WO2021241645A1 - 通気性プラグ、基板支持アセンブリおよびシャワープレート - Google Patents
通気性プラグ、基板支持アセンブリおよびシャワープレート Download PDFInfo
- Publication number
- WO2021241645A1 WO2021241645A1 PCT/JP2021/020040 JP2021020040W WO2021241645A1 WO 2021241645 A1 WO2021241645 A1 WO 2021241645A1 JP 2021020040 W JP2021020040 W JP 2021020040W WO 2021241645 A1 WO2021241645 A1 WO 2021241645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- breathable plug
- outer peripheral
- peripheral surface
- honeycomb structure
- plug according
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 31
- 239000000919 ceramic Substances 0.000 claims abstract description 47
- 238000001179 sorption measurement Methods 0.000 claims abstract description 19
- 230000002093 peripheral effect Effects 0.000 claims description 95
- 239000002245 particle Substances 0.000 claims description 47
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 30
- 239000011777 magnesium Substances 0.000 claims description 18
- 229910052749 magnesium Inorganic materials 0.000 claims description 18
- -1 magnesium aluminate Chemical class 0.000 claims description 17
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 14
- 230000005484 gravity Effects 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 9
- 238000007654 immersion Methods 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 239000012528 membrane Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 16
- 239000002002 slurry Substances 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 8
- 239000002270 dispersing agent Substances 0.000 description 8
- 239000000395 magnesium oxide Substances 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000001993 wax Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000010891 electric arc Methods 0.000 description 7
- 239000004014 plasticizer Substances 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 238000007667 floating Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000002904 solvent Substances 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 101100441092 Danio rerio crlf3 gene Proteins 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PSNPEOOEWZZFPJ-UHFFFAOYSA-N alumane;yttrium Chemical compound [AlH3].[Y] PSNPEOOEWZZFPJ-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/117—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
Definitions
- the present disclosure relates to a breathable plug and a substrate support assembly comprising the breathable plug.
- Patent Document 1 a substrate such as a semiconductor wafer mounted on a substrate support assembly and a gas for plasma generation are introduced. Then, a high-frequency voltage is applied between the shower plate (gas distribution plate) for supplying to the substrate to create a plasma state, and a film is formed on the surface of the substrate or a thin film formed on the surface of the substrate is etched. Etching is being done.
- This substrate support assembly includes a flow path in the thickness direction thereof, and by supplying a cooling gas to this flow path, the temperature rise of the member W to be processed is suppressed.
- Patent Document 2 proposes an electrostatic chuck (board support assembly) in which a ceramic plug made of a porous honeycomb is attached to the flow path.
- the breathable plug of the present disclosure comprises a honeycomb structure of dense ceramics having a plurality of axial through holes.
- the substrate support assembly of the present disclosure includes a base material made of plate-shaped ceramics having a suction surface on which a member to be processed is sucked and a facing surface located opposite to the suction surface, and an inside located in the base material. It comprises an electrostatic adsorption member having an electrode and a flow path located along the thickness direction of the base material, and the above-mentioned breathable plug mounted inside the flow path.
- the shower plate of the present disclosure includes a second base material made of plate-shaped ceramics having a plurality of second flow paths through which plasma generation gas passes in the thickness direction, and the above-mentioned shower plate mounted inside the second flow path. It is equipped with a breathable plug.
- FIG. 3 is an enlarged cross-sectional view of a substrate support assembly arranged inside the plasma processing apparatus shown in FIG. 1. It is sectional drawing which shows an example of the cross section perpendicular to the axial direction of the breathable plug of this disclosure.
- FIG. 5 is a cross-sectional view showing another example of a cross section perpendicular to the axial direction of the breathable plug of the present disclosure.
- FIG. 3 is a cross-sectional view showing still another example of a cross section perpendicular to the axial direction of the breathable plug of the present disclosure.
- (A) is a partially broken perspective view showing a through hole formed in the breathable plug of the present disclosure
- (B) is an enlarged explanatory view of a region X shown in (A).
- FIG. 1 is a cross-sectional view showing a part of a plasma processing apparatus provided with the breathable plug of the present disclosure.
- FIG. 2 is an enlarged cross-sectional view of the substrate support assembly disposed inside the plasma processing apparatus shown in FIG.
- the plasma processing apparatus 20 shown in FIG. 1 is, for example, a plasma etching apparatus, comprising a chamber 1 in which a member W to be processed such as a semiconductor wafer is arranged, and a shower plate 2 on the upper side in the chamber 1 and a lower side on the upper side in the chamber 1.
- the substrate support assembly 3 is arranged so as to face each other.
- the shower plate 2 is a second base material made of plate-shaped ceramics, and supplies the diffusion portion 2a, which is an internal space for diffusing the plasma generation gas G, and the plasma generation gas G into the chamber 1. It is provided with a gas supply unit 2b having a plurality of second flow paths 2c for the purpose.
- the plasma generation gas G discharged from the gas supply unit 2b through the second flow path 2c in a shower shape becomes plasma by supplying high frequency power (RF) from the high frequency power source 15 to the substrate support assembly 3. , Form the plasma space P.
- RF high frequency power
- fluorogas such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 , HF, Cl 2 , HCl, BCl 3 , CCl 4, etc.
- Chlorine-based gas can be mentioned.
- the substrate support assembly 3 is an electrostatic chuck including a mounting portion 4, an insulating portion 5, a support portion 6, a heat conductive portion 7, and an electrostatic adsorption portion 8, and the electrostatic adsorption portion 8 is shown in FIG. 2, for example, in FIG. As shown, it is bonded to the heat conductive portion 7 via a bonding layer 9 made of a silicone adhesive.
- the electrostatic adsorption unit 8 includes a substrate 8b made of plate-shaped ceramics that adsorbs a member W to be processed such as a silicon wafer to the adsorption surface 8a by an electrostatic adsorption force, and a clamp electrode (internal electrode) located in the substrate 8b. ) 8c and a flow path 8d located along the thickness direction of the base material 8b.
- the clamp electrode (internal electrode) 8c is electrically coupled to a high-frequency power source via a matching circuit for maintaining the plasma generated from the plasma generation gas G in the chamber 1.
- the coating film formed on the surface of the member W to be treated is etched by the ions and radicals contained in the plasma.
- the O-ring 11 is attached around the joint layer 9 and is for protecting the joint layer 9.
- the insulating portion 5 is made of, for example, plastic, and is electrically insulated from the mounting portion 4.
- the flow path 8d is for supplying cooling helium gas into the chamber 1 through the substrate support assembly 3 in the vertical direction.
- the breathable plugs 13 and 14 are attached to the flow path 8d. That is, the breathable plug 13 is installed in the flow path 8d in the electrostatic adsorption portion 8, and the breathable plug 14 is installed in the flow path 8d in the insulating portion 5.
- FIG. 3 is a cross-sectional view showing an example of a cross section perpendicular to the axial direction of the breathable plug of the present disclosure.
- 4 and 5 are cross-sectional views showing another example of a cross section perpendicular to the axial direction of the breathable plug of the present disclosure.
- the breathable plug 13 is a honeycomb structure 16 made of dense ceramics having a plurality of through holes 16a and 16b in the axial direction, and is a straight cylinder.
- the breathable plug 14 is a cylindrical body having a shaft portion made of a honeycomb structure 16 and a flange portion (not shown) having a flange portion larger than the diameter of the shaft portion at one end of the shaft portion.
- the flange portion is also made of dense ceramics.
- the breathable plugs 13 and 14 in the present disclosure are installed in a flow path for flowing a fluid such as gas and block the flow path. Then, the fluid can flow through the through hole provided in a part of the breathable plug.
- the flow path in which the breathable plug is installed is, for example, a narrow flow path having an inner diameter of 1 mm to 10 mm, and the maximum internal dimension of the through hole provided in the breathable plug is, for example, a thin flow path of about 5 ⁇ m to 20 ⁇ m. Is.
- the honeycomb structure in the present disclosure means a structure in which a plurality of (for example, 10 or more) through holes 16a and 16b are arranged along the axial direction.
- the arrangement of the plurality of through holes is not particularly limited, and if they are arranged in a honeycomb shape, for example, the through holes can be arranged densely while maintaining high strength of the breathable plug.
- the cross section perpendicular to the axial direction of the through hole is not particularly limited, and is, for example, a circular shape, a triangular shape, a quadrangular shape, or a hexagonal shape.
- the through hole 16a in FIGS. 3 and 4 has a circular cross section perpendicular to the axial direction of the honeycomb structure 16, and the through hole 16b in FIG.
- the through hole 16a has a hexagonal cross section perpendicular to the axial direction of the honeycomb structure 16. This is an example.
- the diameter of the through hole 16a is 5 ⁇ m to 20 ⁇ m
- the diagonal length of the through hole 16b is 5 ⁇ m to 20 ⁇ m.
- the breathable plugs 13 and 14 can suppress the generation of secondary plasma in the flow path 8d.
- the breathable plugs 13 and 14 are made of a honeycomb structure 16 made of dense ceramics, shedding is unlikely to occur, and even if particles floating in the chamber 1 enter the through holes 16a and 16b, the particles are on the inner peripheral surface 16f. It is difficult to adsorb and the mechanical strength is high.
- Dense ceramics include, for example, aluminum oxide (Al 2 O 3 ), yttrium aluminum composite oxide (at least one of YAG, YAM and YAP), aluminum nitride (AlN), silicon oxide (SiO 2 ), silicon carbide (SiC). ), Aluminum nitride (Si 3 N 4 ), yttrium oxide (Y 2 O 3 ) or yttrium zirconate as the main components.
- the composition formula of yttrium zirconate is, for example, YZrOx (3 ⁇ x 3.5), YZr 2 O 7 , Y 2 ZrO 5 , Y 2 Zr 2 O 3 , Zr 0.92 Y 0.08 O 1. It is expressed as 96 mag.
- the dense ceramics refer to ceramics having a relative density of 96% or more, and particularly preferably 97% or more and 99.8% or less. This relative density is a percentage of the apparent density of the honeycomb structure 16 with respect to the theoretical density of the ceramics.
- a part of the breathable plugs 13 and 14 is crushed, and the obtained powder is dissolved in a solution such as hydrochloric acid, and then an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (for example). , Shimadzu Corporation (ICPS-8100)) to determine the content of metal components.
- ICP Inductively Coupled Plasma
- Shimadzu Corporation ICPS-8100
- Each component constituting the honeycomb structure 16 is identified by an X-ray diffractometer using CuK ⁇ rays. If the identified component is Al 2 O 3 , it is converted into Al 2 O 3 using the value of the Al content determined by an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer. Identified ingredients, if MgO and Na 2 O, in the same way, may be converted respectively MgO, the Na 2 O.
- the apparent density of the honeycomb structure 16 may be obtained in accordance with JIS R 1634-1998.
- the main component constituting the ceramic is aluminum oxide and the components other than the main component are magnesium oxide, and the contents are a mass% and b mass%, respectively, the aluminum oxide and magnesium oxide are respectively.
- the theoretical density (TD) of the ceramic is calculated using the formula (1). Is 3.96 g / cm 3 , and the relative density is obtained by dividing the apparent density of the ceramics obtained in accordance with JIS R 1634-1998 by this theoretical density (TD) 3.96 g / cm 3. You can ask.
- the honeycomb structure 16 shown in FIGS. 4 and 5 has an outer peripheral side region 16c including the outer peripheral surface 16e along the axial direction, and an inner peripheral side region 16d excluding the outer peripheral side region 16c.
- the outer peripheral side region 16c including the outer peripheral surface 16e of the honeycomb structure 16 may have a smaller open porosity than the inner peripheral side region 16d excluding the outer peripheral side region 16c.
- the length of the contour forming the open pores increases, and the length of the outer peripheral surface 16e from one end face to the other end face is substantially longer than that of the inner peripheral surface 16f. , The effect of suppressing arc discharge is enhanced.
- the outer peripheral side region 16c including the outer peripheral surface 16e of the honeycomb structure 16 may have a larger open porosity than the inner peripheral side region 16d excluding the outer peripheral side region 16c.
- the outer peripheral side region 16c is, for example, within 4.5% of the diameter in the radial direction from the outer peripheral surface 16e with respect to the diameter of the honeycomb structure 16 in the cross section perpendicular to the axial direction. Refers to the area of.
- the open porosity of each of the outer peripheral side region 16c and the inner peripheral side region 16d may be obtained in accordance with JIS R 1634-1998. In either case, the difference in open porosity is preferably 0.8% or more.
- the main component in the present disclosure refers to the most abundant component out of a total of 100% by mass of the components constituting the dense ceramics.
- the root mean square slope (R ⁇ q) in the roughness curve of the inner peripheral surface 16f forming the through holes 16a and 16b is larger than the root mean square slope (R ⁇ q) in the roughness curve of the outer peripheral surface 16e of the honeycomb structure 16. It may be small.
- the root mean square slope (R ⁇ q) in the roughness curve is the root mean square root of the local slope dZ / dx at the reference length l of the roughness curve, which is measured according to JIS B 0601: 2001. It is defined by the following formula.
- the particles floating in the chamber 1 have an inner circumference. It becomes more difficult to be adsorbed on the surface 16f.
- the unevenness of the outer peripheral surface 16e becomes steep, when the honeycomb structure 16 is fixed to the electrostatic adsorption portion 8, the insulating portion 5, etc. with an adhesive, the adhesive is applied from the outer peripheral surface 16e along the inclination of the uneven shape. Since it penetrates deeply toward the inside, the honeycomb structure 16 can obtain high adhesive strength and can maintain high reliability for a long period of time.
- the root mean square slope (R ⁇ q) in the roughness curve of the outer peripheral surface 16e of the honeycomb structure 16 is larger than the root mean square slope (R ⁇ q) in the roughness curve of the inner peripheral surfaces 16f forming the through holes 16a and 16b. It may be small.
- the inner peripheral surface 16f from one end face to the other end face has an increased local inclination or a sharp inclination, and its length is substantially longer than that of the outer peripheral surface 16e. As the length becomes longer, the effect of suppressing the arc discharge becomes even higher.
- the honeycomb structure 16 is attached to the electrostatic suction portion 8, the insulating portion 5, or the like, even if the honeycomb structure 16 comes into contact with the inner peripheral surfaces of these members, the honeycomb structure 16 is removed from the honeycomb structure 16. The number of particles to be separated is reduced, and the number of particles floating in the space in the chamber 1 is also reduced. Further, the stress concentration generated on the outer peripheral surface 16e is also relaxed.
- the root mean square slope (R ⁇ q) is based on JIS B 0601: 2001 and can be measured using a shape analysis laser microscope (manufactured by KEYENCE CORPORATION, VK-X1100 or its successor model).
- the illumination method is the coaxial epi-illumination method
- the magnification is 240 times
- the cutoff value ⁇ s is not used
- the cutoff value ⁇ c is 0.08 mm
- the cutoff value ⁇ f is not used
- the termination effect is corrected.
- a measurement range per location from the outer peripheral surface 16e and the inner peripheral surface 16f to be measured is set to, for example, 1420 ⁇ m ⁇ 1070 ⁇ m, and a line to be measured along the longitudinal direction of the measurement range for each measurement range. You can measure the line roughness by subtracting.
- the length to be measured is, for example, 1320 ⁇ m.
- FIG. 6 (A) is a partially cutaway perspective view showing a through hole formed in the breathable plug of the present disclosure
- FIG. 6 (B) is an enlarged explanatory view of a region X shown in FIG. 6 (A).
- 6 (A) and 6 (B) show a state in which the honeycomb structure is polished in parallel with the axis C from the outer peripheral surface toward the axis C of the through hole.
- the number of ridges 18 may be 2 or less, preferably 1 or less, per 1 mm of the length of the ridge line 18.
- the recess 19 is, for example, a depressed shape.
- the reason why the honeycomb structure 16 is polished from the outer peripheral surface 16e toward the axis C is to facilitate the measurement of the depth d of the recess 19.
- the direction of the depth d is a direction in the observation target surface 17 from the ridge line 18 toward the outer peripheral surface 16e.
- the arithmetic mean roughness (Ra) of the observation target surface 17 is, for example, 0.01 ⁇ m or more and 0.1 ⁇ m or less, and the arithmetic mean roughness (Ra) can be obtained in accordance with JIS B 0601: 2013. good. Further, in order to obtain the observation target surface 17, WA (white random) having an average particle size (D50) of 1 ⁇ m may be used as the polishing material, and a polisher having a pitch may be used as the polishing machine.
- WA white random
- D50 average particle size
- the honeycomb structure 16 having an outer diameter of 3 mm or more, the honeycomb structure 16 is ground from the outer peripheral surface 16e toward the axis C with a polishing allowance of 0.1 mm or more and 0.2 mm or less, and then polished. May be good.
- the depth of the recess is deep.
- the ruler d may be measured, and the number of recesses 19 having a depth d of 10 ⁇ m or more and 20 ⁇ m or less may be counted.
- the depth of the recess 19 is set to 10 ⁇ m or more because the depth of 10 ⁇ m is the minimum value, that is, the threshold value, in which the particles that are shed and suspended have a significant adverse effect on the plasma space P. ..
- the recess 19 is hardly present on the inner peripheral surface 16f, the occurrence of shedding (chipping) starting from the inner peripheral surface 16f is suppressed. Therefore, even if a fluid such as a gas passes through the through holes 16a and 16b, it is possible to reduce that the desorbed particles become new particles and float in the plasma space P.
- the recess 19 is, in other words, a recess that is open on the inner peripheral surface 16f.
- the straightness of the ridge line 18 on the observation target surface 17 may be, for example, 20 ⁇ m or less.
- Straightness means the magnitude of the deviation from the geometrically correct straight line of the ridgeline 18.
- the straightness is the straightness of the ridge line 18 using a free software called "sandwiching ruler" for an image (for example, 1.2 mm in the horizontal direction and 1.4 mm in the vertical direction) of the observation target surface 17 taken with an optical microscope. The degree can be measured.
- the axial directions of the through holes 16a and 16b are aligned with the vertical direction of the image so that at least one of the left and right ridges 18 sandwiching the inner peripheral surface 16f is included in the image, and the length of the geometrically correct straight line is set to 1. It may be 1.4 mm.
- the straightness of the ridge line 18 is 20 ⁇ m or less, the large depressed recess 19 is in a state where there is almost no large depressed recess 19 on the inner peripheral surface 16f, so that even if the gas flow is turbulent, new particles are plasma. The risk of floating in space P is reduced.
- the dense ceramics contain aluminum oxide as a main component and sodium, and the content thereof may be 20 mass ppm or less. Since sodium is an element that increases the dielectric loss, when the sodium content is 20 mass ppm or less, the dielectric loss can be reduced and high electromagnetic wave transparency can be obtained.
- the through holes 16a and 16b may penetrate from one end face to the other end face while bending. Since the substantially longer flow path in the axial direction of the through holes 16a and 16b is longer than when the through holes 16a and 16b have high straightness, it is easy to suppress the generation of arc discharge.
- the cylindricity of the through holes 16a and 16b may be, for example, 0.05 mm or more and 0.2 mm or less.
- the distance through which the current flows can be lengthened, so that the electrons are less likely to be accelerated and the occurrence of arc discharge can be further less likely to occur.
- the cylindricity of the through holes 16a and 16b is 0.2 mm or less, it is possible to suppress an increase in the ventilation resistance of the cooling gas, maintain the cooling efficiency, and even if it is repeatedly exposed to the elevating temperature. Since distortion is unlikely to occur, it can be used for a long period of time.
- Dense ceramics contain aluminum oxide as the main component and magnesium aluminate, and from the average value of the distance between the centers of gravity of the crystal particles of magnesium aluminate adjacent to the outer peripheral side region 16c than the inner peripheral side region 16d, the aluminate The value obtained by subtracting the average value of the equivalent circle diameters of the magnesium crystal particles may be large.
- magnesium aluminate has a higher linear expansion rate than aluminum oxide. Therefore, in the outer peripheral side region 16c, the crystal particles of magnesium aluminate have a larger outer circumference than the crystal particles of aluminum oxide during the temperature lowering process in sintering. Since the honeycomb structure 16 moves so as to swell on the surface, even if the honeycomb structure 16 is placed on the bedding powder and heat-treated to reduce the warp or to remove the strain after sintering, the honeycomb structure 16 It is possible to suppress the welding of the bedding powder to the outer peripheral surface which is the mounting surface.
- the spacing between the crystal particles of magnesium aluminate is small, that is, the dispersion is advanced, and even if a tensile load is applied at a high temperature, crack-like cavities are less likely to occur. High temperature ductility is improved.
- the distance between the crystal particles of magnesium aluminate can be determined by the following method. Observe the cut surfaces of the inner peripheral side region 16d and the outer peripheral side region 16c of the dense ceramics at a magnification of 100 times, and select an average range, for example, the area is 1.044 mm 2 (horizontal length). Is 1.18 mm and the length in the vertical direction is 0.885 mm), and an image is taken with a scanning electron microscope to obtain a backscattered electron image.
- the image analysis software "A image-kun (ver2.52)” (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd., and later referred to as the image analysis software "A image-kun", Asahi Kasei Image analysis software manufactured by Engineering Co., Ltd.) may be used to determine the distance between the centers of gravity of magnesium aluminate crystal particles by a method called the distance between the centers of dispersion measurement.
- the threshold value indicating the brightness of the image may be 180, the brightness may be bright, the small figure removal area may be 10 ⁇ m 2 , and the noise removal filter may be omitted.
- the threshold value was set to 180, but the threshold value may be adjusted according to the brightness of the observed image.
- the threshold value may be adjusted so that the marker appearing in the observation image matches the shape of the crystal particles of magnesium aluminate, with an area of 10 ⁇ m 2 and no noise reduction filter.
- the distance between the centers of gravity of the crystal particles may be obtained after blackening the crystal particles.
- the threshold value may be 85
- the brightness may be dark
- the small figure removal area may be 10 ⁇ m 2
- the noise removal filter may be omitted.
- the equivalent circle diameter of the crystal particles of magnesium aluminate may be obtained by a method called particle analysis using the image analysis software "A image-kun" for the reflected electron image.
- the setting conditions of this method may be the same as the setting conditions used in the distance between the centers of gravity of the dispersion measurement.
- magnesium aluminate is identified using an X-ray diffractometer, and whether the crystal particles observed in the backscattered electron image are magnesium aluminate is determined by using an electron probe microanalyzer (EPMA) to determine whether aluminum and aluminum are used. If magnesium is detected, it can be considered that the crystal particles are composed of magnesium aluminate.
- EPMA electron probe microanalyzer
- the dense ceramics contain silicon carbide as a main component and may contain metallic silicon.
- silicon carbide is 70% by mass or more and 92% by mass or less
- metallic silicon is 8% by mass or more and 30% by mass or less.
- Silicon carbide is superior to metallic silicon in mechanical properties such as Young's modulus (dynamic modulus) and three-point bending strength. Therefore, when the content of silicon carbide is 70% by mass or more, the mechanical properties of the dense ceramics are improved.
- metallic silicon has a higher thermal conductivity than silicon carbide. Therefore, when the content of silicon carbide is 92% by mass or less, the thermal conductivity of the dense ceramics is improved. Therefore, when the content of silicon carbide is 70% by mass or more and 92% by mass or less, both mechanical properties and thermal conductivity can be achieved at the same time.
- Each component contained in the dense ceramics may be identified by an X-ray diffractometer, and each content of silicon carbide and silicon may be determined by the Rietveld method.
- the difference between the average value of the distance between the centers of gravity of the metallic silicon and the average value of the equivalent circle diameter of the metallic silicon is not limited, and may be, for example, 8 ⁇ m or more and 20 ⁇ m or less.
- this difference is 8 ⁇ m or more, the distribution density of silicon carbide becomes high. Therefore, the rigidity of the dense ceramics is improved, and the bias of the rigidity is also reduced.
- this difference is 20 ⁇ m or less, the thermal conductivity of the dense ceramics is improved and the bias of the thermal conductivity is also reduced.
- the distance between the centers of gravity of metallic silicon in dense ceramics may be obtained by the following method.
- a part of the dense ceramic is cut out, and an average range is selected from the mirror surface obtained by polishing the cross section using diamond abrasive grains, and each area is 0.191 mm 2 (horizontal length). Is 351 ⁇ m and the length in the vertical direction is 545 ⁇ m), and an observation image is obtained by photographing with a scanning electron microscope.
- the image analysis software "A image-kun (ver2.52)" registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.
- Image analysis software manufactured by Asahi Kasei Engineering Co., Ltd. is used to determine the distance between the centers of gravity of silicon by a method called the distance between the centers of dispersion measurement.
- a threshold value indicating the brightness of the image is 190 to 195, the brightness is bright, the small figure removal area is 1 ⁇ m 2 , and a noise removal filter is provided.
- the equivalent circle diameter of silicon is obtained by a method called particle analysis for the above observation image.
- the setting conditions of this method are the same as the setting conditions used in the distance between the centers of gravity. Further, at least the outer peripheral surface of the honeycomb structure 16 may be provided with a first conductive portion made of a conductive layer or film.
- the radio frequency (RF) power applied to the electrostatic adsorption unit 8 is high.
- this high frequency power becomes high, abnormal discharge such as arc discharge may occur inside or near the flow path 8d. That is, when high frequency (RF) power is applied to the substrate support assembly 3, a potential difference occurs between the member W to be processed and the back surface of the electrostatic adsorption portion 8 due to the capacitance of the electrostatic adsorption portion 8. appear. Due to the generation of this potential difference, a potential difference of RF potential is generated inside the flow path 8d, and when this potential difference exceeds the limit value at which discharge occurs, abnormal discharge occurs.
- At least one end face of the honeycomb structure 16 may be provided with a second conductive portion made of a conductive layer or film.
- a second conductive portion made of a conductive layer or film.
- the inner peripheral surface of the honeycomb structure 16 may be provided with a third conductive portion made of a conductive layer or film.
- a third conductive portion made of a conductive layer or film.
- the electrically conductive meaning that the surface resistance value is not more than 10 4 Omega.
- the surface resistance value may be determined by using a two-needle electric resistance meter (PRS-802 manufactured by PROSTAT) and setting the applied voltage to 100V.
- PRS-802 manufactured by PROSTAT
- the first conductive portion, the second conductive portion and the third conductive portion are made of, for example, at least one of graphite, graphene, carbon nanotubes, fullerenes, amorphous carbon and DLC (diamond-like carbon).
- the mass change C per unit area represented by the following formula (2) is 0.3 g / cm 2 or less. good.
- C (W 0- W 1 ) / A ...
- the substrate support assembly 3 of the present disclosure includes a base material 8b made of plate-shaped ceramics having a suction surface 8a on which the member W to be processed is adsorbed, an internal electrode 10 located in the base material 8b, and a base. It comprises an electrostatic adsorption portion 8 having a flow path 8d located along the thickness direction of the material 8b, and the breathable plugs 13 and 14 of the present disclosure mounted inside the flow path 8d.
- the breathable plugs 13 and 14 are less likely to be shed, and even if particles floating in the chamber 1 enter the through holes 16a and 16b, the particles are less likely to be adsorbed on the inner peripheral surface 16f and have higher mechanical strength. Since it is expensive, it can be used for a long period of time.
- the base material 8b and the breathable plugs 13 and 14 are made of ceramics containing aluminum oxide as a main component, and the purity (content) of aluminum oxide is higher in the breathable plugs 13 and 14 than in the base material 8b. You may. When the purity of aluminum oxide is high, the corrosion resistance to plasma is improved and the withstand voltage is high, so that the generation of arc discharge can be suppressed.
- the purity of aluminum oxide in the breathable plugs 13 and 14 is preferably 99.6% by mass or more.
- the calcium content is preferably 0.01% by mass or less. When the calcium content is 0.01% by mass or less, even if the breathable plugs 13 and 14 are washed with citric acid, there is little calcium having low corrosion resistance to citric acid, so that the calcium source becomes particles and the chamber 1 is used. The risk of contaminating the inside is reduced.
- the shower plate 2 may be equipped with the breathable plug 2d of the present disclosure inside the second flow path 2c.
- the breathable plug 2d of the present disclosure inside the second flow path 2c.
- a powder or binder of aluminum oxide having a purity of 99.6% by mass or more and an average particle size (D50) of 1 ⁇ m or more and 3 ⁇ m or less.
- Lubricant and solvent are mixed.
- the aluminum oxide powder may contain magnesium oxide and sodium.
- the content of magnesium oxide in 100% by mass of the aluminum oxide powder is, for example, 0.1% by mass or more and 0.3% by mass or less.
- the sodium content in 100% by mass of the aluminum oxide powder is, for example, 20% by mass or less.
- the average particle size (D50) can be obtained by a laser diffraction type particle size distribution measuring method.
- a breathable plug made of dense ceramics containing silicon carbide as a main component When obtaining a breathable plug made of dense ceramics containing silicon carbide as a main component, first, coarse-grained powder and fine-grained powder are prepared as silicon carbide powder, and a ball mill or a bead mill is used together with ion-exchanged water and a dispersant. Grind and mix for 40 to 60 hours to make a slurry.
- the range of the particle size of each of the fine granular powder and the coarse granular powder after pulverization and mixing is 0.4 ⁇ m or more and 4 ⁇ m or less, and 11 ⁇ m or more and 34 ⁇ m or less.
- a sintering aid composed of carbonized boron powder and amorphous carbon powder or phenol resin, and a binder are added and mixed.
- the mass ratio of the fine granular powder to the coarse granular powder for example, the fine granular powder may be 6% by mass or more and 15% by mass or less, and the coarse granular powder may be 85% by mass or more and 94% by mass or less. good.
- the binder is, for example, methyl cellulose (MC), carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), or the like.
- the total amount of the binder may be 2 parts by mass or more and 8 parts by mass or less in terms of solid content with respect to 100 parts by mass of the powder of aluminum oxide or silicon carbide. When the solid content of the binder is in this range, the fluidity in the extrusion molding and the shape retention of the molded product can be enhanced.
- Lubricant is wax, glycerin, stearic acid, etc.
- the total amount of the lubricant may be 1 part by mass or more and 8 parts by mass or less in terms of solid content with respect to 100 parts by mass of the powder of aluminum oxide or silicon carbide.
- the solvent is, for example, water, and particularly ion-exchanged water may have a small amount of impurities.
- the solvent is, for example, 10 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the aluminum oxide powder so that the viscosity of the clay in the kneading step is 15,000 Pa ⁇ s or more and 22000 Pa ⁇ s or less.
- Aluminum oxide or silicon carbide powder, binder, lubricant and solvent are mixed in the above-mentioned compounding ratio and then kneaded using a universal mixer or three rolls, and the viscosity is, for example, 15,000 Pa ⁇ s or more and 22000 Pa ⁇ s. Obtain the following solvent.
- the viscosity can be measured by a flow characteristic evaluation method using a constant load extrusion rheometer (Shimadzu Flow Tester CFT-500C manufactured by Shimadzu Corporation).
- This clay is molded using an extrusion molding machine equipped with a die for forming through holes in the molded body to obtain a honeycomb-shaped molded body having a plurality of through holes in the axial direction.
- the root mean square slope (R ⁇ q) in the roughness curves of the inner peripheral surface forming the through hole of the honeycomb structure and the outer peripheral surface of the honeycomb structure is affected by the transfer surface of the die, so that the transfer of the die
- the surface may be adjusted as appropriate.
- the molded product is cut so that the length is, for example, 20 mm or more and 80 mm or less, and then dried to remove water in the molded product.
- the drying temperature is, for example, 40 to 70 ° C.
- the main component of the dried molded product is aluminum oxide
- the breathable plug of the present disclosure can be obtained by firing the molded product in an air atmosphere at a holding temperature of 1550 ° C to 1650 ° C for 0.5 hours or more and 5 hours or less. Obtainable.
- degreasing is performed in a nitrogen atmosphere at a temperature of 450 ° C. or higher and 650 ° C. or lower and a holding time of 2 hours or longer and 10 hours or lower to obtain a degreased body.
- the degreased body is fired in a reduced pressure atmosphere of an inert gas such as argon at a holding temperature of 1800 ° C to 2200 ° C for 0.5 hours or more and 5 hours or less to obtain the breathable plug of the present disclosure. be able to.
- the method for manufacturing a breathable plug includes the following steps (a) to (e).
- Step (a) is a step of storing the raw material in a container and stirring the mixture to obtain a slurry.
- the raw materials are powders, waxes, dispersants and plasticizers containing aluminum oxide as a main component.
- the powder containing aluminum oxide as a main component has a cumulative particle size of 95% by volume in the cumulative distribution curve of 6.5 ⁇ m or less.
- a powder for example, dense ceramics having a relative density of 96% or more can be obtained, and the formation of recesses 19 on the inner peripheral surface 16f is reduced.
- the recesses 19 can be further reduced by reducing the average particle size of the powder used.
- the purity of the main component powder is not limited, and for example, a powder having a purity of 99.5% by mass or more may be used.
- the cumulative distribution curve means a curve showing the cumulative distribution of particle size when the horizontal axis is the particle size and the vertical axis is the cumulative percentage of the particle size in a two-dimensional graph.
- the cumulative distribution curve can be obtained by a laser diffraction / scattering method, for example, using a particle size distribution measuring device (MT3300 or a successor model) manufactured by Microtrac Bell.
- the wax is 13 parts by mass or more and 14 parts by mass or less
- the dispersant is 0.4 parts by mass or more and 0.5 parts by mass or less
- the plasticizer is 1.4 parts by mass or more and 1.5 parts by mass. It is used in the following proportions.
- the wax include paraffin wax and beeswax.
- the dispersant include higher fatty acids and higher fatty acid esters.
- the plasticizer include higher fatty acids and phthalates.
- the powder, wax, dispersant and plasticizer are housed in a container heated to, for example, 90 ° C. or higher and 140 ° C. or lower. At this time, the wax, the dispersant and the plasticizer are liquid.
- the container is made of resin, for example.
- step (b) the slurry obtained in step (a) is preheated.
- the fluidity of the slurry is increased, and the effect obtained in the step (c) can be further enhanced.
- Preheating is performed, for example, at a temperature of 120 ° C. or higher and 180 ° C. or lower.
- the slurry preheated in the step (b) is subjected to the defoaming treatment.
- the defoaming treatment By performing the defoaming treatment, the bubbles contained in the slurry are reduced, so that dense ceramics having a higher relative density can be obtained.
- the defoaming treatment is performed, for example, by filling the syringe with the obtained slurry and rotating the syringe for 1 minute using a defoaming jig.
- the slurry defoamed in the step (c) is injected into a molding die to obtain a molded product.
- a molding die whose outer peripheral side is surrounded by a heating means is used.
- the heating means is not limited, and examples thereof include a heater. It is preferable to heat the slurry by a heating means so that the difference from the temperature of the slurry when injected into the molding die is within 50 ° C.
- the shape of the molded body is not limited, and as shown in FIGS. 3 to 5, it may have a columnar shape, or may have another shape such as a prismatic shape.
- the molded product obtained in the step (c) is fired.
- the firing may be carried out, for example, in an atmospheric atmosphere of 1400 ° C. or higher and 1700 ° C. or lower for 1 hour or more and 3 hours or less.
- the breathable plug of the present disclosure provided with a honeycomb structure of dense ceramics having a plurality of through holes in the axial direction can be obtained.
- the inner peripheral surfaces 16f forming the through holes 16a and 16b and the outer peripheral surface 16e of the honeycomb structure are polished toward the axial centers C of the through holes 16a and 16b.
- the number of recesses 19 having a depth d of 10 ⁇ m or more and 20 ⁇ m or less, starting from the ridge line 18 with the observation target surface 17 thus obtained, is 2 or less per 1 mm of the length of the ridge line 18.
- the outer peripheral surface of the dried molded body contains carbon such as graphite, graphene, carbon nanotube, fullerene, and amorphous carbon 2-
- the above-mentioned firing may be performed.
- the end face of the dried molded body is coated with or sprayed with the above 2-propanol (IPA) solution and then described above. It may be fired.
- IPA 2-propanol
- the above-mentioned 2-propanol (IPA) solution is applied or sprayed on the inner peripheral surface of the dried molded product, and then the above-mentioned firing is performed. You just have to do.
- IPA 2-propanol
- the temperature may be set to 200 ° C. or higher and 1000 ° C. or lower, and the heat treatment may be performed for 1 hour or longer.
- the breathable plug of the present disclosure obtained by the above-mentioned manufacturing method is less likely to cause shedding, and even if particles floating in the chamber enter the through holes 16a and 16b, the particles are adsorbed on the inner peripheral surface 16f. Since it is difficult and has high mechanical strength, it can be used for a long period of time.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Composite Materials (AREA)
- Drying Of Semiconductors (AREA)
- Filtering Materials (AREA)
- External Artificial Organs (AREA)
Abstract
本開示の通気性プラグは、軸方向に複数の貫通孔を有する緻密質セラミックスのハニカム構造体を備えてなる。本開示の基板支持アセンブリは、被処理部材が吸着される吸着面と、吸着面の反対に位置する対向面とを有する板状のセラミックスからなる基材と、基材内に位置する内部電極と、基材の厚み方向に沿って位置する流路とを有する静電吸着部材と、流路の内部に装着された、上記の通気性プラグと、を備えてなる。
Description
本開示は、通気性プラグおよびこの通気性プラグを備えてなる基板支持アセンブリに関する。
従来、プラズマエッチング装置、プラズマCVD(Chemical Vapor Deposition)装置等の半導体製造装置では、特許文献1に示すように、基板支持アセンブリ上に載置される半導体ウェハー等の基板とプラズマ生成用ガスを導入して基板に向って供給するためのシャワープレート(ガス分配プレート)との間に高周波電圧を加えてプラズマ状態にして、基板の表面に成膜したり、基板の表面に形成した薄膜をエッチングしたりすることが行われている。この基板支持アセンブリは、その厚み方向に流路を備えており、この流路に冷却用ガスを供給することにより、被処理部材Wの温度上昇を抑制している。
半導体製造装置の処理室内で基板を処理する場合、基板支持アセンブリの上側から下側に向かってアーク放電が発生し、流路が放電の経路となることがある。そこで、流路が放電の経路にならないようにするため、特許文献2では、多孔質のハニカムからなるセラミックプラグを流路に装着した静電チャック(基板支持アセンブリ)が提案されている。
本開示の通気性プラグは、軸方向に複数の貫通孔を有する緻密質セラミックスのハニカム構造体を備える。
本開示の基板支持アセンブリは、被処理部材が吸着される吸着面と、該吸着面の反対に位置する対向面とを有する板状のセラミックスからなる基材と、該基材内に位置する内部電極と、基材の厚み方向に沿って位置する流路とを有する静電吸着部材と、流路の内部に装着された、上記通気性プラグを備えてなる。
本開示のシャワープレートは、プラズマ生成用ガスが通過する複数の第2流路を厚み方向に有する板状のセラミックスからなる第2基材と、前記第2流路の内部に装着された、上記通気性プラグと、を備えてなる。
以下、図面を参照して、本開示の通気性プラグの一例について詳細に説明する。ただし、本明細書の全図において、混同を生じない限り、同一部分には同一符号を付し、その説明を適時省略する。
図1は、本開示の通気性プラグを備えるプラズマ処理装置の一部を示す断面図である。図2は、図1に示すプラズマ処理装置の内部に配置される基板支持アセンブリを拡大した断面図である。
図1に示すプラズマ処理装置20は、例えば、プラズマエッチング装置であり、内部に半導体ウェハー等の被処理部材Wを配置するチャンバー1を備え、チャンバー1内の上側にはシャワープレート2が、下側には基板支持アセンブリ3が対向して配置されている。
シャワープレート2は、板状のセラミックスからなる第2基材であって、プラズマ生成用ガスGを拡散するための内部空間である拡散部2aと、プラズマ生成用ガスGをチャンバー1内に供給するための複数の第2流路2cを有するガス供給部2bとを備えている。
そして、ガス供給部2bから第2流路2cを通過してシャワー状に排出されたプラズマ生成用ガスGは、高周波電源15から高周波電力(RF)を基板支持アセンブリ3に供給することによりプラズマとなり、プラズマ空間Pを形成する。
ここで、プラズマ生成用ガスGの例として、SF6、CF4、CHF3、ClF3、NF3、C4F8、HF等のフッ素系ガス、Cl2、HCl、BCl3、CCl4等の塩素系ガスが挙げられる。
基板支持アセンブリ3は、取り付け部4、絶縁部5、支持部6、熱伝導部7および静電吸着部8を備えてなる静電チャックであり、静電吸着部8は、例えば、図2に示すように、シリコーン接着剤からなる接合層9を介して熱伝導部7に接合されている。
静電吸着部8は、静電吸着力によってシリコンウェハー等の被処理部材Wを吸着面8aに吸着する板状のセラミックスからなる基材8bと、基材8b内に位置するクランプ電極(内部電極)8cと、基材8bの厚み方向に沿って位置する流路8dとを有する。クランプ電極(内部電極)8cは、プラズマ生成用ガスGから生成されたプラズマをチャンバー1内で維持するための整合回路を介して高周波電源に電気的に結合されている。
そして、プラズマに含まれるイオンやラジカルによって、被処理部材Wの表面に形成された被覆膜はエッチング処理されるようになっている。
Oリング11は、接合層9の周囲に取り付けられており、接合層9を保護するためのものである。絶縁部5は、例えば、プラスチックからなり、取り付け部4から電気的に絶縁している。流路8dは、基板支持アセンブリ3の上下方向を貫通して、冷却用のヘリウムガスをチャンバー1内に供給するためものものである。通気性プラグ13、14は流路8dに装着されている。すなわち、通気性プラグ13は静電吸着部8内の流路8dに、また、通気性プラグ14は絶縁部5内の流路8dにそれぞれ設置されている。
図3は、本開示の通気性プラグの軸方向に垂直な断面の一例を示す断面図である。図4、5は、本開示の通気性プラグの軸方向に垂直な断面の他の例を示す断面図である。
図3~5に示すように、通気性プラグ13は、軸方向に複数の貫通孔16a、16bを有する緻密質セラミックスのハニカム構造体16からなり、直胴状の円柱体である。通気性プラグ14は、ハニカム構造体16からなる軸部と、軸部の一端に軸部の直径よりも大きいフランジ部(図示しない)とを備えてなる円柱体である。フランジ部も緻密質セラミックスからなる。
本開示における通気性プラグ13、14とは、ガス等の流体を流すための流路内に設置され、流路を塞ぐものである。そして、通気性プラグの一部に設けられた貫通孔を通して流体を流すことができる。通気性プラグが設置される流路は、例えば、内径が1mm~10mmの細い流路であり、通気性プラグに設けられた貫通孔の最大の内寸法は、例えば、5μm~20μmほどの細いものである。
本開示におけるハニカム構造体とは、軸方向に沿って複数本(例えば10本以上)の貫通孔16a、16bが配置された構造体をいう。複数本の貫通孔の配置は、特に限定されず、例えば蜂の巣状に配置されていると、通気性プラグの強度を高く維持しながら、貫通孔を密に配置することができる。貫通孔の軸方向に垂直な断面は、特に限定されず、例えば、円状、三角形状、四角形状、六角形状である。図3、4における貫通孔16aはハニカム構造体16の軸方向に垂直な断面が円状の例であり、図5における貫通孔16bはハニカム構造体16の軸方向に垂直な断面が六角形状の例である。例えば、貫通孔16aの直径は、5μm~20μmであり、貫通孔16bの対角線の長さは5μm~20μmである。
通気性プラグ13、14は、流路8d内における二次的なプラズマの生成を抑制することができる。通気性プラグ13,14が緻密質セラミックスのハニカム構造体16からなると、脱粒が生じにくいとともに、チャンバー1内で浮遊するパーティクルが貫通孔16a、16bに侵入しても、パーティクルは内周面16fに吸着しにくく、しかも機械的強度が高くなる。
緻密質セラミックスは、例えば、酸化アルミニウム(Al2O3)、イットリウムアルミニウム複合酸化物(YAG、YAMおよびYAPの少なくともいずれか)、窒化アルミニウム(AlN)、酸化珪素(SiO2)、炭化珪素(SiC)、窒化珪素(Si3N4)、酸化イットリウム(Y2O3)またはジルコン酸イットリウムを主成分とする。ジルコン酸イットリウムは、組成式が、例えば、YZrOx(3≦x≦3.5)、YZr2O7、Y2ZrO5、Y2Zr2O3、Zr0.92Y0.08O1.96等として表わされるものである。
緻密質セラミックスは、相対密度が96%以上のセラミックスをいい、特に、97%以上99.8%以下であるとよい。この相対密度は、セラミックスの理論密度に対するハニカム構造体16の見掛密度の百分率である。
なお、セラミックスの理論密度については、通気性プラグ13、14の一部をそれぞれ粉砕し、得られた粉体を塩酸などの溶液に溶解した後、ICP(Inductively Coupled Plasma)発光分光分析装置(例えば、(株)島津製作所製(ICPS-8100))によって金属成分の含有量を求める。
ハニカム構造体16を構成する各成分はCuKα線を用いたX線回折装置によって同定する。同定された成分が、Al2O3であれば、ICP(Inductively Coupled Plasma)発光分光分析装置により求めたAlの含有量の値を用いてAl2O3に換算する。同定された成分が、MgOおよびNa2Oであれば、同じ方法で、それぞれMgO、Na2Oに換算すればよい。ハニカム構造体16の見掛密度は、JIS R 1634-1998に準拠して求めればよい。
そして、セラミックスを構成する主成分が酸化アルミニウムであり、主成分以外の成分が酸化マグネシウムである場合、含有量がそれぞれa質量%,b質量%であるとすると、酸化アルミニウムおよび酸化マグネシウムのそれぞれの理論密度の値(酸化アルミニウム=3.99g/cm3、酸化マグネシウム=3.58g/cm3)を用いて、以下の式(1)によりセラミックスの理論密度(T.D)を求めることができる。
T.D=1/(0.01×(a/3.99+b/3.58))・・・(1)
例えば、セラミックスを構成する成分の含有量が、酸化アルミニウムが99質量%であり、酸化マグネシウムが1質量%であるときには、式(1)を用いて計算すると、セラミックスの理論密度(T.D)は、3.96g/cm3となり、JIS R 1634-1998に準拠して求めたセラミックスの見掛密度を、この理論密度(T.D)3.96g/cm3で除すことにより相対密度を求めることができる。
T.D=1/(0.01×(a/3.99+b/3.58))・・・(1)
例えば、セラミックスを構成する成分の含有量が、酸化アルミニウムが99質量%であり、酸化マグネシウムが1質量%であるときには、式(1)を用いて計算すると、セラミックスの理論密度(T.D)は、3.96g/cm3となり、JIS R 1634-1998に準拠して求めたセラミックスの見掛密度を、この理論密度(T.D)3.96g/cm3で除すことにより相対密度を求めることができる。
図4、5に示すハニカム構造体16は、軸方向に沿って外周面16eを含む外周側領域16cと、外周側領域16cを除く内周側領域16dとを有する。
ハニカム構造体16の外周面16eを含む外周側領域16cは、外周側領域16cを除く内周側領域16dよりも開気孔率が小さくてもよい。このような構成であると、開気孔を形成する輪郭の長さが増え、一方の端面から他方の端面までの外周面16eの長さは実質的に内周面16fのそれよりも長くなるので、アーク放電を抑制する効果が高くなる。
逆に、ハニカム構造体16の外周面16eを含む外周側領域16cは、外周側領域16cを除く内周側領域16dよりも開気孔率が大きくてもよい。このような構成であると、基板支持アセンブリ3の流路8d内に接着剤で通気性プラグ13、14を固定した場合、高いアンカー効果が得られるので、長期間に亘って信頼性が向上する。
外周側領域16cとは、通気性プラグ14の場合、軸方向に垂直な断面におけるハニカム構造体16の直径に対して、外周面16eから径方向に向かって、例えば、直径の4.5%以内の領域をいう。
外周側領域16cおよび内周側領域16dのそれぞれの開気孔率は、JIS R 1634-1998に準拠して求めればよい。いずれの場合も開気孔率の差は0.8%以上であるとよい。
本開示における主成分とは、緻密質セラミックスを構成する成分の合計100質量%のうち、最も多い成分を言う。
貫通孔16a、16bを形成する内周面16fの粗さ曲線における2乗平均平方根傾斜(RΔq)は、ハニカム構造体16の外周面16eの粗さ曲線における2乗平均平方根傾斜(RΔq)よりも小さくてもよい。
粗さ曲線における2乗平均平方根傾斜(RΔq)とは、JIS B 0601:2001に準拠して測定される、粗さ曲線の基準長さlにおける局部傾斜dZ/dxの2乗平均平方根であり、以下の式によって規定されるものである。
2乗平均平方根傾斜(RΔq)の数値が大きいと、表面の凹凸は険しくなり、2乗平均平方根傾斜(RΔq)の数値が小さいと、表面の凹凸はなだらかになる。
内周面16fの粗さ曲線における2乗平均平方根傾斜(RΔq)が外周面16eの粗さ曲線における2乗平均平方根傾斜(RΔq)よりも小さいと、チャンバー1内で浮遊するパーティクルは、内周面16fに、さらに吸着しにくくなる。一方、外周面16eの凹凸は険しくなるため、ハニカム構造体16を接着剤で静電吸着部8、絶縁部5等に固定する場合、凹凸形状の傾きにそって、接着剤が外周面16eから内部に向かって深く浸入するので、ハニカム構造体16は高い接着強度が得られ、長期間に亘って高い信頼性を維持することができる。
ハニカム構造体16の外周面16eの粗さ曲線における2乗平均平方根傾斜(RΔq)は、貫通孔16a、16bを形成する内周面16fの粗さ曲線における2乗平均平方根傾斜(RΔq)よりも小さくてもよい。
このような構成であると、一方の端面から他方の端面までの内周面16fは、局部的な傾斜が増えたり、急激に傾斜したりし、その長さが実質的に外周面16eよりも長くなるので、アーク放電を抑制する効果がさらに高くなる。ハニカム構造体16を静電吸着部8、絶縁部5等に装着する場合、ハニカム構造体16がこれらの部材の内周面に損傷を与えるような接触が生じても、ハニカム構造体16から脱離する粒子が少なくなり、チャンバー1内の空間を浮遊するパーティクルも少なくなる。また、外周面16eに生じる応力集中も緩和される。
2乗平均平方根傾斜(RΔq)は、JIS B 0601:2001に準拠し、形状解析レーザ顕微鏡((株)キーエンス製、VK-X1100またはその後継機種)を用いて測定することができる。測定条件としては、まず、照明方式を同軸落射方式、倍率を240倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、カットオフ値λfを無し、終端効果の補正を有り、測定対象とする外周面16eおよび内周面16fから1か所当たりの測定範囲を、例えば、1420μm×1070μmに設定して、各測定範囲毎に、測定範囲の長手方向に沿って測定対象とする線を引いて、線粗さ計測を行えばよい。計測の対象とする長さは、例えば、1320μmである。
図6(A)は本開示の通気性プラグに形成された貫通孔を示す部分破断斜視図であり、図6(B)は図6(A)に示す領域Xの拡大説明図である。図6(A)および(B)は、ハニカム構造体の外周面から貫通孔の軸心Cに向かって、軸心Cと平行に研磨した状態を示している。
内周面16fと、外周面16eから貫通孔16a、16bの軸心に向かって研磨して得られる観察対象面17との稜線18を起点とする、深さdが10μm以上20μm以下の凹部19の個数が、稜線18の長さ1mm当たり2個以下、好ましくは1個以下であってもよい。凹部19は、例えば、陥没状である。ハニカム構造体16の外周面16eから軸心Cに向かって研磨するのは、凹部19の深さdの測定を容易にするためである。深さdの方向は、観察対象面17内において、稜線18を起点として外周面16eに向かう方向である。
ここで、観察対象面17の算術平均粗さ(Ra)は、例えば、0.01μm以上0.1μm以下であり、算術平均粗さ(Ra)は、JIS B 0601:2013に準拠して求めればよい。また、観察対象面17を得るために、研磨材は平均粒径(D50)が1μmのWA(ホワイトアランダム)を、研磨盤はピッチからなるポリッシャをそれぞれ用いればよい。
なお、外径が3mm以上あるハニカム構造体16の場合、ハニカム構造体16の外周面16eから軸心Cに向かって研磨代を0.1mm以上0.2mm以下残して研削した後、研磨してもよい。
そして、走査型電子顕微鏡で観察対象面17を撮影した画像(例えば、横方向2.3mm、縦方向1.7mm)を対象に、例えば、「挟むものさし」というフリーソフトを用いて、凹部の深さdを測定し、深さdが10μm以上20μm以下の凹部19の個数を数えればよい。
ここで、凹部19の深さを10μm以上としたのは、深さ10μmが、脱粒して浮遊するパーティクルがプラズマ空間Pに顕著な悪影響を与える最小の値、すなわちしきい値であるためである。
このように、内周面16fに凹部19が殆ど存在しないので、内周面16fを起点とする脱粒(チッピング)の発生が抑制された状態になっている。そのため、ガス等の流体が貫通孔16a、16b内を通過しても、脱離した粒子が新たなパーティクルとなってプラズマ空間Pを浮遊するのを低減することができる。
ここで、凹部19とは、言い換えると、内周面16fに開口している窪みをいう。
観察対象面17において稜線18の真直度は、例えば20μm以下であってもよい。真直度とは、稜線18の幾何学的に正しい直線からの狂いの大きさを意味する。真直度は、光学顕微鏡で観察対象面17を撮影した画像(例えば、横方向1.2mm、縦方向1.4mm)を対象に、例えば、「挟むものさし」というフリーソフトを用いて稜線18の真直度を測定することができる。貫通孔16a、16bの軸方向を画像の縦方向に合わせ、内周面16fを挟んだ左右の稜線18の少なくともいずれかが画像に含まれるようにし、幾何学的に正しい直線の長さは、1.4mmとすればよい。
稜線18の真直度が20μm以下であれば、大きな陥没状の凹部19が内周面16fにほとんど存在しない状態になっているので、ガスの流れが乱流であっても、新たなパーティクルがプラズマ空間Pを浮遊するおそれが低減する。
緻密質セラミックスは、酸化アルミニウムを主成分とし、ナトリウムを含み、その含有量が20質量ppm以下であってもよい。ナトリウムは、誘電損失を高くする元素であるため、ナトリウムの含有量が20質量ppm以下であると、誘電損失を低減することができ、高い電磁波透過性を得ることができる。
貫通孔16a、16bは一方の端面から他方の端面まで屈曲しながら貫通していてもよい。貫通孔16a、16bの真直性が高い場合よりも貫通孔16a、16bの軸方向における実質的な流路が長くなるため、アーク放電の発生を抑制しやすくなる。
貫通孔16a、16bの円筒度は、例えば、0.05mm以上0.2mm以下であってもよい。貫通孔16a、16bの円筒度が0.05mm以上であると、電流が流れる距離を長くすることができるので、電子が加速されにくくなり、アーク放電の発生をさらに起こりにくくすることができる。貫通孔16a、16bの円筒度が0.2mm以下であると、冷却用ガスの通気抵抗の上昇を抑制することができ、冷却効率を維持することができるとともに、昇降温に繰り返し晒されてもひずみが生じにくいので、長期間に亘って用いることができる。
緻密質セラミックスは、酸化アルミニウムを主成分とし、アルミン酸マグネシウムを含み、内周側領域16dよりも外周側領域16cの方が隣り合うアルミン酸マグネシウムの結晶粒子の重心間距離の平均値からアルミン酸マグネシウムの結晶粒子の円相当径の平均値を引いた値が大きくてもよい。
このような構成であると、アルミン酸マグネシウムは酸化アルミニウムよりも線膨張率が大きいので、外周側領域16cでは、焼結における降温過程でアルミン酸マグネシウムの結晶粒子は酸化アルミニウムの結晶粒子よりも外周面上で盛り上がるように移動するため、焼結後、ハニカム構造体16を敷粉に載置して反りを低減したり、ひずみを除去したりするために熱処理しても、ハニカム構造体16の被載置面となる外周面への敷粉の溶着を抑制することができる。
一方、内周側領域16dでは、アルミン酸マグネシウムの結晶粒子の間隔が小さい、即ち分散が進んだ状態になり、高温で引張荷重が与えられても、クラック状のキャビティが発生しにくくなるので、高温延性が改善される。
アルミン酸マグネシウムの結晶粒子同士の間隔は、以下の方法で求めることができる。緻密質セラミックスの内周側領域16dおよび外周側領域16cの切断面をそれぞれ100倍の倍率で観察し、平均的な範囲を選択して、例えば、面積が1.044mm2(横方向の長さが1.18mm、縦方向の長さが0.885mm)となる範囲を走査型電子顕微鏡で撮影し、反射電子像を得る。
この反射電子像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製、なお、以降に画像解析ソフト「A像くん」と記した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示すものとする。)を用いて分散度計測の重心間距離法という手法でアルミン酸マグネシウムの結晶粒子の重心間距離を求めればよい。
この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を180、明度を明、小図形除去面積を10μm2、雑音除去フィルタを無とすればよい。なお、上述の測定に際し、しきい値は180としたが、観察像の明るさに応じて、しきい値を調整すればよく、明度を明、2値化の方法を手動とし、小図形除去面積を10μm2および雑音除去フィルタを無とした上で、観察像に現れるマーカーがアルミン酸マグネシウムの結晶粒子の形状と一致するように、しきい値を調整すればよい。
なお、アルミン酸マグネシウムの結晶粒子が他の部分に対するコントラストが識別しにくい場合は、結晶粒子を黒色化した後、結晶粒子の重心間距離を求めればよい。この場合、例えば、しきい値を85、明度を暗、小図形除去面積を10μm2、雑音除去フィルタを無とすればよい。
アルミン酸マグネシウムの結晶粒子の円相当径は、上記反射電子像を対象とし、画像解析ソフト「A像くん」を用いて、粒子解析という手法で求めればよい。この手法の設定条件も分散度計測の重心間距離法で用いた設定条件と同じにすればよい。
ここで、アルミン酸マグネシウムは、X線回折装置を用いて同定し、上記反射電子像で観察される結晶粒子がアルミン酸マグネシウムであるかについては、電子線マイクロアナライザー(EPMA)を用い、アルミニウムおよびマグネシウムが検出されれば、結晶粒子がアルミン酸マグネシウムからなるとみなせばよい。
緻密質セラミックスは、炭化珪素を主成分とし、金属珪素を含んでいてよい。この場合、例えば、炭化珪素は、70質量%以上92質量%以下であり、金属珪素は、8質量%以上30質量%以下である。炭化珪素は金属珪素よりもヤング率(動的弾性率)および3点曲げ強度といった機械的特性に優れている。そのため、炭化珪素の含有量が70質量%以上の場合、緻密質セラミックスの機械的特性が向上する。一方、金属珪素は炭化珪素よりも熱伝導率が高い。そのため、炭化珪素の含有量が92質量%以下の場合、緻密質セラミックス熱伝導性が向上する。したがって、炭化珪素の含有量が70質量%以上92質量%以下であれば、機械的特性と熱伝導性とを両立させることができる。
緻密質セラミックスに含まれる各成分は、X線回折装置で同定し、炭化珪素および珪素の各含有量は、リートベルト法で求めればよい。
金属珪素の重心間距離の平均値と金属珪素の円相当径の平均値との差は限定されず、例えば、8μm以上20μm以下であってもよい。この差が8μm以上であると、炭化珪素の分布密度が高くなる。そのため、緻密質セラミックスの剛性が向上し、剛性の偏りも低減される。一方、この差が20μm以下であると、緻密質セラミックスの熱伝導性が向上し、熱伝導性の偏りも低減される。
緻密質セラミックスにおける金属珪素の重心間距離は、以下の方法で求めればよい。
まず、緻密質セラミックスの一部を切り出して、ダイヤモンド砥粒を用い、断面を研磨して得られる鏡面から、平均的な範囲を選択して、各面積が0.191mm2(横方向の長さが351μm、縦方向の長さが545μm)となる範囲を走査型電子顕微鏡で撮影して、観察像を得る。
この観察像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製、なお、以降の説明において画像解析ソフト「A像くん」と記した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示すものとする。)を用いて分散度計測の重心間距離法という手法で珪素の重心間距離を求める。
この手法の設定条件としては、画像の明暗を示す指標であるしきい値を190~195、明度を明、小図形除去面積を1μm2、雑音除去フィルタを有とする。
珪素の円相当径は、上記観察像を対象として、粒子解析という手法で求める。
この手法の設定条件は、重心間距離法で用いた設定条件と同じである。 また、ハニカム構造体16の少なくとも外周面は、導電性を有する層または膜からなる第1導電部を備えていてもよい。
昨今、静電吸着部8に印加される高周波(RF)電力は高くなっている。この高周波電力が高くなると、流路8dの内部や近傍でアーク放電等の異常放電が発生する場合がある。即ち、基板支持アセンブリ3に高周波(RF)電力が印加されると、静電吸着部8の静電容量に起因して、被処理部材Wと静電吸着部8の裏面との間で電位差が発生する。この電位差の発生によって、流路8dの内部にRF電位の電位差が生じ、この電位差が放電が発生する限界値を超えると、異常放電が発生する。
外周面が第1導電部を備えていると、外周面に沿って静電気の除去が容易になるので、流路8d内での異常放電を抑制しやすくなる。
ハニカム構造体16の少なくともいずれか一方の端面は、導電性を有する層または膜からなる第2導電部を備えていてもよい。端面が第2導電部を備えていると、第2導電部を備えた端面に沿って静電気の除去が容易になるので、流路8d内での異常放電をさらに抑制することができる。
ハニカム構造体16の内周面は、導電性を有する層または膜からなる第3導電部を備えていてもよい。内周面が第3導電部を備えていると、内周面に沿って静電気の除去が容易になるので、流路8d内での異常放電をさらに抑制することができる。
ここで、導電性を有するとは、表面抵抗値が104Ω以下であることを意味する。表面抵抗値は、二針電気抵抗計(PROSTAT社製、PRS-802)を用い、印加電圧を100Vとして求めればよい。
第1導電部、第2導電部および第3導電部は、例えば、グラファイト、グラフェン、カーボンナノチューブ、フラーレン、アモルファスカーボンおよびDLC(ダイヤモンドライクカーボン)の少なくともいずれかからなる。
第1導電部、第2導電部および第3導電部は、例えば、グラファイト、グラフェン、カーボンナノチューブ、フラーレン、アモルファスカーボンおよびDLC(ダイヤモンドライクカーボン)の少なくともいずれかからなる。
また、濃度が35質量%である塩酸に浸漬し、浸漬開始から72時間経過した後、以下の式(2)で示される単位面積当たりの質量変化Cが0.3g/cm2以下であるとよい。
C=(W0-W1)/A・・・(2)
(W0:浸漬前の試験片の質量(g)、W1:浸漬開始から72時間経過後の試験片の質量(g)、A :試験片の浸漬前の表面積(cm2))
単位面積当たりの質量変化Cが0.3g/cm2以下であると、第1導電部、第2導電部および第3導電部をそれぞれ構成する粒子が剥がれにくいので、長期間に亘って塩酸に浸漬することができ、汚れの除去効果が高くなる。
C=(W0-W1)/A・・・(2)
(W0:浸漬前の試験片の質量(g)、W1:浸漬開始から72時間経過後の試験片の質量(g)、A :試験片の浸漬前の表面積(cm2))
単位面積当たりの質量変化Cが0.3g/cm2以下であると、第1導電部、第2導電部および第3導電部をそれぞれ構成する粒子が剥がれにくいので、長期間に亘って塩酸に浸漬することができ、汚れの除去効果が高くなる。
本開示の基板支持アセンブリ3は、上述した通り、被処理部材Wが吸着される吸着面8aを有する板状のセラミックスからなる基材8bと、基材8b内に位置する内部電極10と、基材8bの厚み方向に沿って位置する流路8dとを有する静電吸着部8と、流路8dの内部に装着された、本開示の通気性プラグ13、14と、を備えてなる。
通気性プラグ13、14は、脱粒が生じにくい上に、チャンバー1内で浮遊するパーティクルが貫通孔16a、16bに侵入しても、パーティクルが内周面16fに吸着しにくく、しかも機械的強度が高いので、長期間に亘って用いることができる。
また、基材8bおよび通気性プラグ13、14は、酸化アルミニウムを主成分とするセラミックスからなり、酸化アルミニウムの純度(含有量)は、基材8bよりも通気性プラグ13、14の方が高くてもよい。酸化アルミニウムの純度が高くなると、プラズマに対する耐食性が向上するとともに、耐電圧性が高くなるので、アーク放電の発生を抑制することができる。
特に、通気性プラグ13、14における酸化アルミニウムの純度は99.6質量%以上であるとよい。また、カルシウムの含有量は0.01質量%以下であるとよい。カルシウムの含有量は0.01質量%以下であると、通気性プラグ13、14をクエン酸で洗浄しても、クエン酸に対する耐食性が低いカルシウムが少ないため、カルシウム源がパーティクルとなってチャンバー1内を汚染するおそれが低減する。
また、図1(b)に示すように、シャワープレート2は、本開示の通気性プラグ2dを第2流路2cの内部に装着されてもよい。このような構成であると、プラズマ空間Pからシャワープレート2に向かって発生するプラズマおよびパーティクルの逆流の抑制や第2流路2c内で生じる異常放電を抑制することができ、異常放電の発生によって生じるおそれのある発火を防ぐことができる。
次に、本開示の通気性プラグの製造方法の一例について説明する。
酸化アルミニウムが主成分である緻密質セラミックスからなる通気性プラグを得る場合、まず、純度が99.6質量%以上であり、平均粒径(D50)が1μm以上3μm以下の酸化アルミニウムの粉末、バインダ、潤滑剤および溶媒を混合する。
酸化アルミニウムの粉末は、酸化マグネシウムやナトリウムを含んでいてもよい。酸化アルミニウムの粉末100質量%における酸化マグネシウムの含有量は、例えば、0.1質量%以上0.3質量%以下である。酸化アルミニウムの粉末100質量%におけるナトリウムの含有量は、例えば、20質量ppm以下である。ここで、平均粒径(D50)は、レーザ回折式粒度分布測定法により求めることができる。
炭化珪素が主成分である緻密質セラミックスからなる通気性プラグを得る場合、まず、炭化珪素の粉末として、粗粒状粉末および微粒状粉末を準備し、イオン交換水および分散剤とともに、ボールミルまたはビーズミルにより40~60時間粉砕混合してスラリーとする。ここで、粉砕混合した後の微粒状粉末および粗粒状粉末のそれぞれの粒径の範囲は0.4μm以上4μm以下,11μm以上34μm以下である。
次に、得られたスラリーに、炭化硼素の粉末および非晶質状の炭素の粉末またはフェノール樹脂からなる焼結助剤と、バインダとを添加して混合する。
微粒状粉末と粗粒状粉末との質量比率としては、例えば、微粒状粉末が6質量%以上15質量%以下であってもよく、粗粒状粉末が85質量%以上94質量%以下であってもよい。
バインダは、例えば、メチルセルロース(MC)、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロ-ス(HPC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)等である。バインダの総量は、酸化アルミニウムあるいは炭化珪素の粉末100質量部に対して固形分で2質量部以上8質量部以下とすればよい。バインダの固形分がこの範囲であると、押し出し成形における流動性や成形体の保形性を高くすることができる。
潤滑剤は、ワックス、グリセリン、ステアリン酸等である。潤滑剤の総量は、酸化アルミニウムあるいは炭化珪素の粉末100質量部に対して固形分で1質量部以上8質量部以下とすればよい。
また、溶媒は、例えば、水であり、特にイオン交換水が不純物の量が少ないのでよい。溶媒は、混練工程における坏土の粘度が15000Pa・s以上22000Pa・s以下になるように、酸化アルミニウムの粉末100質量部に対して、例えば、10質量部以上20質量部以下とする。
酸化アルミニウムあるいは炭化珪素の粉末、バインダ、潤滑剤および溶媒を上述した配合比率で混合した後、万能混合機や3本ロールなどを用いて混練し、粘度が、例えば、15000Pa・s以上22000Pa・s以下である坏土を得る。粘度の測定は、定荷重押出型レオメータ((株)島津製作所製 島津フローテスタ CFT-500C)を用いた流動特性評価法により求めることができる。
この坏土を、成形体の貫通孔を形成するためのダイが装着された押出成形機を用いて成形し、軸方向に複数の貫通孔を有するハニカム状の成形体を得る。
ここで、ハニカム構造体の貫通孔を形成する内周面およびハニカム構造体の外周面の粗さ曲線における2乗平均平方根傾斜(RΔq)は、ダイの転写面の影響を受けるため、ダイの転写面を適宜調整すればよい。
成形体を、例えば、長さが20mm以上80mm以下となるように切断した後、乾燥して成形体内の水分を除去する。乾燥温度は、例えば、40~70℃である。乾燥した成形体の主成分が酸化アルミニウムの場合、成形体を大気雰囲気中、保持温度を1550℃~1650℃で0.5時間以上5時間以下で焼成することにより、本開示の通気性プラグを得ることができる。
乾燥した成形体の主成分が炭化珪素の場合、窒素雰囲気中、温度を450℃以上650℃以下、保持時間を2時間以上10時間以下として脱脂し、脱脂体を得る。次に、この脱脂体を、アルゴン等の不活性ガスの減圧雰囲気中、保持温度を1800℃~2200℃で0.5時間以上5時間以下で焼成することにより、本開示の通気性プラグを得ることができる。
本開示の通気性プラグの製造方法の他の例について説明する。
通気性プラグの製造方法は、下記の工程(a)~(e)を含む。
通気性プラグの製造方法は、下記の工程(a)~(e)を含む。
工程(a):累積分布曲線における累積95体積%の粒径が6.5μm以下の酸化アルミニウムを主成分とする粉末、ワックス、分散剤および可塑剤を容器に収容し、撹拌してスラリーを得る工程。
工程(b):スラリーを予備加熱する工程。
工程(c):予備加熱したスラリーを脱泡処理する工程。
工程(d):スラリーを、外周側が加熱手段によって囲繞された成形型に注入して成形体を得る工程。
工程(e):成形体を焼成する工程。
工程(a)は、原料を容器に収容し、撹拌してスラリーを得る工程である。原料は、酸化アルミニウムを主成分とする粉末、ワックス、分散剤および可塑剤である。
酸化アルミニウムを主成分とする粉末は、累積分布曲線における累積95体積%の粒径が6.5μm以下である。このような粉末を使用することによって、例えば、相対密度が96%以上である緻密質セラミックスが得られ、内周面16fに凹部19が形成されるのが低減される。特に使用する粉末の平均粒径を小さくすることで凹部19をより低減することができる。主成分の粉末の純度は限定されず、例えば、99.5質量%以上の純度を有する粉末を使用してもよい。
累積分布曲線とは、2次元のグラフで横軸を粒径、縦軸を粒径の累積百分率とした場合における粒径の累積分布を示す曲線を意味する。累積分布曲線は、レーザー回折散乱法により、例えば、マイクロトラック・ベル社製の粒子径分布測定装置(MT3300またはその後継機種)を用いて求めることができる。
上記粉末100質量部に対して、ワックスが13質量部以上14質量部以下、分散剤が0.4質量部以上0.5質量部以下、可塑剤が1.4質量部以上1.5質量部以下の割合で使用される。ワックスとしては、例えば、パラフィンワックス、蜜蝋などが挙げられる。分散剤としては、例えば、高級脂肪酸、高級脂肪酸エステルなどが挙げられる。可塑剤としては、例えば、高級脂肪酸、フタル酸エステルなどが挙げられる。
上記粉末、ワックス、分散剤および可塑剤を、例えば、90℃以上140℃以下に加熱された容器内に収容する。このとき、ワックス、分散剤および可塑剤は、液体となっている。容器は、例えば樹脂製である。容器を撹拌機にセットし、容器を3分間自公転させること(自公転混練処理)により、上記粉末、ワックス、分散剤および可塑剤が撹拌されて、スラリーが得られる。
工程(b)では、工程(a)で得られたスラリーを予備加熱する。予備加熱を行うことによって、スラリーの流動性が高くなり、工程(c)で得られる効果をより高くすることができる。予備加熱は、例えば、120℃以上180℃以下の温度で行われる。
工程(c)では、工程(b)で予備加熱したスラリーを脱泡処理に供する。脱泡処理を行うことによって、スラリーに含まれる気泡が低減するため、相対密度がより高い緻密質セラミックスを得ることができる。脱泡処理は、例えば、得られたスラリーをシリンジに充填し、脱泡治具を用いて、シリンジを1分間自公転させながら行う。
工程(d)では、工程(c)で脱泡処理したスラリーを成形型に注入して成形体を得る。成形型としては、外周側が加熱手段によって囲繞された成形型を使用する。このように、外周側が加熱手段によって囲繞された成形型を使用することによって、図3~5に示すようなハニカム構造体が得られる。加熱手段は限定されず、例えば、ヒーターなどが挙げられる。加熱手段によって、例えば、成形型に注入されるときのスラリーの温度との差が50℃以内になるように加熱されるのがよい。成形体の形状は限定されず、図3~5に示すように、円柱状を有していてもよく、角柱状など他の形状を有していてもよい。
工程(e)では、工程(c)で得られた成形体を焼成する。焼成は、例えば、大気雰囲気、1400℃以上1700℃以下で、1時間以上3時間以下保持すればよい。このようにして、軸方向に複数の貫通孔を有する緻密質セラミックスのハニカム構造体を備えた本開示の通気性プラグが得られる。このようにして得られた通気性プラグ13、14では、貫通孔16a、16bを形成する内周面16fと、ハニカム構造体の外周面16eから貫通孔16a、16bの軸心Cに向かって研磨して得られる観察対象面17との稜線18を起点とする、深さdが10μm以上20μm以下の凹部19の個数が、稜線18の長さ1mm当たり2個以下である。
ハニカム構造体の少なくとも外周面が、第1導電部を備える通気性プラグを得るには、乾燥させた成形体の外周面にグラファイト、グラフェン、カーボンナノチューブ、フラーレン、アモルファスカーボン等の炭素を含む2-プロパノール(IPA)溶液を塗布あるいは噴霧した後、上述した焼成を行えばよい。
ハニカム構造体の少なくともいずれか一方の端面が第2導電部を備える通気性プラグを得るには、乾燥させた成形体の端面に上記2-プロパノール(IPA)溶液を塗布あるいは噴霧した後、上述した焼成を行えばよい。
ハニカム構造体の内周面が第3導電部を備える通気性プラグを得るには、乾燥させた成形体の内周面に上記2-プロパノール(IPA)溶液を塗布あるいは噴霧した後、上述した焼成を行えばよい。
第1導電部、第2導電部および第3導電部の少なくともいずれかをDLCによって形成する場合、上記焼成によって得られた焼結体にプラズマイオン注入法を用いてDLCからなる膜を形成した後、温度を200℃以上1000℃以下とし、1時間以上、熱処理すればよい。
上述した製造方法によって得られた本開示の通気性プラグは、脱粒が生じにくい上に、チャンバー内で浮遊するパーティクルが貫通孔16a、16bに侵入しても、パーティクルは内周面16fに吸着しにくく、しかも機械的強度が高いので、長期間に亘って用いることができる。
1 チャンバー
2 シャワープレート
2a 拡散部
2b ガス供給部
2c 第2流路
2d 通気性プラグ
3 基板支持アセンブリ支持部
4 取り付け部
5 絶縁部
6 支持部
7 熱伝導部
8 静電吸着部
8a 吸着面
8b 基材
8c クランプ電極(内部電極)
8d 流路
9 接合層
11 Oリング
13 通気性プラグ
14 通気性プラグ
15 高周波電源
16 ハニカム構造体
16a、16b 貫通孔
16c 外周側領域
16d 内周側領域
16e 外周面
16f 内周面
17 観察対象面
18 稜線
19 凹部
20 プラズマ処理装置
2 シャワープレート
2a 拡散部
2b ガス供給部
2c 第2流路
2d 通気性プラグ
3 基板支持アセンブリ支持部
4 取り付け部
5 絶縁部
6 支持部
7 熱伝導部
8 静電吸着部
8a 吸着面
8b 基材
8c クランプ電極(内部電極)
8d 流路
9 接合層
11 Oリング
13 通気性プラグ
14 通気性プラグ
15 高周波電源
16 ハニカム構造体
16a、16b 貫通孔
16c 外周側領域
16d 内周側領域
16e 外周面
16f 内周面
17 観察対象面
18 稜線
19 凹部
20 プラズマ処理装置
Claims (18)
- 軸方向に複数の貫通孔を有する緻密質セラミックスのハニカム構造体を備えた、通気性プラグ。
- 前記ハニカム構造体の外周面を含む外周側領域は、該外周側領域を除く内周側領域よりも開気孔率が小さい、請求項1に記載の通気性プラグ。
- 前記ハニカム構造体の外周面を含む外周側領域は、該外周側領域を除く内周側領域よりも開気孔率が大きい、請求項1に記載の通気性プラグ。
- 前記貫通孔を形成する内周面の粗さ曲線における2乗平均平方根傾斜(RΔq)は、前記ハニカム構造体の外周面の粗さ曲線における2乗平均平方根傾斜(RΔq)よりも小さい、請求項1~3のいずれかに記載の通気性プラグ。
- 前記ハニカム構造体の外周面の粗さ曲線における2乗平均平方根傾斜(RΔq)は、前記貫通孔を形成する内周面の粗さ曲線における2乗平均平方根傾斜(RΔq)よりも小さい、請求項1~3のいずれかに記載の通気性プラグ。
- 前記貫通孔を形成する内周面と、前記ハニカム構造体の外周面から前記貫通孔の軸心に向かって研磨して得られる観察対象面との稜線を起点とする、深さが10μm以上20μm以下の凹部の個数が、稜線の長さ1mm当たり2個以下である、請求項1~5のいずれかに記載の通気性プラグ。
- 前記観察対象面において、前記稜線の真直度は20μm以下である、請求項6に記載の通気性プラグ。
- 前記緻密質セラミックスは、酸化アルミニウムを主成分とし、ナトリウムを含み、その含有量が20質量ppm以下である、請求項1~7のいずれかに記載の通気性プラグ。
- 前記緻密質セラミックスは、酸化アルミニウムを主成分とし、アルミン酸マグネシウムを含み、前記貫通孔を形成する内周面を含む内周側領域よりも前記ハニカム構造体の外周面を含む外周側領域の方が隣り合うアルミン酸マグネシウムの結晶粒子の重心間距離の平均値からアルミン酸マグネシウムの結晶粒子の円相当径の平均値を引いた値が大きい、請求項8に記載の通気性プラグ。
- 前記緻密質セラミックスは、炭化珪素を主成分とし、金属珪素を含む、請求項1~7のいずれかに記載の通気性プラグ。
- 金属珪素の重心間距離の平均値と金属珪素の円相当径の平均値との差が、8μm以上20μm以下である、請求項10に記載の通気性プラグ。
- 前記ハニカム構造体の少なくとも外周面は、導電性を有する層または膜からなる第1導電部を備えている、請求項1~11のいずれかに記載の通気性プラグ。
- 前記ハニカム構造体の少なくともいずれか一方の端面は、導電性を有する層または膜からなる第2導電部を備えている、請求項1~12のいずれかに記載の通気性プラグ。
- 前記ハニカム構造体の内周面は、導電性を有する層または膜からなる第3導電部を備えている、請求項12または13に記載の通気性プラグ。
- 濃度が35質量%である塩酸に浸漬し、浸漬開始から72時間経過後の、以下の式(2)で示される単位面積当たりの質量変化Cが0.3g/cm2以下である、請求項8~14のいずれかに記載の通気性プラグ。
C=(W0-W1)/A・・・(2)
(W0:浸漬前の試験片の質量、W1:浸漬開始から72時間経過後の試験片の質量、A :試験片の浸漬前の表面積(cm2)) - 被処理部材が吸着される吸着面と、該吸着面の反対に位置する対向面とを有する板状のセラミックスからなる基材と、該基材内に位置する内部電極と、前記基材の厚み方向に沿って位置する流路とを有する静電吸着部材と、前記流路の内部に装着された、請求項1~15のいずれかに記載の通気性プラグと、を備えてなる、基板支持アセンブリ。
- 前記基材および前記通気性プラグは、酸化アルミニウムを主成分とするセラミックスからなり、酸化アルミニウムの純度は、前記基材よりも前記通気性プラグの方が高い、請求項16に記載の基板支持アセンブリ。
- プラズマ生成用ガスが通過する複数の第2流路を厚み方向に有する板状のセラミックスからなる第2基材と、前記第2流路の内部に装着された、請求項1~15のいずれかに記載の通気性プラグと、を備えてなる、シャワープレート。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022526618A JP7515583B2 (ja) | 2020-05-28 | 2021-05-26 | 通気性プラグ、基板支持アセンブリおよびシャワープレート |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020093452 | 2020-05-28 | ||
JP2020-093452 | 2020-05-28 | ||
JP2020-143680 | 2020-08-27 | ||
JP2020143680 | 2020-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021241645A1 true WO2021241645A1 (ja) | 2021-12-02 |
Family
ID=78744621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020040 WO2021241645A1 (ja) | 2020-05-28 | 2021-05-26 | 通気性プラグ、基板支持アセンブリおよびシャワープレート |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7515583B2 (ja) |
TW (1) | TWI789770B (ja) |
WO (1) | WO2021241645A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023153021A1 (ja) * | 2022-02-09 | 2023-08-17 | 日本碍子株式会社 | 半導体製造装置用部材 |
WO2023190449A1 (ja) * | 2022-03-30 | 2023-10-05 | 京セラ株式会社 | 通気性プラグおよび載置台 |
WO2024150747A1 (ja) * | 2023-01-13 | 2024-07-18 | 東京エレクトロン株式会社 | プラズマ処理装置及び基板支持部 |
WO2024157518A1 (ja) * | 2023-01-26 | 2024-08-02 | 日本碍子株式会社 | ウエハ載置台 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013179062A (ja) * | 2006-06-13 | 2013-09-09 | Hokuriku Seikei Kogyo Kk | シャワープレートの製造方法、シャワープレート及びプラズマ処理装置 |
JP2015174037A (ja) * | 2014-03-14 | 2015-10-05 | 日本碍子株式会社 | 目封止ハニカム構造体 |
JP2020057786A (ja) * | 2018-09-28 | 2020-04-09 | 日本碍子株式会社 | 半導体製造装置用部材 |
JP2020072261A (ja) * | 2018-10-30 | 2020-05-07 | Toto株式会社 | 静電チャック |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3093897B2 (ja) * | 1992-11-13 | 2000-10-03 | 東芝セラミックス株式会社 | 高純度アルミナセラミックス及びその製造方法 |
US5996528A (en) * | 1996-07-02 | 1999-12-07 | Novellus Systems, Inc. | Method and apparatus for flowing gases into a manifold at high potential |
JP5324029B2 (ja) | 2006-03-20 | 2013-10-23 | 東京エレクトロン株式会社 | 半導体加工装置用セラミック被覆部材 |
JP5633766B2 (ja) * | 2013-03-29 | 2014-12-03 | Toto株式会社 | 静電チャック |
US9976211B2 (en) * | 2014-04-25 | 2018-05-22 | Applied Materials, Inc. | Plasma erosion resistant thin film coating for high temperature application |
US10975469B2 (en) * | 2017-03-17 | 2021-04-13 | Applied Materials, Inc. | Plasma resistant coating of porous body by atomic layer deposition |
JP6504532B1 (ja) | 2018-03-14 | 2019-04-24 | Toto株式会社 | 静電チャック |
US12006264B2 (en) * | 2018-10-30 | 2024-06-11 | Kyocera Corporation | Porous ceramic, member for semiconductor manufacturing apparatus, shower plate and plug |
JP7534292B2 (ja) | 2018-11-01 | 2024-08-14 | ラム リサーチ コーポレーション | He孔着火/アーク放電を防止する特徴を有する高出力静電チャック |
-
2021
- 2021-05-26 JP JP2022526618A patent/JP7515583B2/ja active Active
- 2021-05-26 WO PCT/JP2021/020040 patent/WO2021241645A1/ja active Application Filing
- 2021-05-28 TW TW110119497A patent/TWI789770B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013179062A (ja) * | 2006-06-13 | 2013-09-09 | Hokuriku Seikei Kogyo Kk | シャワープレートの製造方法、シャワープレート及びプラズマ処理装置 |
JP2015174037A (ja) * | 2014-03-14 | 2015-10-05 | 日本碍子株式会社 | 目封止ハニカム構造体 |
JP2020057786A (ja) * | 2018-09-28 | 2020-04-09 | 日本碍子株式会社 | 半導体製造装置用部材 |
JP2020072261A (ja) * | 2018-10-30 | 2020-05-07 | Toto株式会社 | 静電チャック |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023153021A1 (ja) * | 2022-02-09 | 2023-08-17 | 日本碍子株式会社 | 半導体製造装置用部材 |
WO2023190449A1 (ja) * | 2022-03-30 | 2023-10-05 | 京セラ株式会社 | 通気性プラグおよび載置台 |
WO2024150747A1 (ja) * | 2023-01-13 | 2024-07-18 | 東京エレクトロン株式会社 | プラズマ処理装置及び基板支持部 |
WO2024157518A1 (ja) * | 2023-01-26 | 2024-08-02 | 日本碍子株式会社 | ウエハ載置台 |
Also Published As
Publication number | Publication date |
---|---|
TWI789770B (zh) | 2023-01-11 |
TW202202472A (zh) | 2022-01-16 |
JP7515583B2 (ja) | 2024-07-12 |
JPWO2021241645A1 (ja) | 2021-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021241645A1 (ja) | 通気性プラグ、基板支持アセンブリおよびシャワープレート | |
KR102453218B1 (ko) | 반도체 소자를 제조하는 장비에 사용되는 세라믹 부품 및 그 제조 방법 | |
KR101457215B1 (ko) | 산화이트륨 재료, 반도체 제조 장치용 부재 및 산화이트륨재료의 제조 방법 | |
JP7553556B2 (ja) | プラズマ耐性酸化イットリウムアルミニウム体 | |
US20230373870A1 (en) | Sintered ceramic body of large dimension and method of making | |
WO2014119177A1 (ja) | ガスノズルおよびこれを用いたプラズマ装置 | |
TWI785577B (zh) | 透氣性構件、半導體製造裝置用構件、栓塞及吸著構件 | |
JP2008156160A (ja) | 耐食性部材およびその製造方法 | |
TWI769013B (zh) | 包含鋁酸鎂尖晶石之陶瓷燒結體 | |
WO2020203680A1 (ja) | ガスプラグ、静電吸着用部材およびプラズマ処理装置 | |
CN113874336B (zh) | 复合烧结体、静电卡盘部件、静电卡盘装置及复合烧结体的制造方法 | |
KR102409290B1 (ko) | 플라즈마 처리 장치용 전극판 및 플라즈마 처리 장치용 전극판의 재생 방법 | |
JP2010006641A (ja) | 耐食性部材およびこれを用いた処理装置 | |
JP6889268B2 (ja) | プラズマ処理装置用部材およびプラズマ処理装置 | |
KR20210011442A (ko) | 세라믹 소결체 및 플라즈마 처리 장치용 부재 | |
TWI777799B (zh) | 大尺寸的氧化釔燒結體 | |
KR20090101245A (ko) | 세라믹 부재 및 내식성 부재 | |
US20220185738A1 (en) | Corrosion-resistant ceramic | |
JP4873857B2 (ja) | 耐食性部材およびその製造方法並びに半導体・液晶製造装置用部材 | |
JP7329610B2 (ja) | プラズマ処理装置用部材、その製造方法およびプラズマ処理装置 | |
US20220185740A1 (en) | Corrosion-resistant ceramic | |
JP7112509B2 (ja) | セラミックチューブ | |
JP2019009271A (ja) | プラズマ処理装置用電極板およびプラズマ処理装置用電極板の製造方法 | |
JP2004259768A (ja) | 真空チャンバー用部材およびその製造方法 | |
JPH07211700A (ja) | プラズマ発生装置用電極及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21813883 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022526618 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21813883 Country of ref document: EP Kind code of ref document: A1 |