには、検査対象とする部品BHの番号(通し番号:A001,A002,・・・)と、部品BHの番号に対応する基準位置の座標(Xn,Yn)(n=1,2,3,・・・)、検査プログラム番号Pn(n=0001,0002,0003,・・・)および識別情報(第1識別情報)が書き込まれている。このように検査基準データ71dには、部品BHごとに第1識別情報71cが(すなわち部品位置検出方式が)定められている。 FIG. 8 is a diagram showing an example of inspection standard data stored in the inspection device. FIG. 8 shows an example of inspection reference data 71d. The inspection reference data 71d includes the number of the component BH to be inspected (serial number: A001, A002, ...) And the coordinates (Xn, Yn) (n = 1, 2) of the reference position corresponding to the number of the component BH. , 3, ...), The inspection program number Pn (n = 0001, 0002, 0003, ...) And the identification information (first identification information) are written. As described above, in the inspection reference data 71d, the first identification information 71c (that is, the component position detection method) is defined for each component BH.
 検査処理部62は、基板KBに装着された複数の部品BHを全て検査カメラ52によって撮像させることで、各部品BHについての画像(検査画像)を取得する。このとき検査処理部62は、検査装置記憶部61に記憶された検査プログラム71bに基づいて、基板搬送部51によって位置決めされた基板KBの上方で検査カメラ52を移動させながら、検査カメラ52に撮像動作を繰り返し行わせる。 The inspection processing unit 62 acquires an image (inspection image) of each component BH by capturing all of the plurality of component BHs mounted on the substrate KB with the inspection camera 52. At this time, the inspection processing unit 62 takes an image on the inspection camera 52 while moving the inspection camera 52 above the substrate KB positioned by the substrate transport unit 51 based on the inspection program 71b stored in the inspection device storage unit 61. Have the operation repeated.
 装着部品位置算出部63は、検査カメラ52によって取得された検査画像に基づいて、部品BHの位置(装着部品位置)を算出する。部品BHの装着部品位置を検出する際に用いられる部品位置検出方式は部品BHごとに定められており(図8における「識別情報」の欄参照)、その定められた部品位置検出方式が読み出されて用いられる。 The mounted component position calculation unit 63 calculates the position of the component BH (mounted component position) based on the inspection image acquired by the inspection camera 52. The component position detection method used when detecting the mounted component position of the component BH is defined for each component BH (see the “identification information” column in FIG. 8), and the defined component position detection method reads out. And used.
 このように検査カメラ52と検査装置制御部55の装着部品位置算出部63は、基板KBに装着された部品BHの位置である装着部品位置を検出する装着部品位置検出部67を構成している。装着部品位置検出部67は、各部品BHの装着部品位置を、検査基準データ71dに定められた第1識別情報71cに対応する部品位置検出方法で検出する。 In this way, the mounted component position calculation unit 63 of the inspection camera 52 and the inspection device control unit 55 constitutes a mounted component position detecting unit 67 that detects the mounted component position, which is the position of the component BH mounted on the board KB. .. The mounted component position detecting unit 67 detects the mounted component position of each component BH by the component position detecting method corresponding to the first identification information 71c defined in the inspection reference data 71d.
 位置ずれ量算出部64は、装着部品位置検出部67により検出された基板KB上の各部品BHの装着部品位置と、予め定められた(検査装置記憶部61に記憶されている)それら部品BHの基準位置MZ(目標装着座標)からの位置ずれ量を算出する。図9は、検査装置12が算出する部品の位置ずれ量を説明する図である。図9は検査画像GZの一例であり、対象としている部品BHの代表位置ZPが基準位置MZからずれている状態を示している。図9において、基板KB上の基準位置MZが基板KBの面内で直交するX軸およびY軸の座標で表されるとすると、部品BHの代表位置ZPと基準位置MZの位置との間のX軸方向の差分(DX)とY軸方向の差分(DY)によって、部品BHの位置ずれ量(DX,DY)が求められる。 The misalignment amount calculation unit 64 determines the position of the mounted component of each component BH on the board KB detected by the mounted component position detection unit 67, and the predetermined component BH (stored in the inspection device storage unit 61). The amount of misalignment from the reference position MZ (target mounting coordinates) of is calculated. FIG. 9 is a diagram illustrating the amount of misalignment of parts calculated by the inspection device 12. FIG. 9 is an example of the inspection image GZ, and shows a state in which the representative position ZP of the target component BH deviates from the reference position MZ. In FIG. 9, assuming that the reference position MZ on the substrate KB is represented by the coordinates of the X-axis and the Y-axis orthogonal to each other in the plane of the substrate KB, it is between the representative position ZP of the component BH and the position of the reference position MZ. The amount of misalignment (DX, DY) of the component BH is obtained from the difference (DX) in the X-axis direction and the difference (DY) in the Y-axis direction.
 図10は検査装置12が出力する位置ずれ量データ42の一例を示している。位置ずれ量データ42には、検査対象とする部品BHの番号(通し番号:A001,A002,・・・)と、部品BHの番号に対応する検査結果、すなわち検出された部品BHの位置ずれ量(ΔXn,ΔYn)(n=1,2,3,・・・)および識別情報(第1識別情報)が書き込まれている。ここでは位置ずれ量そのものを示しているが、検出された部品BHの位置(装着部品位置)の座標で示し、部品BHの位置ずれ量を、装着部品位置と基準位置MZとの差分から求めるようになっているのであってもよい。 FIG. 10 shows an example of the misalignment amount data 42 output by the inspection device 12. The misalignment amount data 42 includes the number of the component BH to be inspected (serial number: A001, A002, ...) And the inspection result corresponding to the number of the component BH, that is, the detected misalignment amount of the component BH (misalignment amount data 42). ΔXn, ΔYn) (n = 1, 2, 3, ...) And identification information (first identification information) are written. Here, the amount of misalignment itself is shown, but it is shown by the coordinates of the detected position of the component BH (position of the mounted component), and the amount of misalignment of the component BH is obtained from the difference between the position of the mounted component and the reference position MZ. It may be.
 良否判定部65は、位置ずれ量算出部64により算出された位置ずれ量に基づいて、各部品BHの良否(装着状態が良好であるか否か)を判定する良否判定を行う。具体的には、位置ずれ量算出部64で算出された部品BHの位置ずれ量を、その部品BHに対応して定められている許容値と比較し、位置ずれ量が許容値以下であるか否かを判定する。 The quality determination unit 65 makes a quality determination to determine the quality (whether or not the mounted state is good) of each component BH based on the position deviation amount calculated by the position deviation amount calculation unit 64. Specifically, the misalignment amount of the component BH calculated by the misalignment amount calculation unit 64 is compared with the allowable value determined corresponding to the component BH, and whether the misalignment amount is equal to or less than the allowable value. Judge whether or not.
 具体的には、良否判定部65は、部品BHの位置ずれ量が許容値以下であった場合にはその部品BHの装着状態は良好であると判定し、部品BHの位置ずれ量が許容値を超えていた場合にはその部品BHの装着状態は不良であると判定する。例えば図9の例の場合、位置ずれ量の許容値がX軸方向についてRX、Y軸方向についてRYであるとすると、良否判定部65は、DX≦RXかつDY≦RYであった場合には部品BHの装着状態は良好であると判定する。一方、良否判定部65は、DX>RXまたはDY>RYであった場合には、部品BHの装着状態は不良であると判定する。なお、各部品BHについての許容値のデータは検査装置記憶部61に記憶されているものとする。 Specifically, the quality determination unit 65 determines that the mounting state of the component BH is good when the misalignment amount of the component BH is equal to or less than the allowable value, and the misalignment amount of the component BH is the allowable value. If it exceeds, it is determined that the mounting state of the component BH is defective. For example, in the case of the example of FIG. 9, if the permissible value of the misalignment amount is RX in the X-axis direction and RY in the Y-axis direction, the pass / fail determination unit 65 is when DX ≦ RX and DY ≦ RY. It is determined that the mounting state of the component BH is good. On the other hand, when the quality determination unit 65 determines that DX> RX or DY> RY, the mounting state of the component BH is defective. It is assumed that the allowable value data for each component BH is stored in the inspection device storage unit 61.
 検査装置通信部66は、管理装置13および部品装着装置11の双方と通信可能に繋がっている(図7参照)。検査装置通信部66は、装着部品位置検出部67が装着部品位置を検出する際に用いた部品位置検出方式の識別情報である第1識別情報71cと、位置ずれ量算出部64で算出された各部品BHについての位置ずれ量データ42に加え、良否判定部65で判定された基板KB上の各部品BHについての良否判定結果の情報を出力(管理装置13に送信)する。 The inspection device communication unit 66 is connected to both the management device 13 and the component mounting device 11 so as to be able to communicate (see FIG. 7). The inspection device communication unit 66 was calculated by the first identification information 71c, which is the identification information of the component position detection method used by the mounting component position detection unit 67 to detect the mounting component position, and the misalignment amount calculation unit 64. In addition to the misalignment amount data 42 for each component BH, information on the pass / fail determination result for each component BH on the substrate KB determined by the pass / fail determination unit 65 is output (transmitted to the management device 13).
 図11は、管理装置13の制御系統を示すブロック図である。図11において、管理装置13は、管理装置記憶部81、識別情報判定部82、管理装置通信部83および管理装置表示入力部84を備えている。管理装置記憶部81には、部品装着装置11の装着装置記憶部31に記憶されている生産データ41のマスターデータである生産マスターデータ91と、検査装置12の検査装置記憶部61に記憶されている検査データ71のマスターデータである検査マスターデータ92が記憶されている。 FIG. 11 is a block diagram showing a control system of the management device 13. In FIG. 11, the management device 13 includes a management device storage unit 81, an identification information determination unit 82, a management device communication unit 83, and a management device display input unit 84. The management device storage unit 81 stores the production master data 91, which is the master data of the production data 41 stored in the mounting device storage unit 31 of the component mounting device 11, and the inspection device storage unit 61 of the inspection device 12. The inspection master data 92, which is the master data of the inspection data 71, is stored.
 識別情報判定部82は、検査装置12から出力された第1識別情報71cを取得するとともに、部品装着装置11から出力された第2識別情報41cを取得する。そして、第1識別情報71cと第2識別情報41cを比較することによって、第1識別情報71cが第2識別情報41cと一致するか否かを判定する。 The identification information determination unit 82 acquires the first identification information 71c output from the inspection device 12 and the second identification information 41c output from the component mounting device 11. Then, by comparing the first identification information 71c and the second identification information 41c, it is determined whether or not the first identification information 71c matches the second identification information 41c.
 図11に示すように、管理装置記憶部81には、検査情報93と識別情報判定結果94が記憶される。検査情報93は検査装置12で検査された結果(各部品BHについての位置ずれ量データ42や良否判定の結果)等のデータであり、識別情報判定結果94は識別情報判定部82で判定された結果(識別情報判定結果)のデータである。 As shown in FIG. 11, the inspection information 93 and the identification information determination result 94 are stored in the management device storage unit 81. The inspection information 93 is data such as the result of inspection by the inspection device 12 (positional deviation amount data 42 for each component BH and the result of quality determination), and the identification information determination result 94 is determined by the identification information determination unit 82. It is the data of the result (identification information determination result).
 管理装置通信部83は、部品装着装置11および検査装置12の双方と通信可能に繋がっている。管理装置通信部83は、検査装置12により検出されて送られてきた位置ずれ量データ42等の情報を部品装着装置11に送信(転送)する。 The management device communication unit 83 is connected to both the component mounting device 11 and the inspection device 12 so as to be able to communicate with each other. The management device communication unit 83 transmits (transfers) information such as the misalignment amount data 42 detected and sent by the inspection device 12 to the component mounting device 11.
 次に、部品装着装置11の装着装置制御部27が備えるフィードバック処理部34について説明する。フィードバック処理部34は、図3に示すように、補正部43および情報集計部44を備えている。補正部43は、管理装置13より送られてきた(すなわち検査装置12で算出された)位置ずれ量に基づいて装着ヘッド23が部品BHを基板KBに装着する際の動作パラメータの補正値を求め、その求めた補正値を用いて動作パラメータを補正する。 Next, the feedback processing unit 34 included in the mounting device control unit 27 of the component mounting device 11 will be described. As shown in FIG. 3, the feedback processing unit 34 includes a correction unit 43 and an information aggregation unit 44. The correction unit 43 obtains the correction value of the operation parameter when the mounting head 23 mounts the component BH on the board KB based on the misalignment amount sent from the management device 13 (that is, calculated by the inspection device 12). , The operation parameter is corrected using the obtained correction value.
 管理装置13の識別情報判定部82において判定された結果(識別情報判定結果)は部品装着装置11の補正部43に送信されるようになっている。補正部43は、第1識別情報71cが第2識別情報41cと一致すると判定された結果を管理装置13から受け取った場合には、管理装置13から送られてきた位置ずれ量に基づいて動作パラメータの補正値を算出するとともに、その算出した補正値を用いて動作パラメータを補正する。一方、補正部43は、第1識別情報71cが第2識別情報41cと一致しないと判定された結果を管理装置13から受け取った場合には、一致しないと判定された部品BHの位置ずれ量データ42を、動作パラメータの補正値を算出するデータとして使用しない。 The result (identification information determination result) determined by the identification information determination unit 82 of the management device 13 is transmitted to the correction unit 43 of the component mounting device 11. When the correction unit 43 receives from the management device 13 the result that the first identification information 71c is determined to match the second identification information 41c, the correction unit 43 operates parameters based on the amount of misalignment sent from the management device 13. The correction value of is calculated, and the operation parameter is corrected using the calculated correction value. On the other hand, when the correction unit 43 receives from the management device 13 the result that the first identification information 71c is determined not to match the second identification information 41c, the misalignment amount data of the component BH determined to be inconsistent is received. 42 is not used as data for calculating the correction value of the operation parameter.
 ここで、前述したように、識別情報判定結果94は管理装置記憶部81に記憶されるようになっているため、第1識別情報71cが第2識別情報41cと一致しないと判定された場合において、これらの判定結果を作業者が確認することが可能である。なお、識別情報判定結果94が記憶されるのは、ここでは管理装置記憶部81となっているが、その他の記憶部に記憶されるのであっても構わない。 Here, as described above, since the identification information determination result 94 is stored in the management device storage unit 81, when it is determined that the first identification information 71c does not match the second identification information 41c. , It is possible for the operator to confirm these determination results. The identification information determination result 94 is stored in the management device storage unit 81 here, but it may be stored in another storage unit.
 情報集計部44は、管理装置13を通じて検査装置12から送られてきた各部品BHの位置ずれ量データ42を用いて、部品BHの装着精度に関する情報を集計する。具体的には、情報集計部44は、識別情報判定部82において第1識別情報71cが第2識別情報41cと一致すると判定された部品BHについては、検査装置12から送られてきた部品BHの位置ずれ量データ42の情報を用いて部品BHの装着精度に関する情報を集計する。一方、情報集計部44は、識別情報判定部82において第1識別情報71cが第2識別情報41cと一致しなかったと判定された部品BHについては、検査装置12により送られてきた部品BHの位置ずれ情報を、部品BHの装着精度に関する情報を集計するデータとして使用しない。 The information aggregation unit 44 aggregates information on the mounting accuracy of the component BH using the misalignment amount data 42 of each component BH sent from the inspection device 12 through the management device 13. Specifically, the information totaling unit 44 determines that the first identification information 71c matches the second identification information 41c in the identification information determination unit 82. Information on the mounting accuracy of the component BH is aggregated using the information of the misalignment amount data 42. On the other hand, the information totaling unit 44 determines that the first identification information 71c does not match the second identification information 41c in the identification information determination unit 82, and the position of the component BH sent by the inspection device 12 is determined by the information aggregation unit 44. The deviation information is not used as data for aggregating information on the mounting accuracy of the component BH.
 図12に示すフローチャートは、部品装着システム1において、部品装着装置11が行う部品装着作業(基板KBに部品BHが装着された実装基板を製造する基板製造方法)の流れを示している。部品装着装置11は先ず、上流側から送られてきた基板KBを基板搬送路21によって受け取り、所定の部品装着作業位置に位置決めする(ステップST1)。基板KBを上流側から受け取るとき、基板KBの表面に取り付けられた識別子を読み取って記憶する。そして、基板搬送路21によって基板KBが位置決めされたら、装着ヘッド23を部品供給部22の上方に移動させ、部品供給部22によって供給される部品BHをノズル23Nにより保持(ピックアップ)させる(ステップST2。部品保持工程)。 The flowchart shown in FIG. 12 shows the flow of the component mounting work (a board manufacturing method for manufacturing a mounting board on which the component BH is mounted on the board KB) performed by the component mounting device 11 in the component mounting system 1. First, the component mounting device 11 receives the board KB sent from the upstream side by the board transport path 21 and positions it at a predetermined component mounting work position (step ST1). When the board KB is received from the upstream side, the identifier attached to the surface of the board KB is read and stored. Then, when the board KB is positioned by the board transfer path 21, the mounting head 23 is moved above the component supply unit 22, and the component BH supplied by the component supply unit 22 is held (picked up) by the nozzle 23N (step ST2). . Parts holding process).
 部品BHをノズル23Nに保持させたら、装着ヘッド23を移動させて部品認識カメラ25の上方を通過させ、部品認識カメラ25に部品BHの画像(保持部品画像)を取得させる(ステップST3)。部品認識カメラ25が保持部品画像を取得したら、その保持部品画像に映し出された部品BHに対応する第2識別情報41cを取得する(ステップST4)。 After the component BH is held by the nozzle 23N, the mounting head 23 is moved to pass above the component recognition camera 25, and the component recognition camera 25 is made to acquire an image of the component BH (holding component image) (step ST3). After the component recognition camera 25 acquires the image of the holding component, the second identification information 41c corresponding to the component BH projected on the image of the holding component is acquired (step ST4).
 部品装着装置11は第2識別情報41cを取得したら、その取得した第2識別情報41cに対応する部品位置検出方式により、装着ヘッド23に保持された部品BHの位置である保持部品位置を検出する(ステップST5。保持部品位置検出工程)。そして、所定の場合に動作パラメータの補正を行ったうえで(ステップST6。補正処理工程)、装着ヘッド23により保持した部品BHを基板KB上の目標装着座標に装着する(ステップST7。部品装着工程)。 After the component mounting device 11 acquires the second identification information 41c, the component mounting device 11 detects the position of the holding component, which is the position of the component BH held by the mounting head 23, by the component position detection method corresponding to the acquired second identification information 41c. (Step ST5. Holding component position detection step). Then, after correcting the operation parameters in a predetermined case (step ST6, correction processing step), the component BH held by the mounting head 23 is mounted on the target mounting coordinates on the board KB (step ST7, component mounting step). ).
 部品装着装置11は、装着ヘッド23により保持した部品BHを基板KB上の目標装着座標に装着したら、保持部品位置検出部45がステップST5で保持部品位置を検出する際に用いた部品位置検出方式の識別情報である第2識別情報41cを、ステップST1で読み取った基板KBの識別子の情報とともに、管理装置13に出力する(ステップST8。第2出力工程)。そして、基板KBに装着すべき部品BHを全て装着したら、その基板KBを下流側の検査装置12に搬出して(ステップST9)、基板KBの1枚当たりの部品装着作業を終了する。 The component mounting device 11 mounts the component BH held by the mounting head 23 at the target mounting coordinates on the board KB, and then the component position detection unit 45 used when the holding component position detecting unit 45 detects the holding component position in step ST5. The second identification information 41c, which is the identification information of the above, is output to the management device 13 together with the information of the identifier of the board KB read in step ST1 (step ST8, the second output step). Then, when all the parts BH to be mounted on the board KB are mounted, the board KB is carried out to the inspection device 12 on the downstream side (step ST9), and the component mounting work per board KB is completed.
 図13に示すフローチャートは、検査装置12が行う検査作業の流れを示している。検査装置12は、検査作業を行う場合には先ず、部品装着装置11から基板KBを受け取って搬入し、所定の検査作業位置に位置決めする(図13に示すステップST11)。検査装置12は基板KBを部品装着装置11から受け取るとき、基板KBの表面に取り付けられた識別子を読み取って記憶する。そして、基板KBを位置決めしたら、カメラ移動機構53によって検査カメラ52を移動させ、基板KB上に装着された部品BHについての画像(検査画像)を取得する(ステップST12)。検査装置12は、部品BHについての検査画像GZを取得したら、検査画像を取得した部品BHに対応する部品位置検出方式に対応する識別情報(第1識別情報71c)を取得する(ステップST13)。 The flowchart shown in FIG. 13 shows the flow of inspection work performed by the inspection device 12. When performing inspection work, the inspection device 12 first receives the board KB from the component mounting device 11 and carries it in, and positions the board KB at a predetermined inspection work position (step ST11 shown in FIG. 13). When the inspection device 12 receives the board KB from the component mounting device 11, the inspection device 12 reads and stores the identifier attached to the surface of the board KB. Then, after positioning the board KB, the inspection camera 52 is moved by the camera moving mechanism 53 to acquire an image (inspection image) of the component BH mounted on the board KB (step ST12). After acquiring the inspection image GZ for the component BH, the inspection device 12 acquires the identification information (first identification information 71c) corresponding to the component position detection method corresponding to the component BH for which the inspection image has been acquired (step ST13).
 検査装置12は第1識別情報71cを取得したら、その取得した第1識別情報71cに対応する部品位置検出方式により、検査画像に基づいて、基板KBに装着された部品BHの位置である装着部品位置を検出する(ステップST14。装着部品位置検出工程)。そして、装着部品位置を検出したら、その検出した装着部品位置の予め定められた基準位置(目標装着座標)からの位置ずれ量を算出する(ステップST15。位置ずれ量算出工程)。 After the inspection device 12 acquires the first identification information 71c, the inspection device 12 uses the component position detection method corresponding to the acquired first identification information 71c, and is the position of the component BH mounted on the substrate KB based on the inspection image. The position is detected (step ST14. Mounting component position detection step). Then, when the position of the mounted component is detected, the amount of misalignment of the detected position of the mounted component from the predetermined reference position (target mounting coordinate) is calculated (step ST15, step of calculating the amount of misalignment).
 検査装置12は、位置ずれ量を算出したら、良否判定部65において、算出した位置ずれ量に基づいて、基板KB上における部品BHの装着状態の良否を判定する(ステップST16。良否判定工程)。部品BHの装着状態の良否を判定したら、部品ごとの良否の判定結果と、装着部品位置を検出する際に用いた部品位置検出方式の識別情報(第1識別情報71c)と、位置ずれ算出工程において位置ずれ量算出部64で算出した位置ずれ量の情報を、ステップST11で読み取った基板KBの識別子の情報とともに、検査装置通信部66から管理装置13に出力する(ステップST17。第1出力工程)。そして、基板KB上の検査すべき部品BHを全て検査したら、その基板KBを下流側に搬出して(ステップST18)、基板KBの1枚当たりの検査作業を終了する。 After calculating the amount of misalignment, the inspection device 12 determines whether or not the component BH is mounted on the substrate KB based on the calculated amount of misalignment (step ST16, pass / fail determination step). After determining the quality of the mounted state of the component BH, the determination result of the quality of each component, the identification information of the component position detection method used when detecting the position of the mounted component (first identification information 71c), and the position deviation calculation step. The information on the amount of misalignment calculated by the misalignment calculation unit 64 is output from the inspection device communication unit 66 to the management device 13 together with the information on the identifier of the board KB read in step ST11 (step ST17, first output step). ). Then, when all the component BHs to be inspected on the substrate KB are inspected, the substrate KB is carried out to the downstream side (step ST18), and the inspection work for each substrate KB is completed.
 図14に示すフローチャートは、管理装置13が行う管理作業の流れを示している。管理装置13は、管理作業を行う場合には先ず、検査装置12がステップST17で出力した第1識別情報71cと部品BHの位置ずれ量の情報を取得(受信)する(ステップST21)。このとき基板KBの識別子も同時に取得する。そして、第1識別情報71cと位置ずれ量の情報を取得したら、次いで、部品装着装置11がステップST8の第2出力工程で出力した第2識別情報41cを取得(受信)する(ステップST22)。このとき基板KBの識別子も同時に取得する。これらステップST21とステップST22の順序は反対であってもよい。 The flowchart shown in FIG. 14 shows the flow of management work performed by the management device 13. When performing management work, the management device 13 first acquires (receives) information on the first identification information 71c output by the inspection device 12 in step ST17 and the amount of misalignment of the component BH (step ST21). At this time, the identifier of the board KB is also acquired at the same time. Then, after acquiring the first identification information 71c and the information on the amount of misalignment, the component mounting device 11 then acquires (receives) the second identification information 41c output in the second output step of step ST8 (step ST22). At this time, the identifier of the board KB is also acquired at the same time. The order of these steps ST21 and ST22 may be reversed.
 管理装置13は、第1識別情報71cと第2識別情報41cを取得したら、基板KBの識別子が同じものであることを確認したうえで、第1識別情報71cが第2識別情報41cと一致するか否かを判定する(ステップST23。識別情報判定工程)。そして、その判定によって得られた結果(識別情報判定結果94)とステップST17で取得した部品BHの位置ずれ量の情報を、部品装着装置11に送信(出力)する(ステップST24)。 When the management device 13 acquires the first identification information 71c and the second identification information 41c, the management device 13 confirms that the identifiers of the board KB are the same, and then the first identification information 71c matches the second identification information 41c. It is determined whether or not (step ST23; identification information determination step). Then, the result obtained by the determination (identification information determination result 94) and the information of the misalignment amount of the component BH acquired in step ST17 are transmitted (output) to the component mounting device 11 (step ST24).
 図15に示すフローチャートは、部品装着装置11が前述のステップST6(補正処理工程)で実行する動作パラメータの補正作業の流れを示している。部品装着装置11は、動作パラメータの補正作業を行う場合には先ず、管理装置13がステップST24で出力した識別情報判定結果94、すなわち第1識別情報71cが第2識別情報41cと一致するか否かの判定結果と部品BHの位置ずれ量の情報を取得する(ステップST31)。ここで取得する識別情報判定結果94と部品BHの位置ずれ量の情報は、その時点で部品装着装置11が部品装着作業を行っており、あるいは検査装置12が検査作業を行っている基板KBよりも前に処理された基板KBについてのもの(識別情報判定結果94および位置ずれ量の情報)である。 The flowchart shown in FIG. 15 shows the flow of the operation parameter correction work executed by the component mounting device 11 in the above-mentioned step ST6 (correction processing step). When the component mounting device 11 performs the operation parameter correction work, first, whether or not the identification information determination result 94 output by the management device 13 in step ST24, that is, the first identification information 71c matches the second identification information 41c. Information on the determination result and the amount of misalignment of the component BH is acquired (step ST31). The identification information determination result 94 and the information on the amount of misalignment of the component BH acquired here are obtained from the board KB on which the component mounting device 11 is performing the component mounting work or the inspection device 12 is performing the inspection work at that time. Is also about the previously processed substrate KB (identification information determination result 94 and misalignment amount information).
 部品装着装置11は、ステップST31で識別情報判定結果94と部品BHの位置ずれ量の情報を取得したら、識別情報判定結果94が、「第1識別情報が第2識別情報と一致」することを示す内容であるか否かを判断する(ステップST32)。その結果、識別情報判定結果94が「第1識別情報が第2識別情報と一致する」ことを示す内容であった場合には(ステップST32でYes(Y))、位置ずれ量の情報をフィードバックデータとして記憶する(ステップST33)。そして、必要なデータ数が集まったか否かを判断し(ステップST34)、その結果、必要なデータ数が集まった場合には(ステップST34でYes(Y))、動作パラメータの補正値を算出して動作パラメータを補正し(ステップST35)、位置ずれ量の情報を用いて部品BHの装着精度に関する情報を集計する(ステップST36)。 When the component mounting device 11 acquires the identification information determination result 94 and the information on the amount of misalignment of the component BH in step ST31, the identification information determination result 94 indicates that "the first identification information matches the second identification information". It is determined whether or not the content is shown (step ST32). As a result, when the identification information determination result 94 is the content indicating that "the first identification information matches the second identification information" (Yes (Y) in step ST32), the information on the amount of misalignment is fed back. Store as data (step ST33). Then, it is determined whether or not the required number of data has been collected (step ST34), and as a result, if the required number of data has been collected (Yes (Y) in step ST34), the correction value of the operation parameter is calculated. The operation parameters are corrected (step ST35), and the information on the mounting accuracy of the component BH is aggregated using the information on the amount of misalignment (step ST36).
 ここで、ステップST34における判断は、部品BHの装着およびその検査が行われた基板KBの数が一定数に達したか否かを基準にしてもよいし、位置ずれ量が所定の基準を超えた基板KBの数が一定数に達した否かを基準にしてもよい。ステップST35では、一定数に達したデータ数の位置ずれ量の平均等を求めて動作パラメータの補正値を算出し、その補正値をもって動作パラメータを補正する。ステップST36では、例えば位置ずれ量の変化を時系列に沿って集計し、動作パラメータの補正によって位置ずれ量が次第に小さくなっている状態を確認できるデータを作成する。 Here, the determination in step ST34 may be based on whether or not the number of substrate KB on which the component BH is mounted and the inspection thereof has reached a certain number, or the amount of misalignment exceeds a predetermined reference. Whether or not the number of the substrate KB has reached a certain number may be used as a reference. In step ST35, the correction value of the operation parameter is calculated by obtaining the average of the misalignment amount of the number of data that has reached a certain number, and the operation parameter is corrected by the correction value. In step ST36, for example, changes in the amount of misalignment are aggregated along the time series, and data is created that can confirm the state in which the amount of misalignment is gradually reduced by correcting the operation parameters.
 部品装着装置11は、ステップST36が終了したら図12のメインルーチンに復帰するが、ステップST32において識別情報判定結果94が「第1識別情報が第2識別情報と一致する」ことを示す内容でなかった場合には、ステップST33~ステップST36をスキップしてメインルーチンに復帰する。このためステップST32で、識別情報判定結果94が「第1識別情報が第2識別情報と一致する」ことを示す内容でなかった場合(ステップST32でNo(N))、すなわち、検査装置12において部品BHの装着部品位置を検出した際に用いた部品位置検出方式が、部品装着装置11において部品BHの保持部品位置を検出した際に用いた部品位置検出方式と異なっていた場合には、一致しないと判定された部品BHの位置ずれ量は、部品装着装置11において、動作パラメータの補正値を算出するデータとして使用されない。 The component mounting device 11 returns to the main routine of FIG. 12 when step ST36 is completed, but the identification information determination result 94 in step ST32 does not indicate that "the first identification information matches the second identification information". If so, the process returns to the main routine by skipping steps ST33 to ST36. Therefore, in step ST32, when the identification information determination result 94 does not indicate that "the first identification information matches the second identification information" (No (N) in step ST32), that is, in the inspection device 12. If the component position detection method used when detecting the mounting component position of the component BH is different from the component position detection method used when detecting the holding component position of the component BH in the component mounting device 11, it matches. The amount of misalignment of the component BH determined not to be used is not used as data for calculating the correction value of the operation parameter in the component mounting device 11.
 これは、検査装置12において部品BHの装着部品位置を検出した際に用いた部品位置検出方式が、部品装着装置11において部品BHの保持部品位置を検出した際に用いた部品位置検出方式と異なっていたにも拘らず、検査装置12で検出された部品BHの位置ずれ量をそのまま動作パラメータの補正に用いることは、部品装着装置11にとって不正確な位置ずれ量を用いて動作パラメータを補正することとなるからであり、位置ずれが補正前よりも却って大きくなるという事態が起きるのを避けるためである。また、部品装着装置11にとって不正確な位置ずれ量を用いて部品BHの装着精度に関する情報の集計を行ってもその集計結果が不正確となり得るため、集計そのものを行わないようにしている。 This is because the component position detection method used when the inspection device 12 detects the mounting component position of the component BH is different from the component position detection method used when the component mounting device 11 detects the holding component position of the component BH. However, using the misalignment amount of the component BH detected by the inspection device 12 as it is for correcting the operation parameter corrects the operation parameter by using the misalignment amount that is inaccurate for the component mounting device 11. This is to avoid a situation in which the misalignment becomes larger than before the correction. Further, even if the information regarding the mounting accuracy of the component BH is aggregated using the amount of misalignment that is inaccurate for the component mounting device 11, the aggregated result may be inaccurate, so the aggregation itself is not performed.
 このように実施の形態1における部品装着システム1の検査装置12は、基板KBに装着された部品BHの位置(装着部品位置)を検出する際に用いた部品位置検出方式の識別情報(第1識別情報71c)を、装着部品位置の基準位置(目標装着座標)からの位置ずれ量とともに出力するようになっている。管理装置13は、検査装置12から出力された第1識別情報71cと、部品装着装置11が装着ヘッド23により保持した部品BHの位置(保持部品位置)を検出する際に用いた部品位置検出方式の識別情報(第2識別情報41c)とを比較し、第1識別情報71cが第2識別情報41cと一致するか否かを判定するようになっている(ステップST32)。そして、その判定結果が、第1識別情報71cが第2識別情報41cと一致することを示す内容のものであった場合には、検査装置12で算出された部品BHの位置ずれ量に基づいて求めた補正値を用いて動作パラメータを補正するようになっている(ステップST35)。一方、判定結果が、第1識別情報71cが第2識別情報41cと一致することを示す内容でなかった場合には、部品BHの位置ずれ量を動作パラメータの補正値を算出するデータとして使用しないようになっている。 As described above, the inspection device 12 of the component mounting system 1 according to the first embodiment has identification information (first) of the component position detection method used when detecting the position (mounting component position) of the component BH mounted on the substrate KB. The identification information 71c) is output together with the amount of positional deviation from the reference position (target mounting coordinates) of the mounting component position. The management device 13 is a component position detection method used when detecting the first identification information 71c output from the inspection device 12 and the position (holding component position) of the component BH held by the component mounting device 11 by the mounting head 23. The identification information (second identification information 41c) is compared with the identification information (second identification information 41c), and it is determined whether or not the first identification information 71c matches the second identification information 41c (step ST32). If the determination result indicates that the first identification information 71c matches the second identification information 41c, the determination result is based on the misalignment amount of the component BH calculated by the inspection device 12. The operation parameters are corrected using the obtained correction values (step ST35). On the other hand, if the determination result does not indicate that the first identification information 71c matches the second identification information 41c, the misalignment amount of the component BH is not used as data for calculating the correction value of the operation parameter. It has become like.
 このため実施の形態1における部品装着システム1では、第1識別情報71cが第2識別情報41cと一致する場合にのみ動作パラメータを補正するようにすることができ、部品装着装置11における部品BHの装着精度を低下させることなく、部品装着時の動作パラメータを補正することができる。 Therefore, in the component mounting system 1 according to the first embodiment, the operation parameter can be corrected only when the first identification information 71c matches the second identification information 41c, and the component BH in the component mounting device 11 can be corrected. It is possible to correct the operating parameters at the time of component mounting without deteriorating the mounting accuracy.
 (実施の形態2)
 次に、本開示の実施の形態2における部品装着システムついて説明する。実施の形態2における部品装着システムが実施の形態1における部品装着システム1と異なるところは、部品装着装置11が実行する部品装着作業の内容の一部と、管理装置13が実行する管理作業の内容の一部のみである。
(Embodiment 2)
Next, the component mounting system according to the second embodiment of the present disclosure will be described. The difference between the component mounting system in the second embodiment and the component mounting system 1 in the first embodiment is that a part of the component mounting work performed by the component mounting device 11 and the content of the management work performed by the management device 13. It is only a part of.
 実施の形態2では、部品装着装置11は図16のフローチャートに示す流れで部品装着作業を実行し、検査装置12は実施の形態1の場合と同様に図13のフローチャートに示す流れで検査作業を実行し、管理装置13は図17のフローチャートに示す流れで管理作業を実行する。また部品装着装置11は、図18のフローチャートに示す流れで動作パラメータの補正作業を実行する。 In the second embodiment, the component mounting device 11 executes the component mounting operation according to the flow shown in the flowchart of FIG. 16, and the inspection device 12 performs the inspection operation according to the flow shown in the flowchart of FIG. 13 as in the case of the first embodiment. The management device 13 executes the management work according to the flow shown in the flowchart of FIG. Further, the component mounting device 11 executes the operation parameter correction work according to the flow shown in the flowchart of FIG.
 図16は、部品装着装置11が実行する部品装着作業の流れを示すフローチャートである。部品装着装置11は、図16のフローチャートに示すように、部品装着作業を行う場合には先ず、実施の形態1の場合と同様に、上流側から送られてきた基板KBを基板搬送路21によって受け取り、所定の部品装着作業位置に位置決めする(ステップST41)。基板搬送路21によって基板KBが位置決めされたら、装着ヘッド23を部品供給部22の上方に移動させ、部品供給部22によって供給される部品BHをノズル23Nにより保持(ピックアップ)させる(ステップST42。部品保持工程)。そして、装着ヘッド23を移動させて部品認識カメラ25の上方を通過させ、部品認識カメラ25に部品BHの画像(保持部品画像)を取得させる(ステップST43)。そして、部品認識カメラ25が保持部品画像を取得したら、その保持部品画像に映し出された部品BHに対応する第2識別情報41cを取得する(ステップST44)。 FIG. 16 is a flowchart showing the flow of the component mounting work executed by the component mounting device 11. As shown in the flowchart of FIG. 16, when the component mounting operation is performed, the component mounting device 11 first transfers the substrate KB sent from the upstream side by the substrate transport path 21 as in the case of the first embodiment. It is received and positioned at a predetermined component mounting work position (step ST41). After the board KB is positioned by the board transfer path 21, the mounting head 23 is moved above the component supply section 22 and the component BH supplied by the component supply section 22 is held (picked up) by the nozzle 23N (step ST42. Holding process). Then, the mounting head 23 is moved to pass above the component recognition camera 25, and the component recognition camera 25 is made to acquire an image (holding component image) of the component BH (step ST43). Then, when the component recognition camera 25 acquires the holding component image, the second identification information 41c corresponding to the component BH projected on the holding component image is acquired (step ST44).
 部品装着装置11は第2識別情報41cを取得したら、その取得した第2識別情報41cに対応する部品位置検出方式により、装着ヘッド23に保持された部品BHの位置である保持部品位置を検出する(ステップST45。保持部品位置検出工程)。そして、所定の場合に動作パラメータの補正を行ったうえで(ステップST46。補正処理工程)、装着ヘッド23により保持した部品BHを基板KB上の目標装着座標に装着する(ステップST47。部品装着工程)。 After the component mounting device 11 acquires the second identification information 41c, the component mounting device 11 detects the position of the holding component, which is the position of the component BH held by the mounting head 23, by the component position detection method corresponding to the acquired second identification information 41c. (Step ST45. Holding component position detection step). Then, after correcting the operation parameters in a predetermined case (step ST46, correction processing step), the component BH held by the mounting head 23 is mounted on the target mounting coordinates on the board KB (step ST47, component mounting step). ).
 部品装着装置11は、基板KBに装着すべき部品BHを全て装着したら、その基板KBを下流側の検査装置12に搬出して(ステップST48)、基板KBの1枚当たりの部品装着作業を終了する。このように実施の形態2では、実施の形態1におけるステップST8の第2出力工程(図12)に相当する工程がなく、保持部品位置を検出する際に用いた部品位置検出方式の識別情報である第2識別情報41cを管理装置13に出力しないようになっている。 When the component mounting device 11 mounts all the components BH to be mounted on the board KB, the board KB is carried out to the inspection device 12 on the downstream side (step ST48), and the component mounting work per board KB is completed. do. As described above, in the second embodiment, there is no step corresponding to the second output step (FIG. 12) of step ST8 in the first embodiment, and the identification information of the component position detection method used when detecting the position of the holding component is used. The second identification information 41c is not output to the management device 13.
 図17は、管理装置が実行する管理作業の流れを示すフローチャートである。管理装置13は、図17のフローチャートに示すように、管理作業を行う場合には先ず、検査装置12がステップST17の第1出力工程(図13参照)で出力した第1識別情報71cと部品BHの位置ずれ量の情報を取得(受信)する(ステップST51)。管理装置13は、ステップST51で第1識別情報71cを取得したら、第1識別情報71cが特定の部品検出方式に対応する所定の識別情報であるか否かを判定する(ステップST52。識別情報判定工程)。そして、その判定によって得られた結果(識別情報判定結果94)とステップST17で取得した部品BHの位置ずれ量の情報を、部品装着装置11に送信(出力)する(ステップST53)。 FIG. 17 is a flowchart showing the flow of management work executed by the management device. As shown in the flowchart of FIG. 17, when the management device 13 performs the management work, first, the inspection device 12 first outputs the first identification information 71c and the component BH in the first output step (see FIG. 13) of the step ST17. (Step ST51), the information on the amount of misalignment of the above is acquired (received). After acquiring the first identification information 71c in step ST51, the management device 13 determines whether or not the first identification information 71c is predetermined identification information corresponding to the specific component detection method (step ST52. Identification information determination). Process). Then, the result obtained by the determination (identification information determination result 94) and the information of the misalignment amount of the component BH acquired in step ST17 are transmitted (output) to the component mounting device 11 (step ST53).
 このように実施の形態2では、実施の形態1におけるステップST23に相当するステップST52において、実施の形態1の場合のように第1識別情報71cが第2識別情報41cと一致するか否かを判定するのでははく、第1識別情報71cが所定の識別情報であるか否かを判定するようになっている。なお、「所定の識別情報」には通常、実施の形態1における第2識別情報41cに対応する部品位置検出方式を示す識別情報が設定され、そのデータは、管理装置記憶部81に記憶される。 As described above, in the second embodiment, whether or not the first identification information 71c matches the second identification information 41c in the step ST52 corresponding to the step ST23 in the first embodiment as in the case of the first embodiment. Instead of making a determination, it is determined whether or not the first identification information 71c is predetermined identification information. In the "predetermined identification information", identification information indicating a component position detection method corresponding to the second identification information 41c in the first embodiment is usually set, and the data is stored in the management device storage unit 81. ..
 図18は、部品装着装置11が実行する動作パラメータの補正作業の流れを示すフローチャートである。部品装着装置11は、図18のフローチャートに示すように、動作パラメータの補正作業を行う場合には先ず、管理装置13による管理作業のステップST53で出力された識別情報判定結果(すなわち第1識別情報71cが所定の識別情報であったか否かの判定結果)と部品BHの位置ずれ量の情報を取得する(ステップST61)。ここで取得する識別情報判定結果94と部品BHの位置ずれ量の情報は、実施の形態1の場合と同様に、その時点で部品装着装置11が部品装着作業を行っており、あるいは検査装置12が検査作業を行っている基板KBよりも前に処理された基板KBについてのもの(識別情報判定結果94および位置ずれ量の情報)である。 FIG. 18 is a flowchart showing the flow of the operation parameter correction work executed by the component mounting device 11. As shown in the flowchart of FIG. 18, when the component mounting device 11 performs the operation parameter correction work, first, the identification information determination result (that is, the first identification information) output in step ST53 of the management work by the management device 13 is performed. (Determination result of whether or not 71c is the predetermined identification information) and information on the amount of misalignment of the component BH are acquired (step ST61). The identification information determination result 94 and the information on the amount of misalignment of the component BH acquired here are the same as in the case of the first embodiment, at that time, the component mounting device 11 is performing the component mounting work, or the inspection device 12 Is about the substrate KB processed before the substrate KB being inspected (identification information determination result 94 and information on the amount of misalignment).
 部品装着装置11は、ステップST61で識別情報判定結果と部品BHの位置ずれ量の情報を取得したら、識別情報判定結果が「第1識別情報が所定の識別情報である」ことを示す内容であるか否かを判断する(ステップST62)。その結果、識別情報判定結果が「第1識別情報が所定の識別情報である」ことを示す内容であった場合には(ステップST62でY)、位置ずれ量の情報をフィードバックデータとして記憶する(ステップST63)。そして、必要なデータ数が集まったか否かを判断し(ステップST64)、その結果、必要なデータ数が集まった場合には(ステップST64でY)、補正値を算出して動作パラメータを補正し(ステップST65)、位置ずれ量の情報を用いて部品BHの装着精度に関する情報を集計する(ステップST66)。ステップST64における判断の要領は、実施の形態1の場合と同様である。 When the component mounting device 11 acquires the identification information determination result and the information on the displacement amount of the component BH in step ST61, the identification information determination result indicates that "the first identification information is the predetermined identification information". Whether or not it is determined (step ST62). As a result, when the identification information determination result is the content indicating that "the first identification information is the predetermined identification information" (Y in step ST62), the information on the amount of misalignment is stored as feedback data (Y). Step ST63). Then, it is determined whether or not the required number of data has been collected (step ST64), and as a result, when the required number of data has been collected (Y in step ST64), the correction value is calculated and the operation parameters are corrected. (Step ST65), the information on the mounting accuracy of the component BH is aggregated using the information on the amount of misalignment (step ST66). The procedure of determination in step ST64 is the same as in the case of the first embodiment.
 部品装着装置11は、ステップST66が終了したら図16のメインルーチンに復帰するが、ステップST62において識別情報判定結果94が「第1識別情報が所定の識別情報である」ことを示す内容でなかった場合には(ステップST62でN)、ステップST63~ステップST66をスキップしてメインルーチンに復帰する。このためステップST62で、識別情報判定結果94が「第1識別情報が所定の識別情報である」ことを示す内容でなかった場合(ステップST62でN)、すなわち、検査装置12において部品BHの装着部品位置を検出した際に用いた部品位置検出方式が、部品装着装置11において部品BHの保持部品位置を検出した際に用いた部品位置検出方式と異なっていた場合には、所定の識別情報でないと判定された部品BHの位置ずれ量は、部品装着装置11において、動作パラメータの補正値を算出するデータとして使用されず、部品BHの装着精度に関する情報を集計するデータとしても使用されない。 The component mounting device 11 returns to the main routine of FIG. 16 when step ST66 is completed, but the identification information determination result 94 in step ST62 does not indicate that "the first identification information is predetermined identification information". In that case (N in step ST62), step ST63 to step ST66 are skipped and the process returns to the main routine. Therefore, in step ST62, when the identification information determination result 94 does not indicate that "the first identification information is the predetermined identification information" (N in step ST62), that is, the component BH is mounted in the inspection device 12. If the component position detection method used when detecting the component position is different from the component position detection method used when detecting the holding component position of the component BH in the component mounting device 11, the information is not predetermined identification information. The amount of misalignment of the component BH determined to be is not used as data for calculating the correction value of the operation parameter in the component mounting device 11, and is not used as data for aggregating the information regarding the mounting accuracy of the component BH.
 実施の形態2においても、管理装置記憶部81には、検査情報93と識別情報判定結果94が記憶されるようになっている。このため、第1識別情報71cが所定の識別情報と一致しないと判定された場合において、これらの判定結果を作業者が確認することが可能である。 Also in the second embodiment, the inspection information 93 and the identification information determination result 94 are stored in the management device storage unit 81. Therefore, when it is determined that the first identification information 71c does not match the predetermined identification information, the operator can confirm these determination results.
 このように実施の形態2における部品装着システム1の検査装置12は、基板KBに装着された部品BHの位置(装着部品位置)を検出する際に用いた部品位置検出方式の識別情報(第1識別情報71c)を、装着部品位置の基準位置(目標装着座標)からの位置ずれ量とともに出力するようになっている。管理装置13は、検査装置12から出力された第1識別情報71cと、予め設定された所定の識別情報とを比較し、第1識別情報71cが所定の識別情報であるか否かを判定するようになっている(ステップST62)。そして、その判定結果が、第1識別情報71cが所定の識別情報であることを示す内容のものであった場合には、検査装置12で算出された部品BHの位置ずれ量に基づいて求めた補正値を用いて動作パラメータを補正するようになっている(ステップST65)。一方、判定結果が、第1識別情報71cが所定の識別情報であることを内容とするものでなかった場合には、部品BHの位置ずれ量を動作パラメータの補正値を算出するデータとして使用しないようになっている。 As described above, the inspection device 12 of the component mounting system 1 according to the second embodiment has identification information (first) of the component position detection method used when detecting the position (mounting component position) of the component BH mounted on the substrate KB. The identification information 71c) is output together with the amount of positional deviation from the reference position (target mounting coordinates) of the mounting component position. The management device 13 compares the first identification information 71c output from the inspection device 12 with the predetermined identification information set in advance, and determines whether or not the first identification information 71c is the predetermined identification information. (Step ST62). Then, when the determination result has the content indicating that the first identification information 71c is the predetermined identification information, it is obtained based on the misalignment amount of the component BH calculated by the inspection device 12. The operation parameter is corrected using the correction value (step ST65). On the other hand, if the determination result does not include that the first identification information 71c is the predetermined identification information, the misalignment amount of the component BH is not used as the data for calculating the correction value of the operation parameter. It has become like.
 このため実施の形態2における部品装着システム1では、第1識別情報71cが所定の識別情報と一致する場合にのみ動作パラメータを補正するようにすることができ、部品装着装置11における部品BHの装着精度を低下させることなく、部品装着時の動作パラメータを補正することができる。 Therefore, in the component mounting system 1 according to the second embodiment, the operation parameter can be corrected only when the first identification information 71c matches the predetermined identification information, and the component BH in the component mounting device 11 can be mounted. It is possible to correct the operating parameters at the time of mounting parts without deteriorating the accuracy.
 以上説明したように、実施の形態1,2では、検査装置12が装着部品位置を検出する際に用いた部品位置検出方式の識別情報(第1識別情報)が出力され、この第1識別情報が、部品装着装置11が保持部品位置を検出する際に用いた部品位置検出方式の識別情報(第2識別情報)と一致するか否か、あるいは所定の識別情報であるか否かが判定されるようになっている。そして、第1識別情報が第2識別情報と一致する場合、あるは第1識別情報が所定の識別情報であった場合には、装着ヘッド23が部品BHを基板KBに装着する際の動作パラメータを補正するが、第1識別情報が第2識別情報と一致していない場合、あるいは第1識別情報が所定の識別情報でない場合には、一致しないと判定された、または所定の識別情報でないと判定された部品BHの位置ずれ量の情報を動作パラメータの補正値を算出するデータとして使用しないようになっている。このため、検査装置12において装着部品位置が検出される際に用いられた部品位置検出方式が、部品装着装置11において保持部品位置が検出される際に用いられた部品位置検出方式と一致する場合にのみ動作パラメータが補正されるようにすることが可能であり、部品BHの装着精度を低下させることなく部品装着時の動作パラメータを補正することができる。 As described above, in the first and second embodiments, the identification information (first identification information) of the component position detection method used when the inspection device 12 detects the position of the mounted component is output, and the first identification information is output. However, it is determined whether or not the component mounting device 11 matches the identification information (second identification information) of the component position detection method used when detecting the position of the holding component, or whether or not the identification information is predetermined. It has become so. Then, when the first identification information matches the second identification information, or when the first identification information is the predetermined identification information, the operation parameter when the mounting head 23 mounts the component BH on the board KB. However, if the first identification information does not match the second identification information, or if the first identification information does not match the predetermined identification information, it is determined that they do not match, or the identification information does not match. Information on the amount of misalignment of the determined component BH is not used as data for calculating the correction value of the operation parameter. Therefore, when the component position detection method used when the mounting component position is detected in the inspection device 12 matches the component position detection method used when the holding component position is detected in the component mounting device 11. It is possible to correct the operation parameters only for the component BH, and it is possible to correct the operation parameters at the time of component mounting without deteriorating the mounting accuracy of the component BH.
 これまで本開示の実施の形態について説明してきたが、本開示は上述したものに限定されず、種々の変形等が可能である。例えば、上述の実施の形態では、位置ずれ量の情報は部品装着装置11が備える記憶部(装着装置記憶部31)に記憶されるようになっていたが、位置ずれ量の情報は他の装置、例えば管理装置13の記憶部(管理装置記憶部81)に記憶されるようになっていてもよい。また、上述の実施の形態では、識別情報判定部82は管理装置13に備えられていたが、部品装着装置11に備えられているのであってもよい。また、管理装置13は必ずしも備えられていなくてもよく、管理装置13の機能を部品装着装置11等に与えることでも同様の効果を得ることができる。 Although the embodiments of the present disclosure have been described so far, the present disclosure is not limited to the above-mentioned ones, and various modifications and the like are possible. For example, in the above-described embodiment, the information on the amount of misalignment is stored in the storage unit (mounting device storage unit 31) included in the component mounting device 11, but the information on the amount of misalignment is stored in another device. For example, it may be stored in the storage unit (management device storage unit 81) of the management device 13. Further, in the above-described embodiment, the identification information determination unit 82 is provided in the management device 13, but may be provided in the component mounting device 11. Further, the management device 13 does not necessarily have to be provided, and the same effect can be obtained by giving the function of the management device 13 to the component mounting device 11 or the like.
 なお、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)またはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In the above embodiment, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 部品の装着精度を低下させることなく部品装着時の動作パラメータを補正できる検査装置、部品装着システムおよび基板製造方法を提供する。 We provide inspection equipment, component mounting systems, and board manufacturing methods that can correct operating parameters during component mounting without degrading component mounting accuracy.
 1 部品装着システム
 11 部品装着装置
 12 検査装置
 23 装着ヘッド
 41c 第2識別情報
 43 補正部
 45 保持部品位置検出部
 64 位置ずれ量算出部
 65 良否判定部
 66 検査装置通信部(第1出力部)
 67 装着部品位置検出部
 71 検査データ
 71c 第1識別情報
 81 管理装置記憶部(記憶部)
 82 識別情報判定部
 BH 部品
 ZP 代表位置
 DK 電極
 BD ボディ
 RD リード
 KB 基板
 MZ 基準位置
1 Parts mounting system 11 Parts mounting device 12 Inspection device 23 Mounting head 41c 2nd identification information 43 Correction unit 45 Holding component position detection unit 64 Position deviation amount calculation unit 65 Good / bad judgment unit 66 Inspection device communication unit (1st output unit)
67 Mounting component position detection unit 71 Inspection data 71c First identification information 81 Management device storage unit (storage unit)
82 Identification information judgment unit BH component ZP representative position DK electrode BD body RD lead KB board MZ reference position

Claims (18)

  1.  基板に装着された部品を検査する検査装置であって、
     前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出部と、
     前記装着部品位置検出部により検出された前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出部と、
     前記位置ずれ量算出部により算出された前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定部と、
     前記装着部品位置検出部により前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出部で算出された前記位置ずれ量を出力する第1出力部と、
     を備えた検査装置。
    An inspection device that inspects parts mounted on a board.
    A mounting component position detecting unit that detects the position of the component mounted on the substrate as a mounting component position, and a mounting component position detecting unit.
    A position deviation amount calculation unit that calculates the position deviation amount of the mounting component position detected by the mounting component position detection unit from a predetermined reference position, and
    A quality determination unit that determines the quality of the mounted state of the component based on the position deviation amount calculated by the position deviation amount calculation unit.
    The first identification information, which is the identification information of the component position detection method used when the mounting component position is detected by the mounted component position detecting unit, and the misalignment amount calculated by the misalignment amount calculating unit are output. 1st output unit and
    Inspection device equipped with.
  2.  部品ごとに前記第1識別情報が定められた検査データを有し、前記装着部品位置検出部は前記検査データに定められた前記第1識別情報に対応する部品位置検出方式に基づいて前記装着部品位置を検出する、請求項1に記載の検査装置。 The mounted component position detection unit has inspection data in which the first identification information is defined for each component, and the mounted component position detection unit is based on the component position detection method corresponding to the first identification information defined in the inspection data. The inspection device according to claim 1, wherein the position is detected.
  3.  前記部品位置検出方式は前記部品の電極の位置、前記部品の外形、前記部品のボディおよび前記部品の側方に張り出した複数のリードの位置のいずれかに基づいて前記部品の代表位置を検出する方式である、請求項1または2に記載の検査装置。 The component position detection method detects a representative position of the component based on any of the positions of the electrodes of the component, the outer shape of the component, the body of the component, and the positions of a plurality of leads protruding laterally of the component. The inspection device according to claim 1 or 2, which is a method.
  4.  装着ヘッドにより部品を保持し、その保持した部品を基板に装着する部品装着装置と、前記部品装着装置によって前記基板に装着された前記部品を検査する検査装置とを備えた部品装着システムであって、
     前記検査装置は、
     前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出部と、
     前記装着部品位置検出部により検出された前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出部と、
     前記位置ずれ量算出部により算出された前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定部と、
     前記装着部品位置検出部により前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出部で算出された前記位置ずれ量を出力する第1出力部と、
     を備えた部品装着システム。
    A component mounting system including a component mounting device that holds a component by a mounting head and mounts the held component on a board, and an inspection device that inspects the component mounted on the board by the component mounting device. ,
    The inspection device is
    A mounting component position detecting unit that detects the position of the component mounted on the substrate as a mounting component position, and a mounting component position detecting unit.
    A position deviation amount calculation unit that calculates the position deviation amount of the mounting component position detected by the mounting component position detection unit from a predetermined reference position, and
    A quality determination unit that determines the quality of the mounted state of the component based on the position deviation amount calculated by the position deviation amount calculation unit.
    The first identification information, which is the identification information of the component position detection method used when the mounting component position is detected by the mounted component position detecting unit, and the misalignment amount calculated by the misalignment amount calculating unit are output. 1st output unit and
    Parts mounting system equipped with.
  5.  前記部品装着装置は、前記装着ヘッドにより保持した前記部品の位置を保持部品位置として検出する保持部品位置検出部を備え、前記保持部品位置検出部により検出された前記保持部品位置に基づいて部品を基板に装着する、請求項4に記載の部品装着システム。 The component mounting device includes a holding component position detecting unit that detects the position of the component held by the mounting head as a holding component position, and mounts a component based on the holding component position detected by the holding component position detecting unit. The component mounting system according to claim 4, which is mounted on a substrate.
  6.  前記検査装置から出力された前記第1識別情報が前記保持部品位置検出部により前記保持部品位置が検出される際に用いられた部品位置検出方式の識別情報である第2識別情報と一致するか否かを判定する識別情報判定部と、前記識別情報判定部により前記第1識別情報が前記第2識別情報と一致すると判定された場合に、前記検査装置で算出された前記位置ずれ量に基づいて前記装着ヘッドが前記部品を前記基板に装着する際の動作パラメータを補正する補正部と、をさらに備えた請求項5に記載の部品装着システム。 Whether the first identification information output from the inspection device matches the second identification information which is the identification information of the component position detection method used when the holding component position is detected by the holding component position detecting unit. Based on the misalignment amount calculated by the inspection device when the identification information determination unit for determining whether or not the identification information is determined and the identification information determination unit determines that the first identification information matches the second identification information. The component mounting system according to claim 5, further comprising a correction unit for correcting operating parameters when the mounting head mounts the component on the substrate.
  7.  前記補正部は、前記識別情報判定部により前記第1識別情報が前記第2識別情報と一致しないと判定された場合には、一致しないと判定された前記部品の前記位置ずれ量を前記動作パラメータの補正値を算出するデータとして使用しない、請求項6に記載の部品装着システム。 When the identification information determination unit determines that the first identification information does not match the second identification information, the correction unit sets the amount of misalignment of the component determined to be inconsistent as the operation parameter. The component mounting system according to claim 6, which is not used as data for calculating the correction value of.
  8.  前記識別情報判定部により前記第1識別情報が前記第2識別情報と一致しないと判定された場合の判定結果を記憶する記憶部をさらに備えた、請求項6または7に記載の部品装着システム。 The component mounting system according to claim 6 or 7, further comprising a storage unit for storing a determination result when the identification information determination unit determines that the first identification information does not match the second identification information.
  9.  前記検査装置から出力された前記第1識別情報が特定の部品位置検出方式に対応する所定の識別情報であるか否かを判定する識別情報判定部と、前記識別情報判定部により前記第1識別情報が前記所定の識別情報であると判定された場合に、前記検査装置で算出された前記位置ずれ量に基づいて前記装着ヘッドが前記部品を前記基板に装着する際の動作パラメータを補正する補正部と、をさらに備えた請求項5に記載の部品装着システム。 The identification information determination unit for determining whether or not the first identification information output from the inspection device is predetermined identification information corresponding to a specific component position detection method, and the identification information determination unit for the first identification. When it is determined that the information is the predetermined identification information, the correction for correcting the operation parameter when the mounting head mounts the component on the substrate based on the misalignment amount calculated by the inspection device. The component mounting system according to claim 5, further comprising a unit.
  10.  前記補正部は、前記識別情報判定部により前記第1識別情報が前記所定の識別情報でないと判定された場合には、前記所定の識別情報でないと判定された前記部品の前記位置ずれ量を前記動作パラメータの補正値を算出するデータとして使用しない、請求項9に記載の部品装着システム。 When the identification information determination unit determines that the first identification information is not the predetermined identification information, the correction unit determines the amount of misalignment of the component determined to be not the predetermined identification information. The component mounting system according to claim 9, which is not used as data for calculating correction values of operating parameters.
  11.  前記所定の識別情報は前記第2識別情報に対応する部品位置検出方式を示す識別情報である、請求項9または10に記載の部品装着システム。 The component mounting system according to claim 9 or 10, wherein the predetermined identification information is identification information indicating a component position detection method corresponding to the second identification information.
  12.  前記識別情報判定部により前記第1識別情報が前記所定の識別情報でないと判定された場合の判定結果を記憶する記憶部をさらに備えた、請求項9~11のいずれかに記載の部品装着システム。 The component mounting system according to any one of claims 9 to 11, further comprising a storage unit for storing a determination result when the identification information determination unit determines that the first identification information is not the predetermined identification information. ..
  13.  前記部品位置検出方式は前記部品の電極の位置、前記部品の外形、前記部品のボディおよび前記部品の側方に張り出した複数のリードの位置のいずれかに基づいて前記部品の代表位置を検出する方式である、請求項4~12のいずれかに記載の部品装着システム。 The component position detection method detects a representative position of the component based on any of the positions of the electrodes of the component, the outer shape of the component, the body of the component, and the positions of a plurality of leads protruding laterally of the component. The component mounting system according to any one of claims 4 to 12, which is a method.
  14.  基板に部品が装着された実装基板を製造する基板製造方法であって、
     装着ヘッドにより部品を保持する部品保持工程と、
     前記部品保持工程で前記装着ヘッドにより保持された部品の位置を保持部品位置として検出する保持部品位置検出工程と、
     前記装着ヘッドにより保持された部品を前記保持部品位置検出工程で検出した前記保持部品位置に基づく動作パラメータで前記装着ヘッドを作動させて前記基板に装着する部品装着工程と、
     前記部品装着工程により前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出工程と、
     前記装着部品位置検出工程で検出した前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出工程と、
     前記位置ずれ量算出工程で算出した前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定工程と、
     前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出工程で算出された前記位置ずれ量を出力する第1出力工程と、
     前記第1出力工程で出力された前記第1識別情報が前記保持部品位置検出工程で前記保持部品位置が検出される際に用いられた部品位置検出方式の識別情報である第2識別情報と一致するか否かを判定する識別情報判定工程と、
     前記識別情報判定工程で前記第1識別情報が前記第2識別情報と一致すると判定された場合には前記位置ずれ量算出工程で算出された前記位置ずれ量に基づいて求めた補正値を用いて前記動作パラメータを補正する補正処理工程と、
     を含み、
     前記部品装着工程は、前記補正処理工程で前記動作パラメータが補正された場合にはその補正された前記動作パラメータを用いて前記部品を前記基板に装着する、基板製造方法。
    It is a board manufacturing method that manufactures a mounting board with components mounted on the board.
    The parts holding process that holds the parts by the mounting head,
    A holding component position detection step of detecting the position of a component held by the mounting head as a holding component position in the component holding step, and a holding component position detection step.
    A component mounting process in which the mounting head is operated with operating parameters based on the holding component position detected in the holding component position detection step to mount the component held by the mounting head on the substrate.
    A mounting component position detection step of detecting the position of the component mounted on the substrate as a mounting component position by the component mounting process, and a mounting component position detection step.
    A position deviation amount calculation step for calculating the position deviation amount of the mounting component position detected in the mounting component position detection step from a predetermined reference position, and a position deviation amount calculation step.
    A quality determination step of determining the quality of the mounted state of the component based on the position deviation amount calculated in the position deviation amount calculation step, and a quality determination step of determining the quality of the mounted state of the component.
    The first identification information, which is the identification information of the component position detection method used when the mounted component position is detected, and the first output step of outputting the misalignment amount calculated in the misalignment amount calculation step, and
    The first identification information output in the first output step matches the second identification information which is the identification information of the component position detection method used when the holding component position is detected in the holding component position detection step. The identification information determination process that determines whether or not to do
    When it is determined in the identification information determination step that the first identification information matches the second identification information, a correction value obtained based on the misalignment amount calculated in the misalignment amount calculation step is used. A correction processing step for correcting the operation parameters and
    Including
    The component mounting step is a substrate manufacturing method in which, when the operating parameter is corrected in the correction processing step, the component is mounted on the substrate using the corrected operating parameter.
  15.  前記補正処理工程において、前記識別情報判定工程で前記第1識別情報が前記第2識別情報と一致しないと判定した場合には、一致しないと判定された前記部品の前記位置ずれ量を前記動作パラメータの補正値を算出するデータとして使用しない、請求項14に記載の基板製造方法。 In the correction processing step, when it is determined in the identification information determination step that the first identification information does not match the second identification information, the misalignment amount of the component determined to be inconsistent is used as the operation parameter. The substrate manufacturing method according to claim 14, which is not used as data for calculating the correction value of.
  16.  基板に部品が装着された実装基板を製造する基板製造方法であって、
     装着ヘッドにより部品を保持する部品保持工程と、
     前記部品保持工程で前記装着ヘッドにより保持された部品の位置を保持部品位置として検出する保持部品位置検出工程と、
     前記装着ヘッドにより保持された部品を前記保持部品位置検出工程で検出した前記保持部品位置に基づく動作パラメータで前記装着ヘッドを作動させて前記基板に装着する部品装着工程と、
     前記部品装着工程により前記基板に装着された前記部品の位置を装着部品位置として検出する装着部品位置検出工程と、
     前記装着部品位置検出工程で検出した前記装着部品位置の予め定められた基準位置からの位置ずれ量を算出する位置ずれ量算出工程と、
     前記位置ずれ量算出工程で算出した前記位置ずれ量に基づいて前記部品の装着状態の良否を判定する良否判定工程と、
     前記装着部品位置が検出される際に用いられた部品位置検出方式の識別情報である第1識別情報および前記位置ずれ量算出工程で算出された前記位置ずれ量を出力する第1出力工程と、
     前記第1出力工程で出力された前記第1識別情報が所定の識別情報であるか否かを判定する識別情報判定工程と、
     前記識別情報判定工程で前記第1識別情報が前記所定の識別情報であると判定された場合には前記位置ずれ量算出工程で算出された前記位置ずれ量に基づいて求めた補正値を用いて前記動作パラメータを補正する補正処理工程と、
     を含み、
     前記部品装着工程は、前記補正処理工程で前記動作パラメータが補正された場合にはその補正された前記動作パラメータを用いて前記部品を前記基板に装着する、基板製造方法。
    It is a board manufacturing method that manufactures a mounting board with components mounted on the board.
    The parts holding process that holds the parts by the mounting head,
    A holding component position detection step of detecting the position of a component held by the mounting head as a holding component position in the component holding step, and a holding component position detection step.
    A component mounting process in which the mounting head is operated with operating parameters based on the holding component position detected in the holding component position detection step to mount the component held by the mounting head on the substrate.
    A mounting component position detection step of detecting the position of the component mounted on the substrate as a mounting component position by the component mounting process, and a mounting component position detection step.
    A position deviation amount calculation step for calculating the position deviation amount of the mounting component position detected in the mounting component position detection step from a predetermined reference position, and a position deviation amount calculation step.
    A quality determination step of determining the quality of the mounted state of the component based on the position deviation amount calculated in the position deviation amount calculation step, and a quality determination step of determining the quality of the mounted state of the component.
    The first identification information, which is the identification information of the component position detection method used when the mounted component position is detected, and the first output step of outputting the misalignment amount calculated in the misalignment amount calculation step, and
    The identification information determination step of determining whether or not the first identification information output in the first output step is predetermined identification information, and the identification information determination step.
    When the first identification information is determined to be the predetermined identification information in the identification information determination step, a correction value obtained based on the misalignment amount calculated in the misalignment amount calculation step is used. A correction processing step for correcting the operation parameters and
    Including
    The component mounting step is a substrate manufacturing method in which, when the operating parameter is corrected in the correction processing step, the component is mounted on the substrate using the corrected operating parameter.
  17.  前記補正処理工程において、前記識別情報判定工程で前記第1識別情報が前記所定の識別情報でないと判定した場合には、前記所定の識別情報でないと判定された前記部品の前記位置ずれ量を前記動作パラメータの補正値を算出するデータとして使用しない、請求項16に記載の基板製造方法。 In the correction processing step, when it is determined in the identification information determination step that the first identification information is not the predetermined identification information, the misalignment amount of the component determined not to be the predetermined identification information is used as described above. The substrate manufacturing method according to claim 16, which is not used as data for calculating a correction value of an operating parameter.
  18.  前記所定の識別情報は第2識別情報に対応する部品位置検出方式を示す識別情報である、請求項16または17に記載の基板製造方法。 The substrate manufacturing method according to claim 16 or 17, wherein the predetermined identification information is identification information indicating a component position detection method corresponding to the second identification information.
PCT/JP2021/016757 2020-06-05 2021-04-27 Inspection device, component mounting system, and substrate manufacturing method WO2021246091A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022528490A JPWO2021246091A1 (en) 2020-06-05 2021-04-27
CN202180039366.8A CN115669256A (en) 2020-06-05 2021-04-27 Inspection apparatus, component mounting system, and substrate manufacturing method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2020098076 2020-06-05
JP2020098079 2020-06-05
JP2020098078 2020-06-05
JP2020-098078 2020-06-05
JP2020-098079 2020-06-05
JP2020-098076 2020-06-05
JP2020181132 2020-10-29
JP2020-181132 2020-10-29

Publications (1)

Publication Number Publication Date
WO2021246091A1 true WO2021246091A1 (en) 2021-12-09

Family

ID=78830842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016757 WO2021246091A1 (en) 2020-06-05 2021-04-27 Inspection device, component mounting system, and substrate manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2021246091A1 (en)
CN (1) CN115669256A (en)
WO (1) WO2021246091A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041005A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Inspection device and inspection method
WO2009093445A1 (en) * 2008-01-25 2009-07-30 Panasonic Corporation Inspection device and inspection method
JP2014107522A (en) * 2012-11-30 2014-06-09 Panasonic Corp Component part mounting system and component part mounting method
JP2015099863A (en) * 2013-11-20 2015-05-28 パナソニックIpマネジメント株式会社 Component mounting system and component mounting method
JP2016058604A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Component mounting method and component mounting system
WO2017187527A1 (en) * 2016-04-26 2017-11-02 富士機械製造株式会社 Substrate work machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041005A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Inspection device and inspection method
WO2009093445A1 (en) * 2008-01-25 2009-07-30 Panasonic Corporation Inspection device and inspection method
JP2014107522A (en) * 2012-11-30 2014-06-09 Panasonic Corp Component part mounting system and component part mounting method
JP2015099863A (en) * 2013-11-20 2015-05-28 パナソニックIpマネジメント株式会社 Component mounting system and component mounting method
JP2016058604A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Component mounting method and component mounting system
WO2017187527A1 (en) * 2016-04-26 2017-11-02 富士機械製造株式会社 Substrate work machine

Also Published As

Publication number Publication date
JPWO2021246091A1 (en) 2021-12-09
CN115669256A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
CN107734955B (en) Inspection device for surface mounting line, quality management system, and recording medium
JP6233061B2 (en) Quality control device and quality control method
JP4839314B2 (en) Pick and place machine with improved component pick-up inspection
US11386546B2 (en) System for creating learned model for component image recognition, and method for creating learned model for component image recognition
US20070010969A1 (en) Pick and place machine with improved setup and operation procedure
US20060016066A1 (en) Pick and place machine with improved inspection
JPH04233245A (en) System and method for inspection and alignment at semiconductor chip and conductor lead frame
JP4493421B2 (en) Printed circuit board inspection apparatus, printed circuit board assembly inspection line system, and program
JP2006099758A (en) Substrate inspection method and apparatus
JP5077322B2 (en) Component mounting system and mounting state inspection method
KR20120065964A (en) Component mounting device and mounting state inspection method used therein
JP2008300526A (en) Mounting line, apparatus and method of inspecting mounting substrate
JP4410988B2 (en) Method for recognizing work position of element transfer device of test handler of semiconductor element
WO2021246091A1 (en) Inspection device, component mounting system, and substrate manufacturing method
JPH05251897A (en) Apparatus for mounting parts
JP7382551B2 (en) Component mounting equipment and component mounting method, mounting board manufacturing system and mounting board manufacturing method, and mounted component inspection equipment
US20060034506A1 (en) Machine vision analysis system and method
JP2003046300A (en) System for managing pcb manufacture line and pcb manufacture managing method
JP2000211106A (en) Screen mask aligning method in screen printing
JP2022079853A (en) Component mounting system, inspection device, substrate manufacturing method, and inspection method
JP4026636B2 (en) Component mounting state inspection method and component mounting inspection apparatus using the method
WO2021246092A1 (en) Component mounting line, inspection device, and inspection method
JP2022079854A (en) Component mounting system, inspection device, substrate manufacturing method, and inspection method
JP6884924B2 (en) Component mounting equipment and inspection method
JP2008541489A (en) Method and apparatus for evaluating part picking motion of an electronic assembly machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818051

Country of ref document: EP

Kind code of ref document: A1