WO2021245920A1 - 潤滑剤封止構造、波動歯車装置およびアクチュエータ - Google Patents

潤滑剤封止構造、波動歯車装置およびアクチュエータ Download PDF

Info

Publication number
WO2021245920A1
WO2021245920A1 PCT/JP2020/022359 JP2020022359W WO2021245920A1 WO 2021245920 A1 WO2021245920 A1 WO 2021245920A1 JP 2020022359 W JP2020022359 W JP 2020022359W WO 2021245920 A1 WO2021245920 A1 WO 2021245920A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricant
oil
gap
labyrinth seal
sealing structure
Prior art date
Application number
PCT/JP2020/022359
Other languages
English (en)
French (fr)
Inventor
大介 折井
修平 小林
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to KR1020227030685A priority Critical patent/KR20220137089A/ko
Priority to EP20939179.6A priority patent/EP4130524A4/en
Priority to JP2022528380A priority patent/JP7351009B2/ja
Priority to PCT/JP2020/022359 priority patent/WO2021245920A1/ja
Priority to US17/908,628 priority patent/US20230109061A1/en
Priority to CN202080100251.0A priority patent/CN115605696A/zh
Priority to TW110114464A priority patent/TW202206726A/zh
Publication of WO2021245920A1 publication Critical patent/WO2021245920A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/447Labyrinth packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/029Gearboxes; Mounting gearing therein characterised by means for sealing the gearboxes, e.g. to improve airtightness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0427Guidance of lubricant on rotary parts, e.g. using baffles for collecting lubricant by centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • F16H57/0486Gearings with gears having orbital motion with fixed gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/324Arrangements for lubrication or cooling of the sealing itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/406Sealings between relatively-moving surfaces by means of fluid by at least one pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/444Free-space packings with facing materials having honeycomb-like structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions

Definitions

  • the present invention relates to a lubricant sealing structure used for a strain wave gearing device, an actuator equipped with a strain wave gearing device and a motor, and other mechanical devices. More specifically, the present invention relates to a lubricant sealing structure that prevents the lubricant from leaking from the inside of the device to the outside through between the first member and the second member that rotate relative to each other.
  • rotating side members such as input shafts and output shafts are supported by fixed side members such as device housings via bearings.
  • a gap is formed between the rotating side member and the fixed side member.
  • the gap is generally sealed by an oil seal to prevent lubricants such as oil and grease filled inside the device from leaking through the gap to other parts of the device or out of the device.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-258234 proposes a lubricant sealing structure having improved sealing performance of an oil seal.
  • a fluorine-based grease having an oil-repellent property against the lubricant is applied to the sealing portion of the rotating member by the oil seal to improve the sealing property.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2007-333504
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2017-9085
  • a non-contact seal having a labyrinth flow path defined by an oil-repellent treated surface incorporated between a casing and an axle of a gear device for a railway vehicle is provided. A device has been proposed.
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2017-214996
  • Patent Document 5 Japanese Patent No. 5465109
  • a lubricating fluid is interposed in the sliding surface between two members by laser processing, and a minute groove is formed in the sliding surface to reduce high friction. It has been proposed to give an effect.
  • Japanese Unexamined Patent Publication No. 2006-258234 Japanese Unexamined Patent Publication No. 2007-333504 JP-A-2017-9085 Japanese Unexamined Patent Publication No. 2017-214996 Japanese Patent No. 5465109
  • An object of the present invention is to make it possible to reliably prevent the lubricant from leaking through the gap portion between the first and second members that rotate relative to each other by utilizing fine groove processing (surface texture ring).
  • the purpose is to provide a lubricant sealing structure.
  • the lubricant leaks from the inside of the device through the gap between the first and second members in the device including the first member and the second member that rotate relative to the central axis.
  • the lubricant sealing structure to prevent It is equipped with a labyrinth seal that seals the gap.
  • the labyrinth seal is formed between a first surface portion on the side of the first member facing each other and a second surface portion on the side of the second member.
  • An oil-repellent surface having oil-repellent properties against the lubricant is formed on the first surface portion and the second surface portion, respectively.
  • an upstream oil-repellent surface having the oil-repellent property is formed on one side.
  • Each of the oil-repellent surface and the upstream oil-repellent surface has a surface texture in which fine grooves are formed in a predetermined groove arrangement pattern.
  • the microgroove has a groove width and a groove depth of several micrometers to several tens of nanometers.
  • the groove arrangement pattern is characterized in that the fine grooves are arranged at a groove interval of several micrometers to several tens of nanometers.
  • a groove arrangement pattern of fine grooves is formed on the first and second surface portions forming the labyrinth seal that seals the gap between the first and second members.
  • the applied oil-repellent surface is formed.
  • an upstream oil-repellent surface is also formed on the surface portions on the first and second upstream sides located on the upstream side in the leakage direction of the lubricant from the labyrinth seal. The lubricant that leaks through the gap is repelled by the oil-repellent surface on the upstream side and deforms into a spherical shape.
  • the gap size of the labyrinth seal By making the gap size of the labyrinth seal smaller than the size (diameter) of the spherical lubricant, it is possible to prevent the lubricant from flowing into the gap defining the labyrinth seal. Further, since the labyrinth seal is defined by the oil-repellent surface, the flow of the lubricant flowing into the labyrinth seal is suppressed.
  • the oil-repellent effect of the upstream oil-repellent surface formed by surface textureing by fine groove processing, the sealing effect of the labyrinth seal, and the oil-repellent surface defining the labyrinth seal are defined.
  • the oil-repellent effect of the above is synergistically obtained, and excellent sealing property is obtained, and the sealing property is maintained. This ensures that the lubricant does not leak from the lubricant-filled portion inside the device to the outside of the device.
  • any one of the following arrangement patterns (1) to (5) can be adopted as the groove arrangement pattern for imparting oil repellency to the member surface. Further, it is also possible to adopt a composite array pattern in which a plurality of array patterns selected from these array patterns are combined.
  • (2) The fine grooves extend at the groove spacing at the center.
  • Arrangement pattern extending linearly, curvedly or wavyly in the circumferential direction around the axis (3)
  • the microgrooves are straight in the direction inclined with respect to the direction along the central axis at the groove spacing.
  • Arrangement pattern extending in a shape, curve or wavy shape Arrangement pattern in which the fine grooves extend spirally at the groove spacing (5) Arrangement in which the fine grooves are formed in a mesh shape at the groove spacing.
  • an oil pool having a large gap size can be formed in a part of the gap portion constituting the labyrinth seal.
  • an oil absorber made of a porous material such as a non-woven fabric can be attached to the oil sump. It is possible to reliably prevent the lubricant from flowing out from the oil pool to the downstream side.
  • the inner peripheral surface portion of the oil sump can be set to be a lipophilic surface having lipophilicity to the lubricant. As a result, it is possible to effectively prevent the lubricant accumulated in the oil pool from leaking to the downstream side.
  • a gap portion in which the gap dimension gradually decreases toward the leakage direction of the lubricant in a part of the gap portion constituting the labyrinth seal.
  • a gap portion of a wedge-shaped cross section can be formed.
  • FIG. 1B It is a schematic vertical sectional view which shows the wave gear device which provided with the lubricant sealing structure of this invention. It is explanatory drawing which shows the part 1B in which the lubricant sealing structure is incorporated in the wave gear device of FIG. 1A. It is explanatory drawing which shows the part 1C which incorporates the lubricant sealing structure in the wave gear device of FIG. 1A. It is explanatory drawing which shows the part 1D in which the lubricant sealing structure is incorporated in the wave gear device of FIG. 1A. It is explanatory drawing which shows the modification example of the lubricant sealing structure shown in FIG. 1B. It is a schematic vertical sectional view which shows the actuator which provided the lubricant sealing structure of this invention.
  • the lubricant sealing structure of the present invention is applied to a wave gear device and an actuator including a wave gear device and a motor.
  • the present invention is similarly applicable to a rotation transmission device such as a gear type speed reducer other than a strain wave gearing device.
  • FIG. 1A is a schematic vertical sectional view showing a strain wave gearing device according to the first embodiment of the present invention.
  • the strain wave gearing device 1 extends coaxially through a disk-shaped end plate 2 and an end plate 3 facing each other in the direction of the central axis 1a at predetermined intervals and a central portion of these end plates 2 and 3. It includes a hollow input shaft 4 and a strain wave gearing mechanism 5 incorporated in a state of coaxially surrounding the hollow input shaft 4 between the end plates 2 and 3.
  • the hollow input shaft 4 is rotatably supported by end plates 2 and 3 via ball bearings 6 and 7.
  • the wave gear mechanism 5 includes a ring-shaped rigid internal gear 8, a silk hat-shaped elastic external gear 9, an elliptical contour wave generator 10, an internal gear 8, and an external gear. It is provided with a cross roller bearing 11 that supports the 9 in a relatively rotatable state.
  • the external gear 9 includes a flexible cylindrical body portion 9b on which external teeth 9a are formed, a disk-shaped diaphragm 9c extending radially outward from the end of the cylindrical body portion 9b, and a diaphragm. It is provided with an annular rigid boss 9d integrally formed on the outer peripheral edge portion of the 9c.
  • the portion of the cylindrical body portion 9b on which the external teeth 9a are formed on the side of the open end is coaxially arranged inside the internal gear 8.
  • a wave generator 10 is coaxially fitted inside the portion of the cylindrical body portion 9b on the side of the open end.
  • the wave generator 10 includes a plug portion 10a integrally formed on the outer peripheral surface portion of the hollow input shaft 4, and a wave bearing 10b mounted on the elliptical outer peripheral surface of the plug portion 10a.
  • the cylindrical body portion 9b of the external gear 9 is bent in an elliptical shape by the wave generator 10, and the portions of the external teeth 9a located at both ends of the long axis thereof mesh with the internal teeth 8a of the internal gear 8. There is.
  • the boss 9d of the external gear 9 is sandwiched between the end plate 2 and the outer ring 12 of the cross roller bearing 11 from both sides in the direction of the central axis 1a, and in this state, the three members are fastened and fixed.
  • the internal gear 8 is sandwiched between the end plate 3 and the inner ring 13 of the cross roller bearing 11 from both sides in the direction of the central axis 1a, and in this state, the three members are fastened and fixed.
  • the hollow input shaft 4 is a rotary input member connected to a motor or the like.
  • the wave generator 10 rotates integrally with the hollow input shaft 4, and the meshing position of the external gear 9 with respect to the internal gear 8 moves in the circumferential direction. Relative rotation occurs between the gears 8 and 9 according to the difference in the number of teeth.
  • the end plate 2 to which the external gear 9 is fastened is a fixed side member
  • the end plate 3 to which the internal gear 8 is fastened is a rotation output member
  • relative rotation relative rotation (deceleration rotation) is performed from the end plate 3. Is output.
  • the lubrication portion inside the device of the wave gear device 1 includes a meshing portion between the external gear 9 and the internal gear 8, a contact portion between the external gear 9 and the wave generator 10, a wave bearing 10b of the wave generator 10, and a cross roller. There are a sliding portion of the bearing 11, a sliding portion of the ball bearings 6 and 7, and the like.
  • the strain wave gearing device 1 incorporates a lubricant sealing structure for preventing the lubricant sealed or applied to these portions from leaking from the inside of the device to the outside.
  • the lubricant sealing structure provided with the labyrinth seal 20 of the portion 1B seals between the end plate 2 and one of the shaft end portions 4a of the hollow input shaft 4, and is located between the end plates 2 and 3. Prevents the lubricant from leaking to the outside of the device from the lubricant-filled portion 26 and the ball bearing 6 portion between the external gear 9 and the hollow input shaft 4.
  • the lubricant encapsulation structure provided with the labyrinth seal 30 of the portion 1C seals between the end plate 3 and the other shaft end 4b of the hollow input shaft 4, the lubricant encapsulation portion 26 and the ball bearing. Prevents the lubricant from leaking to the outside of the device from the portion 7.
  • the lubricant sealing structure provided with the labyrinth seal 40 of the portion 1D seals between the outer ring 12 and the inner ring 13 of the cross roller bearing 11, and is between the outer gear 9 and the cross roller bearing 11 and the inner gear. Prevents the lubricant from leaking to the outside of the device from the lubricant-filled portion 46 and the cross-roller bearing 11 formed in the device.
  • FIG. 1B is an explanatory diagram showing a lubricant sealing structure provided with a labyrinth seal 20 that seals between the end plate 2 and the shaft end portion 4a of the hollow input shaft 4.
  • a lubricant sealing structure provided with a labyrinth seal 20 that seals between the end plate 2 and the shaft end portion 4a of the hollow input shaft 4.
  • One shaft end portion 4a of the hollow input shaft 4 is rotatably supported with respect to the end plate 2 via a ball bearing 6.
  • the shaft end portion 4a of the hollow input shaft 4 projects to the outside of the device through the central portion of the end plate 2.
  • a gap is formed between the end plate 2 and the shaft end portion 4a of the hollow input shaft 4 so as to communicate with the outside of the device from the side of the ball bearing 6 (the side of the lubricant-filled portion 26). This gap is sealed by the labyrinth seal 20.
  • An annular member 22 is mounted in the gap between the end plate 2 and the shaft end portion 4a of the hollow input shaft 4.
  • the annular member 22 is press-fitted and fixed to the outer peripheral surface portion 4c of the shaft end portion 4a of the hollow input shaft 4.
  • An annular protrusion 2a protruding inward is formed on the inner peripheral surface of the end plate 2 so as to face the annular member 22 from the axial direction.
  • the labyrinth seal 20 is formed between the surface portion 2b on the side of the annular protrusion 2a of the end plate 2 and the surface portion 22a on the side of the annular member 22 of the hollow input shaft 4 facing the surface portion 2b.
  • the labyrinth seal 20 of this example is an axial labyrinth seal, and the gap portions 21a, 21c, 21e extending in the axial direction and the gap portions 21b, 21d extending in the radial direction from the upstream side to the downstream side in the leakage direction of the lubricant. And are formed alternately. Further, in the gap portions 21a to 21e, the gap portion on the downstream side is narrower than the gap portion on the upstream side. Further, the clearance portion 21a on the most upstream side of the labyrinth seal 20 is set so that the clearance dimension in the radial direction is smaller than the diameter of the lubricant particles that are repelled and spheroidized by the oil-repellent surface described below. ing.
  • An oil-repellent surface having oil-repellent properties against a lubricant is formed on the surface portion 2b on the side of the end plate 2 forming the gap portions 21a to 21e.
  • the region where the oil-repellent surface is formed on the surface portion 2b is shown by a dot pattern.
  • an oil-repellent surface is also formed on the surface portion 22a of the annular member 22 facing the surface portion 2b on the side of the end plate 2 and the outer peripheral surface portion 4d of the hollow input shaft 4.
  • the regions where the oil-repellent surface is formed on the surface portion 22a and the outer peripheral surface portion 4d are also shown by dot patterns.
  • the oil-repellent surface of this example has a surface texture in which fine grooves are formed in a predetermined groove arrangement pattern so as to obtain oil repellency against the enclosed lubricant.
  • the microgrooves have a groove width and a groove depth of a few micrometers to a few tens of nanometers, and a groove arrangement pattern is a pattern in which the microgrooves are arranged at a groove spacing of a few micrometers to a few tens of nanometers.
  • the fine groove 25 forming the oil-repellent surface of the outer peripheral surface portion 4d of the hollow input shaft 4 is a groove extending in the circumferential direction as schematically shown in FIG. 1B, and is in the direction of the central axis 1a. They are arranged at regular intervals.
  • various groove arrangement patterns can be adopted as the groove arrangement pattern of the fine grooves 25 forming the oil-repellent surface.
  • a groove arrangement pattern in which fine grooves 25 extending linearly, curvedly or wavyly along the central axis 1a are formed at regular intervals in the circumferential direction A groove arrangement pattern in which fine grooves 25 extending linearly, curvedly or wavyly in the circumferential direction about the central axis 1a are formed at regular intervals in the direction of the central axis 1a may be used.
  • a groove arrangement pattern composed of fine grooves 25 spirally extending in the direction of the central axis 1a at a constant pitch can also be used. Further, it is also possible to form a mesh-like groove arrangement pattern in which the fine grooves 25 extending in the direction of the central axis 1a and the fine grooves 25 extending in the circumferential direction intersect. Further, it is also possible to obtain a groove arrangement pattern having a structure in which these groove arrangement patterns are overlapped.
  • the space between the hollow input shaft 4 and the end plate 2 is sealed by the labyrinth seal 20 to prevent the lubricant from leaking to the outside of the device.
  • the gap portions 21a to 21e constituting the labyrinth seal 20 are defined by the oil-repellent surface, it is possible to effectively prevent the lubricant that has entered the labyrinth seal 20 from flowing out to the outside of the apparatus.
  • the outer peripheral surface portion 4d1 of the hollow input shaft 4 is also an oil-repellent surface (upstream oil-repellent surface).
  • the lubricant flowing into the labyrinth seal 20 from the side of the ball bearing 6 is repelled by this oil-repellent surface and deforms into spherical particles before entering the gap portion 21a of the labyrinth seal 20. Since the clearance dimension in the radial direction of the gap portion 21a is smaller than the diameter of the formed spherical lubricant particles, it is possible to prevent the lubricant from flowing into the gap portion 21a. Further, in the gap portions 21a to 21e constituting the labyrinth seal 20, the gap portion on the downstream side is narrower than the gap portion on the upstream side, so that the lubricant that has entered the gap portion on the upstream side is on the downstream side. It is effectively prevented from flowing into the gap.
  • the gap dimensions at each position in the radial direction are the same in each of the gap portions 21a, 21c, and 21e extending in the axial direction. Further, the gap dimensions in the axial direction are the same in each of the gap portions 21b and 21d extending in the radial direction. It is also possible to use a gap portion (gap portion having a wedge-shaped cross section) in which the gap dimension gradually decreases from the inside of the device toward the outside of the device.
  • the gap portion 21a can be a gap portion in which the clearance dimension in the radial direction gradually decreases from the side of the lubricant-filled portion 26 toward the outside of the device.
  • the inner peripheral surface portion 2c forming the gap portion 21a in the surface portion 2b on the side of the end plate 2 may be a tapered inner peripheral surface.
  • at least the minimum clearance dimension may be set to a value smaller than the diameter of the lubricant particles that spheroidize on the oil-repellent surface.
  • the gap portion in which the gap size gradually decreases toward the downstream side can be similarly applied to the following lubricant sealing structures and each lubricant sealing structure according to the second embodiment described later.
  • FIG. 1C is an explanatory diagram showing a lubricant sealing structure provided with a labyrinth seal 30 that seals between the end plate 3 and the other shaft end portion 4b of the hollow input shaft 4.
  • the shaft end portion 4b of the hollow input shaft 4 is rotatably supported with respect to the end plate 3 via a ball bearing 7.
  • the shaft end portion 4b of the hollow input shaft 4 protrudes to the outside of the device through the central portion of the end plate 3.
  • a gap is formed between the end plate 3 and the shaft end portion 4b of the hollow input shaft 4 so as to communicate with the outside of the device from the side of the ball bearing 7 (the side of the lubricant-filled portion 26). This gap is sealed by the labyrinth seal 30.
  • An annular member 32 is mounted in the gap between the end plate 3 and the shaft end portion 4b of the hollow input shaft 4.
  • the annular member 32 is press-fitted and fixed to the outer peripheral surface portion 4e of the shaft end portion 4b of the hollow input shaft 4.
  • An annular protrusion 3a protruding inward is formed on the inner peripheral surface of the end plate 3 so as to face the annular member 32 from the axial direction.
  • the labyrinth seal 30 is formed between the surface portion 3b on the side of the annular protrusion 3a of the end plate 3 and the surface portion 32a on the side of the annular member 32 facing the surface portion 3b.
  • the gap portions 31a and 31c extending in the axial direction from the upstream side to the downstream side in the leakage direction of the lubricant (from the lubricant-filled portion 26 toward the outside of the device), 31e and gap portions 31b and 31d extending in the radial direction are alternately formed. Further, in the gap portions 31a to 31e, the gap portion on the downstream side is narrower than the gap portion on the upstream side. Further, the clearance portion 31a on the most upstream side of the labyrinth seal 30 is set so that the clearance dimension in the radial direction is smaller than the diameter of the lubricant particles that are repelled by the oil-repellent surface and spheroidized as described below. There is.
  • the surface portion 3b on the side of the end plate 3 forming each gap portion 31a to 31e is an oil-repellent surface having oil-repellent property against a lubricant.
  • the range where the oil-repellent surface is formed is shown by a dot pattern.
  • the surface portion 32a of the annular member 32 facing the surface portion 3b is also an oil-repellent surface.
  • the range where the oil-repellent surface is formed on the surface portion 32a is shown by a dot pattern.
  • an oil-repellent surface upstream side surface portion
  • an oil pool is formed in the gap portion 31a of the labyrinth seal 30. That is, a groove 32b having a rectangular cross section extending in the circumferential direction is formed on the inner peripheral surface of the annular protrusion 3a of the end plate 3.
  • the groove 32b forms an oil sump having a larger clearance dimension in the radial direction than the other portions in the gap portion 31a.
  • the groove 32b is filled with an oil absorber 33 made of a porous material, for example, a non-woven fabric.
  • the bottom surface portion of the groove 32b and the inner peripheral side surface portions on both sides are surface-treated to be lipophilic surfaces having lipophilicity to lubricating oil.
  • FIG. 1C the formation region of the new oil level is shown by a mesh pattern.
  • the lubricant flows out from the side of the ball bearing 7 inside the device into the gap between the hollow input shaft 4 and the end plate 3.
  • the labyrinth seal 30 prevents the lubricant from leaking to the outside of the device. Further, in the gap portions 31a to 31e constituting the labyrinth seal 30, the gap portion on the downstream side is narrower than the gap portion on the upstream side, so that the lubricant that has entered the gap portion on the upstream side is on the downstream side. It is effectively prevented from flowing into the gap.
  • the gap portions 31a to 31e constituting the labyrinth seal 30 are defined by the oil-repellent surface, it is possible to effectively prevent the lubricant that has entered the labyrinth seal 30 from flowing out toward the outside of the device.
  • the lubricant from the side of the ball bearing 7 toward the labyrinth seal 30 is repelled by the oil-repellent surface formed on the outer peripheral surface portion 4f of the shaft end portion 4b of the hollow input shaft 4, and the gap portion of the labyrinth seal 30 is repelled.
  • the clearance dimension in the radial direction of the gap portion 31a is smaller than the diameter of the formed spherical lubricant particles, it is possible to prevent the lubricant from flowing into the gap portion 31a.
  • an oil sump filled with the oil absorber 33 is formed in the gap portion 31a of the labyrinth seal 30.
  • the lubricant that has entered the labyrinth seal 30 is trapped in the oil pool and prevented from flowing out toward the downstream side (outside of the device). Since the inner peripheral surface portion of the groove forming the oil sump is the lipophilic surface, this also effectively prevents the lubricant trapped in the oil sump from flowing out to the downstream side.
  • the sealing effect of the labyrinth seal 30, the effect of the oil-repellent surface, and the effect of the oil sump provided with the oil absorber and the pro-oil surface can surely prevent the lubricating oil from leaking to the outside of the apparatus.
  • FIG. 1D is an explanatory diagram showing a lubricant sealing structure provided with a labyrinth seal 40 that seals between the outer ring 12 and the inner ring 13.
  • a gap is formed between the outer ring 12 and the inner ring 13 so as to communicate with the outside of the device from the raceway groove 14. The gap is sealed by the labyrinth seal 40.
  • the labyrinth seal 40 is formed between the inner peripheral side surface portion 12a of the outer ring 12 and the outer peripheral side surface portion 13a of the inner ring 13 facing the inner peripheral side surface portion 12a.
  • the gap portions 41a, 41c, 41e extending in the axial direction and the gap portions 41b, 41d extending in the radial direction are alternately formed from the lubricant-filled portion toward the outside of the device. Further, in the gap portions 41a to 41e, the gap portion on the downstream side is narrower than the gap portion on the upstream side.
  • the inner peripheral side surface portion 12a of the outer ring 12 forming the gap portions 41a to 41e is an oil-repellent surface having oil-repellent properties against the lubricant.
  • the range where the oil-repellent surface is formed is shown by a dot pattern.
  • the outer peripheral side surface portion 13a of the inner ring 13 facing the inner peripheral side surface portion 12a is also used as an oil-repellent surface.
  • a range in which an oil-repellent surface is formed on the outer peripheral side surface portion 13a is shown by a dot pattern. Since the oil-repellent surface is configured in the same manner as the oil-repellent surface of the labyrinth seal 20 described above, the description thereof will be omitted.
  • the lubricant flows out from the side of the raceway groove 14 of the cross roller bearing 11 inside the device into the gap between the outer ring 12 and the inner ring 13.
  • the labyrinth seal 40 prevents the lubricant from leaking to the outside of the device. Further, in the gap portions 41a to 41e constituting the labyrinth seal 40, the gap portion on the downstream side is narrower than the gap portion on the upstream side, so that the lubricant that has entered the gap portion on the upstream side is on the downstream side. It is effectively prevented from flowing into the gap.
  • the gap portions 41a to 41e are defined by the oil-repellent surface, it is possible to effectively prevent the lubricant that has entered the labyrinth seal 40 from flowing out toward the outside of the device. As described above, the sealing effect of the labyrinth seal 40 and the oil-repellent effect of the oil-repellent surface can surely prevent the lubricating oil from leaking to the outside of the apparatus through the gap.
  • FIG. 2A is a schematic vertical sectional view showing an actuator having the lubricant sealing structure of the present invention.
  • the actuator 100 is a hollow actuator having a hollow portion extending through the center thereof, and includes a motor 110 and a strain wave gearing device 120.
  • the motor 110 includes a hollow motor shaft 111, a rotor 112 attached to the outer peripheral surface thereof, and a stator 113 coaxially surrounding the rotor 112.
  • the hollow motor shaft 111 is rotatably supported by a motor housing 116 at both ends thereof via ball bearings (only one ball bearing 114 is shown in the figure).
  • the motor housing 116 is provided with a large-diameter mounting flange 117 at its front end.
  • a strain wave gearing device 120 is coaxially mounted on the front surface of the mounting flange 117.
  • the wave gear device 120 is a state in which a rigid internal gear 121, a silk hat-shaped flexible external gear 122, a wave generator 123, an internal gear 121 and an external gear 122 are relatively rotatable. It is provided with a supporting cross roller bearing 124 and a disk-shaped output shaft 125.
  • the wave generator 123 includes a hollow input shaft 126 coaxially connected to the hollow motor shaft 111, and a plug 127 having an elliptical contour is integrally formed on the outer peripheral surface of the hollow input shaft 126.
  • a wave bearing 128 is mounted on the elliptical outer peripheral surface of the plug 127.
  • the wave generator 123 bends the cylindrical body of the external gear 122 on which the external teeth 122a are formed into an elliptical shape, and partially meshes with the internal teeth 121a of the internal gear 121.
  • the annular boss 122c of the external gear 122 is sandwiched between the mounting flange 117 and the outer ring 124a of the cross roller bearing 124, and in this state, the three members are fastened and fixed.
  • the internal gear 121 is sandwiched between the inner ring 124b of the cross roller bearing 124 and the output shaft 125, and in this state, the three members are fastened and fixed.
  • the output rotation of the motor 110 is input to the wave generator 123 from the hollow motor shaft 111. When the wave generator 123 rotates, the internal gear 121 decelerates and rotates, and the deceleration rotation is output from the output shaft 125 connected to the internal gear 121 to the load side (not shown).
  • Each lubricated portion inside the device of the wave gear device 120 includes a meshing portion between the external gear 122 and the internal gear 121, a contact portion between the external gear 122 and the wave generator 123, a wave bearing 128 of the wave generator 123, and a cross roller. Bearing 124 and the like.
  • the labyrinth seal 140 is provided on the wave gear device 120.
  • 2B of the lubricant-sealed structure including the labyrinth seal 150, 2C of the lubricant-sealed structure provided with the labyrinth seal 150, and 2D of the lubricant-sealed structure provided with the labyrinth seal 160 are incorporated.
  • FIG. 2B is an explanatory view showing a portion of a lubricant sealing structure provided with a labyrinth seal 140 that seals between the hollow input shaft 126 and the output shaft 125.
  • the hollow input shaft 126 that rotates at high speed and the output shaft 125 that rotates at low speed are sealed by a lubricant sealing structure provided with a labyrinth seal 140.
  • the internal space of the external gear 122 in which the wave bearing 128 is arranged is a lubricant-enclosed portion in which the lubricant supplied to the wave bearing 128, the sliding portion between the wave bearing 128 and the external gear 122, etc. is sealed. 131 (see FIG. 2A).
  • a gap is formed between the hollow input shaft 126 and the output shaft 125 from the wave bearing 128 located on the inner side of the device to the outside of the device.
  • the gap is sealed by the labyrinth seal 140.
  • the labyrinth seal 140 is formed between the surface portion 125a on the inner peripheral side of the output shaft 125 and the surface portion 126a on the shaft end side of the hollow input shaft 126 facing the surface portion 125a on the inner peripheral side.
  • the labyrinth seal 140 is an axial labyrinth seal, and gap portions 141a, 141c, 141e extending in the radial direction from the lubricant-encapsulated portion toward the outside of the device and gap portions 141b, 141d, 141f extending in the axial direction are alternately formed. Has been done. Further, in the gap portions 141a to 141e, the gap portion on the downstream side is narrower than the gap portion on the upstream side.
  • the gap portion 141a on the most upstream side of the labyrinth seal 140 is set so that the gap dimension in the axial direction is smaller than the diameter of the lubricant particles that are repelled by the oil-repellent surface and spheroidized as described below. There is.
  • An oil-repellent surface having oil-repellent properties against a lubricant is formed on the surface portion 125a on the inner peripheral side of the output shaft 125 forming the gap portions 141a to 141f. Further, an oil-repellent surface (upstream oil-repellent surface) is also formed on the outer peripheral surface portion 125b (upstream side surface portion) connected to the inside of the device (upstream side in the lubricant leakage direction) with respect to the gap portion 141a. .. Further, an oil-repellent surface is also formed on the surface portion 126a of the hollow input shaft 126. In FIG. 2B, a dot pattern is provided along the surface portion to show the surface portion on which the oil-repellent surface is formed.
  • the oil-repellent surface is a surface portion in which fine grooves are formed in a predetermined groove arrangement pattern, as in the case of the oil-repellent surface on the labyrinth seal 20 side in the above-described first embodiment. Is omitted.
  • the lubricant flows out from the inside of the device into the gap between the hollow input shaft 126 and the output shaft 125. Since the gap is sealed by the labyrinth seal 140, the lubricant is prevented from leaking to the outside of the device. Further, in the gap portions 141a to 141f constituting the labyrinth seal 140, the gap portion on the downstream side is narrower than the gap portion on the upstream side, so that the lubricant that has entered the gap portion on the upstream side is on the downstream side. It is effectively prevented from flowing into the gap.
  • the gap portions 141a to 141f are defined by the oil-repellent surface, it is possible to effectively prevent the lubricant that has entered the labyrinth seal 140 from flowing out toward the outside of the device. Further, the lubricant flowing into the labyrinth seal 140 is repelled by the oil-repellent surface formed on the outer peripheral surface portion 125b of the output shaft 125, and is deformed into spherical particles before entering the gap portion 141a of the labyrinth seal 140. Since the clearance dimension in the axial direction of the gap portion 141a is smaller than the diameter of the formed spherical lubricant particles, it is possible to prevent the lubricant from flowing into the gap portion 141a.
  • the oil-repellent effect of the oil-repellent surface on the upstream side, the sealing effect of the labyrinth seal 140, and the oil-repellent effect of the oil-repellent surface defining the labyrinth seal 140 ensure that the lubricating oil leaks to the outside of the device. Can be prevented.
  • FIG. 2C is an explanatory diagram showing a portion of a lubricant sealing structure provided with a labyrinth seal 150 that seals between the strain wave gearing device 120 and the motor 110.
  • This lubricant sealing structure prevents the lubricant from leaking from the wave gear device 120 side to the motor 110 side.
  • a ball bearing 114 is mounted between the inner peripheral edge portion 117a of the mounting flange 117 and the shaft end portion 111a of the hollow motor shaft 111 facing the inner peripheral edge portion 117a.
  • the tip of the shaft end portion 111a of the hollow motor shaft 111 penetrates the mounting flange 117 and projects toward the wave gear device 120.
  • the hollow input shaft 126 of the strain wave gearing device 120 is coaxially connected and fixed to the shaft end portion 111a of the hollow motor shaft 111.
  • a gap is formed between the inner peripheral edge portion 117a of the mounting flange 117 and the hollow input shaft 126 facing the inner peripheral edge portion 117a.
  • the gap is sealed by the labyrinth seal 150.
  • the labyrinth seal 150 is formed between the surface portion 117b of the inner peripheral edge portion 117a of the mounting flange and the surface portion 126c of the shaft end of the hollow input shaft 126 facing the surface portion 117b from the axial direction.
  • gap portions 151a, 151c, 151e extending in the radial direction and gap portions 151b, 151d extending in the axial direction are alternately formed from the side of the strain wave gearing device 120 toward the side of the motor 110. It has become. Further, in the gap portions 151a to 151e, the gap portion on the downstream side is narrower than the gap portion on the upstream side. Further, the gap portion 151a on the most upstream side of the labyrinth seal 150 is set so that the gap dimension in the axial direction is smaller than the diameter of the lubricant particles that are repelled and spheroidized by the oil-repellent surface described below. There is.
  • the surface portion 117b of the inner peripheral edge portion 117a of the mounting flange forming each gap portion 151a to 151e is an oil-repellent surface having an oil-repellent property against a lubricant.
  • the surface portion 126c of the shaft end of the hollow input shaft 126 facing the surface portion 117b is also an oil-repellent surface.
  • the outer peripheral surface portion 126d (upstream side surface portion) inside the device is also an oil-repellent surface (upstream side oil-repellent surface) with respect to the gap portion 151a.
  • a dot pattern is provided along the surface portion to show the surface portion on which the oil-repellent surface is formed. Since the oil-repellent surface is a surface portion in which fine grooves are formed in a predetermined groove arrangement pattern, as in the case of the oil-repellent surface on the labyrinth seal 20 side, the description thereof will be omitted.
  • the lubricant flows out from the inside of the device into the gap between the hollow input shaft 126 and the inner peripheral edge portion 117a of the mounting flange. Since the gap is sealed by the labyrinth seal 150, the lubricant is prevented from leaking to the outside of the device. Further, in the gap portions 151a to 151e constituting the labyrinth seal 150, the gap portion on the downstream side is narrower than the gap portion on the upstream side, so that the lubricant that has entered the gap portion on the upstream side is on the downstream side. It is effectively prevented from flowing into the gap.
  • the gap portions 151a to 151e are defined by the oil-repellent surface, it is possible to effectively prevent the lubricant that has entered the labyrinth seal 150 from flowing out toward the outside of the device. Further, the lubricant flowing into the labyrinth seal 150 is repelled by the oil-repellent surface formed on the outer peripheral surface portion 126d of the shaft end of the hollow input shaft 126, and is spherical particles before entering the gap portion 151a of the labyrinth seal 150. Transforms into. Further, since the gap size of the gap portion 151a in the axial direction is smaller than the diameter of the formed spherical lubricant particles, it is possible to prevent the lubricant from flowing into the gap portion 151a.
  • the lubricating oil leaks to the outside of the device due to the oil-repellent effect of the oil-repellent surface on the upstream side of the labyrinth seal 150, the sealing effect of the labyrinth seal 150, and the oil-repellent effect of the oil-repellent surface defining the labyrinth seal 150. Can be reliably prevented from doing so.
  • FIG. 2D is an explanatory diagram showing a portion of the lubricant sealing structure between the outer ring 124a and the inner ring 124b of the cross roller bearing 124.
  • the part 2D of the lubricant-sealed structure provided with the labyrinth seal 160 is arranged in a portion of a cross roller bearing 124 that rotatably supports between the external gear 122 and the internal gear 121. That is, it is arranged to seal the gap portion between the outer ring 124a and the inner ring 124b of the cross roller bearing 124. Since this lubricant sealing structure is substantially the same as the lubricant sealing structure using the labyrinth seal 40 shown in FIG. 1D in the first embodiment, a specific description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)

Abstract

波動歯車装置(1)は、中空入力軸(4)と端板(2)の間の隙間を通って、潤滑剤が外部に漏れ出ることを防止する潤滑剤封止構造を備えている。潤滑剤封止構造は、隙間をシールするラビリンスシール(20)を備えている。ラビリンスシール(20)は、微細溝が所定の溝配列パターンで付された撥油面によって規定される複数の隙間部分(21a~21e)から構成される。ラビリンスシール(20)の上流側の外周面部分(4d1)にも撥油面が形成されている。上流側の撥油面の撥油効果、ラビリンスシール(20)のシール効果、ラビリンスシール(20)の撥油面による撥油効果によって、潤滑油が装置外部に漏出することを確実に防止できる。

Description

潤滑剤封止構造、波動歯車装置およびアクチュエータ
 本発明は、波動歯車装置、波動歯車装置およびモータを備えたアクチュエータ、その他の機械装置に用いる潤滑剤封止構造に関する。更に詳しくは、相対回転する第1部材および第2部材の間を通って、潤滑剤が、装置の内部から外部に漏れ出ることを防止する潤滑剤封止構造に関する。
 波動歯車装置等の歯車装置においては、入力軸、出力軸等の回転側部材が、軸受を介して、装置ハウジング等の固定側の部材によって支持される。回転側部材と固定側部材の間には隙間が形成される。装置内部に充填されるオイル、グリース等の潤滑剤が、隙間を通って装置内の他の部位あるいは装置の外に漏れ出ることを防止するために、一般にオイルシールによって隙間が封止される。
 特許文献1(特開2006-258234号公報)には、オイルシールのシール性を高めた潤滑剤封止構造が提案されている。この潤滑剤封止構造では、オイルシールによる回転部材のシール部分に、潤滑剤に対して撥油性を有するフッ素系グリースを塗布して、シール性を高めている。
 オイルシールの代わりに、ラビリンスシールを用いた潤滑剤封止構造も知られている。特許文献2(特開2007-333054号公報)には、固定側部材と回転側部材との間に形成したラビリンス隙間と、ラビリンス隙間を形成している表面に撥油撥水材をコーティングして形成した撥油撥水面とを備えたロール軸受装置が提案されている。特許文献3(特開2017-9085号公報)には、鉄道車両用歯車装置のケーシングと車軸との間に組み込まれた、撥油処理面によって規定されるラビリンス流路を備えた非接触式シール装置が提案されている。
 ここで、摺動面等の表面改質技術として、対象となる表面に微細溝等を加工する表面テクスチャリングが知られている。特許文献4(特開2017-214996号公報)には、フェムト秒レーザーを用いた表面加工により、摺動面に微細なグレーティング状凹凸の周期構造を形成し、潤滑不足による摩擦増加、焼き付けを防止することが提案されている。また、特許文献5(特許第5465109号公報)には、レーザー加工により、二部材の間の摺動面に潤滑流体を介在させると共に、摺動面に微小溝を形成することで、高い摩擦低減効果を与えることが提案されている。
特開2006-258234号公報 特開2007-333054号公報 特開2017-9085号公報 特開2017-214996号公報 特許第5465109号公報
 本発明の目的は、微細溝加工(表面テクスチャリング)を利用して、相対回転する第1、第2部材の間の隙間部分を通って潤滑剤が漏れ出ることを確実に防止できるようにした潤滑剤封止構造を提供することにある。
 本発明は、中心軸線回りに相対的に回転する第1部材および第2部材を備えた装置における前記第1、第2部材の間の隙間を通って、潤滑剤が、装置内部から漏れ出ることを防止する潤滑剤封止構造において、
 前記隙間を封止するラビリンスシールを備えており、
 前記ラビリンスシールは、相互に対峙する前記第1部材の側の第1表面部分と前記第2部材の側の第2表面部分との間に形成されており、
 前記第1表面部分および前記第2表面部分には、それぞれ、前記潤滑剤に対する撥油性を備えた撥油面が形成されており、
 前記第1表面部分に繋がる前記潤滑剤の漏出方向の上流側の第1上流側表面部分、および、前記第2表面部分に繋がる前記漏出方向の上流側の第2上流側表面部分のうちの少なくとも一方には、前記撥油性を備えた上流側撥油面が形成されており、
 前記撥油面および前記上流側撥油面のそれぞれは、微細溝が所定の溝配列パターンで形成された表面テクスチャを備えており、
 前記微細溝は、数マイクロメートルから数十ナノメートルの溝幅および溝深さを備えており、
 前記溝配列パターンは、前記微細溝が、数マイクロメートルから数十ナノメートルの溝間隔で配列されたパターンであることを特徴としている。
 本発明の潤滑剤封止構造においては、第1、第2部材の間の隙間を封止しているラビリンスシールを形成している第1、第2表面部分に、微細溝の溝配列パターンを施した撥油面が形成されている。また、ラビリンスシールよりも潤滑剤の漏出方向の上流側に位置する第1、第2上流側表面部分にも、上流側撥油面が形成されている。隙間を通って漏れ出す潤滑剤は、上流側撥油面によってはじかれて球状に変形する。ラビリンスシールの隙間寸法を球状の潤滑剤の大きさ(直径)よりも小さくしておくことで、潤滑剤がラビリンスシールを規定している隙間に流れ込むことが抑制される。また、ラビリンスシールは、撥油面によって規定されているので、ラビリンスシールに流れ込んだ潤滑剤の流れが抑制される。
 本発明の潤滑剤封止構造では、微細溝加工による表面テクスチャリングを施すことによって形成した上流側撥油面による撥油効果、ラビリンスシールによるシール効果、およびラビリンスシールを規定している撥油面による撥油効果が相乗されて、優れたシール性が得られ、また、シール性が維持される。これにより、装置内部の潤滑剤封入部分から装置外部等に潤滑剤が漏れ出ることが確実に阻止される。
 ここで、部材表面に、撥油性を与えるための溝配列パターンとしては、次の配列パターン(1)~(5)のいずれか一つを採用することができる。また、これらの配列パターンのうちから選択した複数の配列パターンを組み合わせた複合配列パターンを採用することもできる。
(1)前記微細溝が、前記溝間隔で、前記装置の中心軸線に沿った方向に、直線状、曲線状あるいは波状に延びる配列パターン
(2)前記微細溝が、前記溝間隔で、前記中心軸線を中心とする円周方向に、直線状、曲線状あるいは波状に延びる配列パターン
(3)前記微細溝が、前記溝間隔で、前記中心軸線に沿った方向に対して傾斜した方向に、直線状、曲線状あるいは波形状に延びる配列パターン
(4)前記微細溝が、前記溝間隔で、螺旋状に延びる配列パターン
(5)前記微細溝が、前記溝間隔で、網目状に形成された配列パターン
 本発明の潤滑剤封止構造において、ラビリンスシールを構成している隙間部分の一部に、大きな隙間寸法の油溜まりを形成することができる。ラビリンスシールの隙間部分に侵入した潤滑剤を、油溜まりに捕捉することで、潤滑剤の漏出を確実に防止できる。
 この場合、油溜まりに、不織布等の多孔質素材からなる油吸収体を装着しておくことができる。潤滑剤が油溜まりから下流側に流れ出ることを確実に防止できる。
 また、油溜まりの内周面部分を、潤滑剤に対する親油性を備えた親油面にしておくことができる。これにより、油溜まりに溜まった潤滑剤が下流側に漏れ出ることを効果的に防止できる。
 一方、ラビリンスシールを構成している隙間部分の一部に、潤滑材の漏出方向に向かって隙間寸法が漸減している隙間部分を形成することができる。例えば、クサビ形断面の隙間部分を形成しておくことができる。この隙間部分の隙間寸法を適切に設定しておくことで、この隙間部分において潤滑剤が補足されやすくなり、下流側に潤滑剤が漏れ出ることを効果的に防止できる。
本発明の潤滑剤封止構造を備えた波動歯車装置を示す概略縦断面図である。 図1Aの波動歯車装置における潤滑剤封止構造が組み込まれている部位1Bを示す説明図である。 図1Aの波動歯車装置における潤滑剤封止構造が組み込まれている部位1Cを示す説明図である。 図1Aの波動歯車装置における潤滑剤封止構造が組み込まれている部位1Dを示す説明図である。 図1Bに示す潤滑剤封止構造の改変例を示す説明図である。 本発明の潤滑剤封止構造を備えたアクチュエータを示す概略縦断面図である。 図2Aのアクチュエータにおける潤滑剤封止構造が組み込まれている部位2Bを示す説明図である。 図2Aのアクチュエータにおける潤滑剤封止構造が組み込まれている部位2Cを示す説明図である。 図2Aのアクチュエータにおける潤滑剤封止構造が組み込まれている部位2Dを示す説明図である。
 以下に、図面を参照して本発明を適用した潤滑剤封止構造の実施の形態を説明する。以下の実施の形態は、本発明の潤滑剤封止構造を、波動歯車装置、および、波動歯車装置とモータとを備えたアクチュエータに適用した場合である。本発明は、波動歯車装置以外の歯車式減速機などの回転伝達装置にも同様に適用可能である。
[実施の形態1]
 図1Aは、本発明の実施の形態1に係る波動歯車装置を示す概略縦断面図である。波動歯車装置1は、中心軸線1aの方向に所定の間隔で対峙する円盤状の端板2および端板3と、これらの端板2、3の中心部分を同軸状態に貫通して延びている中空入力軸4と、端板2、3の間において中空入力軸4を同軸に取り囲む状態に組み込まれた波動歯車機構5とを備えている。中空入力軸4は、ボールベアリング6、7を介して、端板2、3によって回転自在の状態に支持されている。波動歯車機構5は、円環形状をした剛性の内歯歯車8と、シルクハット形状をした弾性の外歯歯車9と、楕円状輪郭の波動発生器10と、内歯歯車8および外歯歯車9を相対回転自在の状態で支持しているクロスローラベアリング11とを備えている。
 外歯歯車9は、外歯9aが形成されている可撓性の円筒状胴部9bと、円筒状胴部9bの端から半径方向の外方に広がっている円盤状のダイヤフラム9cと、ダイヤフラム9cの外周縁部分に一体形成した円環状の剛性のボス9dとを備えている。外歯9aが形成されている円筒状胴部9bの開口端の側の部分が、内歯歯車8の内側に同軸に配置されている。円筒状胴部9bの開口端の側の部分の内側には、同軸に波動発生器10が嵌め込まれている。波動発生器10は、中空入力軸4の外周面部分に一体形成したプラグ部10aと、このプラグ部10aの楕円状外周面に装着したウエーブベアリング10bとを備えている。波動発生器10によって、外歯歯車9の円筒状胴部9bは楕円状に撓められて、その長軸の両端に位置する外歯9aの部分が内歯歯車8の内歯8aにかみ合っている。
 外歯歯車9のボス9dは、中心軸線1aの方向の両側から端板2とクロスローラベアリング11の外輪12との間に挟まれており、この状態で、三部材が締結固定されている。内歯歯車8は、中心軸線1aの方向の両側から、端板3とクロスローラベアリング11の内輪13との間に挟まれており、この状態で、三部材が締結固定されている。
 中空入力軸4は、モータ等に連結される回転入力部材である。中空入力軸4が回転すると、それと一体となって波動発生器10が回転して、外歯歯車9の内歯歯車8に対するかみ合い位置が円周方向に移動する。両歯車8、9の間には、それらの歯数差に応じた相対回転が発生する。例えば、外歯歯車9が締結されている端板2が固定側部材とされ、内歯歯車8が締結されている端板3が回転出力部材とされ、端板3から相対回転(減速回転)が出力される。
 波動歯車装置1の装置内部の潤滑部分には、外歯歯車9と内歯歯車8のかみ合い部分、外歯歯車9と波動発生器10の接触部分、波動発生器10のウエーブベアリング10b、クロスローラベアリング11の摺動部、ボールベアリング6、7の摺動部などがある。波動歯車装置1には、これらの部分に封入あるいは塗布されている潤滑剤が装置内部から外部に漏れ出ることを防止するための潤滑剤封止構造が組み込まれている。本例の波動歯車装置1は、ラビリンスシール20を備えた潤滑剤封止構造が組み込まれている部位1B、ラビリンスシール30を備えた潤滑剤封止構造が組み込まれている部位1C、およびラビリンスシール40を備えた潤滑剤封止構造が組み込まれている部位1Dを備えている。
 部位1Bのラビリンスシール20を備えた潤滑剤封止構造は、端板2と、中空入力軸4の一方の軸端部4aとの間を封止しており、端板2、3の間における外歯歯車9と中空入力軸4との間の潤滑剤封入部分26およびボールベアリング6の部分から、装置外部に潤滑剤が漏れ出ることを防止する。部位1Cのラビリンスシール30を備えた潤滑剤封止構造は、端板3と、中空入力軸4の他方の軸端部4bとの間を封止しており、潤滑剤封入部分26およびボールベアリング7の部分から、装置外部に潤滑剤が漏れ出ることを防止する。部位1Dのラビリンスシール40を備えた潤滑剤封止構造は、クロスローラベアリング11の外輪12と内輪13の間を封止しており、外歯歯車9とクロスローラベアリング11と内歯歯車の間に形成される潤滑剤封入部分46およびクロスローラベアリング11の部分から、装置外部に潤滑剤が漏れ出ることを防止する。
(部位1Bの潤滑剤封止構造)
 図1Bは、端板2と中空入力軸4の軸端部4aとの間を封止しているラビリンスシール20を備えた潤滑剤封止構造を示す説明図である。中空入力軸4の一方の軸端部4aは、ボールベアリング6を介して、端板2に対して回転自在に支持されている。端板2の中心部分を通って、中空入力軸4の軸端部4aが装置外部に突出している。端板2と中空入力軸4の軸端部4aとの間には、ボールベアリング6の側(潤滑剤封入部分26の側)から装置外部に連通する隙間が形成される。この隙間は、ラビリンスシール20によって封止されている。
 端板2と中空入力軸4の軸端部4aとの間の隙間には、円環状部材22が装着されている。円環状部材22は、中空入力軸4の軸端部4aの外周面部分4cに圧入固定されている。円環状部材22にアキシャル方向から対峙するように、端板2の内周面には内方に突出した円環状突部2aが形成されている。ラビリンスシール20は、端板2の円環状突部2aの側の表面部分2bと、これに対峙する中空入力軸4の円環状部材22の側の表面部分22aとの間に形成されている。
 本例のラビリンスシール20はアキシャルラビリンスシールであり、潤滑剤の漏出方向の上流側から下流側に向けて、アキシャル方向に延びる隙間部分21a、21c、21eと、ラジアル方向に延びる隙間部分21b、21dとが交互に形成されている。また、隙間部分21a~21eは、上流側の隙間部分に対して下流側の隙間部分の方が狭い隙間部分となっている。さらに、ラビリンスシール20の最も上流側の隙間部分21aは、そのラジアル方向の隙間寸法が、以下に説明する撥油面によってはじかれて球状化する潤滑剤の粒の径よりも小さい値に設定されている。
 各隙間部分21a~21eを形成している端板2の側の表面部分2bには、潤滑剤に対する撥油性を備えた撥油面が形成されている。図1Bにおいては、表面部分2bにおける撥油面が形成されている領域をドット模様で示してある。また、端板2の側の表面部分2bに対峙している円環状部材22の表面部分22a、および、中空入力軸4の外周面部分4dにも撥油面が形成されている。表面部分22a、外周面部分4dにおける撥油面が形成されている領域も、ドット模様で示してある。中空入力軸4の軸端部4aにおいては、隙間部分21aを形成する外周面部分4dだけでなく、外周面部分4dからボールベアリング6の外輪装着部位までの外周面部分4d1(上流側表面部分)にも撥油面(上流側撥油面)が形成されている。
 本例の撥油面は、封入されている潤滑剤に対する撥油性が得られるように、微細溝が所定の溝配列パターンで形成された表面テクスチャを備えている。微細溝は、数マイクロメートルから数十ナノメートルの溝幅および溝深さを備えており、溝配列パターンは、微細溝が、数マイクロメートルから数十ナノメートルの溝間隔で配列されたパターンである。例えば、中空入力軸4の外周面部分4dの撥油面を形成している微細溝25は、図1Bにおいて模式的に示すように、円周方向に延びる溝であり、中心軸線1aの方向に一定の間隔で配列されている。
 ここで、撥油面を形成している微細溝25の溝配列パターンとして、各種の溝配列パターンを採用できる。例えば、中心軸線1aに沿った方向に、直線状、曲線状あるいは波状に延びる微細溝25が円周方向に一定の間隔で形成された溝配列パターンを用いることができる。中心軸線1aを中心とする円周方向に、直線状、曲線状あるいは波状に延びる微細溝25が、中心軸線1aの方向に一定の間隔で形成された溝配列パターンでもよい。中心軸線1aに沿った方向に対して傾斜した方向に、直線状、曲線状あるいは波形状に延びる微細溝25から構成される溝配列パターンにすることもできる。また、中心軸線1aの方向に一定のピッチで螺旋状に延びている微細溝25から構成される溝配列パターンとすることもできる。さらに、中心軸線1aの方向に延びる微細溝25と、円周方向に延びる微細溝25とが交差する網目状の溝配列パターンとすることもできる。さらには、これらの溝配列パターンを重ね合わせた構成の溝配列パターンとすることもできる。
 以上説明したように、中空入力軸4と端板2の間はラビリンスシール20によって封止されており、潤滑剤が装置外部に漏出することが防止される。また、ラビリンスシール20を構成している隙間部分21a~21eは撥油面によって規定されているので、ラビリンスシール20に侵入した潤滑剤が装置外部に向けて流れ出ることが効果的に防止される。さらに、中空入力軸4の外周面部分4d1も撥油面(上流側撥油面)となっている。ボールベアリング6の側からラビリンスシール20に流れ込む潤滑剤は、この撥油面によってはじかれ、ラビリンスシール20の隙間部分21aに侵入する手前で、球状の粒に変形する。隙間部分21aのラジアル方向の隙間寸法は、形成される球状の潤滑剤の粒の径よりも小さいので、潤滑剤が隙間部分21aに流入することが抑制される。また、ラビリンスシール20を構成している隙間部分21a~21eにおいては、上流側の隙間部分よりも下流側の隙間部分の方が狭いので、上流側の隙間部分に侵入した潤滑剤が下流側の隙間部分に流れ込むことが効果的に防止される。
 ここで、本例では、アキシャル方向に延びる隙間部分21a、21c、21eのそれぞれにおいて、ラジアル方向の各位置の隙間寸法が同一である。また、ラジアル方向に延びる隙間部分21b、21dのそれぞれにおいても、アキシャル方向の隙間寸法が同一である。隙間寸法が、装置内部から装置外部の側に向けて漸減している隙間部分(クサビ状断面の隙間部分)を用いることもできる。
 例えば、図1Eに示すように、隙間部分21aを、ラジアル方向の隙間寸法が、潤滑剤封入部分26の側から装置外部に向けて漸減する隙間部分にすることができる。例えば、端板2の側の表面部分2bにおける隙間部分21aを形成している内周面部分2cをテーパー状内周面とすればよい。この場合には、少なくとも、その最小隙間寸法が、撥油面上において球状化する潤滑剤の粒の径よりも小さい値に設定すればよい。なお、隙間寸法が下流側に向けて漸減する隙間部分は、以下の各潤滑剤封止構造および後述の実施の形態2における各潤滑剤封止構造においても同様に適用可能である。
(部位1Cの潤滑剤封止構造)
 図1Cは、端板3と中空入力軸4の他方の軸端部4bとの間を封止しているラビリンスシール30を備えた潤滑剤封止構造を示す説明図である。中空入力軸4の軸端部4bは、ボールベアリング7を介して、端板3に対して回転自在に支持されている。端板3の中心部分を貫通して、中空入力軸4の軸端部4bが装置外部に突出している。端板3と中空入力軸4の軸端部4bとの間には、ボールベアリング7の側(潤滑剤封入部分26の側)から装置外部に連通する隙間が形成される。この隙間はラビリンスシール30によって封止されている。
 端板3と中空入力軸4の軸端部4bとの間の隙間には、円環状部材32が装着されている。円環状部材32は、中空入力軸4の軸端部4bの外周面部分4eに圧入固定されている。円環状部材32にアキシャル方向から対峙するように、端板3の内周面には内方に突出した円環状突部3aが形成されている。ラビリンスシール30は、端板3の円環状突部3aの側の表面部分3bと、これに対峙する円環状部材32の側の表面部分32aとの間に形成されている。
 本例のラビリンスシール30においては、潤滑剤の漏出方向の上流側から下流側に向けて(潤滑剤封入部分26から装置外部に向かう方向に向けて)、アキシャル方向に延びる隙間部分31a、31c、31eと、ラジアル方向に延びる隙間部分31b、31dとが交互に形成されている。また、隙間部分31a~31eは、上流側の隙間部分に対して下流側の隙間部分の方が狭い。さらに、ラビリンスシール30の最も上流側の隙間部分31aは、そのラジアル方向の隙間寸法が、以下に述べる撥油面によってはじかれて球状化する潤滑剤の粒の径よりも小さい値に設定されている。
 各隙間部分31a~31eを形成している端板3の側の表面部分3bは、潤滑剤に対する撥油性を備えた撥油面である。図1Cにおいては、撥油面が形成されている範囲をドット模様で示してある。この表面部分3bに対峙している円環状部材32の表面部分32aも撥油面としてある。表面部分32aにおける撥油面が形成されている範囲をドット模様で示してある。また、中空入力軸の軸端部4bにおいて、ボールベアリング7が装着されている外周面部分4fの一部にも撥油面(上流側表面部分)が形成されている。撥油面は、前述のラビリンスシール20の撥油面の場合と同様な構成であるので、その説明を省略する。
 ここで、ラビリンスシール30の隙間部分31aには油溜まりが形成されている。すなわち、端板3の円環状突部3aの内周面には、円周方向に延びる矩形断面の溝32bが形成されている。この溝32bによって、隙間部分31aにおける他の部分に比べてラジアル方向の隙間寸法が大きい油溜まりが形成されている。また、溝32bには多孔質素材、例えば不織布からなる油吸収体33が充填されている。さらに、溝32bの底面部分および両側の内周側面部分は、表面処理が施されて、潤滑油に対する親油性を備えた親油面とされている。図1Cにおいては、新油面の形成領域を、網目模様で示してある。
 潤滑剤は、装置内部のボールベアリング7の側から、中空入力軸4と端板3の間の隙間に流出する。ラビリンスシール30によって、潤滑剤が装置外部に漏出することが防止される。また、ラビリンスシール30を構成している隙間部分31a~31eにおいては、上流側の隙間部分よりも下流側の隙間部分の方が狭いので、上流側の隙間部分に侵入した潤滑剤が下流側の隙間部分に流れ込むことが効果的に防止される。さらに、ラビリンスシール30を構成している隙間部分31a~31eは撥油面によって規定されているので、ラビリンスシール30に侵入した潤滑剤が装置外側に向けて流れ出ることが効果的に防止される。これに加えて、ボールベアリング7の側からラビリンスシール30に向かう潤滑剤は、中空入力軸4の軸端部4bの外周面部分4fに形成した撥油面によってはじかれ、ラビリンスシール30の隙間部分31aに侵入する手前で、球状の粒に変形する。隙間部分31aのラジアル方向の隙間寸法は、形成される球状の潤滑剤の粒の径よりも小さいので、潤滑剤が隙間部分31aに流入することが抑制される。
 また、ラビリンスシール30の隙間部分31aには、油吸収体33が充填された油溜まりが形成されている。ラビリンスシール30に侵入した潤滑剤は、油溜まりに捕捉され、下流側(装置外側)に向けて流れ出すことが防止される。油溜まりを形成している溝の内周面部分は、親油面となっているので、これによっても、油溜まりに捕捉された潤滑剤が下流側に流れ出すことが効果的に防止される。このように、ラビリンスシール30によるシール効果、撥油面による効果、油吸収体および親油面を備えた油溜まりによる効果によって、潤滑油が装置外部に漏出することを確実に防止できる。
(部位1Dの潤滑剤封止構造)
 次に、クロスローラベアリング11の外輪12と内輪13の間の隙間をシールしているラビリンスシール40を備えた潤滑剤封止構造を説明する。図1Dは、外輪12と内輪13との間を封止しているラビリンスシール40を備えた潤滑剤封止構造を示す説明図である。外輪12と内輪13との間には、軌道溝14から装置外部に連通する隙間が形成される。隙間はラビリンスシール40によって封止されている。ラビリンスシール40は、外輪12の内周側表面部分12aと、この内周側表面部分12aに対峙している内輪13の外周側表面部分13aとの間に形成されている。
 ラビリンスシール40において、潤滑剤封入部分から装置外部に向かう方向に向けて、アキシャル方向に延びる隙間部分41a、41c、41eと、ラジアル方向に延びる隙間部分41b、41dとが交互に形成されている。また、隙間部分41a~41eは、上流側の隙間部分に対して下流側の隙間部分の方が狭い。
 各隙間部分41a~41eを形成している外輪12の内周側表面部分12aは、潤滑剤に対する撥油性を備えた撥油面である。図1Dにおいては、撥油面が形成されている範囲をドット模様で示してある。また、内周側表面部分12aに対峙している内輪13の外周側表面部分13aも撥油面としてある。図1Dにおいては、外周側表面部分13aにおける撥油面が形成されている範囲をドット模様で示してある。撥油面は、前述のラビリンスシール20の撥油面の場合と同様に構成されているので、説明を省略する。
 潤滑剤は、装置内部のクロスローラベアリング11の軌道溝14の側から、外輪12と内輪13の間の隙間に流出する。ラビリンスシール40によって、潤滑剤が装置外部に漏出することが防止される。また、ラビリンスシール40を構成している隙間部分41a~41eにおいては、上流側の隙間部分よりも下流側の隙間部分の方が狭いので、上流側の隙間部分に侵入した潤滑剤が下流側の隙間部分に流れ込むことが効果的に防止される。さらに、隙間部分41a~41eは撥油面によって規定されているので、ラビリンスシール40に侵入した潤滑剤が装置外側に向けて流れ出ることが効果的に防止される。このように、ラビリンスシール40によるシール効果、撥油面による撥油効果によって、隙間を介して潤滑油が装置外部に漏出することを確実に防止できる。
[実施の形態2]
 図2Aは本発明の潤滑剤封止構造を備えたアクチュエータを示す概略縦断面図である。アクチュエータ100は、その中心を貫通して延びる中空部を備えた中空型アクチュエータであり、モータ110と波動歯車装置120とを備えている。モータ110は、中空モータ軸111と、この外周面に取り付けたロータ112と、ロータ112を同軸に取り囲むステータ113とを備えている。中空モータ軸111は、その両端において、ボールベアリング(図において一方のボールベアリング114のみを示す。)を介して、モータハウジング116によって回転自在に支持されている。
 モータハウジング116は、その前端に、大径の取付けフランジ117を備えている。取付けフランジ117の前面に、波動歯車装置120が同軸に取り付けられている。波動歯車装置120は、剛性の内歯歯車121と、シルクハット形状の可撓性の外歯歯車122と、波動発生器123と、内歯歯車121と外歯歯車122を相対回転自在の状態で支持しているクロスローラベアリング124と、円盤状の出力軸125とを備えている。
 波動発生器123は、中空モータ軸111に同軸に連結された中空入力軸126を備えており、中空入力軸126の外周面に楕円状輪郭のプラグ127が一体形成されている。プラグ127の楕円状外周面には、ウエーブベアリング128が装着されている。波動発生器123によって、外歯歯車122における外歯122aが形成されている円筒状胴部が楕円状に撓められて、内歯歯車121の内歯121aに対して部分的にかみ合っている。
 外歯歯車122の円環状のボス122cは、取付けフランジ117とクロスローラベアリング124の外輪124aとの間に挟まれ、この状態で、三部材が締結固定されている。内歯歯車121は、クロスローラベアリング124の内輪124bと出力軸125との間に挟まれ、この状態で、三部材が締結固定されている。モータ110の出力回転は、中空モータ軸111から波動発生器123に入力される。波動発生器123が回転すると、内歯歯車121が減速回転し、内歯歯車121に連結されている出力軸125から、不図示の負荷側に、減速回転が出力される。
 波動歯車装置120の装置内部における各潤滑部分は、外歯歯車122と内歯歯車121のかみ合い部分、外歯歯車122と波動発生器123の接触部分、波動発生器123のウエーブベアリング128、クロスローラベアリング124等である。波動歯車装置120の装置内部の潤滑剤封入部分131、132から、潤滑剤が、装置外部、あるいは、モータ110の側に漏れ出ることを防止するために、波動歯車装置120には、ラビリンスシール140を備えた潤滑剤封止構造の部位2B、ラビリンスシール150を備えた潤滑剤封止構造の部位2C、ラビリンスシール160を備えた潤滑剤封止構造の部位2Dが組み込まれている。
(部位2Bの潤滑剤封止構造)
 図2Bは、中空入力軸126と出力軸125との間を封止しているラビリンスシール140を備えた潤滑剤封止構造の部位を示す説明図である。高速回転する中空入力軸126と、減速回転する出力軸125との間は、ラビリンスシール140を備えた潤滑剤封止構造によってシールされている。ウエーブベアリング128が配置されている外歯歯車122の内部空間は、ウエーブベアリング128、ウエーブベアリング128と外歯歯車122の間の摺動部分等に供給される潤滑剤が封入された潤滑剤封入部分131である(図2A参照)。中空入力軸126と出力軸125との間には、装置内部の側に位置するウエーブベアリング128から装置外部に通じる隙間が形成される。隙間は、ラビリンスシール140によってシールされている。ラビリンスシール140は、出力軸125の内周側の表面部分125aと、この内周側の表面部分125aに対峙している中空入力軸126の軸端側の表面部分126aとの間に形成されている。
 ラビリンスシール140はアキシャルラビリンスシールであり、潤滑剤封入部分から装置外部に向かって、ラジアル方向に延びる隙間部分141a、141c、141eと、アキシャル方向に延びる隙間部分141b、141d、141fとが交互に形成されている。また、隙間部分141a~141eは、上流側の隙間部分に対して下流側の隙間部分の方が狭い隙間部分となっている。さらに、ラビリンスシール140の最も上流側の隙間部分141aは、そのアキシャル方向の隙間寸法が、以下に述べる撥油面によってはじかれて球状化する潤滑剤の粒の径よりも小さい値に設定されている。
 各隙間部分141a~141fを形成している出力軸125の内周側の表面部分125aには、潤滑剤に対する撥油性を備えた撥油面が形成されている。また、隙間部分141aに対して装置内側(潤滑剤の漏出方向の上流側)に繋がる外周面部分125b(上流側表面部分)にも、撥油面(上流側撥油面)が形成されている。さらに、中空入力軸126の表面部分126aにも撥油面が形成されている。図2Bにおいては、撥油面が形成されている表面部分を示すために、当該表面部分に沿ってドット模様を付してある。なお、撥油面は、前述の実施の形態1におけるラビリンスシール20の側の撥油面の場合と同様に、微細溝が所定の溝配列パターンで形成された表面部分であるので、それらの説明は省略する。
 潤滑剤は、装置内部の側から、中空入力軸126と出力軸125の間の隙間に流出する。隙間はラビリンスシール140によって封止されているので、潤滑剤が装置外部に漏出することが防止される。また、ラビリンスシール140を構成している隙間部分141a~141fにおいては、上流側の隙間部分よりも下流側の隙間部分の方が狭いので、上流側の隙間部分に侵入した潤滑剤が下流側の隙間部分に流れ込むことが効果的に防止される。さらに、隙間部分141a~141fは撥油面によって規定されているので、ラビリンスシール140に侵入した潤滑剤が装置外側に向けて流れ出ることが効果的に防止される。さらには、ラビリンスシール140に流れ込む潤滑剤は、出力軸125の外周面部分125bに形成した撥油面によってはじかれ、ラビリンスシール140の隙間部分141aに侵入する手前で、球状の粒に変形する。隙間部分141aのアキシャル方向の隙間寸法は、形成される球状の潤滑剤の粒の径よりも小さいので、潤滑剤が隙間部分141aに流入することが抑制される。
 このように、上流側の撥油面による撥油効果、ラビリンスシール140によるシール効果、ラビリンスシール140を規定している撥油面による撥油効果によって、潤滑油が装置外部に漏出することを確実に防止できる。
(部位2Cの潤滑剤封止構造)
 図2Cは、波動歯車装置120とモータ110との間を封止しているラビリンスシール150を備えた潤滑剤封止構造の部位を示す説明図である。この潤滑剤封止構造により、波動歯車装置120の側からモータ110の側に潤滑剤が漏出することが防止される。取付けフランジ117の内周縁部117aと、これに対峙する中空モータ軸111の軸端部111aとの間には、ボールベアリング114が装着されている。中空モータ軸111の軸端部111aの先端は、取付けフランジ117を貫通して波動歯車装置120の側に突出している。中空モータ軸111の軸端部111aには、波動歯車装置120の中空入力軸126が同軸に連結固定されている。
 取付けフランジ117の内周縁部117aと、これに対峙する中空入力軸126との間に隙間が形成される。隙間はラビリンスシール150によってシールされている。ラビリンスシール150は、取付けフランジの内周縁部117aの表面部分117bと、この表面部分117bにアキシャル方向から対峙している中空入力軸126の軸端の表面部分126cとの間に形成されている。
 ラビリンスシール150において、波動歯車装置120の側からモータ110の側に向かって、ラジアル方向に延びる隙間部分151a、151c、151eと、アキシャル方向に延びる隙間部分151b、151dとが交互に形成された構成となっている。また、隙間部分151a~151eは、上流側の隙間部分に対して下流側の隙間部分の方が狭い隙間部分となっている。さらに、ラビリンスシール150の最も上流側の隙間部分151aは、そのアキシャル方向の隙間寸法が、以下に述べる撥油面によってはじかれて球状化する潤滑剤の粒の径よりも小さい値に設定されている。
 各隙間部分151a~151eを形成している取付けフランジの内周縁部117aの表面部分117bは、潤滑剤に対する撥油性を備えた撥油面である。また、表面部分117bに対峙している中空入力軸126の軸端の表面部分126cも撥油面である。さらに、隙間部分151aに対して装置内側の外周面部分126d(上流側表面部分)も撥油面(上流側撥油面)となっている。図2Cにおいては、撥油面が形成されている表面部分を示すために、当該表面部分に沿ってドット模様を付してある。なお、撥油面は、前述のラビリンスシール20の側の撥油面の場合と同様に、微細溝が所定の溝配列パターンで形成された表面部分であるので、それらの説明は省略する。
 潤滑剤は、装置内部の側から、中空入力軸126と取付け用フランジの内周縁部117aとの隙間に流出する。隙間はラビリンスシール150によって封止されているので、潤滑剤が装置外部に漏出することが防止される。また、ラビリンスシール150を構成している隙間部分151a~151eにおいては、上流側の隙間部分よりも下流側の隙間部分の方が狭いので、上流側の隙間部分に侵入した潤滑剤が下流側の隙間部分に流れ込むことが効果的に防止される。さらに、隙間部分151a~151eは撥油面によって規定されているので、ラビリンスシール150に侵入した潤滑剤が装置外側に向けて流れ出ることが効果的に防止される。さらには、ラビリンスシール150に流れ込む潤滑剤は、中空入力軸126の軸端の外周面部分126dに形成した撥油面によってはじかれ、ラビリンスシール150の隙間部分151aに侵入する手前で、球状の粒に変形する。さらに、隙間部分151aのアキシャル方向の隙間寸法は、形成される球状の潤滑剤の粒の径よりも小さいので、潤滑剤が隙間部分151aに流入することが抑制される。
 このように、ラビリンスシール150の上流側の撥油面による撥油効果、ラビリンスシール150によるシール効果、ラビリンスシール150を規定している撥油面による撥油効果によって、潤滑油が装置外部に漏出することを確実に防止できる。
(部位2Dの潤滑剤封止構造)
 図2Dは、クロスローラベアリング124の外輪124aと内輪124bの間の潤滑剤封止構造の部位を示す説明図である。ラビリンスシール160を備えた潤滑剤封止構造の部位2Dは、外歯歯車122と内歯歯車121との間を相対回転自在に支持するクロスローラベアリング124の部分に配置される。すなわち、クロスローラベアリング124の外輪124aと内輪124bとの間の隙間部分を封止するために配置される。この潤滑剤封止構造は、実施の形態1における図1Dに示すラビリンスシール40を用いた潤滑剤封止構造と実質的に同一であるので、具体的な説明は省略する。

Claims (9)

  1.  中心軸線回りに相対的に回転する第1部材および第2部材を備えた装置における前記第1、第2部材の間の隙間部分を通って、潤滑剤が、装置内部から漏れ出ることを防止する潤滑剤封止構造であって、
     前記隙間部分を封止するラビリンスシールを備えており、
     前記ラビリンスシールは、相互に対峙する前記第1部材の側の第1表面部分と前記第2部材の側の第2表面部分との間に形成されており、
     前記第1表面部分および前記第2表面部分には、それぞれ、前記潤滑剤に対する撥油性を備えた撥油面が形成されており、
     前記第1表面部分に繋がる前記潤滑剤の漏出方向の上流側の第1上流側表面部分、および、前記第2表面部分に繋がる前記漏出方向の上流側の第2上流側表面部分のうちの少なくとも一方には、前記撥油性を備えた上流側撥油面が形成されており、
     前記撥油面および前記上流側撥油面のそれぞれは、微細溝が所定の溝配列パターンで形成された表面テクスチャを備えており、
     前記微細溝は、数マイクロメートルから数十ナノメートルの溝幅および溝深さを備えており、
     前記溝配列パターンは、前記微細溝が、数マイクロメートルから数十ナノメートルの溝間隔で配列されたパターンであることを特徴とする潤滑剤封止構造。
  2.  請求項1に記載の潤滑剤封止構造において、
     前記溝配列パターンは、
     前記微細溝が、前記溝間隔で、前記装置の中心軸線に沿った方向に、直線状、曲線状あるいは波状に延びる配列パターン、
     前記微細溝が、前記溝間隔で、前記中心軸線を中心とする円周方向に、直線状、曲線状あるいは波状に延びる配列パターン、
     前記微細溝が、前記溝間隔で、前記中心軸線に沿った方向に対して傾斜した方向に、直線状、曲線状あるいは波形状に延びる配列パターン、
     前記微細溝が、前記溝間隔で、螺旋状に延びる配列パターン、および、
     前記微細溝が、前記溝間隔で、網目状に形成された配列パターン
    のうちの少なくともいずれか一つである潤滑剤封止構造。
  3.  請求項1に記載の潤滑剤封止構造において、
     前記ラビリンスシールは、第1隙間寸法の第1隙間部分を備えており、
     前記第1隙間部分における前記漏出方向の途中の部位には、前記第1隙間寸法よりも大きな第2隙間寸法の油溜まりが形成されている潤滑剤封止構造。
  4.  請求項3に記載の潤滑剤封止構造において、
     前記油溜まりには、多孔質素材からなる油吸収体が装着されている潤滑剤封止構造。
  5.  請求項3に記載の潤滑剤封止構造において、
     前記油溜まりを規定している前記第1表面部分の部位および前記第2表面部分の部位には、前記潤滑剤に対する親油性を備えた親油面が形成されている潤滑剤封止構造。
  6.  請求項1に記載の潤滑剤封止構造において、
     前記ラビリンスシールは第1隙間部分を備えており、
     前記第1隙間部分の少なくとも一部は、前記潤滑剤の漏出方向に向かって隙間寸法が漸減している隙間部分である潤滑剤封止構造。
  7.  入力軸と、
     前記入力軸の回転を減速して出力する波動歯車機構と、
     前記入力軸を、ベアリングを介して、回転自在の状態で支持している装置ハウジングと、
     第1部材である前記装置ハウジングと、第2部材である前記入力軸との間に形成される隙間部分を通って、潤滑剤が、装置内部から外部に漏れ出ることを防止するために配置されている、請求項1に記載の潤滑剤封止構造と、
    を備えている波動歯車装置。
  8.  モータと、
     前記モータに同軸に連結した入力軸、入力軸の回転を減速する波動歯車減速機構および減速回転を出力する出力軸を備えた波動歯車装置と、
     第1部材である前記出力軸と、第2部材である前記入力軸との間に形成される隙間部分を通って、潤滑剤が、前記波動歯車装置の装置内部から外部に漏れ出ることを防止するために配置されている、請求項1に記載の潤滑剤封止構造と、
    を備えているアクチュエータ。
  9.  モータと、
     前記モータの前端に設けた取付けフランジに同軸に取り付けた波動歯車装置と、
     前記取付けフランジを貫通して前記波動歯車装置の内部に延びるモータ軸と、
     前記波動歯車装置の内部において前記モータ軸の先端部に同軸に連結されている入力軸と、
     第1部材である前記取付けフランジと、第2部材である前記モータ軸および前記入力軸との間に形成される隙間部分を通って、潤滑剤が、前記波動歯車装置から前記モータの内部に漏れ出ることを防止するために配置されている、請求項1に記載の潤滑剤封止構造と、
    を備えているアクチュエータ。
     
PCT/JP2020/022359 2020-06-05 2020-06-05 潤滑剤封止構造、波動歯車装置およびアクチュエータ WO2021245920A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020227030685A KR20220137089A (ko) 2020-06-05 2020-06-05 윤활제 밀봉구조, 파동기어장치 및 액추에이터
EP20939179.6A EP4130524A4 (en) 2020-06-05 2020-06-05 LUBRICANT SEAL STRUCTURE, SHAFT GEAR DEVICE AND ACTUATOR
JP2022528380A JP7351009B2 (ja) 2020-06-05 2020-06-05 潤滑剤封止構造、波動歯車装置およびアクチュエータ
PCT/JP2020/022359 WO2021245920A1 (ja) 2020-06-05 2020-06-05 潤滑剤封止構造、波動歯車装置およびアクチュエータ
US17/908,628 US20230109061A1 (en) 2020-06-05 2020-06-05 Lubricant sealing structure, strain wave gearing, and actuator
CN202080100251.0A CN115605696A (zh) 2020-06-05 2020-06-05 润滑剂密封结构、波动齿轮装置以及致动器
TW110114464A TW202206726A (zh) 2020-06-05 2021-04-22 潤滑劑封止構造、諧波齒輪裝置及致動器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022359 WO2021245920A1 (ja) 2020-06-05 2020-06-05 潤滑剤封止構造、波動歯車装置およびアクチュエータ

Publications (1)

Publication Number Publication Date
WO2021245920A1 true WO2021245920A1 (ja) 2021-12-09

Family

ID=78830717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022359 WO2021245920A1 (ja) 2020-06-05 2020-06-05 潤滑剤封止構造、波動歯車装置およびアクチュエータ

Country Status (7)

Country Link
US (1) US20230109061A1 (ja)
EP (1) EP4130524A4 (ja)
JP (1) JP7351009B2 (ja)
KR (1) KR20220137089A (ja)
CN (1) CN115605696A (ja)
TW (1) TW202206726A (ja)
WO (1) WO2021245920A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111341A (zh) * 2022-07-11 2022-09-27 深圳市大族机器人有限公司 减速器
WO2023114290A1 (en) * 2021-12-17 2023-06-22 Electric Torque Machines, Inc. Grease inhibitor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144971A (ja) * 2004-11-22 2006-06-08 Harmonic Drive Syst Ind Co Ltd 中空アクチュエータ
JP2006226459A (ja) * 2005-02-18 2006-08-31 Nsk Ltd 転がり軸受
JP2006258234A (ja) 2005-03-18 2006-09-28 Nippon Koyu Ltd 潤滑剤密封装置
JP2007333054A (ja) 2006-06-14 2007-12-27 Nsk Ltd ロール軸受装置
JP2012117671A (ja) * 2010-11-30 2012-06-21 General Electric Co <Ge> シールアセンブリ
JP5465109B2 (ja) 2010-06-28 2014-04-09 キヤノンマシナリー株式会社 摺動面構造
JP2015193922A (ja) * 2014-03-24 2015-11-05 三菱重工業株式会社 撥液化する表面微細構造並びにその製造方法、熱交換器、および空気調和機の構成要素
JP2017009085A (ja) 2015-06-25 2017-01-12 新日鐵住金株式会社 鉄道車両用歯車装置における非接触式シール装置
JP2017214996A (ja) 2016-06-01 2017-12-07 キヤノンマシナリー株式会社 摺動面構造及び摺動面構造の製造方法
WO2018189798A1 (ja) * 2017-04-10 2018-10-18 株式会社ハーモニック・ドライブ・システムズ シルクハット型波動歯車装置
JP2019094997A (ja) * 2017-11-24 2019-06-20 ミネベアミツミ株式会社 ピボットアッシー軸受装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066033A1 (en) * 2007-09-11 2009-03-12 General Electric Company Barrier sealing system
CN103557334A (zh) * 2013-11-14 2014-02-05 江苏大学 一种实现零泄漏非接触的多端面组合式机械密封
FR3037117B1 (fr) * 2015-06-05 2018-01-12 Danfoss A/S Machine a fluide comportant un joint a labyrinthe
KR102491850B1 (ko) 2015-07-15 2023-01-26 삼성전자주식회사 레이저 스펙클 대조도 이미징 시스템 및 방법, 이를 적용한 장치
CN106545642B (zh) * 2016-12-06 2019-04-19 江苏昊克传动科技股份有限公司 单螺杆挤出机减速箱输入轴密封甩挡机构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144971A (ja) * 2004-11-22 2006-06-08 Harmonic Drive Syst Ind Co Ltd 中空アクチュエータ
JP2006226459A (ja) * 2005-02-18 2006-08-31 Nsk Ltd 転がり軸受
JP2006258234A (ja) 2005-03-18 2006-09-28 Nippon Koyu Ltd 潤滑剤密封装置
JP2007333054A (ja) 2006-06-14 2007-12-27 Nsk Ltd ロール軸受装置
JP5465109B2 (ja) 2010-06-28 2014-04-09 キヤノンマシナリー株式会社 摺動面構造
JP2012117671A (ja) * 2010-11-30 2012-06-21 General Electric Co <Ge> シールアセンブリ
JP2015193922A (ja) * 2014-03-24 2015-11-05 三菱重工業株式会社 撥液化する表面微細構造並びにその製造方法、熱交換器、および空気調和機の構成要素
JP2017009085A (ja) 2015-06-25 2017-01-12 新日鐵住金株式会社 鉄道車両用歯車装置における非接触式シール装置
JP2017214996A (ja) 2016-06-01 2017-12-07 キヤノンマシナリー株式会社 摺動面構造及び摺動面構造の製造方法
WO2018189798A1 (ja) * 2017-04-10 2018-10-18 株式会社ハーモニック・ドライブ・システムズ シルクハット型波動歯車装置
JP2019094997A (ja) * 2017-11-24 2019-06-20 ミネベアミツミ株式会社 ピボットアッシー軸受装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130524A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023114290A1 (en) * 2021-12-17 2023-06-22 Electric Torque Machines, Inc. Grease inhibitor
CN115111341A (zh) * 2022-07-11 2022-09-27 深圳市大族机器人有限公司 减速器
CN115111341B (zh) * 2022-07-11 2024-04-12 深圳市大族机器人有限公司 减速器

Also Published As

Publication number Publication date
CN115605696A (zh) 2023-01-13
EP4130524A1 (en) 2023-02-08
JP7351009B2 (ja) 2023-09-26
US20230109061A1 (en) 2023-04-06
TW202206726A (zh) 2022-02-16
JPWO2021245920A1 (ja) 2021-12-09
KR20220137089A (ko) 2022-10-11
EP4130524A4 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2021245920A1 (ja) 潤滑剤封止構造、波動歯車装置およびアクチュエータ
WO2021205666A1 (ja) 潤滑剤封止構造、波動歯車装置およびアクチュエータ
JP7032011B2 (ja) ユニットタイプの波動歯車装置
TWI819108B (zh) 諧波齒輪裝置
JP5400648B2 (ja) 歯車伝動装置
JP2019060423A (ja) 撓み噛合い式歯車装置
CN110185745B (zh) 齿轮装置系列及其构建方法、以及齿轮装置组的制造方法
JPWO2021205666A5 (ja)
JP6968708B2 (ja) 撓み噛合い式歯車装置
JP2017201194A (ja) 減速装置
TWI818090B (zh) 諧波齒輪裝置的諧波產生器
JP2020041680A (ja) 差動減速機
WO2022202545A1 (ja) シール付軸受
JP6740936B2 (ja) 軸受潤滑構造
JP2009210032A (ja) 歯車装置
WO2021033319A1 (ja) ユニットタイプの波動歯車装置
JP2022105919A (ja) 撓み噛合い式歯車装置
JP2008002656A (ja) 鉄道車両車軸用軸受装置
TW202334563A (zh) 滾動軸承及諧波齒輪裝置的諧波產生器
JP2020041681A (ja) 差動減速機
JP2020041679A (ja) 減速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528380

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227030685

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020939179

Country of ref document: EP

Effective date: 20221026

NENP Non-entry into the national phase

Ref country code: DE