WO2021241629A1 - 保護素子 - Google Patents

保護素子 Download PDF

Info

Publication number
WO2021241629A1
WO2021241629A1 PCT/JP2021/019965 JP2021019965W WO2021241629A1 WO 2021241629 A1 WO2021241629 A1 WO 2021241629A1 JP 2021019965 W JP2021019965 W JP 2021019965W WO 2021241629 A1 WO2021241629 A1 WO 2021241629A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse element
heat generating
concave
cut
protective element
Prior art date
Application number
PCT/JP2021/019965
Other languages
English (en)
French (fr)
Inventor
豊 和田
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020227035659A priority Critical patent/KR20220154201A/ko
Priority to US17/925,133 priority patent/US20230197392A1/en
Priority to CN202180036775.2A priority patent/CN115699240A/zh
Publication of WO2021241629A1 publication Critical patent/WO2021241629A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/36Means for applying mechanical tension to fusible member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0039Means for influencing the rupture process of the fusible element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/10Fusible members characterised by the shape or form of the fusible member with constriction for localised fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0039Means for influencing the rupture process of the fusible element
    • H01H85/0047Heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/165Casings
    • H01H85/175Casings characterised by the casing shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • H01H2085/381Means for extinguishing or suppressing arc with insulating body insertable between the end contacts of the fusible element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protective element.
  • This application claims priority based on Japanese Patent Application No. 2020-09425 filed in Japan on May 29, 2020, the contents of which are incorporated herein by reference.
  • a protective element (fuse element) including a fuse element is used, for example, in a battery pack using a lithium ion secondary battery.
  • lithium-ion secondary batteries have been used not only in mobile devices but also in a wide range of fields such as electric vehicles and storage batteries. Therefore, the capacity of lithium-ion secondary batteries is being increased.
  • a protective element to be installed in a battery pack having a large-capacity lithium-ion battery and having a high-voltage and large-current current path.
  • Patent Document 1 discloses a short-circuit cutoff switch in which a cutting plunger that can be provided for cutting a cutting region can be pressed in advance by a spring member at a resting position.
  • Patent Document 2 discloses a protective element which is arranged between a pair of electrodes and includes an elastic body that applies a separating force to a heat generating piece. Further, Patent Document 2 describes that when the bonding material is melted, the compression coil spring separates the heat generating piece from the positive electrode and the negative electrode.
  • Patent Document 3 includes a movable conductor urged by a conductive elastic body, a pair of lead terminals, and a soluble body that joins the movable conductor and the lead terminal to fix the movable conductor. Described is a protective element that cuts off a circuit by moving a movable conductor by the urging force of an elastic body when the joint is melted at a melting temperature.
  • Patent Document 4 provides a compression spring that exerts a force on the movable electrode in a direction to separate it from the lead fixing electrode, and the movable electrode is urged by the compression spring to be separated from the lead fixing electrode by melting the low melting point alloy.
  • the protective element is disclosed.
  • an arc discharge may occur.
  • the fuse element may melt over a wide area and the vaporized metal may scatter.
  • the scattered metal may form a new current path, or the scattered metal may adhere to surrounding electronic components such as terminals.
  • the present invention proposes the following means.
  • a fuse element having a cutting portion between the first end portion and the second end portion and being energized in the first direction from the first end portion toward the second end portion.
  • Movable members and concave members arranged so as to sandwich the cut portion,
  • a pressing means for applying a force so as to reduce the relative distance in the direction in which the cut portion is sandwiched between the movable member and the concave member is provided.
  • the protective element according to [1] which has a width that is a second direction intersecting the first direction of the fuse element, and the width of the cut portion is narrower than the width other than the cut portion.
  • the cut portion is arranged in the recess of the concave member in a plan view, and is arranged at a position close to the inner surface of the recess in a plan view.
  • the movable member has a convex portion arranged at a position where the outer periphery overlaps with at least a part of the inner area of the concave portion of the concave member in a plan view.
  • the present invention has a case including at least a plurality of members including the fuse element, the movable member, the concave portion of the concave member, and the pressing means.
  • the pressing means is housed in the case in a state where a force is applied so as to reduce the relative distance in the direction in which the cut portion is sandwiched between the movable member and the concave member.
  • the protective element according to any one of.
  • One member of the case has the same member as the first inner wall surface and the second inner wall surface facing in the expansion / contraction direction of the pressing means, and the side wall surface connecting the first inner wall surface and the second inner wall surface.
  • the cut portion is arranged in the recess of the concave member in a plan view, and is arranged at a position close to the inner surface of the recess in a plan view.
  • the movable member has a convex portion arranged at a position where the outer periphery overlaps with at least a part of the inner area of the concave portion in a plan view and overlaps with a part of the cut portion. Any one of [1] to [17], in which the convex portion is inserted into the concave portion by cutting the cut portion, and the fuse element is housed in the concave portion so that a part of the fuse element is bent.
  • the movable member and the concave member are arranged so as to sandwich the cut portion of the fuse element, and a force is applied so as to reduce the relative distance in the direction of sandwiching the cut portion between the movable member and the concave member.
  • a pressing means for applying is provided. Therefore, in the protective element of the present invention, the cut portion is cut by the force of the pressing means at a temperature equal to or higher than the softening temperature of the fuse element. Therefore, in the protective element of the present invention, the amount of heat generated when the fuse element is blown is small, and the arc discharge generated when the fuse element is cut can be reduced.
  • the blown fuse element is housed in the concave member together with the movable member by the pressing force of the pressing means.
  • the distance between the cut surfaces of the blown fuse elements is rapidly increased.
  • the arc discharge is quickly reduced.
  • FIG. 1 is a perspective view showing the overall structure of the protection element 100 according to the first embodiment.
  • 2A and 2B are drawings showing the appearance of the protective element 100 according to the first embodiment
  • FIG. 2A is a plan view
  • FIGS. 2B and 2C are side views.
  • FIG. 2D is a perspective view.
  • FIG. 3 is a cross-sectional view of the protection element 100 according to the first embodiment cut along the AA'line shown in FIG.
  • FIG. 4 is an exploded perspective view of the protection element 100 according to the first embodiment.
  • FIG. 5 is an enlarged view for explaining a part of the protection element 100 of the first embodiment, and is a plan view showing the fuse element 2.
  • FIG. 1 is a perspective view showing the overall structure of the protection element 100 according to the first embodiment.
  • 2A and 2B are drawings showing the appearance of the protective element 100 according to the first embodiment
  • FIG. 2A is a plan view
  • FIGS. 2B and 2C are side views.
  • FIG. 2D is
  • FIG. 6 is a drawing for explaining the arrangement relationship between the fuse element 2 and the heat generating member 31 in the protection element 100 of the first embodiment
  • FIG. 6A is a plan view seen from the pressing means 5 side
  • 6 (b) is a perspective view seen from the concave member 4 side
  • 7A and 7B are drawings for explaining the structure of the heat generating member 31 provided in the protective element 100 of the first embodiment
  • FIG. 7A is a cross-sectional view seen from the Y direction
  • FIG. 7B is a cross-sectional view.
  • FIG. 7 (c) is a plan view
  • 8 is a drawing for explaining another example of the heat generating member, FIG.
  • FIG. 8A is a cross-sectional view of the heat generating member 32 as viewed from the Y direction
  • FIG. 8B is FIG. 8A.
  • It is sectional drawing which looked at the central part in the X direction of the heat generating member 32 shown in the above, as seen from the X direction.
  • FIG. 8 (c) is a cross-sectional view of the heat generating member 310 seen from the Y direction
  • FIG. 8 (d) is a cross-sectional view of the central portion of the heat generating member 310 shown in FIG. 8 (c) seen from the X direction.
  • 9 is a drawing for explaining the structure of the convex member 33 provided in the protection element 100 of the first embodiment
  • FIG. 9A is a view seen from the first surface
  • FIG. 9A is a view of FIG. 9 (a).
  • b) is a side view seen from the X direction
  • FIG. 9 (c) is a side view seen from the Y direction
  • FIG. 9 (d) is a view seen from the second surface
  • FIG. 9 (e) is shown.
  • FIG. 9 (f) is a perspective view.
  • 10A and 10B are drawings for explaining the structure of the concave member 4 provided in the protective element 100 of the first embodiment
  • FIG. 10A is a view seen from the first surface
  • FIG. 10B is a view.
  • FIG. 10 (c) is a side view seen from the Y direction
  • FIG. 10 (d) is a view seen from the second surface
  • FIG. 10 (e) is a view. It is a perspective view.
  • 11A and 11B are drawings for explaining the structures of the first case 6a and the second case 6b provided in the protective element 100 of the first embodiment, and FIG. 11A is a view seen from the pressing means 5 side.
  • 11 (b) is a side view seen from the X direction
  • FIG. 11 (c) is a side view seen from the Y direction
  • FIG. 11 (d) is a view seen from the concave member 4 side.
  • FIG. 11 (e) is a perspective view.
  • FIG. 12 is a process diagram for explaining an example of a method for manufacturing the protective element 100 of the first embodiment.
  • FIG. 13 is a process diagram for explaining an example of a method for manufacturing the protective element 100 of the first embodiment.
  • FIG. 12 is a process diagram for explaining an example of a method for manufacturing the protective element 100 of the first embodiment.
  • FIG. 13 is a process diagram for explaining an example of a method for manufacturing the protective element 100
  • FIG. 14 is a process diagram for explaining an example of a method for manufacturing the protective element 100 of the first embodiment.
  • FIG. 15 is a cross-sectional view for explaining the state before and after cutting the cut portion of the fuse element in the protection element 100 of the first embodiment, and is cut along the line AA'shown in FIG. It is a cross-sectional view of the position.
  • FIG. 15A shows a state before cutting.
  • FIG. 15B shows the state after cutting.
  • FIG. 16 is an enlarged cross-sectional view showing a part of FIG. 15 (a) in an enlarged manner.
  • FIG. 17 is a cross-sectional view for explaining the state before and after cutting the cut portion of the fuse element in the protection element 100 of the first embodiment, and is cut along the line BB'shown in FIG.
  • FIG. 17A shows a state before cutting.
  • FIG. 17B shows the state after cutting.
  • FIG. 18 is an enlarged cross-sectional view showing a part of FIG. 17 (a) in an enlarged manner.
  • 19 is a drawing showing the appearance of the protective element 200 according to the second embodiment, FIG. 19 (a) is a plan view, and FIGS. 19 (b) and 19 (c) are side views.
  • FIG. 19D is a perspective view.
  • FIG. 20 is an enlarged view for explaining a part of the protection element 200 of the second embodiment, and is a plan view showing the fuse element 2a.
  • FIG. 21 is a drawing for explaining the arrangement relationship between the fuse element 2a and the heat generating member 31 in the protection element 200 of the second embodiment
  • FIG. 21A is a plan view seen from the pressing means 5 side
  • 21 (b) is a perspective view seen from the concave member 4 side.
  • FIG. 22 is a cross-sectional view for explaining the state before and after cutting the cut portion of the fuse element in the protection element 300 of the third embodiment, and is shown in FIG. 2 of the protection element 100 of the first embodiment. It is sectional drawing which cut along the position corresponding to the line AA'.
  • FIG. 22A is a state before cutting.
  • FIG. 22B shows the state after cutting.
  • FIGS. 1 to 3 are schematic views showing a protective element according to the first embodiment.
  • the protection element 100 of the first embodiment is substantially rectangular in a plan view.
  • the direction indicated by X is the longitudinal direction of the protective element 100.
  • the direction indicated by Y is a direction (first direction) orthogonal to the X direction (second direction).
  • the direction indicated by Z is a direction (third direction) orthogonal to the X direction and the Y direction.
  • FIG. 1 is a perspective view showing the overall structure of the protection element 100 according to the first embodiment.
  • FIG. 2 is a drawing showing the appearance of the protective element 100 according to the first embodiment.
  • FIG. 2A is a plan view. 2 (b) and 2 (c) are side views.
  • FIG. 2D is a perspective view.
  • FIG. 3 is a cross-sectional view of the protection element 100 according to the first embodiment cut along the AA'line shown in FIG.
  • FIG. 4 is an exploded perspective view of the protection element 100 according to the first embodiment.
  • FIG. 15 to 18 are cross-sectional views for explaining the state before and after cutting the cut portion of the fuse element in the protection element 100 of the first embodiment.
  • FIG. 15 is a cross-sectional view of the protection element 100 according to the first embodiment cut along the AA'line shown in FIG.
  • FIG. 16 is an enlarged cross-sectional view showing a part of FIG. 15 (a) in an enlarged manner.
  • FIG. 17 is a cross-sectional view of the protection element 100 of the first embodiment cut along the line BB'shown in FIG.
  • FIG. 18 is an enlarged cross-sectional view showing a part of FIG. 17 (a) in an enlarged manner.
  • 15 (a) and 17 (a) are states before cutting.
  • 15 (b) and 17 (b) are the states after cutting.
  • the protection element 100 of the present embodiment includes a fuse element 2 having a cutting portion 23, a movable member 3, a concave member 4, a pressing means 5, and a case 6. There is.
  • the cut portion 23 of the fuse element 2 is cut at a temperature equal to or higher than the softening temperature of the fuse element 2.
  • FIG. 5 is an enlarged view for explaining a part of the protection element 100 of the first embodiment, and is a plan view showing the fuse element 2.
  • the fuse element 2 has a cutting portion 23 provided between the first end portion 21, the second end portion 22, and the first end portion 21 and the second end portion 22. And have.
  • the fuse element 2 is energized in the Y direction (first direction), which is the direction from the first end portion 21 to the second end portion 22.
  • the first end portion 21 is electrically connected to the first terminal 61.
  • the second end 22 is electrically connected to the second terminal 62.
  • the first terminal 61 and the second terminal 62 may have substantially the same shape or may have different shapes.
  • the thickness of the first terminal 61 and the second terminal 62 is not limited, but can be 0.3 to 1.0 mm as a guide.
  • the thicknesses of the first terminal 61 and the second terminal 62 may be the same or different.
  • the first terminal 61 includes an external terminal hole 61a.
  • the second terminal 62 is provided with an external terminal hole 62a. Of the external terminal hole 61a and the external terminal hole 62a, one is used for connecting to the power supply side and the other is used for connecting to the load side.
  • the external terminal hole 61a and the external terminal hole 62a can be through holes having a substantially circular shape in a plan view.
  • first terminal 61 and the second terminal 62 for example, those made of copper, brass, nickel or the like can be used.
  • the material of the first terminal 61 and the second terminal 62 brass is preferably used from the viewpoint of enhancing rigidity, and copper is preferably used from the viewpoint of reducing electrical resistance.
  • the first terminal 61 and the second terminal 62 may be made of the same material or may be made of different materials.
  • the shapes of the first terminal 61 and the second terminal 62 may be any shape as long as they can be engaged with a terminal on the power supply side or a terminal on the load side (not shown), and may be, for example, a claw shape having an open portion in part.
  • the end portion on the side connected to the fuse element 2 has a flange portion widened on both sides toward the fuse element 2 (indicated by reference numerals 61c and 62c in FIG. 4). It may be done, and it is not particularly limited.
  • the first terminal 61 and the second terminal 62 have the flange portions 61c and 62c, the first terminal 61 and the second terminal 62 are hard to come off from the openings 61d and 62d of the case 6, and the reliability and durability are good protection. It becomes the element 100.
  • the thickness of the fuse element 2 may be uniform or may be partially different.
  • the fuse element having a partially different thickness include those whose thickness gradually increases from the cutting portion 23 toward the first end portion 21 and the second end portion 22. In such a fuse element 2, when an overcurrent flows, the cut portion 23 becomes a heat spot, the cut portion 23 preferentially raises the temperature and is softened, and the fuse element 2 is cut more reliably.
  • the cut portion 23, the first end portion 21, and the second end portion 22 of the fuse element 2 have a substantially rectangular shape in a plan view.
  • the width 21D in the X direction at the first end portion 21 and the width 22D in the X direction at the second end portion 22 are substantially the same.
  • the width 23D in the X direction of the cut portion 23 is narrower than the width 21D in the X direction of the first end portion 21 and the width 22D of the second end portion 22 in the X direction.
  • the width 23D of the cut portion 23 is narrower than the width other than the cut portion 23.
  • the length L21 in the Y direction at the first end portion 21 has a dimension corresponding to a region overlapping with the first terminal 61 in a plan view.
  • the length L22 in the Y direction of the second end portion 22 extends from the region overlapping the second terminal 62 in a plan view toward the cut portion 23 side. Therefore, the length of the second end portion 22 in the Y direction L22 is longer than the length of the first end portion 21 in the Y direction L21.
  • a first connecting portion 25 having a substantially trapezoidal shape in a plan view is arranged between the cutting portion 23 and the first end portion 21.
  • the longer side of the first connecting portion 25 having a substantially trapezoidal plan view is connected to the first end portion 21.
  • a second connecting portion 26 having a substantially trapezoidal shape in a plan view is arranged between the cutting portion 23 and the second end portion 22.
  • the longer side of the second connecting portion 26 having a substantially trapezoidal plan view is connected to the second end portion 22.
  • the first connecting portion 25 and the second connecting portion 26 are symmetrical with respect to the cutting portion 23.
  • the width of the fuse element 2 in the X direction gradually increases from the cutting portion 23 toward the first end portion 21 and the second end portion 22.
  • the cutting portion 23 becomes a heat spot, the cutting portion 23 is preferentially heated to be softened, and is easily cut.
  • the cutting portion 23 provided at only one location on the fuse element 2 is cut. Therefore, in the present embodiment, the fuse element 2 is easily cut as compared with the case where the width of the fuse element 2 in the X direction is uniform or when a plurality of cut portions are formed in the fuse element 2, for example. Will be done. Therefore, in the present embodiment, the pressing means 5 having low strength can be used, and the pressing means 5 and the case 6 can be miniaturized.
  • the cut portion 23 of the fuse element 2 is narrower in the X direction than the first end portion 21 and the second end portion 22. As a result, the cut portion 23 is easier to cut than the region between the cut portion 23 and the first end portion 21 and the region between the cut portion 23 and the second end portion 22.
  • the cut portion 23 of the fuse element 2 may be a portion cut by the movable member 3 and the concave member 4, and is not limited to a portion narrower than the first end portion 21 and the second end portion 22.
  • the planar shape of the entire fuse element 2 is substantially rectangular, and the width in the X direction is relatively wide and the length in the Y direction is relatively large as compared with a general fuse element. short.
  • the fuse element 2 is physically cut, and the distance between the cut surfaces of the cut fuse elements is separated in a short time, so that the arc discharge generated at the time of cutting can be reduced and generated. It is possible to suppress the continuation of the arc discharge. Therefore, in order to suppress the arc discharge, it is not necessary to narrow the width of the fuse element 2 in the X direction, and the width of the fuse element 2 in the X direction can be widened and the length in the Y direction can be shortened. Since the protection element 100 having such a fuse element 2 can suppress an increase in resistance value in the current path in which the protection element 100 is installed, it can be preferably installed in a current path with a large current.
  • the material of the fuse element 2 a known material used for the fuse element, such as a metal material containing an alloy, can be used. Specifically, as the material of the fuse element 2, alloys such as Pb85% / Sn and Sn / Ag3% / Cu0.5% can be exemplified.
  • the fuse element 2 is substantially not deformed by energization during normal operation.
  • the fuse element 2 is cut at a temperature equal to or higher than the softening temperature of the material constituting the fuse element 2. Since the temperature is higher than the softening temperature, it may be cut at the "softening temperature".
  • the term "softening temperature” means a temperature at which a solid phase and a liquid phase coexist or coexist, or a temperature range.
  • the softening temperature is a temperature or a temperature range (temperature range) in which the fuse element 2 becomes soft enough to be deformed by an external force.
  • the fuse element 2 when the fuse element 2 is made of a two-component alloy, the solid phase and the liquid phase are mixed in the temperature range between the solid phase line (the temperature at which melting starts) and the liquid phase line (the temperature at which the liquid phase is completely melted). In other words, it is in a sherbet-like state.
  • the temperature range in which the solid phase and the liquid phase coexist or coexist is a temperature range in which the fuse element 2 becomes soft enough to be deformed by an external force. This temperature range is the "softening temperature".
  • the fuse element 2 When the fuse element 2 is made of a three-component alloy or a multi-component alloy, the solid phase line and the liquid phase line are read as the solid phase surface and the liquid phase surface, and similarly, the temperature at which the solid phase and the liquid phase coexist or coexist.
  • the range is "softening temperature".
  • the "softening temperature” When the fuse element 2 is made of an alloy, the "softening temperature” has a temperature range because there is a temperature difference between the solid phase line and the liquid phase line.
  • the fuse element 2 When the fuse element 2 is made of a single metal, there is no solid phase line / liquid phase line, and there is one melting point / freezing point.
  • the fuse element 2 When the fuse element 2 is made of a single metal, the solid phase and the liquid phase are mixed or coexist at the melting point or the freezing point, so that the melting point or the freezing point is the "softening temperature" in the present specification.
  • the measurement of the solid phase line and the liquid phase line can be performed as a discontinuity point (plateau temperature in the time change) due to latent heat accompanying the phase state change in the temperature rise process.
  • Both an alloy material and a single metal having a temperature or temperature range in which a solid phase and a liquid phase coexist or coexist can be used as the material of the fuse element 2 of the present embodiment.
  • the fuse element 2 may be composed of one member (part) or may be composed of a plurality of members (parts) made of different materials. ..
  • the shape of each member can be determined according to the application, material, and the like of the fuse element 2, and is not particularly limited.
  • Examples of the fuse element 2 made of a plurality of members made of different materials include a case where the fuse element 2 is made of a plurality of members made of materials having different softening temperatures.
  • the fuse element 2 is formed of a plurality of members made of materials having different softening temperatures, the solid phase and the liquid phase are mixed in order from the material having the lowest softening temperature, which is equal to or higher than the softening temperature of the material having the lowest softening temperature. Will be disconnected at.
  • the fuse element 2 made of a plurality of members made of different materials can have various structures.
  • the structure may have a cross-sectional shape in which the outer surface of the inner layer is covered with the outer layer, and the inner layer and the outer layer may be made of materials having different softening temperatures.
  • the cross-sectional shape in this case may be rectangular or circular, and is not particularly limited.
  • the inner layer is made of a low melting point metal and the outer layer is made of a high melting point metal.
  • the fuse element 2 may be a laminated body in which a plurality of layered members made of materials having different softening temperatures are laminated in the thickness direction.
  • the number of laminated layered members made of materials having different softening temperatures may be two layers, three layers, or four or more layers. Since the laminated body includes a layer made of a material having a high softening temperature in such a fuse element 2, the rigidity is ensured. Further, since the laminated body contains a layer made of a material having a low softening temperature, it becomes soft at a low temperature and can be cut at a low temperature.
  • the fuse element 2 when the fuse element 2 is the laminated body, the solid phase and the liquid phase are mixed in order from the layer of the material having the lowest softening temperature. As a result, the fuse element 2 can be blown even if the entire laminate does not reach the softening temperature.
  • the fuse element 2 is a laminated body having a three-layer structure in which an inner layer and an outer layer sandwiching the inner layer are laminated in the thickness direction, and the inner layer and the outer layer are made of materials having different softening temperatures. You may.
  • the mixed state of the solid phase and the liquid phase starts first in the layer of the material having a low softening temperature among the inner layer and the outer layer of the laminated body. Then, the layer of the material having a high softening temperature can be cut before reaching the softening temperature.
  • the inner layer is made of a low melting point metal and the outer layer is made of a high melting point metal.
  • the low melting point metal used as the material of the fuse element 2 it is preferable to use Sn or a metal containing Sn as a main component. Since the melting point of Sn is 232 ° C., the metal containing Sn as a main component has a low melting point and becomes soft at a low temperature. For example, the solid phase line of the Sn / Ag3% / Cu0.5% alloy is 217 ° C.
  • the refractory metal used as the material of the fuse element 2 it is preferable to use Ag or Cu, or a metal containing Ag or Cu as a main component.
  • the melting point of Ag is 962 ° C.
  • the rigidity of the layer made of a metal containing Ag as a main component is maintained at a temperature at which the layer made of a low melting point metal becomes soft.
  • the fuse element 2 can be manufactured by a known method.
  • the fuse element 2 when the fuse element 2 is a laminated body having a three-layer structure in which the inner layer is made of a low melting point metal and the outer layer is made of a high melting point metal, it can be manufactured by the method shown below. First, a metal foil made of a low melting point metal is prepared. Next, a refractory metal layer is formed on the entire surface of the metal foil by a plating method to form a laminated plate. After that, the laminated board is cut into a predetermined shape. By the above steps, the fuse element 2 made of a three-layer structure laminated body is obtained.
  • the movable member 3 and the concave member 4 are arranged to face each other so as to sandwich the cut portion 23 of the fuse element 2.
  • the movable member 3 and the concave member 4 sandwiching the cut portion 23 of the fuse element 2 means that the movable member 3 and the concave member 4 sandwich the fuse element 2 from above and below, and the fuse element 2 is sandwiched from above and below, and is viewed in a plan view from the Z direction. This means that the movable member 3 and the concave member 4 overlap with the cutting portion 23. It does not matter whether or not both the movable member 3 and the concave member 4 are in contact with the cutting portion 23.
  • the movable member 3 cuts the fuse element 2 by the pressing force from the pressing means 5.
  • the movable member 3 may be a single member or a plurality of members (see FIG. 3).
  • the protective element 100 of the present embodiment has, as the movable member 3, a convex member 33 and a heat generating member 31 which is a non-convex member, as shown in FIGS. 3 and 4.
  • the movable member 3 may be only a convex member 33 or only a non-convex member.
  • the movable member 3 preferably has both a convex member 33 and a non-convex member.
  • the convex member 33 is provided between the pressing means 5 and the cutting portion 23.
  • the non-convex member (heat generating member 31) is provided between the convex member 33 and the cutting portion 23 by being arranged in contact with the cutting portion 23.
  • the non-convex member used as the movable member 3 is a member having no convex portion on the fuse element 2 side, and is, for example, a plate-shaped member.
  • the non-convex member may be a heat generating member.
  • the heat generating member 31 is arranged on the pressing means 5 side of the fuse element 2 in contact with the cutting portion 23.
  • the heat generating member 31 may not be arranged in contact with the cutting portion 23, but may be arranged in the vicinity of the cutting portion 23.
  • the term "arranged close to the cutting portion 23" includes, for example, a case where the distance between the heat generating member 31 and the cutting portion 23 is 1 mm or less.
  • FIG. 6 is a drawing for explaining the arrangement relationship between the fuse element 2 and the heat generating member 31 in the protection element 100 of the first embodiment.
  • FIG. 6A is a plan view seen from the pressing means 5 side.
  • FIG. 6B is a perspective view seen from the concave member 4 side.
  • FIG. 7 is a drawing for explaining the structure of the heat generating member 31 provided in the protection element 100 of the first embodiment.
  • FIG. 7A is a cross-sectional view seen from the Y direction.
  • FIG. 7B is a cross-sectional view seen from the X direction.
  • FIG. 7 (c) is a plan view.
  • the heat generating member 31 is a plate-shaped member.
  • the heat generating member 31 includes an insulating substrate 31a, a heat generating portion 31b, an insulating layer 31c, an element connection electrode 31d, and feeder line electrodes 31e and 31f.
  • the heat generating member 31 has a function of heating and softening the cutting portion 23 of the fuse element 2 and a function of applying the pressing pressure of the pressing means 5 to the cutting portion 23.
  • the heat generating member 31 is a movable member 3.
  • the insulating substrate 31a has a substantially rectangular shape in a plan view in which the X direction is the extending direction of the long side.
  • a substrate having a known insulating property can be used, and examples thereof include those made of alumina, glass ceramics, mullite, zirconia and the like.
  • the heat generating portion 31b is formed on the second surface (lower surface in FIGS. 7 (a) to 7 (c)) of the insulating substrate 31a. As shown in FIG. 7 (c), the heat generating portion 31b extends in the X direction along one long side edge portion of the insulating substrate 31a having a substantially rectangular shape in a plan view, and is provided in a band shape.
  • the heat generating portion 31b is preferably a resistor made of a conductive material that generates heat when energized via the feeder lines 63b and 64b (see FIG. 4). Examples of the material of the heat generating portion 31b include a material containing a metal such as nichrome, W, Mo, and Ru.
  • the feeder line electrodes 31e and 31f are provided at the X-direction ends of the insulating substrate 31a, and some of them are 31g and 31g at both ends of the heat generating portion 31b, respectively. It is provided at an overlapping position in a plan view.
  • the feeder electrode 31e and 31f can be formed of a known electrode material.
  • the feeder electrodes 31e and 31f are electrically connected to the heat generating portion 31b.
  • the insulating layer 31c is provided on the surface of the insulating substrate 31a on the side where the heat generating portion 31b is formed.
  • the insulating layer 31c is provided at the center of the insulating substrate 31a in the X direction so as to cover the heat generating portion 31b and the connecting portion between the heat generating portion 31b and the feeder line electrodes 31e and 31f exposed on the insulating layer 31c.
  • the insulating layer 31c is not provided at the end of the insulating substrate 31a in the X direction. As a result, a part of the feeder electrodes 31e and 31f is not covered with the insulating layer 31c and is exposed.
  • the insulating layer 31c protects the heat generating portion 31b, efficiently transfers the heat generated by the heat generating portion 31b to the fuse element 2, and insulates the heat generating portion 31b from the element connection electrode 31d.
  • the insulating layer 31c can be formed of a known insulating material such as glass.
  • the element connection electrode 31d is provided at a position where it overlaps with the heat generating portion 31b on the insulating layer 31c in a plan view.
  • the element connection electrode 31d can be formed of a known electrode material.
  • the element connection electrode 31d is connected to the fuse element 2.
  • the heat generating portion 31b, the insulating layer 31c, and the element connection electrode are provided along one long edge portion of the insulating substrate 31a having a substantially rectangular shape in a plan view.
  • 31d and feed line electrodes 31e and 31f are provided, these may be provided along the long edge portions of both of the insulating substrate 31a.
  • the heat generating member 31 and the feeder lines 63b and 64b are electrically connected, the end portions where the feeder line electrodes 31e and 31f are not provided and the feeder line electrodes 31e and 31f are provided. It is possible to prevent a decrease in yield due to a mistake.
  • the heat generating member 31 shown in FIGS. 7 (a) to 7 (c) is arranged so that the surface on the element connection electrode 31d side faces the fuse element 2. Therefore, the insulating substrate 31a is not arranged between the heat generating portion 31b and the fuse element 2. Therefore, the heat generated in the heat generating portion 31b is efficiently transferred to the fuse element 2 as compared with the case where the insulating substrate 31a is arranged between the heat generating portion 31b and the fuse element 2.
  • the heat generating member 31 shown in FIGS. 7 (a) to 7 (c) can be manufactured, for example, by the method shown below.
  • the insulating substrate 31a is prepared.
  • a paste-like composition containing a material to be a heat generating portion 31b and a resin binder is produced.
  • the above composition is screen-printed on the second surface (lower surface in FIGS. 7 (a) to 7 (c)) of the insulating substrate 31a to form a predetermined pattern and fired.
  • the heat generating portion 31b is formed.
  • the feeder electrodes 31e and 31f are formed by a known method, and are electrically connected to both ends 31g and 31g of the heat generating portion 31b, respectively.
  • the insulating layer 31c is formed by a known method, and the heat generating portion 31b is covered with the insulating layer 31c, and the connecting portion between the heat generating portion 31b and the feeder electrodes 31e and 31f is covered.
  • the element connection electrode 31d is formed on the insulating layer 31c by a known method.
  • FIG. 8 is a drawing for explaining another example of the heat generating member.
  • FIG. 8A is a cross-sectional view of the heat generating member 32 as viewed from the Y direction.
  • FIG. 8 (b) is a cross-sectional view of the central portion of the heat generating member 32 shown in FIG. 8 (a) in the X direction as viewed from the X direction.
  • FIG. 8C is a cross-sectional view of the heat generating member 310 as viewed from the Y direction.
  • FIG. 8 (d) is a cross-sectional view of the central portion of the heat generating member 310 shown in FIG. 8 (c) in the X direction as viewed from the X direction.
  • the heat generating member 32 shown in FIGS. 8 (a) and 8 (b) is provided in place of the heat generating member 31 shown in FIGS. 7 (a) to 7 (c). You may.
  • the same members as those of the heat generating member 31 shown in FIGS. 7 (a) to 7 (c) are designated by the same reference numerals, and the description thereof will be omitted.
  • the plane arrangement of each member in the heat generating member 32 shown in FIGS. 8 (a) and 8 (b) is the same as the plane arrangement of each member of the heat generating member 31 shown in FIGS. 7 (a) to 7 (c). ..
  • the heat generating member 32 shown in FIGS. 8 (a) and 8 (b) is a plate-shaped member. Similar to the heat generating member 31 shown in FIGS. 7 (a) to 7 (c), the heat generating member 32 includes an insulating substrate 31a, a heat generating portion 31b, an insulating layer 31c, an element connection electrode 31d, and a feeder line electrode 31e. , 31f. As shown in FIGS. 8 (a) and 8 (b), the heat generating portion 31b is formed on the first surface (upper surface in FIGS. 8 (a) and 8 (b)) of the insulating substrate 31a.
  • the feeder line electrodes 31e and 31f are partially provided at positions where they overlap with both ends of the heat generating portion 31b in a plan view.
  • the insulating layer 31c is provided on the surface of the insulating substrate 31a on the side where the heat generating portion 31b is formed.
  • the insulating layer 31c is provided at the center of the insulating substrate 31a in the X direction so as to cover the heat generating portion 31b and the connecting portion between the heat generating portion 31b and the feeder line electrodes 31e and 31f exposed on the insulating layer 31c. Has been done.
  • the insulating layer 31c is not provided at the end of the insulating substrate 31a in the X direction.
  • the insulating layer 31c protects the heat generating portion 31b and efficiently transfers the heat generated by the heat generating portion 31b to the fuse element 2.
  • the element connection electrode 31d in the heat generating member 32 is different from the heat generating member 31 shown in FIGS. 7 (a) to 7 (c) and has an insulating substrate 31a. It is formed on a second surface (lower surface in FIGS. 8A and 8B) which is a surface opposite to the side on which the heat generating portion 31b is provided.
  • the element connection electrode 31d is arranged so as to face the insulating layer 31c via the insulating substrate 31a.
  • the element connection electrode 31d is connected to the fuse element 2 in the same manner as the heat generating member 31 shown in FIGS. 7 (a) to 7 (c).
  • the heat generating member 310 shown in FIGS. 8 (c) and 8 (d) is provided in place of the heat generating member 31 shown in FIGS. 7 (a) to 7 (c). You may.
  • the same members as those of the heat generating member 31 shown in FIGS. 7 (a) to 7 (c) are designated by the same reference numerals, and the description thereof will be omitted. ..
  • the arrangement of each member in the cross section of the heat generating member 310 shown in FIGS. 8 (c) and 8 (d) when the central portion in the X direction is viewed from the X direction is the heat generating member shown in FIGS. 7 (a) to 7 (c). It is the same as the arrangement of each member of 31.
  • the heat generating member 310 shown in FIGS. 8 (c) and 8 (d) is a plate-shaped member. Similar to the heat generating member 31 shown in FIGS. 7 (a) to 7 (c), the heat generating member 310 includes an insulating substrate 31a, a heat generating portion 31b, an insulating layer 31c, an element connection electrode 31d, and a feeder line electrode 31e. , 31f. As shown in FIG. 8C, the heat generating portion 31b is formed on the second surface (lower surface in FIG. 8C) of the insulating substrate 31a. As shown in FIG. 8 (c), the heat generating portion 31b is provided in a strip shape extending in the X direction along one long edge portion from one end to the other end of the insulating substrate 31a having a substantially rectangular shape in a plan view. ing.
  • an insulating layer 31c is provided on the heat generating portion 31b.
  • the insulating layer 31c is provided at the center of the insulating substrate 31a in the X direction so as to cover the region excluding both ends 31g and 31g of the heat generating portion 31b. Therefore, both ends 31g and 31g of the heat generating portion 31b are not covered with the insulating layer 31c and are exposed.
  • the feeder line electrodes 31e and 31f are provided at the X-direction end of the insulating substrate 31a.
  • the feeder electrodes 31e and 31f overlap each other of the heat generating portions 31b at both ends 31g and 31g in a plan view, respectively. As a result, the feeder electrodes 31e and 31f are electrically connected to the heat generating portion 31b.
  • the element connection electrode 31d is provided in a region on the insulating layer 31c excluding the region where the feeder electrodes 31e and 31f are provided. As shown in FIG. 8C, the element connection electrodes 31d are arranged apart from the feeder line electrodes 31e and 31f. The element connection electrode 31d is provided at a position where it overlaps with the heat generating portion 31b on the insulating layer 31c in a plan view.
  • the heat generating member 31 is arranged in contact with the cutting portion 23 of the fuse element 2 (upper surface in FIG. 3). As shown in FIGS. 6A and 6B, the heat generating member 31 is on the side of the cutting portion 23 of the fuse element 2, the second connecting portion 26, and the second connecting portion 26 of the second end portion 22. It is arranged so that it overlaps with a part in a plan view. Moreover, in the present embodiment, as shown in FIG. 7A, the heat generating portion 31b of the heat generating member 31 is provided along one long edge portion of the insulating substrate 31a having a substantially rectangular shape in a plan view.
  • the heat generating portion 31b of the heat generating member 31 is arranged so as to overlap with the cutting portion 23 of the fuse element 2 in a plan view. Therefore, in the protection element 100 of the present embodiment, the cutting portion 23 is efficiently heated by the heat generating member 31.
  • the feeder electrodes 31e and 31f of the heat generating member 31 are the feeder lines 63b, respectively. It is electrically connected to the third terminal 63 and the fourth terminal 64 by 64b.
  • the heat generating member 31 and the third terminal 63 and the fourth terminal 64 are electrically connected by a feeding member composed of a feeding line 63b and 64b will be described as an example.
  • the power feeding member only needs to be able to electrically connect the heat generating member 31 to the third terminal 63 and the fourth terminal 64, and the shape of the feeding member is not limited to the linear shape such as the feeding lines 63b and 64b. ..
  • the third terminal 63 includes an external terminal hole 63a. Further, the fourth terminal 64 is provided with an external terminal hole 64a. As shown in FIG. 4, the external terminal hole 63a and the external terminal hole 64a can be through holes having a substantially circular shape in a plan view.
  • the shapes of the third terminal 63 and the fourth terminal 64 may be any shape as long as they can be engaged with an external terminal (not shown), and may be, for example, a claw shape having an open portion in a part thereof, and are shown in FIG.
  • a flange portion widened on both sides toward the feeder lines 63b and 64b is provided at the end of the side connected to the feeder lines 63b and 64b. Also, it is not particularly limited.
  • the third terminal 63 and the fourth terminal 64 have flange portions 63c and 64c, the third terminal 63 and the fourth terminal 64 are hard to come off from the slits 63d and 64d of the case 6, and the protective element has good reliability and durability. It becomes 100.
  • the third terminal 63 and the fourth terminal 64 may have substantially the same shape or may have different shapes.
  • Examples of the material used for the third terminal 63 and the fourth terminal 64 include the same materials as those of the first terminal 61 and the second terminal 62.
  • substantially the same shape made of the same material can be used as the third terminal 63, the fourth terminal 64, the first terminal 61, and the second terminal 62.
  • FIG. 9 is a drawing for explaining the structure of the convex member 33 provided in the protection element 100 of the first embodiment.
  • FIG. 9A is a view seen from the first surface.
  • FIG. 9B is a side view seen from the X direction.
  • FIG. 9C is a side view seen from the Y direction.
  • FIG. 9D is a view seen from the second surface.
  • 9 (e) and 9 (f) are perspective views.
  • the convex member 33 is a member having a convex portion on the fuse element 2 side.
  • the convex member 33 is a movable member having a function of applying the pressing force of the pressing means 5 to the cutting portion 23 of the fuse element 2.
  • the convex member 33 has a substantially rectangular shape in a plan view. Convex regions 33d and 33d extending outward (X direction) are provided on the two opposite sides of the convex member 33 in a plan view, respectively.
  • a first guide member 33a and a second guide member 33b stand on the first surface (upper surface) side of the convex member 33. It is set up.
  • the heights (lengths in the Z direction from the upper surface) of the first guide member 33a and the second guide member 33b may all be the same as shown in FIG. 9C, and for example, the first guide member 33a may be the same.
  • the second guide member 33b may be different.
  • the heights of the first guide member 33a and the second guide member 33b can be appropriately determined according to the shape of the pressing means 5.
  • the first guide member 33a is provided at the edges of the convex regions 33d and 33d of the convex member 33, respectively.
  • Each first guide member 33a has a columnar shape having a substantially rectangular shape in a plan view with the direction along the edge of the convex member 33 as the long side direction.
  • the outer surface of each first guide member 33a functions as a guide for installing the convex member 33 at a predetermined position of the concave member 4.
  • the second guide member 33b is provided at each of the four corners of the convex member 33.
  • Each second guide member 33b has a substantially triangular columnar shape.
  • the inner surface of the first guide member 33a and the inner surface of the second guide member 33b are guides for installing the pressing means 5 in the pressing means storage area 33h surrounded by the first guide member 33a and the second guide member 33b. Functions as.
  • a convex portion 33c protruding from the second surface is provided on the second surface (lower surface) side of the convex member 33.
  • the convex portion 33c is provided in a strip shape so as to connect the two convex regions 33d and 33d of the convex member 33 in a plan view. Therefore, as shown in FIG. 9D, the length L33 of the convex portion 33c is the same as the width of the convex member 33 in the X direction.
  • the convex portion 33c has wide portions 33f and 33f, a central portion 33e, and low-height regions 33g and 33g.
  • the wide portions 33f and 33f are arranged in the convex regions 33d and 33d.
  • the central portion 33e is arranged in the central portion between the wide portions 33f and 33f.
  • the low height regions 33g and 33g are provided between the wide portions 33f and 33f and the central portion 33e, respectively.
  • the low-height regions 33g and 33g are low-height regions protruding from the second surface with respect to the central portion 33e.
  • the low-height region 33g of the convex portion 33c is provided at a position where the feeding line electrodes 31e and 31f of the heat generating member overlap with each other in a plan view.
  • a gap is formed between the convex portion 33c and the heat generating member by laminating the convex member 33 and the heat generating member.
  • a low-height region 33 g is provided at a position where it overlaps with the feeder line electrodes 31e and 31f of the heat generating member in a plan view, and the heat generating member is as shown in FIGS. 8 (a) and 8 (b).
  • the gap between the convex portion 33c formed by the low height region 33g and the heat generating member is the heat generating member 32. It can be used as an area for connecting the feeder line electrode 31e and the feeder line 63b, and a region for connecting the feeder line electrode 31f and the feeder line 64b.
  • the widths D1 of the wide portions 33f and 33f of the convex portions 33c are the same as the widths of the convex regions 33d and 33d.
  • the widths of the low height regions 33g and 33g and the width D2 of the central portion 33e are narrower on one side than the widths D1 of the wide portions 33f and 33f.
  • the width D2 of the central portion 33e is narrower than the width D3 of the heat generating member 31 in the Y direction (see FIG. 6A).
  • the ratio (D2: D3) of the width D2 of the central portion 33e of the convex portion 33c to the width D3 of the heat generating member 31 in the Y direction is preferably 1: 1.2 to 1: 5. It is more preferably 5 to 1: 4.
  • D2 is sufficiently narrower than D3, so that the pressing force by the pressing means 5 can be efficiently transmitted to the cutting portion 23.
  • D2 is too narrow, and the surface of the convex portion 33c on the fuse element 2 side and the surface of the fuse element 2 on the convex portion 33c side are arranged in parallel. It does not become difficult and is preferable.
  • the surface of the convex portion 33c on the fuse element 2 side and the surface of the fuse element 2 on the convex portion 33c side are arranged in parallel, the pressing force by the pressing means 5 can be efficiently transmitted to the cutting portion 23.
  • the height 33H of the convex portion 33c is substantially the same as that of the wide portions 33f and 33f and the central portion 33e as shown in FIG. 9C. As shown in FIG. 16, the height 33H of the convex portion 33c is shorter than the depth H46 of the concave portion 46 in the concave member 4.
  • the ratio (33H / H46) of the height 33H of the convex portion 33c to the depth H46 of the concave portion 46 is preferably 0.1 to 0.8, and more preferably 0.2 to 0.6. When the above ratio is within the above range, the convex portion 33c that has entered the concave portion 46 more reliably shields between the cut end portions of the fuse element 2. As a result, the distance between the cut ends of the fuse element 2 becomes long, and the continuation of the arc discharge generated when the fuse element 2 is cut can be suppressed in a shorter time.
  • the length L2 (see FIG. 18) of the central portion 33e of the convex portion 33c shown in FIG. 9D is from the length (width in the X direction) L3 of the heat generating member 31 (see FIGS. 6A and 18). Is also getting narrower. As a result, the pressing by the pressing means 5 is efficiently loaded on the cutting portion 23 of the fuse element 2 via the convex portion 33c of the convex member 33 and the heat generating member 31.
  • the length L2 of the central portion 33e is larger than the width 23D in the X direction (see FIGS. 5 and 17B) of the cutting portion 23 because the pressing by the pressing means 5 can uniformly load the cutting portion 23. Is preferable.
  • the convex member 33 is made of an insulating material that can maintain a hard state even at the softening temperature of the material constituting the fuse element 2, or an insulating material that does not substantially deform.
  • a ceramic material, a resin material having a high glass transition temperature, or the like can be used as the material of the convex member 33.
  • the glass transition temperature (Tg) of a resin material is the temperature at which a soft rubber state changes to a hard glass state. When the resin is heated above the glass transition temperature, the molecules tend to move and become a soft rubber state. On the other hand, as the resin cools, the movement of molecules is restricted, resulting in a hard glass state.
  • the ceramic material examples include alumina, mullite, and zirconia, and it is preferable to use a material having high thermal conductivity such as alumina.
  • the convex member 33 is made of a material having high thermal conductivity such as a ceramic material, the heat generated when the fuse element 2 is cut can be efficiently dissipated to the outside. As a result, the continuation of the arc discharge generated when the fuse element 2 is blown is suppressed more effectively.
  • the resin material having a high glass transition temperature examples include engineering plastics such as polyphenylene sulfide (PPS) resin, nylon-based resin, fluororesin, and silicone-based resin.
  • PPS polyphenylene sulfide
  • Resin materials generally have lower thermal conductivity than ceramic materials, but at lower cost.
  • nylon-based resin is preferable because it has high tracking resistance (resistance to tracking (carbonized conductive path) destruction).
  • nylon-based resins it is particularly preferable to use nylon 46, nylon 6T, and nylon 9T. Tracking resistance can be determined by testing based on IEC60112.
  • the nylon-based resin it is preferable to use a resin having a tracking resistance of 250 V or more, and it is more preferable to use a resin having a tracking resistance of 600 V or more.
  • the convex member 33 may be made of a material other than the resin such as a ceramic material, and a part of the convex portion 33c may be covered with a nylon resin.
  • the convex member 33 can be manufactured by a known method.
  • FIG. 10 is a drawing for explaining the structure of the concave member 4 provided in the protection element 100 of the first embodiment.
  • FIG. 10A is a view seen from the first surface.
  • FIG. 10B is a side view seen from the X direction.
  • FIG. 10 (c) is a side view seen from the Y direction.
  • FIG. 10 (d) is a view seen from the second surface.
  • FIG. 10 (e) is a perspective view.
  • the concave member 4 has a substantially rectangular shape in a plan view with the X direction as the long side direction.
  • the terminal installation areas 41, 42, 43, 44 and the recess 46 are located on the first surface (upper surface) side of the concave member 4. And a first guide member 4a and a second guide member 4b are provided.
  • the terminal installation areas 41, 42, 43, and 44 have substantially the same shape, and are formed of a plane lower than the peripheral height provided in a band shape along each side of the concave member 4 having a substantially rectangular shape in a plan view.
  • a coupling portion between the first end portion 21 of the fuse element 2 and the first terminal 61 is placed in the terminal installation area 41.
  • the difference between the terminal installation area 41 and the surrounding height is a dimension corresponding to the thickness of the first terminal 61.
  • a coupling portion between the second end portion 22 of the fuse element 2 and the second terminal 62 is placed in the terminal installation area 42.
  • the difference between the terminal installation area 42 and the surrounding height is a dimension corresponding to the thickness of the second terminal 62.
  • a coupling portion of the third terminal 63 with the feeder line 63b is placed in the terminal installation area 43.
  • the difference between the terminal installation area 43 and the surrounding height is a dimension corresponding to the thickness of the third terminal 63.
  • a coupling portion of the fourth terminal 64 with the feeder line 64b is placed in the terminal installation area 44.
  • the difference between the terminal installation area 44 and the surrounding height is a dimension corresponding to the thickness of the fourth terminal 64.
  • the first guide members 4a, 4a and the second guide members 4b, 4b are surrounded by the terminal installation areas 41, 42, 43, 44 in a plan view. It is arranged inside the area in contact with the terminal installation area 43 or the terminal installation area 44.
  • the first guide members 4a and 4a are substantially L-shaped columns in a plan view.
  • the second guide members 4b and 4b are substantially rectangular columns in a plan view.
  • the two second guide members 4b and 4b are arranged on one of the long sides of the concave member 4 having a substantially rectangular shape in a plan view.
  • the first guide members 4a and 4a and the second guide members 4b and 4b function as guides for installing the convex member 33 at a predetermined position of the concave member 4.
  • the heights (lengths in the Z direction from the upper surface) of the first guide members 4a and 4a and the second guide members 4b and 4b are substantially the same as shown in FIG. 10 (c). As shown in FIG. 3, the heights of the first guide members 4a and 4a and the second guide members 4b and 4b can be appropriately determined according to the shape inside the accommodating portion 65 of the case 6.
  • the recess 46 is provided in the central portion of the concave member 4 in a plan view.
  • the recess 46 is arranged so as to sandwich the wide portion 46a and the wide portion 46a, and has narrow portions 46b and 46c that are narrower only on the first guide member 4a and 4a side than the wide portion 46a.
  • the narrow portion 46b is in contact with the terminal installation area 43, the first guide member 4a, and the second guide member 4b.
  • the narrow portion 46c is in contact with the terminal installation area 44, the first guide member 4a, and the second guide member 4b.
  • the width D4 in the Y direction in the wide portion 46a of the concave portion 46 is the width D1 of the wide portions 33f and 33f in the convex portion 33c of the convex member 33 (not shown in FIG. 16). 9 (d)) and the width D2 (see FIG. 16) of the central portion 33e, and wider than the width D3 (see FIG. 16) of the heat generating member 31 in the Y direction. Further, the length L4 in the X direction (see FIGS. 10 (a) and 18) of the wide portion 46a of the concave portion 46 is longer than the length L33 (see FIG. 18) of the convex portion 33c of the convex member 33 and generates heat.
  • the length (width in the X direction) of the member 31 is longer than L3 (see FIG. 18).
  • the cut portion 23, the heat generating member 31, and the convex portion 33c of the convex member 33 are arranged at positions in the wide portion 46a of the concave portion 46 in a plan view. That is, the convex portion 33c is arranged at a position where the outer periphery overlaps with at least a part of the inner area of the concave portion 46 in a plan view and overlaps with a part of the cut portion 23.
  • the surface formed continuously on the wide portion 33f and the central portion 33e is inside the concave portion 46 facing the Y direction in a plan view. It is arranged along the inner surface of one of the wall surfaces 46d. Therefore, in the protection element 100 of the present embodiment, when the cutting portion 23 is cut, as shown in FIGS. 15B and 17B, a convex member is formed in the wide portion 46a of the concave portion 46. The convex portion 33c of 33 is inserted, and the heat generating member 31 is accommodated.
  • an edge portion of the cut portion 23 of the fuse element 2 on the first end 21 side is arranged at a position close to the inner wall surface 46d of the recess 46 in a plan view shown in FIG. 10 (a).
  • the length L4 in the X direction of the wide portion 46a of the recess 46 is longer than the width 23D in the X direction of the cut portion 23 (see FIGS. 5 and 17B). Therefore, when the cut portion 23 is cut, as shown in FIGS. 15 (b) and 17 (b), a part of the fuse element 2 divided by the cut portion 23 is housed in the recess 46 so as to bend. Will be done.
  • the guideline for the distance between the two is, for example, 0.1. It is about 0.5 mm, preferably 0.2 to 0.4 mm.
  • the edge portion on the first end portion 21 side of the cut portion 23 is formed. , Is inserted while being in contact with the inner wall surface 46d of the recess 46. As a result, the edge portion of the cutting portion 23 on the first end portion 21 side is easily cut, which is preferable.
  • the heat of the cut portion 23 is transmitted to the recess 46 and the fuse is used. It is more preferable because it can prevent the element 2 from being softened.
  • the width D5 in the Y direction (see FIGS. 10A and 16) of the narrow portions 46b and 46c of the recess 46 is larger than the width of the feeder lines 63b and 64b (see FIG. 6A) in the Y direction. wide.
  • the length L5 (see FIGS. 10A and 18) of the entire recess 46 in the X direction is longer than the length (width in the X direction) L3 (see FIG. 18) of the heat generating member 31. Therefore, as shown in FIG. 17B, when the cutting portion 23 is cut, the portions of the feeder lines 63b and 64b that are cut along with the cutting of the cutting portion 23 are separated from the cutting portion 23. , Is housed in the recess 46 so as to bend along the edge of the recess 46.
  • the width (length in the Y direction) D3 of the heat generating member 31 in the Y direction is shorter than the dimension of the depth (length in the Z direction) H46 of the recess 46. Therefore, even if the cut portion 23 is cut, the heat generating member 31 does not bend and is housed in the recess 46 while maintaining the overall shape as shown in FIGS. 15 (b) and 17 (b).
  • a convex portion 47 is arranged in a strip shape in the length direction of the concave member 4 in the central portion on the second surface (lower surface) 47b side of the concave member 4. ing. The top portion 47a of the convex portion 47 is exposed from the case 6.
  • the same material as that of the convex member 33 can be used.
  • the material of the concave member 4 it is preferable to use a nylon-based resin or a fluorine-based resin from the viewpoint of low cost and tracking resistance.
  • the material of the concave member 4 and the material of the convex member 33 may be the same or different.
  • the concave member 4 is made of a material having high thermal conductivity such as a ceramic material, the heat generated when the fuse element 2 is cut can be efficiently dissipated to the outside, and the arc discharge generated when the fuse element 2 is cut can be generated. Continuity is more effectively suppressed.
  • the concave member 4 may be made of a material other than the resin such as a ceramic material, and a part of the concave portion 46 may be covered with a nylon resin.
  • the concave member 4 can be manufactured by a known method.
  • the pressing means 5 applies a force so as to reduce the relative distance in the direction (Z direction) in which the movable member 3 and the concave member 4 sandwich the cutting portion 23.
  • the pressing means 5 in the protective element 100 of the present embodiment applies a force so as to reduce the relative distance between the convex member 33 and the concave member 4 of the movable member 3 in the direction of sandwiching the cut portion 23 (Z direction). It is a thing.
  • the pressing means 5 for example, a known means capable of applying an elastic force such as a spring or rubber can be used.
  • a spring is used as the pressing means 5.
  • the spring (pressing means 5) is placed on the pressing means storage area 33h of the convex member 33 shown in FIG. 9 (e) and is held in a contracted state.
  • the material of the spring used as the pressing means 5 a known material can be used.
  • a cylindrical spring may be used, or a conical spring may be used.
  • a conical spring is used as the pressing means 5 the side having a small outer diameter may be arranged toward the cutting portion 23 side, or the side having a large outer diameter may be arranged toward the cutting portion 23 side. ..
  • a conical spring as the pressing means 5 because the contraction length can be shortened.
  • a conical spring is used as the pressing means 5
  • a conical spring is used as the pressing means 5 and the side having a large outer diameter is arranged toward the cutting portion 23 side, elastic force can be evenly applied from the pressing means 5 by the movable member 3, which is preferable.
  • the protection element 100 of the present embodiment only one pressing means 5 is installed on the movable member 3 side of the cutting portion 23, but a plurality of pressing means 5 are installed on the movable member 3 side of the cutting portion 23. You may.
  • the protective element 100 includes a plurality of pressing means 5, the elastic force of the entire protective element 100 may be adjusted by setting the degree of contraction of each pressing means 5 to be different.
  • the case 6 in the protection element 100 of the present embodiment accommodates the pressing means 5, the movable member 3, the fuse element 2, and the recess 46 of the concave member 4.
  • the case 6 is composed of two members, a first case 6a and a second case 6b which is arranged and joined to face the first case 6a.
  • the first case 6a and the second case 6b, which are one member of the case 6, are the same.
  • FIG. 11 is a drawing for explaining the structures of the first case 6a and the second case 6b provided in the protection element 100 of the first embodiment.
  • FIG. 11A is a view seen from the pressing means 5 side (upper side).
  • FIG. 11B is a side view seen from the X direction.
  • FIG. 11C is a side view seen from the Y direction.
  • FIG. 11D is a view seen from the concave member 4 side (lower side).
  • FIG. 11 (e) is a perspective view.
  • the first case 6a and the second case 6b each have a substantially rectangular parallelepiped shape in which the length of the surface in the Y direction is shorter than the length of the surface in the X direction.
  • a housing portion 65 integrated by joining the first case 6a and the second case 6b is formed in the first case 6a and the second case 6b.
  • the accommodating portion 65 functions as a holding frame for holding the pressing means 5 in a contracted state. That is, the pressing means 5 is housed in the case 6 in a state where a force is applied so as to reduce the relative distance in the direction in which the cutting portion 23 of the fuse element 2 is sandwiched between the movable member 3 and the concave member 4. .
  • one of the two surfaces extending in the X direction is a surface to be arranged so as to face each other. It is an opening of the accommodating portion 65.
  • the accommodating portion 65 included in the first case 6a and the second case 6b has a first inner wall surface 6c, a second inner wall surface 6d, and a side wall surface 66, respectively.
  • the first inner wall surface 6c, the second inner wall surface 6d, and the side wall surface 66 in each accommodating portion 65 are integrally formed of the same member.
  • the first inner wall surface 6c, the second inner wall surface 6d, and the side wall surface 66 are integrated.
  • the stress inside the case 6 generated by the pressing means 5 is applied to the first inner wall surface 6c, the side wall surface 66, and the second inner wall surface, respectively, in a state where the fuse element 2 is not cut.
  • the protection element 100 of the first embodiment includes a heat generating member 31. Therefore, in the first case 6a and the second case 6b, the stress inside the case 6 generated by the pressing means 5 is applied to the first inner wall surface 6c, the side wall surface 66, and the second case, respectively, in a state where the fuse element 2 is not cut. 2
  • the inner wall surface 6d supports and holds the convex member 33, the heat generating member 31, and the fuse element 2 in the shape of a hook.
  • the first inner wall surface 6c and the second inner wall surface 6d are arranged so as to face each other in the expansion / contraction direction (Z direction) of the pressing means 5.
  • the first inner wall surface 6c forms the top surface of the accommodating portion 65.
  • the first inner wall surface 6c is arranged in contact with the pressing means 5.
  • the second inner wall surface 6d forms the bottom surface of the accommodating portion 65.
  • the second inner wall surface 6d is arranged in contact with the second surface (lower surface) 47b of the concave member 4.
  • the first inner wall surface 6c and the second inner wall surface 6d form a frame-like structure together with the integrated side wall surface 66, and hold the pressing means 5 in a contracted state.
  • the first case 6a and the second case 6b are joined by applying an adhesive to the steps 67 and 68 shown in FIGS. 11 (c) and 11 (e) and arranging them facing each other. Therefore, in the protective element 100 of the present embodiment, for example, when a case is used in which the pressing means 5 has an opening that opens in the expansion / contraction direction (Z direction) and the lid is joined to the opening by using an adhesive. As described above, the stress from the pressing means 5 in the contracted state is not applied to the joint surface. Therefore, in the protection element 100 of the present embodiment, the pressing means 5 can be stably held in a contracted state, and the pressing force of the pressing means 5 can be held for a long period of time.
  • the side wall surface 66 connects the first inner wall surface 6c and the second inner wall surface 6d in the expansion / contraction direction (Z direction) of the pressing means 5.
  • the side wall surface 66 forms the side surface of the accommodating portion 65.
  • the side wall surface 66 has a first side wall surface 6h extending in the X direction and a second side wall surface 6f extending in the Y direction and arranged to face each other. And has a third side wall surface of 6 g.
  • the opening 61d (or 62d) is provided at the center of the first side wall surface 6h in the height direction (Z direction) at the center in the X direction, from a substantially oval-shaped through hole elongated in the X direction.
  • the opening 61d (or 62d) is provided at the center of the first side wall surface 6h in the height direction (Z direction) at the center in the X direction, from a substantially oval-shaped through hole elongated in the X direction.
  • the opening 61d (or 62d) is provided at the center of the first side wall surface 6h in the height direction (Z direction) at the center in the X direction, from a substantially oval-shaped through hole elongated in the X direction.
  • the opening 61d (or 62d) is provided at the center of the first side wall surface 6h in the height direction (Z direction) at the center in the X direction, from a substantially oval-shaped through hole elongated in the X direction.
  • an elongated slit 63d in the Y direction is provided at the center in the height direction (Z direction) at the edge of the second side wall surface 6f.
  • the width of the second side wall surface 6f in the Y direction is wider in the portion above the slit 63d than in the portion below the slit 63d.
  • An elongated slit 64d in the Y direction is provided at the center in the height direction (Z direction) at the edge of the third side wall surface 6g.
  • the width of the third side wall surface 6g in the Y direction is narrower in the portion above the slit 64d than in the portion below the slit 64d.
  • the edge of the second side wall surface 6f of the first case 6a is integrated by being joined to the edge of the third side wall surface 6g of the second case 6b to form one side surface extending in the Y direction of the case 6. do. Further, the edge portion of the third side wall surface 6g of the first case 6a is integrated by being joined to the edge portion of the second side wall surface 6f of the second case 6b, and the other side surface extending in the Y direction of the case 6 is integrated. To form. By joining the first case 6a and the second case 6b, the slit 64d and the slit 63d are connected.
  • openings formed by substantially oval-shaped through holes elongated in the Y direction are formed on the two side surfaces of the case 6 extending in the Y direction.
  • a third terminal 63 (or a fourth terminal 64) is passed through the formed opening. Therefore, the width and length of the slit 64d and the slit 63d are determined according to the shape of the portion of the third terminal 63 (or the fourth terminal 64) exposed from the case 6.
  • the edge portion on the wall surface 6c side has a thin thickness, and a step 68 with the extending surface of the outer surface is formed. From the center position in the X direction at the edge of the first inner wall surface 6c, the edge portion on the first inner wall surface 6c side of the slit 63d on the second side wall surface 6f is thinner and has a step on the extending surface of the inner surface. 67 is formed.
  • the steps 67 and 68 continuously formed on the edges of the first inner wall surface 6c and the side wall surface 66 are joint surfaces of the first case 6a and the second case 6b.
  • the steps 67 and 68 prevent misalignment when joining the first case 6a and the second case 6b, and increase the joining surface to improve the joining strength.
  • the shapes of the first inner wall surface 6c, the second inner wall surface 6d, and the side wall surface 66 are the pressing means 5 in a contracted state, the movable member 3, the fuse element 2, and the concave member 4. It is said that the shape corresponds to the shape in which the above-mentioned is laminated.
  • the case 6 in the present embodiment is used by joining the first case 6a and the second case 6b so as to face each other.
  • the pressing means 5 is housed in the case 6 in a contracted state.
  • Case 6 As the material of the case 6, the same material as that of the convex member 33 can be used.
  • the material of the case 6 and the material of the convex member 33 may be the same or different.
  • Case 6 When the case 6 is made of a material having high thermal conductivity such as a ceramic material, the heat generated when the fuse element 2 is cut can be efficiently dissipated to the outside. Therefore, the continuation of the arc discharge generated when the fuse element 2 is blown is suppressed more effectively.
  • Case 6 can be manufactured by a known method.
  • FIG. 12A a first terminal 61, a second terminal 62, a third terminal 63, and a fourth terminal 64 are prepared.
  • the fuse element 2 shown in FIG. 5 is prepared.
  • the first end portion 21 of the fuse element 2 is connected by soldering onto the first terminal 61.
  • the second end portion 22 is connected to the second terminal 62 by soldering.
  • solder material used for soldering in the present embodiment known materials can be used, and it is preferable to use a material containing Sn as a main component from the viewpoint of resistivity and melting point.
  • the first end portion 21, the second end portion 22, and the first terminal 61 and the second terminal 62 may be connected by welding, or may be connected by mechanical joining such as rivet joining or screw joining. A known joining method can be used.
  • feeder lines 63b and 64b prepare feeder lines 63b and 64b. Then, as shown in FIG. 12B, the feeding line 63b is connected to the third terminal 63 by soldering. Further, the feeding line 64b is connected to the fourth terminal 64 by soldering.
  • the feeder lines 63b and 64b and the third terminal 63 and the fourth terminal 64 may be connected by welding, and a known joining method can be used.
  • the heat generating member 31 shown in FIGS. 7 (a) to 7 (c) is prepared.
  • the feeder electrodes 31e and 31f (not shown in FIG. 12 (c)) arranged on the second surface (lower surface in FIG. 12 (c)) of the heat generating member 31.
  • the feeder lines 63b and 64b are connected by, for example, a soldering method.
  • the element connection electrode 31d (not shown in FIG. 12C) arranged on the second surface (lower surface in FIG. 12) of the heat generating member 31 and the fuse element 2 are connected by, for example, a method of soldering. ..
  • the concave member 4 shown in FIGS. 10 (a) to 10 (e) is prepared. Then, as shown in FIG. 13A, the heat generating member 31 is placed on the recess 46 of the concave member 4. At the same time, the first terminal 61 is installed in the terminal installation area 41, the second terminal 62 is installed in the terminal installation area 42, the third terminal 63 is installed in the terminal installation area 43, and the fourth terminal 64 is installed in the terminal installation area 44.
  • the convex member 33 shown in FIGS. 9 (a) to 9 (f) is prepared.
  • the convex member 33 is installed on the heat generating member 31 with the convex portion 33c facing the heat generating member 31 side.
  • the first guide member 33a of the convex portion 33c is installed between the first guide member 4a and the second guide member 4b of the concave member 4.
  • the pressing means 5 is installed in the pressing means storage area 33h of the convex member 33.
  • a conical spring is used as the pressing means 5.
  • the conical spring is installed in the pressing means storage area 33h with the side having the smaller outer diameter facing the cutting portion 23 side.
  • a first case 6a and a second case 6b are prepared (see FIGS. 11 (a) to 11 (e)). Then, the first terminal 61 is passed through the opening 61d of the first case 6a. Further, the first case 6a and the second case 6b are arranged so as to face each other, and the second terminal 62 is passed through the opening 62d of the second case 6b.
  • first case 6a and the second case 6b are joined.
  • the step 67 formed in the second case 6b and the step 68 formed in the first case 6a are joined.
  • An adhesive can be used for joining the first case 6a and the second case 6b, if necessary.
  • the adhesive for example, an adhesive containing a thermosetting resin can be used. Further, when joining the first case 6a and the second case 6b, if necessary, the first case 6a and the concave member 4 and / or the second case 6b and the concave member 4 are used with an adhesive. May be joined.
  • the second of the concave member 4 is in contact with the second inner wall surface 6d of the first case 6a and the second case 6b.
  • the front surface (lower surface) 47b is arranged.
  • the pressing means 5 is arranged in a contracted state so as to be in contact with the first inner wall surface 6c of the first case 6a and the second case 6b. As a result, the pressing means 5 in the contracted state is accommodated in the accommodating portion 65 of the case 6.
  • the third terminal 63 (or the fourth) is formed in the slit 63d of the first case 6a and the slit 64d of the second case 6b which are arranged so as to face each other. Insert the terminal 64). As a result, a part of the third terminal 63 (or the fourth terminal 64) is formed from the opening formed by connecting the slit 64d and the slit 63d by joining the first case 6a and the second case 6b. Is exposed to the outside of the case 6 (see FIG. 14B). By the above steps, the protective element 100 of the present embodiment is obtained.
  • FIG. 15 is a cross-sectional view of the protection element 100 according to the first embodiment cut along the AA'line shown in FIG.
  • FIG. 16 is an enlarged cross-sectional view showing a part of FIG. 15 (a) in an enlarged manner.
  • FIG. 17 is a cross-sectional view of the protection element 100 of the first embodiment cut along the line BB'shown in FIG.
  • FIG. 18 is an enlarged cross-sectional view showing a part of FIG. 17 (a) in an enlarged manner.
  • 15 (a) and 17 (a) are states before cutting.
  • 15 (b) and 17 (b) are the states after cutting.
  • the fuse element 2 of the protection element 100 of the present embodiment When a current exceeding the rated current flows through the fuse element 2 of the protection element 100 of the present embodiment, the fuse element 2 is heated by overcurrent heating and heating by the heat generating member 31. Then, the cut portion 23 of the fuse element 2 softened by raising the temperature is cut by the pressing force from the pressing means 5 loaded via the convex portion 33c of the convex member 33 and the heat generating member 31, and the energization is cut off. Will be done.
  • the cut portion 23 of the fuse element 2 is cut at the softening temperature. That is, the cut portion 23 is cut at a temperature at which the fuse element 2 becomes soft before reaching a completely melted state or at a temperature at which the solid phase and the liquid phase coexist. Therefore, in the protection element 100, the amount of heat generated when the fuse element 2 is blown is small, and the arc discharge itself generated when the cut portion 23 is cut can be reduced.
  • the fuse element 2 is loaded with the pressing by the pressing means 5 via the convex portion 33c of the convex member 33 and the heat generating member 31. Therefore, the configuration of the fuse element 2 and the elastic force of the pressing means 5 so that the fuse element 2 is not cut even if the temperature of the fuse element 2 is not higher than the softening temperature of the material constituting the fuse element 2. Etc. are set appropriately.
  • the heat generating member 31 provided in the protection element 100 of the present embodiment is provided in the external circuit when an abnormality occurs in the external circuit serving as the energization path of the protection element 100 and it becomes necessary to cut off the energization path. It has a heat generating portion 31b that is energized by a current control element. Therefore, when a current exceeding the rated current flows through the fuse element 2, the heat generating member 31 generates heat. Therefore, when a current exceeding the rated current flows through the fuse element 2, the temperature rise rate of the fuse element 2 is high, and the cut portion 23 of the fuse element 2 is quickly cut.
  • the arc discharge depends on the electric field strength that is inversely proportional to the distance between potentials.
  • the distance between potentials means the shortest distance between the cut surfaces of the cut portions 23.
  • the convex portion 33c of the convex member 33 is inserted into the concave portion 46 of the concave member 4 by the pressing force of the pressing means 5. Then, the cut fuse element 2 is housed in the concave member 4 together with the convex portion 33c of the convex member 33 and the heat generating member 31. As a result, as shown in FIGS. 15 (b) and 17 (b), the distance between the cut surfaces of the blown fuse elements 2 is rapidly increased.
  • the protection element 100 of the present embodiment can suppress the continuation of the arc discharge generated when the fuse element 2 is blown, even when installed in a current path having a high voltage and a large current, for example.
  • the fuse element 2 not in contact with the heat generating member 31 is recessed as shown in FIGS. 15 (b) and 17 (b). Bend along the edge of 46. Then, the fuse element 2 in contact with the heat generating member 31 is housed in the recess 46 together with the heat generating member 31. Therefore, the energization path via the fuse element 2 is physically and surely cut off.
  • the convex portion 33c of the convex member 33 is inserted into the concave portion 46 of the concave member 4 by the pressing force from the pressing means 5.
  • the feeder lines 63b and 64b are separated from the feeder electrodes 31e and 31f, and the second end portion 22 of the fuse element 2 is housed in the recess 46 (see FIGS. 15A and 15B). ). Therefore, when the fuse element 2 is blown, the power supply to the heat generating member 31 is cut off, and the heat generation of the heat generating member 31 is stopped. Therefore, the protective element 100 of the present embodiment has excellent safety.
  • the movable member 3 and the concave member 4 are arranged to face each other so as to sandwich the cut portion 23 of the fuse element 2, and the cut portion between the movable member 3 and the concave member 4 is arranged.
  • a pressing means 5 for applying a force so as to reduce the relative distance in the direction of sandwiching the 23 is provided. Therefore, the cutting portion 23 is cut at a temperature equal to or higher than the softening temperature of the fuse element 2. As a result, in the protection element 100 of the present embodiment, the amount of heat generated when the fuse element 2 is blown is small, and the arc discharge generated at the time of cutting can be reduced.
  • the blown fuse element 2 is housed in the concave member 4 together with the movable member 3 by the pressing force of the pressing means 5.
  • the distance between the cut surfaces of the blown fuse elements 2 is rapidly increased.
  • the arc discharge is quickly reduced.
  • FIG. 19 is a drawing showing the appearance of the protective element 200 according to the second embodiment.
  • FIG. 19A is a plan view.
  • 19 (b) and 19 (c) are side views.
  • FIG. 19D is a perspective view.
  • FIG. 20 is an enlarged view for explaining a part of the protection element 200 of the second embodiment, and is a plan view showing the fuse element 2a.
  • FIG. 21 is a drawing for explaining the arrangement relationship between the fuse element 2a and the heat generating member 31 in the protection element 200 of the second embodiment.
  • FIG. 21A is a plan view seen from the pressing means 5 side.
  • FIG. 21B is a perspective view seen from the concave member 4 side.
  • protection element 200 according to the second embodiment the same members as the protection element 100 according to the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • the protection element 200 according to the second embodiment is different from the protection element 100 according to the first embodiment only in that it does not have the fourth terminal 64 and the feeder line 64b in the protection element 100 and the shape of the fuse element. be.
  • the fuse element 2a included in the protection element 200 according to the second embodiment is provided between the first end portion 21 and the second end portion 22 in the same manner as the fuse element 2 in the protection element 100 of the first embodiment. It has a cut portion 23a (see FIGS. 20, 21 (a) and 21 (b)). As shown in FIG. 20, the width 23aD in the X direction of the cut portion 23a of the fuse element 2a is narrower than the width 21D in the X direction at the first end portion 21 and the width 22D in the X direction at the second end portion 22. There is.
  • the upper edge portion in FIG. 20 is a substantially straight line.
  • a notch is provided in the portion corresponding to the cutting portion 23a of the lower edge portion of the fuse element 2a in FIG. 20, similarly to the fuse element 2.
  • the width 23aD of the cut portion 23 is narrower than the width other than the cut portion 23a.
  • the feeder line electrode 31e (see FIGS. 7 (a) to 7 (c)) of the heat generating member 31 is the feeder line 63b. Is electrically connected to the third terminal 63 (see FIGS. 21 (a) and 21 (b)).
  • the feeder wire electrode 31f of the heat generating member 31 is a fuse. It is electrically connected to the element 2a.
  • the movable member 3 and the concave member 4 are arranged to face each other so as to sandwich the cut portion 23a of the fuse element 2a, as in the protective element 100 of the first embodiment.
  • a pressing means 5 for applying a force so as to reduce the relative distance in the direction of sandwiching the cut portion 23 between the 3 and the concave member 4 is provided. Therefore, in the protection element 200 according to the second embodiment, as in the protection element 100 of the first embodiment, the arc discharge generated when the fuse element 2a is blown can be reduced, and even if the arc discharge occurs, the arc discharge can be quickly performed. Is reduced to.
  • the case where the heat generating member 31 shown in FIGS. 7 (a) to 7 (c) is provided has been described as an example, but the protective element 200 according to the second embodiment has also been described. Similar to the protection element 100 according to the first embodiment, the heat generating member 32 shown in FIGS. 8 (a) and 8 (b) may be provided, and FIGS. 8 (c) and 8 (d) show. The heat generating member 310 shown may be provided.
  • the case where the fuse element 2a shown in FIG. 20 is provided has been described as an example, but the protection element 200 according to the second embodiment also has the protection element 100 according to the first embodiment. Similarly, the fuse element 2 shown in FIG. 5 may be provided. Also in this case, similarly to the protection element 200 according to the second embodiment, the feeder wire electrode 31f of the heat generating member 31 does not have the fourth terminal 64 and the feeder line 64b (FIGS. 7A to 7C). )) Is electrically connected to the fuse element 2.
  • FIG. 22 is a cross-sectional view for explaining the state before and after cutting the cut portion of the fuse element in the protection element 300 of the third embodiment.
  • FIG. 22 is a cross-sectional view taken along the position corresponding to the AA'line shown in FIG. 2 in the protection element 100 of the first embodiment.
  • FIG. 22A is a state before cutting.
  • FIG. 22B shows the state after cutting.
  • the same members as the protection element 100 according to the first embodiment described above are designated by the same reference numerals, and the description thereof will be omitted.
  • the difference between the protective element 300 according to the third embodiment and the protective element 100 according to the first embodiment is that the heat generating member 31 in the protective element 100 is arranged in contact with the cutting portion 23 on the concave member 4 side of the fuse element 2. Only where it is done.
  • the arc discharge generated when the fuse element 2 is blown can be reduced, and even if the arc discharge occurs, the arc discharge can be quickly performed. It will be reduced.
  • the protective element of the present invention is not limited to the protective element of the first to third embodiments described above.
  • the protective elements 100, 200, and 300 having the heat generating member 31 have been described as an example, but the heat generating member 31 is provided as needed. , It may not be provided.
  • the cut portion 23 is arranged in the concave portion 46 of the concave member 4 in a plan view, and is arranged in the concave portion 46 in a plan view. It is preferable that the recess 46 is arranged at a position close to the inner surface of the recess 46. Further, the movable member 3 also has a convex portion 33c arranged at a position where the outer periphery overlaps with at least a part of the inner area of the concave portion 46 in a plan view, similarly to the protective element 100 of the first embodiment described above. Is preferable.
  • the cutting portion 23 is cut at a temperature equal to or higher than the softening temperature of the fuse element 2.
  • the convex portion 33c is inserted into the concave portion 46 and the fuse element 2 is housed in the concave portion 46 so as to be bent. This is because the distance between the cut ends of the fuse element 2 becomes long, and the continuation of the arc discharge generated when the fuse element 2 is cut can be suppressed in a shorter time.
  • the fuse element 2 is loaded with the pressing by the pressing means 5 via the convex portion 33c of the convex member 33. Therefore, the convex portion 33c of the convex member 33 is inserted into the concave portion 46 of the concave member 4 by the pressing force of the pressing means 5. Then, the cut fuse element 2 is housed in the concave member 4 together with the convex portion 33c of the convex member 33. As a result, the distance between the cut surfaces of the blown fuse elements 2 is rapidly increased. As a result, even if an arc discharge occurs when the fuse element 2 is blown, the arc discharge is quickly reduced. Therefore, this protective element can suppress the continuation of the arc discharge generated when the fuse element 2 is blown, even when installed in a current path having a high voltage and a large current, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

第1端部と第2端部との間に切断部(23)を有し、第1端部から第2端部に向かう第1方向に通電されるヒューズエレメント(2)と、切断部(23)を挟み込むように対向配置された可動部材(3)および凹状部材(4)と、可動部材(3)と凹状部材(4)とで切断部(23)を挟み込む方向の相対的な距離を縮めるように力を加える押圧手段(5)とを備え、ヒューズエレメント(2)の軟化温度以上の温度において、押圧手段(5)の前記力により切断部(23)が切断される保護素子(100)とする。

Description

保護素子
 本発明は、保護素子に関する。
 本願は、2020年5月29日に、日本に出願された特願2020-094275号に基づき優先権を主張し、その内容をここに援用する。
 従来、定格を超える電流が流れたときに、発熱して溶断し、電流経路を遮断するヒューズエレメントがある。ヒューズエレメントを備える保護素子(ヒューズ素子)は、例えば、リチウムイオン二次電池を使用した電池パックに用いられている。
 近年、リチウムイオン二次電池は、モバイル機器だけでなく、電気自動車、蓄電池など幅広い分野で使用されている。そのため、リチウムイオン二次電池の大容量化が進められている。それに伴って、大容量のリチウムイオン電池を有し、高電圧かつ大電流の電流経路を有する電池パックに設置される保護素子が求められている。
 従来、ばねの力を用いた保護素子がある。
 例えば、特許文献1には、切断領域を切断するために設けられ得た切断プランジャが、休止位置においてばね部材に予め押圧されることができる短絡遮断スイッチが開示されている。
 特許文献2には、一対の電極の間に配置され、かつ、発熱片に分離力を加える弾性体を備える保護素子が開示されている。また、特許文献2には、接合材が溶けると圧縮コイルバネが発熱片を正極および負極から離すことが記載されている。
 特許文献3には、導電性の弾性体で付勢した可動導体と、一対のリード端子と、可動導体とリード端子とを接合して可動導体を固着する可溶体とを有し、可溶体の溶融温度で接合が溶融することで、弾性体の付勢力で可動導体を動かして回路を遮断する保護素子が記載されている。
 特許文献4には、可動電極にリード固定電極より隔離させる方向の力を作用させる圧縮バネが設けられ、低融点合金の溶融で可動電極が圧縮バネで付勢されてリード固定電極より隔離される保護素子が開示されている。
特許第6210647号公報 特許第5779477号公報 特許第5545721号公報 特許第4630403号公報
 高電圧用の保護素子において、ヒューズエレメントが溶断されると、アーク放電が生じ得る。アーク放電が発生すると、ヒューズエレメントが広範囲にわたって溶融し、蒸気化した金属が飛散する場合がある。この場合、飛散した金属によって新たな電流経路が形成されたり、飛散した金属が端子などの周囲の電子部品に付着したりするおそれがある。
 本発明は、上記事情を鑑みてなされたものであり、ヒューズエレメントの切断時に発生するアーク放電を低減できるとともに、発生したアーク放電の継続を抑制できる保護素子を提供することを目的とする。
 上記課題を解決するために、この発明は以下の手段を提案している。
[1] 第1端部と第2端部との間に切断部を有し、前記第1端部から前記第2端部に向かう第1方向に通電されるヒューズエレメントと、
 前記切断部を挟み込むように対向配置された可動部材および凹状部材と、
 前記可動部材と前記凹状部材とで前記切断部を挟み込む方向の相対的な距離を縮めるように力を加える押圧手段とを備え、
 前記ヒューズエレメントの軟化温度以上の温度において、前記押圧手段の前記力により前記切断部が切断される保護素子。
[2] 前記ヒューズエレメントの前記第1方向と交差する第2方向である幅であって、前記切断部の幅は前記切断部以外の幅よりも狭い[1]に記載の保護素子。
[3] 前記切断部が、平面視で前記凹状部材の凹部内に配置され、かつ平面視で前記凹部の内面に近接する位置に配置され、
 前記凹部の前記第1方向と交差する第2方向の長さが、前記切断部における前記第2方向の長さよりも長い[1]または[2]に記載の保護素子。
[4] 前記ヒューズエレメントの前記押圧手段側もしくは前記凹状部材側に、前記切断部に接して配置もしくは近接して配置された発熱部材を備える[1]~[3]のいずれかに記載の保護素子。
[5] 前記発熱部材が、平面視で前記凹状部材の凹部内に配置されている[4]に記載の保護素子。
[6] 前記発熱部材の前記第1方向の長さが、前記第1方向および前記第1方向と交差する第2方向と交差する、第3方向における前記凹部の長さよりも短い[5]に記載の保護素子。
[7] 前記ヒューズエレメントが、内層を低融点金属、外層を高融点金属とする積層体である[1]~[6]のいずれかに記載の保護素子。
[8] 前記低融点金属は、SnもしくはSnを主成分とする金属からなり、前記高融点金属は、AgもしくはCu、またはAgもしくはCuを主成分とする金属からなる[7]に記載の保護素子。
[9] 前記押圧手段がバネである[1]~[8]のいずれかに記載の保護素子。
[10] 前記バネが、円錐状であり、外径の小さい側を前記切断部側に向けて配置されている[9]に記載の保護素子。
[11] 前記可動部材は、平面視で前記凹状部材の凹部の内側のエリアの少なくとも一部と外周が重なる位置に配置される凸部を有し、
 前記切断部が切断されることにより、前記凹部内に前記凸部が挿入される[1]~[10]のいずれかに記載の保護素子。
[12] 前記第1端部に第1端子が電気的に接続され、前記第2端部に第2端子が電気的に接続されている[1]~[11]のいずれかに記載の保護素子。
[13] 前記発熱部材が抵抗体を有する[4]~[6]のいずれかに記載の保護素子。
[14] 前記発熱部材が、給電部材により第3端子、もしくは第3端子および第4端子と、電気的に接続され、前記給電部材を介した通電により前記抵抗体が発熱する[13]に記載の保護素子。
[15] 少なくとも前記ヒューズエレメントと前記可動部材と前記凹状部材の凹部と前記押圧手段とが収容される複数の部材から成るケースを有し、
 前記押圧手段が前記可動部材と前記凹状部材とで前記切断部を挟み込む方向の相対的な距離を縮めるように力を加えた状態で、前記ケース内に収容されている[1]~[14]のいずれかに記載の保護素子。
[16] 前記ケースの一部材が、前記押圧手段の伸縮方向に対向する第1内壁面と第2内壁面と、前記第1内壁面と前記第2内壁面とを繋ぐ側壁面とが同一部材で一体形成された収容部を有し、
 前記ヒューズエレメントが切断されていない状態で、前記押圧手段より発生するケース内部の応力を前記第1内壁面と前記側壁面と前記第2内壁面とで鎹状に支え保持する[15]に記載の保護素子。
[17] 前記凹状部材および前記ケースが、ナイロンまたはセラミックスからなる[15]または[16]に記載の保護素子。
[18] 前記切断部が、平面視で前記凹状部材の凹部内に配置され、かつ平面視で前記凹部の内面に近接する位置に配置され、
 前記可動部材は、平面視で前記凹部の内側のエリアの少なくとも一部と外周が重なる位置であって前記切断部の一部と重なる位置に配置される凸部を有し、
 前記切断部が切断されることにより、前記凹部内に前記凸部が挿入されるとともに、前記ヒューズエレメントの一部が折れ曲がるように前記凹部内に収容される[1]~[17]のいずれかに記載の保護素子。
 本発明の保護素子では、ヒューズエレメントの切断部を挟み込むように、可動部材および凹状部材が対向配置され、可動部材と凹状部材との切断部を挟み込む方向の相対的な距離を縮めるように力を加える押圧手段が備えられている。したがって、本発明の保護素子では、ヒューズエレメントの軟化温度以上の温度において、押圧手段の前記力により切断部が切断される。よって、本発明の保護素子では、ヒューズエレメントの切断時に発生する熱量が少なくて済み、切断時に発生するアーク放電を低減できる。また、本発明の保護素子では、押圧手段の押圧力によって、切断されたヒューズエレメントが可動部材とともに凹状部材に収容される。このことにより、切断されたヒューズエレメントの切断面同士の距離は、急速に広げられる。その結果、ヒューズエレメントの切断時にアーク放電が発生しても、アーク放電は速やかに低減される。
図1は、第1実施形態に係る保護素子100の全体構造を示した斜視図である。 図2は、第1実施形態に係る保護素子100の外観を示した図面であり、図2(a)は平面図であり、図2(b)および図2(c)は側面図であり、図2(d)は斜視図である。 図3は、第1実施形態に係る保護素子100を図2に示すA-A´線に沿って切断した断面図である。 図4は、第1実施形態に係る保護素子100の分解斜視図である。 図5は、第1実施形態の保護素子100の一部を説明するための拡大図であり、ヒューズエレメント2を示した平面図である。 図6は、第1実施形態の保護素子100におけるヒューズエレメント2と発熱部材31との配置関係を説明するための図面であり、図6(a)は押圧手段5側から見た平面図であり、図6(b)は凹状部材4側から見た斜視図である。 図7は、第1実施形態の保護素子100に備えられた発熱部材31の構造を説明するための図面であり、図7(a)はY方向から見た断面図であり、図7(b)はX方向中央部をX方向から見た断面図であり、図7(c)は平面図である。 図8は、発熱部材の他の例を説明するための図面であり、図8(a)は発熱部材32をY方向から見た断面図であり、図8(b)は図8(a)に示す発熱部材32のX方向中央部をX方向から見た断面図である。図8(c)は発熱部材310をY方向から見た断面図であり、図8(d)は図8(c)に示す発熱部材310のX方向中央部をX方向から見た断面図である。 図9は、第1実施形態の保護素子100に備えられた凸状部材33の構造を説明するための図面であり、図9(a)は第1表面から見た図であり、図9(b)はX方向から見た側面図であり、図9(c)はY方向から見た側面図であり、図9(d)は第2表面から見た図であり、図9(e)および図9(f)は斜視図である。 図10は、第1実施形態の保護素子100に備えられた凹状部材4の構造を説明するための図面であり、図10(a)は第1表面から見た図であり、図10(b)はX方向から見た側面図であり、図10(c)はY方向から見た側面図であり、図10(d)は第2表面から見た図であり、図10(e)は斜視図である。 図11は、第1実施形態の保護素子100に備えられた第1ケース6aおよび第2ケース6bの構造を説明するための図面であり、図11(a)は押圧手段5側から見た図であり、図11(b)はX方向から見た側面図であり、図11(c)はY方向から見た側面図であり、図11(d)は凹状部材4側から見た図であり、図11(e)は斜視図である。 図12は、第1実施形態の保護素子100の製造方法の一例を説明するための工程図である。 図13は、第1実施形態の保護素子100の製造方法の一例を説明するための工程図である。 図14は、第1実施形態の保護素子100の製造方法の一例を説明するための工程図である。 図15は、第1実施形態の保護素子100において、ヒューズエレメントの切断部の切断前と切断後の状態を説明するための断面図であり、図2に示すA-A´線に沿って切断した位置の断面図である。図15(a)は切断前の状態である。図15(b)は切断後の状態である。 図16は、図15(a)の一部を拡大して示した拡大断面図である。 図17は、第1実施形態の保護素子100において、ヒューズエレメントの切断部の切断前と切断後の状態を説明するための断面図であり、図2に示すB-B´線に沿って切断した位置の断面図である。図17(a)は切断前の状態である。図17(b)は切断後の状態である。 図18は、図17(a)の一部を拡大して示した拡大断面図である。 図19は、第2実施形態に係る保護素子200の外観を示した図面であり、図19(a)は平面図であり、図19(b)および図19(c)は側面図であり、図19(d)は斜視図である。 図20は、第2実施形態の保護素子200の一部を説明するための拡大図であり、ヒューズエレメント2aを示した平面図である。 図21は、第2実施形態の保護素子200におけるヒューズエレメント2aと発熱部材31との配置関係を説明するための図面であり、図21(a)は押圧手段5側から見た平面図であり、図21(b)は凹状部材4側から見た斜視図である。 図22は、第3実施形態の保護素子300において、ヒューズエレメントの切断部の切断前と切断後の状態を説明するための断面図であり、第1実施形態の保護素子100における図2に示すA-A´線に対応する位置に沿って切断した断面図である。図22(a)は切断前の状態である。図22(b)は切断後の状態である。
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
[第1実施形態]
(保護素子)
 図1~図3は、第1実施形態に係る保護素子を示した模式図である。第1実施形態の保護素子100は、平面視で略長方形である。以下の説明で用いる図面において、Xで示す方向は保護素子100の長手方向である。また、以下の説明で用いる図面において、Yで示す方向はX方向(第2方向)と直交する方向(第1方向)である。Zで示す方向は、X方向およびY方向に直交する方向(第3方向)である。
 図1は、第1実施形態に係る保護素子100の全体構造を示した斜視図である。図2は、第1実施形態に係る保護素子100の外観を示した図面である。図2(a)は平面図である。図2(b)および図2(c)は側面図である。図2(d)は斜視図である。図3は、第1実施形態に係る保護素子100を図2に示すA-A´線に沿って切断した断面図である。図4は、第1実施形態に係る保護素子100の分解斜視図である。
 図15~図18は、第1実施形態の保護素子100において、ヒューズエレメントの切断部の切断前と切断後の状態を説明するための断面図である。図15は、第1実施形態に係る保護素子100を図2に示すA-A´線に沿って切断した断面図である。図16は、図15(a)の一部を拡大して示した拡大断面図である。図17は、第1実施形態の保護素子100を図2に示すB-B´線に沿って切断した断面図である。図18は、図17(a)の一部を拡大して示した拡大断面図である。図15(a)および図17(a)は切断前の状態である。図15(b)および図17(b)は切断後の状態である。
 本実施形態の保護素子100は、図3および図4に示すように、切断部23を有するヒューズエレメント2と、可動部材3と、凹状部材4と、押圧手段5と、ケース6とを備えている。本実施形態の保護素子100は、ヒューズエレメント2の軟化温度以上の温度において、ヒューズエレメント2の切断部23が切断される。
(ヒューズエレメント)
 図5は、第1実施形態の保護素子100の一部を説明するための拡大図であり、ヒューズエレメント2を示した平面図である。図4および図5に示すように、ヒューズエレメント2は、第1端部21と、第2端部22と、第1端部21と第2端部22との間に設けられた切断部23とを有している。ヒューズエレメント2は、第1端部21から第2端部22に向かう方向であるY方向(第1方向)に通電される。
 図4に示すように、第1端部21は、第1端子61と電気的に接続されている。第2端部22は、第2端子62と電気的に接続されている。
 第1端子61と第2端子62とは、図4に示すように、略同形であってもよいし、それぞれ異なる形状であってもよい。第1端子61および第2端子62の厚みは、限定されるものではないが、目安を言えば、0.3~1.0mmとすることができる。第1端子61と第2端子62の厚みは、同じであってもよいし、異なっていてもよい。
 図4に示すように、第1端子61は、外部端子孔61aを備えている。また、第2端子62は、外部端子孔62aを備えている。外部端子孔61a、外部端子孔62aのうち、一方は電源側に接続するために用いられ、他方は負荷側に接続するために用いられる。外部端子孔61aおよび外部端子孔62aは、図4に示すように、平面視略円形の貫通孔とすることができる。
 第1端子61および第2端子62としては、例えば、銅、黄銅、ニッケルなどからなるものを用いることができる。第1端子61および第2端子62の材料として、剛性強化の観点からは黄銅を用いることが好ましく、電気抵抗低減の観点からは銅を用いることが好ましい。第1端子61と第2端子62とは、同じ材料からなるものであってもよいし、異なる材料からなるものであってもよい。
 第1端子61および第2端子62の形状は、図示しない電源側の端子あるいは負荷側の端子に係合可能な形状であればよく、例えば、一部に開放部分を有するつめ形状であってもよいし、図4に示すように、ヒューズエレメント2と接続される側の端部に、ヒューズエレメント2に向かって両側に拡幅された鍔部(図4において符号61c、62cで示す。)を有していてもよく、特に限定されない。第1端子61および第2端子62が鍔部61c、62cを有する場合、ケース6の開口部61d、62dから第1端子61および第2端子62が抜けにくく、信頼性および耐久性の良好な保護素子100となる。
 図3および図4に示すように、ヒューズエレメント2の厚みは、均一であってもよいし、部分的に異なっていてもよい。厚みが部分的に異なっているヒューズエレメントとしては、例えば、切断部23から第1端部21および第2端部22に向かって徐々に厚みが厚くなっているものなどが挙げられる。このようなヒューズエレメント2は、過電流が流れた時に切断部23がヒートスポットとなって、切断部23が優先的に昇温して軟化され、より確実に切断される。
 図5に示すように、ヒューズエレメント2の切断部23、第1端部21および第2端部22は、平面視略長方形の形状を有している。図5に示すように、第1端部21におけるX方向の幅21Dと、第2端部22におけるX方向の幅22Dとは、略同じとされている。切断部23におけるX方向の幅23Dは、第1端部21におけるX方向の幅21Dおよび第2端部22におけるX方向の幅22Dよりも細くなっている。このことにより、切断部23の幅23Dは、切断部23以外の幅よりも狭くなっている。
 図4および図5に示すように、第1端部21におけるY方向の長さL21は、第1端子61と平面視で重なる領域に対応する寸法とされている。第2端部22におけるY方向の長さL22は、第2端子62と平面視で重なる領域から切断部23側に延在している。したがって、第2端部22におけるY方向L22の長さは、第1端部21におけるY方向の長さL21よりも長くなっている。
 図5に示すように、切断部23と第1端部21との間には、平面視略台形の第1連結部25が配置されている。平面視略台形の第1連結部25における平行な辺の長い方が、第1端部21と結合されている。また、切断部23と第2端部22との間には、平面視略台形の第2連結部26が配置されている。平面視略台形の第2連結部26における平行な辺の長い方が、第2端部22と結合されている。第1連結部25と第2連結部26とは、切断部23に対して対称となっている。このことにより、ヒューズエレメント2におけるX方向の幅は、切断部23から第1端部21および第2端部22に向かって徐々に広くなっている。その結果、ヒューズエレメント2に過電流が流れた時に、切断部23がヒートスポットとなって、切断部23が優先的に昇温して軟化され、容易に切断される。
 すなわち、本実施形態では、ヒューズエレメント2に過電流が流れた時には、ヒューズエレメント2に1箇所のみ設けられた切断部23が切断される。したがって、本実施形態では、例えば、ヒューズエレメント2におけるX方向の幅が均一である場合や、ヒューズエレメント2に複数の切断部が形成されている場合と比較して、ヒューズエレメント2が容易に切断される。よって、本実施形態では、強度の低い押圧手段5を用いることができ、押圧手段5およびケース6の小型化を図ることができる。
 図4および図5に示すように、ヒューズエレメント2の切断部23は、第1端部21および第2端部22よりもX方向の幅が狭い。それによって、切断部23は、切断部23と第1端部21との間の領域、および切断部23と第2端部22との間の領域よりも切断されやすくなっている。ヒューズエレメント2の切断部23は、可動部材3と凹状部材4とによって切断される部分であればよく、第1端部21および第2端部22よりも幅狭であるものに限定されない。
 図5に示すように、ヒューズエレメント2全体の平面形状は、略矩形であり、一般的なヒューズエレメントと比較して、X方向の幅が相対的に広く、Y方向の長さが相対的に短い。本実施形態の保護素子100では、ヒューズエレメント2を物理的に切断し、切断されたヒューズエレメントの切断面同士の距離を短時間で引き離すことにより、切断時に発生するアーク放電を低減できるとともに、発生したアーク放電の継続を抑制できる。このため、アーク放電を抑制するために、ヒューズエレメント2におけるX方向の幅を狭くする必要がなく、ヒューズエレメント2におけるX方向の幅を広く、Y方向の長さを短くできる。このようなヒューズエレメント2を有する保護素子100は、保護素子100の設置される電流経路における抵抗値上昇を抑制できるため、大電流の電流経路にも好ましく設置できる。
 ヒューズエレメント2の材料としては、合金を含む金属材料など、公知のヒューズエレメントに用いられる材料を用いることができる。具体的には、ヒューズエレメント2の材料として、Pb85%/Sn、Sn/Ag3%/Cu0.5%などの合金を例示できる。
 ヒューズエレメント2は、通常作動中の通電によっては実質的に変形しない。ヒューズエレメント2は、ヒューズエレメント2を構成する材料の軟化温度以上の温度で切断される。軟化温度以上の温度であるから、「軟化温度」で切断されてもよい。
 本明細書において「軟化温度」とは、固相と液相とが混在あるいは共存する温度、あるいは温度範囲を意味する。軟化温度は、ヒューズエレメント2が外力により変形するくらい柔らかくなる温度あるいは温度帯(温度範囲)である。
 例えば、ヒューズエレメント2が2成分系合金からなる場合、固相線(溶融を始める温度)と液相線(完全に溶融する温度)との間の温度範囲では、固相と液相が混じり合った、いわばシャーベット状の状態となっている。この固相と液相が混在あるいは共存する温度範囲は、ヒューズエレメント2が外力により変形するくらい柔らかくなる温度範囲である。この温度範囲が「軟化温度」である。
 ヒューズエレメント2が3成分系合金あるいは多成分系合金からなる場合、上記固相線および液相線を固相面および液相面と読み替えて、同様に固相と液相が混在あるいは共存する温度範囲が「軟化温度」である。
 ヒューズエレメント2が合金からなる場合、固相線と液相線との間に温度差があるので、「軟化温度」は温度範囲を有する。
 ヒューズエレメント2が単一金属からなる場合、固相線/液相線は存在せず、1点の融点/凝固点が存在する。ヒューズエレメント2が単一金属からなる場合、融点または凝固点において、固相と液相の混在あるいは共存する状態になるので、融点または凝固点が本明細書における「軟化温度」である。
 固相線と液相線の測定は、温度上昇過程において相状態変化に伴う潜熱による不連続点(時間変化におけるプラトーな温度)として行うことができる。固相と液相が混在あるいは共存する温度あるいは温度範囲を有する合金材料および単一金属共に、本実施形態のヒューズエレメント2の材料として用いることができる。
 ヒューズエレメント2は、図4および図5に示すように、1個の部材(パーツ)からなるものであってもよいし、材料の異なる複数個の部材(パーツ)からなるものであってもよい。
 ヒューズエレメント2が材料の異なる複数個の部材で形成されている場合、各部材の形状は、ヒューズエレメント2の用途、材料などに応じて決定でき、特に限定されない。
 材料の異なる複数個の部材で形成されているヒューズエレメント2としては、例えば、軟化温度の異なる材料からなる複数個の部材で形成されている場合が挙げられる。ヒューズエレメント2が、軟化温度の異なる材料からなる複数個の部材で形成されている場合、軟化温度の低い材料から順に固相と液相の混在状態となり、軟化温度の最も低い材料の軟化温度以上で切断される。
 材料の異なる複数個の部材で形成されているヒューズエレメント2としては、種々の構造をとることができる。
 例えば、内層の外面が外層で被覆された断面形状を有する構造であって、内層と外層とが軟化温度の異なる材料からなるものであってもよい。この場合の断面形状は、矩形であってもよいし、円形であってもよく、特に限定されない。また、この場合、内層が低融点金属からなり、外層が高融点金属からなるものであることが好ましい。
 また、ヒューズエレメント2は、軟化温度の異なる材料からなる層状部材が、厚み方向に複数積層された積層体であってもよい。この場合、軟化温度の異なる材料からなる層状部材の積層数は、2層であってもよいし、3層であってもよく、4層以上であってもよい。
 このようなヒューズエレメント2は、積層体が、軟化温度の高い材料からなる層を含むため、剛性が確保されたものとなる。また、積層体が、軟化温度の低い材料からなる層を含むため、低温で柔らかくなり、低温で切断可能とされる。すなわち、ヒューズエレメント2が、上記積層体である場合、軟化温度の低い材料の層から順に固相と液相の混在状態となる。その結果、積層体全体が軟化温度に達しなくてもヒューズエレメント2は切断され得る。
 具体的には、ヒューズエレメント2は、内層と、これを挟む外層とが厚み方向に積層された3層構造の積層体であって、内層と外層とが軟化温度の異なる材料からなるものであってもよい。このようなヒューズエレメント2では、積層体の内層と外層のうち、軟化温度の低い材料の層において固相と液相の混在状態が先に始まる。そして、軟化温度の高い材料の層が軟化温度に達する前に切断され得る。3層構造の積層体は、内層が低融点金属からなり、外層が高融点金属からなるものであることが好ましい。
 ヒューズエレメント2の材料として使用される低融点金属としては、SnもしくはSnを主成分とする金属を用いることが好ましい。Snの融点は232℃であるため、Snを主成分とする金属は低融点であり、低温で柔らかくなる。例えば、Sn/Ag3%/Cu0.5%合金の固相線は217℃である。
 ヒューズエレメント2の材料として使用される高融点金属としては、AgもしくはCu、またはAgもしくはCuを主成分とする金属を用いることが好ましい。例えば、Agの融点は962℃であるため、Agを主成分とする金属からなる層は、低融点金属からなる層が柔らかくなる温度では剛性が維持される。
 ヒューズエレメント2は、公知の方法により製造できる。
 例えば、ヒューズエレメント2が、内層が低融点金属からなり、外層が高融点金属からなる3層構造の積層体である場合、以下に示す方法により製造できる。まず、低融点金属からなる金属箔を用意する。次に、金属箔の表面全面に、めっき法を用いて高融点金属層を形成し、積層板とする。その後、積層板を切断して所定の形状とする。以上の工程により、3層構造の積層体からなるヒューズエレメント2が得られる。
(可動部材)
 本実施形態の保護素子100では、図3および図4に示すように、ヒューズエレメント2の切断部23を挟み込むように、可動部材3と凹状部材4とが対向配置されている。
 本実施形態において、可動部材3および凹状部材4がヒューズエレメント2の切断部23を挟み込むとは、可動部材3および凹状部材4がヒューズエレメント2を上下から挟み込んでおり、かつ、Z方向から平面視して、可動部材3および凹状部材4が切断部23と重なっていることを意味する。可動部材3および凹状部材4のいずれもが、切断部23と接しているか否かは問わない。
 可動部材3は、押圧手段5からの押圧力によってヒューズエレメント2を切断するものである。可動部材3は、単体の部材からなるものであってもよいし、複数の部材からなるもの(図3参照)であってもよい。
 本実施形態の保護素子100は、可動部材3として、図3および図4に示すように、凸状部材33と非凸状部材である発熱部材31とを有する。可動部材3は、凸状部材33のみであってもよいし、非凸状部材のみであってもよい。可動部材3は、凸状部材33と非凸状部材の両方を有することが好ましい。本実施形態では、凸状部材33が、押圧手段5と切断部23との間に備えられている。非凸状部材(発熱部材31)は、切断部23に接して配置されることにより、凸状部材33と切断部23との間に備えられている。
<非凸状部材>
 可動部材3として用いられる非凸状部材は、ヒューズエレメント2側に凸状部分を有さない部材であり、例えば、板状部材である。非凸状部材は、発熱部材であってもよい。本実施形態では、非凸状部材として発熱部材31を備える場合を例に挙げて説明する。
 本実施形態の保護素子100では、発熱部材31が、ヒューズエレメント2の押圧手段5側に、切断部23に接して配置されている。発熱部材31は、切断部23に接して配置されておらず、切断部23に近接して配置されていてもよい。切断部23に近接して配置されているとは、例えば、発熱部材31と切断部23との間の距離が1mm以下である場合が挙げられる。
 図6は、第1実施形態の保護素子100におけるヒューズエレメント2と発熱部材31との配置関係を説明するための図面である。図6(a)は押圧手段5側から見た平面図である。図6(b)は凹状部材4側から見た斜視図である。図7は、第1実施形態の保護素子100に備えられた発熱部材31の構造を説明するための図面である。図7(a)はY方向から見た断面図である。図7(b)はX方向から見た断面図である。図7(c)は平面図である。
 図7(a)~図7(c)に示すように、発熱部材31は、板状部材である。発熱部材31は、絶縁基板31aと、発熱部31bと、絶縁層31cと、エレメント接続電極31dと、給電線電極31e、31fとを有する。発熱部材31は、ヒューズエレメント2の切断部23を加熱して軟化させる機能と、押圧手段5の押圧力を切断部23に負荷する機能とを有する。発熱部材31は、可動部材3である。
 絶縁基板31aは、図7(a)~図7(c)に示すように、X方向を長辺の延在方向とする平面視略長方形を有する。
 絶縁基板31aとしては、公知の絶縁性を有する基板を用いることができ、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどからなるものが挙げられる。
 図7(a)~図7(c)に示すように、発熱部31bは、絶縁基板31aの第2表面(図7(a)~図7(c)における下面)上に形成されている。図7(c)に示すように、発熱部31bは、平面視略長方形の絶縁基板31aの一方の長辺縁部に沿って、X方向に延在して帯状に設けられている。
 発熱部31bは、給電線63b、64b(図4参照)を介して通電されることにより発熱する、導電性材料からなる抵抗体であることが好ましい。発熱部31bの材料としては、例えば、ニクロム、W、Mo、Ruなどの金属を含む材料が挙げられる。
 図7(a)~図7(c)に示すように、給電線電極31e、31fは、絶縁基板31aのX方向端部に設けられ、一部が発熱部31bの両端部31g、31gとそれぞれ平面視で重なる位置に設けられている。給電線電極31e、31fは、公知の電極材料で形成できる。給電線電極31e、31fは、発熱部31bと電気的に接続されている。
 給電線電極31e、31fは、ヒューズエレメント2に定格電流を越えた電流が流れた場合など、保護素子100の通電経路となる外部回路に異常が発生し、通電経路を遮断する必要が生じた場合に、外部回路に設けられた電流制御素子によって発熱部31bに通電するためのものである。
 図7(a)~図7(c)に示すように、絶縁層31cは、発熱部31bの形成されている側の絶縁基板31aの表面上に設けられている。絶縁層31cは、発熱部31bと、絶縁層31c上に露出されている、発熱部31bと給電線電極31e、31fとの接続部とを覆うように、絶縁基板31aのX方向中央部に設けられている。絶縁層31cは、絶縁基板31aのX方向端部には設けられていない。このことにより、給電線電極31e、31fの一部は、絶縁層31cに被覆されておらず、露出されている。
 絶縁層31cは、発熱部31bを保護し、発熱部31bの発熱した熱を効率よくヒューズエレメント2に伝えるとともに、発熱部31bとエレメント接続電極31dとの絶縁を図る。絶縁層31cは、ガラスなどの公知の絶縁材料で形成できる。
 図7(a)~図7(c)に示すように、エレメント接続電極31dは、絶縁層31c上の発熱部31bと平面視で重なる位置に設けられている。エレメント接続電極31dは、公知の電極材料で形成できる。エレメント接続電極31dは、ヒューズエレメント2と接続されている。
 図7(a)~図7(c)に示す発熱部材31では、平面視略長方形の絶縁基板31aの一方の長辺縁部に沿って、発熱部31bと、絶縁層31cと、エレメント接続電極31dと、給電線電極31e、31fとが設けられているが、これらは絶縁基板31aの両方の長辺縁部に沿って設けられていてもよい。この場合、例えば、発熱部材31と給電線63b、64b(図4参照)とを電気的に接続する際に、給電線電極31e、31fの設けられていない端部と、給電線電極31e、31fとを間違えることによる歩留まりの低下を防止できる。
 図7(a)~図7(c)に示す発熱部材31は、エレメント接続電極31d側の面をヒューズエレメント2と対向させて配置される。したがって、発熱部31bとヒューズエレメント2との間には、絶縁基板31aが配置されない。このため、発熱部31bとヒューズエレメント2との間に、絶縁基板31aが配置されている場合と比較して、発熱部31bで発生した熱が、効率よくヒューズエレメント2に伝えられる。
 図7(a)~図7(c)に示す発熱部材31は、例えば、以下に示す方法により製造できる。まず、絶縁基板31aを用意する。また、発熱部31bとなる材料と樹脂バインダとを含むペースト状の組成物を作製する。その後、絶縁基板31aの第2表面(図7(a)~図7(c)における下面)上に、上記の組成物をスクリーン印刷して所定のパターンを形成し、焼成する。このことにより、発熱部31bが形成される。
 次に、給電線電極31e、31fを公知の方法により形成し、発熱部31bの両端部31g、31gとそれぞれ電気的に接続する。次に、絶縁層31cを公知の方法により形成し、絶縁層31cによって発熱部31bを覆うとともに、発熱部31bと給電線電極31e、31fとの接続部を覆う。
 その後、絶縁層31c上に、公知の方法により、エレメント接続電極31dを形成する。
 以上の工程により、図7(a)~図7(c)に示す発熱部材31が得られる。
 図8は、発熱部材の他の例を説明するための図面である。図8(a)は発熱部材32をY方向から見た断面図である。図8(b)は図8(a)に示す発熱部材32のX方向中央部をX方向から見た断面図である。図8(c)は発熱部材310をY方向から見た断面図である。図8(d)は図8(c)に示す発熱部材310のX方向中央部をX方向から見た断面図である。
 本実施形態の保護素子100においては、図7(a)~図7(c)に示す発熱部材31に代えて、図8(a)および図8(b)に示す発熱部材32が備えられていてもよい。
 図8(a)および図8(b)に示す発熱部材32において、図7(a)~図7(c)に示す発熱部材31と同じ部材については、同じ符号を付し、説明を省略する。図8(a)および図8(b)に示す発熱部材32における各部材の平面配置は、図7(a)~図7(c)に示す発熱部材31の各部材の平面配置と同じである。
 図8(a)および図8(b)に示す発熱部材32は、板状部材である。発熱部材32は、図7(a)~図7(c)に示す発熱部材31と同様に、絶縁基板31aと、発熱部31bと、絶縁層31cと、エレメント接続電極31dと、給電線電極31e、31fとを有する。
 図8(a)および図8(b)に示すように、発熱部31bは、絶縁基板31aの第1表面(図8(a)および図8(b)における上面)上に形成されている。
 図8(a)および図8(b)に示すように、給電線電極31e、31fは、一部が発熱部31bの両端部とそれぞれ平面視で重なる位置に設けられている。絶縁層31cは、発熱部31bの形成されている側の絶縁基板31aの表面上に設けられている。絶縁層31cは、発熱部31bと、絶縁層31c上に露出されている、発熱部31bと給電線電極31e、31fとの接続部とを覆うように、絶縁基板31aのX方向中央部に設けられている。絶縁層31cは、絶縁基板31aのX方向端部には設けられていない。このことにより、給電線電極31e、31fの一部は、絶縁層31cに被覆されておらず、露出されている。絶縁層31cは、発熱部31bを保護し、発熱部31bが発熱した熱を効率よくヒューズエレメント2に伝える。
 図8(a)および図8(b)に示すように、発熱部材32におけるエレメント接続電極31dは、図7(a)~図7(c)に示す発熱部材31とは異なり、絶縁基板31aの発熱部31bが設けられている側と反対側の表面である第2表面(図8(a)および図8(b)における下面)上に形成されている。エレメント接続電極31dは、絶縁基板31aを介して、絶縁層31cと対向して配置されている。エレメント接続電極31dは、図7(a)~図7(c)に示す発熱部材31と同様に、ヒューズエレメント2と接続されている。
 本実施形態の保護素子100においては、図7(a)~図7(c)に示す発熱部材31に代えて、図8(c)および図8(d)に示す発熱部材310が備えられていてもよい。
 図8(c)および図8(d)に示す発熱部材310において、図7(a)~図7(c)に示す発熱部材31と同じ部材については、同じ符号を付し、説明を省略する。図8(c)および図8(d)に示す発熱部材310のX方向中央部をX方向から見た断面における各部材の配置は、図7(a)~図7(c)に示す発熱部材31の各部材の配置と同じである。
 図8(c)および図8(d)に示す発熱部材310は、板状部材である。発熱部材310は、図7(a)~図7(c)に示す発熱部材31と同様に、絶縁基板31aと、発熱部31bと、絶縁層31cと、エレメント接続電極31dと、給電線電極31e、31fとを有する。
 図8(c)に示すように、発熱部31bは、絶縁基板31aの第2表面(図8(c)における下面)上に形成されている。図8(c)に示すように、発熱部31bは、平面視略長方形の絶縁基板31aの一端から他端まで、一方の長辺縁部に沿ってX方向に延在して帯状に設けられている。
 図8(c)に示すように、発熱部31b上には、絶縁層31cが設けられている。絶縁層31cは、発熱部31bの両端部31g、31gを除く領域上を覆うように、絶縁基板31aのX方向中央部に設けられている。したがって、発熱部31bの両端部31g、31gは、絶縁層31cに被覆されておらず、露出されている。
 図8(c)に示すように、給電線電極31e、31fは、絶縁基板31aのX方向端部に設けられている。給電線電極31e、31fは、発熱部31bの両端部31g、31gとそれぞれ平面視で重なっている。このことにより、給電線電極31e、31fは、発熱部31bと電気的に接続されている。
 図8(c)に示すように、エレメント接続電極31dは、絶縁層31c上の給電線電極31e、31fが設けられている領域を除く領域に設けられている。図8(c)に示すように、エレメント接続電極31dは、給電線電極31e、31fと離間して配置されている。エレメント接続電極31dは、絶縁層31c上の発熱部31bと平面視で重なる位置に設けられている。
 図3に示すように、発熱部材31は、ヒューズエレメント2の切断部23上(図3における上面)に接して配置されている。図6(a)および図6(b)に示すように、発熱部材31は、ヒューズエレメント2の切断部23と、第2連結部26と、第2端部22の第2連結部26側の一部と、平面視で重なって配置されている。しかも、本実施形態では、図7(a)に示すように、発熱部材31の発熱部31bが、平面視略長方形の絶縁基板31aの一方の長辺縁部に沿って設けられている。このため、発熱部材31の発熱部31bが、ヒューズエレメント2の切断部23と平面視で重なって配置されている。したがって、本実施形態の保護素子100では、発熱部材31によって、効率よく切断部23が加熱される。
 図4、図6(a)および図6(b)に示すように、発熱部材31の給電線電極31e、31f(図7(a)~図7(c)参照)は、それぞれ給電線63b、64bによって第3端子63、第4端子64と、電気的に接続されている。本実施形態では、発熱部材31と、第3端子63および第4端子64とを、給電線63b、64bからなる給電部材によって電気的に接続している場合を例に挙げて説明する。給電部材は、発熱部材31と、第3端子63および第4端子64とを電気的に接続できればよく、給電部材の形状は、給電線63b、64bのような線形状に限定されるものではない。
 図4に示すように、第3端子63は、外部端子孔63aを備えている。また、第4端子64は、外部端子孔64aを備えている。外部端子孔63aおよび外部端子孔64aは、図4に示すように、平面視略円形の貫通孔とすることができる。
 第3端子63および第4端子64の形状は、図示しない外部端子に係合可能な形状であればよく、例えば、一部に開放部分を有するつめ形状であってもよいし、図4に示すように、給電線63b、64bと接続される側の端部に、給電線63b、64bに向かって両側に拡幅された鍔部(図4において符号63c、64cで示す。)を有していてもよく、特に限定されない。第3端子63および第4端子64が鍔部63c、64cを有する場合、ケース6のスリット63d、64dから第3端子63および第4端子64が抜けにくく、信頼性および耐久性の良好な保護素子100となる。
 図4に示すように、第3端子63と第4端子64とは、略同形であってもよいし、それぞれ異なる形状であってもよい。第3端子63および第4端子64に用いられる材料としては、第1端子61および第2端子62と同様のものが挙げられる。
 本実施形態では、図4に示すように、第3端子63、第4端子64、第1端子61、第2端子62として、同じ材料からなる略同形のものを用いることができる。
<凸状部材>
 図9は、第1実施形態の保護素子100に備えられた凸状部材33の構造を説明するための図面である。図9(a)は第1表面から見た図である。図9(b)はX方向から見た側面図である。図9(c)はY方向から見た側面図である。図9(d)は第2表面から見た図である。図9(e)および図9(f)は斜視図である。
 凸状部材33は、図3に示すように、ヒューズエレメント2側に凸状部分を有する部材である。凸状部材33は、押圧手段5の押圧力を、ヒューズエレメント2の切断部23に負荷する機能を有する可動部材である。
 図9(a)および図9(d)に示すように、凸状部材33は、平面視略矩形の形状を有している。凸状部材33の平面視で対向する二辺には、それぞれ外方(X方向)に向かって延びる凸状領域33d、33dが設けられている。
 図9(a)~図9(c)、図9(e)に示すように、凸状部材33の第1表面(上面)側には、第1ガイド部材33aおよび第2ガイド部材33bが立設されている。第1ガイド部材33aおよび第2ガイド部材33bの高さ(上面からZ方向の長さ)は、図9(c)に示すように全て同じであってもよいし、例えば、第1ガイド部材33aと第2ガイド部材33bとで異なっていてもよい。第1ガイド部材33aおよび第2ガイド部材33bの高さは、押圧手段5の形状に応じて適宜決定できる。
 第1ガイド部材33aは、図9(a)に示すように、凸状部材33の凸状領域33d、33dの縁部にそれぞれ設けられている。各第1ガイド部材33aは、凸状部材33の縁部に沿う方向を長辺方向とする平面視略長方形の柱状形状を有している。各第1ガイド部材33aの外面は、凸状部材33を凹状部材4の所定の位置に設置するためのガイドとして機能する。
 第2ガイド部材33bは、図9(a)に示すように、凸状部材33の四隅にそれぞれ設けられている。各第2ガイド部材33bは、略三角柱状である。第1ガイド部材33aの内面および第2ガイド部材33bの内面は、第1ガイド部材33aと第2ガイド部材33bとに囲まれた押圧手段収納領域33h内に、押圧手段5を設置するためのガイドとして機能する。
 図9(b)~図9(d)、図9(f)に示すように、凸状部材33の第2表面(下面)側には、第2表面から突出した凸部33cが設けられている。凸部33cは、平面視で凸状部材33の2つの凸状領域33d、33d間を繋ぐように帯状に設けられている。したがって、図9(d)に示すように、凸部33cの長さL33は、凸状部材33のX方向の幅と同じとされている。
 図9(d)に示すように、凸部33cは、幅広部33f、33fと、中央部33eと、高さの低い領域33g、33gとを有している。
 幅広部33f、33fは、凸状領域33d、33dに配置されている。中央部33eは、幅広部33f、33fの間の中央部分に配置されている。高さの低い領域33g、33gは、幅広部33f、33fと中央部33eとの間にそれぞれ設けられている。高さの低い領域33g、33gは、図9(c)に示すように、中央部33eよりも、第2表面から凸出している高さの低い領域である。
 凸部33cの高さの低い領域33gは、発熱部材の給電線電極31e、31fと平面視で重なる位置に設けられていることが好ましい。高さの低い領域33gは、凸状部材33と発熱部材とを積層することにより、凸部33cと発熱部材との間に隙間を形成する。高さの低い領域33gが、発熱部材の給電線電極31e、31fと平面視で重なる位置に設けられ、発熱部材が、図8(a)および図8(b)に示す発熱部材32のように、凸状部材33側の面に給電線電極31e、31fが配置されたものである場合、高さの低い領域33gによって形成される凸部33cと発熱部材との間の隙間は、発熱部材32の給電線電極31eと給電線63bとを接続するための領域、および給電線電極31fと給電線64bとを接続するための領域として利用できる。
 凸部33cの幅広部33f、33fの幅D1(図9(d)参照)は、凸状領域33d、33dの幅と同じである。高さの低い領域33g、33gの幅および中央部33eの幅D2は、幅広部33f、33fの幅D1よりも片側の幅が狭くなっている。図16に示すように、中央部33eの幅D2は、発熱部材31のY方向の幅D3(図6(a)参照)よりも狭い。このことにより、押圧手段5による押圧が、凸状部材33の凸部33cと発熱部材31とを介して、ヒューズエレメント2の切断部23に、効率よく負荷される。
 凸部33cにおける中央部33eの幅D2と、発熱部材31のY方向の幅D3との比(D2:D3)は、1:1.2~1:5であることが好ましく、1:1.5~1:4であることがより好ましい。D2とD3との比が上記範囲内である場合、D2がD3よりも十分に狭いため、押圧手段5による押圧力を切断部23に効率よく伝えることができる。また、D2とD3との比が上記範囲内である場合、D2が狭すぎて、凸部33cのヒューズエレメント2側の面と、ヒューズエレメント2の凸部33c側の面とが平行に配置されにくくなることがなく、好ましい。凸部33cのヒューズエレメント2側の面と、ヒューズエレメント2の凸部33c側の面とが平行に配置されている場合、押圧手段5による押圧力を切断部23に効率よく伝えることができる。
 図9(b)に示すように、凸部33cの高さ33Hは、図9(c)に示すように、幅広部33f、33fと中央部33eとは略同じである。図16に示すように、凸部33cの高さ33Hは、凹状部材4における凹部46の深さH46よりも短い。
 凹部46の深さH46に対する凸部33cの高さ33Hの割合(33H/H46)は、0.1~0.8であることが好ましく、0.2~0.6であることがより好ましい。上記割合が上記範囲内であると、凹部46内に入り込んだ凸部33cによって、ヒューズエレメント2の切断された両端部間が、より確実に遮蔽される。その結果、ヒューズエレメント2の切断された両端部間の距離が長くなり、ヒューズエレメント2の切断時に発生するアーク放電の継続をより短時間で抑制できる。
 図9(d)に示す凸部33cの中央部33eの長さL2(図18参照)は、発熱部材31の長さ(X方向の幅)L3(図6(a)、図18参照)よりも狭くなっている。このことにより、押圧手段5による押圧が、凸状部材33の凸部33cと発熱部材31とを介して、ヒューズエレメント2の切断部23に、効率よく負荷される。中央部33eの長さL2は、押圧手段5による押圧を切断部23に均一に負荷できるため、切断部23におけるX方向の幅23D(図5、図17(b)参照)以上の寸法であることが好ましい。
 凸状部材33は、ヒューズエレメント2を構成する材料の軟化温度においても硬い状態を維持できる絶縁材料、あるいは実質的に変形しない絶縁材料からなる。具体的には、凸状部材33の材料として、セラミックス材料、ガラス転移温度の高い樹脂材料などを用いることができる。
 樹脂材料のガラス転移温度(Tg)とは、軟質のゴム状態から硬質のガラス状態になる温度をいう。樹脂をガラス転移温度以上に加熱すると、分子が運動しやすくなり、軟質のゴム状態になる。一方、樹脂が冷えていくと、分子の運動が制限されて、硬質のガラス状態になる。
 セラミックス材料としては、アルミナ、ムライト、ジルコニアなどを例示でき、アルミナなどの熱伝導率の高い材料を用いることが好ましい。凸状部材33がセラミックス材料などの熱伝導率の高い材料で形成されている場合、ヒューズエレメント2の切断時に発生した熱を効率よく外部に放熱できる。その結果、ヒューズエレメント2の切断時に発生するアーク放電の継続が、より効果的に抑制される。
 ガラス転移温度の高い樹脂材料としては、ポリフェニレンサルファイド(PPS)樹脂などのエンジニアリングプラスチック、ナイロン系樹脂、フッ素系樹脂、シリコーン系樹脂などを例示できる。樹脂材料は、一般にセラミックス材料よりも熱伝導率は低いが、低コストである。
 樹脂材料の中でも、ナイロン系樹脂は、耐トラッキング性(トラッキング(炭化導電路)破壊に対する耐性)が高く、好ましい。ナイロン系樹脂の中でも、特に、ナイロン46、ナイロン6T、ナイロン9Tを用いることが好ましい。耐トラッキング性は、IEC60112に基づく試験により求めることができる。ナイロン系樹脂としては、耐トラッキング性が、250V以上であるものを用いることが好ましく、600V以上のものを用いることがより好ましい。
 凸状部材33は、例えば、セラミックス材料などの樹脂以外の材料で作製し、凸部33cの一部をナイロン系樹脂で被覆してもよい。
 凸状部材33は、公知の方法により製造できる。
(凹状部材)
 図10は、第1実施形態の保護素子100に備えられた凹状部材4の構造を説明するための図面である。図10(a)は第1表面から見た図である。図10(b)はX方向から見た側面図である。図10(c)はY方向から見た側面図である。図10(d)は第2表面から見た図である。図10(e)は斜視図である。
 図10(a)および図10(d)に示すように、凹状部材4は、X方向を長辺方向とする平面視略長方形の形状を有している。
 図10(a)~図10(c)、図10(e)に示すように、凹状部材4の第1表面(上面)側には、端子設置領域41、42、43、44と、凹部46と、第1ガイド部材4aと、第2ガイド部材4bとが設けられている。
 端子設置領域41、42、43、44は、略同型であり、平面視略長方形の凹状部材4の各辺に沿って帯状に設けられた周囲の高さよりも低い平面からなる。
 図1および図4に示すように、端子設置領域41には、ヒューズエレメント2の第1端部21と第1端子61との結合部が載置される。端子設置領域41と周囲の高さとの差は、第1端子61の厚みに対応する寸法とされている。端子設置領域42には、ヒューズエレメント2の第2端部22と第2端子62との結合部が載置される。端子設置領域42と周囲の高さとの差は、第2端子62の厚みに対応する寸法とされている。端子設置領域43には、第3端子63の給電線63bとの結合部が載置される。端子設置領域43と周囲の高さとの差は、第3端子63の厚みに対応する寸法とされている。端子設置領域44には、第4端子64の給電線64bとの結合部が載置される。端子設置領域44と周囲の高さとの差は、第4端子64の厚みに対応する寸法とされている。
 図10(a)および図10(e)に示すように、第1ガイド部材4a、4aおよび第2ガイド部材4b、4bは、平面視で端子設置領域41、42、43、44に囲まれた領域の内側に、端子設置領域43または端子設置領域44に接して配置されている。第1ガイド部材4a、4aは、平面視略L字型柱状である。第2ガイド部材4b、4bは、平面視略矩形柱状である。2つの第2ガイド部材4b、4bは、平面視略長方形の凹状部材4における対向する長辺のうち、一方の長辺側に配置されている。第1ガイド部材4a、4aおよび第2ガイド部材4b、4bは、凸状部材33を凹状部材4の所定の位置に設置するためのガイドとして機能する。
 第1ガイド部材4a、4aおよび第2ガイド部材4b、4bの高さ(上面からZ方向の長さ)は、図10(c)に示すように略同じとされている。第1ガイド部材4a、4aおよび第2ガイド部材4b、4bの高さは、図3に示すように、ケース6の収容部65内の形状に応じて適宜決定できる。
 図10(a)および図10(e)に示すように、凹部46は、平面視で凹状部材4の中央部に設けられている。凹部46は、幅の広い幅広部46aと、幅広部46aを挟むように配置され、幅広部46aよりも第1ガイド部材4a、4a側のみ幅が狭い幅狭部46b、46cとを有する。図10(a)に示すように、幅狭部46bは、端子設置領域43と第1ガイド部材4aと第2ガイド部材4bと接している。幅狭部46cは、端子設置領域44と第1ガイド部材4aと第2ガイド部材4bと接している。
 凹部46の幅広部46aにおけるY方向の幅D4(図10(a)、図16参照)は、凸状部材33の凸部33cにおける幅広部33f、33fの幅D1(図16には不図示、図9(d)参照)、および中央部33eの幅D2(図16参照)よりも広く、かつ発熱部材31のY方向の幅D3(図16参照)よりも広い。また、凹部46の幅広部46aにおけるX方向の長さL4(図10(a)、図18参照)は、凸状部材33の凸部33cの長さL33(図18参照)より長く、かつ発熱部材31の長さ(X方向の幅)L3(図18参照)よりも長い。また、図16に示すように、平面視で凹部46の幅広部46a内の位置に、切断部23、発熱部材31、凸状部材33の凸部33cが配置されている。すなわち、平面視で凹部46の内側のエリアの少なくとも一部と外周が重なる位置であって、切断部23の一部と重なる位置に凸部33cが配置されている。本実施形態の保護素子100では、凸部33cのY方向の外面のうち幅広部33fと中央部33eとに連続して形成された面が、平面視で、凹部46のY方向に対向する内壁面46dのうち一方の内面に沿って配置されている。
 したがって、本実施形態の保護素子100では、切断部23が切断されることにより、図15(b)および図17(b)に示されるように、凹部46の幅広部46a内に、凸状部材33の凸部33cが挿入されるとともに、発熱部材31が収容される。
 図10(a)に示す平面視で凹部46の内壁面46dに近接する位置には、図3に示すように、ヒューズエレメント2の切断部23における第1端部21側の縁部が配置され、凹部46の幅広部46aにおけるX方向の長さL4が、切断部23におけるX方向の幅23D(図5、図17(b)参照)よりも長い。このため、切断部23が切断されると、図15(b)および図17(b)に示すように、切断部23で分断されたヒューズエレメント2の一部が折れ曲がるように凹部46内に収容される。
 平面視で凹部46の内壁面46dと、切断部23における第1端部21側の縁部とが、近接する位置に配置されている場合の両者間の距離の目安は、例えば、0.1~0.5mmであり、好ましくは0.2~0.4mmである。両者が近接する位置に配置されている場合、凹部46の幅広部46a内に、凸状部材33の凸部33cが挿入される際に、切断部23における第1端部21側の縁部が、凹部46の内壁面46dに接触しつつ差し込まれる。その結果、切断部23における第1端部21側の縁部が、切断されやすく、好ましい。平面視で凹部46の内壁面46dと、切断部23における第1端部21側の縁部との間の距離が0.2mm以上であると、切断部23の熱が凹部46に伝わってヒューズエレメント2の軟化を妨げることを防止でき、より好ましい。
 また、凹部46の幅狭部46b、46cにおけるY方向の幅D5(図10(a)、図16参照)は、給電線63b、64b(図6(a)参照)のY方向の幅よりも広い。しかも、凹部46全体のX方向の長さL5(図10(a)、図18参照)は、発熱部材31の長さ(X方向の幅)L3(図18参照)よりも長い。このため、切断部23が切断されることにより、図17(b)に示すように、切断部23の切断に伴って切断される給電線63b、64bにおける、切断部23と切り離された部分が、凹部46の縁部に沿って折れ曲がるように凹部46内に収容される。
 また、図16に示すように、発熱部材31のY方向の幅(Y方向の長さ)D3は、凹部46の深さ(Z方向の長さ)H46の寸法よりも短い。このため、切断部23が切断されても発熱部材31は折れ曲がらず、図15(b)および図17(b)に示されるように、全体形状を維持したまま凹部46内に収容される。
 図10(b)~図10(d)に示すように、凹状部材4の第2表面(下面)47b側の中央部には、凹状部材4の長さ方向に帯状に凸部47が配置されている。凸部47の頂部47aは、ケース6から露出される。
 凹状部材4の材料としては、凸状部材33と同様のものを用いることができる。凹状部材4の材料としては、低コストおよび耐トラッキング性の観点から、ナイロン系樹脂またはフッ素系樹脂を用いることが好ましい。凹状部材4の材料と、凸状部材33との材料とは、同じであってもよいし、異なっていてもよい。
 凹状部材4が、セラミックス材料などの熱伝導率の高い材料で形成されている場合、ヒューズエレメント2の切断時に発生した熱を効率よく外部に放熱でき、ヒューズエレメント2の切断時に発生するアーク放電の継続がより効果的に抑制される。
 凹状部材4は、セラミックス材料などの樹脂以外の材料で作製し、凹部46の一部をナイロン系樹脂で被覆してもよい。
 凹状部材4は、公知の方法により製造できる。
(押圧手段)
 押圧手段5は、可動部材3と凹状部材4とが切断部23を挟み込む方向(Z方向)に、相対的な距離を縮めるように力を加えるものである。本実施形態の保護素子100における押圧手段5は、可動部材3の凸状部材33と凹状部材4との、切断部23を挟み込む方向(Z方向)の相対的な距離を縮めるように力を加えるものである。
 押圧手段5としては、例えば、バネ、ゴムなど、弾性力を付与できる公知の手段を用いることができる。
 本実施形態の保護素子100においては、押圧手段5としてバネが用いられている。バネ(押圧手段5)は、図9(e)に示す凸状部材33の押圧手段収納領域33h上に載置され、縮められた状態で保持されている。
 押圧手段5として用いるバネの材料としては、公知のものを用いることができる。
 押圧手段5として用いられるバネとしては、円筒状のものを用いてもよいし、円錐状のものを用いてもよい。押圧手段5として円錐状のバネを用いる場合、外径の小さい側を切断部23側に向けて配置してもよいし、外径の大きい側を切断部23側に向けて配置してもよい。
 押圧手段5として用いられるバネとしては、図3に示すように、収縮長を短くできるため円錐状のものを用いることが好ましい。また、押圧手段5として円錐状のバネを用いる場合、外径の小さい側を切断部23側に向けて配置することがより好ましい。このことにより、例えば、バネが金属などの導電性材料で形成されている場合に、ヒューズエレメント2の切断時に発生するアーク放電の継続をより効果的に抑制できる。これは、アーク放電の発生場所と、バネを形成している導電性材料との距離が確保されやすくなるためである。また、押圧手段5として円錐状のバネを用い、外径の大きい側を切断部23側に向けて配置した場合、押圧手段5から可動部材3により均等に弾性力を付与でき、好ましい。
 本実施形態の保護素子100においては、押圧手段5を切断部23の可動部材3側に1つのみ設置しているが、切断部23の可動部材3側に複数個の押圧手段5を設置してもよい。
 保護素子100が複数個の押圧手段5を備える場合、各押圧手段5の縮める程度を異なるものとすることにより、保護素子100全体における弾性力を調整してもよい。
(ケース)
 本実施形態の保護素子100におけるケース6は、図1、図3、図4に示すように、押圧手段5と可動部材3とヒューズエレメント2と凹状部材4の凹部46とを収容する。ケース6は、図1~図4に示すように、第1ケース6aと、第1ケース6aと対向配置されて接合された第2ケース6bの2つの部材からなる。図1~図4に示すように、ケース6の一部材である第1ケース6aと第2ケース6bとは同じものである。
 図11は、第1実施形態の保護素子100に備えられた第1ケース6aおよび第2ケース6bの構造を説明するための図面である。図11(a)は押圧手段5側(上側)から見た図である。図11(b)はX方向から見た側面図である。図11(c)はY方向から見た側面図である。図11(d)は凹状部材4側(下側)から見た図である。図11(e)は斜視図である。
 図11(a)~図11(d)に示すように、第1ケース6aおよび第2ケース6bは、それぞれ、X方向の面の長さよりもY方向の面の長さが短い略直方体形状を有している。
 図3に示すように、第1ケース6a内および第2ケース6b内には、それぞれ第1ケース6aと第2ケース6bとを接合することにより一体化される収容部65が形成されている。収容部65は、押圧手段5を縮められた状態に保持する保持枠として機能する。すなわち、押圧手段5は、可動部材3と凹状部材4とでヒューズエレメント2の切断部23を挟み込む方向の相対的な距離を縮めるように力を加えた状態で、ケース6内に収容されている。図11(a)~図11(d)に示すように、第1ケース6aおよび第2ケース6bにおいては、X方向に延びる2つの面のうち一方の面が、対向配置される面であり、収容部65の開口部とされている。
 図11(c)に示すように、第1ケース6aおよび第2ケース6bの有する収容部65は、それぞれ第1内壁面6cと第2内壁面6dと側壁面66とを有する。各収容部65における第1内壁面6cと第2内壁面6dと側壁面66とは、同一部材で一体形成されている。第1内壁面6cと第2内壁面6dと側壁面66は、一体化されている。第1ケース6aおよび第2ケース6bはそれぞれ、ヒューズエレメント2が切断されていない状態で、押圧手段5より発生するケース6内部の応力を、第1内壁面6cと側壁面66と第2内壁面6dとで、凸状部材33とヒューズエレメント2を介して鎹状に支え保持する。第1実施形態の保護素子100は発熱部材31を備えている。このため、第1ケース6aおよび第2ケース6bはそれぞれ、ヒューズエレメント2が切断されていない状態で、押圧手段5より発生するケース6内部の応力を、第1内壁面6cと側壁面66と第2内壁面6dとで、凸状部材33と発熱部材31とヒューズエレメント2を介して鎹状に支え保持する。
 図11(c)~図11(e)に示すように、第1内壁面6cと、第2内壁面6dとは、押圧手段5の伸縮方向(Z方向)に対向して配置されている。第1内壁面6cは、収容部65の天面を形成している。図15(a)および図17(a)に示すように、第1内壁面6cは、押圧手段5に接して配置される。第2内壁面6dは、収容部65の底面を形成している。第2内壁面6dは、図15(a)に示すように、凹状部材4の第2表面(下面)47bに接して配置される。
 第1内壁面6cおよび第2内壁面6dは、一体化された側壁面66とともに枠状構造を形成し、押圧手段5を縮められた状態に保持する。そして、第1ケース6aと第2ケース6bとは、図11(c)および図11(e)に示す段差67、68に、接着剤を塗布して対向配置されることによって接合される。このため、本実施形態の保護素子100では、例えば、押圧手段5の伸縮方向(Z方向)に開口する開口部を有し、接着剤を用いて開口部に蓋を接合するケースを用いる場合のように、縮められた状態の押圧手段5からの応力が接合面にかかることがない。よって、本実施形態の保護素子100では、押圧手段5を縮められた状態で安定して保持できるとともに、押圧手段5の押圧力を長期間保持できる。
 側壁面66は、図11(c)~図11(e)に示すように、第1内壁面6cと第2内壁面6dとを押圧手段5の伸縮方向(Z方向)に繋ぐものである。側壁面66は、収容部65の側面を形成している。図11(c)および図11(e)に示すように、側壁面66は、X方向に延在する第1側壁面6hと、Y方向に延在して対向配置された第2側壁面6fおよび第3側壁面6gとを有する。
 図11(c)および図11(e)に示すように、第1側壁面6hのX方向中央における高さ方向(Z方向)中心部には、X方向に細長い略長円形状の貫通孔からなる開口部61d(または62d)が設けられている。開口部61d(または62d)には、図1、図2(a)~図2(d)に示すように、第1端子61(または第2端子62)が貫通される。したがって、開口部61d(または62d)の幅および長さは、第1端子61(または第2端子62)のケース6から露出される部分の形状に応じて決定される。
 図11(c)に示すように、第2側壁面6fの縁部における高さ方向(Z方向)中心部には、Y方向に細長いスリット63dが設けられている。第2側壁面6fのY方向の幅は、スリット63dより上の部分が、スリット63dより下の部分よりも広くなっている。
 第3側壁面6gの縁部における高さ方向(Z方向)中心部には、Y方向に細長いスリット64dが設けられている。第3側壁面6gのY方向の幅は、スリット64dより上の部分が、スリット64dより下の部分よりも狭くなっている。
 第1ケース6aの第2側壁面6fの縁部は、第2ケース6bの第3側壁面6gの縁部と接合されることにより一体化され、ケース6のY方向に延びる一方の側面を形成する。また、第1ケース6aの第3側壁面6gの縁部は、第2ケース6bの第2側壁面6fの縁部と接合されることにより一体化され、ケース6のY方向に延びる他方の側面を形成する。
 第1ケース6aと第2ケース6bとが接合されることにより、スリット64dとスリット63dとが連結される。このことにより、ケース6のY方向に延びる2つの側面には、それぞれY方向に細長い略長円形状の貫通孔からなる開口部が形成される。形成された開口部には、第3端子63(または第4端子64)が貫通される。したがって、スリット64dおよびスリット63dの幅および長さは、第3端子63(または第4端子64)のケース6から露出される部分の形状に応じて決定される。
 図11(a)、図11(c)、図11(e)に示すように、第1内壁面6cの縁部におけるX方向中心位置から、第3側壁面6gにおけるスリット64dよりも第1内壁面6c側の縁部は、厚みが薄くなっており、外面の延在面との段差68が形成されている。第1内壁面6cの縁部におけるX方向中心位置から、第2側壁面6fにおけるスリット63dよりも第1内壁面6c側の縁部は、厚みが薄くなっており、内面の延在面に段差67が形成されている。第1内壁面6cおよび側壁面66の縁部に連続して形成されている段差67、68は、第1ケース6aと第2ケース6bとの接合面である。段差67、68は、第1ケース6aと第2ケース6bとを接合する際の位置ずれを防止するとともに、接合面を増加させて接合強度を向上させる。
 第1内壁面6cと第2内壁面6dと側壁面66の形状は、図1および図3に示すように、縮められた状態の押圧手段5と可動部材3とヒューズエレメント2と凹状部材4とが積層された形状に、対応する形状とされている。
 本実施形態におけるケース6は、図2(a)~図2(d)および図3に示すように、第1ケース6aと第2ケース6bとを対向配置して接合して用いられる。ケース6内には、押圧手段5が縮められた状態で収容される。
 ケース6の材料としては、凸状部材33と同様のものを用いることができる。ケース6の材料と、凸状部材33との材料とは、同じであってもよいし、異なっていてもよい。
 ケース6がセラミックス材料などの熱伝導率の高い材料で形成されている場合、ヒューズエレメント2の切断時に発生した熱を効率よく外部に放熱できる。よって、ヒューズエレメント2の切断時に発生するアーク放電の継続がより効果的に抑制される。
 ケース6は、公知の方法により製造できる。
(保護素子の製造方法)
 次に、本実施形態の保護素子100の製造方法について、例を挙げて説明する。
 図12~図14は、第1実施形態の保護素子100の製造方法の一例を説明するための工程図である。
 本実施形態の保護素子100を製造するには、図12(a)に示すように、第1端子61、第2端子62、第3端子63、第4端子64を用意する。
 次に、図5に示すヒューズエレメント2を用意する。そして、図12(b)に示すように、第1端子61上に、ヒューズエレメント2の第1端部21をハンダ付けすることにより接続する。また、第2端子62上に、第2端部22をハンダ付けすることにより接続する。本実施形態においてハンダ付けに使用されるハンダ材料としては、公知のものを用いることができ、抵抗率と融点の観点からSnを主成分とするものを用いることが好ましい。
 第1端部21、第2端部22と、第1端子61、第2端子62とは、溶接による接合によって接続されていてもよいし、リベット接合、ネジ接合などの機械的接合によって接続されていてもよく、公知の接合方法を用いることができる。
 次に、給電線63b、64bを用意する。そして、図12(b)に示すように、第3端子63上に、給電線63bをハンダ付けすることにより接続する。また、第4端子64上に、給電線64bをハンダ付けすることにより接続する。給電線63b、64bと第3端子63および第4端子64とは、溶接による接合によって接続されていてもよく、公知の接合方法を用いることができる。
 次に、図7(a)~図7(c)に示す発熱部材31を用意する。そして、図12(c)に示すように、発熱部材31の第2表面(図12(c)における下面)に配置された給電線電極31e、31f(図12(c)においては不図示)と給電線63b、64bとを、例えば、ハンダ付けする方法により接続する。さらに、発熱部材31の第2表面(図12における下面)に配置されたエレメント接続電極31d(図12(c)においては不図示)とヒューズエレメント2とを、例えば、ハンダ付けする方法により接続する。
 次に、図10(a)~図10(e)に示す凹状部材4を用意する。そして、図13(a)に示すように、凹状部材4の凹部46上に発熱部材31を載置する。それとともに、端子設置領域41に第1端子61を、端子設置領域42に第2端子62を、端子設置領域43に第3端子63を、端子設置領域44に第4端子64をそれぞれ設置する。
 次に、図9(a)~図9(f)に示す凸状部材33を用意する。そして、図13(b)に示すように、凸部33cを発熱部材31側に向けて、発熱部材31上に凸状部材33を設置する。このとき、凹状部材4の第1ガイド部材4aと第2ガイド部材4bの間に、凸部33cの第1ガイド部材33aを設置する。
 次に、図13(c)に示すように、凸状部材33の押圧手段収納領域33h内に、押圧手段5を設置する。本実施形態においては、図13(c)に示すように、押圧手段5としての円錐状のバネを使用する。円錐状のバネは、外径の小さい側を切断部23側に向けて、押圧手段収納領域33h内に設置する。
 次に、図14(a)に示すように、第1ケース6aと第2ケース6bとを用意する(図11(a)~図11(e)参照)。そして、第1ケース6aの開口部61dに、第1端子61を貫通させる。また、第1ケース6aと第2ケース6bとを対向配置させて、第2ケース6bの開口部62dに、第2端子62を貫通させる。
 その後、第1ケース6aと第2ケース6bとを接合する。第1ケース6aと第2ケース6bとを接合する際には、第1ケース6aの第1内壁面6cおよび側壁面66の縁部に連続して形成された段差67と、第2ケース6bの第1内壁面6cおよび側壁面66の縁部に連続して形成され段差68とを接合する。それとともに、第2ケース6bに形成された段差67と、第1ケース6aに形成された段差68とを接合する。
 第1ケース6aと第2ケース6bとの接合には、必要に応じて接着剤を用いることができる。接着剤としては、例えば、熱硬化性樹脂を含む接着剤を用いることができる。
 また、第1ケース6aと第2ケース6bとを接合する際には、必要に応じて、第1ケース6aと凹状部材4、および/または第2ケース6bと凹状部材4を、接着剤を用いて接合してもよい。
 第1ケース6aと第2ケース6bとを接合する際には、図3に示すように、第1ケース6aおよび第2ケース6bの第2内壁面6dに接するように、凹状部材4の第2表面(下面)47bを配置する。また、図3に示すように、第1ケース6aおよび第2ケース6bの第1内壁面6cに接するように、縮められた状態で押圧手段5を配置する。このことにより、ケース6の収容部65内に、縮められた状態の押圧手段5が収容される。
 また、第1ケース6aと第2ケース6bとを接合する際には、対向配置された第1ケース6aのスリット63dと、第2ケース6bのスリット64dとに、第3端子63(または第4端子64)を挿入する。その結果、第1ケース6aと第2ケース6bとを接合することにより、スリット64dとスリット63dとが連結して形成された開口部から、第3端子63(または第4端子64)の一部が、ケース6の外部に露出された状態となる(図14(b)参照)。
 以上の工程により、本実施形態の保護素子100が得られる。
(保護素子の動作)
 次に、本実施形態の保護素子100のヒューズエレメント2に定格電流を越えた電流が流れた場合における保護素子100の動作について、図面を用いて説明する。
 図15~図18は、第1実施形態の保護素子100において、ヒューズエレメントの切断部の切断前と切断後の状態を説明するための断面図である。図15は、第1実施形態に係る保護素子100を図2に示すA-A´線に沿って切断した断面図である。図16は、図15(a)の一部を拡大して示した拡大断面図である。図17は、第1実施形態の保護素子100を図2に示すB-B´線に沿って切断した断面図である。図18は、図17(a)の一部を拡大して示した拡大断面図である。図15(a)および図17(a)は切断前の状態である。図15(b)および図17(b)は切断後の状態である。
 本実施形態の保護素子100のヒューズエレメント2に定格電流を越えた電流が流れると、ヒューズエレメント2は、過電流による加熱および発熱部材31による加熱によって昇温する。そして、昇温して軟化したヒューズエレメント2の切断部23は、凸状部材33の凸部33cと発熱部材31とを介して負荷される押圧手段5からの押圧力によって切断され、通電が遮断される。
 保護素子100では、ヒューズエレメント2の切断部23が軟化温度で切断される。すなわち、ヒューズエレメント2が完全溶融状態に至る前の柔らかくなる温度あるいは固相と液相とが混在する温度で、切断部23が切断される。したがって、保護素子100では、ヒューズエレメント2の切断時に発生する熱量が少なくて済み、切断部23の切断時に発生するアーク放電自体を低減できる。
 本実施形態の保護素子100においては、ヒューズエレメント2に、凸状部材33の凸部33cと発熱部材31とを介して、押圧手段5による押圧が負荷されている。このため、ヒューズエレメント2の温度が、ヒューズエレメント2を構成する材料の軟化温度以上の温度になっていなくても切断されることのないように、ヒューズエレメント2の構成、押圧手段5の弾性力などを適正に設定する。
 本実施形態の保護素子100に備えられている発熱部材31は、保護素子100の通電経路となる外部回路に異常が発生して通電経路を遮断する必要が生じた場合に、外部回路に設けられた電流制御素子によって通電される発熱部31bを有する。このため、ヒューズエレメント2に定格電流を越えた電流が流れると発熱部材31が発熱する。よって、ヒューズエレメント2に定格電流を越えた電流が流れた場合におけるヒューズエレメント2の昇温速度が速く、迅速にヒューズエレメント2の切断部23が切断される。
 アーク放電は、電位間距離に反比例する電界強度に依存する。本実施形態の保護素子100において電位間距離とは、切断された切断部23の両切断面同士の最短距離を意味する。
 本実施形態の保護素子100では、押圧手段5の押圧力によって、凹状部材4の凹部46内に凸状部材33の凸部33cが挿入される。そして、切断されたヒューズエレメント2が、凸状部材33の凸部33cおよび発熱部材31とともに凹状部材4に収容される。このことにより、図15(b)および図17(b)に示すように、切断されたヒューズエレメント2の切断面同士の距離が、急速に広げられる。その結果、ヒューズエレメント2の切断時にアーク放電が発生しても、アーク放電は速やかに低減される。したがって、本実施形態の保護素子100は、例えば、高電圧かつ大電流の電流経路に設置された場合であっても、ヒューズエレメント2の切断時に発生するアーク放電の継続を抑制できる。
 本実施形態の保護素子100では、ヒューズエレメント2の切断部23が切断されると、図15(b)および図17(b)に示すように、発熱部材31に接していないヒューズエレメント2が凹部46の縁部に沿って折れ曲がる。そして、発熱部材31に接していたヒューズエレメント2が発熱部材31とともに凹部46内に収容される。したがって、ヒューズエレメント2を介した通電経路は、物理的に確実に遮断される。
 本実施形態の保護素子100では、押圧手段5からの押圧力によって凹状部材4の凹部46内に凸状部材33の凸部33cが挿入される。このことで、給電線63b、64bが給電線電極31e、31fと切り離され、ヒューズエレメント2の第2端部22が凹部46内に収容される(図15(a)および図15(b)参照)。したがって、ヒューズエレメント2が切断されると、発熱部材31への給電が遮断され、発熱部材31の発熱が停止する。よって、本実施形態の保護素子100は、優れた安全性を有する。
 以上説明したように、本実施形態の保護素子100は、ヒューズエレメント2の切断部23を挟み込むように、可動部材3および凹状部材4が対向配置され、可動部材3と凹状部材4との切断部23を挟み込む方向の相対的な距離を縮めるように力を加える押圧手段5が備えられている。このため、ヒューズエレメント2の軟化温度以上の温度において切断部23が切断される。その結果、本実施形態の保護素子100では、ヒューズエレメント2の切断時に発生する熱量が少なくて済み、切断時に発生するアーク放電を低減できる。また、本実施形態の保護素子100では、押圧手段5の押圧力によって、切断されたヒューズエレメント2が可動部材3とともに凹状部材4に収容される。このことにより、切断されたヒューズエレメント2の切断面同士の距離が、急速に広げられる。その結果、ヒューズエレメント2の切断時にアーク放電が発生しても、アーク放電は速やかに低減される。
[第2実施形態]
 図19は、第2実施形態に係る保護素子200の外観を示した図面である。図19(a)は平面図である。図19(b)および図19(c)は側面図である。図19(d)は斜視図である。図20は、第2実施形態の保護素子200の一部を説明するための拡大図であり、ヒューズエレメント2aを示した平面図である。図21は、第2実施形態の保護素子200におけるヒューズエレメント2aと発熱部材31との配置関係を説明するための図面である。図21(a)は押圧手段5側から見た平面図である。図21(b)は凹状部材4側から見た斜視図である。
 第2実施形態に係る保護素子200において、上述した第1実施形態に係る保護素子100と同じ部材については、同じ符号を付し、説明を省略する。
 第2実施形態に係る保護素子200が、第1実施形態に係る保護素子100と異なるところは、保護素子100における第4端子64および給電線64bを有さないことと、ヒューズエレメントの形状のみである。
 第2実施形態に係る保護素子200の有するヒューズエレメント2aは、第1実施形態の保護素子100におけるヒューズエレメント2と同様に、第1端部21と第2端部22との間に設けられた切断部23aを有している(図20、図21(a)および図21(b)参照)。図20に示すように、ヒューズエレメント2aの切断部23aにおけるX方向の幅23aDは、第1端部21におけるX方向の幅21Dおよび第2端部22におけるX方向の幅22Dよりも細くなっている。
 本実施形態におけるヒューズエレメント2aでは、第1実施形態におけるヒューズエレメント2とは異なり、図20における上側の縁部は略直線とされている。一方、図20におけるヒューズエレメント2aの下側の縁部の切断部23aに対応する部分には、ヒューズエレメント2と同様に切り欠きが設けられている。このことにより、図20、図21(a)および図21(b)に示すように、切断部23の幅23aDは、切断部23a以外の幅よりも狭くなっている。
 第2実施形態に係る保護素子200では、第1実施形態の保護素子100と同様に、発熱部材31の給電線電極31e(図7(a)~図7(c)参照)が、給電線63bによって第3端子63と電気的に接続されている(図21(a)および図21(b)参照)。一方、第2実施形態に係る保護素子200では、第1実施形態の保護素子100とは異なり、発熱部材31の給電線電極31f(図7(a)~図7(c)参照)は、ヒューズエレメント2aと電気的に接続されている。
 第2実施形態に係る保護素子200においては、第1実施形態の保護素子100と同様に、ヒューズエレメント2aの切断部23aを挟み込むように、可動部材3および凹状部材4が対向配置され、可動部材3と凹状部材4との切断部23を挟み込む方向の相対的な距離を縮めるように力を加える押圧手段5が備えられている。このため、第2実施形態に係る保護素子200においても、第1実施形態の保護素子100と同様に、ヒューズエレメント2aの切断時に発生するアーク放電を低減できるとともに、アーク放電が発生しても速やかに低減される。
 第2実施形態に係る保護素子200では、図7(a)~図7(c)に示す発熱部材31を備える場合を例に挙げて説明したが、第2実施形態に係る保護素子200においても第1実施形態に係る保護素子100と同様に、図8(a)および図8(b)に示す発熱部材32が備えられていてもよいし、図8(c)および図8(d)に示す発熱部材310が備えられていてもよい。
 第2実施形態に係る保護素子200では、図20に示すヒューズエレメント2aを備える場合を例に挙げて説明したが、第2実施形態に係る保護素子200においても第1実施形態に係る保護素子100と同様に、図5に示すヒューズエレメント2が備えられていてもよい。この場合においても、第2実施形態に係る保護素子200と同様に、第4端子64および給電線64bを有さず、発熱部材31の給電線電極31f(図7(a)~図7(c)参照)をヒューズエレメント2と電気的に接続する。
[第3実施形態]
 上述した第1実施形態および第2実施形態では、発熱部材31が、ヒューズエレメント2の押圧手段5側に、切断部23に接して配置されている場合を例に挙げて説明したが、発熱部材31は、ヒューズエレメント2の凹状部材4側に、切断部23に接して配置されていてもよい。
 図22は、第3実施形態の保護素子300において、ヒューズエレメントの切断部の切断前と切断後の状態を説明するための断面図である。図22は、第1実施形態の保護素子100における図2に示すA-A´線に対応する位置に沿って切断した断面図である。図22(a)は切断前の状態である。図22(b)は切断後の状態である。
 第3実施形態に係る保護素子300において、上述した第1実施形態に係る保護素子100と同じ部材については、同じ符号を付し、説明を省略する。
 第3実施形態に係る保護素子300が、第1実施形態に係る保護素子100と異なるところは、保護素子100における発熱部材31が、ヒューズエレメント2の凹状部材4側に切断部23に接して配置されているところのみである。
 したがって、第3実施形態に係る保護素子300においても、第1実施形態の保護素子100と同様に、ヒューズエレメント2の切断時に発生するアーク放電を低減できるとともに、アーク放電が発生しても速やかに低減される。
[他の例]
 本発明の保護素子は、上述した第1実施形態~第3実施形態の保護素子に限定されるものではない。
 例えば、上述した第1実施形態~第3実施形態では、発熱部材31を有する保護素子100、200、300を例に挙げて説明したが、発熱部材31は、必要に応じて設けられるものであり、設けられていなくてもよい。
 上述した第1実施形態の保護素子100と同様に、発熱部材31が設けられていない保護素子においても、切断部23は、平面視で凹状部材4の凹部46内に配置され、かつ平面視で凹部46の内面に近接する位置に配置されることが好ましい。また、可動部材3についても、上述した第1実施形態の保護素子100と同様に、平面視で凹部46の内側のエリアの少なくとも一部と外周が重なる位置に配置される凸部33cを有することが好ましい。
 発熱部材31が設けられていない保護素子であっても、ヒューズエレメント2の軟化温度以上の温度において切断部23が切断される。このとき、凹部46内に凸部33cが挿入されるとともに、ヒューズエレメント2の一部が折れ曲がるように凹部46内に収容されることが好ましい。ヒューズエレメント2の切断された両端部間の距離が長くなり、ヒューズエレメント2の切断時に発生するアーク放電の継続をより短時間で抑制できるためである。
(保護素子の動作)
 次に、発熱部材31が設けられていない保護素子のヒューズエレメント2に定格電流を越えた電流が流れた場合の動作について説明する。
 この場合、保護素子のヒューズエレメント2に定格電流を越えた電流が流れると、ヒューズエレメント2は、過電流による加熱によって昇温する。そして、昇温して軟化したヒューズエレメント2の切断部23は、凸状部材33の凸部33cを介して負荷される押圧手段5からの押圧力によって切断され、通電が遮断される。
 この保護素子では、ヒューズエレメント2に、凸状部材33の凸部33cを介して、押圧手段5による押圧が負荷されている。このため、押圧手段5の押圧力によって、凹状部材4の凹部46内に凸状部材33の凸部33cが挿入される。そして、切断されたヒューズエレメント2が、凸状部材33の凸部33cとともに凹状部材4に収容される。このことにより、切断されたヒューズエレメント2の切断面同士の距離が、急速に広げられる。その結果、ヒューズエレメント2の切断時にアーク放電が発生しても、アーク放電は速やかに低減される。したがって、この保護素子は、例えば、高電圧かつ大電流の電流経路に設置された場合であっても、ヒューズエレメント2の切断時に発生するアーク放電の継続を抑制できる。
 2、2a ヒューズエレメント
 3 可動部材
 4 凹状部材
 4a 第1ガイド部材
 4b 第2ガイド部材
 5 押圧手段
 6 ケース
 6a 第1ケース
 6b 第2ケース
 6c 第1内壁面
 6d 第2内壁面
 6h 第1側壁面
 6f 第2側壁面
 6g 第3側壁面
 21 第1端部
 22 第2端部
 23、23a 切断部
 25 第1連結部
 26 第2連結部
 31、32、310 発熱部材
 31a 絶縁基板
 31b 発熱部
 31c 絶縁層
 31d エレメント接続電極
 31e、31f 給電線電極
 33 凸状部材
 33a 第1ガイド部材
 33b 第2ガイド部材
 33c 凸部
 33d 凸状領域
 33e 中央部
 33f 幅広部
 33g 高さの低い領域
 33h 押圧手段収納領域
 41、42、43、44 端子設置領域
 46 凹部
 46a 幅広部
 46b、46c 幅狭部
 46d 内壁面
 47 凸部
 47a 頂部
 47b 第2表面
 61 第1端子
 61a、62a、63a、64a 外部端子孔
 61c、62c、63c、64c 鍔部
 61d、62d 開口部
 62 第2端子
 63 第3端子
 63b、64b 給電線
 63d、64d スリット
 64 第4端子
 65 収容部
 66 側壁面
 100、200、300 保護素子

Claims (18)

  1.  第1端部と第2端部との間に切断部を有し、前記第1端部から前記第2端部に向かう第1方向に通電されるヒューズエレメントと、
     前記切断部を挟み込むように対向配置された可動部材および凹状部材と、
     前記可動部材と前記凹状部材とで前記切断部を挟み込む方向の相対的な距離を縮めるように力を加える押圧手段とを備え、
     前記ヒューズエレメントの軟化温度以上の温度において、前記押圧手段の前記力により前記切断部が切断される保護素子。
  2.  前記ヒューズエレメントの前記第1方向と交差する第2方向である幅であって、前記切断部の幅は前記切断部以外の幅よりも狭い請求項1に記載の保護素子。
  3.  前記切断部が、平面視で前記凹状部材の凹部内に配置され、かつ平面視で前記凹部の内面に近接する位置に配置され、
     前記凹部の前記第1方向と交差する第2方向の長さが、前記切断部における前記第2方向の長さよりも長い請求項1または請求項2に記載の保護素子。
  4.  前記ヒューズエレメントの前記押圧手段側もしくは前記凹状部材側に、前記切断部に接して配置もしくは近接して配置された発熱部材を備える請求項1~請求項3のいずれか一項に記載の保護素子。
  5.  前記発熱部材が、平面視で前記凹状部材の凹部内に配置されている請求項4に記載の保護素子。
  6.  前記発熱部材の前記第1方向の長さが、前記第1方向および前記第1方向と交差する第2方向と交差する、第3方向における前記凹部の長さよりも短い請求項5に記載の保護素子。
  7.  前記ヒューズエレメントが、内層を低融点金属、外層を高融点金属とする積層体である請求項1~請求項6のいずれか一項に記載の保護素子。
  8.  前記低融点金属は、SnもしくはSnを主成分とする金属からなり、前記高融点金属は、AgもしくはCu、またはAgもしくはCuを主成分とする金属からなる請求項7に記載の保護素子。
  9.  前記押圧手段がバネである請求項1~請求項8のいずれか一項に記載の保護素子。
  10.  前記バネが、円錐状であり、外径の小さい側を前記切断部側に向けて配置されている請求項9に記載の保護素子。
  11.  前記可動部材は、平面視で前記凹状部材の凹部の内側のエリアの少なくとも一部と外周が重なる位置に配置される凸部を有し、
     前記切断部が切断されることにより、前記凹部内に前記凸部が挿入される請求項1~請求項10のいずれか一項に記載の保護素子。
  12.  前記第1端部に第1端子が電気的に接続され、前記第2端部に第2端子が電気的に接続されている請求項1~請求項11のいずれか一項に記載の保護素子。
  13.  前記発熱部材が抵抗体を有する請求項4~請求項6のいずれか一項に記載の保護素子。
  14.  前記発熱部材が、給電部材により第3端子、もしくは第3端子および第4端子と、電気的に接続され、前記給電部材を介した通電により前記抵抗体が発熱する請求項13に記載の保護素子。
  15.  少なくとも前記ヒューズエレメントと前記可動部材と前記凹状部材の凹部と前記押圧手段とが収容される複数の部材から成るケースを有し、
     前記押圧手段が前記可動部材と前記凹状部材とで前記切断部を挟み込む方向の相対的な距離を縮めるように力を加えた状態で、前記ケース内に収容されている請求項1~請求項14のいずれか一項に記載の保護素子。
  16.  前記ケースの一部材が、前記押圧手段の伸縮方向に対向する第1内壁面と第2内壁面と、前記第1内壁面と前記第2内壁面とを繋ぐ側壁面とが同一部材で一体形成された収容部を有し、
     前記ヒューズエレメントが切断されていない状態で、前記押圧手段より発生するケース内部の応力を前記第1内壁面と前記側壁面と前記第2内壁面とで鎹状に支え保持する請求項15に記載の保護素子。
  17.  前記凹状部材および前記ケースが、ナイロンまたはセラミックスからなる請求項15または請求項16に記載の保護素子。
  18.  前記切断部が、平面視で前記凹状部材の凹部内に配置され、かつ平面視で前記凹部の内面に近接する位置に配置され、
     前記可動部材は、平面視で前記凹部の内側のエリアの少なくとも一部と外周が重なる位置であって前記切断部の一部と重なる位置に配置される凸部を有し、
     前記切断部が切断されることにより、前記凹部内に前記凸部が挿入されるとともに、前記ヒューズエレメントの一部が折れ曲がるように前記凹部内に収容される請求項1~請求項17のいずれか一項に記載の保護素子。
PCT/JP2021/019965 2020-05-29 2021-05-26 保護素子 WO2021241629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227035659A KR20220154201A (ko) 2020-05-29 2021-05-26 보호 소자
US17/925,133 US20230197392A1 (en) 2020-05-29 2021-05-26 Protective element
CN202180036775.2A CN115699240A (zh) 2020-05-29 2021-05-26 保护元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-094275 2020-05-29
JP2020094275A JP2021190294A (ja) 2020-05-29 2020-05-29 保護素子

Publications (1)

Publication Number Publication Date
WO2021241629A1 true WO2021241629A1 (ja) 2021-12-02

Family

ID=78744606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019965 WO2021241629A1 (ja) 2020-05-29 2021-05-26 保護素子

Country Status (6)

Country Link
US (1) US20230197392A1 (ja)
JP (1) JP2021190294A (ja)
KR (1) KR20220154201A (ja)
CN (1) CN115699240A (ja)
TW (1) TW202215470A (ja)
WO (1) WO2021241629A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204119A1 (ja) * 2022-04-20 2023-10-26 デクセリアルズ株式会社 保護素子

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021278A (ja) * 1998-06-30 2000-01-21 Yazaki Corp 低融点材溶断装置及び回路遮断装置
JP2007317420A (ja) * 2006-05-24 2007-12-06 Nec Schott Components Corp 非復帰型保護装置
JP4630403B2 (ja) * 2008-01-21 2011-02-09 内橋エステック株式会社 保護素子
JP2012521634A (ja) * 2009-03-24 2012-09-13 タイコ・エレクトロニクス・コーポレイション 電気的に作動させた表面実装温度ヒューズ
JP5545721B2 (ja) * 2010-03-02 2014-07-09 エヌイーシー ショット コンポーネンツ株式会社 保護素子
JP5779477B2 (ja) * 2011-11-04 2015-09-16 内橋エステック株式会社 保護素子
WO2017061455A1 (ja) * 2015-10-07 2017-04-13 デクセリアルズ株式会社 液濡れセンサー、スイッチ素子、バッテリシステム
JP6210647B2 (ja) * 2012-09-25 2017-10-11 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH 短絡遮断スイッチ
WO2019138752A1 (ja) * 2018-01-10 2019-07-18 デクセリアルズ株式会社 ヒューズ素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129721A (en) 1977-04-19 1978-11-13 Kiyoshi Hakumoto Engine
JPS6041916A (ja) 1984-07-17 1985-03-05 松下電器産業株式会社 電気湯沸し器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021278A (ja) * 1998-06-30 2000-01-21 Yazaki Corp 低融点材溶断装置及び回路遮断装置
JP2007317420A (ja) * 2006-05-24 2007-12-06 Nec Schott Components Corp 非復帰型保護装置
JP4630403B2 (ja) * 2008-01-21 2011-02-09 内橋エステック株式会社 保護素子
JP2012521634A (ja) * 2009-03-24 2012-09-13 タイコ・エレクトロニクス・コーポレイション 電気的に作動させた表面実装温度ヒューズ
JP5545721B2 (ja) * 2010-03-02 2014-07-09 エヌイーシー ショット コンポーネンツ株式会社 保護素子
JP5779477B2 (ja) * 2011-11-04 2015-09-16 内橋エステック株式会社 保護素子
JP6210647B2 (ja) * 2012-09-25 2017-10-11 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH 短絡遮断スイッチ
WO2017061455A1 (ja) * 2015-10-07 2017-04-13 デクセリアルズ株式会社 液濡れセンサー、スイッチ素子、バッテリシステム
WO2019138752A1 (ja) * 2018-01-10 2019-07-18 デクセリアルズ株式会社 ヒューズ素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204119A1 (ja) * 2022-04-20 2023-10-26 デクセリアルズ株式会社 保護素子

Also Published As

Publication number Publication date
JP2021190294A (ja) 2021-12-13
CN115699240A (zh) 2023-02-03
US20230197392A1 (en) 2023-06-22
TW202215470A (zh) 2022-04-16
KR20220154201A (ko) 2022-11-21

Similar Documents

Publication Publication Date Title
JP2013149606A (ja) 保護素子、保護素子の製造方法、及び、保護素子が組み込まれたバッテリモジュール
JP7173902B2 (ja) 保護素子
US11004634B2 (en) Breaker and safety circuit provided with same
JP2014123553A (ja) バッテリーパック
WO2018110154A1 (ja) 保護素子
KR102629256B1 (ko) 보호 소자
WO2021241629A1 (ja) 保護素子
JP4738953B2 (ja) 抵抗付きヒューズ
US20230076491A1 (en) Battery pack and electronic device
WO2022176844A1 (ja) 保護素子
WO2023204119A1 (ja) 保護素子
US20230317393A1 (en) Protective element
US11329325B2 (en) Breaker and safety circuit provided with same
JP2022040016A (ja) 保護素子
WO2024069853A1 (ja) ブレーカー及びそれを備えた二次電池パック
WO2022181652A1 (ja) 保護素子及びバッテリパック
TW202410099A (zh) 保護元件及電池組
TW202326779A (zh) 保護元件
TW202240623A (zh) 保護元件
JP2023107956A (ja) 保護素子
JPH10313151A (ja) 複数種の金属導体路を持つフレキシブル基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227035659

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814461

Country of ref document: EP

Kind code of ref document: A1