WO2021240999A1 - 排ガス浄化触媒装置 - Google Patents

排ガス浄化触媒装置 Download PDF

Info

Publication number
WO2021240999A1
WO2021240999A1 PCT/JP2021/014375 JP2021014375W WO2021240999A1 WO 2021240999 A1 WO2021240999 A1 WO 2021240999A1 JP 2021014375 W JP2021014375 W JP 2021014375W WO 2021240999 A1 WO2021240999 A1 WO 2021240999A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas purification
iron
catalyst device
purification catalyst
Prior art date
Application number
PCT/JP2021/014375
Other languages
English (en)
French (fr)
Inventor
琢斗 荒川
祐也 河野
翼 南條
嘉典 山下
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to US17/912,151 priority Critical patent/US20230149907A1/en
Priority to BR112022018717A priority patent/BR112022018717A2/pt
Publication of WO2021240999A1 publication Critical patent/WO2021240999A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification catalyst device.
  • a selective catalytic reduction (SCR) system is known as a technique for reducing and purifying NOx in exhaust gas discharged from an internal combustion engine such as a diesel engine before it is released to the atmosphere.
  • the SCR system is a technique using an SCR catalyst that reduces NO x in exhaust gas to N 2 by using a reducing agent such as ammonia.
  • N 2 O dinitrogen monoxide
  • N 2 O contributes greatly as a greenhouse gas, it is desired that the amount of N 2 O emitted from the internal combustion engine is as small as possible.
  • Patent Document 1 describes a first catalyst composition layer containing a mixed oxide (eg, vanasia / titania) and a second catalyst composition layer containing a metal exchanged zeolite (eg, Cu-zeolite). but on a substrate, which is disposed from the upstream side of the exhaust gas flows in this order, describes a SCR catalyst system, emissions of N 2 O is described as be reduced by this configuration.
  • a mixed oxide eg, vanasia / titania
  • a metal exchanged zeolite eg, Cu-zeolite
  • An object of the present invention emissions of N 2 O (N 2 O slip amount) is extremely suppressed, it is to provide an exhaust gas purifying catalyst device.
  • the present invention is as follows.
  • ⁇ Aspect 1 An exhaust gas purification catalyst device including a base material and one or a plurality of catalyst layers on the base material. At least one catalyst layer among the one or a plurality of catalyst layers is It contains both Cu-CHA-type zeolite particles and iron-supported metal oxide particles in which iron is supported on the metal oxide particles.
  • ⁇ Aspect 2 The metal oxide particles are one type of metal oxide particles selected from the group consisting of alumina, silica, titania, zirconia, and ceria, or two or more types of metal composite oxide particles.
  • ⁇ Aspect 3 The exhaust gas purification catalyst device according to Aspect 2, wherein the metal oxide particles are alumina particles.
  • ⁇ Aspect 4 The amount of iron in the exhaust gas purification catalyst device is 0.3 g / L or more and 1.3 g / L or less as the mass of iron in terms of ferric oxide (Fe 2 O 3) per 1 L of the base material.
  • ⁇ Aspect 5 The amount of iron in the exhaust gas purification catalyst device is 0.6 g / L or more and 1.3 g / L or less as the mass of iron in terms of ferric oxide (Fe 2 O 3) per 1 L of the base material.
  • ⁇ Aspect 6 The ratio of the Cu-CHA type zeolite particles and the iron-supported metal oxide particles in the catalyst layer is 5% by mass or more as the mass percentage of the iron-supporting metal oxide particles to the total of both.
  • ⁇ Aspect 7 The exhaust gas purification catalyst device according to any one of aspects 1 to 6, which is for selective contact reduction.
  • ⁇ Aspect 8 The method for manufacturing an exhaust gas purification catalyst device according to any one of aspects 1 to 7. (1) The Cu-CHA type zeolite particles and the iron-supported metal oxide particles are mixed and wet-ground to obtain a slurry for forming a catalyst layer, and (2) the catalyst is placed on the substrate.
  • a layer-forming slurry is applied and fired to form the catalyst layer on the substrate.
  • Manufacturing method of exhaust gas purification catalyst device ⁇ Aspect 9 >> An exhaust gas purification method for purifying exhaust gas using the exhaust gas purification catalyst device according to Aspect 7.
  • the exhaust gas purification catalyst device is supplied with an exhaust gas and a reducing agent to reduce NO x in the exhaust gas to N 2 .
  • Exhaust gas purification method is supplied with an exhaust gas and a reducing agent to reduce NO x in the exhaust gas to N 2 .
  • the exhaust gas purification catalyst device of the present invention An exhaust gas purification catalyst device including a base material and one or more catalyst layers on the base material. At least one of the above one or a plurality of catalyst layers is It is characterized by containing both Cu-CHA type zeolite particles and iron-supported metal oxide particles in which iron is supported on the metal oxide particles.
  • Patent Document 1 focuses on the difference in N 2 producing ability and N 2 O producing ability between the mixed oxide and the metal exchange zeolite, and focuses on the function of the mixed oxide and the metal exchange zeolite. It is intended to be used separately from the functions. Then, the first catalyst composition layer containing the mixed oxide, which has an excellent N 2 forming ability and a low N 2 O forming ability, is first brought into contact with the NOx-rich exhaust gas to suppress the formation of N 2 O. It is based on the idea that.
  • N 2 O for example, derived from the degradation reaction of ammonium nitrate which is an intermediate of the SCR reaction (NH 4 ⁇ NO 3).
  • Generation of N 2 O by the decomposition of ammonium nitrate is believed to be facilitated by metal-exchanged zeolite (e.g. Cu- zeolites).
  • mixed oxides e.g. iron-based material is believed to promote the decomposition of the generated N 2 O.
  • Cu-CHA-type zeolite particles and iron-supported metal oxide particles are arranged in the same catalyst layer to increase the degree of proximity between the two, thereby N 2
  • N 2 We have reached an exhaust gas purification catalyst device in which the amount of O-slip is sufficiently suppressed.
  • the present invention is not bound by any particular theory.
  • Base material As the base material in the exhaust gas purification catalyst device of the present invention, those generally used as the base material of the exhaust gas purification catalyst device can be used.
  • it may be, for example, a straight flow type monolith honeycomb base material composed of materials such as cordierite, SiC, stainless steel, and inorganic oxide particles.
  • the exhaust gas purification catalyst device of the present invention has one or a plurality of catalyst layers, one of which contains both Cu-CHA-type zeolite particles and iron-supported metal oxide particles. That is, in the exhaust gas purification catalyst device of the present invention, the Cu-CHA type zeolite particles and the iron-supported metal oxide particles are contained in the same catalyst layer.
  • a catalyst layer containing both Cu-CHA type zeolite particles and iron-supported metal oxide particles is referred to as a "specific catalyst layer”.
  • Cu-CHA type zeolite particles in the present invention mean particles composed of CHA (Chabazite) -type zeolite ion-exchanged with copper.
  • CHA Chozite
  • SCR catalysts those known as SCR catalysts may be appropriately selected and used.
  • Cu-CHA-type zeolite particles from the viewpoint of ensuring high SCR catalytic ability, SAR (Silica Alumina Ratio, SiO 2 / Al 2 O 3 molar ratio), 20 or less, 18 or less, 15 or less, 12 or less, 10 or less , 9 or less, or 8 or less.
  • SAR Silica Alumina Ratio, SiO 2 / Al 2 O 3 molar ratio
  • the SAR of the Cu-CHA type zeolite is excessively low, the specific surface area of the zeolite may become small and the NO x purification ability may be impaired. From the viewpoint of avoiding this, the SAR of the Cu-CHA type zeolite particles may be 3 or more, 4 or more, 5 or more, 6 or more, or 7 or more.
  • Cu in the Cu-CHA-type zeolite particles is supported on the surface Al site of the CHA-type zeolite and constitutes a catalytic activity point for NO x purification in the SCR catalyst.
  • the amount of Cu in the Cu-CHA type zeolite is 0.05 or more, 0.10 or more, 0.15 or more, from the viewpoint of expressing high NO x purification ability as the molar ratio (Cu / Al) of Cu and Al. It may be 0.20 or more or 0.25 or more, and from the viewpoint of stably maintaining the NO x purification ability, 1.00 or less, 0.80 or less, 0.60 or less, 0.50 or less, 0. It may be 45 or less, 0.40 or less, 0.35 or less, 0.30 or less, or 0.25 or less.
  • the Cu-CHA type zeolite particles in the present invention may contain an alkali metal.
  • Cu-CHA-type zeolite containing an appropriate amount of alkali metal further improves its hydrothermal durability while maintaining high initial NOx purification ability.
  • the amount of alkali metal contained in the Cu-CHA type zeolite particles is excessively large, the initial NO x purification ability may be impaired.
  • the amount of alkali metal in the Cu-CHA type zeolite particles is 0.2 mass as the ratio of the M 2 O (M indicates an alkali metal) equivalent mass to the total mass of the Cu-CHA type zeolite. % Or more, 0.3% by mass or more, 0.4% by mass or more, 0.5% by mass or more, 0.6% by mass or more, 0.7% by mass or more, or 0.8% by mass or more. 2.0% by mass or less, 1.8% by mass or less, 1.6% by mass or less, 1.4% by mass or less, 1.2% by mass or less, 1.0% by mass or less, 0.9% by mass or less, or It may be 0.8% by mass or less.
  • the alkali metal contained in the Cu-CHA type zeolite particles may be lithium (Li), sodium (Na), potassium (K), cesium (Cs) or the like, and may be typically potassium.
  • the primary particle size of the Cu-CHA type zeolite particles may be 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.3 ⁇ m or more, or 0.4 ⁇ m or more, and may be 1.0 ⁇ m or less, 0.8 ⁇ m or less, 0.6 ⁇ m. Hereinafter, it may be 0.5 ⁇ m or less, or 0.4 ⁇ m or less.
  • the amount of Cu-CHA-type zeolite particles in the exhaust gas purification catalyst device of the present invention is 70 g / L or more, 80 g, from the viewpoint of ensuring a sufficiently high SCR catalytic ability as the mass of Cu-CHA-type zeolite per 1 L of the base material. It may be / L or more, 100 g / L or more, 120 g / L or more, 130 g / L or more, or 140 g / L or more, and from the viewpoint of suppressing pressure loss of the exhaust gas purification catalyst device, 200 g / L or less, 180 g / L or less. , 160 g / L or less, 150 g / L or less, or 140 g / L or less.
  • the iron-supported metal oxide particles in the present invention are particles in which iron is supported on the metal oxide particles.
  • the metal oxide particles may be oxide particles of one kind of metal selected from alumina, silica, titania, zirconia, ceria and the like, or composite oxide particles of two or more kinds of metals.
  • the metal oxide particles are typically alumina particles.
  • the iron-supported amount of the iron-supported metal oxide particles is converted to ferric oxide (Fe 2 O 3 ) with respect to the total mass of the iron-supported metal oxide particles from the viewpoint of sufficiently suppressing the N 2 O slip amount.
  • the proportion of iron in the mass may be 0.5% by mass or more, 1% by mass or more, 3% by mass or more, 5% by mass or more, 6% by mass or more, or 7% by mass or more.
  • the supported amount of iron 20 wt% or less, 15 wt% or less, 12 wt% or less, or even 10 wt% or less, sufficiently high N 2 O slip suppression effect is obtained.
  • the iron (for example, ferric oxide) in the iron-supported metal oxide particles may be in the form of particles and may have a particle size of about 1 nm or more and 50 nm or less.
  • Such iron-supported metal oxide particles may be prepared by, for example, an appropriate method such as a spray-drying method or an impregnation method using desired metal oxide particles.
  • the production of iron-supported metal oxide particles by the spray-drying method may be carried out, for example, by a method including the following steps: The sol of the desired metal oxide particles and the iron compound are mixed in a suitable solvent (eg, water) to prepare a mixed solution; The resulting mixture is spray-dried to give a dry powdered precursor particle gel; and the resulting precursor particle gel is calcined.
  • a suitable solvent eg, water
  • the production of iron-supported metal oxide particles by the impregnation method may be carried out, for example, by a method including the following steps: Immersing the desired metal oxide particles in a solution of the iron compound in a suitable solvent (eg, water); and firing the soaked metal oxide particles.
  • a suitable solvent eg, water
  • the iron compound used in the spray-drying method and the impregnation method may be a solvent-soluble iron compound or a water-soluble iron compound, and specifically, for example, iron sulfate, iron nitrate, iron chloride, etc. It may be potassium hexacyanoferrate or the like.
  • the primary particle size of the iron-supported metal oxide particles may be 0.01 ⁇ m or more, 0.03 ⁇ m or more, or 0.05 ⁇ m or more, and may be 1 ⁇ m or less, 0.5 ⁇ m or less, or 0.2 ⁇ m or less.
  • the iron supported on the metal oxide particles is dispersed as high as possible.
  • the crystal peaks attributed to ferric oxide Fe 2 O 3
  • the amount of the iron supported metal oxide particles in the exhaust gas purifying catalyst device of the present invention as the mass of the iron-supported metal oxide per substrate 1L, from the viewpoint of sufficiently high effect of suppressing N 2 O slip amount, 1 g / It may be L or more, 3 g / L or more, 5 g / L or more, 10 g / L or more, or 12 g / L or more, and from the viewpoint of suppressing pressure loss of the exhaust gas purification catalyst device, 30 g / L or less, 25 g / L or less, It may be 20 g / L or less, 18 g / L or less, or 15 g / L or less.
  • the amount of iron in the exhaust gas purification catalyst device is 0.3 g / L or more and 0.5 g / L as the mass of iron in terms of ferric oxide (Fe 2 O 3) per 1 L of the base material. It may be 1.7 g / L or more, or 1.0 g / L or more, and 1.3 g / L or less, 1.2 g / L or less, 1.1 g / L or less, or 1.0 g / L or less. It may be there.
  • the mass ratio (mass percentage) of the iron-supported metal oxide to the total mass of the Cu-CHA type zeolite and the iron-supported metal oxide is 5% by mass or more, 7% by mass or more, 10% by mass or more, and 12% by mass. It may be more than or equal to 15% by mass, and may be 20% by mass or less, 18% by mass or less, 15% by mass or less, or 12% by mass or less.
  • the specific catalyst layer in the exhaust gas purification catalyst device of the present invention contains both Cu-CHA type zeolite particles and iron-supported metal oxide particles. In addition to these, the specific catalyst layer may contain other optional components.
  • the other component contained in the specific catalyst layer may be, for example, metal oxide particles other than Cu-CHA type zeolite particles and iron-supported metal oxide particles, a binder and the like.
  • the other metal oxide particles may be, for example, oxide particles of one kind of metal selected from alumina, silica, titania, zirconia, ceria and the like, or composite oxide particles of two or more kinds of metals.
  • the binder may be, for example, a calcined product of a metal oxide sol such as an alumina sol, a silica sol, a titania sol, or a zirconia sol.
  • the amount (coating amount) of the specific catalyst layer in the exhaust gas purification catalyst device of the present invention is 80 g / L or more and 100 g / L from the viewpoint of exhibiting a sufficiently high SCR catalytic ability as the mass of the specific catalyst layer per 1 L of the base material. It may be L or more, 120 g / L or more, 130 g / L or more, or 140 g / L or more, and from the viewpoint of suppressing pressure loss of the exhaust gas purification catalyst device, 250 g / L or less, 200 g / L or less, 180 g / L or less, It may be 160 g / L or less, 150 g / L or less, or 140 g / L or less.
  • the exhaust gas purification catalyst device of the present invention has a specific catalyst layer.
  • the exhaust gas purification catalyst device of the present invention may have other catalyst layers in addition to the specific catalyst layer, if necessary.
  • the other catalyst layer in the exhaust gas purification catalyst device of the present invention may be, for example, a catalyst layer exhibiting NOx oxidizing ability, a catalyst layer exhibiting ASC (Ammonia Slip Catalyst, ammonia slip catalyst) ability, or the like. These may have the same structure as the known catalyst layer. Further, in the exhaust gas purification catalyst device of the present invention, the specific catalyst layer and the other catalyst layers may be laminated on the base material in any order, or the exhaust gas may be present on the base material in any order. It may exist as a catalyst layer on the upstream side and the downstream side in the flow direction.
  • ASC Ammonia Slip Catalyst, ammonia slip catalyst
  • the exhaust gas purification catalyst device of the present invention may be manufactured by any method as long as it has the above configuration.
  • a case where a characteristic catalyst layer is provided as a single layer on a base material is taken as an example, and the following method is exemplified as a manufacturing method thereof: (1) Cu-CHA type zeolite particles and iron-supported metal oxide particles are mixed and wet-ground to obtain a catalyst layer forming slurry (catalyst layer forming slurry preparation step), and (2) group.
  • a catalyst layer forming slurry is applied on a material and fired to form a catalyst layer on a substrate (catalyst layer forming step).
  • a method for manufacturing an exhaust gas purification catalyst device including.
  • the Cu-CHA type zeolite particles specified in the present invention and the iron-supported metal oxide particles specified in the present invention are mixed at a predetermined ratio and wet-ground, and the catalyst layer forming slurry is pulverized. (Slurry for forming a specific catalyst layer) is obtained.
  • the pulverization in this slurry preparation step for forming a catalyst layer is suitable from the viewpoint of making the particle size of each particle uniform and stabilizing the catalytic activity, and particularly from the viewpoint of suppressing the generation of crystal defects of Cu-CHA type zeolite particles. It is carried out by wet grinding performed in a liquid medium (for example, water).
  • Wet pulverization may be performed using an appropriate pulverizer such as a ball mill, a bead mill, a jet mill, or an air jet mill, using an appropriate liquid medium, for example.
  • an appropriate pulverizer such as a ball mill, a bead mill, a jet mill, or an air jet mill, using an appropriate liquid medium, for example.
  • the catalyst layer forming slurry is applied onto the base material and fired to form the catalyst layer on the base material.
  • the base material may be appropriately selected depending on the base material in the desired exhaust gas purification catalyst device, and may be, for example, a straight flow type monolith honeycomb base material manufactured by Cordellite.
  • the slurry for forming a catalyst layer on the substrate may be applied and fired by a known method, respectively, or by a method obtained by appropriately modifying a known method by a person skilled in the art.
  • the firing temperature may be, for example, 300 ° C. or higher, 350 ° C. or higher, 400 ° C. or higher, 450 ° C. or higher, or 500 ° C. or higher, and may be, for example, 1,000 ° C. or lower, 800 ° C. or lower, 700 ° C. or lower, 600 ° C. or higher. It may be °C or less, 550 °C or less, or 500 °C or less.
  • the exhaust gas purification catalyst device of the present invention may be used as a catalyst device for selective catalytic reduction (SCR) for purifying exhaust gas discharged from, for example, a diesel internal combustion engine, a gasoline internal combustion engine, or the like.
  • SCR selective catalytic reduction
  • the exhaust gas purification catalyst device of the present invention also includes a DPF (Diesel Particulat Filter) device, a GPF (Gasoline Particulat Filter) device, and an ASC (Ammonia Slip Catalyst) device. May be used as part of an exhaust gas purification catalyst system in combination with one or more selected from the above.
  • DPF Diesel Particulat Filter
  • GPF Gasoline Particulat Filter
  • ASC Ammonia Slip Catalyst
  • the present invention further provides an exhaust gas purification method for purifying exhaust gas using the exhaust gas purification catalyst device of the present invention.
  • the exhaust gas purification method of the present invention is a method including supplying an exhaust gas and a reducing agent to the exhaust gas purification catalyst device of the present invention to reduce NO x in the exhaust gas to N 2.
  • the reducing agent in the exhaust gas purification method of the present invention may be, for example, ammonia, aqueous ammonia, urea, hydrocarbons, atomized fuel or the like.
  • the exhaust gas purifying catalyst device of the present invention derived from ammonia (NH 3) used as a reducing agent in the SCR reaction, since N 2 O generated is what is extremely suppressed, as the reducing agent, in particular, ammonia, ammonia
  • ammonia ammonia
  • ammonia ammonia
  • ammonia ammonia
  • One or more selected from water and urea may be used.
  • honeycomb base material made of cordierite having a cell density of 400 cpsi (cell per square inch, wall thickness of 6 mil (0.15 mm), and a capacity of 35 mL) was used as the base material.
  • Cu-CHA type zeolite particles particles having a silica / alumina molar ratio (SAR) of 7.5 and a molar ratio of Cu to Al (Cu / Al) of 0.25 were used.
  • SAR silica / alumina molar ratio
  • Example 1 (1) Preparation of slurry for forming a catalyst layer In 200 parts by mass of pure water, 100 parts by mass of silica binder sol dispersion (15 parts by mass of dry mass), 85 parts by mass of Cu-CHA type zeolite particles, and iron-supported metal oxide. as particles, iron-alumina particles (spray drying iron alumina particles, Fe 2 O 3 supported amount 9.0 wt%) 2 parts by weight, were mixed in this order, by milling by a wet grinding method, a catalyst layer formed Slurry was obtained.
  • silica binder sol dispersion 15 parts by mass of dry mass
  • Cu-CHA type zeolite particles 85 parts by mass of Cu-CHA type zeolite particles
  • iron-supported metal oxide as particles
  • iron-alumina particles spray drying iron alumina particles, Fe 2 O 3 supported amount 9.0 wt% 2 parts by weight
  • the exhaust gas purification catalyst device is heated to raise the temperature from room temperature to 600 ° C. at a heating rate of 25 ° C./min, and the gas having the composition of gas condition 1 shown in Table 1 below is inserted into the exhaust gas purification catalyst device.
  • the heating was stopped and the device was allowed to cool.
  • the gas having the composition of gas condition 2 shown in Table 2 below is circulated at a space velocity (SV) of 60,000 h -1 to exhaust gas.
  • the composition of NO x was examined, and the purification rate of NO x and the amount of N 2 O slip were calculated. The results are shown in Table 3.
  • Examples 2 to 4 and Comparative Examples 1 and 2 Spray-drying method Slurries for forming a catalyst layer were prepared in the same manner as in Example 1 except that the amount of Fe 2 O 3 supported on the iron alumina particles was changed as shown in Table 3. Using this, the slurry for forming a catalyst layer was applied onto the substrate in the same manner as in Example 1 except that the coating amount was changed so that the coating amount after firing was the value shown in Table 3. , Drying and firing were performed to manufacture an exhaust gas purification catalyst device.
  • Comparative Example 2 the amount of pure water used when preparing the slurry for forming the catalyst layer was set to 250 parts by mass.
  • Example 5 Exhaust gas purification is carried out in the same manner as in Example 3 except that the impregnated iron alumina particles having the same amount of Fe 2 O 3 supported on the alumina by the impregnation method are used instead of the spray dry iron alumina particles.
  • the catalyst device was manufactured and evaluated. The results are shown in Table 3.
  • Comparative Example 3 Spray-dry method An exhaust gas purification catalyst device was manufactured and evaluated in the same manner as in Example 3 except that a mixture of 9.1 parts by mass of alumina and 0.9 parts by mass of iron oxide was used instead of the iron alumina particles. bottom. The results are shown in Table 3.
  • the value of the NOx purification rate has good larger, the value of N 2 O slip amount is smaller is better.
  • Examples 1 to 4 containing iron supported metal oxide particles are N 2 O slip amount is suppressed, further, according proportion of iron supported metal oxide particles coated layer is increased, N 2 O slip amount tended to decreases.
  • the proportion of iron supported metal oxide particles coated layer is more than 2.0 mass%, in the above about 4.8 wt%, decreasing the N 2 O slip amount becomes moderate.
  • the proportion of iron supported metal oxide particles coated layer is from the viewpoint of suppressing N 2 O slip amount, 2.0 mass% or more, 3.0 wt% or more, 4.0 wt%
  • the above or 4.5% by mass or more may be used, and from the viewpoint of the effectiveness of the formulation, it may be 20% by mass or less, 18% by mass or less, or 16% by mass or less.
  • the amount of iron in the exhaust gas purification catalyst device (the mass of iron in terms of ferric oxide (Fe 2 O 3 ) per 1 L of the base material) is in the range of 0.3 g / L or more and 2.5 g / L or less. if, in comparison with Comparative example, which is N 2 O slip amount is suppressed and good results were obtained. Further, when the amount of iron in the exhaust gas purification catalyst device was in the range of 0.6 g / L or more and 2.5 g / L or less, the NOx purification ability was also excellent as compared with the comparative example.
  • the amount of N 2 O slip is suppressed in Examples 3, 6 and 7 containing iron-supported metal oxide particles as compared with Comparative Example 1 containing no iron-supported metal oxide particles. Furthermore, as the Fe 2 O 3 carrying ratio in the iron-supported metal oxide particles increased, the N 2 O slip amount tended to decrease. From this, if the Fe 2 O 3 supporting ratio in the iron-supported metal oxide particles in the coat layer is 2.0% by mass or more, the effect of suppressing the amount of N 2 O slip can be exhibited. 2.0 mass% or more, 4.0 wt% or more, or if 5.0 mass% or more, the effect of suppressing the N 2 O slip amount is preferably expressed was confirmed.
  • Example 8 to 11 The catalyst layer was formed in the same manner as in Example 3 except that the iron-supported metal oxide particles (Fe 2 O 3 supported amount 9.0% by mass) shown in Table 5 were used instead of the iron alumina particles.
  • a slurry for exhaust gas was prepared and used to manufacture an exhaust gas purification catalyst device.
  • Comparative Example 5 Using the catalyst layer forming slurry 1 and the catalyst layer forming slurry 2 prepared in the same manner as in Comparative Example 4, Cu was placed on the substrate in the same manner as in Comparative Example 3 except that the order of application was reversed.
  • An exhaust gas purification catalyst device was manufactured by forming a catalyst layer composed of a lower layer containing CHA-type zeolite particles (coating amount 140 g / L) and an upper layer containing iron-supported metal oxide particles (coating amount 14 g / L). The SCR performance of the obtained exhaust gas purification catalyst device was evaluated in the same manner as in Example 1. The results are shown in Table 6.
  • Comparative Example 6 An exhaust gas purification catalyst device obtained in the same manner as in Comparative Example 1 is placed on the upstream side of the exhaust gas flow. An exhaust gas purification catalyst device obtained in the same manner as in Comparative Example 2 is placed on the downstream side of the exhaust gas flow. They were arranged and connected in series to form a tandem type exhaust gas purification catalyst system. The SCR performance of the obtained exhaust gas purification catalyst system was evaluated in the same manner as in Example 1. The results are shown in Table 6.
  • Comparative Example 7 An exhaust gas purification catalyst device obtained in the same manner as in Comparative Example 2 is placed on the upstream side of the exhaust gas flow. An exhaust gas purification catalyst device obtained in the same manner as in Comparative Example 1 is placed on the downstream side of the exhaust gas flow. They were arranged and connected in series to form a tandem type exhaust gas purification catalyst system. The SCR performance of the obtained exhaust gas purification catalyst system was evaluated in the same manner as in Example 1. The results are shown in Table 6.
  • Example 3 relates to an example of the catalyst device of the present invention having a single catalyst coat layer in which Cu-CHA type zeolite particles and iron-supported metal oxide particles are mixed.
  • Cu-CHA type zeolite particles and iron-supported metal oxide particles are mixed in the same catalyst coat layer, and it is considered that the contact frequency between the two is high. ..
  • N 2 O slip amount is very small.
  • Comparative Examples 4 and 5 relate to a catalyst apparatus having a two-layered catalyst coat layer in which a layer containing Cu-CHA type zeolite particles and a layer containing iron-supported metal oxide particles are laminated, respectively.
  • the Cu-CHA type zeolite particles and the iron-supported metal oxide particles are in contact with each other only at the contact interface of both layers.
  • N 2 O slip amount of suppression is insufficient.
  • Comparative Examples 6 and 7 are tandem type in which a catalyst device having a catalyst coat layer containing Cu-CHA type zeolite particles and a catalyst device having a catalyst coat layer containing iron-supported metal oxide particles are connected in series. Regarding the catalytic system of. In the catalyst coat layer of these comparative examples, the Cu-CHA type zeolite particles and the iron-supported metal oxide particles are not in contact with each other. In Comparative Examples 6 and 7, as compared with Comparative Examples 4 and 5, N 2 O slip amount was more often.
  • the XRD measurement conditions were as follows.
  • FIGS. 1 to 3 The XRD charts obtained in Analysis Example 1 are shown in FIGS. 1 to 3, and the XRD charts obtained in Analysis Example 2 are shown in FIGS. 4 to 6, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

基材と、前記基材上の1又は複数の触媒層とを含む排ガス浄化触媒装置であって、前記1又は複数の触媒層のうちの少なくとも1つの触媒層が、Cu-CHA型ゼオライト粒子、及び金属酸化物粒子上に鉄が担持された、鉄担持金属酸化物粒子の双方を含む、排ガス浄化触媒装置。

Description

排ガス浄化触媒装置
 本発明は、排ガス浄化触媒装置に関する。
 ディーゼルエンジン等の内燃機関から排出される排ガス中のNOxを、大気に放出される前に、還元浄化する技術として、選択的接触還元(SCR:Selective Catalytic Reduction)システムが知られている。SCRシステムは、還元剤、例えばアンモニアを用いて、排ガス中のNOをNに還元する、SCR触媒を用いる技術である。
 しかしながら、この技術において、一酸化二窒素(NO)生成反応が起こり、生成したNOがSCRシステムから排出されることがある。このNOの生成は、SCR反応によってNOxがNに還元される過程で、或いは、アンモニアが還元剤として働く過程で、副反応として起こると考えられている。
 ところで、内燃機関からの排ガスの規制は、年々強化されており、近年は、グリーンハウスガス(温室効果ガス)を規制する「GHG規制」の強化が著しい。
 NOは、温室効果ガスとしての寄与が大きいので、内燃機関からのNOの排出量は、極力少ないことが望まれる。
 この点、特許文献1には、混合酸化物(例えばバナジア/チタニア)を含む第1の触媒組成物層と、金属交換されたゼオライト(例えばCu-ゼオライト)を含む第2の触媒組成物層とが、基体上に、排ガス流れの上流側からこの順に配置された、SCR触媒系が記載されており、この構成によってNOの排出量が低減できると説明されている。
特表2016-518244号公報
 本発明の目的は、NOの排出量(NOスリップ量)が極めて抑制された、排ガス浄化触媒装置を提供することである。
 本発明は、以下のとおりである。
 《態様1》基材と、前記基材上の1又は複数の触媒層とを含む排ガス浄化触媒装置であって、
 前記1又は複数の触媒層のうちの少なくとも1つの触媒層が、
  Cu-CHA型ゼオライト粒子、及び
  金属酸化物粒子上に鉄が担持された、鉄担持金属酸化物粒子
の双方を含む、
排ガス浄化触媒装置。
 《態様2》前記金属酸化物粒子が、アルミナ、シリカ、チタニア、ジルコニア、及びセリアより成る群から選択される、1種の金属の酸化物粒子、又は2種以上の金属の複合酸化物粒子である、態様1に記載の排ガス浄化触媒装置。
 《態様3》前記金属酸化物粒子が、アルミナ粒子である、態様2に記載の排ガス浄化触媒装置。
 《態様4》前記排ガス浄化触媒装置における鉄の量が、前記基材1L当たりの酸化第二鉄(Fe)換算の鉄の質量として、0.3g/L以上1.3g/L以下である、態様1~3のいずれか一項に記載の排ガス浄化触媒装置。
 《態様5》前記排ガス浄化触媒装置における鉄の量が、前記基材1L当たりの酸化第二鉄(Fe)換算の鉄の質量として、0.6g/L以上1.3g/L以下である、態様1~3のいずれか一項に記載の排ガス浄化触媒装置。
 《態様6》前記触媒層における、前記Cu-CHA型ゼオライト粒子と、前記鉄担持金属酸化物粒子との割合が、両者の合計に対する鉄担持金属酸化物粒子の質量百分率として、5質量%以上20質量%以下である、態様1~5のいずれか一項に記載の排ガス浄化触媒装置。
 《態様7》選択的接触還元用である、態様1~6のいずれか一項に記載の排ガス浄化触媒装置。
 《態様8》態様1~7のいずれか一項に記載の排ガス浄化触媒装置の製造方法であって、
 (1)前記Cu-CHA型ゼオライト粒子と、前記鉄担持金属酸化物粒子とを、混合して湿式粉砕し、触媒層形成用スラリーを得ること、及び
 (2)前記基材上に、前記触媒層形成用スラリーを塗布して焼成し、前記基材上に前記触媒層を形成すること
を含む、
排ガス浄化触媒装置の製造方法。
 《態様9》態様7に記載の排ガス浄化触媒装置を用いて排ガスを浄化する、排ガス浄化方法であって、
 前記排ガス浄化触媒装置に、排ガス及び還元剤を供給して、前記排ガス中のNOをNに還元することを含む、
排ガス浄化方法。
 本発明によると、NOの排出量(NOスリップ量)が極めて抑制された、排ガス浄化触媒装置が提供される。
図1は、実施例3で使用したスプレードライ法鉄アルミナのXRDチャートである(2θ=10~80°)。 図2は、実施例3で使用したスプレードライ法鉄アルミナのXRDチャートである(2θ=29~35°)。 図3は、実施例3で使用したスプレードライ法鉄アルミナのXRDチャートである(2θ=48~54°)。 図4は、実施例5で使用した含侵法鉄アルミナのXRDチャートである(2θ=10~80°)。 図5は、実施例5で使用した含侵法鉄アルミナのXRDチャートである(2θ=29~35°)。 図6は、実施例5で使用した含侵法鉄アルミナのXRDチャートである(2θ=48~54°)。
 本発明の排ガス浄化触媒装置は、
  基材と、基材上の1又は複数の触媒層とを含む排ガス浄化触媒装置であって、
  上記1又は複数の触媒層のうちの少なくとも1つの触媒層が、
    Cu-CHA型ゼオライト粒子、及び
    金属酸化物粒子上に鉄が担持された、鉄担持金属酸化物粒子
の双方を含むことを特徴とする。
 特許文献1の技術は、混合酸化物と、金属交換ゼオライトとの間で、N生成能及びNO生成能に差があることに着目し、混合酸化物の機能と、金属交換ゼオライトの機能とを分離して、それぞれ別個に利用しようとするものである。そして、N形成能に優れ、NO形成能が低い、混合酸化物を含む第1の触媒組成物層を、NOxリッチな排ガスと最初に接触させて、NOの生成を抑制しようとする思想に基づいている。
 しかしながら、本発明者らは、NOスリップ量の抑制について、次のように考えた。
 NOは、例えば、SCR反応の中間体である硝安(NH・NO)の分解反応等に由来する。硝安の分解によるNOの発生は、金属交換ゼオライト(例えばCu-ゼオライト)によって促進されると考えられる。一方、混合酸化物(例えば鉄系材料)は、発生したNOの分解を促進すると考えられる。
 したがって、金属交換ゼオライトと混合酸化物とを近接させて配置すれば、金属交換ゼオライトの作用によって発生したNOが直ちに分解され、その結果、NOスリップ量を抑制できると期待される。
 この点、特許文献1に記載のSCR触媒系では、金属交換ゼオライトと混合酸化物とが、別々の層に配置されている。そうすると、両者の近接の程度が少なくなる。そのため、このような構成のSCR触媒では、発生したNOが混合酸化物と接触せず、したがって分解されずにそのまま排出されると考えられる。
 本発明では、上記の考察に基づいて、Cu-CHA型ゼオライト粒子と鉄担持金属酸化物粒子とを、同一の触媒層内に配置して、両者の近接の程度を高くすることによって、NOスリップ量が十分に抑制された排ガス浄化触媒装置に到達したのである。なお、本発明は、特定の理論に拘束されるものではない。
 以下、本発明の排ガス浄化触媒装置の構成要素について、順に詳説する。
 《基材》
 本発明の排ガス浄化触媒装置における基材としては、排ガス浄化触媒装置の基材として一般に使用されているものを使用することができる。例えば、コージェライト、SiC、ステンレス鋼、無機酸化物粒子等の材料から構成されている、例えばストレートフロー型のモノリスハニカム基材であってよい。
 《触媒層》
 本発明の排ガス浄化触媒装置は、1又は複数の触媒層を有し、そのうちの1つの触媒層は、Cu-CHA型ゼオライト粒子、及び鉄担持金属酸化物粒子の双方を含む。すなわち、本発明の排ガス浄化触媒装置において、Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子とは、同一の触媒層内に含まれる。
 以下、本明細書において、Cu-CHA型ゼオライト粒子、及び鉄担持金属酸化物粒子の双方を含む触媒層を、「特定触媒層」という。
 〈Cu-CHA型ゼオライト粒子〉
 本発明におけるCu-CHA型ゼオライト粒子は、銅でイオン交換されたCHA(Chabazite、チャバサイト)型のゼオライトから成る粒子を意味する。このCu-CHA型ゼオライト粒子としては、SCR触媒として公知のものから適宜選択して用いてよい。
 Cu-CHA型ゼオライト粒子は、高いSCR触媒能を確保する観点から、SAR(Silica Alumina Ratio、SiO/Alモル比)が、20以下、18以下、15以下、12以下、10以下、9以下、又は8以下であってよい。
 一方で、Cu-CHA型ゼオライトのSARが過度に低いと、ゼオライトの比表面積が小さくなって、NO浄化能が損なわれる場合がある。これを回避する観点から、Cu-CHA型ゼオライト粒子のSARは、3以上、4以上、5以上、6以上、又は7以上であってよい。
 Cu-CHA型ゼオライト粒子におけるCuは、CHA型ゼオライトの表面Alサイトに担持され、SCR触媒におけるNO浄化の触媒活性点を構成すると考えられている。Cu-CHA型ゼオライトにおけるCu量は、CuとAlとのモル比(Cu/Al)として、高いNO浄化能を発現させる観点から、0.05以上、0.10以上、0.15以上、0.20以上、又は0.25以上であってよく、NO浄化能を安定的に維持する観点から、1.00以下、0.80以下、0.60以下、0.50以下、0.45以下、0.40以下、0.35以下、0.30以下、又は0.25以下であってよい。
 本発明におけるCu-CHA型ゼオライト粒子は、アルカリ金属を含んでいてよい。適正な量のアルカリ金属を含むCu-CHA型ゼオライトは、高い初期NOx浄化能を維持しながら、その水熱耐久性が更に向上する。一方で、Cu-CHA型ゼオライト粒子に含まれるアルカリ金属量が過度に多いと、初期NO浄化能が損なわれる場合がある。
 これらの観点から、Cu-CHA型ゼオライト粒子中のアルカリ金属量は、MO(Mはアルカリ金属を示す。)換算質量がCu-CHA型ゼオライトの全質量に占める割合として、0.2質量%以上、0.3質量%以上、0.4質量%以上、0.5質量%以上、0.6質量%以上、0.7質量%以上、又は0.8質量%以上であってよく、2.0質量%以下、1.8質量%以下、1.6質量%以下、1.4質量%以下、1.2質量%以下、1.0質量%以下、0.9質量%以下、又は0.8質量%以下であってよい。
 Cu-CHA型ゼオライト粒子に含まれるアルカリ金属は、リチウム(Li)、ナトリウム(Na)、カリウム(K)、セシウム(Cs)等であってよく、典型的にはカリウムであってよい。
 Cu-CHA型ゼオライト粒子の一次粒径は、0.1μm以上、0.2μm以上、0.3μm以上、又は0.4μm以上であってよく、1.0μm以下、0.8μm以下、0.6μm以下、0.5μm以下、又は0.4μm以下であってよい。
 本発明の排ガス浄化触媒装置におけるCu-CHA型ゼオライト粒子の量は、基材1L当たりのCu-CHA型ゼオライトの質量として、十分に高いSCR触媒能を確保する観点から、70g/L以上、80g/L以上、100g/L以上、120g/L以上、130g/L以上、又は140g/L以上であってよく、排ガス浄化触媒装置の圧損を抑制する観点から、200g/L以下、180g/L以下、160g/L以下、150g/L以下、又は140g/L以下であってよい。
 〈鉄担持金属酸化物粒子〉
 本発明における鉄担持金属酸化物粒子は、金属酸化物粒子上に鉄が担持されて成る粒子である。
 金属酸化物粒子は、アルミナ、シリカ、チタニア、ジルコニア、セリア等から選択される、1種の金属の酸化物粒子、又は2種以上の金属の複合酸化物粒子であってよい。金属酸化物粒子は、典型的には、アルミナ粒子である。
 鉄担持金属酸化物粒子の鉄担持量は、NOスリップ量を十分に抑制する観点からは、鉄担持金属酸化物粒子の全質量に対して、酸化第二鉄(Fe)換算の鉄の質量が占める割合として、0.5質量%以上、1質量%以上、3質量%以上、5質量%以上、6質量%以上、又は7質量%以上であってよい。一方で、鉄担持量を、20質量%以下、15質量%以下、12質量%以下、又は10質量%以下としても、十分に高いNOスリップ量の抑制効果が得られる。
 鉄担持金属酸化物粒子中の鉄(例えば、酸化第二鉄)は、粒子状であってよく、1nm以上50nm以下程度の粒径を有していてよい。
 このような鉄担持金属酸化物粒子は、例えば、所望の金属酸化物粒子を用いて、例えば、スプレードライ法、含侵法等の適宜の方法によって調製されたものであってよい。
 スプレードライ法による鉄担持金属酸化物粒子の製造は、例えば、以下の工程を含む方法によって行われてよい:
  所望の金属酸化物粒子のゾルと、鉄化合物とを、適当な溶媒(例えば水)中で混合して、混合液を調製すること;
  得られた混合液を、スプレードライして、乾燥粉末状態の前駆体粒子ゲルを得ること;及び
  得られた前駆体粒子ゲルを焼成すること。
 含侵法による鉄担持金属酸化物粒子の製造は、例えば、以下の工程を含む方法によって行われてよい:
  所望の金属酸化物粒子を、鉄化合物を適当な溶媒(例えば水)中に溶解した溶液中に浸漬すること;及び
  浸漬後の金属酸化物粒子を焼成すること。
 スプレードライ法及び含侵法に用いる鉄化合物は、溶媒可溶の鉄化合物であってよく、水溶性の鉄化合物であってよく、具体的には、例えば、硫酸鉄、硝酸鉄、塩化鉄、ヘキサシアノ鉄酸カリウム等であってよい。
 鉄担持金属酸化物粒子の一次粒径は、0.01μm以上、0.03μm以上、又は0.05μm以上であってよく、1μm以下、0.5μm以下、又は0.2μm以下であってよい。
 鉄担持金属酸化物粒子において、金属酸化物粒子上に担持されている鉄は、できるだけ高分散されていることが望ましい。具体的には、鉄担持金属酸化物粒子の粉砕物について測定したXRDにおいて、酸化第二鉄(Fe)に帰属される結晶ピークが観察されない程度に高分散されていてよい。XRD測定において、酸化第二鉄の結晶ピークは、概ね2θ=31°付近及び51°付近に観測される。
 本発明の排ガス浄化触媒装置における鉄担持金属酸化物粒子の量は、基材1L当たりの鉄担持金属酸化物の質量として、NOスリップ量の抑制効果を十分に高くする観点から、1g/L以上、3g/L以上、5g/L以上、10g/L以上、又は12g/L以上であってよく、排ガス浄化触媒装置の圧損を抑制する観点から、30g/L以下、25g/L以下、20g/L以下、18g/L以下、又は15g/L以下であってよい。
 同様の観点から、排ガス浄化触媒装置における鉄の量は、前記基材1L当たりの酸化第二鉄(Fe)換算の鉄の質量として、0.3g/L以上、0.5g/L以上、1.7g/L以上、又は1.0g/L以上であってよく、1.3g/L以下、1.2g/L以下、1.1g/L以下、又は1.0g/L以下であってよい。
 〈Cu-CHA型ゼオライト粒子と鉄担持金属酸化物粒子との割合〉
 本発明の排ガス浄化触媒装置では、特定触媒層における、Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子との割合は、SCR触媒能と、NOスリップ量の抑制効果とのバランスの観点から、Cu-CHA型ゼオライト及び鉄担持金属酸化物の合計質量に対する鉄担持金属酸化物の質量割合(質量百分率)として、5質量%以上、7質量%以上、10質量%以上、12質量%以上、又は15質量%以上であってよく、20質量%以下、18質量%以下、15質量%以下、又は12質量%以下であってよい。
 〈特定触媒層の任意成分〉
 本発明の排ガス浄化触媒装置における特定触媒層は、Cu-CHA型ゼオライト粒子、及び鉄担持金属酸化物粒子の双方を含む。この特定触媒層は、これら以外に、他の任意成分を含んでいてよい。
 特定触媒層に含まれる他の成分は、例えば、Cu-CHA型ゼオライト粒子及び鉄担持金属酸化物粒子以外の他の金属酸化物粒子、バインダー等であってよい。
 他の金属酸化物粒子は、例えば、アルミナ、シリカ、チタニア、ジルコニア、セリア等から選択される、1種の金属の酸化物粒子、又は2種以上の金属の複合酸化物粒子であってよい。バインダーは、例えば、アルミナゾル、シリカゾル、チタニアゾル、ジルコニアゾル等の金属酸化物ゾルの焼成硬化物であってよい。
 〈特定触媒層の量〉
 本発明の排ガス浄化触媒装置における特定触媒層の量(コート量)は、基材1L当たりの特定触媒層の質量として、十分に高いSCR触媒能を発現する観点から、80g/L以上、100g/L以上、120g/L以上、130g/L以上、又は140g/L以上であってよく、排ガス浄化触媒装置の圧損を抑制する観点から、250g/L以下、200g/L以下、180g/L以下、160g/L以下、150g/L以下、又は140g/L以下であってよい。
 〈その他の触媒層〉
 本発明の排ガス浄化触媒装置は、特定触媒層を有する。本発明の排ガス浄化触媒装置は、必要に応じて、特定触媒層以外に、その他の触媒層を有していてもよい。
 本発明の排ガス浄化触媒装置におけるその他の触媒層は、例えば、NOxの酸化能を示す触媒層、ASC(Ammonia Slip Catalyst、アンモニアスリップ触媒)能を示す触媒層等であってよい。これらは、公知の触媒層と同様の構成を有していてよい。また、本発明の排ガス浄化触媒装置において、特定触媒層とその他の触媒層とは、基材上に任意の順に積層されて存在してよく、或いは、基材上に、任意の順で、排ガス流れ方向の上流側及び下流側の触媒層として存在してよい。
 《排ガス浄化触媒装置の製造方法》
 本発明の排ガス浄化触媒装置は、上記の構成を有している限り、任意の方法によって製造されてよい。本発明の排ガス浄化触媒装置の一例として、基材上に特性触媒層を単層で有する場合を例にとり、その製造方法として、以下の方法を例示する:
  (1)Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子とを、混合して湿式粉砕し、触媒層形成用スラリーを得ること(触媒層形成用スラリー調製工程)、及び
  (2)基材上に、触媒層形成用スラリーを塗布して焼成し、基材上に触媒層を形成すること(触媒層形成工程)
を含む、排ガス浄化触媒装置の製造方法。
 触媒層形成用スラリー調製工程では、本発明所定のCu-CHA型ゼオライト粒子と、本発明所定の鉄担持金属酸化物粒子とを、所定の割合で混合して湿式粉砕し、触媒層形成用スラリー(特定触媒層形成用スラリー)を得る。
 この触媒層形成用スラリー調製工程における粉砕は、各粒子の粒径を均一とし、触媒活性を安定化する観点、及び、特にCu-CHA型ゼオライト粒子の結晶欠陥の発生を抑制する観点から、適当な液状媒体(例えば水)中で行う湿式粉砕によって行われる。
 湿式粉砕は、例えば、適当な液状媒体を用いて、ボールミル、ビーズミル、ジェットミル、エアジェットミル等の適宜の粉砕装置を用いて行われてよい。
 触媒層形成工程では、基材上に、触媒層形成用スラリーを塗布して焼成して、基材上に触媒層を形成する。
 基材は、所望の排ガス浄化触媒装置における基材に応じて、適宜に選択されてよく、例えば、コージェライト製のストレートフロー型のモノリスハニカム基材であってよい。
 基材上への触媒層形成用スラリーを塗布及び焼成は、それぞれ、公知の方法により、又は公知の方法に当業者による適宜の変更を加えた方法により、行われてよい。なお、焼成温度は、例えば、300℃以上、350℃以上、400℃以上、450℃以上、又は500℃以上であってよく、例えば、1,000℃以下、800℃以下、700℃以下、600℃以下、550℃以下、又は500℃以下であってよい。
 《排ガス浄化触媒装置の用途》
 本発明の排ガス浄化触媒装置は、例えば、ディーゼル内燃機関、ガソリン内燃機関等から排出される排ガスを浄化するための、選択的接触還元(SCR)用の触媒装置として使用されてよい。
 本発明の排ガス浄化触媒装置は、また、DPF(Diesel Particulat Filter、ディーゼル微粒子捕集フィルター)装置、GPF(Gasoline Particulat Filter、ガソリン微粒子捕集フィルター)装置、ASC(Ammonia Slip Catalyst、アンモニアスリップ触媒)装置等から選択される1つ以上と組み合わされて、排ガス浄化触媒システムの一部として用いられてよい。
 《排ガス浄化方法》
 本発明は、更に、本発明の排ガス浄化触媒装置を用いて排ガスを浄化する、排ガス浄化方法を提供する。
 本発明の排ガス浄化方法は、本発明の排ガス浄化触媒装置に、排ガス及び還元剤を供給して、排ガス中のNOをNに還元することを含む、方法である。
 本発明の排ガス浄化方法における還元剤は、例えば、アンモニア、アンモニア水、尿素、炭化水素、霧状の燃料等であってよい。本発明の排ガス浄化触媒装置は、SCR反応において還元剤として用いられるアンモニア(NH)に由来する、NO生成が極めて抑制されたものであるから、還元剤としては、特に、アンモニア、アンモニア水、及び尿素から選択される1種以上を用いてよい。
 以下の実施例では、基材として、セル密度400cpsi(cell per square inch、壁厚6mil(0.15mm)、容量35mLのコージェライト製のハニカム基材を使用した。
 Cu-CHA型ゼオライト粒子としては、シリカ/アルミナのモル比(SAR)が7.5、CuとAlとのモル比(Cu/Al)が0.25の粒子を使用した。
 《実施例1》
 (1)触媒層形成用スラリーの調製
 純水200質量部中に、シリカバインダーゾル分散液100質量部(乾燥質量15質量部)、Cu-CHA型ゼオライト粒子85質量部、及び鉄担持金属酸化物粒子としての、鉄アルミナ粒子(スプレードライ法鉄アルミナ粒子、Fe担持量9.0質量%)2質量部を、この順に混合し、湿式粉砕法にて粉砕することにより、触媒層形成用スラリーを得た。
 (2)排ガス浄化触媒装置の製造
 基材上に、上記で得られた触媒層形成用スラリーを、焼成後のコート量が142.8g/Lとなるように塗布し、250℃において乾燥後、500℃にて1時間焼成することにより、基材上に触媒層を形成して、排ガス浄化触媒装置を製造した。この外ガス浄化触媒装置の触媒層における、添加剤(鉄アルミナ粒子)のコート量は、2.8g/Lであった。次いで、この排ガス浄化触媒装置を、水熱耐久炉中、630℃にて50時間耐久した後に、SCR性能の評価に供した。
 (3)SCR性能の評価
 上記で得られた排ガス浄化触媒装置のSCR性能の評価は、モデルガスを用いて行った。
 先ず、排ガス浄化触媒装置を加熱して、室温から600℃まで25℃/分の昇温速度で昇温させながら、排ガス浄化触媒装置中に、下記表1に示したガス条件1の組成のガスを、空間速度(SV)60,000h-1にて流通させた。装置の温度が600℃に到達した直後に、加熱を止めて装置を放冷した。装置温度が500℃まで下がった後、この温度を維持しながら、下記表2に示したガス条件2の組成のガスを、空間速度(SV)60,000h-1にて流通させて、排出ガスの組成を調べ、NOの浄化率、及びNOスリップ量を算出した。結果は表3に示す。
Figure JPOXMLDOC01-appb-T000001
 《実施例2~4、並びに比較例1及び2》
 スプレードライ法鉄アルミナ粒子におけるFe担持量を、表3に示したように変更した他は、実施例1と同様にして、それぞれ触媒層形成用スラリーを調製した。これを用いて、焼成後のコート量が表3に記載の値となるように、塗布量を変更した他は、実施例1と同様にして、基材上に触媒層形成用スラリーを塗布し、乾燥及び焼成を行って、排ガス浄化触媒装置を製造した。
 なお、比較例2では、触媒層形成用スラリー調製の際の純水の使用量を、250質量部とした。
 得られた排ガス浄化触媒装置について、実施例1と同様にして、耐久及びSCR性能の評価を行った。結果は表3に示す。
 《実施例5》
 スプレードライ法鉄アルミナ粒子の代わりに、含侵法によりアルミナ上に同量のFeを担持した、含侵法鉄アルミナ粒子を用いた他は、実施例3と同様にして、排ガス浄化触媒装置を製造し、評価した。結果は表3に示す。
 《比較例3》
 スプレードライ法鉄アルミナ粒子の代わりに、アルミナ9.1質量部及び酸化鉄0.9質量部との混合物を用いた他は、実施例3と同様にして、排ガス浄化触媒装置を製造し、評価した。結果は表3に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の排ガス浄化触媒装置の評価では、NOx浄化率の値は、大きい方が良好であり、NOスリップ量の値は、小さい方が良好である。
 表3を参照すると、鉄担持金属酸化物粒子を含まない比較例1と比べて、鉄担持金属酸化物粒子を含む実施例1~4では、NOスリップ量が抑制されており、更に、コート層中の鉄担持金属酸化物粒子の割合が増えるにしたがって、NOスリップ量が減少して行く傾向が見られた。しかしながら、コート層中の鉄担持金属酸化物粒子の割合が2.0質量%を超え、4.8質量%程度以上では、NOスリップ量の減少傾向が緩やかになった。
 これらのことから、コート層中の鉄担持金属酸化物粒子の割合は、NOスリップ量を抑制する観点からは、2.0質量%以上、3.0質量%以上、4.0質量%以上、又は4.5質量%以上であってよく、配合の実効性の観点からは、20質量%以下、18質量%以下、又は16質量%以下であってよいと考えられる。
 また、排ガス浄化触媒装置中の鉄の量(基材1L当たりの酸化第二鉄(Fe)換算の鉄の質量)が、0.3g/L以上2.5g/L以下の範囲であれば、比較例と比べて、NOスリップ量が抑制されており、良好な結果が得られた。更に、排ガス浄化触媒装置中の鉄の量が、0.6g/L以上2.5g/L以下の範囲では、比較例と比べて、NOx浄化能にも優れていた。
 なお、Cu-CHA型ゼオライトを含まない比較例2では、触媒層がNOx分解能を有さないため、NOスリップ量は、見かけ上0.00となった。また、比較例2の触媒装置では、NHの酸化反応が起こっており、そのため、NOx浄化率は、計算上、負の値を示した。
 《実施例6及び7》
 鉄アルミナ粒子におけるFe担持量を、表4に示したように変更した他は、実施例3と同様にして、それぞれ触媒層形成用スラリーを調製し、これを用いて、排ガス浄化触媒装置を製造した。
 得られた排ガス浄化触媒装置について、実施例1と同様にして、耐久及びSCR性能の評価を行った。結果は、比較例1及び実施例3の評価結果とともに、表4に示す。
Figure JPOXMLDOC01-appb-T000003
 表4を参照すると、鉄担持金属酸化物粒子を含まない比較例1と比べて、鉄担持金属酸化物粒子を含む実施例3、6、及び7では、NOスリップ量が抑制されており、更に、鉄担持金属酸化物粒子中のFe担持割合が増えるにしたがって、NOスリップ量が減少して行く傾向が見られた。このことから、コート層中の鉄担持金属酸化物粒子中のFe担持割合は、2.0質量%以上であれば、NOスリップ量の抑制効果を発現させることができ、3.0質量%以上、4.0質量%以上、又は5.0質量%以上であれば、NOスリップ量の抑制効果が好適に発現されることが確認された。
 《実施例8~11》
 鉄アルミナ粒子の代わりに、表5に示した鉄担持金属酸化物粒子(Fe担持量9.0質量%)をそれぞれ用いた他は、実施例3と同様にして、それぞれ触媒層形成用スラリーを調製し、これを用いて、排ガス浄化触媒装置を製造した。
 得られた排ガス浄化触媒装置について、実施例1と同様にして、耐久及びSCR性能の評価を行った。結果は、比較例1及び実施例3の評価結果とともに、表5に示す。
Figure JPOXMLDOC01-appb-T000004
 表5中の鉄担持金属酸化物粒子欄の略称は、それぞれ以下の意味である。
  スプレードライ法鉄アルミナ:γ-アルミナ上に酸化鉄(Fe)が担持された粒子、スプレードライ法により製造
  スプレードライ法鉄シリカアルミナ:シリカアルミナ(SiO:Al=5:95(質量比))上に酸化鉄(Fe)が担持された粒子、スプレードライ法により製造
  スプレードライ法鉄チアニア:チタニア上に酸化鉄(Fe)が担持された粒子、スプレードライ法により製造
  スプレードライ法鉄セリア:セリア上に酸化鉄(Fe)が担持された粒子、スプレードライ法により製造
 表5の結果から、鉄担持金属酸化物粒子における担体として、アルミナの他、シリカアルミナ、チタニア、セリア等を用いた場合でも、本発明所期の効果が発現されることが確認された。
 《比較例4》
 (1)触媒層形成用スラリー1の調製
 純水250質量部中に、アルミナバインダーゾル5質量部、及び鉄担持金属酸化物粒子としての、鉄アルミナ(Fe含量9.0質量%)粒子95質量部を、この順に混合し、湿式粉砕法にて粉砕することにより、触媒層形成用スラリー1を得た。
 (2)触媒層形成用スラリー2の調製
 純水200質量部中に、シリカバインダーゾル分散液100質量部(乾燥質量15質量部)、及びCu-CHA型ゼオライト粒子85質量部を、この順に混合し、湿式粉砕法にて粉砕することにより、触媒層形成用スラリー2を得た。
 (3)排ガス浄化触媒装置の製造
 基材上に、触媒層形成用スラリー1を、焼成後のコート量が14g/Lとなるように塗布し、250℃において乾燥した。次いで、触媒層形成用スラリー1を塗布及び乾燥後の基材上に、触媒層形成用スラリー2を、焼成後のコート量が140g/Lとなるように塗布し、250℃において乾燥した後、500℃にて1時間焼成することにより、基材上に、鉄担持金属酸化物粒子を含む下層、及びCu-CHA型ゼオライト粒子を含む上層から成る触媒層を形成して、排ガス浄化触媒装置を製造した。
 (4)SCR性能の評価
 上記で得られた排ガス浄化触媒装置について、実施例1と同様にして、SCR性能の評価を行った。結果は表6に示す。
 《比較例5》
 比較例4と同様にして調製した、触媒層形成用スラリー1及び触媒層形成用スラリー2を用い、塗布する順番を逆にした他は、比較例3と同様にして、基材上に、Cu-CHA型ゼオライト粒子を含む下層(コート量140g/L)、及び鉄担持金属酸化物粒子を含む上層(コート量14g/L)から成る触媒層を形成して、排ガス浄化触媒装置を製造した。得られた排ガス浄化触媒装置について、実施例1と同様にして、SCR性能の評価を行った。結果は表6に示す。
 《比較例6》
 比較例1と同様にして得られた排ガス浄化触媒装置を、排ガス流れの上流側に、
 比較例2と同様にして得られた排ガス浄化触媒装置を、排ガス流れの下流側に、
配置して、これらを直列に接続して、タンデム型の排ガス浄化触媒システムとした。得られた排ガス浄化触媒システムについて、実施例1と同様にして、SCR性能の評価を行った。結果は表6に示す。
 《比較例7》
 比較例2と同様にして得られた排ガス浄化触媒装置を、排ガス流れの上流側に、
 比較例1と同様にして得られた排ガス浄化触媒装置を、排ガス流れの下流側に、
配置して、これらを直列に接続して、タンデム型の排ガス浄化触媒システムとした。得られた排ガス浄化触媒システムについて、実施例1と同様にして、SCR性能の評価を行った。結果は表6に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例3は、Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子とが混合された、単層の触媒コート層を有する、本発明の触媒装置の一例に関する。実施例3の触媒装置における触媒コート層では、Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子とが、同一の触媒コート層内で混合されており、両者の接触頻度は高いと考えられる。この実施例3では、NOスリップ量は、極めて少ない。
 比較例4及び5は、それぞれ、Cu-CHA型ゼオライト粒子を含む層と、鉄担持金属酸化物粒子を含む層とが積層された二層構成の触媒コート層を有する、触媒装置に関する。これらの比較例の触媒コート層では、Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子とは、両層の接触界面においてのみ、接触している。比較例4及び5では、実施例3と比べて、NOスリップ量の抑制が不十分であった。
 比較例6及び7は、Cu-CHA型ゼオライト粒子を含む触媒コート層を有する触媒装置と、鉄担持金属酸化物粒子を含む触媒コート層を有する触媒装置と、が、直列に連結されたタンデム型の触媒システムに関する。これらの比較例の触媒コート層では、Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子とは、接触していない。比較例6及び7では、比較例4及び5と比べて、NOスリップ量が更に多かった。
 上記のとおり、NOスリップ量の抑制効果は、タンデム型の比較例6及び7、二層構成の比較例4及び5、単層構成の実施例3の順に、向上していくことが分かった。このことから、NOスリップ量を抑制する観点から、Cu-CHA型ゼオライト粒子と、鉄担持金属酸化物粒子とを同一の触媒層内に配置して、両者の接触頻度を高くすることが望ましいことが分かった。
 《分析例1》
 上記の実施例3で使用したスプレードライ法鉄アルミナ粒子を粉砕して、XRDを測定した。その結果、2θ=31°付近及び51°付近に、Fe結晶に由来するピークは観測されず、アルミナ上にFeが極めて高分散にて担持されていることが確認された。
 XRDの測定条件は、以下のとおりとした。
  XRD測定装置:(株)リガク製、粉末・薄膜X線回折装置、型式名「RINT TTR III」
  測定方法:ステップスキャニング法
  送り速度:4°/分
  回折角範囲:2θ=5~85°
  ステップ幅:0.02°
  加速電圧:40kV
  加速電流:250mA
 《分析例2》
 上記の実施例5で使用した含侵法鉄アルミナを粉砕して、分析例1と同様にして、XRDを測定した。その結果、2θ=31°付近及び51°付近に、それぞれ、Fe結晶に帰属されるピークが観測され、アルミナ上でFeが凝集して結晶相を形成していることが分かった。2θ=31°付近のピークは、ショルダーピークである。
 分析例1で得られたXRDチャートを、図1~図3に、分析例2で得られたXRDチャートを、図4~図6に、それぞれ示す。図1及び図4は、それぞれ、2θ=10°~80°の広域図であり、図2及び図4は、それぞれ、2θ=29°~35°の範囲の拡大図であり、図3及び図6は、それぞれ、48°~54°の範囲の拡大図である。
 分析例2に関する図4~図6において、Fe結晶に帰属されるピークには、矢印を付した。
 なお、これらのSRDチャートにおいて、2θ=20°、33°、37°、39.5°、46°、60°、及び67°付近に見られるピークは、いずれも、γ-アルミナ結晶に帰属されると考えられる。

Claims (9)

  1.  基材と、前記基材上の1又は複数の触媒層とを含む排ガス浄化触媒装置であって、
     前記1又は複数の触媒層のうちの少なくとも1つの触媒層が、
      Cu-CHA型ゼオライト粒子、及び
      金属酸化物粒子上に鉄が担持された、鉄担持金属酸化物粒子
    の双方を含む、
    排ガス浄化触媒装置。
  2.  前記金属酸化物粒子が、アルミナ、シリカ、チタニア、ジルコニア、及びセリアより成る群から選択される、1種の金属の酸化物粒子、又は2種以上の金属の複合酸化物粒子である、請求項1に記載の排ガス浄化触媒装置。
  3.  前記金属酸化物粒子が、アルミナ粒子である、請求項2に記載の排ガス浄化触媒装置。
  4.  前記排ガス浄化触媒装置における鉄の量が、前記基材1L当たりの酸化第二鉄(Fe)換算の鉄の質量として、0.3g/L以上1.3g/L以下である、請求項1~3のいずれか一項に記載の排ガス浄化触媒装置。
  5.  前記排ガス浄化触媒装置における鉄の量が、前記基材1L当たりの酸化第二鉄(Fe)換算の鉄の質量として、0.6g/L以上1.3g/L以下である、請求項1~3のいずれか一項に記載の排ガス浄化触媒装置。
  6.  前記触媒層における、前記Cu-CHA型ゼオライト粒子と、前記鉄担持金属酸化物粒子との割合が、両者の合計に対する鉄担持金属酸化物粒子の質量百分率として、5質量%以上20質量%以下である、請求項1~5のいずれか一項に記載の排ガス浄化触媒装置。
  7.  選択的接触還元用である、請求項1~6のいずれか一項に記載の排ガス浄化触媒装置。
  8.  請求項1~7のいずれか一項に記載の排ガス浄化触媒装置の製造方法であって、
     (1)前記Cu-CHA型ゼオライト粒子と、前記鉄担持金属酸化物粒子とを、混合して湿式粉砕し、触媒層形成用スラリーを得ること、及び
     (2)前記基材上に、前記触媒層形成用スラリーを塗布して焼成し、前記基材上に前記触媒層を形成すること
    を含む、
    排ガス浄化触媒装置の製造方法。
  9.  請求項7に記載の排ガス浄化触媒装置を用いて排ガスを浄化する、排ガス浄化方法であって、
     前記排ガス浄化触媒装置に、排ガス及び還元剤を供給して、前記排ガス中のNOをNに還元することを含む、
    排ガス浄化方法。
PCT/JP2021/014375 2020-05-26 2021-04-02 排ガス浄化触媒装置 WO2021240999A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/912,151 US20230149907A1 (en) 2020-05-26 2021-04-02 Exhaust gas purification catalyst device
BR112022018717A BR112022018717A2 (pt) 2020-05-26 2021-04-02 Dispositivo catalisador de purificação de gases de escape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-091319 2020-05-26
JP2020091319A JP6994079B2 (ja) 2020-05-26 2020-05-26 排ガス浄化触媒装置

Publications (1)

Publication Number Publication Date
WO2021240999A1 true WO2021240999A1 (ja) 2021-12-02

Family

ID=78723347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014375 WO2021240999A1 (ja) 2020-05-26 2021-04-02 排ガス浄化触媒装置

Country Status (4)

Country Link
US (1) US20230149907A1 (ja)
JP (1) JP6994079B2 (ja)
BR (1) BR112022018717A2 (ja)
WO (1) WO2021240999A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203203A1 (en) * 2022-04-22 2023-10-26 Basf Corporation Catalyst for the selective catalytic reduction of nox

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013894A (ja) * 2009-11-30 2013-01-24 Johnson Matthey Plc 過渡NOx排気ガスを処理するための触媒
JP2014530097A (ja) * 2011-10-05 2014-11-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ガス流中のNOxを処理するためのCu−CHA/Fe−BEA混合ゼオライト触媒および方法
WO2015087816A1 (ja) * 2013-12-11 2015-06-18 株式会社キャタラー 排ガス浄化材
JP2018507777A (ja) * 2015-02-27 2018-03-22 ビーエーエスエフ コーポレーション 排ガス処理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732755B (zh) * 2016-12-23 2019-03-05 中节能万润股份有限公司 一种分子筛-多元氧化物复合整体挤出式脱硝催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013894A (ja) * 2009-11-30 2013-01-24 Johnson Matthey Plc 過渡NOx排気ガスを処理するための触媒
JP2014530097A (ja) * 2011-10-05 2014-11-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ガス流中のNOxを処理するためのCu−CHA/Fe−BEA混合ゼオライト触媒および方法
WO2015087816A1 (ja) * 2013-12-11 2015-06-18 株式会社キャタラー 排ガス浄化材
JP2018507777A (ja) * 2015-02-27 2018-03-22 ビーエーエスエフ コーポレーション 排ガス処理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203203A1 (en) * 2022-04-22 2023-10-26 Basf Corporation Catalyst for the selective catalytic reduction of nox

Also Published As

Publication number Publication date
JP6994079B2 (ja) 2022-01-14
BR112022018717A2 (pt) 2022-12-20
JP2021186704A (ja) 2021-12-13
US20230149907A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US11660585B2 (en) Chabazite zeolite catalysts having low silica to alumina ratios
CN107223072B (zh) 用于排气系统的一氧化二氮脱除催化剂
JP5683111B2 (ja) 銅chaゼオライト触媒
TWI566829B (zh) 含鈰且無釩之移動型去氮氧化物(DeNOx)催化劑
CN112916037B (zh) 包含具有特定粒度分布的金属氧化物载体粒子的催化剂组合物
JP6925351B2 (ja) 内燃機関のための多層触媒組成物
US20150290632A1 (en) IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION
JP2010519039A (ja) 選択的アンモニア酸化用の二官能性触媒
JP2012507400A (ja) 選択的アンモニア酸化のための二元金属触媒
JP2020528348A (ja) リーン/リッチシステムのための自動車排気からのn2o除去
JP2021507804A (ja) 排気ガス浄化触媒
CN102112225A (zh) 废气净化催化剂
CN106040287B (zh) 废气净化用催化剂
JP2022061979A (ja) 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒
WO2021240999A1 (ja) 排ガス浄化触媒装置
WO2017150350A1 (ja) 排ガス浄化触媒
JP5987855B2 (ja) 排ガス浄化用触媒
US20240141812A1 (en) Filter for the aftertreatment of exhaust gases of internal combustion engines
JP2014061456A (ja) 排気ガス浄化用フィルター
WO2023237052A1 (en) Gasoline particulate filter
JP3632739B2 (ja) 酸化チタン−リン酸チタン系粉末、排ガス浄化用触媒担体及び排ガス浄化用触媒
WO2022131070A1 (ja) Al-P複合酸化物およびこれを用いた排気ガス浄化用触媒
WO2018055893A1 (ja) 粒子状物質燃焼触媒及び粒子状物質燃焼触媒フィルタ
KR20230147151A (ko) 암모니아 산화 촉매 및 이의 제조 방법
JPS60241933A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814057

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018717

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022018717

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM E REGULARIZEM A DIVERGENCIA NO NOME DO INVENTOR CONSTANTE NA PUBLICACAO INTERNACIONAL WO/2021/240999 DE 02/12/2021 COMO YOSHINORI YAMASHITA CONSTANTE NA PETICAO INICIAL NO 870220085359 DE 19/09/2022 COMO YOSHIHIRO YAMASHITA UMA VEZ QUE NAO HOUVE ENVIO DE DOCUMENTO COMPROVANDO QUE O NOME CORRETO DO INVENTOR E O DECLARADO NA ENTRADA NACIONAL.

ENP Entry into the national phase

Ref document number: 112022018717

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220919

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814057

Country of ref document: EP

Kind code of ref document: A1