WO2021244464A1 - 驱动力恢复控制方法、装置及48v驱动系统 - Google Patents

驱动力恢复控制方法、装置及48v驱动系统 Download PDF

Info

Publication number
WO2021244464A1
WO2021244464A1 PCT/CN2021/097152 CN2021097152W WO2021244464A1 WO 2021244464 A1 WO2021244464 A1 WO 2021244464A1 CN 2021097152 W CN2021097152 W CN 2021097152W WO 2021244464 A1 WO2021244464 A1 WO 2021244464A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
transmission
clutch
control unit
target
Prior art date
Application number
PCT/CN2021/097152
Other languages
English (en)
French (fr)
Inventor
王歆誉
曹龙
朱桂庆
张荣辉
李长洲
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2021244464A1 publication Critical patent/WO2021244464A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • This application relates to the technical field of automobile drive control, for example, to a drive force restoration control method, device, and 48V drive system.
  • a car with a 48V electrical system has a stop coasting mode. In this mode, the car engine is stopped and the transmission chain between the engine and the clutch is disconnected. When the driver depresses the accelerator pedal again, the vehicle needs to return to the normal driving mode.
  • the present application provides a driving force restoration control method, device, and 48V drive system, so as to extend the stop sliding distance so that the vehicle can quickly and smoothly restore the driving force.
  • a driving force recovery control method which is applied when the driving mode is switched from the stop coasting mode to the driving mode, including:
  • a driving force recovery control device which includes a driving force recovery module, and the driving force recovery module is configured as:
  • a 48V drive system including an engine control unit, a motor control unit, a transmission control unit, an engine, a motor, and a wet dual clutch transmission; the engine control unit is connected to the engine, and the motor control unit is connected to the Motor connection, the transmission control unit is connected to the wet dual-clutch transmission, the engine control unit, the motor control unit, and the transmission control unit are communicatively connected via a Controller Area Network (CAN) bus;
  • the transmission control unit is configured to execute the aforementioned driving force recovery control method.
  • CAN Controller Area Network
  • FIG. 1 is a flowchart of a driving force recovery control method provided by an embodiment
  • FIG. 2 is a structural diagram of a 48V drive system provided by an embodiment
  • FIG. 3 is a flowchart of another driving force recovery control method provided by an embodiment
  • FIG. 4 is a timing diagram of a driving force recovery control method provided by an embodiment
  • Fig. 5 is a control curve diagram provided by an embodiment.
  • Fig. 1 is a flowchart of a driving force recovery control method provided by an embodiment. This embodiment can be applied to the situation of restoring the driving force of the vehicle when the vehicle is switched from the coasting mode to the driving mode.
  • the method can be executed by the driving force recovery control device.
  • the device can be implemented in software, and the device can be configured in an electronic device.
  • TCU Transmission Control Unit
  • the method may include:
  • the transmission device adopts a wet dual-clutch transmission.
  • the wet dual-clutch transmission generally includes a shift fork, two sets of gears, an input shaft, two output shafts, two clutches, and a hydraulic control valve block. become.
  • two sets of gears are respectively arranged on an output shaft, for example, one output shaft is equipped with gears of 1, 3, 5, and 7 gears, and the other output shaft is equipped with gears of 2, 4, and 6 gears.
  • Two clutches respectively control an output shaft to connect or disconnect from the engine transmission.
  • the shift fork, the input shaft, the output shaft and the gears constitute a transmission.
  • Fig. 2 is a structural diagram of a 48V drive system provided by an embodiment. 2, the 48V system includes an engine control unit 100, a motor control unit 500, a transmission control unit 200, an engine 300, a motor 600, and a wet dual clutch transmission 400.
  • the engine control unit 100 is in communication connection with the engine 300, the transmission control unit 200 is in communication connection with the wet dual clutch transmission 400, the motor control unit 500 is in communication connection with the motor 600, and the engine control unit 100, the motor control unit 500 and the transmission control unit 200 are connected via CAN bus Realize information exchange.
  • the motor 600 is mechanically connected to the engine 300, and the engine 300 is mechanically connected to the wet dual clutch transmission 400.
  • the 48V system involves two modes, namely the stop coasting mode and the drive mode.
  • the transmission control unit 200 controls the two clutches in the wet dual clutch transmission 400 to configure the output of the odd-numbered gears respectively.
  • the shaft and the output shaft equipped with even-numbered gears are separated, and all shift forks are controlled to be empty at the same time.
  • between the output shaft of the engine 300 and the clutch, and between the gears in the wet dual clutch transmission 400 are in a separated state, so that when the vehicle is coasting in the stop coasting mode, there is no back-drag brake of the engine 300, and the clutch is also No drag torque is generated, and the vehicle can use its own inertia to maintain the longest coasting process.
  • the vehicle When the driver steps on the accelerator pedal, the vehicle exits the coast stop mode and enters the driving mode. At this time, the transmission control unit 200 generates a control command to restore the driving force of the vehicle.
  • the working process of the transmission control unit 200 in this step includes:
  • the transmission control unit 200 receives the start flag EMS_ESR sent by the engine control unit 100 via the CAN bus. After receiving the start flag, the transmission control unit 200 determines the target gear TR of the wet dual clutch transmission 400 and the target speed of the engine 300 TCU_ETS, and sends the target speed TCU_ETS of the engine 300 to the motor control unit 500.
  • the transmission control unit 200 may determine the target gear TR according to the current vehicle speed and the accelerator pedal opening degree.
  • the target rotation speed TCU_ETS is determined by the output shaft rotation speed of the wet dual clutch transmission 400, the target gear TR, and the slip difference.
  • the formula used is:
  • TCU_ETS OS ⁇ TR+Slip
  • OS is the current speed value of the output shaft corresponding to the target gear TR
  • TR is the target gear
  • Slip is the target slip difference between the engine 300 and the clutch.
  • the transmission control unit 200 obtains the oil temperature of the internal hydraulic oil of the wet dual clutch transmission 400, and obtains the target slip difference Slip by looking up the table according to the oil temperature and the target gear TR.
  • step S2 after the motor control unit 500 receives the target speed TCU_ETS of the engine 300 sent by the transmission control unit 200, it controls the motor 600 to drive the crankshaft of the engine 300 to rotate, and controls the speed of the engine 300 to increase from zero to the target speed TCU_ETS.
  • step S2 the transmission control unit 200 monitors the change of the rotation speed of the engine 300.
  • the rotation speed control process of the engine 300 is characterized by the variable ESP, and the calculation formula of the ESP is:
  • ES is the rotation speed of the engine 300
  • ESI is the initial speed of the engine 300.
  • ESI is zero.
  • the transmission control unit 200 controls the shift fork to directly engage the target gear TR. After the gear is successfully engaged, the transmission control unit 200 controls the clutch corresponding to the target gear. Oil is filled to half-engage the engine 300 with the clutch. After the motor 600 drives the speed of the engine 300 to increase to the target speed TCU_ETS, the engine 300 is ignited with oil, and the torque of the engine 300 is input to the wet dual clutch transmission 400.
  • the target gear is first selected, and the shift fork that is emptied during the stop and coasting phase is directly connected to the target gear, so as to avoid raising and lowering during the driving force recovery process.
  • the downshift operation can reduce the time for switching from the stop coasting mode to the drive mode.
  • FIG. 3 is a flowchart of another driving force recovery control method provided by an embodiment.
  • the control process of the transmission control unit 200 further includes:
  • the Kp point is the clutch half-engagement point.
  • the output torque of the engine 300 starts to drive the input shaft of the wet dual clutch transmission 400 to rotate, and the wet dual clutch transmission 400 starts to output torque.
  • the engine 300 is in the speed increase phase.
  • the target oil pressure of the clutch is slightly less than the Kp point, and the input shaft of the wet dual clutch transmission 400 is at a standstill. The high oil pressure caused the vehicle to turbulence.
  • the motor control unit 500 stops controlling the motor 600 to drive the engine 300, and the engine control unit 100 controls the engine 300 to supply ignition and output torque, and the engine 300 enters the torque control mode
  • the rotation speed of the engine 300 is greater than the target rotation speed TCU_ETS of the engine 300.
  • the output torque of the engine 300 is determined by the depression depth of the accelerator pedal.
  • FIG. 4 is a timing diagram of a driving force recovery control method provided by an embodiment 4, when the value of ESP approaches 1, the transmission control unit 200 controls the oil pressure in the clutch to increase from the target oil pressure to the Kp point, and the transmission control unit 200 starts to perform torque control on the clutch.
  • Fig. 5 is a control curve diagram provided by an embodiment.
  • the engine 300 is in a torque control mode, and the transmission control unit 200 performs torque control on the clutch. Based on the coefficient of change, the transmission torque of the clutch is doubled. Segment control.
  • the change amount of the transmission torque of the control clutch is the same as the change amount of the output torque of the engine 300, and the transmission torque of the clutch is feedforwardly controlled to increase the speed of the engine 300 stably.
  • the process of engaging the engine 300 with the clutch can be divided into two phases, namely, the sliding phase (first phase) and the synchronized engagement phase (second phase).
  • the sliding phase the output torque of the wet dual clutch transmission 400 is related to the engagement position of the clutch.
  • the transmission control unit 200 adjusts the engagement position of the clutch by controlling the oil pressure of the clutch, and then adjusts the allowable transmission torque of the clutch, so that the allowable transmission torque of the clutch can be increased as the output torque of the engine 300 increases.
  • the transmission control unit 200 feeds forward the torque transmitted by the clutch. Controlled to increase the speed of the engine 300 steadily.
  • the clutch feedforward torque Torq is introduced in this step, and its expression is:
  • Profile is the variation coefficient. From the start time of the slip grinding phase to the start time of the synchronous joining phase, the value of the change coefficient gradually decreases from 1 to 0. For example, it can be set according to the length of the joining time. Long, gradually reduce the coefficient of change.
  • Gain is the gain link.
  • the transmission control unit 200 determines the gain link Gain according to the target gear and the output torque change rate of the engine 300.
  • the target gear TR, the output torque change rate of the engine 300 and the gain link The corresponding relationship of Gain is obtained through experimental calibration.
  • the transmission torque of the clutch is controlled to be the same as the allowable torque according to the slip and wear difference.
  • the engine 300 is engaged with the clutch synchronously. Since the wet dual-clutch transmission 400 needs to maintain a certain slip and wear difference during the torque transmission process, in this step, the transmission control unit 200 uses the actual slip The difference and the target slip difference are used as the control input, and the oil pressure of the clutch is used as the controlled quantity. Proportional Integral (PI) closed-loop control of the oil pressure is carried out to make the output torque and the allowable torque the same.
  • PI Proportional Integral
  • the proposed driving force recovery control method controls the clutch to be disengaged and the fork to be emptied during the stop and coasting phase to minimize the sliding resistance.
  • the target gear is first selected and the shift is controlled.
  • the fork is directly connected to the target gear, avoiding up and down operations during the drive recovery process, and reducing the time to switch from the stop coasting mode to the drive mode.
  • the clutch torque is controlled by segment control, which can make the driving force rise to the driver's desired value smoothly and quickly.
  • This embodiment provides a driving force recovery control device, the control device is configured in a transmission control unit, the control device includes a driving force recovery module, and the driving force recovery module is set as:
  • the transmission control unit controls the shift fork of the transmission to connect to the target gear:
  • the driving force recovery module is configured to control the clutch oil filling so that the oil pressure in the clutch is at a set target oil pressure, where the target oil pressure is different from the oil pressure corresponding to the Kp point by a first pressure value.
  • the driving force recovery module is set to control the combination of the engine and the clutch, and when the engine speed continues to increase from the target speed, the transmission torque of the clutch is controlled in sections follow the output torque of the engine.
  • the driving force recovery module controls the transmission torque of the clutch in two stages based on the coefficient of change.
  • the transmission torque of the clutch When the transmission torque of the clutch is controlled in the first stage, it controls the change in the transmission torque of the clutch and the engine output torque.
  • the amount of change is the same, and at the same time, feedforward control is performed on the transmission torque of the clutch, so that the engine speed is steadily increased.
  • the driving force recovery module controls the transmission torque of the clutch to be the same as the allowable torque according to the slip and wear difference.
  • the effect of the driving force recovery control device is the same as the content recorded in the first embodiment, and will not be repeated here.
  • this embodiment proposes a 48V drive system, including an engine control unit 100, a transmission control unit 200, a motor control unit 500, an engine 300, a motor 600, and a wet dual clutch transmission 400.
  • the engine control unit 100 is connected to the engine 300, the transmission control unit 200 is connected to the wet dual clutch transmission 400, the motor control unit 500 is connected to the motor 600, and the engine control unit 100, the motor control unit 500 and the transmission control unit 200 are connected via CAN bus Communication connection.
  • the transmission control unit 200 is configured to execute the driving force recovery control method described in the first embodiment, and the effect is the same as the content described in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本文公开了一种驱动力恢复控制方法、装置及48V驱动系统。该驱动力恢复控制方法,应用于行驶工况由停机滑行模式切换为驱动模式的情况下,包括:确定变速器的目标档位以及发动机的目标转速;控制所述发动机的转速提升至所述目标转速,在所述发动机开始提升转速时,控制所述变速器的拨叉接入目标档位。

Description

驱动力恢复控制方法、装置及48V驱动系统
本申请要求在2020年06月05日提交中国专利局、申请号为202010507889.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车驱动控制技术领域,例如涉及一种驱动力恢复控制方法、装置及48V驱动系统。
背景技术
具备48V电气系统的汽车具备停机滑行模式,该模式下汽车发动机停机,且发动机与离合器之间的传动链断开,当驾驶员重新踩下油门踏板时,整车需要恢复至正常的驱动模式。
相关技术中,当需要从停机滑行模式切换至正常的驱动模式时,为满足驾驶员的驾驶需求,在停机滑行过程中通常需要进行降档控制,此外离合器控制器在停机滑行过程中还需向变速器中的摩擦联接元件供给油压,以使驱动系统可以及时响应驾驶员的加速请求。相关技术中的控制方法,需要在停机滑行阶段实现对离合器和变速器的控制,在停机滑行过程中存在额外的阻力,影响滑行距离,同时由于涉及变速器降档等控制过程,从停机滑行模式切换至驱动模式时存在一定的延时时间。
发明内容
本申请提供一种驱动力恢复控制方法、装置及48V驱动系统,以达到延长停机滑行距离,使车辆可以快速、平稳的恢复驱动力的目的。
提供了一种驱动力恢复控制方法,应用于行驶工况由停机滑行模式切换为驱动模式的情况下,包括:
确定变速器的目标档位以及发动机的目标转速;控制所述发动机的转速提升至所述目标转速,在所述发动机开始提升转速时,控制所述变速器的拨叉接入所述目标档位。
还提供了一种驱动力恢复控制装置,包括驱动力恢复模块,所述驱动力恢复模块设置为:
在行驶工况由停机滑行模式切换为驱动模式的情况下,确定变速器的目标档位以及发动机的目标转速;控制所述发动机的转速提升至所述目标转速,在 所述发动机开始提升转速时,控制所述变速器的拨叉接入所述目标档位。
还提供了一种48V驱动系统,包括发动机控制单元、电机控制单元、变速器控制单元、发动机、电机以及湿式双离合变速器;所述发动机控制单元与所述发动机连接,所述电机控制单元与所述电机连接,所述变速器控制单元与所述湿式双离合变速器连接,所述发动机控制单元、所述电机控制单元与所述变速器控制单元通过控制器局域网络(Controller Area Network,CAN)总线通信连接;所述变速器控制单元设置为执行上述的驱动力恢复控制方法。
附图说明
图1是一实施例提供的一种驱动力恢复控制方法流程图;
图2是一实施例提供的一种48V驱动系统结构图;
图3是一实施例提供的另一种驱动力恢复控制方法流程图;
图4是一实施例提供的一种驱动力恢复控制方法时序图;
图5是一实施例提供的一种控制曲线图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
实施例一
图1是一实施例提供的一种驱动力恢复控制方法流程图。本实施例可适用于车辆停机滑行模式向驱动模式切换时,恢复车辆驱动力的情况,该方法可以由驱动力恢复控制装置执行,该装置可以采用软件的方式实现,该装置可配置于电子设备中,例如变速箱控制单元(Transmission Control Unit,TCU)中。如图1所示,该方法可以包括:
S1.确定变速器的目标档位以及发动机的目标转速。
示例性的,本实施例中,传动装置采用湿式双离合变速器,湿式双离合变速器一般包括拨叉、两套档位齿轮、一个输入轴、两个输出轴、两个离合器以及液压控制阀块总成。其中,两套档位齿轮分别布置在一个输出轴上,例如一个输出轴配置1档、3档、5档、7档齿轮,另一个输出轴上配置2档、4档、6档齿轮。两个离合器分别控制一个输出轴与发动机传动连接或断开。示例性的,本实施例中,拨叉,输入轴、输出轴和档位齿轮构成变速器。
本实施例中,控制方法用于控制48V系统恢复驱动力。图2是一实施例提供的一种48V驱动系统结构图。参考图2,48V系统包括发动机控制单元100、 电机控制单元500、变速器控制单元200、发动机300、电机600和湿式双离合变速器400。
发动机控制单元100与发动机300通信连接,变速器控制单元200与湿式双离合变速器400通信连接,电机控制单元500与电机600通信连接,发动机控制单元100、电机控制单元500和变速器控制单元200通过CAN总线实现信息交互。电机600与发动机300机械连接,发动机300与湿式双离合变速器400机械连接。
本实施例中,48V系统涉及两种模式,即停机滑行模式和驱动模式,处于停机滑行模式时,变速器控制单元200控制湿式双离合变速器400中的两个离合器分别与配置奇数档位齿轮的输出轴、配置偶数档位齿轮的输出轴分离,同时控制所有的换挡拨叉摘空。此时,发动机300的输出轴与离合器之间,以及湿式双离合变速器400中的档位齿轮之间均为分离状态,使得车辆在停机滑行模式下滑行时无发动机300反拖制动,离合器也不产生拖曳扭矩,进而车辆可以利用自身惯性保持最长时间的滑行过程。
当驾驶员踩下油门踏板时,车辆退出滑行停机模式而进入驱动模式,此时通过变速器控制单元200生成控制指令,使车辆恢复驱动力。
本步骤中变速器控制单元200的工作过程包括:
变速器控制单元200接收由发动机控制单元100通过CAN总线发送的启机标志位EMS_ESR,接收到启机标志位后,变速器控制单元200确定湿式双离合变速器400的目标档位TR、发动机300的目标转速TCU_ETS,并向电机控制单元500发送发动机300的目标转速TCU_ETS。
示例性的,变速器控制单元200可以根据当前车速、油门踏板开度,确定目标档位TR。
目标转速TCU_ETS由湿式双离合变速器400的输出轴转速、目标档位TR以及滑磨差确定。确定目标转速TCU_ETS时,采用的公式为:
TCU_ETS=OS×TR+Slip
式中,OS为目标档位TR对应的输出轴的当前转速值,TR为目标档位,Slip为发动机300与离合器之间的目标滑磨差。
本实施例中,Slip的确定方式为:变速器控制单元200获取湿式双离合变速器400的内液压油的油温,根据油温以及目标档位TR通过查表的方式获取目标滑磨差Slip。
S2.控制发动机转速提升至目标转速,在发动机开始提升转速时,控制变速 器的拨叉接入目标档位。
在步骤S2中,电机控制单元500接收到变速器控制单元200发送的发动机300的目标转速TCU_ETS后,控制电机600带动发动机300的曲轴旋转,控制发动机300的转速由零提升至目标转速TCU_ETS。
步骤S2中,变速器控制单元200监控发动机300的转速变化,发动机300的转速控制过程以变量ESP表征,ESP的计算公式为:
ESP=(ES-ESI)/(TCU_ETS-ESI)
式中,ES为发动机300的转速,ESI为发动机300的初始速度,处于停机滑行模式时,ESI为零。
在发动机转速控制的起始时刻,也即ESP为0时,变速器控制单元200控制换挡拨叉直接挂入目标档位TR,挂挡成功后,变速器控制单元200控制与目标档位对应的离合器充油,使发动机300与离合器半接合,电机600带动发动机300的转速提升至目标转速TCU_ETS后,发动机300供油点火,发动机300的扭矩输入至湿式双离合变速器400中。
本申请实施提供的驱动力恢复控制方法,在驱动力恢复阶段,首先选定目标档位,将在停机滑行阶段摘空的拨叉直接接入目标档位,避免驱动力恢复过程中进行升、降档操作,可以减小停机滑行模式切换至驱动模式的时间。
图3是一实施例提供的另一种驱动力恢复控制方法流程图,参考图3,作为一种可选方案,变速器控制单元200的控制过程还包括:
S3.控制离合器充油,使离合器内的油压处于设定的目标油压,其中,目标油压与Kp点对应的油压相差第一压力值。
Kp点为离合器半接合点,当离合器油压处于Kp点时,发动机300的输出扭矩开始带动湿式双离合变速器400中的输入轴转动,湿式双离合变速器400开始输出扭矩。在步骤S2中,发动机300处于转速提升阶段,此时离合器的目标油压略小于Kp点,湿式双离合变速器400的输入轴处于静止状态,其目的在于避免对发动机300进行转速控制时,由于离合器油压偏高而引起车辆耸动。
S4.当发动机处于目标转速且离合器的油压处于目标油压时,控制发动机与离合器结合,当发动机的转速由目标转速继续提升时,分段控制离合器的传递扭矩跟随发动机的输出扭矩。
当ESP为1时,即发动机300的转速与目标转速TCU_ETS相同时,电机控制单元500停止控制电机600带动发动机300,发动机控制单元100控制发动机300供油点火并输出扭矩,发动机300进入扭矩控制模式,相应的,在此过 程中,发动机300的转速大于发动机300的目标转速TCU_ETS。示例性的,发动机300的输出扭矩由油门踏板的踩踏深度确定。
发动机300处于电机转速控制时,发动机300的转速由0逐渐提升至目标转速,相应的ESP的数值也由0逐渐变为1,图4是一实施例提供的一种驱动力恢复控制方法时序图,参考图4,当ESP的数值接近1时,变速器控制单元200控制离合器内的油压由目标油压提升至Kp点,变速器控制单元200开始对离合器进行扭矩控制。
图5是一实施例提供的一种控制曲线图,参考图5,示例性的,发动机300处于扭矩控制模式,变速器控制单元200对离合器进行扭矩控制,基于变化系数,对离合器的传递扭矩进行两段控制。处于对离合器的传递扭矩进行第一阶段控制时,控制离合器的传递扭矩的变化量与发动机300输出扭矩的变化量相同,同时对离合器的传递扭矩进行前馈控制,使发动机300的转速稳定提升。
示例性的,发动机300与离合器接合的过程可以分为两个阶段,即滑磨阶段(第一阶段)和同步接合阶段(第二阶段)。在滑磨阶段,湿式双离合变速器400的输出扭矩与离合器的接合位置有关。变速器控制单元200通过对离合器油压的控制,调整离合器的接合位置,进而调整离合器的允许传递扭矩,使离合器的允许传递扭矩可以跟随发动机300的输出扭矩的提高而提高。处于滑磨阶段时,若离合器的接合速度过慢,且发动机300的输出扭矩提升过快,则会造成发动机300的转速飞升,因此在滑磨阶段,变速器控制单元200对离合器传递扭矩进行前馈控制,使发动机300的转速稳定提升。
示例性的,本步骤中引入离合器前馈扭矩Torq,其表达式为:
Torq=Profile×Gain
式中,Profile为变化系数,从滑磨阶段的起始时刻至同步接合阶段的起始时刻,变化系数的数值由1逐渐降至0,示例性的,可以根据接合时长,按照设定的步长,逐步减小变化系数。Gain为增益环节,示例性的,变速器控制单元200根据目标档位和发动机300的输出扭矩变化率,确定增益环节Gain,示例性的,目标档位TR、发动机300的输出扭矩变化率与增益环节Gain的对应关系通过试验标定获得。
处于对离合器的传递扭矩进行第二阶段控制时,根据滑磨差控制离合器的传递扭矩与允许扭矩相同。
示例性的,处于第二阶段控制时,发动机300与离合器同步接合,由于湿式双离合变速器400在扭矩传递过程中需要保持一定的滑磨差,因此本步骤中,变速器控制单元200以实际滑磨差与目标滑磨差作为控制输入,以离合器的油 压作为被控制量,对油压进行比例积分(Proportional Integral,PI)闭环控制,使输出扭矩和允许扭矩相同。
本实施例中,提出的驱动力恢复控制方法在停机滑行阶段,控制离合器分离、拨叉摘空,以最大限度减小滑行阻力,在驱动力恢复阶段,首先选定目标档位,并控制拨叉直接接入目标档位,避免驱动力恢复过程中进行升、降档操作,减小停机滑行模式切换至驱动模式的时间。处于驱动力恢复阶段,采用分段控制的方式对离合器扭矩进行控制,可以使驱动力平稳、快速的提升至驾驶员的期望值。
实施例二
本实施例提出一种驱动力恢复控制装置,控制装置配置在变速器控制单元中,控制装置包括驱动力恢复模块,驱动力恢复模块设置为:
当行驶工况由停机滑行模式切换为驱动模式时,确定变速器的目标档位以及发动机的目标转速;控制发动机转速提升至目标转速,在发动机开始提升转速时,控制变速器的拨叉接入所述目标档位。
可选的,变速器控制单元控制变速器的拨叉接入目标档位时:
驱动力恢复模块设置为控制离合器充油,使离合器内的油压处于设定的目标油压,其中,目标油压与Kp点对应的油压相差第一压力值。
可选的,当发动机处于目标转速且离合器的油压处于目标油压时,驱动力恢复模块设置为控制发动机与离合器结合,当发动机的转速由目标转速继续提升时,分段控制离合器的传递扭矩跟随发动机的输出扭矩。
作为一种可实施方案,驱动力恢复模块基于变化系数,对离合器的传递扭矩进行两段控制,处于对离合器的传递扭矩进行第一阶段控制时,控制离合器的传递扭矩的变化量与发动机输出扭矩的变化量相同,同时对离合器的传递扭矩进行前馈控制,使发动机的转速稳定提升。
处于对离合器的传递扭矩进行第二阶段控制时,驱动力恢复模块根据滑磨差控制离合器的传递扭矩与允许扭矩相同。
本实施例中,驱动力恢复控制装置起到的效果与实施例一中记载的内容相同,在此不再赘述。
实施例三
参考图2,本实施例提出一种48V驱动系统,包括发动机控制单元100、变速器控制单元200、电机控制单元500、发动机300、电机600以及湿式双离合变速器400。
发动机控制单元100与发动机300相连接,变速器控制单元200与湿式双离合变速器400相连接,电机控制单元500与电机600相连接,发动机控制单元100、电机控制单元500与变速器控制单元200通过CAN总线通信连接。
本实施例中,变速器控制单元200设置为执行实施例一中记载的驱动力恢复控制方法,且效果与实施例一中记载的内容相同。

Claims (9)

  1. 一种驱动力恢复控制方法,应用于行驶工况由停机滑行模式切换为驱动模式的情况下,包括:
    确定变速器的目标档位以及发动机的目标转速;
    控制所述发动机的转速提升至所述目标转速,在所述发动机开始提升转速时,控制所述变速器的拨叉接入所述目标档位。
  2. 如权利要求1所述的方法,还包括:
    控制离合器充油,使所述离合器内的油压处于设定的目标油压,其中,所述目标油压与Kp点对应的油压相差第一压力值,所述Kp点为所述离合器的半接合点。
  3. 如权利要求2所述的方法,在所述发动机处于所述目标转速且所述离合器的油压处于所述目标油压时,还包括:
    控制所述发动机与所述离合器结合;
    在所述发动机的转速由所述目标转速提升的情况下,分段控制所述离合器的传递扭矩跟随所述发动机的输出扭矩。
  4. 如权利要求3所述的方法,其中,所述分段控制所述离合器的传递扭矩跟随所述发动机的输出扭矩,包括:
    基于变化系数,对所述离合器的传递扭矩进行第一阶段控制和第二阶段控制;
    其中,在对所述离合器的传递扭矩进行所述第一阶段控制的情况下,所述离合器的传递扭矩的变化量与所述发动机的输出扭矩的变化量相同。
  5. 如权利要求4所述的方法,在对所述离合器的传递扭矩进行所述第一阶段控制的情况下,还包括:
    同时对所述离合器的传递扭矩进行前馈控制,使所述发动机的转速提升。
  6. 如权利要求4所述的方法,其中,所述对所述离合器的传递扭矩进行第二阶段控制,包括:
    根据滑磨差控制所述离合器的传递扭矩与允许扭矩相同。
  7. 如权利要求1所述的方法,其中,所述目标转速由所述变速器的输出轴转速、所述目标档位以及滑磨差确定。
  8. 一种驱动力恢复控制装置,包括驱动力恢复模块,所述驱动力恢复模块设置为:
    在行驶工况由停机滑行模式切换为驱动模式的情况下,确定变速器的目标档位以及发动机的目标转速;控制所述发动机的转速提升至所述目标转速,在所述发动机开始提升转速时,控制所述变速器的拨叉接入所述目标档位。
  9. 一种48V驱动系统,包括发动机控制单元、变速器控制单元、电机控制单元、发动机、电机以及湿式双离合变速器;
    所述发动机控制单元与所述发动机连接,所述变速器控制单元与所述湿式双离合变速器连接,所述电机控制单元与所述电机连接,所述发动机控制单元、所述电机控制单元与所述变速器控制单元通过控制器局域网络CAN总线通信连接;
    所述变速器控制单元设置为执行权利要求1-7任一项所述的驱动力恢复控制方法。
PCT/CN2021/097152 2020-06-05 2021-05-31 驱动力恢复控制方法、装置及48v驱动系统 WO2021244464A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010507889.8 2020-06-05
CN202010507889.8A CN111645686B (zh) 2020-06-05 2020-06-05 一种驱动力恢复控制方法、装置及48v驱动系统

Publications (1)

Publication Number Publication Date
WO2021244464A1 true WO2021244464A1 (zh) 2021-12-09

Family

ID=72341190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097152 WO2021244464A1 (zh) 2020-06-05 2021-05-31 驱动力恢复控制方法、装置及48v驱动系统

Country Status (2)

Country Link
CN (1) CN111645686B (zh)
WO (1) WO2021244464A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645686B (zh) * 2020-06-05 2021-10-22 中国第一汽车股份有限公司 一种驱动力恢复控制方法、装置及48v驱动系统
CN114763132A (zh) * 2021-07-21 2022-07-19 长城汽车股份有限公司 混合动力车辆的控制方法、装置、介质和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036479A (ja) * 2011-08-03 2013-02-21 Aisin Ai Co Ltd デュアルクラッチ式自動変速機
CN102996785A (zh) * 2012-12-19 2013-03-27 安徽江淮汽车股份有限公司 湿式双离合器的换挡控制方法
CN103410959A (zh) * 2013-08-26 2013-11-27 安徽江淮汽车股份有限公司 双离合器自动变速箱从空挡滑行到在挡行驶的控制方法
CN103697154A (zh) * 2013-11-29 2014-04-02 浙江吉利控股集团有限公司 一种amt自动变速器的换挡方法
CN111645686A (zh) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 一种驱动力恢复控制方法、装置及48v驱动系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793857B1 (fr) * 1999-05-21 2003-09-26 Renault Procede et dispositif de pilotage d'un embrayage de boite de vitesses manuelle robotisee
EP1174303B1 (en) * 2000-07-17 2004-11-10 Hitachi, Ltd. Control method and system for vehicle starting
JP5526006B2 (ja) * 2010-11-25 2014-06-18 ジヤトコ株式会社 コーストストップ車両及びコーストストップ車両の制御方法
JP5464134B2 (ja) * 2010-12-02 2014-04-09 アイシン・エィ・ダブリュ株式会社 ロックアップ装置およびその制御方法
KR101371482B1 (ko) * 2012-11-23 2014-03-10 기아자동차주식회사 하이브리드 차량의 엔진클러치의 전달토크 학습 시스템 및 방법
DE102012024213A1 (de) * 2012-12-11 2014-06-12 Volkswagen Aktiengesellschaft Verfahren zur Steuerung eines Antriebsstrangs eines Kraftfahrzeuges
CN103895640B (zh) * 2014-02-26 2016-06-08 南京越博动力系统股份有限公司 一种混合动力汽车的amt挡位控制方法
CN105292110B (zh) * 2015-10-12 2017-11-28 北京汽车股份有限公司 汽车节能控制方法
CN107869532B (zh) * 2016-09-28 2019-10-01 上海汽车集团股份有限公司 混合动力车辆离合器控制方法及装置
JP6426773B2 (ja) * 2017-02-09 2018-11-21 株式会社Subaru 全輪駆動車の制御装置
CN110832217B (zh) * 2017-06-30 2021-06-08 本田技研工业株式会社 车辆用变速系统
DE102017217832A1 (de) * 2017-10-06 2019-04-11 Zf Friedrichshafen Ag Startverfahren in einem Hybridfahrzeug
CN110816536B (zh) * 2018-08-08 2021-07-20 宝沃汽车(中国)有限公司 车辆控制方法、装置及车辆
JP6992715B2 (ja) * 2018-09-19 2022-01-13 株式会社アイシン 制御装置
CN109372982B (zh) * 2018-12-27 2020-09-08 重庆长安汽车股份有限公司 一种湿式双离合器自动变速器动力升档转速同步的控制方法
CN110103946B (zh) * 2019-04-18 2021-01-05 浙江吉利控股集团有限公司 一种混合动力汽车发动机启动控制方法及系统
CN110159750B (zh) * 2019-05-09 2020-08-21 中国第一汽车股份有限公司 一种双离合器自动变速器动力降挡转速调整控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036479A (ja) * 2011-08-03 2013-02-21 Aisin Ai Co Ltd デュアルクラッチ式自動変速機
CN102996785A (zh) * 2012-12-19 2013-03-27 安徽江淮汽车股份有限公司 湿式双离合器的换挡控制方法
CN103410959A (zh) * 2013-08-26 2013-11-27 安徽江淮汽车股份有限公司 双离合器自动变速箱从空挡滑行到在挡行驶的控制方法
CN103697154A (zh) * 2013-11-29 2014-04-02 浙江吉利控股集团有限公司 一种amt自动变速器的换挡方法
CN111645686A (zh) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 一种驱动力恢复控制方法、装置及48v驱动系统

Also Published As

Publication number Publication date
CN111645686B (zh) 2021-10-22
CN111645686A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP3280976B2 (ja) 自動変速機の駆動トルク制御用装置
US7744502B2 (en) Method for driving a parallel hybrid drive train of a motor vehicle with several drive units
US6881171B2 (en) Method for the operation of a multiple clutching device and a power shift transmission
JP5365889B2 (ja) 車両用変速装置
US8062173B2 (en) Method for controlling a hybrid drivetrain
WO2021244464A1 (zh) 驱动力恢复控制方法、装置及48v驱动系统
JP3097339B2 (ja) 車両用自動変速機の変速制御方法
US20090280951A1 (en) Method for operating a vehicle drivetrain
JP6447738B2 (ja) 制御装置
US9278683B2 (en) Method for operating a drive train and control device
US8989974B2 (en) Method for the operation of a transmission device in a vehicle drive train, comprising at least one form-fitting shifting element and multiple frictionally engaged shifting elements
JPWO2017122682A1 (ja) 車両用デュアルクラッチ式変速機の制御装置
WO2005075239A1 (ja) 車両用動力伝達装置のエンジン制御装置
JP5803736B2 (ja) 制御装置
JP4179368B2 (ja) 車両用動力伝達装置のクラッチ制御装置
WO2014094553A1 (zh) 动力系统控制方法
US9033850B2 (en) Method for operating a drive train of a vehicle
JP2001271684A (ja) エンジン速度の制御方法及び制御システム
CN104417534A (zh) 一种限制离合器接合过程中摩擦离合器能量耗散量的方法
JP6733389B2 (ja) 変速機の制御装置
JP2008082529A (ja) 車両用動力伝達装置における変速時クラッチ制御装置
JP6733390B2 (ja) 変速機の制御装置
US11635136B2 (en) Method and control unit for operating a power-shift transmission
JP6834216B2 (ja) 変速機の制御装置
JP6834219B2 (ja) 変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817218

Country of ref document: EP

Kind code of ref document: A1