WO2021243729A1 - 一种火焰原子化器以及痕量钠在线监测系统 - Google Patents

一种火焰原子化器以及痕量钠在线监测系统 Download PDF

Info

Publication number
WO2021243729A1
WO2021243729A1 PCT/CN2020/094831 CN2020094831W WO2021243729A1 WO 2021243729 A1 WO2021243729 A1 WO 2021243729A1 CN 2020094831 W CN2020094831 W CN 2020094831W WO 2021243729 A1 WO2021243729 A1 WO 2021243729A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
flame
atomizer
calibration
water sample
Prior art date
Application number
PCT/CN2020/094831
Other languages
English (en)
French (fr)
Inventor
李敬业
李韬霖
李韬弘
Original Assignee
深圳市爱诺实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱诺实业有限公司 filed Critical 深圳市爱诺实业有限公司
Publication of WO2021243729A1 publication Critical patent/WO2021243729A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/714Sample nebulisers for flame burners or plasma burners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners

Definitions

  • the invention relates to the technical field of online analytical instruments, in particular to an online monitoring system for a flame atomizer and trace sodium.
  • the flame atomizer is an important part of the spectrometer. It is a device that uses the flame to turn the ions in the test solution into atomic vapor. Its sensitivity and repeatability for spectroscopy (atomic absorption, atomic fluorescence spectroscopy and flame atomic emission spectroscopy) Have a major impact.
  • the traditional flame atomizer (Flame atomiser) consists of three parts: atomizer, pre-mixing chamber and burner.
  • the liquid sample is atomized by mixing combustion gas (air or oxygen) and fuel gas (gas fuel) and brought into the flame for atomization, and the test solution is introduced into the flame and atomized Going through a series of complex physical and chemical processes, this process includes the phases of desolvation, evaporation, and dissociation of the mist particles. During the dissociation process, most of the ions are dissociated into gaseous atoms.
  • the second-order differential flame emission spectrometer continues to use the traditional flame atomizer.
  • the burner uses normal temperature (ambient temperature) air for combustion.
  • the flame temperature is low and unstable, which makes the flame combustion unstable and low atomization efficiency.
  • traditional atomizers usually adopt pneumatic concentric atomizers for sampling. This atomizer uses compressed air with a certain pressure as a combustor to enter the atomizer.
  • the incoming combustion gas is scattered into mist (aerosol). The more water samples are atomized, the finer the droplets, the easier it is to dry, melt, and vaporize, and the more free atoms are generated, and the higher the sensitivity of the spectrometer.
  • the main purpose of the present invention is to propose a flame atomizer and a trace sodium online monitoring system, which aims to solve the existing flame atomizers with low atomization efficiency, low flame temperature, and unstable flame combustion. problem.
  • the present invention provides a flame atomizer, the flame atomizer includes an atomizer chamber, a first chamber, a second chamber, and a third chamber that are sequentially connected and arranged; the mist
  • the carburetor chamber is provided with a sampling capillary tube, an oil-free compressed air inlet, and an atomizer chamber outlet.
  • the atomizer chamber outlet communicates with the atomizer chamber and the first chamber; the first chamber is provided There is a gas inlet and an impact ball, the impact ball is set directly opposite to the exit of the atomizer chamber; the second chamber is provided with a high-temperature air inlet, and the second chamber is filled with phase change heat storage balls; A combustor is provided above the third chamber, the combustor is provided with a purified air inlet, and the annular center porous combustion head of the combustor is connected to the third chamber.
  • a partition flange is provided between the first chamber and the second chamber, and between the second chamber and the third chamber, and the partition flange is provided with Through holes to respectively communicate with the first chamber and the second chamber, and the second chamber and the third chamber.
  • the flame atomizer further includes an electrolyzed high-purity water hydrogen generator, and the outlet of the electrolyzed high-purity water hydrogen generator is connected to the fuel gas inlet.
  • the flame atomizer further includes an oil-free air compressor, a precision air heater, a membrane dryer, and an air filter purifier.
  • the outlet of the oil-free air compressor is provided with a pressure regulating valve, and The outlet of the pressure regulating valve is connected to the inlet of the membrane dryer, the outlet of the membrane dryer is connected to the oil-free compressed air inlet via a first isolation valve, and the outlet of the membrane dryer is isolated via a second isolation valve.
  • the valve is connected to the inlet of the precision air heater, the outlet of the precision air heater is connected to the high temperature gas inlet, and the outlet of the membrane dryer is connected to the purified air inlet through the air filter.
  • the first chamber is further provided with a waste liquid discharge port, and one side of the third chamber is further provided with an explosion-proof membrane.
  • a vacuum annular cavity is provided in the side wall of the second chamber to realize the heat preservation treatment of the second chamber.
  • the phase change heat storage ball includes a stainless steel spherical shell with a cavity, and the stainless steel spherical shell is provided with a feeding sealing port to fill the cavity of the stainless steel spherical shell with phase change heat storage Material.
  • the phase change temperature of the phase change heat storage material is 400°C.
  • the present invention also provides an online trace sodium monitoring system, which includes a sample injection-calibration component, a second-order differential flame emission spectrometer, and the above-mentioned flame atomizer, wherein, the sample injection-calibration component is used to continuously and stably deliver the high-purity water for calibration, the standard water sample and the water sample to be measured through the sample injection capillary under the control of the second-order differential flame emission spectrometer.
  • the high-purity water for calibration, the standard water sample, and the water sample to be measured are atomized and flame atomized to form a flame radiating 589.0nm sodium spectrum;
  • the second-order differential flame emission spectrometer is used to control the progress in real time Sample-calibrate components and the operation of the flame atomizer, and perform data analysis and processing on the flame formed by the flame atomizer in real time to obtain corresponding test results.
  • the sample injection-calibration component includes a high-level high-purity water cup for calibration, a high-level standard water sample cup for calibration, a calibration switching solenoid valve, a water sample inlet pipe to be measured, a water sample inlet regulating solenoid valve, and a sample injection three-way valve ,
  • a water sample inlet pipe and a constant liquid level overflow water sample cup, the water sample inlet pipe to be measured is connected to the first inlet of the sample injection three-way valve through the water sample inlet regulating solenoid valve, and the calibration high position
  • the outlet of the high-purity water cup and the outlet of the high-level standard water sample cup for calibration are respectively connected to the second inlet of the three-way injection valve through the calibration switching solenoid valve, and one end of the water sample inlet pipe is connected to the At the outlet of the sample injection three-way valve, the other end of the water sample inlet pipe is inserted into the constant liquid level overflow water sample cup, and the outer end of the sample injection capillary is
  • the sample injection-calibration assembly further includes a fixed groove and an overflow water collection cup, and the constant liquid level overflow water sample cup is installed in the overflow water collection cup through the fixed groove.
  • the second-order differential flame emission spectrometer includes: a photoelectric sensor component, which is used to quickly scan the characteristic spectrum of sodium and automatically remove the background interference of the flame to generate a second-order differential modulation sodium spectrum to be photomultiplied
  • the tube receives and excites the second-order differential frequency modulation current generated, and the second-order differential frequency modulation current is demodulated and amplified by the lock-in amplifier and output to the data acquisition component;
  • the data acquisition component is used to collect the analog signal of the second-order differential frequency modulation current, And convert it into a digital signal and output it to the embedded industrial computer component for real-time monitoring and control;
  • the embedded industrial computer component is used for real-time control of the sample injection-calibration component, the flame atomizer, the photoelectric sensor component and The operation of the data collection component, and real-time statistical analysis and processing of the data collected by the data collection component to obtain test results.
  • the flame atomizer includes an atomizer chamber, a first chamber, a second chamber, and a third chamber that are sequentially connected and arranged.
  • the nebulizer chamber is equipped with an injection capillary, an oil-free compressed air inlet and an outlet of the nebulizer chamber. When in use, the outer end of the injection capillary can be inserted into the constant liquid level overflow water sample cup.
  • the oil-free compressed air connected to the air inlet forms a "negative pressure field" in the atomizer chamber, which can transfer the water sample to be measured in the constant liquid level overflow water sample cup (or high-level high-purity water for calibration, or high-level standard water for calibration) It is sucked into the nebulizer chamber through the sampling capillary tube, and sprayed out through the outlet of the nebulizer chamber after completing the atomization and preliminary mixing process of the water sample in the nebulizer chamber.
  • the first chamber is provided with a gas inlet and an impact ball. The impact ball is set directly opposite to the exit of the atomizer chamber.
  • the mist sprayed from the exit of the atomizer chamber can be crushed to make the aerosol mist particles finer. , More uniform.
  • the fuel gas connected through the gas inlet can enter the second chamber after mixing with the aerosol sprayed from the outlet of the atomizer chamber in the first chamber.
  • the second chamber is provided with a high-temperature gas inlet, and the second chamber is filled with phase-change heat storage balls.
  • the high-temperature gas enters and heats the phase-change heat storage balls through the high-temperature gas inlet.
  • a burner is arranged above the third chamber, and the burner is provided with a purified air inlet, and the annular center porous combustion head of the burner is connected to the third chamber, and the purified air with stable pressure (supporting gas) can be connected through the purified air inlet
  • the purified air with stable pressure supporting gas
  • the completely atomized and stable high-temperature mixed gas from the second chamber enters the third chamber, it can be ignited to form a flame above the porous combustion head in the annular center of the burner, and radiate 589.0nm with stable spectral line intensity.
  • the characteristic spectrum of sodium It can be seen that this technical solution can effectively solve the technical problems of the existing flame atomizers such as low atomization rate, low flame temperature, and unstable flame combustion.
  • Fig. 1 is an overall structure diagram of a phase change heat storage constant temperature flame atomizer provided by embodiment 1 of the present invention.
  • Fig. 2 is a schematic diagram of the structure of the phase change heat storage ball of the flame atomizer shown in Fig. 1.
  • Fig. 3 is a structural block diagram of the trace sodium online monitoring system provided in the second embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the structure of the sample injection-calibration component of the trace sodium online monitoring system shown in Fig. 3.
  • Fig. 5 is a block diagram of the embedded industrial computer of the second-order differential flame emission spectrometer of the trace sodium on-line monitoring system shown in Fig. 3.
  • FIG. 6 is a flowchart of a specific calibration process of the calibration module of the embedded industrial computer shown in FIG. 5.
  • Figure 7 shows the Roman gold relationship curve of the principle of atomic emission spectroscopy.
  • the first embodiment of the present invention provides a flame atomizer II.
  • the flame atomizer II includes an atomizer chamber 110, a first chamber 120, a second chamber 130 and The third chamber 140.
  • the atomizer chamber 110 is provided with a sampling capillary 111, an oil-free compressed air inlet 112 and an atomizer chamber outlet 113, and the atomizer chamber outlet 113 communicates with the atomizer chamber 110 and the first chamber 120.
  • the first chamber 120 is provided with a gas inlet 121 and an impinging ball 122, and the impinging ball 122 is arranged directly opposite to the outlet 113 of the atomizer chamber.
  • the second chamber 130 is provided with a high-temperature gas inlet 131, and the second chamber 130 is filled with phase change heat storage balls 132.
  • a combustor 141 is provided above the third chamber 140, the combustor 141 is provided with a purified air inlet 142, and the annular center porous combustion head of the combustor 141 is connected to the third chamber 140.
  • a separation flange 10 is provided between the first chamber 120 and the second chamber 130, and between the second chamber 130 and the third chamber 140, and the separation method
  • the flange 10 is provided with a through hole 11 to communicate with the first chamber 120 and the second chamber 130, and the second chamber 130 and the third chamber 140, respectively.
  • the partition flange 10 with the through hole 11 can separate and form the first chamber 120, the second chamber 130, and the third chamber 140, so that the three are partially connected in sequence.
  • the phase change heat storage ball 132 includes a stainless steel spherical shell 1321 with a cavity. Thermal material 1323.
  • the stainless steel spherical shell 1321 is a hollow stainless steel ball with a diameter of 8mm-16mm.
  • the filling sealing port 1322 is filled with a stainless steel plug coated with high temperature resistant glue to seal the outer hole.
  • the volume of the phase change heat storage material 1323 is the volume of the stainless steel spherical shell.
  • the phase change thermal storage material 1323 is a solid-solid composite phase change material.
  • the phase change temperature of this solid-solid composite phase change thermal storage material is designed to be 400°C.
  • the second chamber 130 is a "phase change heat storage atomization bed" filled with phase change heat storage balls 132.
  • the aerosol mist particles and high temperature phases of the aerosol sprayed from the atomizer chamber 110 and impacted by the impact ball 122 are crushed.
  • the variable heat storage ball 132 is fully contacted and completely atomized, and the atomization
  • the flame atomizer II in this embodiment further includes an electrolytic high-purity water hydrogen generator 150, an oil-free air compressor 160, a precision air heater 170, a membrane dryer 180, and an air filter purifier 190.
  • the outlet of the electrolyzed high-purity water hydrogen generator 150 is connected to the gas inlet 121, and the gas inlet 121 is connected with high-purity hydrogen as the fuel gas, which can further ensure the combustion stability of the burner.
  • the outlet of the oil-free air compressor 160 is provided with a pressure regulating valve 12, the outlet of the pressure regulating valve 12 is connected to the inlet of the membrane dryer 180, and the outlet of the membrane dryer 180 is connected to the oil-free compressed air inlet via the first isolation valve 13 112.
  • the outlet of the membrane dryer 180 is connected to the inlet of the precision air heater 170 through the second isolation valve 14, the outlet of the precision air heater 170 is connected to the high-temperature gas inlet 131, and the outlet of the membrane dryer 180 is through an air filter purifier 190 communicates with the purified air inlet 142. That is, the "purified air” connected to the purified air inlet 142 in this embodiment is the dry air output from the outlet of the membrane dryer 180 through the air filter purifier 190 (specifically a 0.1 ⁇ precision filter) to further remove the air. The clean air obtained after the solid and liquid particles in the medium. This "purified air” enters the annular channel of the porous combustion head from the purified air inlet 142 at the bottom of the combustor 141.
  • the first chamber 120 is also provided with a waste liquid discharge port 123 to discharge waste liquid.
  • An explosion-proof membrane 143 is also provided on one side of the third chamber 140 to ensure the safety performance of the third chamber 140 when the burner 142 is working.
  • a vacuum annular cavity 133 is provided in the side wall of the second chamber 130 to realize the heat preservation treatment of the second chamber 130.
  • the oil-free compressed air with stable pressure output by the oil-free air compressor 160 after the pressure adjustment of the pressure regulating valve 12 enters the atomizer chamber 110 through the oil-free compressed air inlet 112, and is formed in the atomizer chamber 110.
  • Negative pressure field to draw the water sample to be measured (or high-level high-purity water for calibration, or high-level standard water sample for calibration) through the sampling capillary 111, and complete the atomization and preliminary mixing process of the water sample in the atomizer chamber 110 , And then ejected from the outlet 113 of the atomizer chamber.
  • the impact ball 122 in the first chamber 120 can crush the droplets ejected from the outlet 113 of the atomizer chamber to make the aerosol mist particles finer. , More uniform.
  • the high-purity hydrogen output from the electrolyzed high-purity water hydrogen generator 150 enters the first chamber 120 from the fuel gas inlet 121 to mix with the aerosol sprayed from the atomizer chamber 110 and enter the second chamber 130.
  • the second chamber 130 is a "phase change heat storage atomization bed" filled with phase change heat storage balls 132, "mist particles” of aerosols ejected from the atomizer chamber 110 and crushed by the impact balls 122 With full contact with the high-temperature phase change heat storage ball 130, the “mist particles” are heated and completely vaporized, and the atomization efficiency can reach 100%. Finally, the completely atomized and temperature-stabilized high-temperature mixed gas from the second chamber 130 enters the third chamber 140, and is ignited above the annular center porous combustion head of the burner 141 to form a flame, radiating a stable spectral line intensity The characteristic spectrum of sodium at 589.0nm.
  • the following operations can also be performed: (1) Start the oil-free air compressor 160, adjust the pressure regulating valve 12 so that the outlet pressure of the oil-free air compressor 160 is 0.25MP, and close the first An isolation valve 13 opens the second isolation valve 14 to heat the compressed air through the precision air heater 170, and controls the outlet temperature of the precision air heater 170 to be 400 ⁇ 5°C; (2) High temperature air enters the phase change storage through the high temperature gas inlet 131 In the hot atomizing bed (ie the second chamber 130), the high-temperature air contacts the phase change heat storage ball 132 and heats the phase change heat storage ball 132; until the temperature of the hot air at the exit of the burner 141 stabilizes at the phase change temperature +5°C.
  • the embodiments of the present invention have the following advantages: (1) The atomization efficiency is as high as 100%, while the atomization efficiency of the traditional flame atomic absorption atomizer is generally less than 10%. Therefore, the embodiment of the present invention The sensitivity of trace sodium analysis is an order of magnitude higher than that of a second-order differential flame emission spectrometer using a traditional concentric atomizer. (2) The use of the phase-change heat storage atomized bed realizes the high-temperature preheating of the auxiliary gas, increases the atomization temperature, and improves the sensitivity and detection limit of the analysis.
  • phase change heat storage atomized bed realizes the constant temperature and high temperature of the premixed gas, which makes the temperature of the atomization flame stable and improves the repeatability of the measurement results.
  • detection limit of the second-order differential flame emission spectrometry for measuring trace sodium in high-purity water has reached an advanced level of less than 0.1 ⁇ g/L.
  • ICP inductively coupled plasma emission spectrometer
  • the second implementation of the present invention provides an online trace sodium monitoring system, which includes a sample injection-calibration component I, a flame atomizer II, and a second-order differential flame emission spectrometer III .
  • the sampling-calibration component I is mainly used to continuously and stably transport the high-purity water for calibration, the standard water sample, and the water sample to be measured to the flame atomization via the sampling capillary 111 under the control of the second-order differential flame emission spectrometer III.
  • the atomizer chamber 110 of the device II is mainly used to continuously and stably transport the high-purity water for calibration, the standard water sample, and the water sample to be measured to the flame atomization via the sampling capillary 111 under the control of the second-order differential flame emission spectrometer III.
  • Flame atomizer II is mainly used to atomize and flame atomize the calibration high-purity water, standard water sample and water sample to be measured from the sample-calibration component I under the control of the second-order differential flame emission spectrometer III. Chemical treatment, forming a flame radiating 589.0nm sodium spectrum.
  • the second-order differential flame emission spectrometer III is mainly used for real-time control of the sampling-calibration component I and the operation of the flame atomizer II, and real-time data analysis and processing of the flame formed by the flame atomizer II to obtain the corresponding test results.
  • the sample injection-calibration component I includes a high-level high-purity water cup for calibration 201, a high-level standard water sample cup for calibration 202, a calibration switching solenoid valve 203, a water sample inlet pipe 204 to be measured, and water Sample inlet adjustment solenoid valve 205, sample injection three-way valve 206, water sample inlet pipe 207, and constant liquid level overflow water sample cup 208, the water sample inlet pipe 204 to be measured is connected to the sample injection tee via the water sample inlet adjustment solenoid valve 205
  • the first inlet of the valve 206, the outlet of the high-level high-purity water cup for calibration 201 and the outlet of the high-level standard water sample cup for calibration 202 are respectively connected to the second inlet of the three-way sampling valve 206 through the calibration switching solenoid valve 203, and the water sample inlet pipe One end of 207 is connected to the outlet of the three-way injection valve 206, the other end of the water sample in
  • the high-level high-purity water cup 201 for calibration is filled with high-level high-purity water for calibration
  • the high-level standard water cup 202 for calibration is filled with standard water samples (ie 10 ⁇ g/L sodium standard water sample)
  • the water sample inlet pipe 204 for measurement is connected Water sample to be measured.
  • the calibration switching solenoid valve 203, the water sample inlet regulating solenoid valve 205, and the sample injection three-way valve 206 the high-purity water for calibration, the standard water sample, and the water sample to be measured can be sequentially passed through the water sample inlet pipe 207 and constant liquid level.
  • the overflow water sample cup 208 and the sample injection capillary 111 are continuously and stably conveyed into the atomizer chamber 110 of the flame atomizer II.
  • the sample injection-calibration assembly I further includes a fixed tank 209 and an overflow water collection cup 210, and the constant liquid level overflow water sample cup 208 is installed in the overflow water collection cup 210 through the fixed groove 209.
  • the calibration switching solenoid valve 203 is a two-position three-way solenoid valve, and the three channels are respectively connected with a high-level high-purity water cup 201 for calibration, a high-level standard water sample cup 202 for calibration, and a three-way sample injection valve 206.
  • the other two paths of the sample injection three-way valve 206 connected with the calibration switching solenoid valve 203 are respectively connected with the water sample inlet regulating solenoid valve 205 and the water sample inlet pipe 207.
  • the high-level high-purity water cup 201 for calibration and the high-level standard water sample cup 202 for calibration can be an open polyethylene (PE) container with a capacity of 1000 mL.
  • the bottom of the container is a conical funnel structure.
  • the height difference of the entrance of the capillary 111 is a second preset height difference (preferably about 1000 mm).
  • the high-purity water for calibration refers to the high-purity water used to prepare the standard water sample for the current calibration.
  • the outlet of the water sample inlet pipe 207 is lower than the inlet of the inlet capillary 111 by a first preset height difference (preferably about 10 mm), and the inlet capillary 111 is connected to the flame atomizer from the bottom of the constant liquid level overflow water sample cup 208 ⁇ atomizer chamber 110.
  • the constant level overflow water sample cup 208 is preferably a 125mL standard PE narrow-mouth sampling bottle placed in a cylindrical fixed tank 209 in the center of the open overflow water collection cup 210.
  • the size of the cylindrical fixed tank 209 is: ⁇ 52 ⁇ 50 ( H), the flow rate of the water sample flowing through the constant liquid level overflow water sample cup 208 is designed to be 40mL/min -60mL/min.
  • the overflow port of the constant level overflow water sample cup 208 is the mouth of the 125mL standard PE narrow-neck sampling bottle.
  • the function of the overflow of the constant level overflow water sample cup 208 is to keep the water at the inlet of the injection capillary 111 during the measurement.
  • the liquid column of the sample is highly stable. This stable height of the water sample can stabilize the static pressure at the inlet of the injection capillary 111.
  • the pressure of the carrier gas hydrogen and oxygen
  • the stability of the water sample lift can ensure the stability of the flame combustion temperature during the measurement process, thereby ensuring the stability and repeatability of the measurement results.
  • the water sample overflows from the top of the constant liquid level overflow water sample cup 208 to ensure the real-time measurement of the water sample in the constant liquid level overflow water sample cup 208.
  • the design ensures that the outlet of the water sample inlet pipe 207 is lower than the inlet of the injection capillary 111 by the first preset height difference (about 10mm), which can ensure the real-time performance of the water sample entering the injection capillary 111, thereby ensuring the real-time representation of the measurement data sex.
  • the second-order differential flame emission spectrometer (III) specifically includes photoelectric sensor components, data acquisition components and embedded industrial computer components.
  • the photoelectric sensor component is mainly used to quickly scan the characteristic spectrum of sodium and automatically remove the background interference of the flame to generate the second-order differential modulation sodium spectrum, which is received and excited by the photomultiplier tube to generate the second-order differential frequency modulation current.
  • the second-order differential frequency modulation current is demodulated and amplified by the lock-in amplifier, and then output to the data acquisition component.
  • the data acquisition component is mainly used to collect the analog signal of the second-order differential frequency modulation current, and convert it into a digital signal and output it to the embedded industrial computer component for real-time monitoring and control.
  • the embedded industrial computer component is mainly used for real-time control of the sampling-calibration component I, flame atomizer II, photoelectric sensor component and data acquisition component operation, and real-time statistical analysis and processing of the data collected by the data acquisition component to obtain Test Results.
  • the embedded industrial computer components specifically include embedded industrial computer (host) and resistive touch screen (display).
  • the embedded industrial computer can be responsible for processing and displaying the digital signal transmitted from the lower computer.
  • USB is used between the host and the slave. To communicate.
  • the user can write various functional programs on the host computer to effectively query and analyze the data in the file, which is conducive to the long-term normal operation and inspection of the analysis and measurement process.
  • the embedded industrial computer includes a system setting module 301, an ignition module 302, a calibration module 303, a measurement module 304, and a data processing module 305.
  • System setting module 301 used to set the characteristic spectral line wavelength of the automatic scanning second-order differential precision grating monochromator to 589.0nm; also used to set the ripple coefficient of the high-voltage DC voltage output by the negative high-voltage module of the photomultiplier tube to be less than 0.005% , The maximum drift is less than ⁇ 0.03%/h and the value of negative high voltage DC voltage.
  • monochromator power supply, silicon nitride ignition power supply and computer power supply use a USB connection cable to connect the industrial computer and the lower computer (host), and the computer and the monochromator.
  • the system setting parameters include but are not limited to system time setting, characteristic spectral line wavelength setting 589.0nm, photomultiplier tube negative High pressure setting, user name setting.
  • the testing parameters include but are not limited to: output pressure of electrolytic high-purity water hydrogen generator, flame sensor status signal, silicon nitride automatic ignition power switch status, oil-free air compressor output pressure signal, calibration status Signal, calibration switch solenoid valve status signal, sample injection three-way valve status signal, water sample inlet regulating solenoid valve status signal, etc.
  • Ignition module 302 used to turn on the electrolyzed high-purity water hydrogen generator 150, and after detecting that the output pressure of the electrolyzed high-purity water hydrogen generator 150 reaches the preset ignition threshold and the auto-ignition power supply is normal, the ignition solenoid valve is activated.
  • Calibration module 303 After detecting that the flame sensor status signal is normal, control the sample injection-calibration component I to continuously and stably deliver the high-purity water for calibration and the standard water sample for calibration to the flame atomizer II and send them to the data acquisition component The data acquisition instruction acquires the measurement data of the calibrated water sample collected by the data acquisition component.
  • the specific calibration process of the calibration module 303 includes:
  • the high purity water flows into the constant level overflow water sample cup 208 through the sample injection water pipe 207, and the high purity water from the high-level high-purity water cup 201 for calibration is automatically sucked into the atomizer chamber 110 through the sampling capillary 111.
  • the process of atomization, mixing, and droplet separation is completed in the process, and then a flame is ignited above the outlet of the annular center porous combustion head of the burner 141 to form a 589.0nm sodium spectrum.
  • S140 Send a data collection instruction to the data collection component, and obtain a measurement result of the high-purity water collected by the data collection component.
  • the embedded industrial computer sends a collection instruction to the single-chip microcomputer of the data acquisition component, and the single-chip collects the DC analog signal from the low-pass filter of the micro-current lock-in amplifier, and converts it into a digital signal through the A/D converter and sends it to the embedded Industrial computer storage and further processing.
  • the calibration switch solenoid valve 203 is tangentially calibrated with the high-level standard water sample cup 202, and the 10 ⁇ g/L sodium standard water sample flows into the constant-liquid level overflow water sample cup 208, and the flushing starts after 3 minutes Collect data, complete the data collection of 10 ⁇ g/L sodium standard water sample.
  • the sodium ions in the water sample are atomized in a high-temperature flame and excited to radiate the "characteristic spectrum" of sodium atoms. Under the condition of extremely low sodium ion concentration (trace), the intensity of the spectrum is comparable to that of the test.
  • the concentration of sodium ions in the sample is proportional to the Roman gold formula (as shown in Figure 7).
  • the physical meaning of the Roman gold formula is: the calibration curve of the atomic emission spectrum must be a straight line passing through the origin (when and only when the sodium ion concentration in the water sample is zero, the measured value of the spectral line intensity can be zero), This provides a theoretical basis for the measurement and calibration of atomic emission spectroscopy without the need to prepare "sodium-free water". In fact, under the current technical conditions, the real "sodium-free water” does not exist in the laboratory. The recognition and use of "sodium-free water” is a prerequisite for atomic absorption and liquid chromatography to measure trace amounts of sodium. ⁇
  • x is the true concentration of sodium in the water sample ( ⁇ g/L);
  • Y is the spectral line intensity value (the instrument spectral line intensity meter reading ⁇ A)
  • the calibration result is calculated automatically, and the sodium background concentration C of the high-purity blank water is automatically given.
  • [ ⁇ g/L] value and the regression line graph of the calibration result ie Roman gold relationship curve.
  • Measurement module 304 used to detect that the connection between the sample injection three-way valve 206 and the calibration switching solenoid valve 203 has been closed, the water sample inlet adjustment solenoid valve 205 has been opened, and the sample injection three-way valve 206 has been connected to the sample After the water inlet pipe 207, the sample injection-calibration component I is controlled to continuously and stably deliver the water sample to be measured to the flame atomizer II, and the measurement data of the water sample to be measured collected by the data acquisition component is obtained. Specifically, the measurement module 304 closes the water sample inlet adjustment solenoid valve 205 according to a preset frequency, and opens the water sample inlet adjustment solenoid valve 205 after collecting measurement data.
  • the calibration module 303 After the calibration module 303 completes the calibration process, it automatically transfers to the measurement process of the measurement module 304, that is, starts to measure the real-time actual sodium concentration of the online water sample according to the instructions of the measurement program.
  • the connection between the sample injection three-way valve 206 and the calibration switching solenoid valve 203 has been closed, the water sample inlet regulating solenoid valve 205 has been opened, and the sample injection three-way valve 206 has been connected to the sample water inlet pipe 207.
  • the water sample from the water sample inlet regulating solenoid valve 205 of the boiler water and steam sampling rack continuously flows through the constant liquid level overflow water sample cup 208.
  • the measurement frequency is preferably 1 time/10min, (a reading operation is performed every 10 minutes to complete a real-time water sample measurement) when the measurement data acquisition is triggered, the industrial computer instructs the single-chip microcomputer to close the water sample inlet regulating solenoid valve 205. Immediately after data collection is completed, the water sample inlet regulating solenoid valve 205 is automatically opened. In this way, the program analysis operation of continuous sample injection and intermittent static measurement is adopted. The computer program of the measurement process closes the water sample inlet adjustment solenoid valve 205 to realize the static measurement of the constant liquid level overflow water sample cup 208, which ensures the real-time representativeness of the measurement results. The stability of the measurement conditions ensures the repeatability of the measurement results.
  • Data processing module 305 used to perform statistical analysis on the measurement data of the calibrated water sample and the measurement data of the water sample to be measured in real time, and obtain the trace sodium test result.
  • each measurement data output is an arithmetic mean of the statistical values of 6 parallel measurement data with an interval of 1 second.
  • the standard deviation of the measurement result, the relative standard deviation and the "uncertainty" of the measurement result are automatically given. And other statistics. It can be calibrated intelligently and the measurement results can be directly displayed on the on-site LCD screen by determining the real-time actual sodium concentration of the water sample through the working curve of the coordinate origin.
  • the measurement result after calibration is the true content of sodium in the water sample.
  • the flame atomizer includes an atomizer chamber, a first chamber, a second chamber, and a third chamber that are sequentially connected and arranged.
  • the nebulizer chamber is equipped with an injection capillary, an oil-free compressed air inlet and an outlet of the nebulizer chamber. When in use, the outer end of the injection capillary can be inserted into the constant liquid level overflow water sample cup.
  • the oil-free compressed air connected to the air inlet forms a "negative pressure field" in the atomizer chamber, which can transfer the water sample to be measured in the constant liquid level overflow water sample cup (or high-level high-purity water for calibration, or high-level standard water for calibration) It is sucked into the nebulizer chamber through the sampling capillary tube, and sprayed out through the outlet of the nebulizer chamber after completing the atomization and preliminary mixing process of the water sample in the nebulizer chamber.
  • the first chamber is provided with a gas inlet and an impact ball. The impact ball is set directly opposite to the exit of the atomizer chamber.
  • the mist sprayed from the exit of the atomizer chamber can be crushed to make the aerosol mist particles finer. , More uniform.
  • the fuel gas connected through the gas inlet can enter the second chamber after mixing with the aerosol sprayed from the outlet of the atomizer chamber in the first chamber.
  • the second chamber is provided with a high-temperature gas inlet, and the second chamber is filled with phase-change heat storage balls.
  • the high-temperature gas enters and heats the phase-change heat storage balls through the high-temperature gas inlet.
  • a burner is arranged above the third chamber, and the burner is provided with a purified air inlet, and the annular center porous combustion head of the burner is connected to the third chamber, and the purified air with stable pressure (supporting gas) can be connected through the purified air inlet
  • the purified air with stable pressure supporting gas
  • the completely atomized and stable high-temperature mixed gas from the second chamber enters the third chamber, it can be ignited to form a flame above the porous combustion head in the annular center of the burner, and radiate 589.0nm with stable spectral line intensity.
  • the characteristic spectrum of sodium It can be seen that this technical solution can effectively solve the technical problems of the existing flame atomizers such as low atomization rate, low flame temperature, and unstable flame combustion. Therefore, it has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种火焰原子化器(II)以及痕量钠在线监测系统,属于在线分析仪器技术领域,火焰原子化器(II)包括依次连通设置的雾化器室(110)、第一腔室(120)、第二腔室(130)与第三腔室(140);雾化器室(110)设置有进样毛细管(111)、无油压缩空气入口(112)以及雾化器室出口(113),雾化器室出口(113)连通雾化器室(110)与第一腔室(120);第一腔室(120)设置有燃气入口(121)与撞击球(122),撞击球(122)正对雾化器室出口(113)设置;第二腔室(130)设置有高温气体入口(131),且第二腔室(130)填充满相变蓄热球(132);第三腔室(140)的上方设置有燃烧器(141),燃烧器(141)设置有净化空气入口(142),且燃烧器(141)的环形中心多孔燃烧头连通第三腔室(140)。采用火焰原子化器(II)可有效解决现有火焰原子化器存在的雾化率较低、火焰温度较低、火焰燃烧不稳定等技术问题。

Description

一种火焰原子化器以及痕量钠在线监测系统 技术领域
本发明涉及在线分析仪器技术领域,特别涉及一种火焰原子化器与痕量钠在线监测系统。
背景技术
火焰原子化器是光谱仪的重要组成部分,是利用火焰使试液中的离子变为原子蒸汽的装置,它对光谱(原子吸收,原子荧光光谱和火焰原子发射光谱)法测定的灵敏度和重复性有重大的影响。传统的火焰原子化器(Flame atomiser)由雾化器、预混合室和燃烧器三部分组成。在火焰原子化过程中,是通过混合助燃气(空气或氧气)和燃气(气体燃料),将液体试样雾化并带入火焰中进行原子化,将试液引人火焰并使其原子化经历了一系列复杂的物理与化学过程,这个过程包括雾粒的脱溶剂、蒸发、解离等阶段,在解离过程中,大部分离子解离为气态原子。
目前,二阶微分火焰发射光谱仪沿用了传统的火焰原子化器,燃烧器采用常温(环境温度)空气助燃,火焰温度较低而且不稳定,致使火焰燃烧不稳定,原子化效率偏低。同时,传统原子化器的进样通常采取气动同心雾化器,这种雾化器利用具有一定压力的压缩空气作为助燃器进入雾化器,水样从进样毛细管周围高速喷出,被通入的助燃气飞散成雾滴(气溶胶)。被雾化的水样越多,雾滴越细越易干燥、融化、汽化,生成自由原子也就越多,光谱仪的灵敏度也就越高。但是,这种传统雾化器的雾化效率最高只能达到10%左右,由于只有不到10%的试液被雾化,造成二阶微分火焰发射光谱仪的灵敏度偏低。为了提高二阶微分火焰发射光谱仪的灵敏度,发明专利:2011.1.0279428.0采用富氧-乙炔火焰,实用新型:ZL 201620667866.2采用氢-氧火焰来提高火焰温度。但是,上述措施在使用中由于富氧-乙炔火焰和氢-氧火焰的燃烧速度过高,容易引起回火燃爆事故,威胁用户和仪器的使用安全。
技术问题
本发明的主要目的在于提出一种火焰原子化器以及痕量钠在线监测系统,其旨在解决现有火焰原子化器存在的雾化效率较低、火焰温度较低、火焰燃烧不稳定等技术问题。
技术解决方案
为实现上述目的,本发明提供了一种火焰原子化器,所述火焰原子化器包括依次连通设置的雾化器室、第一腔室、第二腔室与第三腔室;所述雾化器室设置有进样毛细管、无油压缩空气入口以及雾化器室出口,所述雾化器室出口连通所述雾化器室与所述第一腔室;所述第一腔室设置有燃气入口与撞击球,所述撞击球正对所述雾化器室出口设置;所述第二腔室设置有高温空气入口,且所述第二腔室填充满相变蓄热球;所述第三腔室的上方设置有燃烧器,所述燃烧器设置有净化空气入口,且所述燃烧器的环形中心多孔燃烧头连通所述第三腔室。
可选地,所述第一腔室与所述第二腔室之间、所述第二腔室与所述第三腔室之间均设有分隔法兰,且所述分隔法兰设有通孔,以分别连通所述第一腔室与所述第二腔室、所述第二腔室与所述第三腔室。
可选地, 所述火焰原子化器还包括电解高纯水氢气发生器,所述电解高纯水氢气发生器的出口连通所述燃气入口。
可选地, 所述火焰原子化器还包括无油空压机、精密空气加热器、膜式干燥器以及空气过滤净化器,所述无油空压机的出口设置一压力调节阀,所述压力调节阀的出口连接到所述膜式干燥器的入口,所述膜式干燥器的出口经第一隔离阀连通所述无油压缩空气入口,所述膜式干燥器的出口经第二隔离阀连接到所述精密空气加热器的入口,所述精密空气加热器的出口连通所述高温气体入口,所述膜式干燥器的出口经所述空气过滤净化器连通所述净化空气入口。
可选地,所述第一腔室还设置有废液排出口,所述第三腔室的一侧还设置有防爆膜。
可选地,所述第二腔室的侧壁内设置有真空环形腔体,以实现对所述第二腔室的保温处理。
可选地,所述相变蓄热球包括一带有腔体的不锈钢球壳,所述不锈钢球壳上设置有加料密封口,以在所述不锈钢球壳的腔体中填充入相变蓄热材料。
可选地,所述相变蓄热材料的相变温度为400℃。
此外,为实现上述目的,本发明还提供了一种痕量钠在线监测系统,所述痕量钠在线监测系统包括进样-标定组件、二阶微分火焰发射光谱仪以及上述的火焰原子化器,其中,所述进样-标定组件,用于在所述二阶微分火焰发射光谱仪的控制下,将标定用高纯水、标准水样和待测量水样经所述进样毛细管依次连续稳定地输送到所述火焰原子化器的所述雾化器室;所述火焰原子化器,用于在所述二阶微分火焰发射光谱仪的控制下,依次对所述进样-标定组件输送过来的所述标定用高纯水、所述标准水样以及所述待测量水样进行雾化及火焰原子化处理,形成辐射589.0nm钠光谱的火焰;所述二阶微分火焰发射光谱仪,用于实时控制所述进样-标定组件和所述火焰原子化器的运行,并实时对所述火焰原子化器形成的火焰进行数据分析处理,得出相应的测试结果。
可选地, 所述进样-标定组件包括标定用高位高纯水杯、标定用高位标准水样杯、标定切换电磁阀、待测量水样进水管、水样入口调节电磁阀、进样三通阀、水样进水管以及恒液位溢流水样杯,所述待测量水样进水管经所述水样入口调节电磁阀连接到所述进样三通阀的第一入口,所述标定用高位高纯水杯的出口与所述标定用高位标准水样杯的出口分别经所述标定切换电磁阀连接到所述进样三通阀的第二入口,所述水样进水管的一端连接到所述进样三通阀的出口,所述水样进水管的另一端插入所述恒液位溢流水样杯内,所述进样毛细管的外端插入所述恒液位溢流水样杯内,且所述水样进水管的出口低于所述进样毛细管的入口。
可选地, 所述进样-标定组件还包括固定槽与溢流集水杯, 所述恒液位溢流水样杯通过所述固定槽安装在所述溢流集水杯中。
可选地,所述二阶微分火焰发射光谱仪包括:光电传感器组件,用于对钠的特征谱线进行快速扫描并自动扣去除火焰的背景干扰后产生二阶微分调制钠光谱,以被光电倍增管接收及激发产生的二阶微分调频电流,所述二阶微分调频电流经锁相放大器解调并放大后输出到数据采集组件;数据采集组件,用于采集二阶微分调频电流的模拟信号,并转换为数字信号输出到嵌入式工控机组件以进行实时监测和控制;嵌入式工控机组件,用于实时控制所述进样-标定组件、所述火焰原子化器、所述光电传感器组件和所述数据采集组件的运行,并实时对所述数据采集组件采集的数据进行统计分析和处理,得出测试结果。
有益效果
本发明提供的火焰原子化器以及痕量钠在线监测系统,其火焰原子化器包括依次连通设置的雾化器室、第一腔室、第二腔室与第三腔室。雾化器室设置有进样毛细管、无油压缩空气入口以及雾化器室出口,使用时,进样毛细管的外端可插入到恒液位溢流水样杯中,此时,通过无油压缩空气入口接入的无油压缩空气在雾化器室内形成“负压力场”可将恒液位溢流水样杯中的待测量水样(或标定用高位高纯水、或标定用高位标准水样)经由进样毛细管吸入雾化器室内,以在雾化器室内完成水样的雾化和初步混合过程后经雾化器室出口喷出。第一腔室设置有燃气入口与撞击球,撞击球正对雾化器室出口设置,通过撞击球可把雾化器室出口喷出的雾滴撞碎,使气溶胶的雾粒更为细微、更均匀。与此同时,其通过燃气入口接入的燃料气可在第一腔室内与雾化器室出口喷出的气溶胶混合后进入第二腔室。第二腔室设置有高温气体入口,且第二腔室填充满相变蓄热球,高温气体经高温气体入口进入并加热相变蓄热球,这样一来,从雾化器室喷出并被撞击球撞击粉碎的气溶胶的“雾粒”和高温相变蓄热球充分接触,该“雾粒”被加热并完全汽化,雾化效率可以达到100%。第三腔室的上方设置有燃烧器,燃烧器设置有净化空气入口,且燃烧器的环形中心多孔燃烧头连通第三腔室,通过净化空气入口可接入压力稳定的净化空气(助燃气),这样在从第二腔室出来的完全雾化的温度稳定的高温混合气体进入第三腔室,可在燃烧器的环形中心多孔燃烧头上方点燃形成火焰,辐射出谱线强度稳定的589.0nm的钠特征光谱。可见,本技术方案,其可有效解决现有火焰原子化器存在的雾化率较低、火焰温度较低、火焰燃烧不稳定等技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的相变蓄热恒温火焰原子化器的整体结构图。
图2为图1所示火焰原子化器的相变蓄热球的结构示意图。
图3为本发明实施例二提供的痕量钠在线监测系统的结构框图。
图4为图3所示痕量钠在线监测系统的进样-标定组件的结构示意图。
图5为图3所示痕量钠在线监测系统的二阶微分火焰发射光谱仪的嵌入式工控机的结构框图。
图6为图5所示嵌入式工控机的标定模块的具体标定过程的流程框图。
图7为原子发射光谱原理的罗马金关系曲线。
本发明的实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例一
如图1所示,本发明实施例一提供了一种火焰原子化器Ⅱ,该火焰原子化器Ⅱ包括依次连通设置的雾化器室110、第一腔室120、第二腔室130与第三腔室140。雾化器室110设置有进样毛细管111、无油压缩空气入口112以及雾化器室出口113,雾化器室出口113连通雾化器室110与第一腔室120。第一腔室120设置有燃气入口121与撞击球122,撞击球122正对雾化器室出口113设置。第二腔室130设置有高温气体入口131,且第二腔室130填充满相变蓄热球132。第三腔室140的上方设置有燃烧器141,燃烧器141设置有净化空气入口142,且燃烧器141的环形中心多孔燃烧头连通第三腔室140。
在本实施例中, 如图1所示,第一腔室120与第二腔室130之间、第二腔室130与第三腔室之间140均设有分隔法兰10,且分隔法兰10设有通孔11,以分别连通第一腔室120与第二腔室130、第二腔室130与第三腔室140。这样一来,通过带通孔11的分隔法兰10,可在分隔形成第一腔室120、第二腔室130、与第三腔室140的同时,使得三者依次局部连通。
如图2所示,相变蓄热球132包括一带有腔体的不锈钢球壳1321,不锈钢球壳1321上设置有加料密封口1322,以在不锈钢球壳1321的腔体中填充入相变蓄热材料1323。具体地,不锈钢球壳1321为直径8mm-16mm的不锈钢空心小球,加料密封口1322采用涂有耐高温胶的不锈钢塞填入外孔密封,相变蓄热材料1323的体积为不锈钢球壳容积的2/3-3/4,相变蓄热材料1323是一种固-固复合相变材料,这种固-固复合相变蓄热材料的相变温度设计为400℃。第二腔室130是一个填充满相变蓄热球132的“相变蓄热雾化床”,从雾化器室110喷出并被撞击球122撞击粉碎的气溶胶的雾粒和高温相变蓄热球132充分接触并完全雾化,雾化效率可以达到100%。
如图1所示,本实施例中的火焰原子化器Ⅱ还包括电解高纯水氢气发生器150、无油空压机160、精密空气加热器170、膜式干燥器180以及空气过滤净化器190。其中,电解高纯水氢气发生器150的出口连通燃气入口121,为燃气入口121接入高纯氢气作为燃料气,可进一步确保其燃烧器的燃烧稳定性。无油空压机160的出口设置一压力调节阀12,压力调节阀12的出口连接到膜式干燥器180的入口,膜式干燥器180的出口经第一隔离阀13连通无油压缩空气入口112,膜式干燥器180的出口经第二隔离阀14连接到精密空气加热器170的入口,精密空气加热器170的出口连通高温气体入口131,膜式干燥器180的出口经空气过滤净化器190连通净化空气入口142。即本实施例中的净化空气入口142接入的“净化空气”是由膜式干燥器180的出口输出的干燥空气经过空气过滤净化器190(具体为一个0.1μ的精密过滤器)进一步除去空气中的固态与液态微粒后获得的干净空气。这种“净化空气”从燃烧器141底部的净化空气入口142进入环形中心多孔燃烧头的环形通道,由于“净化空气”的压力高于第三腔室140内燃烧混合气体的压力,因而,会在燃烧器141上方形成的辐射钠元素发射光谱的火焰火炬周围形成一个微正压的环形保护罩,这个环形保护罩具有向火焰外围自动扩散的功能,能够有效的阻止周围空间环境中的各种痕量干扰成分(盐雾和尘粒)进入原子化的火焰中心,可以实现在通常测量环境条件下进行痕量分析并获得稳定测量结果的目的。
另外,如图1所示,第一腔室120还设置有废液排出口123,以排出废液。第三腔室140的一侧还设置有防爆膜143,以确保燃烧器142工作时第三腔室140的安全性能。第二腔室130的侧壁内设置有真空环形腔体133,以实现对第二腔室130的保温处理。
工作时,无油空压机160经压力调节阀12的压力调节后输出的压力稳定的无油压缩空气经无油压缩空气入口112进入雾化器室110,在雾化器室110内形成“负压力场”以将待测量水样(或标定用高位高纯水、或标定用高位标准水样)经由进样毛细管111吸入,并在雾化器室110内完成水样的雾化和初步混合过程,再由雾化器室出口113喷出,此时,第一腔室120中的撞击球122可把雾化器室出口113喷出的雾滴撞碎,使气溶胶的雾粒更为细微、更均匀。与此同时,由电解高纯水氢气发生器150输出的高纯氢气从燃气入口121进入第一腔室120与雾化器室110喷出的气溶胶混合并进入第二腔室130。由于第二腔室130是一个填充满相变蓄热球132的“相变蓄热雾化床”,从雾化器室110喷出并被撞击球122撞击粉碎的气溶胶的“雾粒”和高温相变蓄热球130充分接触,该“雾粒”被加热并完全汽化,雾化效率可以达到100%。最后,从第二腔室130出来的完全雾化的温度稳定的高温混合气体进入第三腔室140,并在燃烧器141的环形中心多孔燃烧头上方点燃形成火焰,辐射出谱线强度稳定的589.0nm的钠特征光谱。
另外,使用上述的火焰原子化器Ⅱ时,还可按如下操作:(1)启动无油空压机160,调节压力调节阀12使无油空压机160的出口压力为0.25MP,关闭第一隔离阀13开启第二隔离阀14将压缩空气通过精密空气加热器170加热,控制精密空气加热器170的出口温度为400±5℃;(2)高温空气经高温气体入口131进入相变蓄热雾化床(即第二腔室130),高温空气与相变蓄热球132接触并加热相变蓄热球132;直至燃烧器141出口热空气温度稳定在相变温度+5℃。
(3)关闭第二隔离阀14开启第一隔离阀13将助燃气通过助燃气入口(即无油压缩空气入口112)进入雾化器室110,以在雾化器室110内形成“负压力场”来将待测量水样经进样毛细管111进入雾化器室110雾化成细小的液滴并进入相变蓄热雾化床(即第二腔室130)与恒温的相变蓄热球132接触雾化,炽热的恒温高温混合气体在燃烧器141出口上方点燃形成温度稳定的高温火焰并辐射出Na元素的589.0nm的特征发射光谱。
与现有技术相比,本发明实施例的优点在于:(1)雾化效率高达100%,,而传统火焰原子吸收的雾化器的雾化效率一般小于10%,因此本发明实施例的痕量钠分析的灵敏度比采用传统同心雾化器的二阶微分火焰发射光谱仪提高了一个数量级。(2)相变蓄热雾化床的使用实现了助燃气的高温预热,提高了原子化温度,提高了分析的灵敏度和检出限。(3)相变蓄热雾化床的使用实现了预混合气体的恒温化和高温化,使得原子化火焰的温度稳定,提高了测量结果的重复性。(4)二阶微分火焰发射光谱法测量高纯水中痕量钠的检出限达到了小于0.1μg/L的先进水平。(5)与石墨炉原子吸收光谱仪和电感耦合等离子体发射光谱仪(ICP)相比,具有设备简单,操作简单分析成本低的明显优势。
实施例二
如图3所示,本发明实施二提供了一种痕量钠在线监测系统,该痕量钠在线监测系统包括进样-标定组件Ⅰ、火焰原子化器器Ⅱ以及二阶微分火焰发射光谱仪Ⅲ。其中,进样-标定组件Ⅰ主要用于在二阶微分火焰发射光谱仪Ⅲ的控制下,将标定用高纯水、标准水样和待测量水样经进样毛细管111依次连续稳定地输送到火焰原子化器器Ⅱ的雾化器室110。火焰原子化器器Ⅱ主要用于在二阶微分火焰发射光谱仪Ⅲ的控制下,依次对进样-标定组件Ⅰ输送过来的标定用高纯水、标准水样以及待测量水样进行雾化及火焰原子化处理,形成辐射589.0nm钠光谱的火焰。二阶微分火焰发射光谱仪Ⅲ主要用于实时控制进样-标定组件Ⅰ和火焰原子化器Ⅱ的运行,并实时对火焰原子化器Ⅱ形成的火焰进行数据分析处理,得出相应的测试结果。
在本实施例中,如图4所示,进样-标定组件Ⅰ包括标定用高位高纯水杯201、标定用高位标准水样杯202、标定切换电磁阀203、待测量水样进水管204、水样入口调节电磁阀205、进样三通阀206、水样进水管207以及恒液位溢流水样杯208,待测量水样进水管204经水样入口调节电磁阀205连接到进样三通阀206的第一入口,标定用高位高纯水杯201的出口与标定用高位标准水样杯202的出口分别经标定切换电磁阀203连接到进样三通阀206的第二入口,水样进水管207的一端连接到进样三通阀206的出口,水样进水管207的另一端插入恒液位溢流水样杯208内,进样毛细管111的外端插入恒液位溢流水样杯208内,且水样进水管207的出口低于进样毛细管111的入口。工作时,标定用高位高纯水杯201注满标定用高位高纯水,标定用高位标准水样杯202注满标准水样(即10μg/L的钠标准水样)、待测量水样进水管204接入待测量水样。通过标定切换电磁阀203、水样入口调节电磁阀205以及进样三通阀206的分别切换,可将标定用高纯水、标准水样和待测量水样依次经由水样进水管207、恒液位溢流水样杯208、进样毛细管111连续稳定地输送到火焰原子化器Ⅱ的雾化器室110内。
具体地, 如图4所示,进样-标定组件Ⅰ还包括固定槽209与溢流集水杯210, 恒液位溢流水样杯208通过固定槽209安装在溢流集水杯210中。标定切换电磁阀203是一个两位三通电磁阀,三个通道分别连接标定用高位高纯水杯201、标定用高位标准水样杯202和进样三通阀206。与标定切换电磁阀203连通的进样三通阀206的另外两路分别连通水样入口调节电磁阀205和水样进水管207。其中,标定用高位高纯水杯201和标定用高位标准水样杯202可以是一个容量为1000mL的敞口下开口聚乙烯(PE)容器,容器的底部是锥形漏斗结构,容器的底部与进样毛细管111的入口的高差为第二预设的高度差(优选为1000mm左右)。标定用高纯水是指用于配制当次标定用的标准水样的高纯水。水样进水管207的出口比进样毛细管111的入口低第一预设的高度差(优选为10mm左右), 进样毛细管111从恒液位溢流水样杯208的底部连接到火焰原子化器的雾化器室110内。恒液位溢流水样杯208优选为一个安放在敞口溢流集水杯210中央的圆柱型固定槽209中的125mL标准PE窄口采样瓶,圆柱型固定槽209的尺寸为:Ф52×50(H),流经恒液位溢流水样杯208的水样流速设计为40mL/min -60mL/min。恒液位溢流水样杯208的溢流口是125mL标准PE窄口采样瓶的瓶口,恒液位溢流水样杯208溢流的作用是在测量过程中保持进样毛细管111入口处的水样的液柱高度稳定,这种稳定的水样高度可以使进样毛细管111入口处的静压稳定,保持进样毛细管111入口静压稳定就可以在载气(氢氧混合气体)压力稳定的条件下保证进入雾化器的水样提升量稳定。水样提升量的稳定可以保证测量过程中火焰燃烧温度的稳定,从而保证测量结果的稳定性和重复性。同时,水样从恒液位溢流水样杯208的顶部溢出保证恒液位溢流水样杯208内的测量水样的实时性。设计保证水样进水管207的出口比进样毛细管111的入口低第一预设的高度差(10mm左右),可以保证进入进样毛细管111的水样的实时性,从而保证测量数据的实时代表性。
二阶微分火焰发射光谱仪(III)具体包括光电传感器组件、数据采集组件以及嵌入式工控机组件。其中,光电传感器组件主要用于对钠的特征谱线进行快速扫描并自动扣去除火焰的背景干扰后产生二阶微分调制钠光谱,以被光电倍增管接收及激发产生的二阶微分调频电流,二阶微分调频电流经锁相放大器解调并放大后输出到数据采集组件。数据采集组件主要用于采集二阶微分调频电流的模拟信号,并转换为数字信号输出到嵌入式工控机组件以进行实时监测和控制。嵌入式工控机组件主要用于实时控制进样-标定组件Ⅰ、火焰原子化器Ⅱ、光电传感器组件和数据采集组件的运行,并实时对数据采集组件采集的数据进行统计分析和处理,得出测试结果。
嵌入式工控机组件具体包括嵌入式工控机(主机)和电阻式触摸屏(显示器),嵌入式工控机可负责处理接受下位机传输过来的数字信号的处理及显示,主机和从机之间用USB进行通信。这样用户可以在上位机上编写各种功能程序对文件中的数据进行有效查询和分析,有利于分析测量过程的长期正常运行和检查。如图5所示,嵌入式工控机包括系统设置模块301、点火模块302、标定模块303、测量模块304以及数据处理模块305。
系统设置模块301:用于设置自动扫描二阶微分精密光栅单色仪的特征谱线波长为589.0nm;还用于设置光电倍增管的负高压模块输出的高压直流电压的纹波系数小于0.005%、最大漂移小于±0.03%/h以及负高压直流电压值。从操作层面来说,用户开启主机电源、单色仪电源、氮化硅点火电源和计算机电源后,用USB连接电缆连接工控机与下位机(主机),计算机与单色仪。启动痕量钠在线监测软件的图标,在软件人机界面对话框中完成系统设置的步骤,系统设置的参数包括但不限于系统时间设定、特征谱线波长设定589.0nm、光电倍增管负高压设定、用户名称设定。完成设置之后,计算机进行系统检测,检测的参数包括但不限于:电解高纯水氢气发生器输出压力、火焰传感器状态信号、氮化硅自动点火电源开关状态、无油空压机输出压力信号、标定状态信号、标定切换电磁阀的状态信号、进样三通阀状态信号、水样入口调节电磁阀的状态信号等等。
点火模块302:用于开启电解高纯水氢气发生器150,检测到电解高纯水氢气发生器150的输出压力到达预设的点火阈值且自动点火电源正常后,启动点火电磁阀。
标定模块303:用于检测到火焰传感器状态信号正常后,控制进样-标定组件Ⅰ将标定用高纯水和标定用标准水样依次连续稳定地输送到火焰原子化器Ⅱ,并向数据采集组件发出数据采集指令,获取数据采集组件采集的标定水样的测量数据。
需要说明的是,在标定模块303开始标定过程之前,需要向标定用高位高纯水杯201、标定用高位标准水样杯202分别注满高纯水和(10μg/L的)钠标准水样。如图6所示,标定模块303具体标定过程包括:
S110、关闭水样入口调节电磁阀205。
S120、开启标定切换电磁阀203并切向标定用高位高纯水杯201。
S130、开启进样三通阀206,使得高纯水流入恒液位溢流水样杯208。
具体的,开启进样三通阀206后,高纯水经进样进水管207流入恒液位溢流水样杯208,来自标定用高位高纯水杯201的高纯水经由进样毛细管111自动吸入雾化器室110中完成雾化、混合、液滴分离的过程,然后在燃烧器141的环形中心多孔燃烧头的出口上方点燃形成辐射589.0nm钠光谱的火焰。
S140、向数据采集组件发出数据采集指令,并获取数据采集组件采集的高纯水的测量结果。
具体的,嵌入式工控机向数据采集组件的单片机发出采集指令,单片机采集来自微电流锁相放大器的低通滤波器的直流模拟信号,并通过A/D转换器转换成数字信号发送到嵌入式工控机存储和进一步处理。
S150、开启标定切换电磁阀203切向标定用高位标准水样杯202,冲洗预设的时间后,获取数据采集组件采集的标准水样的测量结果。
具体的,高纯水进样读数完成后,将标定切换电磁阀203切向标定用高位标准水样杯202,10μg/L的钠标准水样流入恒液位溢流水样杯208,冲洗3分钟后开始采集数据,完成10μg/L的钠标准水样的数据采集。
S160、关闭标定切换电磁阀203,并开启水样入口调节电磁阀205。
S170、获取标定回归直线和高纯空白水的钠本底浓度。
具体地,水样中的钠离子在高温火焰中被原子化并激发辐射出钠原子的“特征谱线”,在钠离子浓度极低(痕量)的条件下,其谱线的强度与试样中钠离子的浓度成正比罗马金公式(如图7所示)。
其中,罗马金公式的物理意义是:原子发射光谱的标定曲线必定是一条通过原点的直线(当而且仅当水样中的钠离子浓度为零时,谱线强度的测量值才能为零),这为原子发射光谱的测量标定提供了不需要准备“无钠水”的理论依据,事实上,在现有技术条件下,真正的“无钠水”在实验室是不存在的。而承认并且使用“无钠水”是原子吸收和液相色谱测量痕量钠的前提条件。                
即:
y = f bx            (1)
x = y/f b           (2)
式中:x 为水样中钠的真实浓度(µg/L);
  y 为谱线强度值(仪器谱线强度表读数µA)
 f b 为回归直线的斜率。
设:
0#水样为高纯空白水:
设高纯空白水的钠本底浓度x 0=C 0(µg/L);
测得高纯空白水的谱线强度值y 0
        则:y 0 = f bx                     (3)
设1#水样为向高纯空白水样加入钠含量x S的标准溶液:
设1#水样的钠浓度为x 1(µg/L),测得谱线强度值y1;
则: y 1 = f bx                     (4)
 x 1 = x 0+x S ( 1#水样的真实钠浓度) (5)
将式(5)代入式(4)解得:
 f b = y1/(x 0+x s)               (6)
将式(6)代入式(3)解得高纯空白水的钠本底浓度:
x 0(C 0)= y 0x s/(y 1-y 0)          (7)
将式(7)代入式(6)解得斜率:
 f b = (y 1-y 0)/x s                 (8)
将(8)式代入Lomakin-Scherbe公式(1)
得到水样中真实钠浓度的计算公式:
 x = y/f b=x sy/(y 1-y 0)           (9)
本实施例通过自动进行标定结果的计算,并自动给出高纯空白水的钠本底浓度C0 [µg/L]值和标定结果的回归直线图(即罗马金关系曲线)。从上述推导过程可见:采用本仪器提供的“二点标定法”测量痕量钠时,并不要求具备“无钠水”的“前提”,只要用与试样钠含量同一水平的水作为“空白”水就可以对水样中真实痕量钠含量进行准确的测定。
测量模块304:用于检测到进样三通阀206与标定切换电磁阀203的连接已处于关闭状态、水样入口调节电磁阀205已处于开启状态、进样三通阀206已连接到进样进水管207后,控制进样-标定组件Ⅰ将待测量水样连续稳定输送到火焰原子化器Ⅱ,并获取数据采集组件采集的待测量水样的测量数据。具体地,测量模块304根据预设的频率,关闭水样入口调节电磁阀205,采集测量数据后开启水样入口调节电磁阀205。当标定模块303完成标定过程后,自动转入测量模块304的测量过程,即开始按测量程序的指令测量在线水样的实时实际钠浓度。此时进样三通阀206与标定切换电磁阀203的连接已处于关闭状态,水样入口调节电磁阀205已处于开启状态,进样三通阀206已连接到进样进水管207。来自锅炉水、汽取样架的水样入口调节电磁阀205的水样连续流过恒液位溢流水样杯208。测量频率优选为1次/10min,(每隔10分钟进行一次读数操作完成一次实时水样的测量)触发测量数据采集时工控机指令单片机关闭水样入口调节电磁阀205。完成数据采集后立即自动开启水样入口调节电磁阀205。如此采用连续进样,间歇式静态测量的程序化分析操作,测量过程计算机程序关闭水样入口调节电磁阀205实现恒液位溢流水样杯208的静态测量,保证测量结果的实时代表性,保证测量条件的稳定,保证测量结果的重复性。
数据处理模块305:用于实时对标定水样的测量数据和待测量水样的测量数据进行统计分析,得出痕量钠测试结果。具体地,输出的每一个测定数据都是一个间隔1秒的6次平行测定数据的统计数值的算术平均值,同时自动给出测量结果标准偏差、相对标准偏差和测量结果的“不确定度”等统计数据。能智能化的进行标定和在现场LCD屏幕上通过确定实时实际水样钠浓度的通过坐标原点的工作曲线直接显示测量结果,经标定后的测量结果是水样中钠的真实含量值。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。
工业实用性
本发明实施例提供的火焰原子化器以及痕量钠在线监测系统,其火焰原子化器包括依次连通设置的雾化器室、第一腔室、第二腔室与第三腔室。雾化器室设置有进样毛细管、无油压缩空气入口以及雾化器室出口,使用时,进样毛细管的外端可插入到恒液位溢流水样杯中,此时,通过无油压缩空气入口接入的无油压缩空气在雾化器室内形成“负压力场”可将恒液位溢流水样杯中的待测量水样(或标定用高位高纯水、或标定用高位标准水样)经由进样毛细管吸入雾化器室内,以在雾化器室内完成水样的雾化和初步混合过程后经雾化器室出口喷出。第一腔室设置有燃气入口与撞击球,撞击球正对雾化器室出口设置,通过撞击球可把雾化器室出口喷出的雾滴撞碎,使气溶胶的雾粒更为细微、更均匀。与此同时,其通过燃气入口接入的燃料气可在第一腔室内与雾化器室出口喷出的气溶胶混合后进入第二腔室。第二腔室设置有高温气体入口,且第二腔室填充满相变蓄热球,高温气体经高温气体入口进入并加热相变蓄热球,这样一来,从雾化器室喷出并被撞击球撞击粉碎的气溶胶的“雾粒”和高温相变蓄热球充分接触,该“雾粒”被加热并完全汽化,雾化效率可以达到100%。第三腔室的上方设置有燃烧器,燃烧器设置有净化空气入口,且燃烧器的环形中心多孔燃烧头连通第三腔室,通过净化空气入口可接入压力稳定的净化空气(助燃气),这样在从第二腔室出来的完全雾化的温度稳定的高温混合气体进入第三腔室,可在燃烧器的环形中心多孔燃烧头上方点燃形成火焰,辐射出谱线强度稳定的589.0nm的钠特征光谱。可见,本技术方案,其可有效解决现有火焰原子化器存在的雾化率较低、火焰温度较低、火焰燃烧不稳定等技术问题。因此,具有工业实用性。

Claims (12)

  1. 一种火焰原子化器,其特征在于,所述火焰原子化器包括依次连通设置的雾化器室、第一腔室、第二腔室与第三腔室;所述雾化器室设置有进样毛细管、无油压缩空气入口以及雾化器室出口,所述雾化器室出口连通所述雾化器室与所述第一腔室;所述第一腔室设置有燃气入口与撞击球,所述撞击球正对所述雾化器室出口设置;所述第二腔室设置有高温气体入口,且所述第二腔室填充满相变蓄热球;所述第三腔室的上方设置有燃烧器,所述燃烧器设置有净化空气入口,且所述燃烧器的环形中心多孔燃烧头连通所述第三腔室。
  2. 根据权利要求1所述的火焰原子化器,其特征在于,所述第一腔室与所述第二腔室之间、所述第二腔室与所述第三腔室之间均设有分隔法兰,且所述分隔法兰设有通孔,以分别连通所述第一腔室与所述第二腔室、所述第二腔室与所述第三腔室。
  3. 根据权利要求1所述的火焰原子化器,其特征在于, 所述火焰原子化器还包括电解高纯水氢气发生器,所述电解高纯水氢气发生器的出口连通所述燃气入口。
  4. 根据权利要求1所述的火焰原子化器,其特征在于, 所述火焰原子化器还包括无油空压机、精密空气加热器、膜式干燥器以及空气过滤净化器,所述无油空压机的出口设置一压力调节阀,所述压力调节阀的出口连接到所述膜式干燥器的入口,所述膜式干燥器的出口经第一隔离阀连通所述无油压缩空气入口,所述膜式干燥器的出口经第二隔离阀连接到所述精密空气加热器的入口,所述精密空气加热器的出口连通所述高温气体入口,所述膜式干燥器的出口经所述空气过滤净化器连通所述净化空气入口。
  5. 根据权利要求1所述的火焰原子化器,其特征在于,所述第一腔室还设置有废液排出口,所述第三腔室的一侧还设置有防爆膜。
  6. 根据权利要求1所述的火焰原子化器,其特征在于,所述第二腔室的侧壁内设置有真空环形腔体,以实现对所述第二腔室的保温处理。
  7. 根据权利要求1-6任一项所述的火焰原子化器,其特征在于,所述相变蓄热球包括一带有腔体的不锈钢球壳,所述不锈钢球壳上设置有加料密封口,以在所述不锈钢球壳的腔体中填充入相变蓄热材料。
  8. 根据权利要求7所述的火焰原子化器,其特征在于,所述相变蓄热材料的相变温度为400℃。
  9. 一种痕量钠在线监测系统,其特征在于,所述痕量钠在线监测系统包括进样-标定组件、二阶微分火焰发射光谱仪以及如权利要求1-8任一项所述的火焰原子化器,其中,
    所述进样-标定组件,用于在所述二阶微分火焰发射光谱仪的控制下,将标定用高纯水、标准水样和待测量水样经所述进样毛细管依次连续稳定地输送到所述火焰原子化器的所述雾化器室;
    所述火焰原子化器,用于在所述二阶微分火焰发射光谱仪的控制下,依次对所述进样-标定组件输送过来的所述标定用高纯水、所述标准水样以及所述待测量水样进行雾化及火焰原子化处理,形成辐射589.0nm钠光谱的火焰;
    所述二阶微分火焰发射光谱仪,用于实时控制所述进样-标定组件和所述火焰原子化器的运行,并实时对所述火焰原子化器形成的火焰进行数据分析处理,得出相应的测试结果。
  10. 根据权利要求9所述的痕量钠在线监测系统,其特征在于, 所述进样-标定组件包括标定用高位高纯水杯、标定用高位标准水样杯、标定切换电磁阀、待测量水样进水管、水样入口调节电磁阀、进样三通阀、水样进水管以及恒液位溢流水样杯,所述待测量水样进水管经所述水样入口调节电磁阀连接到所述进样三通阀的第一入口,所述标定用高位高纯水杯的出口与所述标定用高位标准水样杯的出口分别经所述标定切换电磁阀连接到所述进样三通阀的第二入口,所述水样进水管的一端连接到所述进样三通阀的出口,所述水样进水管的另一端插入所述恒液位溢流水样杯内,所述进样毛细管的外端插入所述恒液位溢流水样杯内,且所述水样进水管的出口低于所述进样毛细管的入口。
  11. 根据权利要求10所述的痕量钠在线监测系统,其特征在于, 所述进样-标定组件还包括固定槽与溢流集水杯, 所述恒液位溢流水样杯通过所述固定槽安装在所述溢流集水杯中。
  12. 根据权利要求9所述的痕量钠在线监测系统,其特征在于,所述二阶微分火焰发射光谱仪包括:
    光电传感器组件,用于对钠的特征谱线进行快速扫描并自动扣去除火焰的背景干扰后产生二阶微分调制钠光谱,以被光电倍增管接收及激发产生的二阶微分调频电流,所述二阶微分调频电流经锁相放大器解调并放大后输出到数据采集组件;
    数据采集组件,用于采集二阶微分调频电流的模拟信号,并转换为数字信号输出到嵌入式工控机组件以进行实时监测和控制;
    嵌入式工控机组件,用于实时控制所述进样-标定组件、所述火焰原子化器、所述光电传感器组件和所述数据采集组件的运行,并实时对所述数据采集组件采集的数据进行统计分析和处理,得出测试结果。
PCT/CN2020/094831 2020-06-04 2020-06-08 一种火焰原子化器以及痕量钠在线监测系统 WO2021243729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010501275.9 2020-06-04
CN202010501275.9A CN111855642A (zh) 2020-06-04 2020-06-04 一种火焰原子化器以及痕量钠在线监测系统

Publications (1)

Publication Number Publication Date
WO2021243729A1 true WO2021243729A1 (zh) 2021-12-09

Family

ID=72985771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094831 WO2021243729A1 (zh) 2020-06-04 2020-06-08 一种火焰原子化器以及痕量钠在线监测系统

Country Status (2)

Country Link
CN (1) CN111855642A (zh)
WO (1) WO2021243729A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331416A (zh) * 2011-10-13 2012-01-25 金川集团有限公司 测定镍基体溶液中微量铁含量的微量脉冲进样装置及方法
JP5131211B2 (ja) * 2009-01-20 2013-01-30 株式会社島津製作所 発光分光分析装置
CN204479464U (zh) * 2015-03-02 2015-07-15 苏州市百信环境检测工程技术有限公司 一种原子吸收分光光度计的火焰原子化器装置
CN107636448A (zh) * 2016-06-29 2018-01-26 深圳市爱诺实业有限公司 高纯水痕量钠在线监测仪及其在线监测方法和装置
CN207797012U (zh) * 2017-10-13 2018-08-31 神雾科技集团股份有限公司 模块化多级相变蓄热式高温空气燃烧节能装置
CN207999814U (zh) * 2018-03-14 2018-10-23 无锡赛威特燃烧器制造有限公司 中心蓄热式辅助烧嘴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131211B2 (ja) * 2009-01-20 2013-01-30 株式会社島津製作所 発光分光分析装置
CN102331416A (zh) * 2011-10-13 2012-01-25 金川集团有限公司 测定镍基体溶液中微量铁含量的微量脉冲进样装置及方法
CN204479464U (zh) * 2015-03-02 2015-07-15 苏州市百信环境检测工程技术有限公司 一种原子吸收分光光度计的火焰原子化器装置
CN107636448A (zh) * 2016-06-29 2018-01-26 深圳市爱诺实业有限公司 高纯水痕量钠在线监测仪及其在线监测方法和装置
CN207797012U (zh) * 2017-10-13 2018-08-31 神雾科技集团股份有限公司 模块化多级相变蓄热式高温空气燃烧节能装置
CN207999814U (zh) * 2018-03-14 2018-10-23 无锡赛威特燃烧器制造有限公司 中心蓄热式辅助烧嘴

Also Published As

Publication number Publication date
CN111855642A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
Willis Atomization problems in atomic absorption spectroscopy—I. A study of the operation of a typical nebulizer, spray chamber and burner system
Long et al. Influence of water on conditions in the inductively coupled argon plasma
US2714833A (en) Burner structure for producing spectral flames
US20190178864A1 (en) Online monitor for trace sodium in high-purity water, and online monitoring method and device thereof
CN106383198B (zh) 一种模拟柴油机废气再循环对尾气排放影响的装置及方法
CN110672778A (zh) 可微波点火的氧燃烧反应釜
WO2021243729A1 (zh) 一种火焰原子化器以及痕量钠在线监测系统
CN201185172Y (zh) 一种表面解吸常压化学电离源
CN212255082U (zh) 一种火焰原子化器以及痕量钠在线监测系统
CN207020077U (zh) 六氟化硫气体中矿物油含量测定装置
CN209707461U (zh) 卧式双室焦炭活化能测定仪
CN209542378U (zh) 一种粉尘检测仪
Kaya et al. Germanium determination by flame atomic absorption spectrometry: An increased vapor pressure-chloride generation system
CN208382923U (zh) 一种观察气体稀释效果的装置
CN114166711A (zh) 一种可控浓度的粉尘发生装置及方法
CN102680454A (zh) 二阶微分火焰发射光谱仪
CN110987542A (zh) 一种电子烟烟气自动测量和采集系统
Duan et al. Desolvation effect on the analytical performance of microwave-induced plasma atomic absorption spectrometry (MIP-AAS)
Saturday et al. Measurement and comparison of relative free-atom fractions in the helium-oxygen-acetylene and air-acetylene flames
CN208091921U (zh) 一种火焰光度计
JPS6073437A (ja) 分光分析用試料原子化装置
Torsi et al. A new method for standardless analysis in ETA-AAS applied to the determination of lead associated with air aerosol
CN217787011U (zh) 一种高灵敏度氢火焰离子化检测器
CN219496275U (zh) 固定污染源废气中有机物的环保在线监测与采样设备
CN210166355U (zh) 火焰离子化检测器及挥发性有机物分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939361

Country of ref document: EP

Kind code of ref document: A1