WO2021244107A1 - 光交换装置、重定向方法、可重构光分插复用器及系统 - Google Patents

光交换装置、重定向方法、可重构光分插复用器及系统 Download PDF

Info

Publication number
WO2021244107A1
WO2021244107A1 PCT/CN2021/081988 CN2021081988W WO2021244107A1 WO 2021244107 A1 WO2021244107 A1 WO 2021244107A1 CN 2021081988 W CN2021081988 W CN 2021081988W WO 2021244107 A1 WO2021244107 A1 WO 2021244107A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
light beam
filter
beams
component
Prior art date
Application number
PCT/CN2021/081988
Other languages
English (en)
French (fr)
Inventor
贾伟
赵晗
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21817927.3A priority Critical patent/EP4148471A4/en
Priority to JP2022573430A priority patent/JP7479518B2/ja
Priority to BR112022024341A priority patent/BR112022024341A2/pt
Publication of WO2021244107A1 publication Critical patent/WO2021244107A1/zh
Priority to US17/994,605 priority patent/US20230100718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0024Construction using space switching

Definitions

  • This application relates to the field of optical fiber communication, and in particular to an optical switching device, a redirection method, a reconfigurable optical add/drop multiplexer and a system.
  • wavelength selective switch wavelength selective switch
  • the C-band beam and the L-band beam enter the grating 105 at different angles after passing through the lens 104, and in the dispersion direction X, the angle at which the C-band beam and the L-band beam exit the grating 105 The same, so that the C-band beam irradiates the area where the multiple spots formed on the switching engine 106 are located and the L-band beam irradiates the area where the multiple spots formed on the switching engine 106 are located, at least partially along the dispersion direction X Coincidence and separation along the port direction Y can effectively increase the filtering bandwidth.
  • This application provides an optical switching device, a redirection method, a reconfigurable optical add/drop multiplexer and a system, which are used to increase the filtering bandwidth.
  • the present application provides an optical switching device, including an input port, a dispersion component, a first filter, a redirection component, and an output port; the input port is used to enter the first beam and the second beam into the dispersion component ,
  • the dispersive component is used to decompose the first beam into a plurality of first sub-beams, the dispersive component is also used to decompose the second beam into a plurality of second sub-beams; the dispersive component is also used to decompose the multiple
  • the first sub-beams and the plurality of second sub-beams are transmitted to the first filter, and the plurality of first sub-beams and the plurality of second sub-beams belong to different wavebands; the first filter is used for the different wavebands.
  • the waveband separates the transmission directions of the plurality of first sub-beams and the plurality of second sub-beams into different transmission directions in the first direction, and the plurality of first sub-beams are incident on the first area of the redirecting component, And the plurality of second sub-beams are incident on the second area of the redirecting component, the first area and the second area are separated from each other along the first direction, the first direction is the port direction of the redirecting component; the output The port is used for outputting the plurality of first sub-beams and the plurality of second sub-beams redirected by the redirecting component.
  • the purpose of separating the first area and the second area in the first direction X is achieved by the first filter, thereby effectively improving the filtering bandwidth of the optical switching device. Moreover, the number of optical devices included in the optical switching device is effectively reduced, thereby effectively reducing the insertion loss.
  • a second filter is further included between the dispersive component and the input port, and the dispersive component includes a first grating and a second grating;
  • the input port is used to A light beam and the second light beam enter the second filter;
  • the second filter is used to change the transmission direction of the first light beam and the second light beam based on the wavelength bands to which the first light beam and the second light beam belong, and Transmitting the first light beam and the second light beam to the first grating and the second grating located at different positions;
  • the first grating is used to transmit the plurality of first sub-beams to the second filter,
  • the second grating is used to transmit the plurality of second sub-beams to the second filter;
  • the second filter is used to transmit the plurality of first sub-beams and the plurality of second sub-beams based on the different wavelength bands To the redirecting component, so that the first area and the second area at least partially overlap in a second direction, where the second direction is the wavelength direction
  • the purpose of the overlap or partial overlap of the first area and the second area in the second direction Y is achieved by the second filter, which further improves the filtering bandwidth of the optical switching device.
  • the first grating is used to transmit the at least one first sub-beam to the third area of the second filter
  • the second grating is used to transmit the at least one The second sub-beam is transmitted to the fourth area of the second filter, and the third area and the fourth area at least partially overlap along the second direction.
  • the filter bandwidth of the switching device is that the first light spot is the light spot generated by the first light beam in the first area, and the second light spot is the light spot generated by the second light beam in the second area.
  • the input port includes a first input port and a second input port, the first input port and the second input port have different positions along the second direction, and the first input port
  • An input port is used to input the first light beam
  • the second input port is used to input the second light beam
  • the first input port is used to enter the dispersive component at a first angle of incidence along a second direction
  • the second input port is used to enter the dispersive component at a second angle of incidence along the second direction, and the difference between the absolute value of the first angle of incidence and the second angle of incidence is not zero
  • the difference between the first incident angle and the first blaze angle is less than or equal to a first preset value
  • the difference between the second incident angle and the second blaze angle is less than or equal to a second preset value
  • the The first blaze angle corresponds to the wavelength band to which the first light beam belongs
  • the second blaze angle corresponds to the wavelength band to which the second light beam belongs.
  • the difference between the first incident angle and the first blaze angle is less than or equal to the first preset value
  • the diffraction efficiency of the first light beam diffracted from the dispersive component can be effectively improved.
  • the second incident angle When the difference between the second blaze angle and the second blaze angle is less than or equal to the second preset value, the diffraction efficiency of the second light beam diffracted from the dispersive component can be effectively improved.
  • the optical switching device further includes a lens assembly located between the input port and the dispersive assembly, and the lens assembly is used to transmit the first light beam and the second light beam To the dispersive component, along the second direction, the distance between the first input port and the optical axis of the lens component is related to the first incident angle, and the second input port and the optical axis of the lens component The size of the distance between the axes is related to the size of the second incident angle.
  • the difference between the first incident angle and the first blaze angle is less than or equal to the first preset angle.
  • the difference between is less than or equal to the second preset value to ensure the diffraction efficiency of the second light beam.
  • the optical switching device further includes a first reflector and a second reflector; the first filter is used to transmit the plurality of first sub-beams to the first reflector Mirror, the first filter is also used to transmit the plurality of second sub-beams to the second mirror; the first mirror is used to transmit the plurality of first sub-beams to the redirection component, the first The two mirrors are used for transmitting the plurality of second sub-beams to the redirecting component.
  • the first reflector can effectively ensure that the first light beam is transmitted to the first area of the redirection component, and the second reflector can effectively ensure that the second light beam is transmitted to the second area of the redirection component, thereby improving the light The filter bandwidth of the switching device.
  • the redirection component is used to transmit the redirected first sub-beams to the first mirror, and the redirection component is also used to redirect The second sub-beam is transmitted to the second mirror; the first mirror is used to transmit the first sub-beam to the fifth area on the first filter, and the second mirror is used to transmit the The second sub-beam is transmitted to the sixth area on the first filter.
  • the first filter is used to transmit the redirected plurality of first sub-beams and the second sub-beams to the dispersion component, and the dispersion component is used to transmit the The plurality of first sub-beams are combined into a third beam, the dispersion component is further used to combine the plurality of second sub-beams into a fourth beam, and the output port is used to output the third beam and the fourth beam.
  • the third light beam and the fourth light beam are output from the same output port of the optical switching device, and the fifth area and the sixth area are non-coincident areas. In the case of, the third light beam and the fourth light beam are output from different output ports of the optical switching device.
  • the first filter is configured to reflect the plurality of first sub-beams as reflected light from the first filter based on the wavelength band to which the plurality of first sub-beams belong
  • the first filter is used to pass the plurality of second sub-beams as pass-through light from the first filter based on the wavelength band to which the plurality of second sub-beams belong.
  • the transmission mode of the first filter does not change when the light beam belonging to the same wavelength band passes through the thin film filter twice.
  • the first sub-beam it is reflected twice as reflected light.
  • both of them are punched through as punch-through light twice successively, which effectively reduces the filtering damage.
  • the first filter is a thin-film filter, and the thin-film filter has two regions with different refractive indexes;
  • the difference between the insertion loss of one of the first sub-beams in the second sub-beam is less than or equal to the third preset value, and the two regions respectively perform penetration loss of one of the second sub-beams in the plurality of second sub-beams.
  • the difference between is less than or equal to the third preset value.
  • the thin film filter has two regions with different refractive indexes, it can effectively ensure that the filter spectrum of the first filter will not shift.
  • the first light beam and the second light beam have at least one different wavelength value.
  • the first beam is a C-band beam and the second beam is an L-band beam.
  • the present application provides an optical switching device, including an input port, a third filter, a dispersion component, a redirection component, and an output port; the input port is used to inject the first light beam and the second light beam into the third light beam.
  • the third filter is used for separating the transmission directions of the first light beam and the second light beam into different transmission directions in the first direction based on the different wavebands Direction, and transmit the first beam and the second beam to the dispersive component, the first direction is the port direction of the redirecting component;
  • the dispersive component is used to decompose the first beam into a plurality of first sub-beams ,
  • the dispersive component is further used for decomposing the second light beam into a plurality of second sub-beams;
  • the dispersive component is further used for incident the multiple first sub-beams and the multiple second sub-beams to the redirecting component, Wherein, the plurality of first sub-beams are incident on the first area of the redirecting component, the plurality of second sub-beams are incident on the second area of the redirecting component, and the first area and the second area are along the first direction Separated from each other;
  • the output port is used to output the plurality of
  • the purpose of separating the first area and the second area in the first direction X is achieved by the third filter, thereby effectively improving the filtering bandwidth of the optical switching device. Moreover, the number of optical devices included in the optical switching device is effectively reduced, thereby effectively reducing the insertion loss.
  • a second filter is further included between the dispersive component and the third filter, and the dispersive component includes a first grating and a second grating; and the third filter is used for The first light beam and the second light beam are incident on the second filter; the second filter is used to change the transmission direction of the first light beam and the second light beam based on the different wavelength bands, and combine the first light beam and the second light beam The second light beam is respectively transmitted to the first grating and the second grating located at different positions; the first grating is used for transmitting the plurality of first sub-beams to the second filter, and the second grating is used for The plurality of second sub-beams are transmitted to the second filter; the second filter is used to respectively, based on the wavelength bands to which the plurality of first sub-beams and the plurality of second sub-beams belong, the plurality of first sub-beams The light beam and the plurality of second sub-beams are transmitted to the
  • the purpose of the overlap or partial overlap of the first area and the second area in the second direction Y is achieved by the second filter, which further improves the filtering bandwidth of the optical switching device.
  • the first grating is used to transmit the at least one first sub-beam to the third area of the second filter
  • the second grating is used to transmit the at least one The second sub-beam is transmitted to the fourth area of the second filter, and the third area and the fourth area at least partially overlap along the second direction.
  • the filter bandwidth of the switching device is that the first light spot is the light spot generated by the first light beam in the first area, and the second light spot is the light spot generated by the second light beam in the second area.
  • the input port includes a first input port and a second input port, and the first input port and the second input port have different positions along the second direction, and the first input port
  • the input port is used for inputting the first light beam
  • the second input port is used for inputting the second light beam
  • the third filter is used for inputting the first light beam into the dispersive component at a first angle of incidence along the second direction
  • the The third filter is also used to incident the second light beam into the dispersive component at a second angle of incidence along the second direction, and the difference between the absolute value of the first angle of incidence and the second angle of incidence is not zero, where ,
  • the difference between the first incident angle and the first blaze angle is less than or equal to a fourth preset value, the difference between the second incident angle and the second blaze angle is less than or equal to the fifth preset value, and the first A blaze angle corresponds to the wavelength band to which the first light beam belongs, and the second blaze angle corresponds to the wavelength band to which the second light beam
  • the difference between the first incident angle and the first blaze angle is less than or equal to the first preset value
  • the diffraction efficiency of the first light beam diffracted from the dispersive component can be effectively improved.
  • the second incident angle When the difference between the second blaze angle and the second blaze angle is less than or equal to the second preset value, the diffraction efficiency of the second light beam diffracted from the dispersive component can be effectively improved.
  • the optical switching device further includes a lens assembly located between the third filter and the dispersive assembly, and the lens assembly is used to transfer the The first light beam and the second light beam are transmitted to the dispersive component.
  • the distance between the first input port and the optical axis of the lens component is related to the first incident angle.
  • the size of the distance between the two input ports and the optical axis of the lens assembly is related to the size of the second incident angle.
  • the difference between the first incident angle and the first blaze angle is less than or equal to the first preset angle.
  • the difference between is less than or equal to the second preset value to ensure the diffraction efficiency of the second light beam.
  • the third filter is configured to reflect the first light beam as reflected light from the third filter based on the wavelength band to which the first light beam belongs, and the third filter uses Based on the wavelength band to which the second light beam belongs, the second light beam passes through the third filter as a penetrating light.
  • the third filter is a thin-film filter, and the thin-film filter has two regions with different refractive indexes; the two regions reflect the first light beam respectively
  • the difference between the insertion loss is less than or equal to the third preset value, and the difference between the insertion loss of the two regions respectively passing through one of the plurality of second sub-beams is less than or equal to the third preset value.
  • the transmission mode of the third filter does not change when the light beam belonging to the same wavelength band passes through the thin-film filter twice.
  • the first sub-beam both times are reflected as reflected light.
  • both of them are punched through as punch-through light twice successively, which effectively reduces the filtering damage.
  • the first light beam and the second light beam have at least one different wavelength value.
  • the first beam is a C-band beam and the second beam is an L-band beam.
  • the present application provides a redirection method applied to an optical switching device.
  • the optical switching device includes an input port, a dispersion component, a first filter, a redirection component, and an output port.
  • the method includes: The port enters the first beam and the second beam into the dispersive component; through the dispersive component, the first beam is split into a plurality of first sub-beams, and the second beam is split into a plurality of second sub-beams, and the The plurality of first sub-beams and the plurality of second sub-beams are transmitted to the first filter, and the plurality of first sub-beams and the plurality of second sub-beams belong to different wavebands; through the first filter, Based on the different wavelength bands, the transmission directions of the plurality of first sub-beams and the plurality of second sub-beams are separated into different transmission directions in the first direction, and the plurality of first sub-beams are incident on the redirecting component The first area, and the plurality
  • a second filter is further included between the dispersive component and the input port, the dispersive component includes a first grating and a second grating, and the first The incident light beam and the second light beam into the dispersive component includes: incident the first light beam and the second light beam into the second filter through the input port; The wavelength band to which the light beam belongs, changing the transmission direction of the first light beam and the second light beam, and respectively transmitting the first light beam and the second light beam to the first grating and the second grating located at different positions; the method It also includes: transmitting the plurality of first sub-beams to the second filter through the first grating, and transmitting the plurality of second sub-beams to the second filter through the second grating; Filter to transmit the plurality of first sub-beams and the plurality of second sub-beams to the redirection component based on the different wavelength bands, so that the first area and the second area are at least part of the area along the second
  • the plurality of first sub-beams are transmitted to the second filter through the first grating, and the plurality of second sub-beams are transmitted through the second grating
  • the transmission to the second filter includes: transmitting the at least one first sub-beam to the third area of the second filter through the first grating, and transmitting the at least one second sub-beam to the third area of the second filter through the second grating
  • the fourth area of the second filter, the third area and the fourth area at least partially overlap along the second direction.
  • the input port includes a first input port and a second input port, and the positions of the first input port and the second input port along the second direction are different
  • the passing The input port injecting the first light beam and the second light beam into the dispersive component includes: in a second direction, the first light beam is incident on the dispersive component at a first angle of incidence through the first input port; and in the second direction, through The second input port enters the second light beam into the dispersive component at a second angle of incidence, and the difference between the absolute value of the first angle of incidence and the second angle of incidence is not zero, where the first angle of incidence and the first angle of incidence are not zero.
  • the difference between a blaze angle is less than or equal to a first preset value
  • the difference between the second incident angle and the second blaze angle is less than or equal to a second preset value
  • the first blaze angle and the first light beam The belonging wavelength band corresponds
  • the second blaze angle corresponds to the wavelength band belonging to the second light beam.
  • the optical switching device further includes a lens assembly located between the input port and the dispersive assembly, and the method further includes: The second light beam is transmitted to the dispersive component.
  • the second light beam is transmitted to the dispersive component.
  • the distance between the first input port and the optical axis of the lens component is related to the first incident angle.
  • the second input port and the The size of the distance between the optical axes of the lens assembly is related to the size of the second incident angle.
  • the optical switching device further includes a first reflector and a second reflector, and the plurality of first sub-beams are incident on the redirection component through the first filter.
  • the first area, and the incident of the plurality of second sub-beams into the second area of the redirecting component includes: transmitting the plurality of first sub-beams to the first mirror through the first filter, and passing through the first reflector.
  • a filter transmits the plurality of second sub-beams to the second reflector; transmits the plurality of first sub-beams to the redirection component through the first reflector, and transmits the plurality of sub-beams through the second reflector.
  • a second sub-beam is transmitted to the redirecting component.
  • the method further includes: transmitting the plurality of redirected first sub-beams to the first reflector through the redirecting component, and passing through the redirecting component The redirected second sub-beam is transmitted to the second mirror; the first sub-beam is transmitted to the fifth area on the first filter through the first mirror, and then passes through the second mirror The second sub-beam is transmitted to the sixth area on the first filter.
  • the method further includes: transmitting the redirected first sub-beams and the second sub-beams to the dispersive component through the first filter;
  • the dispersion component combines the plurality of first sub-beams into a third beam, and the plurality of second sub-beams are combined into a fourth beam through the dispersion component; the third beam and the fourth beam are output through the output port .
  • the first filter is used to transmit the plurality of first sub-beams and the plurality of second sub-beams in the first transmission direction based on the different wavelength bands. Separating the direction into different transmission directions includes: passing the first filter to reflect the plurality of first sub-beams as reflected light from the first filter based on the wavelength band to which the plurality of first sub-beams belong, and pass The first filter passes the plurality of second sub-beams as penetrating light through the first filter based on the wavelength band to which the plurality of second sub-beams belong.
  • the first filter is a thin-film filter
  • the thin-film filter has two regions with different refractive indexes; the two regions respectively respond to the plurality of first sub-beams
  • the difference between the insertion loss of one of the first sub-beams in the second sub-beam is less than or equal to the third preset value, and the two regions respectively perform penetration loss of one of the second sub-beams in the plurality of second sub-beams.
  • the difference between is less than or equal to the third preset value.
  • the present application provides a redirection method applied to an optical switching device.
  • the optical switching device includes an input port, a third filter, a dispersion component, a redirection component, and an output port.
  • the method includes: The port enters the first light beam and the second light beam into the third filter, and the first light beam and the second light beam belong to different wavebands; through the third filter, the first light beam and the second light beam are The transmission direction of the second light beam is separated into different transmission directions in the first direction, and the first light beam and the second light beam are transmitted to the dispersive component through the third filter, and the first direction is the direction of the redirecting component Port direction; the first beam is split into a plurality of first sub-beams by the dispersive component, and the second beam is split into a plurality of second sub-beams by the dispersive component; and the plurality of first sub-beams are split by the dispersive component A sub-beam and the plurality of second sub-beams are incident on the
  • a second filter is further included between the dispersive component and the third filter, the dispersive component includes a first grating and a second grating, and the third filter passes through Transmitting the first light beam and the second light beam to the dispersive component includes: incident the first light beam and the second light beam into the second filter through the third filter; The different wavebands change the transmission directions of the first light beam and the second light beam, and respectively transmit the first light beam and the second light beam to the first grating and the second grating located at different positions; the method also The method includes: transmitting the plurality of first sub-beams to the second filter through the first grating, and transmitting the plurality of second sub-beams to the second filter through the second grating; and passing the second filter Device to transmit the plurality of first sub-beams and the plurality of second sub-beams to the redirecting component based on the wavelength bands to which the plurality of first sub-beams and the plurality of second
  • the method further includes: transmitting the at least one first sub-beam to the third area of the second filter through the first grating, and transmitting the at least one first sub-beam through the second grating
  • the at least one second sub-beam is transmitted to the fourth area of the second filter, and the third area and the fourth area at least partially overlap along the second direction.
  • the input port includes a first input port and a second input port, and the first input port and the second input port have different positions in the second direction
  • the The three filters transmitting the first light beam and the second light beam to the dispersive component include: in a second direction, the first light beam is incident on the dispersive component at a first angle of incidence through the third filter; Direction, the second light beam is incident on the dispersive component at a second angle of incidence through the third filter, and the difference between the absolute value of the first angle of incidence and the second angle of incidence is not zero, wherein the first incident angle
  • the difference between the first blaze angle and the first blaze angle is less than or equal to the fourth preset value
  • the difference between the second incident angle and the second blaze angle is less than or equal to the fifth preset value
  • the first blaze angle is less than or equal to the fifth preset value.
  • the first light beam belongs to the wavelength band corresponding to, and the second blaze angle corresponds to the wavelength band to which the second light beam belongs
  • the optical switching device further includes a lens assembly located between the third filter and the dispersive assembly, and the method further includes: using the lens assembly to transfer data from the third filter
  • the first light beam and the second light beam of the device are transmitted to the dispersive component, along the second direction, the distance between the first input port and the optical axis of the lens component is related to the first incident angle
  • the size of the distance between the second input port and the optical axis of the lens assembly is related to the size of the second incident angle.
  • the third filter is used to reflect the first light beam as reflected light from the third filter based on the wavelength band to which the first light beam belongs, and the third filter is used for Based on the wavelength band to which the second light beam belongs, the second light beam passes through the third filter as a through light.
  • the third filter is a thin-film filter, and the thin-film filter has two regions with different refractive indexes; the two regions respectively reflect the first light beam.
  • the difference between the losses is less than or equal to the third preset value, and the difference between the insertion losses of the two regions respectively passing through one of the plurality of second sub-beams is less than or equal to the third preset value.
  • the present application provides a reconfigurable optical add/drop multiplexer, including a plurality of optical switching devices, and different optical switching devices are connected by optical fibers.
  • the optical switching device is as described in the first aspect or the first aspect. As shown in either of the two aspects.
  • the present application provides an optical communication system including a plurality of reconfigurable optical add-drop multiplexers, and the reconfigurable optical add-drop multiplexers are as shown in the above-mentioned fifth aspect.
  • Fig. 1 is a structural example diagram of a wavelength selective switch provided by the prior art
  • Fig. 2 is a diagram of an example structure of the reconfigurable optical add/drop multiplexer provided by this application;
  • FIG. 3 is a diagram showing an example of the first structure of the optical switching device provided by this application along the second direction;
  • FIG. 4 is a diagram of a first structure example of the optical switching device provided by this application along the first direction;
  • FIG. 5 is a diagram showing an example of the first arrangement of light spots on the redirecting component provided by this application.
  • Fig. 6 is an example diagram of a light beam incident on a thin film filter provided by this application.
  • FIG. 7 is a first example diagram of the filtering spectrum of the thin film filter provided by this application.
  • FIG. 8 is a diagram showing an example of the second arrangement of light spots on the redirection component provided by this application.
  • Fig. 9 is an enlarged example diagram of a partial structure of the optical switching device shown in Fig. 3;
  • FIG. 10 is another example diagram of the filter spectrum of the thin film filter provided by this application.
  • FIG. 11 is an enlarged example diagram of a partial structure of the optical switching device shown in FIG. 4;
  • FIG. 12 is an example diagram of a second structure of the optical switching device provided by this application along the second direction;
  • FIG. 13 is an example diagram of a second structure of the optical switching device provided by this application along the first direction;
  • FIG. 14 is a diagram of a third structural example of the optical switching device provided by this application along the second direction;
  • 15 is a diagram of a third structural example of the optical switching device provided by this application along the first direction;
  • FIG. 16 is a diagram of a fourth structure example of the optical switching device provided by this application along the second direction;
  • FIG. 17 is a diagram of a fourth structure example of the optical switching device provided by this application along the first direction;
  • FIG. 18 is a diagram showing an example of a fifth structure of the optical switching device provided by this application along the second direction;
  • FIG. 19 is a fifth structural example diagram of the optical switching device provided by this application along the first direction;
  • FIG. 20 is a flowchart of the steps of the first embodiment of the redirection method provided by this application.
  • FIG. 21 is a flowchart of the steps of the second embodiment of the redirection method provided by this application.
  • FIG. 22 is a flowchart of the steps of the third embodiment of the redirection method provided by this application.
  • FIG. 23 is a flowchart of the steps of the fourth embodiment of the redirection method provided by this application.
  • FIG. 24 is a structural example diagram of the optical communication system provided by this application.
  • FIG. 2 is a diagram of an example of the structure of the ROADM provided by this application.
  • a ROADM including multiple optical switching devices can adopt network structures such as chain, ring, and mesh networks.
  • Figure 2 shows a network in which ROADM adopts a mesh network. The structure is taken as an example for illustrative description.
  • the optical switching device is a WSS as an example for illustrative description.
  • the ROADM includes eight WSSs (that is, WSS1, WSS2 to WSS8) as an example.
  • the eight WSSs are located in different positions. This embodiment does not limit the number of WSSs included in the ROADM and the location of each WSS. . WSSs located at different locations are used to exchange optical signals to realize flexible scheduling of optical signals.
  • the different positions shown in this embodiment may refer to different directions in N dimensions, where N is a positive integer greater than or equal to 1.
  • WSS1 can transmit optical signals to any WSS included in the ROADM that is connected to WSS1 through optical fibers to realize the deflection of the optical signals in different dimensions.
  • WSS4, WSS6, and WSS8 are connected to the WSS1 through optical fibers, and the WSS1 can transmit optical signals to any one of WSS4, WSS6, and WSS8.
  • the WSS1 is connected to WSS4, WSS6, and WSS8 through optical fibers as an example for illustrative description, and is not limited.
  • the WSS1 may also be connected to any of WSS2, WSS3, WSS5, and WSS7 included in ROADM.
  • WSS is connected by optical fiber.
  • the optical signal transmitted along the first dimension direction 201 is input to WSS1 through the input port of WSS1, the optical signal is redirected through WSS1, and the optical signal is transmitted to WSS4 through the optical fiber through the output port of WSS1, and output from the output port of WSS4
  • the optical signal is transmitted along the second dimensional direction 202 to achieve the purpose of deflecting the transmission direction of the optical signal from the first dimensional direction 201 to the second dimensional direction 202.
  • FIG. 3 is a structural example diagram of the optical switching device along the second direction
  • FIG. 4 is the optical switching device along the second direction.
  • the optical switching device shown in this embodiment includes an input port 41, a dispersion component, a redirection component 301, and an output port (42, 43). This embodiment does not limit the specific number of input ports and output ports.
  • first direction and the second direction shown in the present application where the first direction shown in this embodiment can also be referred to as the switching direction or the port direction, and the second direction can also be referred to as the wavelength direction or
  • the dispersion direction is referred to by the different devices included in the optical switching device.
  • the definitions of the first direction and the second direction are different, and the specific definitions are as follows:
  • the light beam input to the optical switching device via the input port shown in this embodiment is transmitted along the third direction Z, and the third direction Z is perpendicular to the first direction X and the second direction Y, and The first direction X and the second direction Y are perpendicular to each other.
  • the redirection component 301 shown in this embodiment is used to deflect the transmission direction of the first light beam and the second light beam input through the input port. It should be clarified that, in this embodiment, the number of light beams deflected in the transmission direction of the redirecting component 301 and the wavelength bands they belong to are not limited, as long as different light beams belong to different wavelength bands.
  • the multiple light spots generated by the first light beam are located in the first area 501 of the redirecting component 301, and the multiple light spots generated by the second light beam are located in the first area 501 of the redirecting component 301.
  • the second direction Y is the arrangement direction of the multiple light spots included in the first area 501
  • the second direction Y is also the arrangement direction of the multiple light spots included in the second area 502.
  • the first direction X is the arrangement direction of the first area 501 and the second area 502 on the redirecting component 301. It can be seen that in the two-dimensional coordinate system XY formed by the first direction X and the second direction Y, the spots generated by different beams can correspond to the same coordinates in the second direction Y, and the spots generated by different beams correspond to the first direction. Different coordinates on X, so that the spots of different light beams overlap or at least partially overlap along the second direction Y, and the spots of different light beams are separated along the first direction X, so as to increase the filtering bandwidth of the redirecting component 301.
  • the redirection component 301 is a liquid crystal on silicon (LCOS) chip
  • the first direction X is the loading of the redirection component 301
  • the phase grating produces the direction of the diffracted beam.
  • the redirection component 301 is a liquid crystal (liquid crystal) array chip or a microelectromechanical system (MEMS)
  • the first direction X is the direction in which the deflected light beam is generated.
  • the above-mentioned It shows that the diffracted beam or the deflected beam propagates to the output port in the XZ plane, which is the view direction formed by the first direction X and the third direction Z, that is, the XZ plane extends along the first direction X and the third direction Z at the same time.
  • the optical switching device includes an input port 41, an output port 42, and an output port 43 as an example.
  • the ports (41, 42 and 43) included in the optical switching device are arranged in the same XZ plane.
  • the multiple ports (41, 42 and 43) are separated in position, and in the YZ plane (simultaneously Along the plane extending in the second direction Y and the third direction Z), the positions of the multiple ports (41, 42 and 43) may completely overlap or partially overlap.
  • the following describes the objects (that is, the first light beam and the second light beam) used by the optical switching device shown in this embodiment for deflection in the transmission direction:
  • the optical switching device is used to deflect the transmission directions of the first light beam and the second light beam as an example.
  • the optical switching device can also perform transmission directions for other numbers of light beams. Deflection, such as one beam, and the transmission direction of two or more beams.
  • the first light beam and the second light beam shown in this embodiment have different wavelength ranges. The following describes the first light beam and the second light beam having different wavelength ranges with specific examples:
  • the first light beam shown in this embodiment is a C-band (C band) light beam
  • the second light beam is an L-band (L band) light beam
  • the first beam may also be an E-band (E-band) beam
  • the second beam may also be an O-band (O-band) beam, as long as the first beam and the second beam are in different wavelength bands.
  • the first light beam has N wavelength values, namely ⁇ c-1 , ⁇ c-2 ... ⁇ cN
  • the second light beam may also have N wavelength values, namely ⁇ L-1 , ⁇ L-2 ... ⁇ LN
  • the value of N is not limited in this embodiment.
  • the number of wavelength values of the first light beam and the second light beam may also be different.
  • the first light beam and the second light beam having different wavelength ranges can specifically refer to ⁇ c-1 , ⁇ c-2 ...... ⁇ cN and ⁇ L-1 , ⁇ L-2 ...... ⁇ LN , Each wavelength value is different.
  • the first light beam and the second light beam having different wavelength ranges can also be referred to as ⁇ c-1 , ⁇ c-2 ... ⁇ cN and ⁇ L-1 , ⁇ L-2 ... ⁇ LN , having In one or more different wavelength values, that is, ⁇ c-1 , ⁇ c-2 ... ⁇ cN and ⁇ L-1 , ⁇ L-2 ... ⁇ LN , some of the wavelength values are the same, and some of the wavelength values are different.
  • the input port 41 included in the optical switching device is used to input the first light beam and the second light beam (as shown by the solid line input by the input port 41 as shown in FIG. 3 and FIG. 4), namely
  • the first light beam and the second light beam are input to the optical switching device through the same input port 41 as an example for illustrative description.
  • the first light beam and the second light beam may also Different input ports are input to the optical switching device, which is not specifically limited.
  • the first light beam and the second light beam input through the input port 41 are transmitted to the first collimating lens 302.
  • the input port 41 is located at the front focus of the first collimating lens 302, and the first collimating lens 302
  • the straight lens 302 is used to collimate the first light beam and the second light beam from the input port 41.
  • a first lens assembly is further provided between the first collimating lens 302 and the second filter 303.
  • This embodiment does not limit the number of lenses included in the first lens assembly, as long as the first lens assembly One lens assembly can transmit the collimated first light beam and the second light beam from the first collimating lens 302 to the second filter 303.
  • the first lens assembly includes a first lens 304, a second lens 305, a third lens 306, and a fourth lens 307 as an example for illustrative description. The following describes each lens (first lens 304, The functions of the second lens 305, the third lens 306, and the fourth lens 307) are exemplarily described:
  • the first lens 304 is used to shape the first beam and the second beam in the second direction Y (that is, in the YZ plane), and the second lens 305 is used to shape the first beam from the first lens 304
  • the light beam and the second light beam are transmitted to the third lens 306, and the third lens 306 is used to shape the first light beam and the second light beam in the first direction X (that is, in the XZ plane).
  • the shaping shown in this embodiment may refer to adjusting the size of the light spot irradiated by the first light beam on the redirecting component 301 and the size of the light spot irradiated on the redirecting component 301 by the second light beam.
  • the fourth lens 307 is used to transmit the shaped first light beam and the second light beam to the second filter 303.
  • the positions of the lenses (the first lens 304, the second lens 305, the third lens 306, and the fourth lens 307) included in the first lens assembly are exemplarily described below:
  • the back focus of the first collimating lens 302 coincides with the front focus of the first lens 304, and the distance between the first collimating lens 302 and the first lens 304 is equal to the focal length of the first collimating lens 302 and the The sum of the focal lengths of the first lens 304.
  • the back focus of the first lens 304 coincides with the front focus of the third lens 306, the back focus of the third lens 306 coincides with the front focus of the fourth lens 307, and the back focus of the first collimator lens 302 coincides with the
  • the front focus of the second lens 305 coincides, the distance between the first collimating lens 302 and the second lens 305 is equal to the sum of the focal length of the first collimating lens 302 and the focal length of the second lens 305, and the second The lens 305 is located between the first lens 304 and the third lens 306. It can be seen that the focal length of the second lens 305 is greater than the focal length of the first lens 304.
  • the description is an optional example and is not limited, as long as the first lens assembly can transmit the first light beam and the second light beam to the second filter 303.
  • a second lens assembly is also provided between the redirection assembly 301 and the second filter 303 shown in this embodiment.
  • This embodiment does not limit the number of lenses included in the second lens assembly, as long as the second lens assembly
  • the lens assembly can transmit the light beam emitted by the second filter 303 to the redirection assembly 301.
  • the second lens assembly includes the fifth lens 310 as an example for illustration.
  • the second filter 303 is arranged between the fourth lens 307 and the dispersive component (that is, the first grating 308 and the second grating 309 as shown in FIG. 3).
  • the position is not limited, as long as the second filter 303 is located between the fourth lens 307 and the dispersive component.
  • This embodiment does not limit the specific positions of the first grating 308 and the second grating 309, as long as the second filter 303 can focus the first light beam to the first grating 308, and the second filter 303 can also focus the second The light beam can be focused to the second grating 309.
  • the second grating 309 is located at a position where the rear focus of the fourth lens 307 and the front focus of the fifth lens 310 coincide.
  • the fifth lens 310 is located between the second filter 303 and the redirecting component 301, and the redirecting component 301 is located at the back focus of the fifth lens 310. It can be seen that the redirecting component 301 and the fifth lens 310 The distance between is equal to the focal length of the fifth lens 310.
  • the fourth lens 307 is used in this embodiment to transmit the first beam and the second beam to the same position of the second filter 303 (that is, as shown in FIG.
  • the position where the solid line emitted by the fourth lens 307 intersects the second filter 303) is taken as an example for illustration.
  • the second filter 307 can also transmit the first light beam and the second light beam to Different positions of the second filter 303.
  • the second filter 303 shown in this embodiment is used to change the transmission direction of the first light beam and the second light beam based on the wavelength bands to which the first light beam and the second light beam belong, and to change the transmission direction of the first light beam and the second light beam.
  • the first light beam and the second light beam are respectively transmitted to the first grating 308 and the second grating 309 located at different positions.
  • the second filter 303 is used to emit the first light beam and the second light beam from the second filter 303 in different directions, so as to realize the transmission direction of the first light beam and the second light beam in the YZ plane.
  • the following describes the specific structure of the second filter 303:
  • the second filter 303 is a thin-film filter as an example.
  • the thin-film filter may be a dichroic filter, as shown in FIG. 6, in the YZ plane (at the same time along the second direction Y and A plane extending in the third direction Z), the light beam enters the second filter 303 at an incident angle ⁇ .
  • FIG. 7 is an example diagram of the filtering spectrum of the thin film filter.
  • the filter spectrum includes two curves, namely, the penetration curve 701 of the penetrating light and the reflection curve 702 of the reflected light.
  • the first light beam 710 in the first waveband is under the action of the insertion loss corresponding to the first waveband and exits the second filter 303 in the transmission mode of reflected light, that is, the transmission direction of the first light beam 710 becomes reflected light.
  • the first light beam is changed to the first light beam 710 shown in FIGS. 3 and 6 before the transmission direction is changed.
  • the transmission direction changes to the first light beam 711 shown in Figs. 3 and 6.
  • the second filter 303 reflects the first light beam 710, As a result, the transmission direction of the first light beam 710 is changed to the transmission direction of the first light beam 711.
  • the wavelength band of the second light beam 720 shown in this embodiment is located within the second wavelength range shown in FIG. 7, so that the second light beam 720 within the second wavelength range is affected by the insertion loss corresponding to the second wavelength , It exits from the second filter 303 in the transmission mode of pass-through light, that is, the transmission direction of the second light beam 720 changes after it becomes pass-through light.
  • the second light beam transmission direction Before the change it is the second light beam 720 shown in FIG. 3 and FIG. 6, and after the transmission direction of the second light beam is changed after passing through the second filter 303, it is the second light beam 721 shown in FIG. 3 and FIG. 6.
  • this embodiment does not limit the range of the first waveband and the range of the second waveband, as long as the light beams in different wavebands are transmitted in different transmission directions under the action of the second filter 303. .
  • the second filter 303 transmits the first light beam 711 whose transmission direction has changed to the first grating 308, and transmits the second light beam 721 whose transmission direction has changed to the second grating 309.
  • the first light beam 308 and the second grating 309 shown in the example are located at different positions. This embodiment does not limit the specific positions of the first grating 308 and the second grating 309, as long as the first grating 308 is located at the position of the first light beam 711.
  • the second grating 309 is located on the transmission light path of the second light beam 721 to ensure that the first light beam 711 can be successfully transmitted to the first grating 308 and that the second light beam 721 can be successfully transmitted to the The second grating 309 is sufficient.
  • the first grating 308 and the second grating 309 are two independent gratings located at different positions as an example for illustrative description.
  • the first grating 308 and the second grating 309 may also be Two regions of a raster with a curved surface.
  • the first grating 308 is used to decompose the first light beam 711 to form a plurality of first sub-beams 712 (that is, as shown by the solid line emerging from the first grating 308), for example, the first grating 308 affects the first light beam 711
  • the decomposition is performed to form N first sub-beams 712, and the wavelengths of the N first sub-beams 712 are ⁇ c-1 , ⁇ c-2 ... ⁇ cN, respectively .
  • the second grating 309 is used to decompose the second light beam 721 to form a plurality of second sub-beams 722 (that is, as shown by the dotted line emerging from the second grating 309), for example, the second grating 309 decomposes the second light beam 721
  • the first grating 308 is also used to transmit a plurality of first sub-beams 712 to the second filter 303
  • the second grating 309 is also used to transmit a plurality of second sub-beams 722 to the second filter 303.
  • the second filter 303 shown in this embodiment is disposed on the transmission light path of the multiple first sub-beams 712 and the multiple second sub-beams 722, thereby effectively ensuring that the multiple first sub-beams 712 and multiple The two second sub-beams 722 can be successfully transmitted to the second filter 303.
  • the spots generated by the multiple first sub-beams 712 need to be located in the first area 501, and the spots generated by the multiple second sub-beams 722 are located in the second area 502, which is For a better understanding, the following descriptions are combined with specific light spots:
  • the first spot (located in the first area 501) generated by the target first sub-beam on the redirecting component 301 and the second spot generated by the target second sub-beam on the redirecting component 301 (located in the second area 502) ), coincide along the second direction Y, where the target first sub-beam is one of the multiple first sub-beams 712 generated by the first grating 308, and the target second sub-beam is the multiple first sub-beams generated by the second grating 309 One of the second sub-beams 722.
  • the first grating 308 and the second grating 309 shown in this embodiment can effectively ensure that the first light spot and the second light spot coincide in the second direction Y, which will be described in detail below:
  • the spot of each first sub-beam 712 is arranged in the first area 501 shown in FIG. 5, and the spot of each second sub-beam 722 is arranged in the second area 502 shown in FIG.
  • the first area 501 and the second area 502 shown in the embodiment overlap along the second direction Y.
  • the first area 501 and the second area 502 are completely overlapped along the second direction Y as an example for illustration.
  • the first area 501 and the second area 502 may also partially overlap (e.g. Shown in Figure 8).
  • the first spot is a spot generated by the target first sub-beam on the redirecting component 301
  • the second spot is a spot generated by the target second sub-beam on the redirecting component 301
  • the arrangement sequence of the first light spot in the multiple light spots generated by the plurality of first sub-beams 712 is the same as the arrangement order of the second light spot in the multiple light spots generated by the plurality of second sub-beams 722, that is, the first
  • the arrangement sequence of a light spot in the multiple light spots included in the first area 501 is the same as the arrangement order of the second light spot in the multiple light spots included in the second area 502.
  • the first spot is a spot generated by a target first sub-beam with a wavelength of ⁇ c-1 incident on the redirecting component 301
  • the second spot is a spot generated by a target second sub-beam with a wavelength of ⁇ L-1 incident on the The light spot generated by the redirecting component 301, that is, the arrangement order of the first light spot in the plurality of light spots included in the first area 501 and the arrangement order of the second light spot in the plurality of light spots included in the second area 502
  • the first spot is a spot generated by the target first sub-beam having a wavelength ⁇ cN incident on the redirecting component 301
  • the second spot is a target second sub- beam with a wavelength ⁇ LN
  • the light beam 722 is incident on the light spot generated by the redirecting component 301, and the arrangement order of the first light spot in the multiple light spots included in the first area 501 and the multiple light spot included in the second area 502 of the second light spot
  • the arrangement order in is the Nth, and
  • the multiple first sub-beams 712 emitted from the first grating 308 are transmitted to the third area of the second filter 303, from The multiple second sub-beams 722 emitted from the second grating 309 are transmitted to the fourth area of the second filter 303, and the third area and the fourth area overlap along the second direction Y.
  • the second direction Y that is, in the YZ plane
  • the target emitted from the first grating 308 first The position where the sub-beam is transmitted to the second filter 303 and the position where the target second sub-beam emitted from the second grating 309 is transmitted to the second filter 303 coincide.
  • the third area and the fourth area may partially overlap.
  • the second direction Y that is, in the YZ plane
  • the position where a sub-beam is transmitted to the second filter 303 is similar to the position where the target second sub-beam emitted from the second grating 309 is transmitted to the second filter 303, and the degree of similarity is not limited in this embodiment. , As long as the first spot and the second spot partially overlap in the second direction Y.
  • the angle of incidence of the first light beam entering the first grating 308 in the YZ plane can be adjusted to adjust the exit angle of the target first sub-beam from the first grating 308 , And then achieve the purpose of adjusting the position of the target first sub-beam transmitted to the second filter 303.
  • the position of the target first sub-beam is transmitted to the second filter 303 and the target second sub-beam is transmitted to the second filter.
  • the position of the device 303 is adjusted to achieve the purpose of overlapping or partially overlapping the first spot and the second spot on the redirecting component 301.
  • the exit angle of the target first sub-beam from the first grating 308 can be adjusted by formula 1 as shown below:
  • is the incident angle of the target first beam entering the first grating 308 in the YZ plane
  • is the exit angle of the target first sub-beam exiting the first grating 308
  • d is the adjacent first grating 308
  • the distance between two grating lines, m is the diffraction order of the grating, which is a constant.
  • the position of the first grating 308 can be adjusted to adjust the incident angle ⁇ of the target first beam entering the first grating 308 in the YZ plane. , And further adjust the size of the exit angle ⁇ of the target first sub-beam from the first grating 308.
  • the second filter 303 transmits the target first sub-beam and the target second sub-beam to the redirection component 301:
  • FIG. 9 is an example diagram of a partial structure of the optical switching device shown in FIG. 3.
  • the target first sub-beam 901 and the target second sub-beam 902 are incident on the same position on the second filter 303, that is, the position 900 shown in FIG. 9.
  • the second filter 303 needs to direct the target first sub-beam 901 and the target second sub-beam 902 that coincide in the second direction Y (that is, in the YZ plane) to the redirecting component 301 Transmission, specifically, in order to achieve the purpose of transmitting the target first sub-beam 901 to the redirection component 301, the second filter 303 is required to use the target first sub-beam 901 as the reflected light 903 (as shown in FIG. 9
  • the second filter 303 is shown by the solid line), which is transmitted to the redirection component 301, and the second filter 303 is also required to use the target second sub-beam 902 as the pass-through light 904 (the second sub-beam shown in FIG.
  • the output of the filter 303 is shown by the dotted line), which is transmitted to the redirection component 301.
  • the light beam belonging to the first waveband enters the second filter 303 for the first time (that is, the first light beam 710 enters the second filter 303), and when the light beam enters the second filter 303 for the second time (That is, the target first sub-beam 901 is incident on the second filter 303), and all are reflected from the second filter 303 as reflected light.
  • the light beam belonging to the second waveband enters the second filter 303 for the first time (that is, the second light beam 720 enters the second filter 303), and the light beam enters the second filter 303 for the second time.
  • the time that is, the target second sub-beam 902 is incident on the second filter 303
  • ⁇ 0 is the wavelength at which the light beam enters the thin film filter 303 in a direction perpendicular to the direction of the thin film filter 303
  • n 0 is the effective refractive index of the medium in which the light beam enters the thin film filter 303
  • neff Is the effective refractive index of the thin film filter 303.
  • the first light beam incident angle ⁇ 1 is incident to the filter film, then the film filter filtering the solid line spectrum of spectral shape shown in FIG. 10, the second light beam incident angle ⁇ 2 is incident to the thin film filters At this time, the filter spectrum of the thin-film filter is shown in the dotted line spectrum shape in Fig. 10, where the absolute values of ⁇ 1 and ⁇ 2 are not equal to each other.
  • the transmission mode of the thin film filter to the beam will change, for example, a beam has a wavelength of ⁇ N , ⁇ N belongs to the first waveband, and when the light beam with ⁇ N enters the thin film filter at ⁇ 1 for the first time, based on the filter spectrum of the solid line spectrum, the insertion loss of the filter corresponding to ⁇ N can make the
  • the method of transmitting the light beam by the thin film filter is as follows: the thin film filter reflects the light beam with ⁇ N as reflected light.
  • the insertion loss of the two filter spectra corresponding to ⁇ N can make the thin film filter respond to the light beam.
  • the transmission mode is: the thin film filter reflects part of the energy of the light beam with ⁇ N as reflected light, and the other part of the energy is passed through as pass-through light. Even in other examples, the transmission mode of light beams belonging to the same wavelength band when it enters the thin film filter for the first time is reflected light, and the transmission mode when it is incident on the thin film filter for the second time is pass-through light.
  • the shift will cause a change in the transmission mode of the light beam, for example, the transmission direction of the reflected light is changed to the transmission direction of the penetrating light, and for example, the transmission direction of the penetrating light is changed to the transmission direction of the reflected light.
  • the beams belonging to the same wavelength band must be incident to the second filter 303 twice.
  • the second filter 303 shown in this embodiment is divided into two regions according to the position where the light beam belonging to the first wavelength band enters the filter 303 twice, namely the first a second reflective area and reflection area, in conjunction with the example shown, i.e.
  • a first light beam 710 incident angle ⁇ 1 is incident on the first reflection filter 303 of the second region, the first sub-beam 901 to the target ⁇ 2 of The incident angle is incident on the second reflection area of the second filter 303.
  • ⁇ 1 and ⁇ 2 please refer to the above description, and the details are not repeated.
  • the effective refractive index n eff1 of the first reflection area and the effective refractive index n eff of the second reflection area are different, as long as the first reflection area and the second reflection area of the second filter 303 shown in this embodiment are different from each other.
  • the effective refractive index and the angle of incidence of the reflection area satisfy the above formula 3, so that the light beam belonging to the first waveband is incident on the second filter 303 twice successively, and both are reflected from the second filter 303 as reflected light, so that the first light beam All the first sub-beams of 710 can be transmitted to the redirecting component 301.
  • the second filter 303 shown in this embodiment satisfies the above formula 3
  • the second filter 303 The filter spectrum of the first beam 710 will not be shifted, so that the target first sub-beam included in the first beam 710 enters the second filter 303 at an incident angle of ⁇ 1 when the first insertion loss and the target first sub-beam 901
  • the difference between the second insertion loss when incident on the second filter 303 at an incident angle of ⁇ 2 is less than or equal to the third preset value, wherein the target first sub-beam included in the first beam 710 and the target second A sub-beam 901 has the same wavelength.
  • This embodiment does not limit the size of the third preset value.
  • the difference between the second insertion loss and the second insertion loss is less than or equal to the third preset value, it can effectively ensure that the filter spectrum of the second filter 303 will not shift.
  • the second filter 303 shown in this embodiment effectively guarantees that when the light beams belonging to the second waveband are incident on the second filter 303 twice successively, they are all pass-through light.
  • the light beams of one waveband are incident on the second filter 303 twice successively, and both are used as the description of the reflected light, and the details are not repeated here.
  • the second filter 303 separates multiple first sub-beams (shown by the solid lines emitted from the second filter 303 as shown in FIG. 3) and second sub-beams
  • the light beam (shown by the dotted line appearing from the second filter 303 as shown in FIG. 3) is transmitted to the fifth lens 310.
  • the fifth lens 310 shown in this embodiment is used to change the transmission directions of the multiple first sub-beams and the second sub-beams, so that the multiple first sub-beams and the multiple second sub-beams are respectively along and
  • the optical axis of the fifth lens 310 is transmitted to the first filter 311 in a direction parallel to the optical axis.
  • the transmission of the multiple first sub-beams and the multiple second sub-beams in a direction parallel to the optical axis of the fifth lens 310 is taken as an example for exemplification, and it is not limited, as long as The multiple first sub-beams and multiple second sub-beams can be successfully transmitted to the first filter 311.
  • the optical switching device can pass the first grating 308, the second grating 309, and the second filter 303 to separate the target first sub-beam and the target second The sub-beams coincide in the second direction Y, so as to ensure that the first spot of the target first sub-beam and the second spot of the target second sub-beam coincide in the second direction Y.
  • How to implement the optical switching device shown in this embodiment is as follows How to separate the transmission directions of the multiple first sub-beams and the multiple second sub-beams in the first direction X to effectively ensure that the first spot and the second spot are separated in the first direction X will be explained. :
  • the optical switching device shown in this embodiment further includes a first mirror 312 and a second mirror 313 ( As shown in FIG. 4), the first filter 311 is used to reflect the multiple first sub-beams 401 belonging to the first waveband to the first mirror 312 as reflected light, and the first filter 311 is also used to The multiple second sub-beams 402 belonging to the second waveband are passed through to the second reflecting mirror 313 as pass-through light.
  • the reflected light and pass-through light please refer to the description of the second filter 303 above, and the details will not be repeated. .
  • the transmission directions of the multiple first sub-beams 401 belonging to the first waveband and the multiple second sub-beams 402 belonging to the second waveband can be separated into different transmission directions in the XZ plane through the second filter 311 , So as to be respectively transmitted to the first mirror 312 and the second mirror 313 located at different positions.
  • This embodiment does not limit the specific positions of the first reflecting mirror 312 and the second reflecting mirror 313, as long as the first reflecting mirror 312 is arranged on the transmission light path of the plurality of first sub-beams 401, that is, the first reflecting mirror 312 Is arranged on the transmission optical path where the plurality of first sub-beams 401 are reflected from the first filter 311 and transmitted to the redirecting component 301, and the second reflecting mirror 313 is arranged with the plurality of first sub-beams passing through the first filter 311
  • the transmission optical path of the two sub-beams 402, that is, the second mirror 313 is arranged on the transmission optical path where the plurality of second sub-beams 402 pass through the first filter 311 and are transmitted to the redirecting component 301.
  • FIG. 11 is an enlarged example diagram of a partial structure of the optical switching device shown in FIG. 4.
  • the multiple first sub-beams 403 reflected from the first mirror 312 (shown by the solid line emitted from the first mirror 312) irradiate the first area 501 shown in FIG.
  • the different labels for the first sub-beam and the second sub-beam shown in the embodiment are only used to distinguish the change of the transmission path of the first sub-beam and the change of the transmission path of the second sub-beam.
  • the multiple second sub-beams 404 reflected from the second mirror 313 (shown by the solid lines emitted from the second mirror 313) irradiate the second area 502 shown in FIG.
  • the first area 501 and the second area 502 shown are separated along the first direction X, and overlap or partially overlap along the second direction Y, so that the optical switching device shown in this embodiment can effectively enhance the first light beam and the first light beam. Filter bandwidth of two beams.
  • the redirecting component 301 is used for deflecting the transmission direction of each first sub-beam 403, wherein each first sub-beam 403 is deflected by the redirecting component 301 as the first sub-beam after being redirected. 405 (shown by the dotted line emitted from the redirecting component 301) is transmitted to the first mirror 312.
  • the redirection component 301 is also used for deflecting the transmission direction of each second sub-beam 404, wherein each second sub-beam 404 is deflected in the transmission direction by the redirection component 301, and then serves as a redirected second sub-beam.
  • the light beam 406 (shown by the dashed line emerging from the redirecting component 301) is transmitted to the second mirror 313.
  • first reflecting mirror 312 shown in this embodiment is also arranged on the transmission light path of each first sub-beam 405 emitted from the redirecting component 301, and the second reflecting mirror 313 is also arranged on each of the first sub-beams 405 emitted from the redirecting component 301.
  • the plurality of first sub-beams 405 deflected in the transmission direction by the redirecting component 301 can exit along one exit angle or exit along multiple exit angles.
  • this embodiment does not To repeat, for example, if multiple first sub-beams 405 are output from the optical switching device along the same output port (for example, output port 42), the multiple first sub-beams 405 can exit from the redirecting component 301 along the same exit angle, so that A plurality of first sub-beams can be transmitted to the output port 42 for output.
  • the plurality of first sub-beams 405 can exit from the redirecting component 301 along two different exit angles, so that part of the first sub-beams One sub-beam 405 is output from the output port 42, and a part of the first sub-beam 405 is output from the output port 43.
  • the second sub-beam 406 being emitted from the redirecting component 301, please refer to the process of the first sub-beam 405 being emitted from the redirecting component 301 for details.
  • the first mirror 312 is used to reflect each first sub-beam 405 from the redirecting component 301 to the first filter 311, that is, the first mirror 312 is used to transmit the first sub-beam 407 (from the first mirror 312 (Shown by the dashed line) is reflected to the first filter 311.
  • the second mirror 313 is used to reflect each second sub-beam 406 from the redirecting component 301 to the first filter 311, that is, the second mirror 313 is used to transmit the second sub-beam 408 (from the second mirror 313 (Shown by the dashed line) is reflected to the first filter 311.
  • the first mirror 312 is used to transmit the target first sub-beam to the fifth area on the first filter 311
  • the second mirror 313 is used to transmit the target second sub-beam to the In the sixth area on the first filter 311
  • the target first sub-beam is a first sub-beam among the plurality of first sub-beams
  • the target second sub-beam is a plurality of second sub-beams.
  • the fifth area and the sixth area need Fully or partially coincident. If it is necessary to realize that the target first sub-beam and the target second sub-beam are output through different output ports (for example, the output port 43 and the output port 413), the fifth area and the sixth area are non-overlapping areas.
  • the first filter 311 for the first filter 311 to successfully transmit each first sub-beam to the output port, it is necessary that the first sub-beam belonging to the first waveband enters the first filter 311 for the first time (that is, from The first sub-beam of the fifth lens 310 and the first sub-beam are incident on the first filter 311 for the second time (that is, the first sub-beam 407 from the first mirror 312), both of which are reflected light for reflection .
  • the second sub-beam belonging to the second waveband is required to enter the first filter 311 (that is, the second sub-beam from the fifth lens 310).
  • the sub-beam) and the second sub-beam are incident on the first filter 311 (that is, the second sub-beam 407 from the second mirror 313) for the second time, and both pass through light.
  • the first filter 311 effectively ensures that the first sub-beam is reflected light when it enters the first filter 311 twice.
  • the second filter 303 effectively ensures that when the light beam belonging to the first waveband is incident on the second filter 303 twice successively, it is a process of reflecting light, which is not described in detail.
  • the first filter 311 effectively guarantees that the second sub-beam enters the first filter 311 twice in succession, it is a pass-through process
  • the fifth lens 310 is used to transmit the first sub-beam 409 and the second sub-beam 410 to the second filter 303 respectively, and the second filter 303 is used to transmit the first sub-beam 409 and the second sub-beam 409 to the first
  • the wavelength band reflects the first sub-beam 409 to the first grating 308.
  • the second filter 303 is also used to pass the second sub-beam 410 to the second grating 309 based on the second wavelength band to which the second sub-beam 410 belongs.
  • the reflection process and the pass-through process please refer to the above-mentioned FIG. 6 and FIG. As shown in 7, the details will not be repeated.
  • the first grating 308 is used to combine the multiple first sub-beams 409 into a third beam 411 (shown by the solid line emerging from the first grating 308), and the second The grating 309 is used to combine the plurality of second sub-beams 410 into a fourth beam 412 (shown by the dotted line emerging from the second grating 309),
  • the second filter 303 is used to reflect the third light beam 411 as reflected light based on the first wavelength band to which the third light beam 411 belongs, so as to enable the second filter 303 to transmit the first sub-beam in a way and to
  • the transmission mode of the third light beam 411 is reflected light, which effectively ensures that each first sub-beam can be successfully transmitted to the first grating 308, and can also effectively ensure that the third light beam 411 can be successfully transmitted to the fourth lens 307.
  • the second filter 303 is used to pass the fourth light beam 412 as a pass-through light based on the second wavelength band to which the fourth light beam 412 belongs, so as to enable the second filter 303 to transmit the second sub-beam in a way and to
  • the transmission mode of the fourth light beam 412 is punch-through light, thereby effectively ensuring that each second sub-beam can be successfully transmitted to the second grating 309, and it can also effectively ensure that the fourth light beam 412 can be successfully transmitted to the fourth lens. 307.
  • the third light beam 411 and the fourth light beam 412 sequentially transmit the third light beam 411 and the fourth light beam 412 via the fourth lens 307, the third lens 306, the second lens 305, and the first lens 304
  • the optical path is adjusted so that the third light beam 411 is transmitted to the corresponding output port 42 for output, and the fourth light beam 412 is transmitted to the corresponding output port 43 for output.
  • this embodiment does not limit which output port the third light beam 411 and the fourth light beam 412 pass through.
  • the third light beam 411 and the fourth light beam 412 pass through the same output port.
  • the output port is output from the optical switching device.
  • the third beam 411 and the fourth beam 412 can be output from the optical switching device through different output ports.
  • the third light beam 411 is output through the output port 42
  • the fourth light beam 412 is output through the output port 43, the fourth lens 307, the third lens 306, the second lens 305, and
  • the first lens 304 can transmit the third light beam 411 to the second collimating lens 314 that is transmitted to the output port 42.
  • the third light beam 411 is collimated by the second collimating lens 314 and then output through the output port 42.
  • the fourth lens 307, the third lens 306, the second lens 305 and the first lens 304 can also transmit the second light beam 412 to the third collimator lens 315 which is transmitted to the output port 43.
  • the second light beam 412 is collimated by the third collimator lens 315 and then output through the output port 43.
  • the beneficial effect of using the optical switching device shown in this embodiment is that, because the optical switching device shown in this embodiment does not need to be equipped with optical devices (such as AWG) to multiplex and demultiplex the input light beams, it effectively reduces the increase in optical devices. (Such as AWG) insertion loss.
  • the second filter is used to achieve the overlap or partial overlap of the first area and the second area in the second direction Y, and the first filter is used to achieve the separation of the first area and the second area in the first direction X, thereby effectively This greatly improves the filtering bandwidth of the optical switching device.
  • the transmission mode when the light beams belonging to the same wavelength band pass through the thin-film filter twice in succession is unchanged, for example, the transmission mode is the same as The reflected light is reflected, and for example, it is passed through twice as the pass-through light successively, which effectively reduces the filtering damage.
  • the first light beam and the second light beam are input to the optical switching device through the same input port.
  • the first light beam and the second light beam are input to the optical switching device through different input ports as an example for illustration. :
  • FIG. 12 and FIG. 13 where FIG. 12 shows an example of the structure of the optical switching device along the second direction, and FIG. An example of the structure of one direction.
  • first direction X, the second direction Y, and the third direction Z please refer to the first embodiment for details, and the details will not be repeated.
  • the optical switching device shown in this embodiment includes a first input port 1201 and a second input port 1202.
  • the positions of the first input port 1201 and the second input port 1202 along the second direction Y are different.
  • the first input port 1201 and the second input port 1202 are The positions in the YZ plane are separated and arranged, while the positions in the XZ plane are overlapped.
  • the description of the positions of the first input port 1201 and the second input port 1202 in the XZ plane in this embodiment is only an example.
  • the ports 1202 can be separated in positions in the XZ plane.
  • the first input port 1201 shown in this embodiment is used to output the first light beam
  • the second input port 1202 is used to input the second light beam.
  • the description of the first light beam and the second light beam please refer to the first embodiment. I won't go into details for details.
  • the first light beam input through the first input port 1201 is transmitted to the fourth collimator lens 1203, the first input port 1201 is located at the front focus of the fourth collimator lens 1203, and the fourth collimator lens 1203
  • the lens 1203 is used to collimate the first light beam from the first input port 1201.
  • the second light beam input through the second input port 1202 is transmitted to the fifth collimator lens 1204, the second input port 1202 is located at the front focus of the fifth collimator lens 1204, and the fifth collimator lens 1204 is used for The first light beam from the second input port 1202 is collimated.
  • a first lens assembly is further provided between the fourth collimating lens 1203, the fifth collimating lens 1204, and the second filter 303.
  • the lens included in the first lens assembly is The number is not limited, as long as the first lens assembly can transmit the first light beam from the fourth collimating lens 1203 and the second light beam from the fifth collimating lens 1204 to the second filter 303.
  • the second filter 303 please refer to Embodiment 1 for details, and details are not repeated here.
  • the first lens assembly includes the fifth lens 1205 and the sixth lens 1206 as an example for illustrative description. It should be clarified that the description of the first lens assembly in this embodiment is an optional example, for example, The lens included in the first lens assembly may also be as shown in the first embodiment.
  • the positions of the lenses (the fifth lens 1205 and the sixth lens 1206) included in the first lens assembly are exemplarily described below:
  • the back focus of the fourth collimating lens 1203 is located on the front focus plane of the fifth lens 1205, and the front focus plane of the fifth lens 1205 refers to the XY plane including the front focus of the fifth lens 1205.
  • the back focus of the fifth collimating lens 1204 is also located at the front focus plane of the fifth lens 1205. That is, in the YZ plane, the distance between the fourth collimating lens 1203 and the fifth lens 1205 is equal to the sum of the focal length of the fourth collimating lens 1203 and the focal length of the fifth lens 1205, and The distance between the fifth collimating lens 1204 and the fifth lens 1205 is equal to the sum of the focal length of the fifth collimating lens 1204 and the focal length of the fifth lens 1205.
  • the back focus of the fifth lens 1205 coincides with the front focus of the sixth lens 1206.
  • the second filter 303 is provided between the sixth lens 1206 and the dispersive component (that is, the first grating 308 and the second grating 309).
  • the dispersive component please refer to the first embodiment, and the details will not be repeated. .
  • a second lens assembly is provided between the second filter 303 and the redirection assembly 301.
  • This embodiment does not limit the number and functions of the lenses included in the second lens assembly.
  • the second lens assembly includes a seventh lens 1207.
  • the seventh lens 1207 is located between the second filter 303 and the redirecting component 301.
  • the position of the seventh lens 1207 please refer to the description of the fifth lens 310 shown in the embodiment, and details are not repeated.
  • the first light beam 1208 collimated by the fourth collimating lens 1203 sequentially passes through the fifth lens 1205 and the sixth lens 1206 is relayed to the second filter 303
  • the second light beam 1209 collimated by the fifth collimator lens 1204 (shown by the dotted line emerging from the fourth collimator lens 1203 as shown in FIG. 12) sequentially passes through the fifth collimator lens 1204.
  • the lens 1205 and the sixth lens 1206 are relayed to the second filter 303.
  • the sixth lens 1206 transmits the first light beam 1208 and the second light beam 1209 to the second filter 303
  • the specific positions of the first light beam 1208 transmitted to the first position on the second filter 303 and the second light beam 1209 transmitted to the second position on the second filter 303 are omitted. It is limited as long as the first position and the second position are different positions on the second filter 303.
  • the second filter 303 shown in this embodiment is used to change the first light beam 1208 and the first light beam 1208 and the first light beam 1208 based on the wavelength bands to which the first light beam 1208 and the second light beam 1209 belong, respectively.
  • the transmission direction of the two light beams 1209, and the first light beam 1208 and the second light beam 1209 are respectively transmitted to the first grating 308 and the second grating 309 located at different positions, and the second filter 303 is also used to transmit the multiple first sub-beams 1210 from the first grating 308 to the seventh lens 1207 in the manner of reflected light, and the second filter 303 is also used to transmit the multiple first sub-beams 1210 from the second grating 309 to the seventh lens 1207.
  • the second sub-beam 1211 is transmitted to the seventh lens 1207 in a penetrating light manner.
  • the seventh lens 1207 is used to transmit a plurality of first sub-beams 1210 and a plurality of second sub-beams 1211 to the first filter 311 in a direction parallel to the optical axis of the seventh lens 1207, as shown in FIG. 13
  • the first filter 311, the first mirror 312, and the second mirror 313 are used together to make the spots of the multiple first sub-beams 1210 formed in the first area 501 of the redirecting component 301, It is also used to make the spots of the plurality of second sub-beams 1211 formed in the second area 502 of the redirection component 301.
  • the specific process please refer to the first embodiment, and the details will not be repeated.
  • each first sub-beam 1212 and each second sub-beam 1213 redirected from the redirecting component 301 are transmitted to the output port in this embodiment, please refer to the first embodiment for details, and it will not be specifically described. Go into details.
  • the optical switching device shown in this embodiment does not need A filter coupled to the input port for multiplexing the first beam 1208 and the second beam 1209 is set.
  • the first beam and the second beam need to pass through the same input
  • a filter coupled to the input port needs to be set. The filter is used to multiplex the first beam and the second beam transmitted through two different optical fibers, so that the first embodiment
  • the shown input port can simultaneously input the first light beam and the second light beam to the optical switching device. It can be seen that, compared with the first embodiment, the second embodiment reduces the number of optical components and reduces the insertion loss.
  • the second filter 303, the first grating 308, and the second grating 309 are provided to realize at least a part of the first area 501 and the second area 502 in the second direction Y
  • this embodiment can achieve the purpose of overlapping at least a part of the first area 501 and the second area 502 in the second direction Y without the second filter 303, as shown below :
  • the dispersive component shown in this embodiment only includes one grating 1400, where FIG. 14 is a structural example diagram of the optical switching device along the second direction , FIG. 15 is a structural example diagram of the optical switching device along the first direction.
  • the optical switching device shown in this embodiment includes a first input port 1401 and a second input port 1402.
  • the specifics of the first input port 1401 for inputting the first light beam and the second input port 1402 for inputting the second light beam are detailed.
  • the first light beam input through the first input port 1401 is transmitted to the fourth collimator lens 1403, and the second light beam input through the second input port 1402 is transmitted to the fifth collimator lens 1404, and the second light beam is transmitted to the fifth collimator lens 1404.
  • the four collimator lens 1403 and the fifth collimator lens 1404 please refer to the second embodiment for details, and the details are not repeated here.
  • the optical switching device also includes a first lens assembly.
  • the first lens assembly includes a first lens 304, a second lens 305, a third lens 306, and a fourth lens 307.
  • the first lens assembly shown takes the same lens as the first lens assembly as an example. This embodiment does not limit the number and functions of the lenses included in the first lens assembly. In other examples, the third example The lens included in the first lens assembly can also be the same as the second embodiment.
  • Embodiment 1 For the description of the specific positions and functions of the first lens 304, the second lens 305, and the third lens 306, please refer to Embodiment 1 for details, and details are not repeated.
  • the difference is that the grating 1400 shown in this embodiment is located at the position where the back focus of the fourth lens 307 and the front focus of the fifth lens 310 included in the second lens assembly intersect.
  • the two-lens assembly please refer to the first embodiment, and the details are not repeated.
  • the first light beam 1405 input from the first input port 1401 is transmitted to the grating 1400 through the fourth collimator lens 1403, the first lens 304, the second lens 305, the third lens 306, and the fourth lens 307 in sequence.
  • the second light beam 1406 input by the second input port 1402 is transmitted to the grating 1400 through the fifth collimating lens 1404, the first lens 304, the second lens 305, the third lens 306, and the fourth lens 307 in sequence.
  • the specific transmission process For the description, please refer to the example shown in the first embodiment, and the details will not be repeated.
  • the fourth lens 307 is used to transmit the first light beam 1405 and the second light beam 1406 to the same or similar positions on the grating 1400.
  • the light spot please refer to the first embodiment, and the details will not be repeated.
  • the diffraction efficiency of the first light beam 1405 can be improved by adjusting the size of the first incident angle, where the first incident angle is the incident angle of the first light beam 1405 incident on the grating 1400 in the YZ plane .
  • the diffraction efficiency of the second light beam 1406 can also be improved by adjusting the size of the second incident angle, where the second incident angle is the incident angle of the second light beam 1406 incident on the grating 1400 in the YZ plane.
  • the size of the first incident angle and the second incident angle are explained:
  • the magnitude of the first incident angle and the second incident angle shown in this embodiment are not equal, that is, the difference between the absolute value of the first incident angle and the second incident angle is not zero.
  • the difference between the first angle of incidence and the first blaze angle is less than or equal to a first preset value.
  • This embodiment does not limit the specific size of the first preset value, as long as the first angle of incidence It suffices to be equal to or approximately equal to the first blaze angle, and this embodiment takes the first preset value of 5 as an example for illustration.
  • the first blaze angle corresponds to the wavelength band to which the first light beam belongs. It can be seen that in this embodiment, when the wavelength band to which the first light beam 1405 belongs is clarified, the blaze angle corresponding to the wavelength band can be determined. In this embodiment, the blaze angle corresponding to the beam belonging to the C-band is the first blaze angle as an example. In the first beam 1405, the first blaze angle or an angle approximately equal to the first blaze angle (that is, the first When the incident angle) is incident on the grating 1400, the grating 1400 has better diffraction efficiency. It can be seen that when the first light beam 1405 enters the grating 1400 at the first incident angle, the first light beam 1405 can be effectively lifted from the grating 1400. Diffraction efficiency of 1400 for diffraction.
  • the difference between the second incident angle and the second blaze angle shown in this embodiment is less than or equal to the first preset value shown above.
  • the second blaze angle corresponds to the wavelength band to which the second light beam 1406 belongs. It can be seen that in this embodiment, the blaze angle corresponding to the L wave band can be determined when the L-wave band to which the second light beam 1406 belongs is clarified.
  • the grating 1400 has a better It can be seen that when the second light beam 1406 enters the grating 1400 at the second incident angle, the diffraction efficiency of the second light beam 1406 diffracted from the grating 1400 can be effectively improved.
  • the first incident angle and the first incident angle can be adjusted as shown below.
  • the size of the two incident angles is such that the first incident angle is equal to or approximately equal to the first blaze angle, and the second incident angle is equal to or approximately equal to the second blaze angle.
  • the distance between the first input port 1401 and the optical axis of the lens (304, 305, and 306) located between the input port and the grating 1400 can be adjusted in the YZ plane.
  • the adjustment method of the second incident angle please refer to the adjustment method of the first incident angle for details.
  • the grating 1400 shown in this embodiment is used to decompose the first light beam 1405 into a plurality of first sub-beams 1407 (solid lines emerging from the grating 1400 as shown in FIG. 14), and the grating 1400 is also used to divide The second light beam 1406 is decomposed into a plurality of second sub-beams 1408 (the dotted line emerging from the grating 1400 as shown in FIG. 14).
  • the specific description of the first sub-beam 1407 and the second sub-beam 1408 is Please refer to the first embodiment for details, and the details are not repeated here.
  • the grating 1400 is used to transmit the plurality of first sub-beams 1407 and the plurality of second sub-beams 1408 to the first filter 311 through the fifth lens 310.
  • the first filter 311, the first reflector 312, and the second reflector 313 are used together to make the spots of the multiple first sub-beams 1407 be formed in the first area 501 of the redirecting component 301, and are also used for
  • the light spots of a plurality of second sub-beams 1408 are formed in the second area 502 of the redirecting component 301.
  • the multiple first sub-beams and multiple second sub-beams emitted from the first filter 311 are transmitted to the grating 1400, and the grating 1400 is used to combine the multiple first sub-beams to form the first beam, so The grating 1400 is also used to combine a plurality of second sub-beams to form a second beam.
  • the process of outputting the first beam and the second beam through the output port please refer to the first embodiment for details. Do repeats.
  • the number of gratings 1400 shown in this embodiment is one. Compared with the structure of the two gratings and the second filter in the first and second embodiments, the number of optical devices is reduced. The quantity reduces the insertion loss in the process of deflecting the transmission directions of the first light beam and the second light beam.
  • the first light beam and the second light beam are first adjusted in the second direction, that is, the first light beam and the second light beam are adjusted in the second direction.
  • the adjustment in the second direction makes the first light spot generated by the first light beam on the redirecting component and the second light spot generated by the second light beam on the redirecting component coincide or partially coincide in the second direction Y.
  • the adjustment in the first direction is performed, so that the first light spot and the second light spot are separated along the X position in the first direction.
  • the first light beam and the second light beam are adjusted in the first direction X first, and then the first light beam and the second light beam are adjusted in the second direction Y.
  • the specific process is as follows:
  • FIG. 16 is a structural example diagram of the optical switching device along the second direction
  • FIG. 17 is a structural example diagram of the optical switching device along the first direction.
  • the optical switching device includes an input port 41 for inputting the first light beam and the second light beam.
  • the first light beam, the second light beam, and the input port 41 please refer to the first embodiment. I won't go into details for details. It should be clarified that, in this embodiment, the first light beam and the second light beam are input to the optical switching device through the same input port 41 as an example. In other examples, the first light beam and the second light beam may also pass through different The input port is input to the optical switching device, as shown in the second embodiment, and the details are not described in detail.
  • the optical switching device further includes a first collimating lens 302 coupled to the input port 41.
  • a first collimating lens 302 coupled to the input port 41.
  • the first collimating lens 302 please refer to Embodiment 1 for details, and details will not be repeated.
  • the first light beam and the second light beam collimated by the first collimating lens 302 are transmitted to the third filter 1601, that is, the optical switching device shown in this embodiment further includes a third filter 1601.
  • 1601 is located at the back focus of the first collimating lens 302, that is, in the XZ plane, the distance between the first collimating lens 302 and the third filter 1601 is equal to the focal length of the collimating lens 302.
  • the third filter 1601 shown in this embodiment may be a thin-film filter. For a specific description of the thin-film filter, please refer to the first embodiment, and the details are not repeated.
  • the third filter 1601 shown in this embodiment receives the first light beam and the second light beam, it can be based on the wavelength band to which the first light beam belongs and the wavelength band to which the second light beam belongs.
  • the transmission directions of the first light beam and the second light beam are separated into different transmission directions in the first direction.
  • the transmission direction of the first light beam and the second light beam in the first direction shown in this embodiment Separating specifically refers to separating the transmission directions of the first light beam and the second light beam into different transmission directions in the XZ plane.
  • the third filter 1601 is a thin-film filter
  • the third filter 1601 can combine the first light beam 1602 with the first light beam 1602.
  • the two light beams 1603 are transmitted in different transmission modes to realize the separation of the transmission direction in the XZ plane.
  • the optical switching device shown in this embodiment also includes a first lens assembly.
  • the first lens assembly shown in this embodiment includes a first lens 304, a second lens 305, a third lens 306, and a fourth lens 307.
  • the third filter 1601 shown in this embodiment is located at the front focus of the second lens 305.
  • the fourth lens 307 is used for transmitting the first light beam 1602 and the second light beam 1603 to the second filter 303
  • the second filter 303 is used for transmitting the first light beam 1602 and the second light beam 1603 respectively. Belong to the wavelength band, change the transmission direction of the first light beam 1602 and the second light beam 1603, and respectively transmit the first light beam 1602 and the second light beam 1603 to the first grating located at different positions 308 and the second grating 309
  • the second filter 303 is also used to reflect the plurality of first sub-beams 1604 from the first grating 308 (shown by the solid line emerging from the first grating 308)
  • the light is transmitted to the fifth lens 310
  • the second filter 303 is also used to treat a plurality of second sub-beams 1605 from the second grating 309 (shown by the dotted line emerging from the second grating 309) It is transmitted to the fifth lens 310 in the way of penetrating light.
  • the fifth lens 310 For
  • the fifth lens 310 is used to combine a plurality of first sub-beams 1606 (shown by a solid line emerging from the fifth lens 310) and a plurality of second sub-beams 1607 (a dotted line appearing from the fifth lens 310). (Shown) are respectively transmitted to the redirection component 301 in a direction parallel to the optical axis of the fifth lens 310, and the spots of a plurality of first sub-beams 1606 are formed in the first area 501 of the redirection component 301 Inside, the spots of a plurality of second sub-beams 1607 are formed in the second area 502 of the redirection component 301.
  • the specific process please refer to the first embodiment, and the details will not be repeated.
  • the second filter 303, the first grating 308, and the second grating 309 are provided to achieve the purpose of overlapping at least a part of the first spot and the second spot in the second direction Y, and
  • the purpose of overlapping at least a part of the first spot and the second spot in the second direction Y can be achieved, which is specifically as follows:
  • FIG. 18 is a structural example diagram of the optical switching device along the second direction
  • FIG. 19 is a structural example diagram of the optical switching device along the first direction.
  • the dispersive component shown in this embodiment only includes one grating 1800.
  • the optical switching device shown in this embodiment includes a first input port 1401 and a second input port 1402.
  • the specifics of the first input port 1401 for inputting the first light beam and the second input port 1402 for inputting the second light beam are detailed.
  • the first light beam input through the first input port 1401 is transmitted to the fourth collimator lens 1403, and the second light beam input through the second input port 1402 is transmitted to the fifth collimator lens 1404, and the second light beam is transmitted to the fifth collimator lens 1404.
  • the four collimator lens 1403 and the fifth collimator lens 1404 please refer to Embodiment 3 for details, and details are not repeated.
  • the optical switching device shown in this embodiment further includes a third filter 1801.
  • the third filter 1801 is located on the back focal planes of the fourth collimator lens 1403 and the fifth collimator lens 1404.
  • the triple filter 1801 is used to separate the transmission directions of the first light beam and the second light beam into different transmission directions in the first direction based on the wavelength band to which the first light beam belongs and the wavelength band to which the second light beam belongs.
  • the optical switching device shown in this embodiment also includes a first lens assembly.
  • the first lens assembly shown in this embodiment includes a first lens 304, a second lens 305, a third lens 306, and a fourth lens 307.
  • the grating 1800 shown in this embodiment is located at a position where the back focus of the fourth lens 307 and the front focus of the fifth lens 310 intersect.
  • the description of the grating 1800 and the fifth lens 310 please refer to the fourth embodiment, and the details will not be repeated.
  • the first light beam 1802 input from the first input port 1401 passes through the fourth collimating lens 1403 in turn.
  • the third filter 1801, the first lens 304, the second lens 305, the third lens 306, and the fourth lens 307 are transmitted to the grating 1800, and the second light beam 1803 input by the second input port 1402 (as shown in FIG.
  • the second input port 1402 is transmitted to the grating 1800 as shown by the dashed line), and then transmitted through the fifth collimating lens 1404, the third filter 1801, the first lens 304, the second lens 305, the third lens 306, and the fourth lens 307 in turn
  • To the grating 1800 please refer to the description of the specific transmission process as shown in the third embodiment, and the details are not repeated here.
  • the fourth lens 307 is used to transmit the first beam 1802 and the second beam 1803 to the same or similar position on the grating 1800, and in the YZ plane, the first beam 1802 is The first incident angle is incident on the grating 1800, and the second light beam 1803 is incident on the grating 1800 at a second incident angle.
  • the first incident angle and the second incident angle please refer to the third embodiment. As shown, the details will not be repeated.
  • the grating 1800 shown in this embodiment is used to decompose the first light beam 1802 into a plurality of first sub-beams 1804 (shown by the solid line emerging from the grating 1800 as shown in FIG. 18), and the grating 1400 is also used for
  • the second beam 1803 is decomposed into a plurality of second sub-beams 1805 (shown by the dotted line exiting from the grating 1800 as shown in FIG. 18), and the details of the first sub-beam 1804 and the second sub-beam 1805 are
  • Embodiment 3 for details, and details are not repeated here.
  • the grating 1800 is used to transmit the plurality of first sub-beams 1804 and the plurality of second sub-beams 1805 to the redirection component 301 through the fifth lens 310, and the spots of the plurality of first sub-beams 1804 are formed in the redirection In the first area 501 of the component 301, the spots of a plurality of second sub-beams 1805 are formed in the second area 502 of the redirecting component 301.
  • the specific process please refer to the fourth embodiment. Do repeats.
  • This embodiment provides a redirection method.
  • the redirection method shown in this embodiment is based on the optical switching device shown in Embodiment 1 or Embodiment 2.
  • the optical switching device please refer to Embodiment 1 or Implementation As shown in the second example, the details will not be repeated.
  • the following is an example of the execution process of the redirection method shown in this embodiment shown in FIG. 20, where FIG. 20 is the first implementation of the redirection method provided by this application Example step flow chart.
  • Step 2001 The optical switching device injects the first light beam and the second light beam into the second filter through the input port.
  • the optical switching device can realize the purpose of inputting the first light beam and the second light beam to the optical switching device through the same input port shown in the first embodiment.
  • the optical switching device may also input the first light beam to the optical switching device through the first input port as shown in the second embodiment, and may also input the second light beam to the optical switching device through the second input port.
  • Step 2002 The optical switching device transmits the first light beam and the second light beam to the first grating and the second grating at different positions through the second filter.
  • the optical switching device passes through the second filter to change the transmission direction of the first light beam and the second light beam based on the wavelength bands to which the first light beam and the second light beam belong, respectively, so that the first light beam is transmitted to the first grating, and the first light beam is transmitted to the first grating.
  • the two light beams are transmitted to the second grating.
  • Step 2003 The optical switching device decomposes the first light beam into a plurality of first sub-beams through the first grating.
  • Step 2004 The optical switching device decomposes the second light beam into a plurality of second sub-beams through the second grating.
  • Step 2005 The optical switching device transmits the plurality of first sub-beams to the second filter through the first grating.
  • Step 2006 The optical switching device transmits the plurality of second sub-beams to the second filter through the second grating.
  • Step 2007 The optical switching device passes through the second filter to transmit the plurality of first sub-beams and the plurality of second sub-beams to the first filter based on different wavelength bands.
  • Step 2008 The optical switching device passes the first filter and incident the multiple first sub-beams into the first area of the redirecting component.
  • Step 2009 The optical switching device passes the first filter into the second area of the redirecting component.
  • the optical switching device passes through the first filter to separate the transmission directions of the plurality of first sub-beams and the plurality of second sub-beams in the first direction into different transmission directions based on different wavelength bands, so that the plurality of first sub-beams are separated into different transmission directions.
  • One sub-beam is incident on the first area of the redirecting component, and a plurality of second sub-beams is incident on the second area of the redirecting component.
  • the optical switching device transmits the plurality of first sub-beams to the first mirror through the first filter, and transmits the plurality of second sub-beams to the second mirror through the first filter; the optical switching device is The plurality of first sub-beams can be transmitted to the first area of the redirecting component through the first reflector, and the plurality of second sub-beams can be transmitted to the second area of the redirecting component through the second reflector.
  • Step 2010 The optical switching device transmits the redirected multiple first sub-beams to the first reflector through the redirecting component.
  • Step 2011 The optical switching device transmits the redirected second sub-beam to the second reflector through the redirecting component.
  • Step 2012 the optical switching device transmits the first sub-beam to the fifth area on the first filter through the first reflector, and transmits the second sub-beam to the sixth area on the first filter through the second reflector .
  • the fifth area and the sixth area overlap or partially overlap.
  • the fifth area is separated from the second distinguishing position.
  • Step 2013 The optical switching device transmits the redirected plurality of first sub-beams and second sub-beams to the first grating and the second grating through the first filter.
  • Step 2014 The optical switching device combines the multiple first sub-beams into a third beam through the first grating, and combines the multiple second sub-beams into a fourth beam through the second grating.
  • Step 2015 The optical switching device outputs the third light beam and the fourth light beam through the output port.
  • This embodiment provides a redirection method.
  • the redirection method shown in this embodiment is based on the optical switching device shown in the third embodiment.
  • the optical switching device please refer to the third embodiment, and the details are not repeated here.
  • the following is an example of the execution process of the redirection method shown in this embodiment with reference to FIG. 21, where FIG. 21 is a flow chart of the steps of the second embodiment of the redirection method provided by this application.
  • Step 2101 The optical switching device enters the first light beam into the dispersive component at a first incident angle through the first input port.
  • Step 2102 The optical switching device injects the second light beam into the dispersive component at the second incident angle through the second input port.
  • the difference between the absolute value of the first incident angle and the second incident angle is not zero, wherein the difference between the first incident angle and the first blaze angle is less than or equal to the first preset value, and the second incident angle The difference between the second blaze angle and the second blaze angle is less than or equal to the second preset value.
  • the first blaze angle corresponds to the wavelength band to which the first beam belongs
  • the second blaze angle corresponds to the wavelength band to which the second beam belongs.
  • the optical switching device transmits the first light beam and the second light beam to the dispersive component through the first lens component.
  • the distance between the first input port and the optical axis of the lens component is equal to the first incident angle.
  • the magnitude of is related to the magnitude of the distance between the second input port and the optical axis of the lens assembly is related to the magnitude of the second incident angle.
  • Step 2103 The optical switching device decomposes the first light beam into a plurality of first sub-beams through the grating, and decomposes the second light beam into a plurality of second sub-beams through the grating.
  • Step 2104 The optical switching device transmits the plurality of first sub-beams and the plurality of second sub-beams to the first filter through the grating.
  • Step 2105 The optical switching device uses the first filter to enter the multiple first sub-beams into the first area of the redirecting component.
  • Step 2106 The optical switching device uses the first filter to enter the multiple second sub-beams into the second area of the redirecting component.
  • Step 2107 The optical switching device transmits the redirected multiple first sub-beams to the first reflector through the redirecting component.
  • Step 2108 The optical switching device transmits the redirected second sub-beam to the second reflector through the redirecting component.
  • Step 2109 The optical switching device transmits the first sub-beam to the fifth area on the first filter through the first mirror, and transmits the second sub-beam to the sixth area on the first filter through the second mirror.
  • step 2008 to step 2012 shown in the sixth embodiment please refer to step 2008 to step 2012 shown in the sixth embodiment for details, and details are not described in detail.
  • Step 2110 The optical switching device transmits the redirected multiple first sub-beams and second sub-beams to the grating through the first filter.
  • Step 2111 The optical switching device combines multiple first sub-beams into a third beam through a grating, and combines multiple second sub-beams into a fourth beam through the grating.
  • Step 2112. The optical switching device outputs the third light beam and the fourth light beam through the output port.
  • This embodiment provides a redirection method.
  • the redirection method shown in this embodiment is based on the optical switching device shown in the fourth embodiment.
  • the optical switching device please refer to the fourth embodiment, and the details are not repeated here.
  • the following is an example of the execution process of the redirection method shown in this embodiment with reference to FIG. 22, where FIG. 22 is a step flow chart of the third embodiment of the redirection method provided by this application.
  • Step 2201 the optical switching device injects the first light beam and the second light beam into the third filter through the input port.
  • the first light beam and the second light beam belong to different wavebands.
  • Step 2202 the optical switching device transmits the first light beam and the second light beam to the second filter through the third filter.
  • the optical switching device passes through a third filter to separate the transmission directions of the first light beam and the second light beam into different transmission directions in the first direction based on different wavelength bands, so that the first light beam and the second light beam are transmitted to The second filter.
  • Step 2203 The optical switching device transmits the first light beam and the second light beam to the first grating and the second grating at different positions through the second filter.
  • the optical switching device passes through the second filter to change the transmission directions of the first light beam and the second light beam based on different wavelength bands, so that the first light beam is transmitted to the first grating, and the second light beam is transmitted to the second light beam. Raster.
  • Step 2204 The optical switching device decomposes the first light beam into a plurality of first sub-beams through the first grating.
  • Step 2205 The optical switching device splits the second light beam into a plurality of second sub-beams through the second grating.
  • Step 2206 The optical switching device transmits the multiple first sub-beams to the second filter through the first grating.
  • Step 2207 The optical switching device transmits the multiple second sub-beams to the second filter through the second grating.
  • step 2003 to step 2006 shown in FIG. 20 please refer to step 2003 to step 2006 shown in FIG. 20 for details, and details are not described in detail.
  • Step 2208 The optical switching device passes through the second filter to transmit the plurality of first sub-beams and the plurality of second sub-beams to the redirection component based on different wavelength bands.
  • Step 2209 The optical switching device transmits the redirected multiple first sub-beams to the second filter through the redirecting component.
  • Step 2210 The optical switching device transmits the redirected multiple second sub-beams to the second filter through the redirecting component.
  • Step 2211 the optical switching device transmits the redirected plurality of first sub-beams and second sub-beams to the first grating and the second grating through the second filter.
  • Step 2212 The optical switching device combines the multiple first sub-beams into a third beam through the first grating, and combines the multiple second sub-beams into a fourth beam through the second grating.
  • Step 2213 The optical switching device outputs the third light beam and the fourth light beam through the output port.
  • This embodiment provides a redirection method.
  • the redirection method shown in this embodiment is based on the optical switching device shown in the fifth embodiment.
  • the optical switching device please refer to the fifth embodiment, and the details will not be repeated.
  • the following is an example of the execution process of the redirection method shown in this embodiment with reference to FIG. 23, where FIG. 23 is a flow chart of the steps of the fourth embodiment of the redirection method provided by this application.
  • Step 2301 the optical switching device injects the first light beam into the third filter through the first input port.
  • Step 2302 the optical switching device injects the second light beam into the third filter through the second input port.
  • Step 2303 The optical switching device transmits the first light beam and the second light beam to the grating through the third filter.
  • Step 2304 The optical switching device decomposes the first light beam into a plurality of first sub-beams through the grating, and decomposes the second light beam into a plurality of second sub-beams.
  • Step 2305 The optical switching device transmits the plurality of first sub-beams and the plurality of second sub-beams to the redirecting component through the grating.
  • Step 2306 The optical switching device transmits the redirected multiple first sub-beams and multiple second sub-beams to the grating through the redirecting component.
  • Step 2307 The optical switching device combines the multiple first sub-beams into a third beam through the grating, and combines the multiple second sub-beams into a fourth beam through the second grating.
  • Step 2308 The optical switching device outputs the third light beam and the fourth light beam through the output port.
  • the optical communication system 2400 includes multiple ROADMs, such as ROADM 2401 and ROADM 2402 as shown in FIG. 24 , ROADM2403, ROADM2404, and ROADM2405. It should be clear that the description of the number of ROADMs included in the optical communication system 2400 in this embodiment is an optional example and is not limited.
  • the optical communication system 2400 also includes an optical fiber connected between two ROADMs. Taking ROADM 2401 and ROADM 2405 as an example, the optical communication system 2400 also includes an optical fiber 2406 connected between the ROADM 2401 and ROADM 2405.
  • the connection relationship between the included multiple ROADMs is not limited. For the specific description of each ROADM, please refer to the above-mentioned Figure 2 for details, and the specific description will not be repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Abstract

一种光交换装置、重定向方法、可重构光分插复用器及系统(2400),其用于提升滤波带宽,光交换装置包括输入端口(41)、色散组件、第一滤波器(311)、重定向组件(301)以及输出端口(42,43);输入端口(41)用于将第一光束(710)和第二光束(720)入射色散组件,色散组件用于将第一光束(710)分解成多个第一子光束(401),色散组件还用于将第二光束(720)分解成多个第二子光束(402);多个第一子光束(401)和多个第二子光束(402)属于不同的波段;第一滤波器(311)用于基于不同的波段将多个第一子光束(401)和多个第二子光束(402)的传输方向在第一方向(X)分离成不同的传输方向,并将多个第一子光束(401)入射重定向组件(301)的第一区域(501),并将多个第二子光束(402)入射重定向组件(301)的第二区域(502),第一区域(501)和第二区域(502)沿第一方向(X)互相分离。

Description

光交换装置、重定向方法、可重构光分插复用器及系统
本申请要求于2020年5月30日提交中国国家知识产权局、申请号为202010480914.8、发明名称为“光交换装置、重定向方法、可重构光分插复用器及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信领域,尤其涉及一种光交换装置、重定向方法、可重构光分插复用器及系统。
背景技术
随着光网络业务的迅速发展和交换容量的增加,可重构光分插复用器(reconfigurable optical add drop multiplexer,ROADM)需要处理的信号波段范围也在增加。其中,波长选择开关(wavelength selective switch,WSS)是构成ROADM的重要组件。
在论文“Wide-Passband C+L-band Wavelength Selective Switch by Alternating Wave-Band Arrangement on LCOS”in Proceedings of European Conference on Optical Communication(ECOC),2018中,所提供的WSS如图1所示,输入端口101输入C波段光束和L波段光束,沿色散方向X并列设置有阵列波导光栅(arrayed waveguide grating,AWG)102和103。通过该AWG102和103使得在色散方向X上,C波段光束和L波段光束经透镜104后入射光栅105的角度不同,并在色散方向X上,使得C波段光束和L波段光束出射光栅105的角度相同,进而使得C波段光束照射在交换引擎106上所形成的多个光斑所位于的区域和L波段光束照射在交换引擎106上所形成的多个光斑的位于的区域,沿色散方向X至少部分重合,沿端口方向Y分离,可有效地提升滤波带宽。
但是,在WSS内设置AWG,会增加AWG与空间光学耦合的插损。
发明内容
本申请提供了一种光交换装置、重定向方法、可重构光分插复用器及系统,其用于提升滤波带宽。
第一方面,本申请提供了一种光交换装置,包括输入端口、色散组件、第一滤波器、重定向组件以及输出端口;该输入端口用于将第一光束和第二光束入射该色散组件,该色散组件用于将该第一光束分解成多个第一子光束,该色散组件还用于将该第二光束分解成多个第二子光束;该色散组件还用于将该多个第一子光束和该多个第二子光束传输至该第一滤波器,该多个第一子光束和该多个第二子光束属于不同的波段;该第一滤波器用于基于该不同的波段将该多个第一子光束和该多个第二子光束的传输方向在第一方向分离成不同的传输方向,并将该多个第一子光束入射该重定向组件的第一区域,并将该多个第二子光束入射该重定向组件的第二区域,该第一区域和该第二区域沿该第一方向互相分离,该第一方向该重定向组件的端口方向;该输出端口用于输出经由该重定向组件重定向后的该多个第一子光束和该多个第二子光束。
可见,通过第一滤波器实现第一区域和第二区域在第一方向X上的分离的目的,从而有效地提升了光交换装置的滤波带宽。而且有效地减少了光交换装置所包括的光器件的数量,进而有效地减少了插损。
基于第一方面,一种可选地实现方式中,该色散组件和该输入端口之间还包括第二滤波器,该色散组件包括第一光栅和第二光栅;该输入端口用于将该第一光束和该第二光束入射该第二滤波器;该第二滤波器用于分别基于该第一光束和该第二光束属于的波段,改变该第一光束和该第二光束的传输方向,并将该第一光束和该第二光束分别传输至位于不同位置处的该第一光栅和该第二光栅;该第一光栅用于将该多个第一子光束传输至该第二滤波器,该第二光栅用于将该多个第二子光束传输至该第二滤波器;该第二滤波器用于基于该不同的波段将该多个第一子光束和该多个第二子光束传输至该重定向组件,以使该第一区域和该第二区域沿第二方向至少部分区域重合,该第二方向为该重定向组件的波长方向,该第一方向与该第二方向相互垂直。
可见,通过第二滤波器实现第一区域和第二区域在第二方向Y上的重合或部分重合的目的,进一步提升了光交换装置的滤波带宽。
基于第一方面,一种可选地实现方式中,该第一光栅用于将该至少一个第一子光束传输至该第二滤波器的第三区域,该第二光栅用于将该至少一个第二子光束传输至该第二滤波器的第四区域,该第三区域和该第四区域沿该第二方向至少部分重合。
可见,在该第三区域和该第四区域沿该第二方向至少部分重合的情况下,能够有效地保证第一光斑和第二光斑在第二方向Y上重合的目的,以实现提升了光交换装置的滤波带宽的目的,其中,第一光斑为第一光束在第一区域内所产生的光斑,第二光斑为第二光束在第二区域所产生的光斑。
基于第一方面,一种可选地实现方式中,该输入端口包括第一输入端口和第二输入端口,该第一输入端口和该第二输入端口沿该第二方向的位置不同,该第一输入端口用于输入该第一光束,该第二输入端口用于输入该第二光束;该第一输入端口用于沿第二方向,将该第一光束以第一入射角入射该色散组件,该第二输入端口用于沿该第二方向,将该第二光束以第二入射角入射该色散组件,该第一入射角和该第二入射角的绝对值的差值不为零,其中,该第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,该第二入射角与第二闪耀角度之间的差小于或等于第二预设值,该第一闪耀角度与该第一光束属于的波段对应,该第二闪耀角度与该第二光束属于的波段对应。
可见,该第一入射角与第一闪耀角度的之间的差小于或等于第一预设值的情况下,能够有效地提升第一光束从色散组件进行衍射的衍射效率,该第二入射角与第二闪耀角度之间的差小于或等于第二预设值的情况下,能够有效地提升第二光束从色散组件进行衍射的衍射效率。
基于第一方面,一种可选地实现方式中,该光交换装置还包括位于该输入端口和该色散组件之间的透镜组件,该透镜组件用于将该第一光束和该第二光束传输至该色散组件,沿该第二方向,该第一输入端口和该透镜组件的光轴之间的距离的大小与该第一入射角的大小相关,该第二输入端口和该透镜组件的光轴之间的距离的大小与该第二入射角的大小相关。
可见,通过调节该第一输入端口和该透镜组件的光轴之间的距离的大小的方式,以有效地保证该第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,以保证第一光 束的衍射效率,通过调节该第二输入端口和该透镜组件的光轴之间的距离的大小的方式,以有效地保证该第二入射角与第二闪耀角度的之间的差小于或等于第二预设值,以保证第二光束的衍射效率。
基于第一方面,一种可选地实现方式中,该光交换装置还包括第一反射镜和第二反射镜;该第一滤波器用于将该多个第一子光束传输至该第一反射镜,该第一滤波器还用于将该多个第二子光束传输至该第二反射镜;该第一反射镜用于将该多个第一子光束传输至该重定向组件,该第二反射镜用于将该多个第二子光束传输至该重定向组件。
可见,通过第一反射镜能够有效地保证第一光束传输至重定向组件的第一区域,通过第二反射镜能够有效地保证第二光束传输至重定向组件的第二区域,进而提升了光交换装置的滤波带宽。
基于第一方面,一种可选地实现方式中,该重定向组件用于将重定向后的该多个第一子光束传输至该第一反射镜,该重定向组件还用于将重定向后的该第二子光束传输至该第二反射镜;该第一反射镜用于将该第一子光束传输至该第一滤波器上的第五区域,该第二反射镜用于将该第二子光束传输至该第一滤波器上的第六区域。
基于第一方面,一种可选地实现方式中,该第一滤波器用于将重定向后的该多个第一子光束和该第二子光束传输至该色散组件,该色散组件用于将该多个第一子光束合并为第三光束,该色散组件还用于将该多个第二子光束合并为第四光束,该输出端口用于输出该第三光束和该第四光束。
可见,在第五区域和第六区域完全或部分重合的情况下,则第三光束和第四光束从光交换装置的同一输出端口输出,在第五区域和第六区域为互不重合的区域的情况下,则第三光束和第四光束从光交换装置的不同的输出端口输出。
基于第一方面,一种可选地实现方式中,该第一滤波器用于基于该多个第一子光束属于的波段,将该多个第一子光束作为反射光从该第一滤波器反射,该第一滤波器用于基于该多个第二子光束属于的波段,将该多个第二子光束作为穿通光从该第一滤波器穿通。
可见,第一滤波器对属于同一波段的光束先后两次通过薄膜滤波器时的传输方式不变,例如对第一子光束而言,先后两次均作为反射光进行反射,又如,对第二子光束而言,先后两次均作为穿通光进行穿通,有效地降低了滤波损伤。
基于第一方面,一种可选地实现方式中,该第一滤波器为薄膜滤波器,该薄膜滤波器具有折射率不同的两个区域;该两个区域分别对该多个第一子光束中的一个第一子光束进行反射的插损之间的差小于或等于第三预设值,该两个区域分别对该多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
可见,该薄膜滤波器具有折射率不同的两个区域的情况下,能够有效地保证第一滤波器的滤波谱不会出现偏移。
基于第一方面,一种可选地实现方式中,该第一光束和该第二光束具有至少一个不同的波长值。
基于第一方面,一种可选地实现方式中,该第一光束为C波段光束,该第二光束为L波段光束。
第二方面,本申请提供了一种光交换装置,包括输入端口、第三滤波器、色散组件、重定向组件以及输出端口;该输入端口用于将第一光束和第二光束入射该第三滤波器,该第一光束和该第二光束属于不同的波段;该第三滤波器用于基于该不同的波段将该第一光束和该第二光束的传输方向在第一方向分离成不同的传输方向,并将该第一光束和该第二光束传输至该色散组件,该第一方向为该重定向组件的端口方向;该色散组件用于将该第一光束分解成多个第一子光束,该色散组件还用于将该第二光束分解成多个第二子光束;该色散组件还用于将该多个第一子光束和该多个第二子光束入射至该重定向组件,其中,该多个第一子光束入射该重定向组件的第一区域,该多个第二子光束入射该重定向组件的第二区域,该第一区域和该第二区域沿该第一方向互相分离;该输出端口用于输出经由该重定向组件重定向后的该多个第一子光束和该多个第二子光束。
可见,通过第三滤波器实现第一区域和第二区域在第一方向X上的分离的目的,从而有效地提升了光交换装置的滤波带宽。而且有效地减少了光交换装置所包括的光器件的数量,进而有效地减少了插损。
基于第二方面,一种可选地实现方式中,该色散组件和该第三滤波器之间还包括第二滤波器,该色散组件包括第一光栅和第二光栅;该第三滤波器用于将该第一光束和该第二光束入射该第二滤波器;该第二滤波器用于分别基于该不同的波段改变该第一光束和该第二光束的传输方向,并将该第一光束和该第二光束分别传输至位于不同位置处的该第一光栅和该第二光栅;该第一光栅用于将该多个第一子光束传输至该第二滤波器,该第二光栅用于将该多个第二子光束传输至该第二滤波器;该第二滤波器用于分别基于该多个第一子光束和该多个第二子光束属于的波段,将该多个第一子光束和该多个第二子光束传输至该重定向组件,以使该第一区域和该第二区域沿第二方向至少部分区域重合,该第二方向为该重定向组件的波长方向,该第一方向与该第二方向相互垂直。
可见,通过第二滤波器实现第一区域和第二区域在第二方向Y上的重合或部分重合的目的,进一步提升了光交换装置的滤波带宽。
基于第二方面,一种可选地实现方式中,该第一光栅用于将该至少一个第一子光束传输至该第二滤波器的第三区域,该第二光栅用于将该至少一个第二子光束传输至该第二滤波器的第四区域,该第三区域和该第四区域沿该第二方向至少部分重合。
可见,在该第三区域和该第四区域沿该第二方向至少部分重合的情况下,能够有效地保证第一光斑和第二光斑在第二方向Y上重合的目的,以实现提升了光交换装置的滤波带宽的目的,其中,第一光斑为第一光束在第一区域内所产生的光斑,第二光斑为第二光束在第二区域所产生的光斑。
基于第二方面,一种可选地实现方式中,该输入端口包括第一输入端口和第二输入端口,该第一输入端口和该第二输入端口沿第二方向的位置不同,该第一输入端口用于输入该第一光束,该第二输入端口用于输入该第二光束;该第三滤波器用于沿第二方向,将该第一光束以第一入射角入射该色散组件,该第三滤波器还用于沿该第二方向,将该第二光束以第二入射角入射该色散组件,该第一入射角和该第二入射角的绝对值的差值不为零,其中,该第一入射角与第一闪耀角度的之间的差小于或等于第四预设值,该第二入射角与 第二闪耀角度之间的差小于或等于第五预设值,该第一闪耀角度与该第一光束属于的波段对应,该第二闪耀角度与该第二光束属于的波段对应。
可见,该第一入射角与第一闪耀角度的之间的差小于或等于第一预设值的情况下,能够有效地提升第一光束从色散组件进行衍射的衍射效率,该第二入射角与第二闪耀角度之间的差小于或等于第二预设值的情况下,能够有效地提升第二光束从色散组件进行衍射的衍射效率。
基于第二方面,一种可选地实现方式中,该光交换装置还包括位于该第三滤波器和该色散组件之间的透镜组件,该透镜组件用于将来自该第三滤波器的该第一光束和该第二光束传输至该色散组件,沿该第二方向,该第一输入端口和该透镜组件的光轴之间的距离的大小与该第一入射角的大小相关,该第二输入端口和该透镜组件的光轴之间的距离的大小与该第二入射角的大小相关。
可见,通过调节该第一输入端口和该透镜组件的光轴之间的距离的大小的方式,以有效地保证该第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,以保证第一光束的衍射效率,通过调节该第二输入端口和该透镜组件的光轴之间的距离的大小的方式,以有效地保证该第二入射角与第二闪耀角度的之间的差小于或等于第二预设值,以保证第二光束的衍射效率。
基于第二方面,一种可选地实现方式中,该第三滤波器用于基于该第一光束属于的波段,将该第一光束作为反射光从该第三滤波器反射,该第三滤波器用于基于该第二光束属于的波段,将该第二光束作为穿通光从该第三滤波器穿通。
基于第二方面,一种可选地实现方式中,该第三滤波器为薄膜滤波器,该薄膜滤波器具有折射率不同的两个区域;该两个区域分别对该第一光束进行反射的插损之间的差小于或等于第三预设值,该两个区域分别对该多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
可见,第三滤波器对属于同一波段的光束先后两次通过薄膜滤波器时的传输方式不变,例如对第一子光束而言,先后两次均作为反射光进行反射,又如,对第二子光束而言,先后两次均作为穿通光进行穿通,有效地降低了滤波损伤。
基于第二方面,一种可选地实现方式中,该第一光束和该第二光束具有至少一个不同的波长值。
基于第二方面,一种可选地实现方式中,该第一光束为C波段光束,该第二光束为L波段光束。
第三方面,本申请提供了一种重定向方法,应用于光交换装置,该光交换装置包括输入端口、色散组件、第一滤波器、重定向组件以及输出端口,该方法包括:通过该输入端口将第一光束和第二光束入射该色散组件;通过该色散组件将该第一光束分解成多个第一子光束,并将该第二光束分解成多个第二子光束,并将该多个第一子光束和该多个第二子光束传输至该第一滤波器,该多个第一子光束和该多个第二子光束属于不同的波段;通过该第一滤波器,以基于该不同的波段将该多个第一子光束和该多个第二子光束的传输方向在第一方向分离成不同的传输方向,并将该多个第一子光束入射该重定向组件的第一区域, 并将该多个第二子光束入射该重定向组件的第二区域,该第一区域和该第二区域沿该第一方向互相分离,该第一方向该重定向组件的端口方向;通过该输出端口输出经由该重定向组件重定向后的该多个第一子光束和该多个第二子光束。
本方面所示的有益效果的说明,请详见上述第一方面所示,具体不做赘述。
基于第三方面,一种可选地实现方式中,该色散组件和该输入端口之间还包括第二滤波器,该色散组件包括第一光栅和第二光栅,该通过该输入端口将第一光束和第二光束入射该色散组件包括:通过该输入端口将该第一光束和该第二光束入射该第二滤波器;通过该第二滤波器,以分别基于该第一光束和该第二光束属于的波段,改变该第一光束和该第二光束的传输方向,并将该第一光束和该第二光束分别传输至位于不同位置处的该第一光栅和该第二光栅;该方法还包括:通过该第一光栅将该多个第一子光束传输至该第二滤波器,并通过该第二光栅将该多个第二子光束传输至该第二滤波器;通过该第二滤波器,以基于该不同的波段将该多个第一子光束和该多个第二子光束传输至该重定向组件,以使该第一区域和该第二区域沿第二方向至少部分区域重合,该第二方向为该重定向组件的波长方向,该第一方向与该第二方向相互垂直。
基于第三方面,一种可选地实现方式中,该通过该第一光栅将该多个第一子光束传输至该第二滤波器,并通过该第二光栅将该多个第二子光束传输至该第二滤波器包括:通过该第一光栅将该至少一个第一子光束传输至该第二滤波器的第三区域,并通过该第二光栅将该至少一个第二子光束传输至该第二滤波器的第四区域,该第三区域和该第四区域沿该第二方向至少部分重合。
基于第三方面,一种可选地实现方式中,该输入端口包括第一输入端口和第二输入端口,该第一输入端口和该第二输入端口沿该第二方向的位置不同,该通过该输入端口将第一光束和第二光束入射该色散组件包括:沿第二方向,通过该第一输入端口将该第一光束以第一入射角入射该色散组件;沿该第二方向,通过该第二输入端口将该第二光束以第二入射角入射该色散组件,该第一入射角和该第二入射角的绝对值的差值不为零,其中,该第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,该第二入射角与第二闪耀角度之间的差小于或等于第二预设值,该第一闪耀角度与该第一光束属于的波段对应,该第二闪耀角度与该第二光束属于的波段对应。
基于第三方面,一种可选地实现方式中,该光交换装置还包括位于该输入端口和该色散组件之间的透镜组件,该方法还包括:通过该透镜组件将该第一光束和该第二光束传输至该色散组件,沿该第二方向,该第一输入端口和该透镜组件的光轴之间的距离的大小与该第一入射角的大小相关,该第二输入端口和该透镜组件的光轴之间的距离的大小与该第二入射角的大小相关。
基于第三方面,一种可选地实现方式中,该光交换装置还包括第一反射镜和第二反射镜,通过该第一滤波器将该多个第一子光束入射该重定向组件的第一区域,并将该多个第二子光束入射该重定向组件的第二区域包括:通过该第一滤波器将该多个第一子光束传输至该第一反射镜,并通过该第一滤波器将该多个第二子光束传输至该第二反射镜;通过该第一反射镜将该多个第一子光束传输至该重定向组件,并通过该第二反射镜将该多个第二 子光束传输至该重定向组件。
基于第三方面,一种可选地实现方式中,该方法还包括:通过该重定向组件将重定向后的该多个第一子光束传输至该第一反射镜,并通过该重定向组件将重定向后的该第二子光束传输至该第二反射镜;通过该第一反射镜将该第一子光束传输至该第一滤波器上的第五区域,并通过该第二反射镜将该第二子光束传输至该第一滤波器上的第六区域。
基于第三方面,一种可选地实现方式中,该方法还包括:通过该第一滤波器将重定向后的该多个第一子光束和该第二子光束传输至该色散组件;通过该色散组件将该多个第一子光束合并为第三光束,并通过该色散组件将该多个第二子光束合并为第四光束;通过该输出端口输出该第三光束和该第四光束。
基于第三方面,一种可选地实现方式中,该通过该第一滤波器,以基于该不同的波段将该多个第一子光束和该多个第二子光束的传输方向在第一方向分离成不同的传输方向包括:通过该第一滤波器,以基于该多个第一子光束属于的波段,将该多个第一子光束作为反射光从该第一滤波器反射,并通过该第一滤波器,以基于该多个第二子光束属于的波段,将该多个第二子光束作为穿通光从该第一滤波器穿通。
基于第三方面,一种可选地实现方式中,该第一滤波器为薄膜滤波器,该薄膜滤波器具有折射率不同的两个区域;该两个区域分别对该多个第一子光束中的一个第一子光束进行反射的插损之间的差小于或等于第三预设值,该两个区域分别对该多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
第四方面,本申请提供了一种重定向方法,应用于光交换装置,该光交换装置包括输入端口、第三滤波器、色散组件、重定向组件以及输出端口,该方法包括:通过该输入端口将第一光束和第二光束入射该第三滤波器,该第一光束和该第二光束属于不同的波段;通过该第三滤波器,以基于该不同的波段将该第一光束和该第二光束的传输方向在第一方向分离成不同的传输方向,并通过该第三滤波器将该第一光束和该第二光束传输至该色散组件,该第一方向为该重定向组件的端口方向;通过该色散组件将该第一光束分解成多个第一子光束,并通过该色散组件将该第二光束分解成多个第二子光束;并通过该色散组件将该多个第一子光束和该多个第二子光束入射至该重定向组件,其中,该多个第一子光束入射该重定向组件的第一区域,该多个第二子光束入射该重定向组件的第二区域,该第一区域和该第二区域沿该第一方向互相分离;通过该输出端口输出经由该重定向组件重定向后的该多个第一子光束和该多个第二子光束。
本方面所示的有益效果的说明,请详见上述第一方面所示,具体不做赘述。
基于第四方面,一种可选地方式中,该色散组件和该第三滤波器之间还包括第二滤波器,该色散组件包括第一光栅和第二光栅,该通过该第三滤波器将该第一光束和该第二光束传输至该色散组件包括:通过该第三滤波器将该第一光束和该第二光束入射该第二滤波器;通过该第二滤波器,以分别基于该不同的波段改变该第一光束和该第二光束的传输方向,并将该第一光束和该第二光束分别传输至位于不同位置处的该第一光栅和该第二光栅;该方法还包括:通过该第一光栅将该多个第一子光束传输至该第二滤波器,并通过该第二光栅将该多个第二子光束传输至该第二滤波器;通过该第二滤波器,以分别基于该多个第 一子光束和该多个第二子光束属于的波段,将该多个第一子光束和该多个第二子光束传输至该重定向组件,以使该第一区域和该第二区域沿第二方向至少部分区域重合,该第二方向为该重定向组件的波长方向,该第一方向与该第二方向相互垂直。
基于第四方面,一种可选地方式中,该方法还包括:通过该第一光栅将该至少一个第一子光束传输至该第二滤波器的第三区域,并通过该第二光栅将该至少一个第二子光束传输至该第二滤波器的第四区域,该第三区域和该第四区域沿该第二方向至少部分重合。
基于第四方面,一种可选地方式中,该输入端口包括第一输入端口和第二输入端口,该第一输入端口和该第二输入端口沿第二方向的位置不同,该通过该第三滤波器将该第一光束和该第二光束传输至该色散组件包括:沿第二方向,通过该第三滤波器将该第一光束以第一入射角入射该色散组件;沿该第二方向,通过该第三滤波器将该第二光束以第二入射角入射该色散组件,该第一入射角和该第二入射角的绝对值的差值不为零,其中,该第一入射角与第一闪耀角度的之间的差小于或等于第四预设值,该第二入射角与第二闪耀角度之间的差小于或等于第五预设值,该第一闪耀角度与该第一光束属于的波段对应,该第二闪耀角度与该第二光束属于的波段对应。
基于第四方面,一种可选地方式中,该光交换装置还包括位于该第三滤波器和该色散组件之间的透镜组件,该方法还包括:通过该透镜组件将来自该第三滤波器的该第一光束和该第二光束传输至该色散组件,沿该第二方向,该第一输入端口和该透镜组件的光轴之间的距离的大小与该第一入射角的大小相关,该第二输入端口和该透镜组件的光轴之间的距离的大小与该第二入射角的大小相关。
基于第四方面,一种可选地方式中,该第三滤波器用于基于该第一光束属于的波段,将该第一光束作为反射光从该第三滤波器反射,该第三滤波器用于基于该第二光束属于的波段,将该第二光束作为穿通光从该第三滤波器穿通。
基于第四方面,一种可选地方式中,该第三滤波器为薄膜滤波器,该薄膜滤波器具有折射率不同的两个区域;该两个区域分别对该第一光束进行反射的插损之间的差小于或等于第三预设值,该两个区域分别对该多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
第五方面,本申请提供了一种可重构光分插复用器,包括多个光交换装置,不同的该光交换装置之间通过光纤连接,该光交换装置如上述第一方面或第二方面任一项所示。
第六方面,本申请提供了一种光通信系统,包括多个可重构光分插复用器,该可重构光分插复用器如上述第五方面所示。
附图说明
图1为现有技术所提供的波长选择开关的结构示例图;
图2为本申请所提供的可重构光分插复用器的一种结构示例图;
图3为本申请所提供的光交换装置沿第二方向的第一种结构示例图;
图4为本申请所提供的光交换装置沿第一方向的第一种结构示例图;
图5为本申请所提供的光斑在重定向组件上的第一种排列示例图;
图6为本申请所提供的光束入射薄膜滤波器的一种示例图;
图7为本申请所提供的薄膜滤波器的滤波谱的第一种示例图;
图8为本申请所提供的光斑在重定向组件上的第二种排列示例图;
图9为图3所示的光交换装置的一种局部结构放大示例图;
图10为本申请所提供的薄膜滤波器的滤波谱的另一种示例图;
图11为图4所示的光交换装置的一种局部结构放大示例图;
图12为本申请所提供的光交换装置沿第二方向的第二种结构示例图;
图13为本申请所提供的光交换装置沿第一方向的第二种结构示例图;
图14为本申请所提供的光交换装置沿第二方向的第三种结构示例图;
图15为本申请所提供的光交换装置沿第一方向的第三种结构示例图;
图16为本申请所提供的光交换装置沿第二方向的第四种结构示例图;
图17为本申请所提供的光交换装置沿第一方向的第四种结构示例图;
图18为本申请所提供的光交换装置沿第二方向的第五种结构示例图;
图19为本申请所提供的光交换装置沿第一方向的第五种结构示例图;
图20为本申请所提供的重定向方法的第一种实施例步骤流程图;
图21为本申请所提供的重定向方法的第二种实施例步骤流程图;
图22为本申请所提供的重定向方法的第三种实施例步骤流程图;
图23为本申请所提供的重定向方法的第四种实施例步骤流程图;
图24为本申请所提供的光通信系统的一种结构示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。下文中将参考附图,更全面地说明本发明的示例实施例,附图中示出了示例实施例。然而,本发明可以以许多种不同方式实施,并且不应解释为限于本说明书中阐述的实施例。相反的,提供了这些实施例使得该公开是彻底的和完整的,并且将向本领域的技术人员充分传达本发明的范围。在附图中,出于清楚的目的,可能夸大层和区域的大小以及相对大小。相同的附图标记始终表示相同的元件。
首先结合图2所示对本申请所提供的ROADM的结构进行说明,其中,图2为本申请所提供的ROADM的一种结构示例图。
本实施例对该ROADM的具体网络结构不做限定,例如,包括多个光交换装置的ROADM可采用链形、环形和网状网等网络结构,图2所示以ROADM采用网状网的网络结构为例进行示例性说明,本实施例以光交换装置为WSS为例进行示例性说明。
本实施例该ROADM包括八个WSS(即WSS1、WSS2至WSS8)为例,该八个WSS位于不同 的位置,本实施例对ROADM所包括的WSS的数量以及各WSS所位于的位置不做限定。位于不同位置处的WSS之间用于进行光信号的交换,以实现对光信号的灵活调度。本实施例所示的位于不同位置可指在N个维度的方向不同,该N为大于或等于1的正整数。
以WSS1为例,WSS1可将光信号传输至该ROADM所包括的任一与WSS1通过光纤连接的WSS,以实现光信号的不同维度的方向的偏转,例如,本实施例所示的ROADM中,与该WSS1通过光纤连接有WSS4、WSS6以及WSS8,则WSS1可将光信号传输至WSS4、WSS6以及WSS8中的任一个WSS。本实施例以该WSS1通过光纤与WSS4、WSS6以及WSS8连接为例进行示例性说明,不做限定,在其他示例中,该WSS1还可与ROADM所包括的WSS2、WSS3、WSS5以及WSS7中的任意WSS通过光纤连接。
以下继续以WSS1和WSS4为例,对光信号的交换进行说明:
沿第一维度方向201传输的光信号,经由WSS1的输入端口输入至WSS1,经由WSS1对光信号的重定向,经由WSS1的输出端口将光信号经由光纤传输至WSS4,从WSS4的输出端口输出的光信号沿第二维度方向202进行传输,以实现对该光信号的传输方向由第一维度方向201偏转至第二维度方向202的目的。
以下结合不同的实施例,对本申请所提供的光交换装置的结构进行说明:
实施例一
以下结合图3和图4所示对本申请所提供的光交换装置的具体结构进行说明:其中,图3为该光交换装置沿第二方向的结构示例图,图4为该光交换装置沿第一方向的结构示例图。本实施例所示的光交换装置包括输入端口41、色散组件、重定向组件301以及输出端口(42、43),本实施例对输入端口和输出端口的具体数量不做限定。
以下首先对本申请所示的第一方向和第二方向进行说明,其中,本实施例所示的第一方向还可称之为交换方向或者端口方向,第二方向还可称之为波长方向或者色散方向,以该光交换装置所包括的不同的器件为参照,对第一方向和第二方向的定义是不同的,具体定义如下所示:
首先需明确的是,本实施例所示的经由输入端口输入至光交换装置的光束沿第三方向Z传输,而第三方向Z分别与所述第一方向X和第二方向Y垂直,且第一方向X与第二方向Y相互垂直。
定义1
本定义以重定向组件301为基准进行定义,本实施例所示的重定向组件301用于对经由输入端口输入的第一光束和第二光束的传输方向进行偏转。需明确的是,本实施例对重定向组件301进行传输方向偏转的光束的数量和属于的波段不做限定,只要不同的光束属于不同的波段即可。为实现对传输方向的偏转,则如图5所示,第一光束所产生的多个光斑位于重定向组件301的第一区域501,第二光束所产生的多个光斑位于重定向组件301的第二区域502。该第二方向Y为该第一区域501所包括的多个光斑的排列方向,该第二方向Y也为该第二区域502所包括的多个光斑的排列方向。该第一方向X为第一区域501和第二区域502在该重定向组件301上的排列方向。可见,在第一方向X和第二方向Y所形成的二维坐标系XY中,不同光束所产生的光斑可对应第二方向Y上的相同坐标,而不同 光束所产生的光斑对应第一方向X上的不同坐标,从而使得不同光束的光斑沿第二方向Y重合或至少部分重合,而不同光束的光斑沿第一方向X分离的目的,以提升重定向组件301的滤波带宽。
定义2
本定义继续以重定向组件301为基准进行定义,可选地,若该重定向组件301为硅基液晶(liquid crystal on silicon,LCOS)芯片,则该第一方向X为该重定向组件301加载相位光栅产生衍射光束的方向。还可选地,若该重定向组件301为液晶(liquid crystal)阵列芯片或者微机电系统(micro electro mechanical system,MEMS),则该第一方向X为产生偏转光束的方向,具体地,上述所示衍射光束或偏转光束在XZ平面内向输出端口传输,该XZ平面为以第一方向X和第三方向Z构成的视图方向,即该XZ平面同时沿第一方向X和第三方向Z延伸。
定义3
本定义以光交换装置所包括的输入端口和输出端口为基准进行定义,需明确的是,本示例对输入端口和输出端口的位置的说明为可选地示例,不做限定,只要输入端口能够将光束输入光交换装置,而输出端口能够将光束从光交换装置输出即可。如图3和图4所示,以该光交换装置包括输入端口41、输出端口42以及输出端口43为例。该光交换装置所包括的各端口(41、42以及43)在同一XZ平面内排列,具体地,在XZ平面内,多个端口(41、42以及43)位置分离,而在YZ平面(同时沿第二方向Y和第三方向Z延伸的平面),多个端口(41、42以及43)的位置可完全重合或部分重合。
以下对本实施例所示的光交换装置用于进行传输方向偏转的对象(即第一光束和第二光束)进行说明:
本实施例以该光交换装置用于对第一光束和第二光束的传输方向进行偏转为例进行示例性说明:在其他示例中,该光交换装置也可对其他数量的光束的传输方向进行偏转,如1个光束,又如两个以上的光束的传输方向进行偏转。本实施例所示的所述第一光束和所述第二光束具有不同的波长范围,以下结合具体示例对所述第一光束和所述第二光束具有不同的波长范围进行示例性说明:
例如,本实施例所示的所述第一光束为C波段(C band)光束,所述第二光束为L波段(L band)光束。例如,第一光束还可为E波段(E band)光束,而第二光束还可为O波段(O band)光束,只要所述第一光束和所述第二光束为不同的波段即可。
具体例如,第一光束具有N个波长值,即λ c-1、λ c-2……λ c-N,第二光束也可具有N个波长值,即λ L-1、λ L-2……λ L-N,本实施例对N的取值不做限定。第一光束和第二光束具有的波长值的数量也可以不同。其中,所述第一光束和所述第二光束具有不同的波长范围具体可指,λ c-1、λ c-2……λ c-N与λ L-1、λ L-2……λ L-N中,各波长值均不相同。所述第一光束和所述第二光束具有不同的波长范围还可指,λ c-1、λ c-2……λ c-N与λ L-1、 λ L-2……λ L-N中,具有一个或多个不相同的波长值,即λ c-1、λ c-2……λ c-N与λ L-1、λ L-2……λ L-N中,部分波长值相同,部分波长值不同。
以下对本实施例所示的光交换装置如何对第一光束以及第二光束的传输方向进行偏转的过程进行说明:
以图4所示为例,光交换装置所包括的输入端口41用于输入第一光束和第二光束(如图3和图4所示的由输入端口41输入的实线所示),即本实施例以第一光束和第二光束经由同一输入端口41输入至该光交换装置为例进行示例性说明,需明确的是,在其他的示例中,第一光束和第二光束也可经由不同的输入端口输入至光交换装置,具体不做限定。
可选地,经由输入端口41输入的第一光束和第二光束传输至第一准直透镜302,具体地,该输入端口41位于该第一准直透镜302的前焦点处,该第一准直透镜302用于对来自输入端口41的第一光束以及第二光束进行准直。
本实施例中,所述第一准直透镜302和第二滤波器303之间还设置有第一透镜组件,本实施例对第一透镜组件所包括的透镜的数量不做限定,只要该第一透镜组件能够将来自第一准直透镜302的准直后的第一光束和第二光束传输至第二滤波器303即可。本实施例以该第一透镜组件包括第一透镜304、第二透镜305、第三透镜306以及第四透镜307为例进行示例性说明,以下对本示例所示的各透镜(第一透镜304、第二透镜305、第三透镜306以及第四透镜307)的作用进行示例性说明:
所述第一透镜304用于在第二方向Y上(也即在YZ平面内)对第一光束以及第二光束进行整形,所述第二透镜305用于将来自第一透镜304的第一光束和第二光束传输至第三透镜306,所述第三透镜306用于在第一方向X上(也即XZ平面内)对第一光束以及第二光束进行整形。本实施例所示的整形可指,对第一光束照射在重定向组件301上的光斑的大小和对第二光束照射在重定向组件301上的光斑的大小进行调节。第四透镜307用于将整形后的第一光束和第二光束传输至第二滤波器303。
以下对第一透镜组件所包括的各透镜(第一透镜304、第二透镜305、第三透镜306以及第四透镜307)的位置进行示例性说明:
该第一准直透镜302的后焦点与该第一透镜304的前焦点重合,该第一准直透镜302与该第一透镜304之间的距离等于该第一准直透镜302的焦距和该第一透镜304的焦距之和。第一透镜304的后焦点与该第三透镜306的前焦点重合,第三透镜306的后焦点与第四透镜307的前焦点重合,该,且该第一准直透镜302的后焦点与该第二透镜305的前焦点重合,该第一准直透镜302与该第二透镜305之间的距离等于该第一准直透镜302的焦距和该第二透镜305的焦距之和,且第二透镜305位于第一透镜304和第三透镜306之间,可见,第二透镜305的焦距大于第一透镜304的焦距,需明确的是,本实施例对第一透镜组件所包括的各透镜的说明为可选地示例,不做限定,只要该第一透镜组件能够将第一光束和第二光束传输至第二滤波器303上即可。
本实施例所示的重定向组件301和所述第二滤波器303之间还设置有第二透镜组件,本实施例对该第二透镜组件所包括的透镜的数量不做限定,只要第二透镜组件能够将所述 第二滤波器303所出射的光束传输至所述重定向组件301上即可,本实施例以第二透镜组件包括第五透镜310为例进行示例性说明。
具体地,该第四透镜307和色散组件(即如图3所示的第一光栅308和第二光栅309)之间设置该第二滤波器303,本实施例对第二滤波器303的具体位置不做限定,只要该第二滤波器303位于第四透镜307和色散组件之间即可。本实施例对第一光栅308和第二光栅309的具体位置不做限定,只要第二滤波器303能够将第一光束聚焦至第一光栅308,且该第二滤波器303还能够将第二光束聚焦至第二光栅309即可。以第二光栅309为例,该第二光栅309位于第四透镜307的后焦点和第五透镜310的前焦点重合的位置。
该第五透镜310位于该第二滤波器303和重定向组件301之间,且重定向组件301位于第五透镜310的后焦点处,可见,所述重定向组件301和所述第五透镜310之间的距离等于所述第五透镜310的焦距。
如图3所示可知,在YZ平面内,本实施例以该第四透镜307将第一光束和第二光束传输至该第二滤波器303的相同位置处(即图3所示从所述第四透镜307出射的实线与所述第二滤波器303相交的位置)为例进行示例性说明,在其他示例中,该第二滤波器307也可将第一光束和第二光束传输至该第二滤波器303的不同位置。
本实施例所示的该第二滤波器303用于分别基于所述第一光束和所述第二光束属于的波段,改变所述第一光束和所述第二光束的传输方向,并将所述第一光束和所述第二光束分别传输至位于不同位置处的所述第一光栅308和所述第二光栅309。
具体地,所述第二滤波器303用于将第一光束和第二光束沿不同的方向从第二滤波器303出射,从而实现在YZ平面内,对第一光束的传输方向和第二光束的传输方向的分离,为更好的理解,以下结合第二滤波器303的具体结构进行说明:
本实施例以第二滤波器303为薄膜滤波器为例,该薄膜滤波器可为二向色滤光片(dichroic filter),如图6所示,在YZ平面(同时沿第二方向Y和第三方向Z延伸的平面),光束以入射角θ入射第二滤波器303,为更好的理解,以下继续结合图7所示,图7为薄膜滤波器的滤波谱的一种示例图。该滤波谱包括两个曲线,即穿通光的穿通曲线701和反射光的反射曲线702,本实施例所示的第一光束710的波段位于图7所示的第一波段范围内,以使位于该第一波段范围内的第一光束710在该第一波段对应的插损的作用下,以反射光的传输方式从第二滤波器303出射,即第一光束710成为反射光后传输方向发生改变,为更好的区分传输方向改变前后的第一光束,则将第一光束传输方向发生改变之前为图3以及图6所示的第一光束710,在第一光束由第二滤波器303反射后传输方向发生改变之后为图3以及图6所示的第一光束711,结合第一光束710和第一光束711的传输方向可知,第二滤波器303对第一光束710的反射作用,导致第一光束710的传输方向改变至第一光束711的传输方向。
本实施例所示的第二光束720的波段位于图7所示的第二波段范围内,以使位于该第二波段范围内的第二光束720在该第二波段对应的插损的作用下,以穿通光的传输方式从第二滤波器303出射,即第二光束720成为穿通光后传输方向发生改变,为更好的区分传输方向改变前后的第二光束,则将第二光束传输方向发生改变之前为图3以及图6所示的 第二光束720,在第二光束由第二滤波器303穿通后传输方向发生改变之后为图3以及图6所示的第二光束721。结合第二光束720和第二光束721的传输方向可知,第二滤波器303对第二光束720的穿通作用,导致第二光束720的传输方向改变至第二光束721的传输方向。
需明确的是,本实施例对第一波段的范围和第二波段的范围不做限定,只要位于不同波段的光束,在第二滤波器303的作用下,沿不同的传输方向进行传输即可。
继续如图3所示可知,第二滤波器303将传输方向发生改变的第一光束711传输至第一光栅308,并将传输方向发生改变的第二光束721传输至第二光栅309,本实施例所示的第一光束308和第二光栅309位于不同位置,本实施例对第一光栅308和第二光栅309的具体位置不做限定,只要所述第一光栅308位于第一光束711的传输光路上,且第二光栅309位于第二光束721的传输光路上,以保证第一光束711能够成功地传输至所述第一光栅308上以及保证第二光束721能够成功地传输至所述第二光栅309上即可。
本实施例所示以第一光栅308和第二光栅309为位于不同位置处的两个独立的光栅为例进行示例性说明,在其他示例中,第一光栅308和第二光栅309也可为一个呈曲面的光栅的两个区域。
所述第一光栅308用于对第一光束711进行分解以形成多个第一子光束712(即从第一光栅308出射的实线所示),例如,第一光栅308对第一光束711进行分解以形成N的第一子光束712,N个第一子光束712的波长分别为λ c-1、λ c-2……λ c-N。该第二光栅309用于对第二光束721进行分解以形成多个第二子光束722(即从第二光栅309出射的虚线所示),例如,第二光栅309对第二光束721进行分解以形成N的第二子光束,N个第二子光束的波长分别为λ L-1、λ L-2……λ L-N,对λ c-1、λ c-2……λ c-N以及λ L-1、λ L-2……λ L-N的具体说明,请详见上述所示,具体不做赘述。
所述第一光栅308还用于将多个第一子光束712传输至第二滤波器303,第二光栅309还用于将多个第二子光束722传输至第二滤波器303。可见,本实施例所示的所述第二滤波器303设置于多个第一子光束712以及多个第二子光束722的传输光路上,从而有效地保证多个第一子光束712以及多个第二子光束722能够成功地传输至所述第二滤波器303。
由图5所示可知,为提升滤波带宽,则需要由多个第一子光束712所产生的光斑位于第一区域501,多个第二子光束722所产生的光斑位于第二区域502,为更好地理解,以下结合具体光斑进行说明:
目标第一子光束在重定向组件301上所产生的第一光斑(位于第一区域501内)和目标第二子光束在重定向组件301上所产生的第二光斑(位于第二区域502内),沿第二方向Y重合,其中,该目标第一子光束为第一光栅308所产生的多个第一子光束712中的一个,目标第二子光束为第二光栅309所产生的多个第二子光束722中的一个。本实施例所示的第一光栅308和第二光栅309能够有效地保证第一光斑和第二光斑在第二方向Y上重合, 以下进行具体说明:
首先对第一光斑和第二光斑进行说明:
继续参见图5所示,各第一子光束712的光斑排列于图5所示的第一区域501,各第二子光束722的光斑的排列于图5所示的第二区域502,且本实施例所示的第一区域501和所述第二区域502沿第二方向Y重合。本实施例以第一区域501与第二区域502沿第二方向Y完全重合为例进行示例性说明,在其他示例中,该第一区域501和该第二区域502也可部分区域重合(如图8所示)。
所述第一光斑为目标第一子光束在所述重定向组件301上所产生的光斑,所述第二光斑为目标第二子光束在所述重定向组件301上所产生的光斑,且所述第一光斑在多个第一子光束712所产生的多个光斑中的排列顺序和所述第二光斑在多个第二子光束722所产生的多个光斑中的排列顺序相同,即第一光斑在第一区域501所包括的多个光斑中的排列顺序和第二光斑在第二区域502所包括的多个光斑中的排列顺序相同。
例如,该第一光斑为具有波长λ c-1的目标第一子光束入射所述重定向组件301所产生的光斑,该第二光斑为具有波长λ L-1的目标第二子光束入射所述重定向组件301所产生的光斑,即该第一光斑在第一区域501所包括的多个光斑中的排列顺序和该第二光斑在第二区域502所包括的多个光斑中的排列顺序均为第一个,又如,该第一光斑为具有波长λ c-N的目标第一子光束入射所述重定向组件301所产生的光斑,该第二光斑为具有波长λ L-N的目标第二子光束722入射所述重定向组件301所产生的光斑,且该第一光斑在第一区域501所包括的多个光斑中的排列顺序和该第二光斑在第二区域502所包括的多个光斑中的排列顺序均为第N个,本实施例对N的具体取值不做限定,只要该N等于大于或等于1的正整数即可。
为实现第一区域501和第二区域502沿第二方向Y重合的目的,则从第一光栅308出射的多个第一子光束712传输至所述第二滤波器303的第三区域,从所述第二光栅309出射的多个第二子光束722传输至所述第二滤波器303的第四区域,所述第三区域和所述第四区域沿所述第二方向Y重合。
具体地,为实现第一光斑和第二光斑在第二方向Y上重合的目的,则需要沿第二方向Y(也即在YZ平面内),从所述第一光栅308出射的目标第一子光束传输至所述第二滤波器303的位置和从第二光栅309出射的目标第二子光束传输至所述第二滤波器303的位置重合。
在其他示例中,为实现第一区域501和第二区域502沿第二方向Y部分重合的目的,则所述第三区域和所述第四区域可部分重合。具体地,为实现第一光斑和第二光斑在第二方向Y上部分重合的目的,则需要沿第二方向Y(也即在YZ平面内),从所述第一光栅308出射的目标第一子光束传输至所述第二滤波器303的位置和从第二光栅309出射的目标第 二子光束传输至所述第二滤波器303的位置相近,本实施例对相近的程度不做限定,只要第一光斑和第二光斑在第二方向Y上部分重合即可。
为实现从所述第一光栅308出射的目标第一子光束传输至所述第二滤波器303的位置和从第二光栅309出射的目标第二子光束传输至所述第二滤波器303的位置重合的目的,则可通过调节第一光束在YZ平面内入射所述第一光栅308的入射角度的大小的方式,调节目标第一子光束从所述第一光栅308出射的出射角度的大小,进而实现对目标第一子光束传输至第二滤波器303上的位置进行调节的目的,对目标第二子光束传输至第二滤波器303上的位置进行调节的过程,请参见对目标第一子光束传输第二滤波器303上的位置的说明,具体不做赘述,可见,通过对目标第一子光束传输至第二滤波器303上的位置和目标第二子光束传输至第二滤波器303的位置进行调节,以实现第一光斑和第二光斑在重定向组件301上重合或部分重合的目的。
例如,可通过如下所示的公式1对目标第一子光束从所述第一光栅308出射的出射角度进行调节:
公式1:d(sinα+sinβ)=mλ
其中,α为目标第一光束在YZ平面内入射第一光栅308的入射角度,β为目标第一子光束从所述第一光栅308出射的出射角度,d为第一光栅308中相邻的两个光栅刻线之间的间距,m为光栅的衍射级次,为常数。
基于该公式1所示可知,继续以对目标第一子光束为例,则可通过调节第一光栅308的位置,以调节目标第一光束在YZ平面内入射第一光栅308的入射角度α大小,进而调节目标第一子光束从所述第一光栅308出射的出射角度β的大小。
继续以目标第一子光束和目标第二子光束为例,对第二滤波器303如何将目标第一子光束和目标第二子光束传输至重定向组件301上的过程进行说明:
继续结合图9所示,其中,图9为图3所示的光交换装置的局部结构示例图。在图9中,目标第一子光束901和目标第二子光束902入射该第二滤波器303上的相同位置,即如图9所示的位置900。结合图3和图9所示,第二滤波器303需要将在第二方向Y上(也即在YZ平面内)重合的目标第一子光束901和目标第二子光束902向重定向组件301传输,具体地,为实现目标第一子光束901向重定向组件301传输的目的,则需要第二滤波器303将该目标第一子光束901作为反射光903(如图9所示的所述第二滤波器303出射的实线所示),向重定向组件301传输,还需要第二滤波器303将该目标第二子光束902作为穿通光904(如图9所示的所述第二滤波器303出射的虚线所示),向重定向组件301传输。可见,属于第一波段的光束,第一次入射该第二滤波器303时(即第一光束710入射所述第二滤波器303),和该光束第二次入射该第二滤波器303时(即目标第一子光束901入射所述第二滤波器303),均作为反射光从第二滤波器303反射。还可见,属于第二波段的光束,第一次入射该第二滤波器303时(即第二光束720入射所述第二滤波器303),和该光束第二次入射该第二滤波器303时(即目标第二子光束902入射所述第二滤波器303),均作为穿通光从第二滤波器303穿通。
以下对本实施例所示的第二滤波器303如何有效地保证属于第一波段的光束先后两次 入射所述第二滤波器303时,均为反射光进行说明:
首先,对已有的薄膜滤波器的缺陷进行说明:
对于已有的薄膜滤波器而言,属于同一波段的光束通过不同的入射角度先后两次入射薄膜滤波器,会使得滤波谱出现偏移,具体公式2所示进行具体说明:
公式2:
Figure PCTCN2021081988-appb-000001
其中,结合图6所示,λ 0为光束垂直于薄膜滤波器303的方向入射该薄膜滤波器303的波长,n 0为光束入射该薄膜滤波器303之前所处于的介质的有效折射率,neff为薄膜滤波器303的有效折射率,由该公式2所示可知,光束在YZ平面,前后两次以不同的入射角度θ的大小入射该薄膜滤波器303时,会导致光束的波长λ θ的大小出现变化。如图7所示可知,不同的光束的波长λ θ会对应不同的滤波器的插损,从而使得滤波谱出现偏移,以下结合具体示例性进行示例性说明:
例如,光束第一次以入射角度θ 1入射薄膜滤波器,此时该薄膜滤波器的滤波谱如图10所示的实线谱形,该光束第二次以入射角度θ 2入射薄膜滤波器,此时该薄膜滤波器的滤波谱如图10所示的虚线谱形,其中,θ 1与θ 2的绝对值互不相等。
由于滤波谱出现偏移(滤波谱由实线谱形偏移至虚线谱形),则会导致该薄膜滤波器对该光束的传输方式出现改变的情况,例如,一个光束具有的波长为λ N,λ N属于第一波段,具有λ N的光束第一次以θ 1入射该薄膜滤波器的情况下,基于实线谱形的滤波谱,与λ N对应的滤波器的插损能够使得该薄膜滤波器对该光束的传输方式为:该薄膜滤波器将具有λ N的光束作为反射光进行反射。
而在具有λ N的光束第二次以θ 2入射该薄膜滤波器的情况下,基于虚线谱形的滤波谱,与λ N对应两个滤波谱的插损能够使得该薄膜滤波器对该光束的传输方式为:该薄膜滤波器将具有λ N的光束一部分能量作为反射光进行反射,另一部分能量作为穿通光进行穿通。甚至在其他的示例中,属于同一波段的光束第一次入射薄膜滤波器时的传输方式为反射光,而第二次入射该薄膜滤波器时的传输方式为穿通光,可见,滤波谱的偏移会导致光束的传输方式的出现改变,例如,由反射光的传输方向变为穿通光的传输方向,又如,由穿通光的传输方向变为反射光的传输方向。
可见,若本实施例所示的第二滤波器303的滤波谱出现偏移,则会导致从第二滤波器303出射的部分子光束无法能够成功传输至重定向组件301,例如,只有在目标第一子光束901全部作为反射光903时,才能够保证目标第一子光束901成功地传输至重定向组件301,若该目标第一子光束901至少部分能量的传输方式变为穿通光,则会导致目标第一子光束901的至少部分能量无法成功传输至重定向组件301的弊端,提高了光交换装置的插损。
为有效地保证从第二滤波器303出射的各第一子光束和各第二子光束能够成功的传输至重定向组件301,则需要属于同一波段的光束先后两次入射该第二滤波器303时的传输方式一致,例如,属于第一波段的光束第一次入射所述第二滤波器303时作为反射光进行反射,则属于第一波段的光束第二次入射所述第二滤波器303时也作为反射光进行反射,为实现该目的,则本实施例所示的第二滤波器303根据属于第一波段的光束先后两次入射该滤波器303的位置划分两个区域,即第一反射区域和第二反射区域,结合上述所示的示例,即第一光束710以θ 1的入射角度入射所述第二滤波器303的第一反射区域,目标第一子光束901以θ 2的入射角度入射所述第二滤波器303的第二反射区域,对θ 1和θ 2的说明请详见上述所示,具体不做赘述。
本实施例通过如下所示的公式3保证属于第一波段的光束两次入射所述第二滤波器303的传输方式一致:
公式3:
Figure PCTCN2021081988-appb-000002
其中,该第一反射区域所具有的有效折射率n eff1和第二反射区域所具有的有效折射率n eff不同,只要本实施例所示的第二滤波器303的第一反射区域和第二反射区域的有效折射率和入射角满足上述公式3,即可使得属于第一波段的光束先后两次入射第二滤波器303均作为反射光从该第二滤波器303反射,进而使得第一光束710的所有第一子光束均能够向重定向组件301传输。
在本实施例所示的第二滤波器303满足上述公式3的情况下,则在属于第一波段的光束先后两次入射所述第二滤波器303的情况下,所述第二滤波器303的滤波谱不会出现偏移,进而使得第一光束710所包括的目标第一子光束以θ 1的入射角度入射所述第二滤波器303时的第一插损和目标第一子光束901以θ 2的入射角度入射所述第二滤波器303时的第二插损之间的差小于或等于第三预设值,其中,第一光束710所包括的目标第一子光束和目标第一子光束901具有相同的波长,本实施例对该第三预设值的大小不做限定,只要所述第一插损和所述第二插损相等或近似相等,可见,在第一插损和第二插损之间的差小于或等于第三预设值的情况下,能够有效地保证第二滤波器303的滤波谱不会出现偏移。
本实施例所示的第二滤波器303如何有效地保证属于第二波段的光束先后两次入射所述第二滤波器303时,均为穿通光的说明,请参见上述所示的保证属于第一波段的光束先后两次入射所述第二滤波器303均作为反射光的说明,具体不做赘述。
以下对从该第二滤波器303反射的多个第一子光束和从该第二滤波器303穿通的多个第二子光束如何向重定向组件301的传输过程进行说明:
继续结合图3和图4所示,所述第二滤波器303将多个第一子光束(如图3所示的从所述第二滤波器303出射的实线所示)和第二子光束(如图3所示的从所述第二滤波器303出现的虚线所示)传输至第五透镜310。本实施例所示的所述第五透镜310用于改变多个第一子光束和所述第二子光束的传输方向,以使多个第一子光束和多个第二子光束分别沿与所述第五透镜310的光轴平行的方向传输至第一滤波器311。需明确的是,本实施例对多个第一子光束和多个第二子光束沿与所述第五透镜310的光轴平行的方向进行传输为例 进行示例性说明,不做限定,只要多个第一子光束和多个第二子光束能够成功传输至所述第一滤波器311上即可。
由上述所示的第二滤波器303的说明所示可知,光交换装置能够通过所述第一光栅308、第二光栅309以及所述第二滤波器303将目标第一子光束和目标第二子光束沿第二方向Y重合,从而能够保证目标第一子光束的第一光斑和目标第二子光束的第二光斑沿第二方向Y重合,以下对本实施例所示的光交换装置如何实现多个第一子光束的传输方向和多个第二子光束的传输方向如何在第一方向X上进行分离的过程,从而有效地保证第一光斑和第二光斑沿第一方向X分离进行说明:
为实现多个第一子光束和多个第二子光束的传输方向沿第一方向X分离的目的,本实施例所示的光交换装置还包括第一反射镜312和第二反射镜313(如图4所示),所述第一滤波器311用于将属于第一波段的多个第一子光束401作为反射光反射至第一反射镜312,所述第一滤波器311还用于将属于第二波段的多个第二子光束402作为穿通光穿通至第二反射镜313,对反射光和穿通光的具体说明,请详见上述第二滤波器303的说明,具体不做赘述。
可见,通过所述第二滤波器311能够将属于第一波段的多个第一子光束401和属于第二波段的多个第二子光束402的传输方向在XZ平面内分离成不同的传输方向,从而分别传输至位于不同位置处的第一反射镜312和第二反射镜313。
本实施例对第一反射镜312和第二反射镜313的具体位置不做限定,只要所述第一反射镜312设置于多个第一子光束401的传输光路上,即第一反射镜312设置于多个第一子光束401从第一滤波器311反射并向重定向组件301进行传输的传输光路上,且所述第二反射镜313设置与从第一滤波器311穿通的多个第二子光束402的传输光路上,即第二反射镜313设置于多个第二子光束402从第一滤波器311穿通并向重定向组件301进行传输的传输光路上。
为更清楚的理解,以下结合图4和图11所示,其中,图11为图4所示的光交换装置的局部结构放大示例图。从所述第一反射镜312反射的多个第一子光束403(从第一反射镜312出射的实线所示)照射在如图5所示的第一区域501,需明确的是,本实施例所示对第一子光束和第二子光束不同的标号仅用于区分第一子光束的传输路径的改变以及第二子光束的传输路径的改变。从所述第二反射镜313反射的多个第二子光束404(从第二反射镜313出射的实线所示)照射在如图5所示的第二区域502,可见,本实施例所示的第一区域501和所述第二区域502沿第一方向X分离,沿第二方向Y重合或部分重合,从而使得本实施例所示的光交换装置能够有效地提升第一光束和第二光束的滤波带宽。
所述重定向组件301用于对各第一子光束403进行传输方向的偏转,其中,各第一子光束403经由所述重定向组件301偏转传输方向后,作为重定向后的第一子光束405(从重定向组件301出射的虚线所示)传输至所述第一反射镜312。所述重定向组件301还用于对各第二子光束404进行传输方向的偏转,其中,各第二子光束404经由所述重定向组件301偏转传输方向后,作为重定向后的第二子光束406(从重定向组件301出射的虚线所示)传输至所述第二反射镜313。
可见,本实施例所示的该第一反射镜312还设置于从重定向组件301出射的各第一子光束405的传输光路上,该第二反射镜313还设置于从重定向组件301出射的各第二子光束406的传输光路上。
在该XZ平面内,经由所述重定向组件301偏转了传输方向的多个第一子光束405可沿一个出射角度进行出射,也可沿多个出射角度进行出射,具体在本实施例中不做赘述,例如,若多个第一子光束405沿同一输出端口(例如输出端口42)从光交换装置输出,则多个第一子光束405可沿同一出射角度从重定向组件301出射,从而使得多个第一子光束能够传输至该输出端口42进行输出。若多个第一子光束405沿两个输出端口(例如输出端口42和输出端口43),则多个第一子光束405可沿两个不同的出射角度从重定向组件301出射,从而使得部分第一子光束405从输出端口42输出,部分第一子光束405从输出端口43输出。对第二子光束406从重定向组件301进行出射的说明,请详见对第一子光束405从重定向组件301出射的过程,具体不做赘述。
所述第一反射镜312用于将来自重定向组件301的各第一子光束405反射至第一滤波器311,即第一反射镜312用于将第一子光束407(从第一反射镜312出射的虚线所示)反射至第一滤波器311。所述第二反射镜313用于将来自重定向组件301的各第二子光束406反射至第一滤波器311,即第二反射镜313用于将第二子光束408(从第二反射镜313出射的虚线所示)反射至第一滤波器311。
具体地,所述第一反射镜312用于将目标第一子光束传输至所述第一滤波器311上的第五区域,所述第二反射镜313用于将目标第二子光束传输至所述第一滤波器311上的第六区域,由上述所示可知,目标第一子光束为多个第一子光束中的一个第一子光束,目标第二子光束为多个第二子光束中的一个第二子光束,本实施例中,为实现目标第一子光束和目标第二子光束通过同一输出端口(例如输出端口42)输出,则该第五区域和该第六区域需要完全或部分重合。若需要实现目标第一子光束和目标第二子光束通过不同的输出端口(例如输出端口43和输出端口413)输出,则该第五区域和该第六区域为互不重合的区域。
本实施例中,该第一滤波器311为将各第一子光束成功地传输至输出端口,则需要属于第一波段的第一子光束第一次入射所述第一滤波器311(即来自第五透镜310的第一子光束)和所述第一子光束第二次入射所述第一滤波器311(即来自第一反射镜312的第一子光束407),均为反射光进行反射。所述第一滤波器311为将各第二子光束成功地传输至输出端口,则需要属于第二波段的第二子光束入射所述第一滤波器311(即来自第五透镜310的第二子光束)和所述第二子光束第二次入射所述第一滤波器311(即来自第二反射镜313的第二子光束407),均为穿通光进行穿通。
本实施例中,所述第一滤波器311如何有效地保证第一子光束先后两次入射所述第一滤波器311时均为反射光的过程,请详见上述图10所示的所述第二滤波器303如何有效地保证属于第一波段的光束先后两次入射所述第二滤波器303时,均为反射光的过程,具体不做赘述。对第一滤波器311如何有效地保证第二子光束先后两次入射所述第一滤波器311时均为穿通光的过程,请详见上述图10所示的所述第二滤波器303如何有效地保证属于第 二波段的光束先后两次入射所述第二滤波器303时,均为穿通光的过程,具体不做赘述。
以下对从所述第一滤波器311出射的各第一子光束以及各第二子光束如何向输出端口传输的过程进行说明:
所述第五透镜310用于分别将第一子光束409和第二子光束410传输至所述第二滤波器303,所述第二滤波器303用于基于第一子光束409属于的第一波段将第一子光束409反射至第一光栅308。所述第二滤波器303还用于基于第二子光束410属于的第二波段将第二子光束410穿通至第二光栅309,反射的过程和穿通的过程,请详见上述图6以及图7所示,具体不做赘述。
如图3所示,所述第一光栅308用于将所述多个第一子光束409合并为第三光束411(从所述第一光栅308出射的实线所示),所述第二光栅309用于将所述多个第二子光束410合并为第四光束412(从所述第二光栅309出射的虚线所示),
所述第二滤波器303用于基于所述第三光束411属于的第一波段将第三光束411作为反射光进行反射,从而使得第二滤波器303对第一子光束的传输方式和对所述第三光束411的传输方式均为反射光,从而有效地保证了各第一子光束能够成功地传输至第一光栅308,还能够有效地保证第三光束411能够成功地传输至第四透镜307。所述第二滤波器303用于基于所述第四光束412属于的第二波段将第四光束412作为穿通光进行穿通,从而使得第二滤波器303对第二子光束的传输方式和对所述第四光束412的传输方式均为穿通光,从而有效地保证了各第二子光束能够成功地传输至第二光栅309,还能够有效地保证第四光束412能够成功地传输至第四透镜307。
所述第三光束411和所述第四光束412依次经由第四透镜307、第三透镜306、第二透镜305以及第一透镜304对所述第三光束411和所述第四光束412的传输光路进行调整,以使所述第三光束411传输至对应的输出端口42进行输出,并使得所述第四光束412传输至对应的输出端口43进行输出。需明确的是,本实施例对第三光束411和所述第四光束412具体通过哪个输出端口进行输出的不做限定,例如,所述第三光束411和所述第四光束412和通过同一输出端口从该光交换装置中输出,又如,所述第三光束411和所述第四光束412可通过不同的输出端口从该光交换装置中输出等。
在本实施例以所述第三光束411通过输出端口42进行输出,且以第四光束412通过输出端口43进行输出的示例下,则第四透镜307、第三透镜306、第二透镜305以及第一透镜304能够将所述第三光束411传输至与输出端口42传输的第二准直透镜314。第三光束411经由第二准直透镜314准直后经由输出端口42输出。所述第四透镜307、第三透镜306、第二透镜305以及第一透镜304还能够将所述第二光束412传输至与输出端口43传输的第三准直透镜315。第二光束412经由第三准直透镜315准直后经由输出端口43输出。
采用本实施例所示的光交换装置的有益效果在于,因本实施例所示的光交换装置无需设置光器件(如AWG)对输入光束进行复用和解复用,有效地减少了增加光器件(如AWG)带来的插损。而且通过第二滤波器实现第一区域和第二区域在第二方向Y上的重合或部分重合,通过第一滤波器实现第一区域和第二区域在第一方向X上的分离,从而有效地提升了光交换装置的滤波带宽。
在本实施例所示的第一滤波器以及第二滤波器为薄膜滤波器的情况下,对于属于同一波段的光束先后两次通过薄膜滤波器时的传输方式不变,例如先后两次均作为反射光进行反射,又如,先后两次均作为穿通光进行穿通,有效地降低了滤波损伤。
实施例二
在实施例一中,第一光束和第二光束经由同一输入端口输入至光交换装置,本实施例以第一光束和第二光束通过不同的输入端口输入至光交换装置为例进行示例性说明:
本实施例所示的光交换装置的结构请参见图12和图13所示,其中,图12所示为该光交换装置沿第二方向的结构示例图,图13为该光交换装置沿第一方向的结构示例图。对第一方向X,第二方向Y以及第三方向Z的说明,请详见实施例一所示,具体不做赘述。
本实施例所示的该光交换装置包括第一输入端口1201和第二输入端口1202。由图示所示可知,所述第一输入端口1201和所述第二输入端口1202沿所述第二方向Y的位置不同,具体地,所述第一输入端口1201和第二输入端口1202在YZ平面内位置分离并排列设置,而在XZ平面内位置重合设置。需明确的是,本实施例对第一输入端口1201和第二输入端口1202在XZ平面内的位置的说明仅为一种示例,例如,在其他示例中,第一输入端口1201和第二输入端口1202可在XZ平面内位置分离。本实施例所示的第一输入端口1201用于输出第一光束,第二输入端口1202用于输入第二光束,对第一光束和第二光束的说明,请详见实施例一所示,具体不做赘述。
以下对本实施例所示的光交换装置如何对第一光束以及第二光束的传输方向进行偏转的过程进行说明:
可选地,经由所述第一输入端口1201输入的第一光束传输至第四准直透镜1203,该第一输入端口1201位于该第四准直透镜1203的前焦点处,该第四准直透镜1203用于对来自第一输入端口1201的第一光束进行准直。经由所述第二输入端口1202输入的第二光束传输至第五准直透镜1204,该第二输入端口1202位于该第五准直透镜1204的前焦点处,该第五准直透镜1204用于对来自第二输入端口1202的第一光束进行准直。
本实施例中,所述第四准直透镜1203、所述第五准直透镜1204和第二滤波器303之间还设置有第一透镜组件,本实施例对第一透镜组件所包括的透镜的数量不做限定,只要该第一透镜组件能够将来自第四准直透镜1203的第一光束和来自第五准直透镜1204的第二光束传输至第二滤波器303即可。对所述第二滤波器303的说明,请详见实施例一所示,具体不做赘述。
本实施例以该第一透镜组件以包括第五透镜1205以及第六透镜1206为例进行示例性说明,需明确的是,本实施例对第一透镜组件的说明为可选地示例,例如,该第一透镜组件所包括的透镜也可如实施例一所示。
以下对第一透镜组件所包括的各透镜(第五透镜1205以及第六透镜1206)的位置进行示例性说明:
该第四准直透镜1203的后焦点位于该第五透镜1205的前焦点平面,该第五透镜1205的前焦点平面是指包括该第五透镜1205的前焦点的XY平面。该第五准直透镜1204的后焦点也位于该第五透镜1205的前焦点平面。即在YZ平面内,所述第四准直透镜1203与所述 第五透镜1205之间的距离等于所述第四准直透镜1203的焦距和所述第五透镜1205的焦距之和,且所述第五准直透镜1204与所述第五透镜1205之间的距离等于所述第五准直透镜1204的焦距和所述第五透镜1205的焦距之和。依次类推,第五透镜1205的后焦点与该第六透镜1206的前焦点重合。该第六透镜1206和色散组件(即第一光栅308和第二光栅309)之间设置该第二滤波器303,对色散组件的具体说明,请详见实施例一所示,具体不做赘述。
所述第二滤波器303和所述重定向组件301之间设置有第二透镜组件,本实施例对第二透镜组件所包括的透镜的数量和作用不做限定,例如,本实施例所示的所述第二透镜组件包括第七透镜1207。该第七透镜1207位于该第二滤波器303和重定向组件301之间,对第七透镜1207位置的说明,请详见实施例所示的对第五透镜310的说明,具体不做赘述。
本实施例中,经由第四准直透镜1203准直后的第一光束1208(如图12所示从第四准直透镜1203出射的实线所示)依次经由第五透镜1205以及第六透镜1206接力传输至所述第二滤波器303,经由第五准直透镜1204准直后的第二光束1209(如图12所示从第四准直透镜1203出射的虚线所示)依次经由第五透镜1205以及第六透镜1206接力传输至所述第二滤波器303,本实施例中,沿YZ平面,该第六透镜1206将第一光束1208和第二光束1209传输至该第二滤波器303的不同位置处为例进行示例性说明。本实施例对沿YZ平面,第一光束1208传输至所述第二滤波器303上的第一位置和第二光束1209传输至所述第二滤波器303上的第二位置的具体位置不做限定,只要第一位置和第二位置在所述第二滤波器303上为不同的位置即可。
如图12所示,本实施例所示的该第二滤波器303用于分别基于所述第一光束1208和所述第二光束1209属于的波段,改变所述第一光束1208和所述第二光束1209的传输方向,并将所述第一光束1208和所述第二光束1209分别传输至位于不同位置处的所述第一光栅308和所述第二光栅309,所述第二滤波器303还用于对来自第一光栅308的多个第一子光束1210以反射光的方式传输至所述第七透镜1207,所述第二滤波器303还用于对来自第二光栅309的多个第二子光束1211以穿通光的方式传输至所述第七透镜1207,具体过程的说明,请详见实施例一所示,具体不做赘述。
所述第七透镜1207用于将多个第一子光束1210和多个第二子光束1211分别沿与所述第七透镜1207的光轴平行的方向传输至第一滤波器311,如图13所示,所述第一滤波器311、第一反射镜312和第二反射镜313共同用于使得多个第一子光束1210的光斑形成于所述重定向组件301的第一区域501内,还用于使得多个第二子光束1211的光斑形成于所述重定向组件301的第二区域502内,对具体过程的说明,请详见实施例一所示,具体不做赘述。
本实施例对从所述重定向组件301重定向后的各第一子光束1212以及各第二子光束1213如何向输出端口传输的过程的说明,请详见实施例一所示,具体不做赘述。
因本实施例所示的第一光束1208和第二光束1209分别通过独立的第一输入端口1201和第二输入端口1202输入至所述光交换装置,则本实施例所示的光交换装置无需设置与输入端口耦合的用于将第一光束1208和第二光束1209进行复用的滤波器,对比于实施例一 可知,因在实施例一中,第一光束和第二光束需要通过同一输入端口输入至光交换装置,则需要设置与该输入端口耦合的滤波器,该滤波器用于将通过两根不同的光纤进行传输的第一光束和第二光束进行复用,从而使得实施例一所示的输入端口能够同时将第一光束和第二光束输入至该光交换装置,可见,实施例二相对于实施例一减少了光器件的数量,降低了插损。
实施例三
在实施例一和实施例二中,通过设置的第二滤波器303、第一光栅308以及第二光栅309的方式实现第一区域501和第二区域502在第二方向Y上的至少部分区域重合的目的,而本实施例在无需设置第二滤波器303的情况下,即可实现第一区域501和第二区域502在第二方向Y上的至少部分区域重合的目的,具体如下所示:
如图14和图15所示,相对于实施例一和实施例二,本实施例所示的色散组件仅包括一个光栅1400,其中,图14为该光交换装置沿第二方向的结构示例图,图15为该光交换装置沿第一方向的结构示例图。
本实施例所示的光交换装置包括第一输入端口1401和第二输入端口1402,对用于输入第一光束的第一输入端口1401和用于输入第二光束的第二输入端口1402的具体说明,请详见实施例二所示,具体不做赘述。
可选地,经由所述第一输入端口1401输入的第一光束传输至第四准直透镜1403,经由所述第二输入端口1402输入的第二光束传输至第五准直透镜1404,对第四准直透镜1403和第五准直透镜1404的具体说明,请详见实施例二所示,具体不做赘述。
所述光交换装置还包括第一透镜组件,本实施例以第一透镜组件包括第一透镜304、第二透镜305、第三透镜306以及第四透镜307,需明确的是,实施例三所示的第一透镜组件以所包括的透镜与实施例一相同为例,本实施例对第一透镜组件所包括的透镜的数量和作用不做限定,在其他示例中,实施例三所示的第一透镜组件所包括的透镜还可与实施例二相同。
对第一透镜304、第二透镜305以及第三透镜306具体位置和作用的说明,请详见实施例一所示,具体不做赘述。
相对于实施例一,不同之处在于,本实施例所示的所述光栅1400位于第四透镜307的后焦点和第二透镜组件所包括的第五透镜310的前焦点交接的位置,对第二透镜组件的说明请详见实施例一所示,具体不做赘述。
本实施例中,由第一输入端口1401输入的第一光束1405,依次经由第四准直透镜1403、第一透镜304、第二透镜305、第三透镜306以及第四透镜307传输至光栅1400,由第二输入端口1402输入的第二光束1406依次经由第五准直透镜1404、第一透镜304、第二透镜305、第三透镜306以及第四透镜307传输至光栅1400,具体传输过程的说明,请参见实施例一所示,具体不做赘述。
本实施例中,在YZ平面,所述第四透镜307用于将第一光束1405和第二光束1406传输至光栅1400上相同或相近的位置,本实施例中,在YZ平面,所述第一光束1405和所述第二光束1406传输至光栅1400上相同或相近的位置,才会有效地保证第一光斑和第二光 斑沿第二方向Y至少部分区域重合,对第一光斑和第二光斑的说明,请详见实施例一所示,具体不做赘述。
本实施例中,可通过调节第一入射角大小的方式提升第一光束1405的衍射效率,其中,该第一入射角为所述第一光束1405在YZ平面内入射所述光栅1400的入射角度。还可通过调节第二入射角大小的方式提升第二光束1406的衍射效率,其中,该第二入射角为所述第二光束1406在YZ平面内入射所述光栅1400的入射角度,以下对第一入射角和第二入射角的大小进行说明:
本实施例所示的第一入射角和第二入射角的大小不等,即所述第一入射角和所述第二入射角的绝对值的差值不为零。其中,所述第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,本实施例对所述第一预设值的具体大小不做限定,只要第一入射角与第一闪耀角度相等或近似相等即可,本实施例以该第一预设值为5为例进行示例性说明。
所述第一闪耀角度与所述第一光束属于的波段对应,可见,本实施例在明确第一光束1405属于的波段的情况下,即可确定该波段对应的闪耀角度。本实施例以属于C波段的光束对应的闪耀角度为第一闪耀角度为例,在第一光束1405以该第一闪耀角度或以与该第一闪耀角度近似相等的角度(即所述第一入射角)入射所述光栅1400的情况下,所述光栅1400具有较优的衍射效率,可见,在第一光束1405以该第一入射角入射光栅1400,能够有效地提升第一光束1405从光栅1400进行衍射的衍射效率。
本实施例所示的所述第二入射角与第二闪耀角度的之间的差小于或等于上述所示的所述第一预设值。所述第二闪耀角度与所述第二光束1406属于的波段对应,可见,本实施例在明确第二光束1406属于的L波段的情况下,即可确定该L波段对应的闪耀角度。具体地,在第二光束1406以该第二闪耀角度或以与该第二闪耀角度近似相等的角度(即所第二入射角)入射所述光栅1400的情况下,所述光栅1400具有较优的衍射效率,可见,在第二光束1406以该第二入射角入射光栅1400,能够有效地提升第二光束1406从光栅1400进行衍射的衍射效率。
为保障第一光束1405以所述第一入射角入射光栅1400,以及为保证第二光束1406以所述第二入射角入射光栅1400,则可通过如下所示的方式调节第一入射角和第二入射角的大小,以使所述第一入射角与所述第一闪耀角度相等或近似相等,并使得所述第二入射角与所述第二闪耀角度相等或近似相等。
以第一入射角而言,可通过在YZ平面内,调节第一输入端口1401和位于所述输入端口和光栅1400之间的透镜(304、305以及306)的光轴之间的距离的方式,调节第一入射角的大小,直至第一入射角和第一闪耀角度之间的差小于或等于第一预设值。对第二入射角的调节方式的说明,请详见对第一入射角的调节方式,具体不做赘述。
本实施例所示的光栅1400用于将所述第一光束1405分解成多个第一子光束1407(如图14所示的从光栅1400出射的实线),所述光栅1400还用于将所述第二光束1406分解成多个第二子光束1408(如图14所示的从光栅1400出射的虚线),对所述第一子光束1407和所述第二子光束1408的具体说明,请详见实施例一所示,具体不做赘述。
所述光栅1400用于通过第五透镜310将多个第一子光束1407和多个第二子光束1408 传输至第一滤波器311。所述第一滤波器311、第一反射镜312和第二反射镜313共同用于使得多个第一子光束1407的光斑形成于所述重定向组件301的第一区域501内,还用于使得多个第二子光束1408的光斑形成于所述重定向组件301的第二区域502内,对具体过程的说明,请详见实施例一所示,具体不做赘述。
从所述第一滤波器311出射的多个第一子光束以及多个第二子光束传输至光栅1400,所述光栅1400用于对多个第一子光束进行合并以形成第一光束,所述光栅1400还用于对多个第二子光束进行合并以形成第二光束,对第一光束和第二光束通过输出端口进行输出的过程的说明,请详见实施例一所示,具体不做赘述。
采用本实施例所示的光交换装置,本实施例所示的光栅1400的数量为一个,对比于实施例一和实施例二的两个光栅以及第二滤波器的结构,减少了光器件的数量,降低了对第一光束和第二光束的传输方向进行偏转的过程中的插损。
实施例四
实施例一至实施例三中,在第一光束和第二光束输入至光交换装置时,先对第一光束和第二光束在第二方向上进行调节,即通过第一光束和第二光束在第二方向上的调节,使得第一光束在重定向组件上所产生的第一光斑和第二光束在重定向组件上所产生的第二光斑沿第二方向Y重合或部分重合,具体说明,请详见实施例一至实施例三所示。对第一光束和第二光束完成了第二方向上的调节后,再进行第一方向上的调节,从而使得第一光斑和第二光斑沿第一方向X位置分离。
而本实施例中,先对第一光束和第二光束在第一方向X上进行调节,再对第一光束和第二光束在第二方向Y上进行调节,具体过程如下:
本实施例参见图16和图17所示,其中,图16为该光交换装置沿第二方向的结构示例图,图17为该光交换装置沿第一方向的结构示例图。
本实施例中,该光交换装置包括用于输入第一光束和第二光束的输入端口41,对第一光束、第二光束和输入端口41的具体说明,请详见实施例一所示,具体不做赘述。需明确的是,本实施例以第一光束和第二光束经由同一输入端口41输入至光交换装置为例进行示例性说明,在其他示例中,第一光束和第二光束也可经由不同的输入端口输入至所述光交换装置,如实施例二所示,具体不做赘述。
可选地,该光交换装置还包括与输入端口41耦合的第一准直透镜302,对该第一准直透镜302的具体说明,请详见实施例一所示,具体不做赘述。
经由第一准直透镜302准直后的第一光束和第二光束传输至第三滤波器1601,即本实施例所示的光交换装置还包括第三滤波器1601,所述第三滤波器1601位于第一准直透镜302的后焦点处,即在XZ平面内,所述第一准直透镜302和所述第三滤波器1601之间的距离,等于所述准直透镜302的焦距。本实施例所示的第三滤波器1601可为薄膜滤波器,对薄膜滤波器的具体说明,请详见实施例一所示,具体不做赘述。
具体地,本实施例所示的所述第三滤波器1601接收到所述第一光束和所述第二光束后,即可基于所述第一光束属于的波段和第二光束属于的波段,将所述第一光束和所述第二光束的传输方向在第一方向分离成不同的传输方向,具体地,本实施例所示的在第一方向对 第一光束和第二光束的传输方向进行分离具体是指,在XZ平面内,将所述第一光束和所述第二光束的传输方向分离成不同的传输方向。
以图17所示,在所述第三滤波器1601为薄膜滤波器的情况下,由实施例一对薄膜滤波器原理的说明可知,所述第三滤波器1601能够将第一光束1602和第二光束1603以不同的传输方式进行传输以实现传输方向在XZ平面的分离。
本实施例所示的光交换装置还包括第一透镜组件,本实施例所示的第一透镜组件包括第一透镜304、第二透镜305、第三透镜306以及第四透镜307,对所述第一透镜组件的具体说明请详见实施例一所示,具体不做赘述。本实施例所示的第三滤波器1601位于所述第二透镜305的前焦点处。
所述第四透镜307用于将第一光束1602和第二光束1603传输至第二滤波器303,所述第二滤波器303用于分别基于所述第一光束1602和所述第二光束1603属于的波段,改变所述第一光束1602和所述第二光束1603的传输方向,并将所述第一光束1602和所述第二光束1603分别传输至位于不同位置处的所述第一光栅308和所述第二光栅309,所述第二滤波器303还用于对来自第一光栅308的多个第一子光束1604(从所述第一光栅308出射的实线所示)以反射光的方式传输至所述第五透镜310,所述第二滤波器303还用于对来自第二光栅309的多个第二子光束1605(从所述第二光栅309出射的虚线所示)以穿通光的方式传输至所述第五透镜310,具体过程以及第五透镜310的说明,请详见实施例一所示,具体不做赘述。
所述第五透镜310用于将多个第一子光束1606(从所述第五透镜310出射的实线所示)和多个第二子光束1607(从所述第五透镜310出现的虚线所示)分别沿与所述第五透镜310的光轴平行的方向传输至所述重定向组件301,且多个第一子光束1606的光斑形成于所述重定向组件301的第一区域501内,多个第二子光束1607的光斑形成于所述重定向组件301的第二区域502内,对具体过程的说明,请详见实施例一所示,具体不做赘述。
本实施例对从所述重定向组件301出射的重定向后的各第一子光束以及各第二子光束如何向输出端口传输的过程的说明,请详见实施例一所示,具体不做赘述。
本实施例有益效果的说明,请详见实施例一所示,具体不做赘述。
实施例五
在实施例四中,通过设置的第二滤波器303、第一光栅308以及第二光栅309的方式实现将第一光斑和第二光斑在第二方向Y上的至少部分区域重合的目的,而本实施例在无需设置第二滤波器303的情况下,即可实现第一光斑和第二光斑在第二方向Y上的至少部分区域重合的目的,具体如下所示:
如图18和图19所示,其中,图18为该光交换装置沿第二方向的结构示例图,图19为该光交换装置沿第一方向的结构示例图。相对于实施例四,本实施例所示的色散组件仅包括一个光栅1800。
本实施例所示的光交换装置包括第一输入端口1401和第二输入端口1402,对用于输入第一光束的第一输入端口1401和用于输入第二光束的第二输入端口1402的具体说明,请详见实施例三所示,具体不做赘述。
可选地,经由所述第一输入端口1401输入的第一光束传输至第四准直透镜1403,经由所述第二输入端口1402输入的第二光束传输至第五准直透镜1404,对第四准直透镜1403和第五准直透镜1404的具体说明,请详见实施例三所示,具体不做赘述。
本实施例所示的光交换装置还包括第三滤波器1801,所述第三滤波器1801位于所述第四准直透镜1403和所述第五准直透镜1404的后焦面,所述第三滤波器1801用于基于所述第一光束属于的波段和第二光束属于的波段,将所述第一光束和所述第二光束的传输方向在第一方向分离成不同的传输方向,具体说明,请详见实施例四所示,具体不做赘述。
本实施例所示的光交换装置还包括第一透镜组件,本实施例所示的第一透镜组件包括第一透镜304、第二透镜305、第三透镜306以及第四透镜307,对第一透镜组件的具体说明,请详见实施例一所示,具体不做赘述。本实施例所示的该光栅1800位于第四透镜307的后焦点和第五透镜310的前焦点交接的位置。对光栅1800和第五透镜310的说明,请详见实施例四所示,具体不做赘述。
可见,本实施例中,由第一输入端口1401输入的第一光束1802(如图18所示由第一输入端口1401传输至光栅1800的实线所示),依次经由第四准直透镜1403、第三滤波器1801、第一透镜304、第二透镜305、第三透镜306以及第四透镜307传输至光栅1800,由第二输入端口1402输入的第二光束1803(如图18所示由第二输入端口1402传输至光栅1800的虚线所示),依次经由第五准直透镜1404、第三滤波器1801、第一透镜304、第二透镜305、第三透镜306以及第四透镜307传输至光栅1800,具体传输过程的说明,请参见实施例三所示,具体不做赘述。
本实施例中,在YZ平面,所述第四透镜307用于将第一光束1802和第二光束1803传输至光栅1800上相同或相近的位置,且在YZ平面,所述第一光束1802以第一入射角入射所述光栅1800,所述第二光束1803以第二入射角入射所述光栅1800,对所述第一入射角和所述第二入射角的说明,请详见实施例三所示,具体不做赘述。
本实施例所示的光栅1800用于将所述第一光束1802分解成多个第一子光束1804(如图18所示从光栅1800出射的实线所示),所述光栅1400还用于将所述第二光束1803分解成多个第二子光束1805(如图18所示从光栅1800出射的虚线所示),对所述第一子光束1804和所述第二子光束1805的具体说明,请详见实施例三所示,具体不做赘述。
所述光栅1800用于通过第五透镜310将多个第一子光束1804和多个第二子光束1805传输至重定向组件301,且多个第一子光束1804的光斑形成于所述重定向组件301的第一区域501内,多个第二子光束1805的光斑形成于所述重定向组件301的第二区域502内,对具体过程的说明,请详见实施例四所示,具体不做赘述。
本实施例对从所述重定向组件301出射的重定向后的各第一子光束以及各第二子光束如何向输出端口传输的过程的说明,请详见实施例四所示,具体不做赘述。
实施例六
本实施例提供一种重定向方法,本实施例所示的重定向方法基于实施例一或实施例二所示的光交换装置,对所述光交换装置的具体结构请参见实施例一或实施例二所示,具体不做赘述,以下结合图20所示对本实施例所示的重定向方法的执行过程进行示例性,其中, 图20为本申请所提供的重定向方法的第一种实施例步骤流程图。
步骤2001、光交换装置通过输入端口将第一光束和第二光束入射第二滤波器。
本实施例中,光交换装置可通过实施例一所示的同一输入端口实现将第一光束和第二光束输入至光交换装置的目的。还可选地,光交换装置也可通过实施例二所示的通过第一输入端口将第一光束输入至光交换装置,还可通过第二输入端口将第二光束输入至光交换装置。
步骤2002、光交换装置通过第二滤波器将第一光束和第二光束分别传输至位于不同位置处的第一光栅和第二光栅。
具体地,光交换装置通过第二滤波器,以分别基于第一光束和第二光束属于的波段,改变第一光束和第二光束的传输方向,从而使得第一光束传输至第一光栅,第二光束传输至第二光栅。
步骤2003、光交换装置通过第一光栅将第一光束分解成多个第一子光束。
步骤2004、光交换装置通过第二光栅将第二光束分解成多个第二子光束。
步骤2005、光交换装置通过第一光栅将多个第一子光束传输至第二滤波器。
步骤2006、光交换装置通过第二光栅将多个第二子光束传输至第二滤波器。
步骤2007、光交换装置通过第二滤波器,以基于不同的波段将多个第一子光束和多个第二子光束传输至第一滤波器。
步骤2008、光交换装置通过第一滤波器将多个第一子光束入射重定向组件的第一区域。
步骤2009、光交换装置通过第一滤波器将多个第二子光束入射重定向组件的第二区域。
具体地,光交换装置通过第一滤波器,以基于不同的波段将多个第一子光束和多个第二子光束的传输方向在第一方向分离成不同的传输方向,以使多个第一子光束入射重定向组件的第一区域,多个第二子光束入射重定向组件的第二区域。
更具体地,光交换装置通过第一滤波器将多个第一子光束传输至第一反射镜,并通过第一滤波器将多个第二子光束传输至第二反射镜;光交换装置即可通过第一反射镜将多个第一子光束传输至重定向组件的第一区域,并通过第二反射镜将多个第二子光束传输至重定向组件的第二区域。
步骤2010、光交换装置通过重定向组件将重定向后的多个第一子光束传输至第一反射镜。
步骤2011、光交换装置通过重定向组件将重定向后的第二子光束传输至第二反射镜。
步骤2012、光交换装置通过第一反射镜将第一子光束传输至第一滤波器上的第五区域,并通过第二反射镜将第二子光束传输至第一滤波器上的第六区域。
可选地,若需要第一子光束和第二子光束通过同一输出端口输出,则第五区域和第六区域重合或部分重合。还可选地,若第一子光束和第二子光束需要通过不同的输出端口输出,则第五区域和第二区分位置分离。
步骤2013、光交换装置通过第一滤波器将重定向后的多个第一子光束和第二子光束传输至第一光栅和第二光栅。
步骤2014、光交换装置通过第一光栅将多个第一子光束合并为第三光束,并通过第二 光栅将多个第二子光束合并为第四光束。
步骤2015、光交换装置通过输出端口输出第三光束和第四光束。
本实施例所示的有益效果的说明,请详见实施例一或实施例二所示,具体在本实施例中不做赘述。
实施例七
本实施例提供一种重定向方法,本实施例所示的重定向方法基于实施例三所示的光交换装置,对光交换装置的具体结构请参见实施例三所示,具体不做赘述,以下结合图21所示对本实施例所示的重定向方法的执行过程进行示例性,其中,图21为本申请所提供的重定向方法的第二种实施例步骤流程图。
步骤2101、光交换装置通过第一输入端口将第一光束以第一入射角入射色散组件。
步骤2102、光交换装置通过第二输入端口将第二光束以第二入射角入射色散组件。
其中,第一入射角和第二入射角的绝对值的差值不为零,其中,第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,第二入射角与第二闪耀角度之间的差小于或等于第二预设值,第一闪耀角度与第一光束属于的波段对应,第二闪耀角度与第二光束属于的波段对应,对第一入射角和第二入射角的具体说明,请详见实施例三所示,具体不做赘述。
具体地,光交换装置通过第一透镜组件将第一光束和第二光束传输至色散组件,沿第二方向,第一输入端口和透镜组件的光轴之间的距离的大小与第一入射角的大小相关,第二输入端口和透镜组件的光轴之间的距离的大小与第二入射角的大小相关。
步骤2103、光交换装置通过光栅将第一光束分解成多个第一子光束,并通过光栅将第二光束分解成多个第二子光束。
步骤2104、光交换装置通过光栅将多个第一子光束和多个第二子光束传输至第一滤波器。
步骤2105、光交换装置通过第一滤波器将多个第一子光束入射重定向组件的第一区域。
步骤2106、光交换装置通过第一滤波器将多个第二子光束入射重定向组件的第二区域。
步骤2107、光交换装置通过重定向组件将重定向后的多个第一子光束传输至第一反射镜。
步骤2108、光交换装置通过重定向组件将重定向后的第二子光束传输至第二反射镜。
步骤2109、光交换装置通过第一反射镜将第一子光束传输至第一滤波器上的第五区域,并通过第二反射镜将第二子光束传输至第一滤波器上的第六区域。
本实施例所示的步骤2105至步骤2109的执行过程,请详见实施例六所示的步骤2008至步骤2012所示,具体不做赘述。
步骤2110、光交换装置通过第一滤波器将重定向后的多个第一子光束和第二子光束传输至光栅。
步骤2111、光交换装置通过光栅将多个第一子光束合并为第三光束,并通过光栅将多个第二子光束合并为第四光束。
步骤2112、光交换装置通过输出端口输出第三光束和第四光束。
本实施例所示的有益效果的说明,请详见实施例三所示,具体不做赘述。
实施例八
本实施例提供一种重定向方法,本实施例所示的重定向方法基于实施例四所示的光交换装置,对光交换装置的具体结构请参见实施例四所示,具体不做赘述,以下结合图22所示对本实施例所示的重定向方法的执行过程进行示例性,其中,图22为本申请所提供的重定向方法的第三种实施例步骤流程图。
步骤2201、光交换装置通过输入端口将第一光束和第二光束入射第三滤波器。
其中,第一光束和第二光束属于不同的波段,具体说明请详见实施例四所示,不做赘述。
步骤2202、光交换装置通过第三滤波器将第一光束和第二光束传输至第二滤波器。
具体地,光交换装置通过第三滤波器,以基于不同的波段将第一光束和第二光束的传输方向在第一方向分离成不同的传输方向,以使第一光束和第二光束传输至第二滤波器。
步骤2203、光交换装置通过第二滤波器将第一光束和第二光束分别传输至位于不同位置处的第一光栅和第二光栅。
具体地,光交换装置通过第二滤波器,以分别基于不同的波段改变第一光束和第二光束的传输方向,以使第一光束传输至第一光栅,并使得第二光束传输至第二光栅。
步骤2204、光交换装置通过第一光栅将第一光束分解成多个第一子光束。
步骤2205、光交换装置通过第二光栅将第二光束分解成多个第二子光束。
步骤2206、光交换装置通过第一光栅将多个第一子光束传输至第二滤波器。
步骤2207、光交换装置通过第二光栅将多个第二子光束传输至第二滤波器。
本实施例所示的步骤2204至步骤2207所示的执行过程,请详见图20所示的步骤2003至步骤2006所示,具体不做赘述。
步骤2208、光交换装置通过第二滤波器,以基于不同的波段将多个第一子光束和多个第二子光束传输至重定向组件。
步骤2209、光交换装置通过重定向组件将重定向后的多个第一子光束传输至第二滤波器。
步骤2210、光交换装置通过重定向组件将重定向后的多个第二子光束传输至第二滤波器。
步骤2211、光交换装置通过第二滤波器将重定向后的多个第一子光束和第二子光束传输至第一光栅和第二光栅。
步骤2212、光交换装置通过第一光栅将多个第一子光束合并为第三光束,并通过第二光栅将多个第二子光束合并为第四光束。
步骤2213、光交换装置通过输出端口输出第三光束和第四光束。
本实施例所示的有益效果的说明,请详见实施例四所示,具体不做赘述。
实施例九
本实施例提供一种重定向方法,本实施例所示的重定向方法基于实施例五所示的光交换装置,对光交换装置的具体结构请参见实施例五所示,具体不做赘述,以下结合图23所 示对本实施例所示的重定向方法的执行过程进行示例性,其中,图23为本申请所提供的重定向方法的第四种实施例步骤流程图。
步骤2301、光交换装置通过第一输入端口将第一光束入射第三滤波器。
步骤2302、光交换装置通过第二输入端口将第二光束入射第三滤波器。
步骤2303、光交换装置通过第三滤波器将第一光束和第二光束传输至光栅。
步骤2304、光交换装置通过光栅将第一光束分解成多个第一子光束,并将第二光束分解成多个第二子光束。
步骤2305、光交换装置通过光栅将多个第一子光束和多个第二子光束传输至重定向组件。
步骤2306、光交换装置通过重定向组件将重定向后的多个第一子光束和多个第二子光束传输至光栅。
步骤2307、光交换装置通过光栅将多个第一子光束合并为第三光束,并通过第二光栅将多个第二子光束合并为第四光束。
步骤2308、光交换装置通过输出端口输出第三光束和第四光束。
本实施例所示的有益效果的说明,请详见实施例五所示,具体不做赘述。
实施例九
本申请还提供了一种光通信系统,以下结合图24所示对本申请所提供的光通信系统2400的结构进行说明:该光通信系统2400包括多个ROADM,如图24所示的ROADM2401、ROADM2402、ROADM2403、ROADM2404以及ROADM2405,需明确的是,本实施例对光通信系统2400所包括的ROADM的数量的说明为可选地示例,不做限定。
该光通信系统2400还包括连接在两个ROADM之间的光纤,以ROADM2401和ROADM2405为例,该光通信系统2400还包括连接在ROADM2401和ROADM2405之间的光纤2406,本实施例对光通信系统2400所包括的多个ROADM之间的连接关系不做限定。对各ROADM的具体说明,请详见上述图2所示,具体不做赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (40)

  1. 一种光交换装置,其特征在于,包括输入端口、色散组件、第一滤波器、重定向组件以及输出端口;
    所述输入端口用于将第一光束和第二光束入射所述色散组件,所述色散组件用于将所述第一光束分解成多个第一子光束,所述色散组件还用于将所述第二光束分解成多个第二子光束;所述色散组件还用于将所述多个第一子光束和所述多个第二子光束传输至所述第一滤波器,所述多个第一子光束和所述多个第二子光束属于不同的波段;
    所述第一滤波器用于基于所述不同的波段将所述多个第一子光束和所述多个第二子光束的传输方向在第一方向分离成不同的传输方向,并将所述多个第一子光束入射所述重定向组件的第一区域,并将所述多个第二子光束入射所述重定向组件的第二区域,所述第一区域和所述第二区域沿所述第一方向互相分离,所述第一方向所述重定向组件的端口方向;
    所述输出端口用于输出经由所述重定向组件重定向后的所述多个第一子光束和所述多个第二子光束。
  2. 根据权利要求1所述的光交换装置,其特征在于,所述色散组件和所述输入端口之间还包括第二滤波器,所述色散组件包括第一光栅和第二光栅;
    所述输入端口用于将所述第一光束和所述第二光束入射所述第二滤波器;
    所述第二滤波器用于分别基于所述第一光束和所述第二光束属于的波段,改变所述第一光束和所述第二光束的传输方向,并将所述第一光束和所述第二光束分别传输至位于不同位置处的所述第一光栅和所述第二光栅;
    所述第一光栅用于将所述多个第一子光束传输至所述第二滤波器,所述第二光栅用于将所述多个第二子光束传输至所述第二滤波器;
    所述第二滤波器用于基于所述不同的波段将所述多个第一子光束和所述多个第二子光束传输至所述重定向组件,以使所述第一区域和所述第二区域沿第二方向至少部分区域重合,所述第二方向为所述重定向组件的波长方向,所述第一方向与所述第二方向相互垂直。
  3. 根据权利要求2所述的光交换装置,其特征在于,所述第一光栅用于将所述至少一个第一子光束传输至所述第二滤波器的第三区域,所述第二光栅用于将所述至少一个第二子光束传输至所述第二滤波器的第四区域,所述第三区域和所述第四区域沿所述第二方向至少部分重合。
  4. 根据权利要求1所述的光交换装置,其特征在于,所述输入端口包括第一输入端口和第二输入端口,所述第一输入端口和所述第二输入端口沿所述第二方向的位置不同,所述第一输入端口用于输入所述第一光束,所述第二输入端口用于输入所述第二光束;
    所述第一输入端口用于沿第二方向,将所述第一光束以第一入射角入射所述色散组件,所述第二输入端口用于沿所述第二方向,将所述第二光束以第二入射角入射所述色散组件,所述第一入射角和所述第二入射角的绝对值的差值不为零,其中,所述第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,所述第二入射角与第二闪耀角度之间的差小于或等于第二预设值,所述第一闪耀角度与所述第一光束属于的波段对应,所述第二闪耀角度与所述第二光束属于的波段对应。
  5. 根据权利要求4所述的光交换装置,其特征在于,所述光交换装置还包括位于所述输入端口和所述色散组件之间的透镜组件,所述透镜组件用于将所述第一光束和所述第二光束传输至所述色散组件,沿所述第二方向,所述第一输入端口和所述透镜组件的光轴之间的距离的大小与所述第一入射角的大小相关,所述第二输入端口和所述透镜组件的光轴之间的距离的大小与所述第二入射角的大小相关。
  6. 根据权利要求1至5任一项所述的光交换装置,其特征在于,所述光交换装置还包括第一反射镜和第二反射镜;
    所述第一滤波器用于将所述多个第一子光束传输至所述第一反射镜,所述第一滤波器还用于将所述多个第二子光束传输至所述第二反射镜;
    所述第一反射镜用于将所述多个第一子光束传输至所述重定向组件,所述第二反射镜用于将所述多个第二子光束传输至所述重定向组件。
  7. 根据权利要求6所述的光交换装置,其特征在于,
    所述重定向组件用于将重定向后的所述多个第一子光束传输至所述第一反射镜,所述重定向组件还用于将重定向后的所述第二子光束传输至所述第二反射镜;
    所述第一反射镜用于将所述第一子光束传输至所述第一滤波器上的第五区域,所述第二反射镜用于将所述第二子光束传输至所述第一滤波器上的第六区域。
  8. 根据权利要求1至7任一项所述的光交换装置,其特征在于,所述第一滤波器用于将重定向后的所述多个第一子光束和所述第二子光束传输至所述色散组件,所述色散组件用于将所述多个第一子光束合并为第三光束,所述色散组件还用于将所述多个第二子光束合并为第四光束,所述输出端口用于输出所述第三光束和所述第四光束。
  9. 根据权利要求1至8任一项所述的光交换装置,其特征在于,所述第一滤波器用于基于所述多个第一子光束属于的波段,将所述多个第一子光束作为反射光从所述第一滤波器反射,所述第一滤波器用于基于所述多个第二子光束属于的波段,将所述多个第二子光束作为穿通光从所述第一滤波器穿通。
  10. 根据权利要求9所述的光交换装置,其特征在于,所述第一滤波器为薄膜滤波器,所述薄膜滤波器具有折射率不同的两个区域;
    所述两个区域分别对所述多个第一子光束中的一个第一子光束进行反射的插损之间的差小于或等于第三预设值,所述两个区域分别对所述多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
  11. 根据权利要求1至10任一项所述的光交换装置,其特征在于,所述第一光束和所述第二光束具有至少一个不同的波长值。
  12. 根据权利要求1至11任一项所述的光交换装置,其特征在于,所述第一光束为C波段光束,所述第二光束为L波段光束。
  13. 一种光交换装置,其特征在于,包括输入端口、第三滤波器、色散组件、重定向组件以及输出端口;
    所述输入端口用于将第一光束和第二光束入射所述第三滤波器,所述第一光束和所述第二光束属于不同的波段;
    所述第三滤波器用于基于所述不同的波段将所述第一光束和所述第二光束的传输方向在第一方向分离成不同的传输方向,并将所述第一光束和所述第二光束传输至所述色散组件,所述第一方向为所述重定向组件的端口方向;
    所述色散组件用于将所述第一光束分解成多个第一子光束,所述色散组件还用于将所述第二光束分解成多个第二子光束;所述色散组件还用于将所述多个第一子光束和所述多个第二子光束入射至所述重定向组件,其中,所述多个第一子光束入射所述重定向组件的第一区域,所述多个第二子光束入射所述重定向组件的第二区域,所述第一区域和所述第二区域沿所述第一方向互相分离;
    所述输出端口用于输出经由所述重定向组件重定向后的所述多个第一子光束和所述多个第二子光束。
  14. 根据权利要求13所述的光交换装置,其特征在于,所述色散组件和所述第三滤波器之间还包括第二滤波器,所述色散组件包括第一光栅和第二光栅;
    所述第三滤波器用于将所述第一光束和所述第二光束入射所述第二滤波器;
    所述第二滤波器用于分别基于所述不同的波段改变所述第一光束和所述第二光束的传输方向,并将所述第一光束和所述第二光束分别传输至位于不同位置处的所述第一光栅和所述第二光栅;
    所述第一光栅用于将所述多个第一子光束传输至所述第二滤波器,所述第二光栅用于将所述多个第二子光束传输至所述第二滤波器;
    所述第二滤波器用于分别基于所述多个第一子光束和所述多个第二子光束属于的波段,将所述多个第一子光束和所述多个第二子光束传输至所述重定向组件,以使所述第一区域和所述第二区域沿第二方向至少部分区域重合,所述第二方向为所述重定向组件的波长方向,所述第一方向与所述第二方向相互垂直。
  15. 根据权利要求14所述的光交换装置,其特征在于,所述第一光栅用于将所述至少一个第一子光束传输至所述第二滤波器的第三区域,所述第二光栅用于将所述至少一个第二子光束传输至所述第二滤波器的第四区域,所述第三区域和所述第四区域沿所述第二方向至少部分重合。
  16. 根据权利要求13所述的光交换装置,其特征在于,所述输入端口包括第一输入端口和第二输入端口,所述第一输入端口和所述第二输入端口沿第二方向的位置不同,所述第一输入端口用于输入所述第一光束,所述第二输入端口用于输入所述第二光束;
    所述第三滤波器用于沿第二方向,将所述第一光束以第一入射角入射所述色散组件,所述第三滤波器还用于沿所述第二方向,将所述第二光束以第二入射角入射所述色散组件,所述第一入射角和所述第二入射角的绝对值的差值不为零,其中,所述第一入射角与第一闪耀角度的之间的差小于或等于第四预设值,所述第二入射角与第二闪耀角度之间的差小于或等于第五预设值,所述第一闪耀角度与所述第一光束属于的波段对应,所述第二闪耀角度与所述第二光束属于的波段对应。
  17. 根据权利要求16所述的光交换装置,其特征在于,所述光交换装置还包括位于所述第三滤波器和所述色散组件之间的透镜组件,所述透镜组件用于将来自所述第三滤波器 的所述第一光束和所述第二光束传输至所述色散组件,沿所述第二方向,所述第一输入端口和所述透镜组件的光轴之间的距离的大小与所述第一入射角的大小相关,所述第二输入端口和所述透镜组件的光轴之间的距离的大小与所述第二入射角的大小相关。
  18. 根据权利要求13至17任一项所述的光交换装置,其特征在于,所述第三滤波器用于基于所述第一光束属于的波段,将所述第一光束作为反射光从所述第三滤波器反射,所述第三滤波器用于基于所述第二光束属于的波段,将所述第二光束作为穿通光从所述第三滤波器穿通。
  19. 根据权利要求18所述的光交换装置,其特征在于,所述第三滤波器为薄膜滤波器,所述薄膜滤波器具有折射率不同的两个区域;
    所述两个区域分别对所述第一光束进行反射的插损之间的差小于或等于第三预设值,所述两个区域分别对所述多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
  20. 根据权利要求13至19任一项所述的光交换装置,其特征在于,所述第一光束和所述第二光束具有至少一个不同的波长值。
  21. 根据权利要求13至20任一项所述的光交换装置,其特征在于,所述第一光束为C波段光束,所述第二光束为L波段光束。
  22. 一种重定向方法,其特征在于,应用于光交换装置,所述光交换装置包括输入端口、色散组件、第一滤波器、重定向组件以及输出端口,所述方法包括:
    通过所述输入端口将第一光束和第二光束入射所述色散组件;
    通过所述色散组件将所述第一光束分解成多个第一子光束,并将所述第二光束分解成多个第二子光束,并将所述多个第一子光束和所述多个第二子光束传输至所述第一滤波器,所述多个第一子光束和所述多个第二子光束属于不同的波段;
    通过所述第一滤波器,以基于所述不同的波段将所述多个第一子光束和所述多个第二子光束的传输方向在第一方向分离成不同的传输方向,并将所述多个第一子光束入射所述重定向组件的第一区域,并将所述多个第二子光束入射所述重定向组件的第二区域,所述第一区域和所述第二区域沿所述第一方向互相分离,所述第一方向所述重定向组件的端口方向;
    通过所述输出端口输出经由所述重定向组件重定向后的所述多个第一子光束和所述多个第二子光束。
  23. 根据权利要求22所述的方法,其特征在于,所述色散组件和所述输入端口之间还包括第二滤波器,所述色散组件包括第一光栅和第二光栅,所述通过所述输入端口将第一光束和第二光束入射所述色散组件包括:
    通过所述输入端口将所述第一光束和所述第二光束入射所述第二滤波器;
    通过所述第二滤波器,以分别基于所述第一光束和所述第二光束属于的波段,改变所述第一光束和所述第二光束的传输方向,并将所述第一光束和所述第二光束分别传输至位于不同位置处的所述第一光栅和所述第二光栅;
    所述方法还包括:
    通过所述第一光栅将所述多个第一子光束传输至所述第二滤波器,并通过所述第二光栅将所述多个第二子光束传输至所述第二滤波器;
    通过所述第二滤波器,以基于所述不同的波段将所述多个第一子光束和所述多个第二子光束传输至所述重定向组件,以使所述第一区域和所述第二区域沿第二方向至少部分区域重合,所述第二方向为所述重定向组件的波长方向,所述第一方向与所述第二方向相互垂直。
  24. 根据权利要求23所述的方法,其特征在于,所述通过所述第一光栅将所述多个第一子光束传输至所述第二滤波器,并通过所述第二光栅将所述多个第二子光束传输至所述第二滤波器包括:
    通过所述第一光栅将所述至少一个第一子光束传输至所述第二滤波器的第三区域,并通过所述第二光栅将所述至少一个第二子光束传输至所述第二滤波器的第四区域,所述第三区域和所述第四区域沿所述第二方向至少部分重合。
  25. 根据权利要求22所述的方法,其特征在于,所述输入端口包括第一输入端口和第二输入端口,所述第一输入端口和所述第二输入端口沿所述第二方向的位置不同,所述通过所述输入端口将第一光束和第二光束入射所述色散组件包括:
    沿第二方向,通过所述第一输入端口将所述第一光束以第一入射角入射所述色散组件;沿所述第二方向,通过所述第二输入端口将所述第二光束以第二入射角入射所述色散组件,所述第一入射角和所述第二入射角的绝对值的差值不为零,其中,所述第一入射角与第一闪耀角度的之间的差小于或等于第一预设值,所述第二入射角与第二闪耀角度之间的差小于或等于第二预设值,所述第一闪耀角度与所述第一光束属于的波段对应,所述第二闪耀角度与所述第二光束属于的波段对应。
  26. 根据权利要求25所述的方法,其特征在于,所述光交换装置还包括位于所述输入端口和所述色散组件之间的透镜组件,所述方法还包括:
    通过所述透镜组件将所述第一光束和所述第二光束传输至所述色散组件,沿所述第二方向,所述第一输入端口和所述透镜组件的光轴之间的距离的大小与所述第一入射角的大小相关,所述第二输入端口和所述透镜组件的光轴之间的距离的大小与所述第二入射角的大小相关。
  27. 根据权利要求22至26任一项所述的方法,其特征在于,所述光交换装置还包括第一反射镜和第二反射镜,通过所述第一滤波器将所述多个第一子光束入射所述重定向组件的第一区域,并将所述多个第二子光束入射所述重定向组件的第二区域包括:
    通过所述第一滤波器将所述多个第一子光束传输至所述第一反射镜,并通过所述第一滤波器将所述多个第二子光束传输至所述第二反射镜;
    通过所述第一反射镜将所述多个第一子光束传输至所述重定向组件,并通过所述第二反射镜将所述多个第二子光束传输至所述重定向组件。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    通过所述重定向组件将重定向后的所述多个第一子光束传输至所述第一反射镜,并通过所述重定向组件将重定向后的所述第二子光束传输至所述第二反射镜;
    通过所述第一反射镜将所述第一子光束传输至所述第一滤波器上的第五区域,并通过所述第二反射镜将所述第二子光束传输至所述第一滤波器上的第六区域。
  29. 根据权利要求22至28任一项所述的方法,其特征在于,所述方法还包括:
    通过所述第一滤波器将重定向后的所述多个第一子光束和所述第二子光束传输至所述色散组件;
    通过所述色散组件将所述多个第一子光束合并为第三光束,并通过所述色散组件将所述多个第二子光束合并为第四光束;
    通过所述输出端口输出所述第三光束和所述第四光束。
  30. 根据权利要求22至29任一项所述的方法,其特征在于,所述通过所述第一滤波器,以基于所述不同的波段将所述多个第一子光束和所述多个第二子光束的传输方向在第一方向分离成不同的传输方向包括:
    通过所述第一滤波器,以基于所述多个第一子光束属于的波段,将所述多个第一子光束作为反射光从所述第一滤波器反射,并通过所述第一滤波器,以基于所述多个第二子光束属于的波段,将所述多个第二子光束作为穿通光从所述第一滤波器穿通。
  31. 根据权利要求30所述的方法,其特征在于,所述第一滤波器为薄膜滤波器,所述薄膜滤波器具有折射率不同的两个区域;所述两个区域分别对所述多个第一子光束中的一个第一子光束进行反射的插损之间的差小于或等于第三预设值,所述两个区域分别对所述多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
  32. 一种重定向方法,其特征在于,应用于光交换装置,所述光交换装置包括输入端口、第三滤波器、色散组件、重定向组件以及输出端口,所述方法包括:
    通过所述输入端口将第一光束和第二光束入射所述第三滤波器,所述第一光束和所述第二光束属于不同的波段;
    通过所述第三滤波器,以基于所述不同的波段将所述第一光束和所述第二光束的传输方向在第一方向分离成不同的传输方向,并通过所述第三滤波器将所述第一光束和所述第二光束传输至所述色散组件,所述第一方向为所述重定向组件的端口方向;
    通过所述色散组件将所述第一光束分解成多个第一子光束,并通过所述色散组件将所述第二光束分解成多个第二子光束;并通过所述色散组件将所述多个第一子光束和所述多个第二子光束入射至所述重定向组件,其中,所述多个第一子光束入射所述重定向组件的第一区域,所述多个第二子光束入射所述重定向组件的第二区域,所述第一区域和所述第二区域沿所述第一方向互相分离;
    通过所述输出端口输出经由所述重定向组件重定向后的所述多个第一子光束和所述多个第二子光束。
  33. 根据权利要求32所述的重定向方法,其特征在于,所述色散组件和所述第三滤波器之间还包括第二滤波器,所述色散组件包括第一光栅和第二光栅,所述通过所述第三滤波器将所述第一光束和所述第二光束传输至所述色散组件包括:
    通过所述第三滤波器将所述第一光束和所述第二光束入射所述第二滤波器;
    通过所述第二滤波器,以分别基于所述不同的波段改变所述第一光束和所述第二光束 的传输方向,并将所述第一光束和所述第二光束分别传输至位于不同位置处的所述第一光栅和所述第二光栅;
    所述方法还包括:
    通过所述第一光栅将所述多个第一子光束传输至所述第二滤波器,并通过所述第二光栅将所述多个第二子光束传输至所述第二滤波器;
    通过所述第二滤波器,以分别基于所述多个第一子光束和所述多个第二子光束属于的波段,将所述多个第一子光束和所述多个第二子光束传输至所述重定向组件,以使所述第一区域和所述第二区域沿第二方向至少部分区域重合,所述第二方向为所述重定向组件的波长方向,所述第一方向与所述第二方向相互垂直。
  34. 根据权利要求33所述的重定向方法,其特征在于,所述方法还包括:
    通过所述第一光栅将所述至少一个第一子光束传输至所述第二滤波器的第三区域,并通过所述第二光栅将所述至少一个第二子光束传输至所述第二滤波器的第四区域,所述第三区域和所述第四区域沿所述第二方向至少部分重合。
  35. 根据权利要求32所述的重定向方法,其特征在于,所述输入端口包括第一输入端口和第二输入端口,所述第一输入端口和所述第二输入端口沿第二方向的位置不同,所述通过所述第三滤波器将所述第一光束和所述第二光束传输至所述色散组件包括:
    沿第二方向,通过所述第三滤波器将所述第一光束以第一入射角入射所述色散组件;
    沿所述第二方向,通过所述第三滤波器将所述第二光束以第二入射角入射所述色散组件,所述第一入射角和所述第二入射角的绝对值的差值不为零,其中,所述第一入射角与第一闪耀角度的之间的差小于或等于第四预设值,所述第二入射角与第二闪耀角度之间的差小于或等于第五预设值,所述第一闪耀角度与所述第一光束属于的波段对应,所述第二闪耀角度与所述第二光束属于的波段对应。
  36. 根据权利要求35所述的重定向方法,其特征在于,所述光交换装置还包括位于所述第三滤波器和所述色散组件之间的透镜组件,所述方法还包括:
    通过所述透镜组件将来自所述第三滤波器的所述第一光束和所述第二光束传输至所述色散组件,沿所述第二方向,所述第一输入端口和所述透镜组件的光轴之间的距离的大小与所述第一入射角的大小相关,所述第二输入端口和所述透镜组件的光轴之间的距离的大小与所述第二入射角的大小相关。
  37. 根据权利要求32至36任一项所述的方法,其特征在于,所述第三滤波器用于基于所述第一光束属于的波段,将所述第一光束作为反射光从所述第三滤波器反射,所述第三滤波器用于基于所述第二光束属于的波段,将所述第二光束作为穿通光从所述第三滤波器穿通。
  38. 根据权利要求37所述的方法,其特征在于,所述第三滤波器为薄膜滤波器,所述薄膜滤波器具有折射率不同的两个区域;所述两个区域分别对所述第一光束进行反射的插损之间的差小于或等于第三预设值,所述两个区域分别对所述多个第二子光束中的一个第二子光束进行穿通的插损之间的差小于或等于第三预设值。
  39. 一种可重构光分插复用器,其特征在于,包括多个光交换装置,不同的所述光交换 装置之间通过光纤连接,所述光交换装置如权利要求1至21任一项所示。
  40. 一种光通信系统,其特征在于,包括多个可重构光分插复用器,所述可重构光分插复用器如权利要求39所示。
PCT/CN2021/081988 2020-05-30 2021-03-22 光交换装置、重定向方法、可重构光分插复用器及系统 WO2021244107A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21817927.3A EP4148471A4 (en) 2020-05-30 2021-03-22 OPTICAL SWITCHING DEVICE, DIVERSION METHOD AND RECONFIGURABLE OPTICAL ADD-DROP MULTIPLEXER AND SYSTEM
JP2022573430A JP7479518B2 (ja) 2020-05-30 2021-03-22 光交換装置、リダイレクション方法、リコンフィギュラブル光アド/ドロップマルチプレクサ、及びシステム
BR112022024341A BR112022024341A2 (pt) 2020-05-30 2021-03-22 Aparelho de comutação óptica, método de redirecionamento, multiplexador de inserção/derivação óptico reconfigurável, e sistema
US17/994,605 US20230100718A1 (en) 2020-05-30 2022-11-28 Optical Switching Apparatus, Redirection Method, Reconfigurable Optical Add/Drop Multiplexer, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010480914.8A CN113740971B (zh) 2020-05-30 2020-05-30 光交换装置、重定向方法、可重构光分插复用器及系统
CN202010480914.8 2020-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,605 Continuation US20230100718A1 (en) 2020-05-30 2022-11-28 Optical Switching Apparatus, Redirection Method, Reconfigurable Optical Add/Drop Multiplexer, and System

Publications (1)

Publication Number Publication Date
WO2021244107A1 true WO2021244107A1 (zh) 2021-12-09

Family

ID=78727848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081988 WO2021244107A1 (zh) 2020-05-30 2021-03-22 光交换装置、重定向方法、可重构光分插复用器及系统

Country Status (6)

Country Link
US (1) US20230100718A1 (zh)
EP (1) EP4148471A4 (zh)
JP (1) JP7479518B2 (zh)
CN (1) CN113740971B (zh)
BR (1) BR112022024341A2 (zh)
WO (1) WO2021244107A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117369054A (zh) * 2022-06-30 2024-01-09 华为技术有限公司 波长选择开关,光束传输方向的调度方法以及光交换节点
CN117518358A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 波长选择开关,光束传输方向的调度方法以及光交换节点
CN118112724A (zh) * 2022-11-30 2024-05-31 华为技术有限公司 波长选择开关、客户侧单板和节点

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051868A (zh) * 2006-04-04 2007-10-10 Jds尤尼弗思公司 可调光分/插复用器
CN103558668A (zh) * 2013-11-19 2014-02-05 武汉邮电科学研究院 波长选择开关和波长选择方法
CN103827714A (zh) * 2011-03-15 2014-05-28 卡佩拉光子学公司 使用角度复用光学器件的波长切换系统
US20150277052A1 (en) * 2014-03-31 2015-10-01 Jds Uniphase Corporation Wavelength selective switch using orthogonally polarized optical beams
CN107209328A (zh) * 2015-02-10 2017-09-26 尼斯迪卡有限公司 具有避免串扰的增大频率间隔的波长选择开关
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083457A1 (en) 1999-09-07 2001-03-14 Corning Incorporated Liquid crystal matrix add/drop system
JP5840176B2 (ja) * 2012-09-07 2016-01-06 古河電気工業株式会社 光スイッチ
CN103197388B (zh) * 2013-04-19 2015-09-16 武汉邮电科学研究院 C+l波段波长选择开关及其实现方法和处理单元
WO2015134393A1 (en) * 2014-03-04 2015-09-11 Finisar Corporation A calibration system for a wavelength selective switch
CN104297858A (zh) * 2014-10-31 2015-01-21 武汉光迅科技股份有限公司 一种多播交换光开关
WO2017008208A1 (zh) 2015-07-10 2017-01-19 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法
GB201516862D0 (en) * 2015-09-23 2015-11-04 Roadmap Systems Ltd Optical switching systems
CN107003480B (zh) * 2016-03-01 2019-11-05 肖峰 波长选择开关装置、通信设备和波长切换方法
JP6823668B2 (ja) 2016-12-28 2021-02-03 日本電信電話株式会社 光信号処理装置
WO2018191862A1 (zh) * 2017-04-18 2018-10-25 华为技术有限公司 波长选择方法和波长选择开关
US10784965B2 (en) * 2018-06-01 2020-09-22 Molex, Llc Reduction of ripple arising in LCoS-based optical devices
CN113296191A (zh) 2020-02-21 2021-08-24 华为技术有限公司 一种光交换装置、重定向方法以及可重构光分插复用器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051868A (zh) * 2006-04-04 2007-10-10 Jds尤尼弗思公司 可调光分/插复用器
CN103827714A (zh) * 2011-03-15 2014-05-28 卡佩拉光子学公司 使用角度复用光学器件的波长切换系统
CN103558668A (zh) * 2013-11-19 2014-02-05 武汉邮电科学研究院 波长选择开关和波长选择方法
US20150277052A1 (en) * 2014-03-31 2015-10-01 Jds Uniphase Corporation Wavelength selective switch using orthogonally polarized optical beams
CN107209328A (zh) * 2015-02-10 2017-09-26 尼斯迪卡有限公司 具有避免串扰的增大频率间隔的波长选择开关
CN109001865A (zh) * 2017-06-06 2018-12-14 朗美通经营有限责任公司 多路传送的波长选择开关

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4148471A4

Also Published As

Publication number Publication date
CN113740971B (zh) 2022-10-28
EP4148471A4 (en) 2023-11-15
CN113740971A (zh) 2021-12-03
BR112022024341A2 (pt) 2022-12-27
JP7479518B2 (ja) 2024-05-08
EP4148471A1 (en) 2023-03-15
JP2023528386A (ja) 2023-07-04
US20230100718A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2021244107A1 (zh) 光交换装置、重定向方法、可重构光分插复用器及系统
US8260099B2 (en) Reconfigurable optical add/drop multiplexer
EP2299309B1 (en) Wavelength selection switch
JP2000347065A (ja) 光装置
JP2014067004A (ja) 光スイッチ
JPH11174250A (ja) 光学的通過帯域フィルタ
US20220390681A1 (en) Optical switching apparatus, redirection method, and reconfigurable optical add-drop multiplexer
US7212343B1 (en) Compact wavelength multiplexer/demultiplexer and method for making the same
US6788849B1 (en) Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy
CN111221081B (zh) 一种基于LCoS的波长选择开关
JP2003114402A (ja) 光合分波器およびその調整方法
JPH11101923A (ja) 光学ファイバ波長マルチプレクサ−デマルチプレクサ
US7161739B2 (en) Optical system, optical device including the same, and optical device designing method
US20010055442A1 (en) Optical wavelength-division multiplexing and demultiplexing by using a common optical bandpass filter for adding, dropping, or excanging one or more channels
JPS61223711A (ja) 光通信用分波器
CN112882158A (zh) 一种可实现波分复用和解复用功能的小型化光学组合件
JP2005338475A (ja) 光フィルタ装置
WO2023221802A1 (zh) 波长选择开关
WO2024113855A1 (zh) 波长选择开关、客户侧单板和节点
WO2024093330A1 (zh) 光交换装置和光交换方法
JPS61121010A (ja) 光分波・合波器
EP1228388A1 (en) Volume or stacked holographic diffraction gratings for wavelength division multiplexing and spectroscopy
JP2005010423A (ja) 光信号合分波器
CN118112721A (zh) 一种波长选择开关和相关设备
JPS60107004A (ja) 光分波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573430

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022024341

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021817927

Country of ref document: EP

Effective date: 20221205

ENP Entry into the national phase

Ref document number: 112022024341

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221129

NENP Non-entry into the national phase

Ref country code: DE