WO2021243581A1 - 电极组件及其相关电池、装置、制造方法和制造装置 - Google Patents

电极组件及其相关电池、装置、制造方法和制造装置 Download PDF

Info

Publication number
WO2021243581A1
WO2021243581A1 PCT/CN2020/094037 CN2020094037W WO2021243581A1 WO 2021243581 A1 WO2021243581 A1 WO 2021243581A1 CN 2020094037 W CN2020094037 W CN 2020094037W WO 2021243581 A1 WO2021243581 A1 WO 2021243581A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
positive electrode
negative electrode
negative
winding
Prior art date
Application number
PCT/CN2020/094037
Other languages
English (en)
French (fr)
Irish (ga)
Inventor
梁成都
许虎
金海族
曾毓群
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2021561782A priority Critical patent/JP2023533089A/ja
Priority to KR1020217033380A priority patent/KR20220116385A/ko
Priority to EP20810849.8A priority patent/EP3940853B1/en
Priority to PCT/CN2020/094037 priority patent/WO2021243581A1/zh
Priority to CN202080069573.3A priority patent/CN114467211A/zh
Priority to US17/135,741 priority patent/US11978844B2/en
Publication of WO2021243581A1 publication Critical patent/WO2021243581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • H01M10/0409Machines for assembling batteries for cells with wound electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of batteries, in particular to an electrode assembly and related batteries, devices, manufacturing methods and manufacturing devices.
  • Lithium-ion and other batteries have the advantages of small size, high energy density, high power density, many cycles of use and long storage time. They are widely used in some electronic equipment, electric vehicles, electric toys and electric equipment. For example, lithium ion It is widely used in mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • lithium-ion battery technology With the continuous development of lithium-ion battery technology, higher requirements are put forward for the performance of lithium-ion batteries. It is hoped that lithium-ion batteries will be smaller, lighter and more energy storage. Therefore, it is necessary to continuously improve the energy density of lithium-ion batteries.
  • the energy density of lithium-ion batteries can be improved structurally.
  • the energy density method of ion batteries is to reduce the thickness of the separator.
  • the energy density of a lithium ion battery can also be improved from the material.
  • different positive and negative active materials can be selected.
  • the amount of electrolyte can also be controlled to increase the energy density of the lithium ion battery.
  • reducing the amount of electrolyte can effectively increase the energy density of the lithium ion battery.
  • the charge cut-off voltage can also be increased to increase the energy density of the lithium-ion battery.
  • This application proposes an electrode assembly and its related battery, device, manufacturing method and manufacturing device, which overcomes the above-mentioned problems or at least partially solves the above-mentioned problems.
  • an electrode assembly including:
  • At least one positive electrode sheet and at least one negative electrode sheet the sum of the number of all positive electrode sheets and all negative electrode sheets is greater than or equal to, and at least one positive electrode sheet and at least one negative electrode sheet are wound around the winding axis to form a winding structure, wherein, in the winding structure Wherein, the positive electrode sheet of at least one positive electrode sheet and the negative electrode sheet of at least one negative electrode sheet are superimposed and arranged in a direction perpendicular to the winding axis;
  • each of the at least one positive electrode sheet includes a positive electrode main body, at least a partial area of the superimposed surface of the positive electrode main body is a positive electrode active material area, and each negative electrode sheet in the at least one negative electrode sheet includes a negative electrode main body. At least part of the area of the superimposed surface of the part is the negative electrode active material area, and both ends of the negative electrode active material area along the winding axis extend beyond the corresponding ends of the adjacent positive electrode active material area.
  • both ends of the negative active material region along the winding axis extend beyond the corresponding end of the adjacent positive active material region in a size range of 0.2 mm to 5 mm.
  • the electrode assembly further includes a plurality of separators, and adjacent positive and negative electrodes are separated by the separator.
  • the positive electrode sheet further includes at least one positive electrode tab portion extending outwardly from the positive electrode body portion in the direction of the winding axis
  • the negative electrode sheet further includes at least one negative electrode portion extending outwardly from the negative electrode body portion in the direction of the winding axis. Extreme ears.
  • a partial area of the positive electrode body is the first insulating layer coating area
  • the first insulating layer coating area is located on the side of the positive electrode active material area adjacent to the positive electrode tab portion
  • the negative electrode body portion is along the winding axis direction The first end close to the negative electrode tab is located in the first insulating layer coating area.
  • the negative active material area covers the entire superimposed surface of the negative electrode body along the winding axis, and the second end of the negative electrode body that is away from the negative electrode tab along the winding axis extends beyond the positive active material area.
  • the positions of the first winding ends of the at least two positive electrode plates are different; and/or, when the number of at least one negative electrode plate is greater than or equal to, the at least two negative electrode plates are The position of the second winding end of the sheet is different.
  • the positions of the first winding start ends of the at least two positive electrode sheets are different; and/or, when the number of at least one negative electrode sheet is greater than or equal to, at least two negative electrode sheets are The position of the second winding start end of the sheet is different.
  • the winding structure is flat and includes a straight area and a turning area located on both sides of the straight area;
  • the first winding end of at least one of the positive plates in all the positive plates is located in the turning area; and/or the second winding end of at least one of the negative plates in all the negative plates is located in the turning area.
  • the difference in the number of layers of the pole pieces does not exceed the preset number of layers.
  • the preset number of layers is less than or equal to the sum of the numbers of all positive plates and all negative plates.
  • the outermost layer and the innermost layer of the wound structure are both negative electrodes.
  • a battery including:
  • the electrode assembly is provided in the case.
  • a battery module including: a battery including a plurality of claims.
  • a battery pack including: a plurality of battery modules of the foregoing embodiments.
  • a device using a battery including: the battery of the above embodiment, wherein the battery is used to provide electrical energy.
  • a manufacturing method of an electrode assembly including:
  • the positive electrode sheet of at least one positive electrode sheet and the negative electrode sheet of the at least one negative electrode sheet are stacked in a direction perpendicular to the winding axis; each positive electrode sheet in the at least one positive electrode sheet includes a positive electrode main body, At least a part of the area of the superimposed surface of the positive electrode main body is a positive active material area, each of the at least one negative electrode sheet includes a negative main body, and at least a partial area of the superimposed surface of the negative electrode main body is a negative active material area. Both ends of the zone along the winding axis extend beyond the corresponding ends of the adjacent positive active material zone.
  • an electrode assembly manufacturing device including:
  • the pole piece placement mechanism is configured to provide at least one positive electrode piece and at least one negative electrode piece, and the sum of the number of all positive electrode pieces and all negative electrode pieces is greater than or equal to;
  • a winding mechanism configured to wind at least one positive electrode sheet and at least one negative electrode sheet around a winding axis to form a winding structure
  • the positive sheets of the multiple positive sheets and the negative sheets of the multiple negative sheets are alternately arranged in a direction perpendicular to the winding axis. At least part of the area of the axis is the positive active material area, each negative electrode sheet includes a negative main body, at least a part of the negative main body along the winding axis is the negative active material area, and both ends of the negative active material area along the winding axis are equal Beyond the corresponding end of the adjacent positive active material region.
  • the electrode assembly of the embodiment of the present application controls the size of the negative active material area beyond the positive active material area, thereby reducing the reserved size of the negative active material area, in order to increase the area of the positive active material area and the area of the negative active material area Leave space to reduce costs and increase the energy density of the electrode assembly.
  • FIG. 1 is a schematic diagram of the appearance of some embodiments of a vehicle adopting a battery according to the present application;
  • FIG. 2 is a schematic structural diagram of some embodiments of the battery pack of this application.
  • FIG. 3 is a schematic structural diagram of some embodiments of the battery module of this application.
  • Figure 4 is an exploded view of some embodiments of the battery of the application.
  • Figure 5 is a side view of some embodiments of the electrode assembly of the application after being flattened
  • FIG. 6 is a schematic structural diagram of some embodiments of the positive electrode sheet in the electrode assembly of this application.
  • FIG. 7 is a schematic structural diagram of some embodiments of the negative electrode sheet in the electrode assembly of this application.
  • FIG. 8 is a side view of some embodiments in which the positive electrode sheet and the negative electrode sheet are alternately arranged in the electrode assembly of the application;
  • Fig. 9 is an enlarged view of B in Fig. 8.
  • FIG. 10 is a schematic structural diagram of some embodiments of the application in which the positive electrode tab and the negative electrode tab are arranged at the same end of the main body along the winding axis;
  • FIG. 11 is a schematic structural diagram of some embodiments of the application in which the positive electrode tab and the negative electrode tab are arranged at different ends of the main body along the winding axis;
  • FIG. 12 are the first embodiment, second embodiment, third embodiment, fourth embodiment and fifth embodiment of the flat electrode assembly of the present application in perpendicular to Sectional view in the plane of the winding axis;
  • Figures 17, Figure 18, Figure 19 and Figure 20 are cross-sectional views of the first embodiment, second embodiment, third embodiment and fourth embodiment of the cylindrical electrode assembly of this application in a plane perpendicular to the winding axis. ;
  • FIG. 21 is a schematic flowchart of some embodiments of the electrode assembly manufacturing method of this application.
  • FIG. 22 is a schematic structural diagram of some embodiments of an electrode assembly manufacturing apparatus of this application.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces. (Including two pieces).
  • the electrode assembly and its manufacturing method, batteries, battery modules, and battery packs described in the embodiments of this application are applicable to various devices that use batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric vehicles, ships, spacecraft, Electric toys and electric tools, etc.
  • spacecraft include airplanes, rockets, space shuttles, and spacecraft, etc.
  • electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and Electric aircraft toys, etc.
  • power tools include metal cutting power tools, grinding power tools, assembly power tools, and railway power tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators And electric planer.
  • the electrode assembly and its manufacturing method, battery, battery module, and battery pack described in the embodiments of this application are not only applicable to the devices described above, but also applicable to all devices that use batteries, but for the sake of brevity, the following embodiments Take electric vehicles as an example.
  • FIG. 1 it is a schematic structural diagram of a car 100 according to an embodiment of the application.
  • the car 100 may be a fuel car, a gas car or a new energy car, and the new energy car may be a pure electric car or a hybrid electric car. Cars or extended-range cars, etc.
  • a battery pack 200 may be arranged inside the automobile 100, for example, the battery pack 200 may be arranged on the bottom, front or rear of the automobile 100.
  • the battery pack 200 can be used to power the car 100.
  • the battery pack 200 can be used as an operating power source for the car 100 for the circuit system of the car 100, for example, for starting and navigating the car 100. And the electricity demand for work at runtime.
  • the battery pack 200 can be used not only as the operating power source of the automobile 100, but also as the driving power source of the automobile 100, replacing or partially replacing fuel or natural gas for the automobile. 100 provides driving power.
  • the battery pack 200 may include one battery module or multiple battery modules, wherein the multiple battery modules may be connected in series, in parallel, or in series.
  • the series connection refers to a combination of series and parallel connections.
  • FIG. 2 it is a schematic structural diagram of a battery pack 200 according to another embodiment of the application.
  • the battery pack 200 includes a first housing 201, a second housing 202, and a plurality of battery modules 300, wherein The shape of the first housing 201 and the second housing 202 is determined according to the combined shape of the plurality of battery modules 300. Both the first housing 201 and the second housing 202 have an opening, for example, the first housing 201 and the second housing 202 have an opening.
  • Both the housing 201 and the second housing 202 can be hollow cuboids and each has only one surface as an open surface, that is, this surface does not have a housing wall so that the inside and the outside of the housing communicate with each other.
  • the first housing 201 and the second housing 202 are buckled with each other at the opening to form a closed shell of the battery pack 200, a plurality of battery modules 300 are connected in parallel or in series or in a hybrid combination and then placed in the shell formed by the buckling of the first shell 201 and the second shell 202 .
  • the battery pack 200 when the battery pack 200 includes a battery module 300, the battery module 300 is placed in a shell formed by buckling the first housing 201 and the second housing 202.
  • the electricity generated by the one or more battery modules 300 is drawn through the housing through a conductive mechanism (not shown).
  • the battery module 300 may include one or more batteries. As shown in FIG. 3, the battery module 300 includes a plurality of batteries 400, and the plurality of batteries 400 may be connected in series, parallel or hybrid Achieve greater capacity or power.
  • the battery 400 includes a lithium ion-containing secondary battery, a lithium ion primary battery, a lithium sulfur battery, a sodium lithium ion battery, or a magnesium ion battery, but is not limited thereto.
  • the battery 400 may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes.
  • a plurality of batteries 400 may be stacked together, and the plurality of batteries 400 may be connected in series, parallel or in series with each other.
  • each battery 400 may be square. , Cylindrical or other shapes.
  • FIG. 4 which is a schematic structural diagram of a battery 400 according to another embodiment of the present application, the battery 400 includes one or more electrode assemblies 10, a casing 20, and an end cover assembly 40. The casing 20 is based on The shape of one or more electrode assemblies 10 is determined by the combination.
  • the housing 20 can be a hollow cuboid, cube or cylinder, and one of the faces of the housing 20 has an opening for one or more
  • the electrode assembly 10 can be placed in the housing 20.
  • one of the planes of the housing 20 is an open surface, that is, the plane does not have a housing wall so that The shell 20 communicates with the inside and the outside.
  • the shell 20 can be a hollow cylinder, the round side of the shell 20 is an open surface, that is, the round side does not have a shell wall so that the inside and the outside of the shell 20 communicate with each other.
  • the end cover assembly 40 is connected with the casing 20 at the opening of the casing 20 to form a sealed casing for placing the battery 400, and the casing 20 is filled with electrolyte.
  • the end cover assembly 40 includes an end cover 41 and two terminals 42.
  • the end cover 41 is basically in the shape of a flat plate.
  • the two terminals 42 are located on the flat surface of the end cover 41 and pass through the flat surface of the end cover 41.
  • the two terminals 42 are respectively For the positive terminal and the negative terminal, each terminal 42 is provided with a current collecting member 30 correspondingly, and the current collecting member 30 is located between the end cover 41 and the electrode assembly 10.
  • each electrode assembly 10 has a positive electrode tab 12' and a negative electrode tab 22', and the positive electrode tab 12' of the one or more electrode assemblies 10 is connected to the positive terminal through a current collecting member 30
  • the negative electrode tab 22' of the one or more electrode assemblies 10 is connected to the negative terminal through another current collecting member 30.
  • an explosion-proof valve 43 may be further provided on the flat surface of the end cover 41.
  • the explosion-proof valve 43 may be a part of the flat surface of the end cover 41, or may be welded to the flat surface of the end cover 41.
  • the explosion-proof valve 43 has a notch, and the depth of the notch is smaller than the thickness of the other area of the explosion-proof valve 43 except for the notch so as not to penetrate the explosion-proof valve 43, that is, under normal conditions, the explosion-proof valve 43 and the end cover 41
  • the end cover assembly 40 is connected to the housing 20 at the opening of the housing 20 through the end cover 41 to form a housing for placing the battery 400, and the space formed by the housing is sealed and airtight.
  • the explosion-proof valve 43 cracks at the nicks, causing the inside and the outside of the casing to communicate, and the gas passes through the explosion-proof valve 43. The cracks are released outwards to avoid explosion.
  • the electrode assembly 10 can be provided as a single or multiple electrode assemblies. As shown in FIG. 4, at least two independent electrode assemblies 10 are provided in the battery 400. In another embodiment of the present application, as shown in FIG. 5, the electrode assembly 10 may include: at least one positive electrode sheet 1 and at least one negative electrode sheet 2, and the at least one positive electrode sheet 1 and the at least one negative electrode sheet 2 are wound around The winding axis K is wound to form a winding structure, wherein, in the winding structure, the positive electrode sheet 1 of the at least one positive electrode sheet 1 and the negative electrode sheet 2 of the at least one negative electrode sheet 2 extend along the direction perpendicular to the winding The direction of the axis K is superimposed.
  • the number of the at least one positive electrode sheet 1 and the at least one negative electrode sheet 2 may be the same or different.
  • the electrode assembly 10 includes 1, 2, 3, or 4 positive electrode sheets 1 and 1, 2, 3, or 4 sheets. Negative plate 2.
  • the sum of the numbers of all the positive plates 1 and all the negative plates 2 is greater than or equal to 3.
  • the electrode assembly 10 includes one positive electrode sheet 1 and two negative electrode sheets 2, or two positive electrode sheets 1 and one negative electrode sheet 2, or two positive electrode sheets 1 and two negative electrode sheets 2, or one sheet
  • the positive electrode sheet 1 and the three negative electrode sheets 2 may include three positive electrode sheets 1 and one negative electrode sheet 2, or three positive electrode sheets 1 and three negative electrode sheets 2.
  • each positive electrode sheet 1 and each negative electrode sheet 2 have substantially the same shape.
  • the positive electrode sheet 1 and the negative electrode sheet 2 are basically long strips.
  • the shape is, for example, a strip shape with a length of 5-20 meters, the length of the positive electrode sheet 1 and the negative electrode sheet 2 are within a predetermined range, and the width dimensions are basically the same.
  • the winding structure can be obtained by winding along the longitudinal direction.
  • the winding structure has a winding axis K.
  • the at least one positive electrode sheet 1 and the at least one negative electrode sheet 2 The superimposing surface on which the sheets 2 are superimposed is substantially parallel to the winding axis K.
  • the at least one positive electrode sheet 1 and the at least one negative electrode sheet 2 can be superimposed in various forms.
  • the at least one positive electrode sheet 1 is two or more positive electrode sheets 1, at least When one negative plate 2 is two or more negative plates 2, after the winding structure is flattened, it can be alternately stacked in the form of one positive plate 1 and one negative plate 2, or every two Sheets or two or more positive sheets 1 and one negative sheet 2 are alternately stacked in sequence, or in the form of one positive sheet 1 and every two or more negative sheets 2 alternately stacked in sequence.
  • the superposition of multiple positive plates 1 and multiple negative plates 2 can also be understood as including at least one negative plate 2 between every two adjacent positive plates 1, or at least one between every two adjacent negative plates 2 Positive electrode 1.
  • a separator 3 is also provided between any adjacent positive electrode sheet 1 and one negative electrode sheet 2 for connecting the adjacent positive electrode sheet 1 and the negative electrode sheet 2 to each other. 2 is separated so that the adjacent positive electrode and negative electrode are not short-circuited with each other.
  • the pole pieces of different polarities are adjacent, that is, the positive pole 1 and the negative pole 2 are adjacent, which means that there is no other pole piece between the positive pole 1 and the negative pole 2 but there is at least one pole piece.
  • One kind of polar piece for example, positive pole piece 1) is based, and the first layer of different polarity pole piece (for example, negative pole piece 2) adjacent to the polar pole piece is called adjacent The pole piece.
  • that two pole pieces of the same polarity are adjacent to each other means that there is only one pole piece of other polarity between the two pole pieces of the same polarity, for example, two positive pole pieces of 1 phase.
  • Adjacent means that there is only one negative electrode sheet 2 between the two positive electrode sheets 1, and that two negative electrode sheets 2 are adjacent to each other means that there is only one positive electrode sheet 1 between the two negative electrode sheets 2.
  • the two pole pieces of the same polarity can be regarded as one pole piece.
  • the two pole pieces of the same polarity when there are no other pole pieces and diaphragms of different polarity between two or more pole pieces of the same polarity, can be regarded as one Group of pole pieces, when superimposed, it is a pole piece group of the same polarity and a pole piece group of different polarity or a single pole piece alternately superimposed, for example, two or more positive pieces form a group of positive electrodes Plate group, two or more negative plates form a negative plate group.
  • the stacking can be: the positive plate group and the negative plate group are alternately stacked in sequence, the positive plate group and the single negative plate are alternately stacked in sequence, or the negative plate group and The single positive plates are alternately stacked in sequence.
  • pole piece group of the same polarity can be regarded as a pole piece, for the convenience of description, a pole piece described later can refer to either a single pole piece or a combination of multiple pole pieces of the same polarity. Pole piece group.
  • At least one diaphragm 3 is provided between adjacent pole pieces of different polarities.
  • the diaphragm 3 includes a diaphragm base layer and a functional layer.
  • the diaphragm base layer may be at least one of polypropylene, polyethylene, ethylene-propylene copolymer, polybutylene terephthalate, etc.
  • the functional layer may be a mixture layer of ceramic oxide and binder.
  • the diaphragm 3 is a separate film, and is basically in the shape of a long strip, for example, a long strip with a length of 5-20 meters. .
  • the separator 3 is coated on the surface of the positive electrode sheet 1 and/or the negative electrode sheet 2, that is, the separator 3 and the positive electrode sheet 1 or the negative electrode sheet 2 are an integral structure.
  • the following embodiment takes one positive electrode sheet 1 and one negative electrode sheet 2 alternately stacked in sequence and a separator 3 is arranged between adjacent positive electrode sheets 1 and negative electrode sheets 2 as an example for description, for example, as shown in FIG. 5 , Is a schematic structural diagram of the wound structure of the electrode assembly 10 in another embodiment of the application after being flattened.
  • the electrode assembly 10 includes: two positive sheets 1 and two negative sheets 2. Before winding, each positive sheet 1 And each negative electrode sheet 2 can be a long strip structure, two positive electrode sheets 1 and two negative electrode sheets 2 are superimposed in the thickness direction of the electrode sheets, and a separator is arranged between any adjacent positive electrode sheet 1 and negative electrode sheet 2 3.
  • a positive electrode sheet 1 and a negative electrode sheet 2 are alternately stacked in turn, and a separator 3 is arranged between the adjacent positive electrode sheet 1 and the negative electrode sheet 2.
  • the separator 3 can be coated on the positive electrode sheet 1 and the negative electrode sheet 2. On the surface, it can also be a single separator, and the superimposed plane of the two positive sheets 1 and the two negative sheets 2 is substantially parallel to the winding axis K of the winding structure of the electrode assembly 10.
  • the structure of the positive electrode sheet 1 may be as shown in FIG. 6, which is a schematic diagram of the structure of a positive electrode sheet 1 in another embodiment of the application.
  • At least one positive electrode tab 12 extending outward in the direction of the axis K, and at least a part of the area along the winding axis K on the superimposed surface of the positive electrode body 11 is the positive electrode active material region 111, and the positive electrode can be coated on the positive electrode active material region 111.
  • the active material for example, the positive electrode active material may be a ternary material, lithium manganate or lithium iron phosphate.
  • the superimposed surface of the positive electrode body portion 11 further includes a partial area as the first insulating layer coating area 112, and the first insulating layer coating area 112 is located in the positive electrode active material area 111 adjacent to the positive electrode tab portion.
  • the positive electrode active material region 111 and the first insulating layer coating region 112 are distributed along the two ends of the winding axis K on the superimposed surface of the positive electrode body portion 11, and the positive electrode tab portion 12 and the first insulating layer coating region 112 Belonging to the same end side of the positive electrode body portion 11, for example, the positive electrode tab portion 12 extends from the first insulating layer coating region 112 to the outside of the positive electrode body portion 11 along the winding axis K direction.
  • the positive electrode active material region 111 and the first insulating layer coating region 112 are distributed along the two ends of the winding axis K on the superimposed surface of the positive electrode main portion 11, which can also be understood as the positive electrode active
  • the material area 111 and the first insulating layer coating area 112 are substantially parallel areas on the superimposed surface of the positive electrode body portion 11 and are distributed in two layers on the superimposed surface of the positive electrode body portion 11 along the winding axis K, that is, the positive electrode active material
  • the area 111 and the first insulating layer coating area 112 are substantially parallel and distributed in two layers on the superimposed surface of the positive electrode body portion 11 along the longitudinal direction of the positive electrode sheet 1.
  • the first insulating layer coating area 112 may be located at the part where the positive electrode body portion 11 and the positive electrode tab portion 12 are connected to each other.
  • the first insulating layer coating area 112 is located on the positive electrode body portion 11.
  • the part connected to the positive electrode tab 12 on the superimposed surface of is used to separate the surface of the positive electrode tab 12 and the positive electrode active material region 111.
  • not only the superimposed surface of the positive electrode body portion 11 and the outwardly extending positive electrode tab portion 12 are provided with a first insulating layer coating area 112, and the positive electrode tab portion
  • a second insulating layer coating area 121 is also provided on the part of the superimposed surface 12 connected to the superimposed surface of the positive electrode main body portion 11, that is, the second insulating layer coating area 121 can cover the positive electrode tab 12 close to the positive electrode main portion 11 The root area.
  • the surface of the first insulating layer coating area 112 is coated with an insulating substance, the insulating substance including an inorganic filler and an adhesive.
  • Inorganic fillers include boehmite, aluminum oxide, magnesium oxide, titanium dioxide, zirconium oxide, silicon dioxide, silicon carbide, boron carbide, calcium carbonate, aluminum silicate, calcium silicate, potassium titanate, barium sulfate or one of Several kinds.
  • the binder includes one or more of polyvinylidene fluoride, polyacrylonitrile, polyacrylic acid, polyacrylate, polyacrylic acid-acrylate, polyacrylonitrile-acrylic acid, and polyacrylonitrile-acrylate.
  • each positive electrode sheet 1 may include one or two or more positive electrode tabs 12.
  • the positive electrode sheet 1 includes two or more positive electrode tabs 12, all The positive tabs 12 are all located on the same side of the positive tab 1 along the axis K of the reel.
  • the tab 1 includes three tabs 12 on the same side of the positive tab 1 along the axis K of the reel.
  • the structure of the negative electrode sheet 2 can be shown in FIG. 7, which is a schematic diagram of the structure of a negative electrode sheet 2 according to another embodiment of the application.
  • At least part of the negative electrode tab 22 extending outward in the K direction along the winding axis K on the superimposed surface of the negative main body 21 is the negative active material region 211.
  • the negative active material region 211 is used to coat the negative active material.
  • the negative active material can be graphite or silicon.
  • the negative electrode active material region 211 not only is the negative electrode active material region 211 provided in a partial area of the superimposed surface of the negative electrode main portion 21, but also the portion connected to the superimposed surface of the negative electrode main portion 21 on the superimposed surface of the negative electrode tab 22
  • the area is also provided with a negative active material region 211, that is, a part of the negative electrode tab 22 is the negative active material region 211.
  • the negative active material region 211 may cover the root region of the negative tab 22 close to the negative main body 21.
  • the negative active material region 211 covers the entire superimposed surface of the negative main body 21 along the winding axis K.
  • both ends of the negative electrode active material region 211 of the negative electrode sheet 2 along the winding axis K extend beyond the adjacent The corresponding end of the positive electrode active material region 111 of the positive electrode sheet 1.
  • both ends of the negative active material region 211 along the winding axis K extend beyond the corresponding end of the adjacent positive active material region 111 in a size range of 0.2 mm to 5 mm, for example, 0.2 mm, 0.5 mm, 0.8 Mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, 4.5 mm, 5 mm, etc.
  • the sizes of the two ends of the negative active material region 211 along the winding axis K that extend beyond the corresponding ends of the positive active material region 111 may be the same or different.
  • the cross-sectional view of the obtained winding structure can be as shown in Figs. It is alternately stacked with a piece of negative electrode sheet 2 in turn, and the adjacent positive electrode sheet 1 and negative electrode sheet 2 are separated by a separator 3, where K is the winding axis K of the winding structure.
  • the edge of the positive electrode main body 11 is prone to burrs.
  • the burrs may pierce the separator 3 and cause short circuit between the positive electrode sheet 1 and the negative electrode sheet 2.
  • the area of the positive electrode main body 11 in the present embodiment adjacent to the positive electrode tab 12 is set as the empty foil area C, and extends beyond the edge of the negative main body 21 along the winding axis K. At this time, the positive electrode main body 11 can be avoided.
  • the first insulating layer coating area 112 is provided on the positive electrode body portion 11, and the first end of the negative electrode body portion 21 close to the negative electrode tab portion 22 along the winding axis K is located in the first insulating layer coating area. 112.
  • the negative electrode active material region 211 extends beyond the adjacent positive electrode active material region 111 along the winding axis K, the risk of short circuit between the positive electrode sheet 1 and the negative electrode sheet 2 after the metal shavings pierce the separator 3 can be reduced.
  • the second end of the negative electrode main body 21 of the negative electrode sheet 2 away from the negative electrode tab 22 along the winding axis K direction extends beyond the positive electrode active material region 111 of the positive electrode sheet 1.
  • the area of the negative electrode main body 21 of the negative electrode sheet 2 away from the negative electrode tab 22 in the direction of the winding axis K is set as an empty foil area.
  • a second insulating layer coating area 121 is provided on a part of the superimposed surface of the positive electrode tab 12 connected to the superimposed surface of the positive electrode main body 11, which can effectively reduce the positive electrode tab 12
  • the root area and the negative active material area 211 are in contact with the risk of short circuit.
  • the positive electrode tabs 12 are superimposed together to form the positive tab of the electrode assembly 10 and welded to the corresponding current collecting member.
  • the positive tabs 12 are easily deformed during the assembly process of the electrode assembly 10 It is pressed into between the positive electrode sheet 1 and the negative electrode sheet 2, thereby causing the risk of short circuit.
  • the positive electrode sheet 1 of this embodiment is provided with the first insulating layer coating area 112, which can play a role in insulation protection, even if the positive electrode tab 12 Inserted between the positive electrode sheet 1 and the negative electrode sheet 2, the first insulating layer coating area 112 can effectively separate the positive electrode sheet 1 and the negative electrode sheet 2, thereby reducing the risk of short circuit and improving the safety performance of the battery.
  • the cutter in order to retain part of the negative electrode active material at the root of the negative electrode tab 22 of the negative electrode sheet 2, the cutter can directly act on the negative electrode active material during cutting to reduce the amount of cutting. Burrs reduce the risk of diaphragm 3 being punctured.
  • the positive electrode tab portion 12 of the positive electrode sheet 1 and the negative electrode tab portion 22 of the negative electrode sheet 2 can be It is located on the same side of the winding structure along the direction of the winding axis K, or may be on different sides.
  • each positive electrode sheet 1 may include one or two or more positive electrode tabs 12.
  • the positive electrode sheet 1 includes two or more positive electrode tabs 12, all the positive electrode tabs 12 are located on the positive electrode.
  • the sheet 1 is along the same side of the axis K of the reel.
  • Each negative electrode sheet 2 may include one or two or more negative electrode tabs 22.
  • all negative electrode tabs 22 are also located on the negative electrode tab. 2 Along the same side of the reel axis K.
  • all the positive electrode tabs 12 and all the negative electrode tabs 22 are located on the same side of the electrode assembly 10-1 along the winding axis K.
  • all the positive electrode tabs 12 and all the negative electrode tabs 22 are located on different sides of the electrode assembly 10-2 along the winding axis K.
  • the electrode assembly 10 includes at least one positive electrode sheet 1 and at least one negative electrode sheet 2, at least one positive electrode sheet 1 and at least one negative electrode sheet 2 are wound into a winding structure around a winding axis K, and all positive electrode tabs of all positive electrode sheets 1
  • the parts basically overlap, all the negative electrode tabs 22 of all the negative plates 2 basically overlap, all the positive tabs of all the positive plates 1 and all the negative tabs 22 of all the negative plates 2 are respectively located in the winding structure along the winding axis K
  • the two sides of the direction or all the positive electrode tabs 12 and all the negative electrode tabs 22 are located on the same side of the electrode assembly 10 along the winding axis K.
  • the position of the first winding end E of the at least two positive electrode sheets 1 is different, for example, the first roll of all the positive electrode sheets 1
  • the positions of the winding ends E are different from each other; and/or, when the number of the at least one negative sheet 2 is greater than or equal to 2, the positions of the second winding ends E'of the at least two negative sheets 2 are different, for example, all the negative sheets 2
  • the electrode assembly 10 will expand during use, and will exert a force on the casing 20 after expansion, and the casing 20 will exert a reaction force on the electrode assembly 10 at the same time. Since the electrode assembly 10 of the present application has different winding end positions of at least two positive sheets 1, and/or the winding end positions of at least two negative sheets 2 are different, that is, the winding end positions of at least two positive sheets 1 are different. The ends are staggered in the circumferential direction of the winding structure, and/or the winding ends of at least two negative electrode sheets 2 are staggered in the circumferential direction of the winding structure. This structure can prevent the formation of thicker steps after the winding ends of multiple positive sheets 1 or multiple negative sheets 2 are superimposed.
  • the positions of the first winding start ends S of the at least two positive electrode sheets 1 are different, for example, the first roll of all the positive electrode sheets 1
  • the positions of the winding start ends S are different from each other; and/or, when the number of the at least one negative electrode sheet 2 is greater than or equal to 2, the positions of the second winding start ends S'of the at least two negative electrode sheets 2 are different, for example, all the negative electrode sheets 2
  • the electrode assembly 10 will swell during use, because the electrode assembly 10 of the present application is provided with at least two positive electrode sheets 1 at different positions of the first winding start ends S, and/or at least two negative electrode sheets 2 have their second ends.
  • the positions of the winding start ends S' are different, that is, the first winding start ends S of at least two positive sheets 1 are staggered in the circumferential direction of the winding structure, and/or the second winding start ends S'of at least two negative sheets 2 are at The circumferential direction of the winding structure is staggered.
  • Making the winding start positions of the positive electrode sheet 1 and/or the negative electrode sheet 2 different can prevent the formation of a thicker step at the winding start end of the multiple positive sheets 1 or the multiple negative sheets 2, which can alleviate the occurrence of the winding start end of the pole pieces
  • the problem of stress concentration makes the winding structure evenly stressed at different circumferential positions, preventing the winding structure from being deformed or the active material falling off in the local area with greater stress, and improving the working performance of the battery after long-term use And reliability.
  • the difference in the number of layers of the pole pieces does not exceed a preset number of layers.
  • the preset number of layers is less than or equal to the sum of the numbers of the multiple positive sheets 1 and the multiple negative sheets 2, for example, after two positive sheets 1 and two negative sheets 2 are wound.
  • the number of pole piece layers (that is, including all positive electrode 1 and negative electrode 2) is 8 layers.
  • the minimum number of pole piece layers is 8 and the maximum is 12, that is The preset number of layers is less than or equal to the sum of the numbers of the two positive plates 1 and the two negative plates 2: 4.
  • the housing 20 When the electrode assembly 10 expands and comes into contact with the housing 20, the housing 20 will apply a reaction force to the electrode assembly 10.
  • the difference in the number of layers does not exceed the preset number of layers. It is possible to make the force applied to all parts of the electrode assembly 10 in the circumferential direction more uniform, and to prevent the electrode assembly 10 from having a large difference in the performance of the electrode assembly 10 during use. For example, there are two positive plates 1 and two negative plates 2, and the preset number of layers is less than or equal to four. The smaller the difference in the number of layers of the pole pieces, the more force the electrode assembly 10 receives in the circumferential direction of the winding structure. Evenly.
  • the outermost layer and the innermost layer of the winding structure are both the negative electrode sheet 2.
  • Both the outermost layer and the innermost layer of the winding structure are the negative electrode sheet 2.
  • the material of the positive electrode active material in the positive electrode sheet 1 is generally a ternary material, lithium manganate or lithium iron phosphate, etc.
  • the material of the negative electrode active material in the negative electrode sheet 2 is generally graphite or silicon, because the material of the positive electrode active material is more active than the negative electrode. The material is expensive. Therefore, both the outermost layer and the innermost layer of the wound structure are covered by the negative electrode sheet 2, so that the positive electrode active material of the positive electrode sheet 1 can be fully utilized, which can improve the energy utilization of the wound structure In addition, the manufacturing process difficulty of the electrode assembly 10 can be reduced.
  • At least one of the outermost layer and the innermost layer of the winding structure adopts the positive electrode sheet 1.
  • the positive electrode sheet 1 in the outermost or innermost layer can also be used in The surface of the positive electrode sheet 1 away from the negative electrode sheet 2 does not need to be coated with a positive electrode active material.
  • the lithium ions in the positive active material area 111 of each positive electrode sheet 1 pass through the separator 3 and are embedded in the negative electrode active material area 211 of the adjacent negative electrode sheet 2. Both ends of the material area 211 along the winding axis K extend beyond the corresponding ends of the adjacent positive electrode active material area 111, which can ensure that lithium ions are inserted into the negative electrode active material area 211 as much as possible, reduce the risk of lithium evolution, and also make the positive electrode active
  • the positive electrode active material in the material area 111 fully functions.
  • the electrode assembly 10 includes multiple positive sheets 1 or multiple negative sheets 2 By winding the positive electrode sheet 1 of the same length or the negative electrode sheet 2 having the same length after connecting multiple negative electrode sheets 2, the winding efficiency of the electrode assembly 10 of this embodiment is significantly improved.
  • the winding length is L and the winding time is T.
  • the positive electrode sheet 1 with a length of L is divided into Multiple positive plates 1 and negative plates 2 with a length of L are divided into M negative plates 2, where M is an integer greater than or equal to 2.
  • the winding distance of the M positive sheet 1 and the M negative sheet 2 of this embodiment is L/M, and the winding time is T/M .
  • the number of winding turns of the electrode assembly 10 of this embodiment is reduced, and the winding efficiency of the electrode assembly 10 can be doubled to meet production requirements.
  • the number of winding turns of the electrode assembly 10 is reduced, which can reduce the winding error along the winding axis K during the stacking process during the winding process, and it is easier to control the size of the negative active material region 211 beyond the positive active material region 111, thereby The size reserved for the negative active material region 211 can be reduced, leaving space for increasing the area of the positive active material region 111 and the negative active material region 211, thereby reducing costs and increasing the energy density of the electrode assembly 10.
  • the number of winding turns of the electrode assembly 10 is reduced, the winding tension of the pole piece is more uniform, the degree of bending of the bending part after the pole piece is flattened can be reduced, and the wrinkle and deformation of the pole piece can be relieved, thereby improving
  • the contact performance of the positive electrode sheet 1 and the negative electrode sheet 2 enables the positive electrode sheet 1 and the negative electrode sheet 2 to be in effective contact, thereby optimizing the performance of the electrode assembly 10.
  • multiple positive electrode tab portions 12 are overlapped and multiple negative electrode tab portions 22 are also overlapped, which can reduce the number of layers of positive electrodes.
  • the amount of misalignment of the tab 12 and the misalignment of the multilayer negative tab 22 ensures the connection area between the tabs of each layer and the current collecting member 30, thereby increasing the overcurrent capability of the tabs.
  • the electrode assembly 10 may include at least two positive plates 1 and at least two negative plates 2, but for the convenience of description, the following embodiments take two positive plates 1 and two negative plates 2 as an example for description.
  • the appearance shape of the winding structure of the electrode assembly 10 can be cylindrical, flat, ellipsoidal, cube, rectangular or other arbitrary shapes, but for the convenience of description, the winding structure of the electrode assembly 10 is taken as The flat shape and the cylindrical shape are described as examples.
  • FIG. 12 it is a schematic structural diagram of a cross section of a flat-shaped electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 120 includes a first negative electrode sheet 1201 and a second negative electrode sheet 1202.
  • All the first negative electrode sheet 1201, the second negative electrode sheet 1202, the first positive electrode sheet 1203, the second positive electrode sheet 1204 and the multiple sheets of separator 1205 are superimposed and wound into a flat shape around the winding axis K. Body-shaped winding structure.
  • the structures and positions of the positive electrode tabs of the first positive electrode tab 1203 and the second positive electrode tab 1204 and the negative tabs of the first negative tab 1201 and the second negative tab 1202 can be referred to.
  • the relevant content of the description of the positive electrode tab portion and the negative electrode tab portion described in the foregoing embodiments of FIGS. 6-11 will not be repeated here.
  • the number of pole pieces does not differ by more than the preset number of layers. You can also refer to the aforementioned Figure 6- The relevant content described in the embodiment 11 will not be repeated here.
  • the negative electrode active material regions included in the first negative electrode sheet 1201 and the second negative electrode sheet 1202 may be the same as the negative electrode active material region included in the negative electrode sheet described in the embodiment of FIGS. 6-11, the first positive electrode The positive electrode active material area included in the sheet 1203 and the second positive electrode sheet 1204 may be the same as the negative electrode active material area included in the positive electrode sheet described in the foregoing embodiment of FIGS. 6-11, which will not be repeated here.
  • both ends of the negative active material area of the first negative electrode sheet 1201 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1203 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1202 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating areas of the adjacent first positive electrode sheet 1203 and the second positive electrode sheet 1204 along the winding axis K, respectively.
  • the specific conditions of the opposite ends of the negative active material regions of the first negative electrode sheet 1201 and the second negative electrode sheet 1202 along the axis K of the reel and the positive electrode active material regions of the adjacent positive electrode sheets, such as the excess size, can be referred to the aforementioned
  • the two ends of the negative electrode active material area of the negative electrode sheet 2 described in the embodiments of FIGS. 6-11 along the axis K of the spool are the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet, which will not be repeated here.
  • the innermost circle of the winding structure is a circle surrounded by the first negative electrode sheet 1201, and the outermost circle of the winding structure is a circle surrounded by the second negative electrode sheet 1202.
  • the winding structure of the electrode assembly 120 includes a straight area 10A and a turning area 10B located on both sides of the straight area 10A.
  • the superimposed surface of the pole pieces in the straight area 10A is a substantially parallel plane and is substantially parallel to The winding axis, the plane here is not a plane in the strict sense, and a certain error is allowed.
  • the flat zone 10A includes first sub-planes that are substantially parallel and symmetrically distributed along the winding axis K along the plane perpendicular to the winding axis K.
  • the straight area 10A1 and the second sub-straight area 10A2, and the two turning areas 10B are respectively located at the two sides of the first sub-straight area 10A1 and the second sub-straight area 10A2 to form the straight area 10A.
  • the position of the first winding start end S of the first positive electrode sheet 1203 and the second positive electrode sheet 1204 is the same.
  • the first winding start end S of the first positive electrode sheet 1203 and the second positive electrode sheet 1204 are both located in the same flat area 10A.
  • the side sub-flat area for example, the first sub-flat area 10A1
  • the first winding start S of the first positive electrode sheet 1203 and the second positive electrode sheet 1204 are flush.
  • the position of the second winding start end S'of the first negative electrode sheet 1201 and the second negative electrode sheet 1202 is also the same.
  • the second winding start end S'of the first negative electrode sheet 1201 and the second negative electrode sheet 1202 are both located in the flat area 10A
  • the sub-straight area (for example, the first sub-straight area 10A1) on the same side of, and the second winding start ends S′ of the first negative electrode sheet 1201 and the second negative electrode sheet 1202 are flush.
  • the second winding start end S'of the first negative electrode sheet 1201 exceeds the first winding start end S of the first positive electrode sheet 1204.
  • the second winding start end S'of the second negative electrode sheet 1202 exceeds the first winding start end S of the second positive electrode sheet 1203.
  • the position of the first winding end E of the first positive electrode sheet 1203 and the second positive electrode sheet 1204 is the same.
  • the first turning area 10B1), and the first winding end E of the first positive electrode sheet 1203 and the second positive electrode sheet 1204 are flush.
  • the position of the second winding end E'of the first negative electrode sheet 1201 and the second negative electrode sheet 1202 is also the same.
  • the second winding end E'of the first negative electrode sheet 1201 and the second negative electrode sheet 1202 are both on the same side of the turn Area (for example, the first turning area 10B1), the turning area on the same side as the first winding end E of the first positive electrode sheet 1203 and the second positive electrode sheet 1204 (for example, the first turning area 10B1), and the first negative electrode sheet 1201 is flush with the second winding end E'of the second negative electrode sheet 1202.
  • the second winding end E'of the first negative electrode sheet 1201 exceeds the first winding end E of the second positive electrode sheet 1204, and the second winding end E'of the second negative electrode sheet 1202 exceeds the first positive electrode.
  • the above-described winding structure of the electrode assembly can make the length difference of the plurality of pole pieces close before winding, and the winding is easy.
  • FIG. 13 it is a schematic structural diagram of a cross section of a flat-shaped electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 130 includes a first negative electrode sheet 1301 and a second negative electrode sheet 1302.
  • both ends of the negative active material area of the first negative electrode sheet 1301 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1303 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1302 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1303 and the second positive electrode sheet 1304 along the winding axis K, respectively.
  • the specific conditions of the opposite ends of the negative active material area of the first negative electrode sheet 1301 and the second negative electrode sheet 1302 along the axis K of the reel and the corresponding end of the positive electrode active material area of the adjacent positive electrode sheet, such as the excess size, may refer to the aforementioned
  • the two ends of the negative electrode active material area of the negative electrode sheet 2 described in the embodiments of FIGS. 6-11 along the axis K of the spool are the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet, which will not be repeated here.
  • the structure of the electrode assembly 130 of this embodiment is basically similar to the structure of the electrode assembly described in the embodiment of FIG. 12, and the differences are as follows.
  • the innermost circle of the winding structure is the circle surrounded by the first negative electrode sheet 1301, and the outermost circle of the winding structure is the first negative electrode sheet 1301 and the second negative electrode sheet 1302. The circle around.
  • the positions of the first winding end E of the first positive electrode sheet 1303 and the second positive electrode sheet 1304 are different.
  • the first winding end E of the first positive electrode sheet 1303 and the second positive electrode sheet 1304 are located in the second turning area 10B2 and the second turning area 10B2, respectively.
  • the positions of the second winding end E'of the first negative electrode sheet 1301 and the second negative electrode sheet 1302 are also different.
  • the second winding end E'of the first negative electrode sheet 1301 and the second negative electrode sheet 1302 are respectively located at the first turn Zone 10B1 and second turning zone 10B2.
  • the second winding end E'of the first negative electrode sheet 1301 exceeds the first winding end E of the second positive electrode sheet 1304, and the second winding end E'of the second negative electrode sheet 1302 exceeds the first positive electrode.
  • the winding structure of the electrode assembly described above can reduce the step formed by the first positive electrode sheet 1303 and the second positive electrode sheet 1304 at the first winding end E, and reduce the first negative electrode sheet 1301 and the second negative electrode sheet 1302 at the first winding end E.
  • the step formed by the second winding end E' can reduce the local stress on the pole piece at the winding end after the electrode assembly contacts the shell when the electrode assembly is expanded, which can prevent the pole piece from breaking or the active material falling off, and improve the long-term electrode assembly. Reliability of work.
  • FIG. 14 it is a schematic structural diagram of a cross section of a flat-shaped electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 140 includes a first negative electrode sheet 1401 and a second negative electrode sheet 1402.
  • All the first negative electrode sheet 1401, the second negative electrode sheet 1402, the first positive electrode sheet 1403, the second positive electrode sheet 1404, and the multiple sheets of separator 1405 are superimposed and wound into a flat shape around the winding axis K. Body-shaped winding structure.
  • both ends of the negative active material area of the first negative electrode sheet 1401 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1403 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1402 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating areas of the adjacent first positive electrode sheet 1403 and the second positive electrode sheet 1404 along the winding axis K, respectively.
  • the two ends of the negative electrode active material area of all the first negative electrode sheet 1401 and the second negative electrode sheet 1402 along the axis K of the reel and the corresponding ends of the positive electrode active material area of the positive electrode sheet adjacent to each other, such as the excess size, can be referred to the aforementioned figure
  • the two ends of the negative active material area of the negative electrode sheet 2 along the axis K of the reel described in the embodiments 6-11 are the contents of the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet, which will not be repeated here.
  • the structure of the electrode assembly 140 of this embodiment is basically similar to the structure of the electrode assembly described in the embodiment of FIG. 12, and the differences are as follows.
  • the innermost circle of the winding structure is a circle surrounded by the first negative electrode sheet 1401
  • the outermost circle of the winding structure is a circle surrounded by the second negative electrode sheet 1402.
  • the positions of the second winding ends E'of the first negative electrode sheet 1401 and the second negative electrode sheet 1402 are different.
  • the first negative electrode sheet 1401 and the second negative electrode sheet 1402 have different positions.
  • the two winding ends E′ are both located in the same turning area (for example, the first turning area 10B1), and the second winding ends E′ of the first negative electrode sheet 1401 and the second negative electrode sheet 1402 are not even.
  • the above-described winding structure of the electrode assembly 140 can reduce the difference in the number of pole pieces of the first sub-flat area 10A1 and the second sub-flat area 10A2.
  • the housing When the electrode assembly expands and contacts the housing, the housing When the inner wall exerts a reaction force on the two planes of the electrode assembly, the stresses on the pole pieces of the first sub-flat area 10A1 and the second sub-flat area 10A2 can be more consistent.
  • FIG. 15 it is a schematic structural diagram of a cross-section of a flat-shaped electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 150 includes a first negative electrode sheet 1501 and a second negative electrode sheet 1502.
  • All the first negative electrode sheet 1501, the second negative electrode sheet 1502, the first positive electrode sheet 1503, the second positive electrode sheet 1504 and the multiple sheets of separator 1505 are superimposed and wound into a flat shape around the winding axis K. Body-shaped winding structure.
  • both ends of the negative active material area of the first negative electrode sheet 1501 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1503 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1502 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1503 and the second positive electrode sheet 1504 along the winding axis K, respectively.
  • the structure of the electrode assembly 150 of this embodiment is basically similar to the structure of the electrode assembly described in the embodiment of FIG. 12, and the differences are as follows.
  • the innermost circle of the winding structure is a circle surrounded by the first negative electrode sheet 1501 and the second negative electrode sheet 1502, and the outermost circle of the winding structure is surrounded by the second negative electrode sheet 1502. Circle.
  • the first winding start end S positions of the first positive electrode sheet 1503 and the second positive electrode sheet 1504 are different, for example, the first positive electrode sheet 1503 and the second positive electrode sheet 1504 have different positions.
  • the winding start ends S are respectively located in the first sub-straight area 10A1 and the second sub-straight area 10A2, and the first winding start ends S of the first positive electrode sheet 1503 and the second positive electrode sheet 1504 are not even.
  • the positions of the second winding start ends S of the first negative electrode sheet 1501 and the second negative electrode sheet 1502 are also different.
  • the second winding start ends S of the first negative electrode sheet 1501 and the second negative electrode sheet 1502 are respectively located in the first straight section.
  • the area 10A1 and the second sub-flat area 10A2, and the second winding start S of the first negative electrode sheet 1501 and the second negative electrode sheet 1502 are not even.
  • the above-described winding structure of the electrode assembly can reduce the step formed by the first positive electrode sheet 1503 and the second positive electrode sheet 1504 at the first winding start end S, and reduce the first negative electrode sheet 1501 and the second negative electrode sheet 1502 at the first winding end S.
  • the step formed by the second winding start end S' reduces the local stress on the winding start end of the electrode assembly after contacting the casing 20 when it expands, prevents the pole piece from breaking or the active material falls off, and improves the long-term operation of the electrode assembly Reliability.
  • FIG. 16 it is a schematic structural diagram of a cross section of a flat-shaped electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 160 includes a first negative electrode sheet 1601 and a second negative electrode sheet 1602.
  • the first positive electrode sheet 1603, the second positive electrode sheet 1604 and a plurality of separators 1605 wherein the first negative electrode sheet 1601, the first positive electrode sheet 1603, the second negative electrode sheet 1602 and the second positive electrode sheet 1604 are alternately stacked in sequence, and the first The negative electrode sheet 1601 and the first positive electrode sheet 1603 are separated by a separator 1605, the first positive electrode sheet 1603 and the second negative electrode sheet 1602 are separated by another separator 1605, the second negative electrode sheet 1602 and the second positive electrode sheet 1604 They are separated by another separator 1605.
  • All the first negative electrode sheet 1601, the second negative electrode sheet 1602, the first positive electrode sheet 1603, the second positive electrode sheet 1604, and the multiple sheets of separator 1605 are superimposed and wound into a flat shape around the winding axis K. Body-shaped winding structure.
  • both ends of the negative active material area of the first negative electrode sheet 1601 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1603 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1602 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating areas of the adjacent first positive electrode sheet 1603 and the second positive electrode sheet 1604 along the winding axis K, respectively.
  • the specific conditions of the opposite ends of the negative active material area of the first negative electrode sheet 1601 and the second negative electrode sheet 1602 along the axis K of the reel and the positive electrode active material area of the adjacent positive electrode sheet, such as the excess size, can be referred to the aforementioned
  • the two ends of the negative electrode active material area of the negative electrode sheet 2 described in the embodiments of FIGS. 6-11 along the axis K of the spool are the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet, which will not be repeated here.
  • the structure of the electrode assembly 160 of this embodiment is basically similar to the structure of the electrode assembly described in the embodiment of FIG. 12, and the differences are as follows.
  • the innermost circle of the winding structure is a circle surrounded by the first negative sheet 1601 and the second negative sheet 1602
  • the outermost circle of the winding structure is the first negative sheet 1601 and the second negative sheet 1602.
  • the first winding start end S positions of the first positive electrode sheet 1603 and the second positive electrode sheet 1604 are different, for example, the first positive electrode sheet 1603 and the second positive electrode sheet 1604
  • the winding start ends S are respectively located in the first sub-straight area 10A1 and the second sub-straight area 10A2, and the first winding start ends S of the first positive electrode sheet 1603 and the second positive electrode sheet 1604 are not even.
  • the positions of the second winding start S'of the first negative sheet 1601 and the second negative sheet 1602 are also different.
  • the second winding start S'of the first negative sheet 1601 and the second negative sheet 1602 are respectively located in the first sub The flat area 10A1 and the second sub-flat area 10A2, and the second winding start ends S′ of the first negative electrode sheet 1601 and the second negative electrode sheet 1602 are not even.
  • the positions of the first winding ends E of the first positive electrode sheet 1603 and the second positive electrode sheet 1604 are different.
  • the first winding ends E of the first positive electrode sheet 1603 and the second positive electrode sheet 1604 are respectively located in different turning areas 10B.
  • the first winding ends E of the first positive electrode sheet 1303 and the second positive electrode sheet 1304 are not flush.
  • the positions of the second winding end E'of the first negative electrode sheet 1601 and the second negative electrode sheet 1602 are also different.
  • the second winding end E'of the first negative electrode sheet 1601 and the second negative electrode sheet 1602 are respectively located at two different The turning area 10B.
  • the second winding ends E'of the first negative electrode sheet 1601 and the second negative electrode sheet 1602 are not flush.
  • the above-described winding structure of the electrode assembly can simultaneously reduce the steps formed by the first positive electrode sheet 1603 and the second positive electrode sheet 1604 at the first winding start end S and the first winding end E, and reduce the first negative electrode sheet 1601. And the second negative electrode sheet 1602 at the second winding start end S'and the second winding end E'to form a step, so as to reduce the electrode assembly being exposed to the winding start and winding ends after contacting the casing 20 when expansion occurs.
  • the local stress can prevent the pole piece from breaking or the active material from falling off, and improve the reliability of the electrode assembly for long-term operation.
  • the number of pole pieces does not differ by more than the preset number.
  • the number of pole pieces here refers to the positive The total number of layers of pole piece and negative pole piece.
  • the preset number of layers is less than or equal to the sum of the number of positive electrodes and negative electrodes.
  • the housing 20 When the electrode assembly expands and contacts the housing 20, the housing 20 will apply a reaction force to the electrode assembly, which can make the force on the electrode assembly more uniform in the circumferential direction, and prevent the electrode assembly from having large performance differences during use. Case. For example, there are two positive plates and two layers on the negative plates. The preset number of layers is less than or equal to four. The smaller the difference in the number of layers of the pole pieces, the more uniform the force on the electrode assembly in the circumferential direction.
  • the outermost and innermost layers of the winding structure are both negative electrodes.
  • the material of the positive electrode active material in the positive electrode sheet is generally ternary material, lithium manganate or lithium iron phosphate, etc.
  • the material of the negative electrode active material in the negative electrode sheet is generally graphite or silicon. The material is expensive. Therefore, both the outermost layer and the innermost layer of the wound structure are covered by the negative electrode sheet, so that the positive electrode active material of the positive electrode sheet can be fully utilized, which can improve the energy utilization rate of the wound structure and also Reduce the difficulty of the manufacturing process of the electrode assembly.
  • At least one of the outermost layer and the innermost layer of the winding structure adopts a positive electrode sheet.
  • the positive electrode sheet in the outermost layer or the innermost layer can also be separated from the positive electrode sheet.
  • the surface of the negative electrode sheet does not need to be coated with the positive electrode active material.
  • Figures 17 to 20 show schematic diagrams of the structure of the cylindrical electrode assembly.
  • FIG. 17 it is a schematic structural diagram of a cross-section of a cylindrical electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 170 includes a first negative electrode sheet 1701, a second negative electrode sheet 1702, and The first positive electrode sheet 1703, the second positive electrode sheet 1704 and the multiple separators 1705, wherein the first negative electrode sheet 1701, the first positive electrode sheet 1703, the second negative electrode sheet 1702, and the second positive electrode sheet 1704 are alternately stacked in sequence, and the first negative electrode sheet 1704
  • the sheet 1701 and the first positive electrode sheet 1703 are separated by a separator 1705, and the first positive electrode sheet 1703 and the second negative electrode sheet 1702 are separated by another separator 1705.
  • the second negative electrode sheet 1702 and the second positive electrode sheet 1704 are separated from each other by a separator 1705.
  • the space is separated by another separator 1705.
  • All the first negative electrode sheet 1701, the second negative electrode sheet 1702, the first positive electrode sheet 1703, the second positive electrode sheet 1704 and the multiple sheets of separator 1705 are superimposed and wound into a cylindrical shape around the winding axis K.
  • the winding structure
  • the structures and positions of the positive electrode tabs of the first positive electrode tab 1703 and the second positive electrode tab 1704 and the negative tabs of the first negative tab 1701 and the second negative tab 1702 can be referred to.
  • the relevant content of the description of the positive electrode tab portion and the negative electrode tab portion described in the foregoing embodiments of FIGS. 6-11 will not be repeated here.
  • the negative electrode active material regions included in the first negative electrode sheet 1701 and the second negative electrode sheet 1702 may be the same as the negative electrode active material regions included in the negative electrode sheet described in the embodiment of FIGS. 6-11, the first positive electrode The positive electrode active material area included in the sheet 1703 and the second positive electrode sheet 1704 may be the same as the negative electrode active material area included in the positive electrode sheet described in the foregoing embodiments of FIGS. 6-11, which will not be repeated here.
  • both ends of the negative active material area of the first negative electrode sheet 1701 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1703 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1702 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1703 and the second positive electrode sheet 1704 along the winding axis K, respectively.
  • the specific conditions of the opposite ends of the negative active material area of the first negative electrode sheet 1701 and the second negative electrode sheet 1702 along the axis K of the reel and the positive electrode active material area of the adjacent positive electrode sheet, such as the excess size, can refer to the aforementioned
  • the two ends of the negative electrode active material area of the negative electrode sheet described in the embodiments of FIGS. 6-11 along the axis K of the reel are the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet, which will not be repeated here.
  • the innermost circle of the winding structure is the circle surrounded by the first negative electrode sheet 1701
  • the outermost circle of the winding structure is the circle surrounded by the second negative electrode sheet 1702.
  • the position of the first winding start end S of the first positive electrode sheet 1703 and the second positive electrode sheet 1704 is the same.
  • the first winding start end S of the first positive electrode sheet 1703 and the second positive electrode sheet 1704 are both located at the same diameter of the winding structure. Upward, and the first winding start ends S of the first positive electrode sheet 1703 and the second positive electrode sheet 1704 are flush.
  • the position of the second winding start end S'of the first negative electrode sheet 1701 and the second negative electrode sheet 1702 is also the same.
  • the second winding start end S'of the first negative electrode sheet 1701 and the second negative electrode sheet 1702 are both located in the winding structure.
  • the second winding start ends S′ of the first negative electrode sheet 1701 and the second negative electrode sheet 1702 are flush.
  • the second winding start end S'of the first negative electrode sheet 1701 exceeds the first winding start end S of the first positive electrode sheet 1704.
  • the second winding start end S'of the second negative electrode sheet 1702 exceeds the first winding start end S of the second positive electrode sheet 1703.
  • the position of the first winding end E of the first positive electrode sheet 1703 and the second positive electrode sheet 1704 is the same.
  • the first winding end E of the first positive electrode sheet 1703 and the second positive electrode sheet 1704 are both located in the turning area 10B on the same side, And the first winding end E of the first positive electrode sheet 1703 and the second positive electrode sheet 1704 are flush.
  • the positions of the second winding end E'of the first negative electrode sheet 1701 and the second negative electrode sheet 1702 are also the same, for example, the second winding end E'of the first negative electrode sheet 1701 and the second negative electrode sheet 1702 are both located in the same turning area 10B, and the second winding end E'of the first negative electrode sheet 1701 and the second negative electrode sheet 1702 are flush.
  • the second winding end E'of the first negative electrode sheet 1701 exceeds the first winding end E of the second positive electrode sheet 1704, and the second winding end E'of the second negative electrode sheet 1702 exceeds the first positive electrode.
  • the above-described winding structure can make the length difference of the plurality of pole pieces close before winding, and it is easy to wind.
  • FIG. 18 is a schematic structural diagram of a cross section of a cylindrical electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 180 includes a first negative electrode sheet 1801, a second negative electrode sheet 1802, and a second negative electrode sheet 1802.
  • the first positive electrode sheet 1803, the second positive electrode sheet 1804, and a plurality of separators 1805 wherein the first negative electrode sheet 1801, the first positive electrode sheet 1803, the second negative electrode sheet 1802, and the second positive electrode sheet 1804 are alternately stacked in sequence, and the first negative electrode
  • the sheet 1801 and the first positive electrode sheet 1803 are separated by a separator 1805, and the first positive electrode sheet 1803 and the second negative electrode sheet 1802 are separated by another separator 1805.
  • the second negative electrode sheet 1802 and the second positive electrode sheet 1804 are separated from each other.
  • the space is separated by another separator 1805.
  • All the first negative electrode sheet 1801, the second negative electrode sheet 1802, the first positive electrode sheet 1803, the second positive electrode sheet 1804 and the multiple sheets of separator 1805 are superimposed and wound into a cylindrical shape around the winding axis K.
  • the winding structure
  • both ends of the negative active material area of the first negative electrode sheet 1801 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1803 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1802 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating areas of the adjacent first positive electrode sheet 1803 and the second positive electrode sheet 1804 along the winding axis K, respectively.
  • the two ends of the negative electrode active material area of the first negative electrode sheet 1801 and the second negative electrode sheet 1802 along the axis K of the reel and the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet may refer to the foregoing for specific conditions, such as excess size
  • the two ends of the negative electrode active material area of the negative electrode sheet 2 described in the embodiments of FIGS. 6-11 along the axis K of the spool have the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet 1, which will not be repeated here.
  • the structure of this embodiment is basically similar to the structure described in the embodiment in FIG. 17, and the differences are as follows.
  • the innermost circle of the winding structure is a circle surrounded by the first negative electrode sheet 1801 and the second negative electrode sheet 1802, and the outermost circle of the winding structure is a circle surrounded by the first negative electrode sheet 1801.
  • the first winding start end S of the first positive electrode sheet 1803 and the second positive electrode sheet 1804 are located at different positions.
  • the first winding start end S of the first positive electrode sheet 1803 and the second positive electrode sheet 1804 is different. They are located in opposite radial directions of the winding structure, and the first winding start ends S of the first positive electrode sheet 1803 and the second positive electrode sheet 1804 are not flush.
  • the positions of the second winding start end S of the first negative electrode sheet 1801 and the second negative electrode sheet 1802 are also different, for example, the second winding start end S'of the first negative electrode sheet 1101 and the second winding start end of the second negative electrode sheet 1102 S'is located in the opposite radial direction of the winding structure, and the second winding start ends S'of the first negative electrode sheet 1801 and the second negative electrode sheet 1802 are not flush.
  • the winding structure described above can reduce the step formed by the first positive electrode sheet 1803 and the second positive electrode sheet 1804 at the first winding start end S, and reduce the first negative electrode sheet 1801 and the second negative electrode sheet 1802 in the second winding.
  • the step formed by the start end S' reduces the local stress at the start end of the winding after contact with the casing 20 during expansion, prevents the pole piece from breaking or the active material falls off, and improves the reliability of long-term operation.
  • FIG. 19 this is a schematic structural diagram of a cross-section of a cylindrical electrode assembly perpendicular to the winding axis K according to another embodiment of the application.
  • the electrode assembly 190 includes a first negative electrode piece 1901, a second negative electrode piece 1902, The first positive electrode sheet 1903, the second positive electrode sheet 1904 and the multiple separators 1905, wherein the first negative electrode sheet 1901, the first positive electrode sheet 1903, the second negative electrode sheet 1902, and the second positive electrode sheet 1904 are alternately stacked in sequence, and the first negative electrode The sheet 1901 and the first positive electrode sheet 1903 are separated by a separator 1905, and the first positive electrode sheet 1903 and the second negative electrode sheet 1902 are separated by another separator 1905.
  • the second negative electrode sheet 1902 and the second positive electrode sheet 1904 are separated from each other.
  • the space is separated by another separator 1905, and all the first negative electrode sheet 1901, the second negative electrode sheet 1902, the first positive electrode sheet 1903, the second positive electrode sheet 1904 and the multiple sheets of separator 1905 are superimposed and wound into a flat body around the winding axis K. Shaped winding structure.
  • both ends of the negative active material area of the first negative electrode sheet 1901 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 1903 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 1902 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating areas of the adjacent first positive electrode sheet 1903 and the second positive electrode sheet 1904 along the winding axis K, respectively.
  • the specific conditions of the opposite ends of the negative active material area of the first negative electrode sheet 1901 and the second negative electrode sheet 1902 along the axis K of the reel and the positive electrode active material area of the adjacent positive electrode sheet, such as the excess size, can be referred to the aforementioned
  • the two ends of the negative electrode active material area of the negative electrode sheet 2 described in the embodiments of FIGS. 6-11 along the axis K of the spool have the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet 1, which will not be repeated here.
  • the structure of this embodiment is basically similar to the structure described in the embodiment of FIG. 18, and the differences are as follows.
  • the innermost circle of the winding structure is a circle surrounded by the first negative electrode sheet 1901 and the second negative electrode sheet 1902
  • the outermost circle of the winding structure is a circle surrounded by the first negative electrode sheet 1901.
  • the positions of the first winding end E of the first positive electrode sheet 1903 and the second positive electrode sheet 1904 are different, and the second winding end E'of the first negative electrode sheet 1901 and the second negative electrode sheet 1902 are also different.
  • the location is also different.
  • the first negative electrode sheet 1901 is located at the outermost layer and the end position of the second winding end E'exceeds the end position of the second winding end E'of the second negative electrode sheet 1902, and the first positive electrode sheet 1903 is The end position of the second winding end E′ exceeds the end position of the second winding end E′ of the second positive electrode sheet 1904. For example, if a half circle is exceeded, the excess part is pressed radially inward to contact the inner pole piece, so as to improve the stability of the winding structure.
  • the winding structure described above can simultaneously reduce the steps formed by the first positive electrode sheet 1903 and the second positive electrode sheet 1904 at the first winding start end S and the first winding end E, and reduce the first negative electrode sheet 1901 and the second negative electrode sheet 1901.
  • the step formed by the negative electrode sheet 1902 at the second winding start end S'and the second winding end E' can reduce the local stress on the winding start and the winding end after contact with the casing 20 when expansion occurs. Prevent the pole piece from breaking or the active material from falling off, and improve the reliability of long-term work.
  • the number of layers in the different radial directions of this achievable winding structure is the same.
  • the stresses received in the circumferential direction when expansion occurs and contact with the casing 20 can be made more uniform.
  • the electrode assembly 200 includes a first negative electrode sheet 2001, a second negative electrode sheet 2002, The first positive electrode sheet 2003, the second positive electrode sheet 2004 and the multiple sheets of separator 2005, among which the first negative electrode sheet 2001, the first positive electrode sheet 2003, the second negative electrode sheet 2002 and the second positive electrode sheet 2004 are alternately stacked in sequence, and the first negative electrode sheet
  • the sheet 2001 and the first positive electrode sheet 2003 are separated by a separator 2005
  • the first positive electrode sheet 2003 and the second negative electrode sheet 2002 are separated by another sheet of separator 2005.
  • the second negative electrode sheet 2002 and the second positive electrode sheet 2004 are separated from each other.
  • the space is separated by another diaphragm 2005.
  • All the first negative electrode sheet 2001, the second negative electrode sheet 2002, the first positive electrode sheet 2003, the second positive electrode sheet 2004 and the multiple sheets of diaphragm 2005 are superimposed and wound into a flat body around the winding axis K. Shaped winding structure.
  • both ends of the negative active material area of the first negative electrode sheet 2001 along the reel axis K extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 2003 along the winding axis K.
  • Both ends of the negative active material area of the second negative electrode sheet 2002 along the reel axis K respectively extend beyond the corresponding ends of the positive electrode active material coating area of the adjacent first positive electrode sheet 2003 and the second positive electrode sheet 2004 along the winding axis K.
  • the specific conditions of the opposite ends of the negative active material area of the first negative electrode sheet 2001 and the second negative electrode sheet 2002 along the axis K of the reel and the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet, such as the excess size, may refer to the aforementioned
  • the two ends of the negative electrode active material area of the negative electrode sheet 2 described in the embodiments of FIGS. 6-11 along the axis K of the spool have the corresponding ends of the positive electrode active material area of the adjacent positive electrode sheet 1, which will not be repeated here.
  • the structure of this embodiment is basically similar to the structure described in the embodiment of FIG. 18, and the differences are as follows.
  • the innermost circle of the winding structure is the circle surrounded by the first negative electrode sheet 2001 and the second negative electrode sheet 2002
  • the outermost circle of the winding structure is the first negative electrode sheet 2001 and the second negative electrode sheet 2001.
  • the second negative electrode sheet 2002 is located at the outermost layer and the end position of the second winding end E'is beyond the end position of the second winding end E'of the first negative electrode sheet 2001, and the second positive electrode sheet 2004 is The end position of the second winding end E′ exceeds the end position of the second winding end E′ of the first positive electrode sheet 2003. For example, beyond half a circle.
  • the winding structure described above can simultaneously reduce the steps formed by the first positive electrode sheet 2003 and the second positive electrode sheet 2004 at the first winding start end S and the first winding end E, and reduce the first negative electrode sheet 2001 and the second
  • the steps formed by the negative electrode sheet 2002 at the second winding start end S'and the second winding end E' can reduce the local stress on the winding start end and the winding end after contact with the casing 20 when expansion occurs. Prevent the pole piece from breaking or the active material from falling off, and improve the reliability of long-term work.
  • the number of layers in the different radial directions of this achievable winding structure is the same.
  • the stresses received in the circumferential direction when expansion occurs and contact with the casing 20 can be made more uniform.
  • this structure can prevent the outermost and penultimate layer of pole pieces from bending at the winding ends of other pole pieces, so that the pole pieces of each layer can be reliably contacted, and it is not easy to generate local stress on the pole pieces. , So as to prevent the pole piece from breaking or the active material from falling off.
  • the present application also provides a method for manufacturing an electrode assembly.
  • the flow chart is shown in FIG. 21.
  • Step 101 Provide at least one positive electrode sheet 1 and at least one negative electrode sheet 2, and the sum of the number of all positive electrode sheets 1 and all negative electrode sheets 2 is greater than or equal to 3.
  • Step 102 winding at least one positive electrode sheet 1 and at least one negative electrode sheet 2 around the winding axis K to form a winding structure;
  • the positive electrode sheet 1 of at least one positive electrode sheet 1 and the negative electrode sheet 2 of at least one negative electrode sheet 2 are superimposed in a direction perpendicular to the winding axis K; each positive electrode in at least one positive electrode sheet 1 Sheet 1 includes a positive electrode body portion 11, at least a part of the area of the superimposed surface of the positive electrode body portion 11 is a positive electrode active material region 111, and each negative electrode sheet 2 in at least one negative electrode sheet 2 includes a negative electrode body portion 21, a superposition of the negative electrode body portion 21 At least part of the area of the surface is the negative active material region 211, and both ends of the negative active material region 211 along the winding axis K extend beyond the corresponding ends of the adjacent positive active material region 111.
  • step 102 is executed after step 101.
  • step 101 specifically, multiple positive plates 1, multiple separators 3, and multiple negative plates 2 are superimposed in the thickness direction of the pole pieces, and the multiple positive plates 1 and the multiple negative plates 2 are in the form of one by one. Alternately arranged, and the separator 3 is located between the adjacent positive electrode sheet 1 and the negative electrode sheet 2.
  • the number of winding turns of the electrode assembly 10 can be reduced, the winding error during the winding process can be reduced, and the negative active material area 211 can be easily controlled.
  • the present application also provides an electrode assembly manufacturing device 500.
  • it includes a pole piece placing mechanism 501 and a winding mechanism 502.
  • the pole piece placement mechanism 501 is configured to provide at least one positive pole piece 1 and at least one negative pole piece 2, and the sum of the number of all positive pole pieces 1 and all negative pole pieces 2 is greater than or equal to 3;
  • the winding mechanism 502 is configured to wind at least one positive electrode sheet 1 and at least one negative electrode sheet 2 around a winding axis K to form a winding structure.
  • the positive plates 1 of the multiple positive plates 1 and the negative plates 2 of the multiple negative plates 2 are alternately arranged in a direction perpendicular to the winding axis K, and each positive plate 1 includes a positive body portion 11 At least a partial area of the positive electrode body portion 11 along the winding axis K is a positive electrode active material area 111, each negative electrode sheet 2 includes a negative electrode body portion 21, and at least a portion of the negative electrode body portion 21 along the winding axis K is a negative electrode active material area 211, and both ends of the negative active material region 211 along the winding axis K extend beyond the corresponding ends of the adjacent positive active material region 111.
  • the winding mechanism 502 can provide a stable winding tension for the stacked pole pieces.
  • the electrode assembly 10 produced by the manufacturing device 500 can reduce the winding error during the winding process, and it is easy to control the size of the negative active material region 211 beyond the positive active material region 111, thereby reducing the negative electrode active material region 211.
  • the remaining size leaves space for increasing the area of the positive electrode active material region 111 and the area of the negative electrode active material region 211, thereby increasing the energy density of the electrode assembly 10.

Abstract

一种电极组件(10)及其相关电池(400)、装置、制造方法和制造装置(500),其中,电极组件(10)包括:至少一片正极片(1)和至少一片负极片(2),所有正极片(1)和所有负极片(2)的数量之和大于等于3,至少一片正极片(1)和至少一片负极片(2)绕卷绕轴线(K)卷绕形成卷绕结构,其中,在卷绕结构中,至少一片正极片(1)的正极片(1)和至少一片负极片(2)中的负极片(2)沿垂直于卷绕轴线(K)的方向叠加设置;其中,至少一片正极片(1)中的每个正极片(1)包括正极主体部(11),正极主体部(11)的叠加面的至少部分区域为正极活性物质区(111),至少一片负极片(2)中的每个负极片(2)包括负极主体部(21),负极主体部(21)的叠加面的至少部分区域为负极活性物质区(211),负极活性物质区(211)沿卷绕轴线(K)的两端均超出相邻的正极活性物质区(111)的对应端。

Description

电极组件及其相关电池、装置、制造方法和制造装置 技术领域
本申请涉及电池领域,具体涉及一种电极组件及其相关电池、装置、制造方法和制造装置。
背景技术
锂离子等电池具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点,在一些电子设备、电动交通工具、电动玩具和电动设备上得到广泛应用,例如,锂离子在手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等得到广泛的应用。
随着锂离子电池技术的不断发展,对锂离子电池的性能提出了更高的要求,希望锂离子电池更小、更轻便和储能更多,因此,需要不断提高锂离子电池能量密度。
目前,提高锂离子能量密度的方法有多种,例如,可以从结构上提高锂离子电池的能量密度,例如,可以提高正负极活性物质在锂离子电池中所占的比例,另外一个提高锂离子电池能量密度的方法是减少隔膜的厚度。再例如,还可以从材料上提高锂离子电池的能量密度,例如,可以选择不同的正负极活性物质。再例如,还可以控制电解液的数量来提高锂离子电池的能量密度,例如,减少电解液的数量可以有效的提高锂离子电池的能量密度。再例如,还可以提高充电截止电压来提高锂离子电池的能量密度。
但不论上述何种提高锂离子能量密度的方法,或多或少会存在各种问题,例如,成本上、工艺上或安全上都会存在一定的问题。
发明内容
本申请提出一种电极组件及其相关电池、装置、制造方法和制造装置,克服了上述问题或者至少部分地解决了上述问题。
根据本申请的第一方面,提供了一种电极组件,包括:
至少一片正极片和至少一片负极片,所有正极片和所有负极片的数量之和大于等于,至少一片正极片和至少一片负极片绕卷绕轴线卷绕形成卷绕结构,其中,在卷绕结构中,至少一片正极片的正极片和至少一片负极片中的负极片沿垂直于卷绕轴线的 方向叠加设置;
其中,至少一片正极片中的每个正极片包括正极主体部,正极主体部的叠加面的至少部分区域为正极活性物质区,至少一片负极片中的每个负极片包括负极主体部,负极主体部的叠加面的至少部分区域为负极活性物质区,负极活性物质区沿卷绕轴线的两端均超出相邻的正极活性物质区的对应端。
在一些实施例中,负极活性物质区沿卷绕轴线的两端均超出相邻的正极活性物质区的对应端的尺寸范围为0.2毫米~5毫米。
在一些实施例中,电极组件还包括多片隔膜,相邻的正极片和负极片通过隔膜隔开。
在一些实施例中,正极片还包括从正极主体部沿卷绕轴线方向向外延伸的至少一个正极极耳部,负极片还包括从负极主体部沿卷绕轴线方向向外延伸的至少一个负极极耳部。
在一些实施例中,正极主体部的部分区域为第一绝缘层涂覆区,第一绝缘层涂覆区位于正极活性物质区邻近正极极耳部的一侧,负极主体部沿卷绕轴线方向靠近负极极耳部的第一端位于第一绝缘层涂覆区。
在一些实施例中,负极活性物质区覆盖负极主体部的沿卷绕轴线的整个叠加面,负极主体部沿卷绕轴线方向远离负极极耳部的第二端超出正极活性物质区。
在一些实施例中,当至少一个正极片的数量大于等于时,至少两片正极片的第一卷绕末端位置不同;和/或,当至少一个负极片的数量大于等于时,至少两片负极片的第二卷绕末端位置不同。
在一些实施例中,当至少一个正极片的数量大于等于时,至少两片正极片的第一卷绕始端位置不同;和/或,当至少一个负极片的数量大于等于时,至少两片负极片的第二卷绕始端位置不同。
在一些实施例中,卷绕结构呈扁平状,包括平直区和位于平直区两侧的转弯区;
其中,所有正极片中至少一片正极片的第一卷绕末端位于转弯区;和/或,所有负极片中至少一片负极片的第二卷绕末端位于转弯区。
在一些实施例中,在卷绕结构的不同径向上,极片的层数相差不超过预设层数。
在一些实施例中,预设层数小于或者等于所有正极片和所有负极片的数量之和。
在一些实施例中,卷绕结构的最外层和最内层均为负极片。
根据本申请的第二方面,提供了一种电池,包括:
壳体;和
上述实施例的电极组件,电极组件设在壳体内。
根据本申请的第三方面,提供了一种电池模块,包括:包括:多个权利要求的电池。
根据本申请的第四方面,提供了一种电池组,包括:多个上述实施例的电池模块。
根据本申请的第五方面,提供了一种使用电池的装置,包括:上述实施例的电池,其中电池用于提供电能。
根据本申请的第六方面,提供了一种电极组件的制造方法,包括:
提供至少一片正极片和至少一片负极片,所有正极片和所有负极片的数量之和大于等于;
将至少一片正极片和至少一片负极片绕卷绕轴线卷绕形成卷绕结构;
其中,在卷绕结构中,至少一片正极片的正极片和至少一片负极片中的负极片沿垂直于卷绕轴线的方向叠加设置;至少一片正极片中的每个正极片包括正极主体部,正极主体部的叠加面的至少部分区域为正极活性物质区,至少一片负极片中的每个负极片包括负极主体部,负极主体部的叠加面的至少部分区域为负极活性物质区,负极活性物质区沿卷绕轴线的两端均超出相邻的正极活性物质区的对应端。
根据本申请的第七方面,提供了一种电极组件的制造装置,包括:
极片放置机构,被配置为提供至少一片正极片和至少一片负极片,所有正极片和所有负极片的数量之和大于等于;和
卷绕机构,被配置为将至少一片正极片和至少一片负极片绕卷绕轴线卷绕形成卷绕结构;
其中,在卷绕结构中,多片正极片的正极片和多片负极片中的负极片沿垂直于卷绕轴线的方向交替设置,每个正极片包括正极主体部,正极主体部沿卷绕轴线的至少部分区域为正极活性物质区,每个负极片包括负极主体部,负极主体部沿卷绕轴线的至少部分区域为负极活性物质区,且负极活性物质区沿卷绕轴线的两端均超出相邻的正极活性物质区的对应端。
本申请实施例的电极组件,控制负极活性物质区超出正极活性物质区的尺寸,由此可减小负极活性物质区预留的尺寸,为增加正极活性物质区的面积和负极活性物质区的面积留出空间,从而可以降低成本,提高电极组件的能量密度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为采用本申请采用电池的车辆的一些实施例的外形示意图;
图2为本申请电池组的一些实施例的结构示意图;
图3为本申请电池模块的一些实施例的结构示意图;
图4为本申请电池的一些实施例的分解图;
图5为本申请电极组件展平后的一些实施例的侧视图;
图6为本申请电极组件中正极片的一些实施例的结构示意图;
图7为本申请电极组件中负极片的一些实施例的结构示意图;
图8为本申请电极组件中正极片和负极片交替设置的一些实施例的侧视图;
图9为图8的B处放大图;
图10为本申请正极极耳和负极极耳沿卷绕轴线设在主体部同端的一些实施例的结构示意图;
图11为本申请正极极耳和负极极耳沿卷绕轴线设在主体部不同端的一些实施例的结构示意图;
图12、图13、图14、图15和图16分别为本申请扁平状电极组件的第一实施例、第二实施例、第三实施例、第四实施例和第五实施例在垂直于卷绕轴线所在平面内的剖视图;
图17、图18、图19和图20分别为本申请圆柱状电极组件的第一实施例、第二实施例、第三实施例和第四实施例在垂直于卷绕轴线所在平面内的剖视图;
图21为本申请电极组件制造方法的一些实施例的流程示意图;
图22为本申请电极组件的制造装置的一些实施例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请 保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请实施例描述的电极组件及其制造方法、电池、电池模块、电池组均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请实施例描述的电极组件及其制造方法、电池、电池模块、电池组不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动汽车为例进行说明。
例如,如图1所示,为本申请一实施例的一种汽车100的结构示意图,所述汽车100可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。所述汽车100的内部可以设置电池组200,例如,在所述汽车100的底部或车头或车尾可以设置所述电池组200。所述电池组200可以用于汽 车100的供电,例如,所述电池组200可以作为所述汽车100的操作电源,用于所述汽车100的电路系统,例如,用于汽车100的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,所述电池组200不仅仅可以作为所述汽车100的操作电源,还可以作为所述汽车100的驱动电源,替代或部分地替代燃油或天然气为所述汽车100提供驱动动力。
为了满足不同的使用电力需求,电池组200可以包括一个电池模块或多个电池模块,其中,多个电池模块可以串联或并联或混联,所述混联是指串联和并联的混合。例如,如图2所示,为本申请另一实施例的一种电池组200的结构示意图,所述电池组200包括第一壳体201、第二壳体202和多个电池模块300,其中,第一壳体201和第二壳体202的形状根据所述多个电池模块300组合的形状而定,所述第一壳体201和第二壳体202均具有一个开口,例如,第一壳体201和第二壳体202均可以为中空长方体且各自只有一个面为开口面,即这个面位不具有壳体壁使得壳体内外相通,所述第一壳体201和第二壳体202在开口处相互扣合形成电池组200的封闭的外壳,多个电池模块300相互并联或串联或混联组合后置于第一壳体201和第二壳体202扣合后形成的外壳内。
在本申请的另一实施例中,当所述电池组200包括一个电池模块300时,所述电池模块300置于第一壳体201和第二壳体202扣合后形成的外壳内。
所述一个或多个电池模块300产生的电通过导电机构(未图示)穿过所述外壳而引出。
根据不同的电力需求,所述电池模块300可以包括一个或多个电池,如图3所示,电池模块300包括多个电池400,多个电池400可通过串联、并联或混联的方式连接以实现较大的容量或功率。例如,电池400包括含锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。电池400可呈圆柱体、扁平体、长方体或其它形状等。
在本申请的另一实施例中,多个电池400可以叠加在一起,多个电池400之间相互串联、并联或混联,在本申请的另一实施例中,每个电池400可以为方形,圆柱形或其他形状。例如,如图4所示,为本申请另一实施例的一种电池400的结构示意图,电池400包括一个或多个电极组件10、壳体20和端盖组件40,所述壳体20根据一个或多个电极组件10组合后的形状而定,例如,所述壳体20可以为中空的长方体或正方体或圆柱体,且所述壳体20的其中一个面具有一开口以便一个或多个电极组件10 可以放置于壳体20内,例如,当所述壳体20为中空的长方体或正方体时,所述壳体20的其中一个平面为开口面,即该平面不具有壳体壁而使得壳体20内外相通,当所述壳体20可以为中空的圆柱体时,所述壳体20的圆形侧面为开口面,即该圆形侧面不具有壳体壁而使得壳体20内外相通。所述端盖组件40在所述壳体20的开口处与壳体20连接形成放置电池400的密封外壳,且壳体20内填充电解液。
端盖组件40包括端盖41和两个端子42,端盖41基本上是平板形状,两个端子42位于端盖41的平板面上且穿过端盖41的平板面,两个端子42分别为正极端子和负极端子,每个端子42对应设置一个集流构件30,集流构件30位于端盖41与电极组件10之间。
例如,图4所示,每个电极组件10具有正极极耳12’和负极极耳22’,所述一个或多个电极组件10的正极极耳12’通过一个集流构件30与正极端子连接,所述一个或多个电极组件10的负极极耳22’通过另一个集流构件30与负极端子连接。
在本申请的另一实施例中,端盖41的平板面上还可设置防爆阀43,该防爆阀43可以为端盖41的平板面的一部分,也可以与端盖41的平板面焊接。例如,防爆阀43具有刻痕,该刻痕的深度小于防爆阀43除刻痕处其他区域的厚度以达到不穿透防爆阀43的目的,即在正常状态下,防爆阀43与端盖41密封结合,所述端盖组件40通过端盖41在所述壳体20的开口处与壳体20连接形成放置电池400的外壳,该外壳形成的空间密封不透气。该外壳内,当电池400产生的气体太多时,气体发生膨胀使外壳内的气压升高至超出预设值时,防爆阀43在刻痕处裂开而导致外壳内外相通,气体通过防爆阀43的裂开处向外释放,进而避免发生爆炸。
在该电池400中,根据实际使用需求,电极组件10可设置为单个或多个,如图4所示,电池400内设置至少两个独立电极组件10。在本申请的另一实施例中,如图5所示,电极组件10可以包括:至少一片正极片1和至少一片负极片2,所述至少一片正极片1和所述至少一片负极片2绕卷绕轴线K卷绕形成卷绕结构,其中,在所述卷绕结构中,所述至少一片正极片1的正极片1和所述至少一片负极片2中的负极片2沿垂直于卷绕轴线K的方向叠加设置。
所述至少一片正极片1和所述至少一片负极片2的数量可以相同,也可以不同,例如,电极组件10包括1、2、3或4片正极片1和1、2、3或4片负极片2。在一些实施例中,所有正极片1和所有负极片2的数量之和大于等于3。例如,电极组件10包括1片正极片1和2片负极片2,或者包括2片正极片1和1片负极片2,或者包 括2片正极片1和2片负极片2,或者包括1片正极片1和3片负极片2,或者包括3片正极片1和1片负极片2,或者包括3片正极片1和3片负极片2。
在本申请的另一实施例中,每片正极片1和每片负极片2形状基本相同,例如,所述卷绕结构被展平后,正极片1和负极片2基本上是长条带形状,例如,为5-20米长的长条带形状,正极片1和负极片2的长度相差在预定范围内,宽度尺寸基本相同。所述至少一片正极片1和至少一片负极片2叠加后,沿长条方向卷绕即可得到卷绕结构,该卷绕结构具有卷绕轴线K,所述至少一片正极片1和至少一片负极片2叠加的叠加面与该卷绕轴线K基本平行。
在本申请的另一实施例中,该至少一片正极片1和至少一片负极片2的叠加可以有多种形式,例如,至少一片正极片1为两片或两片以上的正极片1,至少一片负极片2为两片或两片以上负极片2时,所述卷绕结构被展平后,可以是以一片正极片1和一片负极片2的形式依次交替叠加,也可以是以每两片或两片以上正极片1和一片负极片2的形式依次交替叠加,还可以是以一片正极片1与每两片或两片以上负极片2的形式依次交替叠加。该多片正极片1和多片负极片2的叠加也可以理解为每相邻两片正极片1之间包括至少一片负极片2,或者,每相邻两片负极片2之间包括至少一片正极片1。
该至少一片正极片1和至少一片负极片2的叠加时,任意相邻的一片正极片1和一片负极片2之间还设有隔膜3,用于将该相邻的正极片1和负极片2隔开使得相邻的正极片和负极片不相互短路。
在本申请的另一实施例中,不同极性的极片相邻,即正极片1和负极片2相邻,是指该正极片1和负极片2之间没有其它极片但有至少一层隔膜3,例如,该正极片1和负极片2之间没有其它正极片1或负极片2,也可以理解为该正极片1和负极片2之间最直接紧靠相邻,例如,以一种极性极片(例如,正极片1)为基础,该极性极片与该极性极片相邻的第一层不同极性的极片(例如,负极片2)称为相邻的极片。
在本申请的另一实施例中,相同极性的两个极片相邻是指该相同极性的两个极片之间只有一片其它极性的极片,例如,两片正极片1相邻是指该两片正极片1之间只有一片负极片2,两片负极片2相邻是指该两片负极片2之间只有一片正极片1。在本申请的另一实施例中,当相同极性的两个极片之间没有其它不同极性的极片时,该相同极性的两个极片可以当作一片极片。
在本申请的另一实施例中,当相同极性的两片或两片以上极片之间没有其它不同 极性的极片和隔膜时,该相同极性的两片极片可以当作一组极片,则叠加时,是同一极性的极片组与另一不同极性的极片组或单片极片依次交替叠加,例如,两片或两片以上的正极片组成一组正极片组,两片或两片以上的负极片组成负极片组,叠加可以是:正极片组与负极片组依次交替叠加,正极片组与单片负极片依次交替叠加,或者,负极片组与单片正极片依次交替叠加。
由于同一极性的极片组可以当作一片极片,所以,为描述方便,后续描述的一片极片既可以是指单独一片极片,也可以是指多片同一极性的极片组成的极片组。
但不论如何叠加,相邻的不同极性极片之间均设有至少一层隔膜3。
在本申请的另一实施例中,隔膜3包括隔膜基层和功能层,隔膜基层可以是聚丙烯、聚乙烯、乙烯—丙烯共聚物、聚对苯二甲酸丁二醇酯等的至少一种,功能层可以是陶瓷氧化物和粘结剂的混合物层。在本申请的另一实施例中,所述卷绕结构被展平后,隔膜3是单独存在的薄膜,且基本上为长条带形状,例如,为5-20米长的长条带形状。在本申请的另一实施例中,隔膜3涂覆在正极片1和/或者负极片2的表面,即隔膜3与正极片1或者负极片2为一体结构。
为描述方便,下述实施例以一片正极片1和一片负极片2依次交替叠加且相邻的正极片1和负极片2之间设置一片隔膜3为例进行说明,例如,如图5所示,为本申请另一实施例中电极组件10的卷绕结构展平后的结构示意图,电极组件10包括:两片正极片1和两片负极片2,在卷绕之前,每条正极片1和每条负极片2均可以是长条带状结构,两片正极片1和两片负极片2在极片的厚度方向上叠加设置且任意相邻正极片1和负极片2之间设置隔膜3,即一片正极片1和一片负极片2依次交替叠加,且相邻正极片1和负极片2之间设置隔膜3,该隔膜3既可以是涂覆在正极片1和负极片2的叠加面上,也可以是单独的一片隔膜,两片正极片1和两片负极片2的叠加平面基本平行于电极组件10的卷绕结构的卷绕轴线K。
正极片1的结构可以如图6所示,为本申请另一实施例中一种正极片1的结构示意图,正极片1包括正极主体部11和从所述正极主体部11沿所述卷绕轴线K方向向外延伸的至少一个正极极耳部12,正极主体部11的叠加面上沿卷绕轴线K的至少部分区域为正极活性物质区111,在该正极活性物质区111可以涂覆正极活性物质,例如,正极活性物质可以是三元材料、锰酸锂或磷酸铁锂。
在本申请的另一实施例中,正极主体部11的叠加面还包括部分区域为第一绝缘层涂覆区112,第一绝缘层涂覆区112位于正极活性物质区111邻近正极极耳部12的 一侧。
例如,正极活性物质区111和第一绝缘层涂覆区112在正极主体部11的叠加面上沿卷绕轴线K两端侧分布,且正极极耳部12与第一绝缘层涂覆区112属于正极主体部11的同一端侧,例如,正极极耳部12从第一绝缘层涂覆区112沿所述卷绕轴线K方向向正极主体部11的外侧延伸。
在本申请的另一实施例中,正极活性物质区111和第一绝缘层涂覆区112在正极主体部11的叠加面上沿卷绕轴线K两端侧分布,也可以理解为,正极活性物质区111和第一绝缘层涂覆区112在正极主体部11的叠加面上为基本平行的区域且沿卷绕轴线K在正极主体部11的叠加面上成两层分布,即正极活性物质区111和第一绝缘层涂覆区112沿正极片1的长条方向在正极主体部11的叠加面基本平行且成两层分布。
在本申请的另一实施例中,第一绝缘层涂覆区112可以位于正极主体部11与正极极耳部12相互连接的部分,例如,第一绝缘层涂覆区112位于正极主体部11的叠加面上且与正极极耳部12相互连接的部分,用于隔开正极极耳部12的表面和正极活性物质区111。在本申请的另一实施例中,不仅正极主体部11的叠加面上与向外延伸正极极耳部12的相连接的部分区域设有第一绝缘层涂覆区112,在正极极耳部12的叠加面上与正极主体部11的叠加面相连接的部分区域也设有第二绝缘层涂覆区121,即第二绝缘层涂覆区121可覆盖正极极耳部12靠近正极主体部11的根部区域。
在本申请的另一实施例中,第一绝缘层涂覆区112的表面涂覆绝缘物质,所述绝缘物质包括无机填料和粘接剂。无机填料包括勃姆石、氧化铝、氧化镁、二氧化钛、氧化锆、二氧化硅、碳化硅、碳化硼、碳酸钙、硅酸铝、硅酸钙、钛酸钾、硫酸钡中的一种或几种。粘结剂包括聚偏氟乙烯、聚丙烯腈、聚丙烯酸、聚丙烯酸酯、聚丙烯酸-丙烯酸酯、聚丙烯腈-丙烯酸、聚丙烯腈-丙烯酸酯中的一种或几种。
在本申请的另一实施例中,每片正极片1可以包括一个或两个或两个以上正极极耳部12,当正极片1包括两个或两个以上正极极耳部12时,所有正极极耳部12均位于正极片1沿卷轴轴线K的同一侧,例如,如图6所示,正极片1包括位于正极片1上沿卷轴轴线K同一侧的三个正极极耳部12。
负极片2的结构可以图7所示,为本申请另一实施例的一种负极片2的结构示意图,负极片2包括负极主体部21和从所述负极主体部21沿所述卷绕轴线K方向向外延伸的负极极耳部22,负极主体部21的叠加面上沿卷绕轴线K的至少部分区域为负极活性物质区211,负极活性物质区211用于涂覆负极活性物质,所述负极活性物质 可以是石墨或硅。
在本申请的另一实施例中,不仅负极主体部21的叠加面的部分区域设有负极活性物质区211,在负极极耳部22的叠加面上与负极主体部21的叠加面相连接的部分区域也设有负极活性物质区211,即负极极耳部22的部分区域为负极活性物质区211,例如,负极活性物质区211可覆盖负极极耳部22靠近负极主体部21的根部区域。
在本申请的另一实施例中,如图7所示,负极活性物质区211覆盖负极主体部21的沿卷绕轴线K的整个叠加面。
在本申请的另一实施例中,当正极片1和负极片2相互叠加时,即在卷绕结构中,负极片2的负极活性物质区211沿卷绕轴线K的两端均超出相邻的正极片1的正极活性物质区111的对应端。
在一些实施例中,负极活性物质区211沿卷绕轴线K的两端均超出相邻的正极活性物质区111的对应端的尺寸范围为0.2毫米~5毫米,例如,0.2毫米、0.5毫米、0.8毫米、1毫米、1.5毫米、2毫米、2.5毫米、3毫米、3.5毫米、4毫米、4.5毫米或5毫米等。负极活性物质区211沿卷绕轴线K的两端超出正极活性物质区111的对应端的尺寸可以相同,也可不同。
当多片正极片1和多片负极片2相互叠加时,得到的卷绕结构在剖视图可以如图8和9所示,至少一片正极片1和至少一片负极片2叠加方式为一片正极片1和一片负极片2依次交替叠加,相邻正极片1和负极片2之间通过隔膜3隔开,其中,K为卷绕结构的卷绕轴线K。
结合图6-9,为避免正极片1在切出正极极耳部12后,正极主体部11的边缘容易出现毛刺,毛刺可能会刺破隔膜3,造成正极片1和负极片2发生短路的现象,本实施例的正极主体部11邻近正极极耳部12的区域设置为空箔区C,并且沿卷绕轴线K的方向超出负极主体部21的边缘,此时可避免正极主体部11的边缘毛刺刺破隔膜3后与负极片2接触的风险,也可以避免由于空箔区与突出量之间的间隙较大,金属屑容易掉入该间隙中,从而造成正极片1和负极片2发生短路的问题。
本实施例通过在正极主体部11上设置第一绝缘层涂覆区112,并使负极主体部21沿卷绕轴线K方向靠近负极极耳部22的第一端位于第一绝缘层涂覆区112,能够在满足负极活性物质区211沿卷绕轴线K超出相邻的正极活性物质区111的基础上,降低金属屑刺破隔膜3后正极片1和负极片2发生短路的风险。
本申请的另一实施例中,负极片2的负极主体部21沿卷绕轴线K方向远离负极 极耳部22的第二端超出正极片1的正极活性物质区111。
本申请的另一实施例中,负极片2的负极主体部21沿卷绕轴线K方向远离负极极耳部22的区域设置为空箔区。
本申请的另一实施例中,在正极极耳部12的叠加面上与正极主体部11的叠加面相连接的部分区域设有第二绝缘层涂覆区121,可以有效降低正极极耳部12的根部区域与负极活性物质区211接触短路的风险。
当电极组件10卷绕成型后,所有正极极耳部12叠加在一起形成电极组件10的正极耳,并焊接到对应的集流构件。另外,为避免焊接完成后,多个正极极耳部12的未焊接区域处于分散状态,同时,由于极耳部较薄,在电极组件10的装配过程中,正极极耳部12很容易变形并被压入到正极片1和负极片2之间,从而引发短路的风险,本实施例的正极片1设置第一绝缘层涂覆区112,可起到绝缘保护作用,即使正极极耳部12插入正极片1和负极片2之间,第一绝缘层涂覆区112可有效地将正极片1和负极片2隔开,从而降低短路风险,提高电池的安全性能。
本申请的另一实施例中,为了在负极片2的负极极耳部22的根部保留部分负极活性物质,在裁切时,刀具可直接作用在负极活性物质上,以减小裁切处的毛刺,降低隔膜3被刺破的风险。
在本申请的另一实施例中,当正极片1和负极片2相互叠加时,即在卷绕结构中,正极片1的正极极耳部12和负极片2的负极极耳部22既可以位于卷绕结构沿卷绕轴线K方向的同一侧,也可以不同侧。
例如,每片正极片1可以包括一个或两个或两个以上正极极耳部12,当正极片1包括两个或两个以上正极极耳部12时,所有正极极耳部12均位于正极片1沿卷轴轴线K的同一侧。每片负极片2可以包括一个或两个或两个以上负极极耳部22,当负极片2包括两个或两个以上负极极耳部22时,所有负极极耳部22也均位于负极片2沿卷轴轴线K的同一侧。
在本申请的另一实施例中,如图10所示,所有正极极耳部12和所有负极极耳部22位于电极组件10-1沿卷绕轴线K的同侧。
在本申请的另一实施例中,如图11所示,所有正极极耳部12和所有负极极耳部22位于电极组件10-2沿卷绕轴线K的不同侧。
例如,电极组件10包括至少一片正极片1和至少一片负极片2,至少一片正极片1和至少一片负极片2绕卷绕轴线K卷绕成卷绕结构,所有正极片1的所有正极极 耳部基本重叠,所有负极片2的所有负极极耳部22基本重叠,所有正极片1的所有正极极耳部和所有负极片2的所有负极极耳部22分别位于卷绕结构沿卷绕轴线K方向的两侧或者所有正极极耳部12和所有负极极耳部22位于电极组件10沿卷绕轴线K的同侧。
本申请的另一实施例中,当所述至少一片正极片1的数量大于等于2时,至少两片正极片1的第一卷绕末端E位置不同,例如,所有正极片1的第一卷绕末端E位置互不相同;和/或,当所述至少一片负极片2的数量大于等于2时,至少两片负极片2的第二卷绕末端E’位置不同,例如,所有负极片2的第二卷绕末端E’位置互不相同。
电极组件10在使用过程中会发生膨胀,在膨胀后会对壳体20施加作用力,同时壳体20对电极组件10施加反作用力。由于本申请的电极组件10通过设置至少两片正极片1各自的卷绕末端位置不同,和/或至少两片负极片2各自的卷绕末端位置不同,即至少两片正极片1的卷绕末端在卷绕结构的周向上错开设置,和/或至少两片负极片2的卷绕末端在卷绕结构的周向上错开设置。此种结构能够防止在多片正极片1或多片负极片2的卷绕末端叠加后形成较厚的台阶,在卷绕结构的外层受到壳体20的反作用力时,可缓解极片的卷绕末端出现应力集中的问题,使卷绕结构10’在不同周向位置受力均匀,防止卷绕结构发生较大变形,或者在应力较大的局部区域发生活性物质脱落的现象,提高电池长期使用后的工作性能和可靠性。
本申请的另一实施例中,当所述至少一片正极片1的数量大于等于2时,至少两片正极片1的第一卷绕始端S位置不同,例如,所有正极片1的第一卷绕始端S位置互不相同;和/或,当所述至少一片负极片2的数量大于等于2时,至少两片负极片2的第二卷绕始端S’位置不同,例如,所有负极片2的第二卷绕始端S’位置互不相同。
电极组件10在使用过程中会发生膨胀,由于本申请的电极组件10通过设置至少两片正极片1各自的第一卷绕始端S位置不同,和/或至少两片负极片2各自的第二卷绕始端S’位置不同,即至少两片正极片1的第一卷绕始端S在卷绕结构的周向上错开设置,和/或至少两片负极片2的第二卷绕始端S’在卷绕结构的周向上错开设置。使正极片1和/或负极片2的卷绕始端位置不同,能够防止在多片正极片1或多片负极片2的卷绕始端形成较厚的台阶,可缓解极片的卷绕始端出现应力集中的问题,使卷绕结构在不同周向位置受力均匀,防止卷绕结构发生较大变形,或者在应力较大的局部区 域发生活性物质脱落的现象,提高电池长期使用后的工作性能和可靠性。
本申请的另一实施例中,在所述卷绕结构的不同径向上,极片的层数相差不超过预设层数。例如,所述预设层数小于或者等于所述多片正极片1和所述多片负极片2的数量之和,例如,两片正极片1和两片负极片2卷绕后,在卷绕结构其中一个径向上,极片层数(即包括所有正极片1和负极片2)为8层,在卷绕结构另一个径向上,极片层数为最小为8,最大为12,即预设层数小于或者等于所述两片正极片1和所述两片负极片2的数量之和:4。
电极组件10发生膨胀与壳体20接触时,壳体20会向电极组件10施加反作用力,通过在所述卷绕结构的不同径向上,设置极片的层数相差不超过预设层数,能够使电极组件10周向各处的受力更加均匀,防止电极组件10在使用过程中出现各处性能差异较大的情况。例如,正极片1设置两片,负极片2设置两片,预设层数小于或等于四层,极片的层数相差越小,电极组件10在卷绕结构的周向各处受力越均匀。
本申请的另一实施例中,所述卷绕结构的最外层和最内层均为所述负极片2。
卷绕结构的最外层和最内层均为负极片2。正极片1中的正极活性物质的材料一般为三元材料、锰酸锂或磷酸铁锂等,负极片2中的负极活性物质的材料一般为石墨或硅,由于正极活性物质的材料比负极活性物质的材料昂贵,因此,使卷绕结构的最外层和最内层均被负极片2包覆,能够使正极片1的正极活性物质被充分地利用,既可提高卷绕结构的能量利用率,又可降低电极组件10的制造工艺难度。
可选地,卷绕结构的最外层和最内层中的至少一个采用正极片1,为了降低电极组件10的制造成本,对于处于最外层或最内层的正极片1,也可在正极片1远离负极片2的面上免去涂覆正极活性物质。
综上所述,电极组件10在使用过程中,每片正极片1的正极活性物质区111的锂离子穿过隔膜3并嵌入到相邻负极片2的负极活性物质区211中,由于负极活性物质区211沿卷绕轴线K的两端均超出相邻的正极活性物质区111的对应端,可保证锂离子尽可能地嵌入负极活性物质区211,降低析锂风险,同时也能使正极活性物质区111的正极活性物质充分发挥作用。
此外,当电极组件10包括多片正极片1或多片负极片2时,由于将多片正极片1或多片负极片2同时卷绕,因此,相对于具有该多片正极片1连接后相同长度的正极片1或具有多片负极片2连接后相同长度的负极片2的卷绕,本实施例的电极组件10卷绕的效率明显提高。例如,将长度为L的一片正极片1和一片负极片2叠加卷绕 时,卷绕长度为L,卷绕时间为T,而本申请实施例中,将长度为L的正极片1分为多片正极片1和将长度为L的负极片2分为M片负极片2,M为大于等于2的整数,例如M片正极片1和M片负极片2,则本实施例中,在其它条件(例如卷绕速度和卷芯半径)不变的情况下,本实施例的M片正极片1和M片负极片2卷绕距离就为L/M,卷绕时间就为T/M。由此,本实施例的电极组件10的卷绕圈数减少,能够成倍地提高电极组件10的卷绕效率,以满足生产需求。
进一步,电极组件10的卷绕圈数减少,能够减小卷绕过程中叠加时沿卷绕轴线K的卷绕误差,更容易控制负极活性物质区211超出正极活性物质区111的尺寸,由此可减小负极活性物质区211预留的尺寸,为增加正极活性物质区111的面积和负极活性物质区211的面积留出空间,从而降低成本,提高电极组件10的能量密度。
另外,由于电极组件10的卷绕圈数减少,使极片受到的卷绕张力更均匀,可减小极片展平后弯折部位的弯折程度,缓解极片的发皱变形,从而提高正极片1和负极片2的接触性能,使正极片1和负极片2有效接触,进而优化电极组件10的性能。
另外,电极组件10由于卷绕圈数减少,可减小卷绕后正极极耳部12的错位量,易于与集流构件30连接。
进一步地,对于在正极片1和负极片2上切出极耳的结构,在卷绕后多个正极极耳部12重叠设置,多个负极极耳部22也重叠设置,可减少多层正极极耳部12的错位量,以及多层负极极耳部22的错位量,从而保证各层极耳与集流构件30的连接面积,从而增加极耳的过流能力。
电极组件10可以包括至少两片正极片1和至少两片负极片2,但为描述方便,下述实施例以两片正极片1和两片负极片2为例进行说明。
电极组件10的卷绕结构外观形状可以为圆柱体形状、扁平体形状、椭圆体形状、正方体形状、长方体形状或其他任意形状,但为描述方便,下述分别以电极组件10的卷绕结构为扁平体形状和圆柱体形状为例进行描述。
如图12所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件120包括第一负极片1201、第二负极片1202、第一正极片1203、第二正极片1204和多片隔膜1205,其中,第一负极片1201、第一正极片1203、第二负极片1202和第二正极片1204依次交替叠加,且第一负极片1201与第一正极片1203之间通过一片隔膜1205隔开,第一正极片1203和第二负极片1202之间通过另一片隔膜1205隔开,第二负极片1202和第二正极片1204之间通过另一片 隔膜1205隔开,所有第一负极片1201、第二负极片1202、第一正极片1203、第二正极片1204和多片隔膜1205叠加后绕卷绕轴线K卷绕成扁平体形状的卷绕结构。
本实施例的电极组件120,第一正极片1203和第二正极片1204的正极极耳部和第一负极片1201和第二负极片1202负极片的负极极耳部的结构和位置均可以参考前述图6-11的实施例描述的正极极耳部和负极极耳部描述的相关内容,在此不再赘述。
本实施例的电极组件120的卷绕结构的不同径向上,即在卷绕结构周向的不同位置,极片的层数相差不超过预设层数的具体情况,也可以参考前述图6-11的实施例描述的相关的内容,在此不再赘述。
本实施例的电极组件120,第一负极片1201和第二负极片1202分别包括的负极活性物质区可以如前述图6-11的实施例描述的负极片包括的负极活性物质区,第一正极片1203和第二正极片1204分别包括的正极活性物质区可以如前述图6-11的实施例描述的正极片包括的负极活性物质区,在此不再赘述。
本实施例中,第一负极片1201的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1203的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1202的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1203和第二正极片1204的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片1201和第二负极片1202的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片的正极活性物质区对应端的内容,在此不再赘述。
在卷绕结构中,卷绕结构中最内圈为第一负极片1201围绕的圈,卷绕结构的最外圈为第二负极片1202围绕的圈。
本实施例中,电极组件120的卷绕结构包括平直区10A和位于平直区10A两侧的转弯区10B,平直区10A中的极片的叠加面为基本平行的平面且基本平行于卷绕轴线,这里平面并不是严格意义上的平面,允许有一定的误差,平直区10A在沿垂直于卷绕轴线K的平面包括基本平行且以卷绕轴线K对称分布的第一子平直区10A1和第二子平直区10A2,两个转弯区10B分别位于第一子平直区10A1和第二子平直区10A2组合成平直区10A的两侧。
第一正极片1203和第二正极片1204的第一卷绕始端S的位置相同,例如,第一正极片1203和第二正极片1204的第一卷绕始端S均位于平直区10A的同一侧的子 平直区(例如第一子平直区10A1),且第一正极片1203和第二正极片1204的第一卷绕始端S平齐。
第一负极片1201和第二负极片1202的第二卷绕始端S’位置也相同,例如,第一负极片1201和第二负极片1202的第二卷绕始端S’均位于平直区10A的同一侧的子平直区(例如第一子平直区10A1),且第一负极片1201和第二负极片1202的第二卷绕始端S’平齐。
沿卷绕方向的反方向,第一负极片1201的第二卷绕始端S’超出第一正极片1204的第一卷绕始端S。第二负极片1202的第二卷绕始端S’超出第二正极片1203的第一卷绕始端S。
第一正极片1203和第二正极片1204的第一卷绕末端E位置相同,例如,第一正极片1203和第二正极片1204的第一卷绕末端E均位于同一侧的转弯区(例如第一转弯区10B1),且第一正极片1203和第二正极片1204的第一卷绕末端E平齐。
第一负极片1201和第二负极片1202的第二卷绕末端E’位置也相同,例如,第一负极片1201和第二负极片1202的第二卷绕末端E’均位于同一侧的转弯区(例如第一转弯区10B1),也与第一正极片1203和第二正极片1204的第一卷绕末端E位于同一侧的转弯区(例如第一转弯区10B1),且第一负极片1201和第二负极片1202的第二卷绕末端E’平齐。
沿卷绕方向,第一负极片1201的第二卷绕末端E’超出第二正极片1204的第一卷绕末端E,并且第二负极片1202的第二卷绕末端E’超出第一正极片1203的第一卷绕末端E。
上述描述的电极组件的卷绕结构能够使卷绕前多个极片的长度差接近,易于卷绕。
如图13所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件130包括第一负极片1301、第二负极片1302、第一正极片1303、第二正极片1304和多片隔膜1305,其中,第一负极片1301、第一正极片1303、第二负极片1302和第二正极片1304依次交替叠加,且第一负极片1301与第一正极片1303之间通过一片隔膜1305隔开,第一正极片1303和第二负极片1302之间通过另一片隔膜1305隔开,第二负极片1302和第二正极片1304之间通过另一片隔膜1305隔开,所有第一负极片1301、第二负极片1302、第一正极片1303、第二正极片1304和多片隔膜1305叠加后绕卷绕轴线K卷绕成扁平体形状的卷绕结构。
本实施例中,第一负极片1301的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1303的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1302的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1303和第二正极片1304的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片1301和第二负极片1302的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片的正极活性物质区对应端的内容,在此不再赘述。
本实施例的所述电极组件130的结构与图12实施例描述的所述电极组件的结构基本类似,其不同之处如下所述。
本实施例的电极组件130的卷绕结构中,卷绕结构中最内圈为第一负极片1301围绕的圈,卷绕结构的最外圈为第一负极片1301和第二负极片1302共同围绕的圈。
第一正极片1303和第二正极片1304的第一卷绕末端E位置不同,例如,第一正极片1303和第二正极片1304的第一卷绕末端E分别位于第二转弯区10B2和第一转弯区10B1。
第一负极片1301和第二负极片1302的第二卷绕末端E’的位置也不同,例如,第一负极片1301和第二负极片1302的第二卷绕末端E’分别位于第一转弯区10B1和第二转弯区10B2。
沿卷绕方向,第一负极片1301的第二卷绕末端E’超出第二正极片1304的第一卷绕末端E,并且第二负极片1302的第二卷绕末端E’超出第一正极片1303的第一卷绕末端E。
上述描述的电极组件的卷绕结构能够减小第一正极片1303和第二正极片1304在第一卷绕末端E形成的台阶,并减小第一负极片1301和第二负极片1302在第二卷绕末端E’形成的台阶,从而减小电极组件在发生膨胀时与壳体接触后极片在卷绕末端受到的局部应力,可防止极片发生断裂或活性物质脱落,提高电极组件长期工作的可靠性。
如图14所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件140包括第一负极片1401、第二负极片1402、第一正极片1403、第二正极片1404和多片隔膜1405,其中,第一负极片1401、第一正极片1403、第二负极片1402和第二正极片1404依次交替叠加,且第一负极片1401 与第一正极片1403之间通过一片隔膜1405隔开,第一正极片1403和第二负极片1402之间通过另一片隔膜1405隔开,第二负极片1402和第二正极片1404之间通过另一片隔膜1405隔开,所有第一负极片1401、第二负极片1402、第一正极片1403、第二正极片1404和多片隔膜1405叠加后绕卷绕轴线K卷绕成扁平体形状的卷绕结构。
本实施例中,第一负极片1401的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1403的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1402的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1403和第二正极片1404的正极活性物质涂覆区沿卷绕轴线K的对应端。所有第一负极片1401和第二负极片1402的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片的正极活性物质区对应端的内容,在此不再赘述。
本实施例的所述电极组件140的结构与图12实施例描述的所述电极组件的结构基本类似,其不同之处如下所述。
本实施例的电极组件140的卷绕结构中,卷绕结构中最内圈为第一负极片1401围绕的圈,卷绕结构的最外圈为第二负极片1402围绕的圈。
本实施例的电极组件的卷绕结构中,第一负极片1401和第二负极片1402的第二卷绕末端E’位置不相同,例如,第一负极片1401和第二负极片1402的第二卷绕末端E’均位于同一个转弯区(例如第一转弯区10B1),且第一负极片1401和第二负极片1402的第二卷绕末端E’不平齐。
上述描述的电极组件140的卷绕结构能够减小第一子平直区10A1和第二子平直区10A2的极片层数之差,在电极组件发生膨胀与壳体接触时,壳体的内壁向电极组件的两个平面施加反作用力时,可使第一子平直区10A1和第二子平直区10A2的极片受到的应力较一致。
如图15所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件150包括第一负极片1501、第二负极片1502、第一正极片1503、第二正极片1504和多片隔膜1505,其中,第一负极片1501、第一正极片1503、第二负极片1502和第二正极片1504依次交替叠加,且第一负极片1501与第一正极片1503之间通过一片隔膜1505隔开,第一正极片1503和第二负极片1502之间通过另一片隔膜1505隔开,第二负极片1502和第二正极片1504之间通过另一片 隔膜1505隔开,所有第一负极片1501、第二负极片1502、第一正极片1503、第二正极片1504和多片隔膜1505叠加后绕卷绕轴线K卷绕成扁平体形状的卷绕结构。
本实施例中,第一负极片1501的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1503的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1502的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1503和第二正极片1504的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片1501和第二负极片1502的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片的正极活性物质区对应端的内容,在此不再赘述。
本实施例的所述电极组件150的结构与图12实施例描述的所述电极组件的结构基本类似,其不同之处如下所述。本实施例的电极组件的卷绕结构中,卷绕结构中最内圈为第一负极片1501和第二负极片1502共同围绕的圈,卷绕结构的最外圈为第二负极片1502围绕的圈。
本实施例的电极组件150的卷绕结构中,第一正极片1503和第二正极片1504的第一卷绕始端S位置不同,例如,第一正极片1503和第二正极片1504的第一卷绕始端S分别位于第一子平直区10A1和第二子平直区10A2,且第一正极片1503和第二正极片1504的第一卷绕始端S不平齐。
第一负极片1501和第二负极片1502的第二卷绕始端S的位置也不同,例如,第一负极片1501和第二负极片1502的第二卷绕始端S分别位于第一子平直区10A1和第二子平直区10A2,且第一负极片1501和第二负极片1502的第二卷绕始端S不平齐。
上述描述的电极组件的卷绕结构能够减小第一正极片1503和第二正极片1504在第一卷绕始端S形成的台阶,并减小第一负极片1501和第二负极片1502在第二卷绕始端S’形成的台阶,从而减小电极组件在发生膨胀时与壳体20接触后在卷绕始端受到的局部应力,可防止极片发生断裂或活性物质脱落,提高电极组件长期工作的可靠性。
如图16所示,为本申请另一实施例的一种扁平体形状的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件160包括第一负极片1601、第二负极片1602、第一正极片1603、第二正极片1604和多片隔膜1605,其中,第一负极片1601、第一 正极片1603、第二负极片1602和第二正极片1604依次交替叠加,且第一负极片1601与第一正极片1603之间通过一片隔膜1605隔开,第一正极片1603和第二负极片1602之间通过另一片隔膜1605隔开,第二负极片1602和第二正极片1604之间通过另一片隔膜1605隔开,所有第一负极片1601、第二负极片1602、第一正极片1603、第二正极片1604和多片隔膜1605叠加后绕卷绕轴线K卷绕成扁平体形状的卷绕结构。
本实施例中,第一负极片1601的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1603的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1602的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1603和第二正极片1604的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片1601和第二负极片1602的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片的正极活性物质区对应端的内容,在此不再赘述。
本实施例的所述电极组件160的结构与图12实施例描述的所述电极组件的结构基本类似,其不同之处如下所述。本实施例的电极组件的卷绕结构中,卷绕结构中最内圈为第一负极片1601和第二负极片1602共同围绕的圈,卷绕结构的最外圈为第一负极片1601和第二负极片1602共同围绕的圈。
本实施例的电极组件160的卷绕结构中,第一正极片1603和第二正极片1604的第一卷绕始端S位置不同,例如,第一正极片1603和第二正极片1604的第一卷绕始端S分别位于第一子平直区10A1和第二子平直区10A2,且第一正极片1603和第二正极片1604的第一卷绕始端S不平齐。
第一负极片1601和第二负极片1602的第二卷绕始端S’的位置也不同,例如,第一负极片1601和第二负极片1602的第二卷绕始端S’分别位于第一子平直区10A1和第二子平直区10A2,且第一负极片1601和第二负极片1602的第二卷绕始端S’不平齐。
第一正极片1603和第二正极片1604的第一卷绕末端E位置不同,例如,第一正极片1603和第二正极片1604的第一卷绕末端E分别位于不同的转弯区10B。且第一正极片1303和第二正极片1304的第一卷绕末端E不平齐。
第一负极片1601和第二负极片1602的第二卷绕末端E’的位置也不同,例如,第一负极片1601和第二负极片1602的第二卷绕末端E’分别位于两个不同的转弯区 10B。且第一负极片1601和第二负极片1602的第二卷绕末端E’不平齐。
上述描述的电极组件的卷绕结构能够同时减小第一正极片1603和第二正极片1604在第一卷绕始端S、第一卷绕末端E形成的台阶,并减小第一负极片1601和第二负极片1602在第二卷绕始端S’、第二卷绕末端E’形成的台阶,从而减小电极组件在发生膨胀时与壳体20接触后在卷绕始端和卷绕末端受到的局部应力,可防止极片发生断裂或活性物质脱落,提高电极组件长期工作的可靠性。
在上述实施例的基础上,在卷绕结构的不同径向上,即在卷绕结构周向的不同位置,极片的层数相差不超过预设层数,此处的极片层数是指正极片和负极片的总层数。其中,预设层数小于或者等于多片正极片和多片负极片的数量之和。
电极组件发生膨胀与壳体20接触时,壳体20会向电极组件施加反作用力,能够使电极组件周向各处的受力更加均匀,防止电极组件在使用过程中出现各处性能差异较大的情况。例如,正极片设置两片,负极片设置两层,预设层数小于或等于四层,极片的层数相差越小,电极组件周向各处受力越均匀。
如图13-16所示,卷绕结构的最外层和最内层均为负极片。正极片中的正极活性物质的材料一般为三元材料、锰酸锂或磷酸铁锂等,负极片中的负极活性物质的材料一般为石墨或硅,由于正极活性物质的材料比负极活性物质的材料昂贵,因此,使卷绕结构的最外层和最内层均被负极片包覆,能够使正极片的正极活性物质被充分地利用,既可提高卷绕结构的能量利用率,又可降低电极组件的制造工艺难度。
可选地,卷绕结构的最外层和最内层中的至少一个采用正极片,为了降低电极组件的制造成本,对于处于最外层或最内层的正极片,也可在正极片远离负极片的面上免去涂覆正极活性物质。
图17至图20示意出了圆柱形电极组件的结构示意图。
如图17所示,为本申请另一实施例的一种圆柱形的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件170包括第一负极片1701、第二负极片1702、第一正极片1703、第二正极片1704和多片隔膜1705,其中,第一负极片1701、第一正极片1703、第二负极片1702和第二正极片1704依次交替叠加,且第一负极片1701与第一正极片1703之间通过一片隔膜1705隔开,第一正极片1703和第二负极片1702之间通过另一片隔膜1705隔开,第二负极片1702和第二正极片1704之间通过另一片隔膜1705隔开,所有第一负极片1701、第二负极片1702、第一正极片1703、第二正极片1704和多片隔膜1705叠加后绕卷绕轴线K卷绕成圆柱状的卷绕结构。
本实施例的电极组件170,第一正极片1703和第二正极片1704的正极极耳部和第一负极片1701和第二负极片1702负极片的负极极耳部的结构和位置均可以参考前述图6-11的实施例描述的正极极耳部和负极极耳部描述的相关内容,在此不再赘述。
本实施例的卷绕结构的不同径向上,即在卷绕结构周向的不同位置,极片的层数相差不超过预设层数的具体情况,也可以参考前述图6-11的实施例描述的相关的内容,在此不再赘述。
本实施例的电极组件170,第一负极片1701和第二负极片1702分别包括的负极活性物质区可以如前述图6-11的实施例描述的负极片包括的负极活性物质区,第一正极片1703和第二正极片1704分别包括的正极活性物质区可以如前述图6-11的实施例描述的正极片包括的负极活性物质区,在此不再赘述。
本实施例中,第一负极片1701的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1703的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1702的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1703和第二正极片1704的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片1701和第二负极片1702的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片的正极活性物质区对应端的内容,在此不再赘述。
在卷绕结构中,卷绕结构中最内圈为第一负极片1701围绕的圈,卷绕结构的最外圈为第二负极片1702围绕的圈。
第一正极片1703和第二正极片1704的第一卷绕始端S的位置相同,例如,第一正极片1703和第二正极片1704的第一卷绕始端S均位于卷绕结构的同一径向上,且第一正极片1703和第二正极片1704的第一卷绕始端S平齐。
第一负极片1701和第二负极片1702的第二卷绕始端S’位置也相同,例如,第一负极片1701和第二负极片1702的第二卷绕始端S’均位于卷绕结构的同一径向上,且第一负极片1701和第二负极片1702的第二卷绕始端S’平齐。
沿卷绕方向的反方向,第一负极片1701的第二卷绕始端S’超出第一正极片1704的第一卷绕始端S。第二负极片1702的第二卷绕始端S’超出第二正极片1703的第一卷绕始端S。
第一正极片1703和第二正极片1704的第一卷绕末端E位置相同,例如,第一 正极片1703和第二正极片1704的第一卷绕末端E均位于同一侧的转弯区10B,且第一正极片1703和第二正极片1704的第一卷绕末端E平齐。
第一负极片1701和第二负极片1702的第二卷绕末端E’位置也相同,例如,第一负极片1701和第二负极片1702的第二卷绕末端E’均位于同一个转弯区10B,且第一负极片1701和第二负极片1702的第二卷绕末端E’平齐。
沿卷绕方向,第一负极片1701的第二卷绕末端E’超出第二正极片1704的第一卷绕末端E,并且第二负极片1702的第二卷绕末端E’超出第一正极片1703的第一卷绕末端E。
上述描述的卷绕结构能够使卷绕前多个极片的长度差接近,易于卷绕。
如图18所示,为本申请另一实施例的一种圆柱形的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件180包括第一负极片1801、第二负极片1802、第一正极片1803、第二正极片1804和多片隔膜1805,其中,第一负极片1801、第一正极片1803、第二负极片1802和第二正极片1804依次交替叠加,且第一负极片1801与第一正极片1803之间通过一片隔膜1805隔开,第一正极片1803和第二负极片1802之间通过另一片隔膜1805隔开,第二负极片1802和第二正极片1804之间通过另一片隔膜1805隔开,所有第一负极片1801、第二负极片1802、第一正极片1803、第二正极片1804和多片隔膜1805叠加后绕卷绕轴线K卷绕成圆柱形的卷绕结构。
本实施例中,第一负极片1801的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1803的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1802的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1803和第二正极片1804的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片1801和第二负极片1802的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片1的正极活性物质区对应端的内容,在此不再赘述。
本实施例的所述的结构与图17实施例描述的所述的结构基本类似,其不同之处如下所述。本实施例的卷绕结构中,卷绕结构中最内圈为第一负极片1801和第二负极片1802共同围绕的圈,卷绕结构的最外圈为第一负极片1801围绕的圈。
本实施例的卷绕结构中,第一正极片1803和第二正极片1804的第一卷绕始端S位置不同,例如,第一正极片1803和第二正极片1804的第一卷绕始端S位于卷绕结 构的相对的径向上,且第一正极片1803和第二正极片1804的第一卷绕始端S不平齐。
第一负极片1801和第二负极片1802的第二卷绕始端S的位置也不同,例如,第一负极片1101的第二卷绕始端S’和第二负极片1102的第二卷绕始端S’位于卷绕结构的相对的径向上,且第一负极片1801和第二负极片1802的第二卷绕始端S’不平齐。
上述描述的卷绕结构能够减小第一正极片1803和第二正极片1804在第一卷绕始端S形成的台阶,并减小第一负极片1801和第二负极片1802在第二卷绕始端S’形成的台阶,从而减小在发生膨胀时与壳体20接触后在卷绕始端受到的局部应力,可防止极片发生断裂或活性物质脱落,提高长期工作的可靠性。
如图19所示,为本申请另一实施例的一种圆柱形的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件190包括第一负极片1901、第二负极片1902、第一正极片1903、第二正极片1904和多片隔膜1905,其中,第一负极片1901、第一正极片1903、第二负极片1902和第二正极片1904依次交替叠加,且第一负极片1901与第一正极片1903之间通过一片隔膜1905隔开,第一正极片1903和第二负极片1902之间通过另一片隔膜1905隔开,第二负极片1902和第二正极片1904之间通过另一片隔膜1905隔开,所有第一负极片1901、第二负极片1902、第一正极片1903、第二正极片1904和多片隔膜1905叠加后绕卷绕轴线K卷绕成扁平体形状的卷绕结构。
本实施例中,第一负极片1901的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片1903的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片1902的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片1903和第二正极片1904的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片1901和第二负极片1902的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片1的正极活性物质区对应端的内容,在此不再赘述。
本实施例的所述的结构与图18实施例描述的所述的结构基本类似,其不同之处如下所述。本实施例的卷绕结构中,卷绕结构中最内圈为第一负极片1901和第二负极片1902共同围绕的圈,卷绕结构的最外圈为第一负极片1901围绕的圈。
本实施例的卷绕结构中,第一正极片1903和第二正极片1904的第一卷绕末端E位置不同,第一负极片1901和第二负极片1902的第二卷绕末端E’也位置也不同。
沿卷绕方向,第一负极片1901位于最外层且第二卷绕末端E’的结束位置超出第二负极片1902的第二卷绕末端E’的结束位置,第一正极片1903的第二卷绕末端E’的结束位置超出第二正极片1904的第二卷绕末端E’的结束位置。例如,超出半圈,超出的部分沿径向朝内压至与内层极片接触,以提高卷绕结构的稳定性。
上述描述的卷绕结构能够同时减小第一正极片1903和第二正极片1904在第一卷绕始端S、第一卷绕末端E形成的台阶,并减小第一负极片1901和第二负极片1902在第二卷绕始端S’、第二卷绕末端E’形成的台阶,从而减小在发生膨胀时与壳体20接触后在卷绕始端和卷绕末端受到的局部应力,可防止极片发生断裂或活性物质脱落,提高长期工作的可靠性。
而且,此种可实现卷绕结构在不同径向上的层数相同,对于圆柱形卷绕结构,能够使发生膨胀与壳体20接触时沿周向各处受到的应力较为一致。
如图20所示,为本申请另一实施例的一种圆柱形的电极组件垂直于卷绕轴线K的横截面的结构示意图,电极组件200包括第一负极片2001、第二负极片2002、第一正极片2003、第二正极片2004和多片隔膜2005,其中,第一负极片2001、第一正极片2003、第二负极片2002和第二正极片2004依次交替叠加,且第一负极片2001与第一正极片2003之间通过一片隔膜2005隔开,第一正极片2003和第二负极片2002之间通过另一片隔膜2005隔开,第二负极片2002和第二正极片2004之间通过另一片隔膜2005隔开,所有第一负极片2001、第二负极片2002、第一正极片2003、第二正极片2004和多片隔膜2005叠加后绕卷绕轴线K卷绕成扁平体形状的卷绕结构。
本实施例中,第一负极片2001的负极活性物质区沿卷轴轴线K的两端均超出其相邻的第一正极片2003的正极活性物质涂覆区沿卷绕轴线K的对应端,第二负极片2002的负极活性物质区沿卷轴轴线K的两端均分别超出其相邻的第一正极片2003和第二正极片2004的正极活性物质涂覆区沿卷绕轴线K的对应端。而且,第一负极片2001和第二负极片2002的负极活性物质区沿卷轴轴线K的两端与其相邻的正极片的正极活性物质区的对应端的具体情况,例如超出的尺寸,可以参考前述图6-11的实施例描述的负极片2的负极活性物质区沿卷轴轴线K的两端均其相邻的正极片1的正极活性物质区对应端的内容,在此不再赘述。
本实施例的所述的结构与图18实施例描述的所述的结构基本类似,其不同之处如下所述。本实施例的卷绕结构中,卷绕结构中最内圈为第一负极片2001和第二负极片2002共同围绕的圈,卷绕结构的最外圈为第第一负极片2001和第二负极片2002 共同围绕的圈。
沿卷绕方向,第二负极片2002位于最外层且第二卷绕末端E’的结束位置超出第一负极片2001的第二卷绕末端E’的结束位置,第二正极片2004的第二卷绕末端E’的结束位置超出第一正极片2003的第二卷绕末端E’的结束位置。例如,超出半圈。
上述描述的卷绕结构能够同时减小第一正极片2003和第二正极片2004在第一卷绕始端S、第一卷绕末端E形成的台阶,并减小第一负极片2001和第二负极片2002在第二卷绕始端S’、第二卷绕末端E’形成的台阶,从而减小在发生膨胀时与壳体20接触后在卷绕始端和卷绕末端受到的局部应力,可防止极片发生断裂或活性物质脱落,提高长期工作的可靠性。
而且,此种可实现卷绕结构在不同径向上的层数相同,对于圆柱形卷绕结构,能够使发生膨胀与壳体20接触时沿周向各处受到的应力较为一致。
另外,此种结构能够避免在最外层和倒数第二层极片在其它极片的卷绕末端处产生弯折,使各层极片之间可靠接触,且不容易在极片上产生局部应力,从而防止极片发生断裂或活性物质脱落。
其次,本申请还提供了一种电极组件的制造方法,在一些实施例中,如图21所示的流程示意图。
步骤101、提供至少一片正极片1和至少一片负极片2,所有正极片1和所有负极片2的数量之和大于等于3;
步骤102、将至少一片正极片1和至少一片负极片2绕卷绕轴线K卷绕形成卷绕结构;
其中,在卷绕结构中,至少一片正极片1的正极片1和至少一片负极片2中的负极片2沿垂直于卷绕轴线K的方向叠加设置;至少一片正极片1中的每个正极片1包括正极主体部11,正极主体部11的叠加面的至少部分区域为正极活性物质区111,至少一片负极片2中的每个负极片2包括负极主体部21,负极主体部21的叠加面的至少部分区域为负极活性物质区211,负极活性物质区211沿卷绕轴线K的两端均超出相邻的正极活性物质区111的对应端。
其中,步骤102在步骤101之后执行。在步骤101中,具体地,多片正极片1、多片隔膜3和多片负极片2在极片的厚度方向上叠加设置,多片正极片1和多片负极片2以一片一片的形式交替设置,且隔膜3位于相邻的正极片1和负极片2之间。
该实施例中,通过设置多片正极片1和多片负极片2,可使电极组件10的卷绕圈数减少,能够减小卷绕过程中的卷绕误差,易于控制负极活性物质区211超出正极活性物质区111的尺寸,由此可减小负极活性物质区211预留的尺寸,为增加正极活性物质区111的面积和负极活性物质区211的面积留出空间,从而提高电极组件10的能量密度。
最后,本申请还提供了一种电极组件的制造装置500,在一些实施例中,如图22所示,包括:极片放置机构501和卷绕机构502。
极片放置机构501,被配置为提供至少一片正极片1和至少一片负极片2,所有正极片1和所有负极片2的数量之和大于等于3;
卷绕机构502,被配置为将至少一片正极片1和至少一片负极片2绕卷绕轴线K卷绕形成卷绕结构。
其中,在卷绕结构中,多片正极片1的正极片1和多片负极片2中的负极片2沿垂直于卷绕轴线K的方向交替设置,每个正极片1包括正极主体部11,正极主体部11沿卷绕轴线K的至少部分区域为正极活性物质区111,每个负极片2包括负极主体部21,负极主体部21沿卷绕轴线K的至少部分区域为负极活性物质区211,且负极活性物质区211沿卷绕轴线K的两端均超出相邻的正极活性物质区111的对应端。卷绕机构502可为叠放后的极片提供稳定的卷绕张力。
通过该制造装置500生产的电极组件10,能够减小卷绕过程中的卷绕误差,易于控制负极活性物质区211超出正极活性物质区111的尺寸,由此可减小负极活性物质区211预留的尺寸,为增加正极活性物质区111的面积和负极活性物质区211的面积留出空间,从而提高电极组件10的能量密度。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种电极组件,包括:至少一片正极片和至少一片负极片,所有正极片和所有负极片的数量之和大于等于3,所述至少一片正极片和所述至少一片负极片绕卷绕轴线卷绕形成卷绕结构,其中,在所述卷绕结构中,所述至少一片正极片的正极片和所述至少一片负极片中的负极片沿垂直于所述卷绕轴线的方向叠加设置;
    其中,所述至少一片正极片中的每个正极片包括正极主体部,所述正极主体部的叠加面的至少部分区域为正极活性物质区,所述至少一片负极片中的每个负极片包括负极主体部,所述负极主体部的叠加面的至少部分区域为负极活性物质区,所述负极活性物质区沿所述卷绕轴线的两端均超出相邻的所述正极活性物质区的对应端。
  2. 根据权利要求1所述的电极组件,其中,所述负极活性物质区沿所述卷绕轴线的两端均超出相邻的所述正极活性物质区的对应端的尺寸范围为0.2毫米~5毫米。
  3. 根据权利要求1或2所述的电极组件,其中,所述正极片还包括从所述正极主体部沿所述卷绕轴线方向向外延伸的至少一个正极极耳部,所述负极片还包括从所述负极主体部沿所述卷绕轴线方向向外延伸的至少一个负极极耳部。
  4. 根据权利要求3所述的电极组件,其中,所述正极主体部的部分区域为第一绝缘层涂覆区,所述第一绝缘层涂覆区位于所述正极活性物质区邻近所述正极极耳部的一侧,所述负极主体部沿所述卷绕轴线方向靠近所述负极极耳部的第一端位于所述第一绝缘层涂覆区。
  5. 根据权利要求3或4所述的电极组件,其中,所述负极活性物质区覆盖所述负极主体部的沿所述卷绕轴线的整个叠加面,所述负极主体部沿所述卷绕轴线方向远离所述负极极耳部的第二端超出所述正极活性物质区。
  6. 根据权利要求1~5任一所述的电极组件,其中,当所述至少一个正极片的数量大于等于2时,至少两片正极片的第一卷绕末端位置不同;和/或,当所述至少一个负极片的数量大于等于2时,至少两片负极片的第二卷绕末端位置不同。
  7. 根据权利要求1~6任一所述的电极组件,其中,当所述至少一个正极片的数量大于等于2时,至少两片正极片的第一卷绕始端(S)位置不同;和/或,当所述至少一个负极片的数量大于等于2时,至少两片负极片的第二卷绕始端位置不同。
  8. 根据权利要求1~7任一所述的电极组件,其中,所述卷绕结构呈扁平状,包括平直区和位于所述平直区两侧的转弯区;
    其中,所有正极片中至少一片正极片的第一卷绕末端位于所述转弯区;和/或,所有负极片中至少一片负极片的第二卷绕末端位于所述转弯区。
  9. 根据权利要求1~8任一所述的电极组件,其中,在所述卷绕结构的不同径向上,极片的层数相差不超过预设层数。
  10. 根据权利要求9所述的电极组件,其中,所述预设层数小于或者等于所有正极片和所有负极片的数量之和。
  11. 根据权利要求1~10任一所述的电极组件,其中,所述卷绕结构的最外层和最内层均为所述负极片。
  12. 一种电池,包括:
    壳体;和
    权利要求1~11任一所述的电极组件,所述电极组件设在所述壳体内。
  13. 一种电池模块,包括:多个权利要求12所述的电池。
  14. 一种电池组,包括:多个权利要求13所述的电池模块。
  15. 一种使用电池的装置,包括:权利要求12所述的电池,其中所述电池用于提供电能。
  16. 一种电极组件的制造方法,包括:
    提供至少一片正极片和至少一片负极片,所有正极片和所有负极片的数量之和大于等于3;
    将所述至少一片正极片和所述至少一片负极片绕卷绕轴线卷绕形成卷绕结构;
    其中,在所述卷绕结构中,所述至少一片正极片的正极片和所述至少一片负极片中的负极片沿垂直于所述卷绕轴线的方向叠加设置;所述至少一片正极片中的每个正极片包括正极主体部,所述正极主体部的叠加面的至少部分区域为正极活性物质区,所述至少一片负极片中的每个负极片包括负极主体部,所述负极主体部的叠加面的至少部分区域为负极活性物质区,所述负极活性物质区沿所述卷绕轴线的两端均超出相邻的所述正极活性物质区的对应端。
  17. 一种电极组件的制造装置,包括:
    极片放置机构,被配置为提供至少一片正极片和至少一片负极片,所有正极片和所有负极片的数量之和大于等于3;和
    卷绕机构,被配置为将所述至少一片正极片和所述至少一片负极片绕卷绕轴线卷绕形成卷绕结构;
    其中,在所述卷绕结构中,所述多片正极片的正极片和所述多片负极片中的负极片沿垂直于所述卷绕轴线的方向交替设置,每个正极片包括正极主体部,所述正极主体部沿卷绕轴线的至少部分区域为正极活性物质区,每个负极片包括负极主体部,所述负极主体部沿所述卷绕轴线的至少部分区域为负极活性物质区,且所述负极活性物质区沿所述卷绕轴线的两端均超出相邻的所述正极活性物质区的对应端。
PCT/CN2020/094037 2020-06-02 2020-06-02 电极组件及其相关电池、装置、制造方法和制造装置 WO2021243581A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021561782A JP2023533089A (ja) 2020-06-02 2020-06-02 電極アセンブリ、ならびにその関連する電池、デバイス、製造方法、および製造装置
KR1020217033380A KR20220116385A (ko) 2020-06-02 2020-06-02 전극 조립체 및 관련 배터리, 장치, 제조 방법 및 제조 장치
EP20810849.8A EP3940853B1 (en) 2020-06-02 2020-06-02 Electrode assembly and related battery, device, manufacturing method and manufacturing device thereof
PCT/CN2020/094037 WO2021243581A1 (zh) 2020-06-02 2020-06-02 电极组件及其相关电池、装置、制造方法和制造装置
CN202080069573.3A CN114467211A (zh) 2020-06-02 2020-06-02 电极组件及其相关电池、装置、制造方法和制造装置
US17/135,741 US11978844B2 (en) 2020-06-02 2020-12-28 Electrode assembly and related battery, battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094037 WO2021243581A1 (zh) 2020-06-02 2020-06-02 电极组件及其相关电池、装置、制造方法和制造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/135,741 Continuation US11978844B2 (en) 2020-06-02 2020-12-28 Electrode assembly and related battery, battery module

Publications (1)

Publication Number Publication Date
WO2021243581A1 true WO2021243581A1 (zh) 2021-12-09

Family

ID=78705525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094037 WO2021243581A1 (zh) 2020-06-02 2020-06-02 电极组件及其相关电池、装置、制造方法和制造装置

Country Status (6)

Country Link
US (1) US11978844B2 (zh)
EP (1) EP3940853B1 (zh)
JP (1) JP2023533089A (zh)
KR (1) KR20220116385A (zh)
CN (1) CN114467211A (zh)
WO (1) WO2021243581A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218602515U (zh) * 2022-08-23 2023-03-10 珠海冠宇电池股份有限公司 一种卷芯和电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2922148Y (zh) * 2006-06-08 2007-07-11 潍坊光华电池有限公司 动力锂离子电池
CN201408811Y (zh) * 2009-05-27 2010-02-17 佛山市实达科技有限公司 一种大功率锂离子电池的改良结构
CN102084533A (zh) * 2008-07-02 2011-06-01 丰田自动车株式会社 电池
JP2011233408A (ja) * 2010-04-28 2011-11-17 Sanyo Electric Co Ltd 非水電解質二次電池
CN202308207U (zh) * 2011-10-27 2012-07-04 深圳市比克电池有限公司 多极片卷绕型电芯及方形、软包装锂电池
CN107210494A (zh) * 2015-01-30 2017-09-26 Nec 能源元器件株式会社 二次电池
CN108886128A (zh) * 2016-04-08 2018-11-23 锂能源和电力有限责任两合公司 能量储存装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201207413Y (zh) 2008-02-15 2009-03-11 宁波维科电池有限公司 一种叠片卷绕式锂离子电池电芯
JP5283544B2 (ja) * 2009-03-10 2013-09-04 三洋電機株式会社 非水電解質二次電池
CN103415955A (zh) * 2012-03-14 2013-11-27 株式会社日立制作所 非水电解液电池
CN104810561B (zh) 2014-03-20 2018-06-19 万向一二三股份公司 一种锂离子动力电池电芯的制备方法
KR102279222B1 (ko) * 2014-11-04 2021-07-19 삼성에스디아이 주식회사 이차 전지
CN108281662B (zh) 2017-01-12 2020-05-05 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池及应用
CN109755462B (zh) 2017-11-08 2021-01-12 宁德时代新能源科技股份有限公司 一种正极极片、电化学装置及安全涂层
CN108428849B (zh) 2017-11-22 2024-01-16 宁德时代新能源科技股份有限公司 电极构件、电极组件和充电电池
CN209401755U (zh) 2018-12-29 2019-09-17 宁德时代新能源科技股份有限公司 电极组件、二次电池及电池模组
CN111326699B (zh) 2019-08-14 2021-11-09 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2922148Y (zh) * 2006-06-08 2007-07-11 潍坊光华电池有限公司 动力锂离子电池
CN102084533A (zh) * 2008-07-02 2011-06-01 丰田自动车株式会社 电池
CN201408811Y (zh) * 2009-05-27 2010-02-17 佛山市实达科技有限公司 一种大功率锂离子电池的改良结构
JP2011233408A (ja) * 2010-04-28 2011-11-17 Sanyo Electric Co Ltd 非水電解質二次電池
CN202308207U (zh) * 2011-10-27 2012-07-04 深圳市比克电池有限公司 多极片卷绕型电芯及方形、软包装锂电池
CN107210494A (zh) * 2015-01-30 2017-09-26 Nec 能源元器件株式会社 二次电池
CN108886128A (zh) * 2016-04-08 2018-11-23 锂能源和电力有限责任两合公司 能量储存装置

Also Published As

Publication number Publication date
KR20220116385A (ko) 2022-08-23
EP3940853B1 (en) 2024-05-08
EP3940853A4 (en) 2022-01-19
US11978844B2 (en) 2024-05-07
CN114467211A (zh) 2022-05-10
JP2023533089A (ja) 2023-08-02
EP3940853A1 (en) 2022-01-19
US20210376372A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
CN212161994U (zh) 电极组件及其制造装置、电池、电池模块、电池组、使用电池的装置
CN212161993U (zh) 电极组件、电池、电池模块、电池组、使用电池的装置和电极组件的制造装置
WO2022105010A1 (zh) 电池单体、电池及用电装置
US20210376428A1 (en) Electrode assembly and related battery, battery module
US20230170592A1 (en) Electrode assembly, battery cell, battery, and electric apparatus
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2022156478A1 (zh) 电池单体、电池以及用电装置
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
US20230238540A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
US20240088449A1 (en) Winding type electrode assembly, battery cell, battery and power consumption device
WO2022198682A1 (zh) 电极组件、电池单体、电池及电极组件的制造方法和设备
WO2022165689A1 (zh) 电极组件及其制造方法和制造系统、电池单体以及电池
WO2021243581A1 (zh) 电极组件及其相关电池、装置、制造方法和制造装置
WO2023004829A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法和设备
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
WO2024087327A1 (zh) 壳体组件、电池单体、电池和用电设备
WO2022165725A1 (zh) 电极组件、电池单体、电池及制造电极组件的方法和设备
WO2023236219A1 (zh) 电池单体、电池及用电设备
WO2024007258A1 (zh) 极片组件、电极组件、电池单体、电池和用电设备
WO2023240553A1 (zh) 电池单体、电池及用电设备
CN220382158U (zh) 电极组件、电池单体、电池及用电设备
WO2024060093A1 (zh) 电池单体、电池及用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
WO2023092300A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020810849

Country of ref document: EP

Effective date: 20201130

ENP Entry into the national phase

Ref document number: 2021561782

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE