WO2021240610A1 - パターン検査・計測装置、パターン検査・計測プログラム - Google Patents
パターン検査・計測装置、パターン検査・計測プログラム Download PDFInfo
- Publication number
- WO2021240610A1 WO2021240610A1 PCT/JP2020/020576 JP2020020576W WO2021240610A1 WO 2021240610 A1 WO2021240610 A1 WO 2021240610A1 JP 2020020576 W JP2020020576 W JP 2020020576W WO 2021240610 A1 WO2021240610 A1 WO 2021240610A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corner
- pattern
- pair
- computer system
- point
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 59
- 238000005259 measurement Methods 0.000 title claims abstract description 52
- 238000013461 design Methods 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims description 38
- 239000000284 extract Substances 0.000 claims description 13
- 230000000994 depressogenic effect Effects 0.000 claims 4
- 238000012545 processing Methods 0.000 description 26
- 238000001878 scanning electron micrograph Methods 0.000 description 12
- 238000010894 electron beam technology Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011960 computer-aided design Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70625—Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/04—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/028—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/03—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/0006—Industrial image inspection using a design-rule based approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/611—Specific applications or type of materials patterned objects; electronic devices
- G01N2223/6116—Specific applications or type of materials patterned objects; electronic devices semiconductor wafer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
- G06T2207/10061—Microscopic image from scanning electron microscope
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Definitions
- the present disclosure relates to a pattern inspection / measuring device that inspects or measures a shape pattern formed on a sample.
- the circuit pattern on the semiconductor integrated circuit is inspected and measured.
- CAD Computer Aided Design
- the circuit pattern is evaluated by comparing the CAD data with the image obtained by capturing the actually formed circuit pattern (for example, the SEM image captured by a scanning electron microscope: Scanning Electron Microscope).
- the circuit pattern formed on the wafer does not become the same as the design shape, and shape measurement is performed to evaluate the workmanship.
- the distance between patterns may be measured.
- the distance measurement between patterns there are a method using design data and a method not using design data.
- Patent Document 1 describes distance measurement between patterns without using design data.
- the corner points are formed sharply (for example, at right angles) on the design data, but the corner points actually formed by the manufacturing process are not always clearly identifiable, and have a chamfered shape, for example. There may be. Due to such a property of the corner points, it is difficult to identify the corner points themselves or the distance between the corner points in the conventional evaluation method as in Patent Document 1.
- the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide a pattern inspection / measurement device capable of accurately identifying corner points formed on a sample.
- the pattern inspection / measurement device identifies a pair of corner points as a corner pair candidate on the design data, and the corner pair candidate on the design data and the corner pair candidate in the actually formed shape pattern.
- the corner points on the shape pattern are specified according to the relative relationship between the two.
- FIGS. 9A to 9D show an example of arranging FIGS. 9A to 9D. It is a figure which shows the specific example of S404. It is a flowchart explaining the detail of S208. It is a figure which shows the specific example of S210. This is an example of a screen interface (GUI) provided by the computer system 116.
- GUI screen interface
- FIG. 1 is a configuration diagram of a pattern inspection / measurement system 100.
- the pattern inspection / measurement system 100 is a system for inspecting / measuring a shape pattern formed on a semiconductor sample.
- the pattern inspection / measurement system 100 includes a scanning electron microscope (SEM) 101, computer systems 111 and 116, a design information database 120, and an input / output device 121. These are interconnected via the network 115.
- SEM scanning electron microscope
- the SEM101 images the shape pattern formed on the sample by irradiating the sample with an electron beam.
- the SEM 101 includes an electron beam column 102, a vacuum sample chamber 105, and an XY stage 106.
- the electron beam 104 is irradiated from the electron source 103 to the sample 107 such as the wafer from which the device is manufactured.
- the irradiated electron beam is converged using a multi-stage lens, and a scanning deflector is used for deflection scanning. As a result, the electron beam 104 scans the surface of the sample 107 one-dimensionally or two-dimensionally.
- the electrons 108 (secondary electrons or backscattered electrons) emitted from the sample by scanning the electron beam 104 are detected by the detector and converted into a digital signal by the A / D converter 109.
- the digital signal is input to the computer system 111 via the network 110 and stored in the storage unit 114.
- the computer system 111 is connected to the SEM 101 by the network 110.
- the computer system 111 controls various modules such as the electron beam column 102 of the apparatus, the vacuum sample chamber 105, and the XY stage 106 by the control unit 113.
- the arithmetic processing unit 112 acquires information to be measured (for example, an SEM image) by performing signal processing or image processing using the digital signal stored in the storage unit 114.
- the arithmetic processing unit 112 creates a program (recipe) for controlling the operation of the SEM 101 based on the design data of the semiconductor device. That is, the arithmetic processing unit 112 also functions as a recipe setting unit of the SEM 101. Specifically, the arithmetic processing unit 112 includes position information (for example, design data, pattern contour line data, desired measurement points on simulated design data, autofocus points, etc.) for causing the SEM 101 to execute necessary processing. The autostigma point, addressing point, etc.) are set, and the XY stage 106, deflector, etc. are controlled based on the settings.
- position information for example, design data, pattern contour line data, desired measurement points on simulated design data, autofocus points, etc.
- the computer system 116 processes the measurement result (SEM image, etc.) acquired by the computer system 111. Specifically, the arithmetic processing unit 117 carries out a process for inspecting the shape pattern on the sample 107 using the measurement result (for example, measurement of the distance between corner points described later). The image processing unit 118 performs image processing associated with the pattern inspection. The storage unit 119 stores the processing result.
- the design information database 120 stores design information (hereinafter referred to as design data) of a semiconductor circuit pattern formed on the sample 107.
- the design data describes the shape and coordinates of the circuit pattern formed in each layer of the laminated circuit pattern.
- the design information database 120 can be configured by storing the design data in the storage device.
- the input / output device 121 is an operation terminal for the user to perform various operations of the SEM 101, including a recipe execution operation and a recipe creation operation of the computer system 111.
- the input / output device 121 connects to the computer system 116 and instructs processing such as measurement processing and statistical processing.
- the input / output device 121 can further inquire, acquire, store, and create design data by accessing the design information database 120.
- corner points refers to a combination of two corner points.
- the computer system 116 inspects the sample 107 by identifying the corner points and calculating the distance between the corner points according to a procedure described later.
- FIG. 2 is a flowchart illustrating a procedure in which the pattern inspection / measurement system 100 identifies a corner pair on the sample 107. Each step of FIG. 2 will be described below.
- Step S201 The SEM 101 captures an SEM image of the sample 107 according to the recipe created by the recipe creation function of the arithmetic processing unit 112.
- the control unit 113 stores the SEM image in the storage unit 114, and stores incidental information such as imaging conditions in the storage unit 114.
- the computer system 116 acquires the SEM image and incidental information stored in the storage unit 114 of the computer system 111 via the network (S202).
- the computer system 116 acquires the design data corresponding to the SEM image from the design information database 120 (S203), and reads the SEM image and the design data (S204).
- Step S205 The computer system 116 sets additional information for the read design data.
- the additional information in this step is given to distinguish whether the shape pattern formed on the design data is a convex pattern or a concave pattern, which will be described later. A specific example will be described with reference to FIG.
- the computer system 116 performs an alignment process between the read SEM image and the design data.
- the alignment method a known method such as template matching or pattern matching using a normalization correlation method can be used.
- Step S207 The computer system 116 automatically acquires a corner pair as a measurement position candidate by using the design data obtained by aligning with the SEM image in S206. The details of this step will be described with reference to FIG.
- Step S208 The computer system 116 extracts the outline of the circuit pattern by using the SEM image of the circuit pattern to be inspected. The details of this step will be described with reference to FIG.
- the computer system 116 uses the corner pair candidate on the design data acquired in S207 and the contour line extracted in S208, and points (or areas) on the contour line corresponding to each corner point forming the corner pair candidate. ). The computer system 116 uses this specified position as the estimated position of the corner point on the actual shape pattern.
- Fig. 2 Step S209: Supplement
- the position of the corner point is estimated by searching the corresponding point in an arbitrary direction from the target corner point, or the target corner point is estimated.
- a method such as setting the intersection of a straight line having an arbitrary angle to pass through and the contour line as a corresponding point and setting it as an estimated position of a corner point can be used.
- the position of the corner point cannot be estimated or there is a possibility that it will be erroneously detected.
- the distance conversion image is an image in which the distance to the nearest contour line is used as the luminance value based on the contour line information, and the luminance value decreases as the distance approaches the contour line.
- Step S210 The computer system 116 searches for a combination of points having the shortest distance between corners around each corner estimated position existing as a pair, and acquires a combination having the shortest distance.
- the shortest distance acquired in this step is defined as the distance between corners. An example of this step will be described with reference to FIG.
- FIG. 3 is a schematic diagram illustrating additional information given to the design data in S205.
- Three-dimensional shape patterns 301 and 302 are formed on the sample 107. These form a rectangular closed region in the plane.
- the three-dimensional shape pattern 301 is a convex pattern
- the three-dimensional shape pattern 302 is a concave pattern. Therefore, when the sample 107 is cut by the inspection surface 303, the closed region of the three-dimensional shape pattern 301 is filled with the material, and the closed region of the three-dimensional shape pattern 302 is not filled.
- FIG. 4 is a flowchart illustrating the details of S207. Each step of FIG. 4 will be described below.
- Step S401 The computer system 116 adds the additional information described below to each corner point on the design data.
- Step S401 Additional information 1
- the computer system 116 classifies each corner point on the design data into eight types based on the rotation direction described with reference to FIG. A specific example of this additional information will be described with reference to FIG. This additional information is provided for convenience in subsequent processing, and is for the necessity in arithmetic processing.
- Step S401 Additional information 2
- OPC Optical Proximity Direction
- the computer system 116 imparts a non-target attribute indicating that the corner points formed by such minute steps are excluded from the inspection target. A specific example of this attribute will be described with reference to FIG. 6A.
- Step S401 Additional information No. 3
- the step is not as small as the OPC pattern, if the distance between adjacent corners is dense, the number of corner pairs for measuring the distance between corner points may increase extremely. Therefore, the computer system 116 imparts a dense attribute to such a dense corner group. A specific example of this attribute will be described with reference to FIG. 6B. An example of how to use this attribute will be described in the second embodiment.
- Step S401 Additional information No. 4
- the computer system 116 assigns a normal attribute to a corner point that does not belong to either the non-target attribute or the dense attribute.
- the normal attribute means that the corner point should be the target for measuring the distance between the corner points.
- Step S401 Additional information No. 5
- the computer system 116 calculates polar coordinates with the upper left corner of the design data as the origin for each corner point, and assigns the polar coordinates as position information of each corner. An example of polar coordinates will be described with reference to FIG.
- FIG. 4 Step S402
- the computer system 116 uses the additional information set in S301 to specify a candidate for measuring the distance between corner points (hereinafter referred to as a corner pair candidate).
- Candidates for corner pairs are (a) two diagonally arranged corner points in one closed area, and (b) two corner points facing each other among the corner points of each of the two closed areas. It is one of the points. Specific examples of this step will be described with reference to FIGS. 8A to 8E.
- Step S402 Supplement
- the computer system 116 excludes the corner points to which the non-target attribute is given from the corner pair candidates. Further, in the above (a), the computer system 116 considers only two diagonally arranged corner points as corner pair candidates, so that two adjacent corner points are excluded from the corner pair candidates. Further, the computer system 116 considers one overlapping corner point pair as one, such as a corner point 1: corner point 2 pair and a corner point 2: corner point 1 pair, and any one of the corner point pairs. Adopt only. The above is the same in S403.
- Step S403 The computer system 116 narrows down the corner pairs for measuring the distance between the corner points from the corner pair candidates. Specifically, for (a) of S402, only two corner points included within the threshold distance in the coordinate regions having a diagonal arrangement relationship are measured, and for (b) of S402, the opposite arrangement relationship is applied. Only two corner points within the threshold distance in the coordinate area are adopted as measurement targets. Specific examples of this step will be described with reference to FIGS. 9A to 9E.
- Fig. 4 Step S403: Supplement
- the computer system 116 adopts all the corner points included within the threshold distance as measurement targets. Therefore, there may be a plurality of corner pair candidates within the threshold distance.
- Step S404 When the line segment connecting the two corner points adopted as the corner pair candidate intersects the line segment forming the shape pattern, the computer system 116 excludes the two corner points from the corner pair candidate. An example of this step will be described with reference to FIG.
- FIG. 5 is a diagram showing a specific example of the additional information 1 given in S401.
- corner points There are four types of corner points: the lower right corner, the upper right corner, the lower left corner, and the upper left corner of the rectangle. Further, there are left rotation and right rotation described in FIG. 3 for each corner point. Therefore, each corner point on the design data can be classified into eight types shown in FIG.
- FIG. 6A shows an example of a minute step.
- the computer system 116 may determine whether or not the distance between the corner points is less than the threshold value (first threshold value). If it is less than the first threshold value, it can be determined that the step is a minute step.
- the computer system 116 assigns the non-target attribute to both corner points where the distance between the corner points is less than the first threshold value.
- FIG. 6B shows an example of a dense corner group 602.
- the dense corner group 602 is formed by densely gathering a large number of corner points within a close range. In order to measure the distance between corner points, it is considered sufficient to measure the distance between any two of the dense corner groups. This is because the distances between other corner points are almost the same.
- the computer system 116 imparts a density attribute to two corner points where the first threshold value ⁇ distance between corner points ⁇ second threshold value.
- FIG. 7 shows an example of polar coordinates. With the upper left of the design data as the origin, the coordinates of each corner point are represented by the distance and angle. In the processes described with reference to FIGS. 8 to 9, the polar coordinates are easier to calculate, so the polar coordinates are calculated in advance in S401 and added as additional information.
- FIG. 8A shows an example of specifying a corner pair candidate in S402.
- the upper left corner point and the lower right corner point in the rectangular closed area of one convex pattern are set as corner pair candidates (Pattern 1).
- the upper right corner point and the lower left corner point in the rectangular area of one convex pattern are set as corner pair candidates (Pattern 3).
- the directions of the line segments around the corner points forming the corner pair candidates in FIG. 8A are limited to the four combinations of the line segment patterns shown on the right side of FIG. 8A, respectively.
- FIG. 8B shows an example of specifying a corner pair candidate in S402.
- the first convex pattern is arranged in the upper left and the second convex pattern is arranged in the lower right.
- the lower right corner point of the first convex pattern and the upper left corner point of the second convex pattern are arranged so as to face each other.
- Two corner points having such an arrangement relationship are also considered as corner pair candidates.
- the direction of the line segment around the corner point forming the corner pair candidate is exactly the same as that of pattern 1 (Note: the direction of the line segment is the same, but the search range described later is different from pattern 1. The same applies to 6 and later).
- the directions of the line segments around the corner points forming the corner pair candidates are exactly the same as in FIG. 8A.
- the non-target pattern in FIG. 8B shows an example of two corner points that are not arranged facing each other.
- the facing arrangement referred to here is a positional relationship in which the other corner point is arranged when one corner point is extended in the protruding direction. Corner points that do not face each other as in the non-target pattern of FIG. 8B are excluded from the corner pair candidates in the first embodiment.
- the shape pattern having such a positional relationship may be inspected by an inspection method different from the present disclosure.
- FIG. 8C shows an example of specifying a corner pair candidate in S402.
- pattern 9 of FIG. 8C the one corresponding to the lower right corner point protrudes toward the inside of the closed region. Even in such a shape pattern, the upper left corner point and the lower right corner point are set as corner pair candidates.
- the pattern 10 shows a concave pattern having the same shape as the pattern 9. The direction of the line segment around the corner point forming the corner pair candidate in the pattern 10 is exactly the same as that of the pattern 9. Similarly, for the pattern 11 and subsequent patterns, the two diagonally arranged corner points are set as corner pair candidates.
- pattern 9 the relationship between the upper left corner point and the lower right corner point is the same as in pattern 1, so it is not necessary to consider it here.
- the relationship between the upper left corner point and the lower right corner point in pattern 9 is the same as in pattern 1.
- pattern 10 and later it is not necessary to consider overlapping line segment pairs.
- FIG. 8D shows an example of specifying a corner pair candidate in S402.
- the first convex pattern is arranged in the upper left and the second convex pattern is arranged in the lower right.
- the lower right corner point of the first convex pattern protrudes toward the inside of the closed region as in the pattern 9.
- the lower right corner point of the first convex pattern and the upper left corner point of the second convex pattern are arranged so as to face each other.
- Two corner points having such an arrangement relationship are also considered as corner pair candidates.
- the direction of the line segment around the corner points forming the corner pair candidate is exactly the same as that of the pattern 9.
- the directions of the line segments around the corner points forming the corner pair candidates are exactly the same as in FIG. 8C.
- FIG. 8E is an extraction of the combination of the directions of the line segments around the corner points forming the corner pair candidate.
- the direction of the line segment around the corner points forming the corner pair candidate is limited to the eight patterns shown in FIG. 8E. Therefore, when the computer system 116 identifies the corner pair candidate in S402, it is sufficient to process only the line segment combination of the eight patterns shown in FIG. 8E. This makes it possible to simplify the process of specifying the corner pair candidate.
- FIG. 9A shows an example of narrowing down corner pair candidates in S403.
- the upper left corner point and the lower right corner point are the corner pair candidates, so that these two corner points can exist only in the region shown by the shaded area of FIG. 9A. Therefore, the computer system 116 searches for a corner pair candidate corresponding to the line segment combination of the pattern 1 from within the shaded area. There is no need to search outside the shaded area.
- FIGS. 9B to 9D When the corner points of the other line segment pair exist in the same area, the two corner points are adopted as the target for measuring the distance between the corner points. The same applies to FIGS. 9B to 9D.
- the size of the shaded area (radius of the sector) is set in advance as a distance threshold.
- the user may enter the distance threshold.
- FIGS. 9B to 9D The same search is performed for patterns 2 and subsequent patterns in FIG. 8A. In FIG. 9A, only the example of pattern 3 is shown.
- FIG. 9B shows an example of narrowing down corner pair candidates in S403.
- the lower right corner point of the first convex pattern and the upper left corner point of the second convex pattern are set as corner pair candidates, and therefore, the existence of these two corner points is shown in the shaded area. Limited to the area. Therefore, the computer system 116 searches for a corner pair candidate corresponding to the line segment combination of the pattern 5 from within the shaded area. The same search is performed for patterns 6 and subsequent patterns in FIG. 8B.
- FIG. 9C shows an example of narrowing down corner pair candidates in S403.
- the upper left corner point and the lower right corner point are the corner pair candidates, so that these two corner points can exist only in the region shown by the shaded area of FIG. 9C. Therefore, the computer system 116 searches for a corner pair candidate corresponding to the line segment combination of the pattern 9 from within the shaded area. The same search is performed for patterns 10 and later in FIG. 8C. In FIG. 9C, only the example of the pattern 10 is shown.
- FIG. 9D shows an example of narrowing down corner pair candidates in S403.
- the lower right corner point of the first convex pattern and the upper left corner point of the second convex pattern are the corner pair candidates, and therefore, the existence of these two corner points is shown in the shaded area. Limited to the area. Therefore, the computer system 116 searches for a corner pair candidate corresponding to the line segment combination of the pattern 17 from within the shaded area. The same search is performed for patterns 17 and later in FIG. 8D.
- FIG. 9E shows the results of arranging FIGS. 9A to 9D.
- the computer system 116 searches for two diagonally arranged corner points in one closed region pattern
- the eight combinations in the upper part of FIG. 9E are shown.
- (B) When searching for two opposite corner points of the two patterns, it is sufficient to search the range indicated by the eight combinations in the lower part of FIG. 9E. Become.
- FIG. 10 is a diagram showing a specific example of S404.
- the two corner points are excluded from the corner pair candidates (“NG” in FIG. 10).
- FIG. 11 is a flowchart illustrating the details of S208. Any known technique can be used as a method for extracting the contour line of the actually formed shape pattern, and FIG. 11 shows an example thereof.
- a reference edge is detected from the SEM image obtained by capturing the pattern to be measured (S1101).
- the contour position is determined from the line profile of the reference edge acquired in S1101 (S1102).
- a contour point cloud is generated by connecting contour positions along a target pattern point cloud of design data (S1103).
- FIG. 12 is a diagram showing a specific example of S210.
- the corner points on the actually formed shape pattern do not always have the shortest distance. Therefore, the distance between corner points is calculated for any number of corner points (for example, the number specified by the user) or all combinations of corner points centered on the corner points on the shape pattern.
- the computer system 116 adopts the two corner points having the shortest distance among them as the final corner pair within the predetermined range.
- the pattern inspection / measurement system 100 identifies the corner pair candidate on the design data, and the corner pair candidate and the contour line corresponding to the corner pair candidate on the actually formed shape pattern.
- the corner points are specified by specifying the relative positional relationship between them. This makes it possible to accurately identify the corner points on the actual pattern.
- the pattern inspection / measurement system 100 excludes the corner points formed by the minute steps from the corner pair candidates (see FIG. 6A). As a result, the process of searching for a corner pair candidate can be reduced, and the inspection process based on the distance between corner points can be completed promptly.
- the pattern inspection / measurement system 100 extracts a line segment pair forming two diagonally arranged corner points in one closed region pattern when specifying a corner pair candidate (FIG. 1). 8A, see FIG. 8C), only the corner point pair formed by the line segment pair is regarded as a corner pair candidate. Further, only the range in which the corner point pair formed by the line segment pair can exist is set as the search range of the corner pair candidate (see FIGS. 9A and 9C). As a result, the process of searching for a corner pair candidate can be reduced, and the inspection process based on the distance between corner points can be completed promptly.
- the pattern inspection / measurement system 100 extracts a line segment pair forming two opposite corner points, which each of the two closed region patterns has, when the corner pair candidate is specified (the pattern inspection / measurement system 100). (See FIGS. 8B and 8D), only the corner point pairs formed by the line segment pairs. Candidates for corner pairs. Further, only the range in which the corner point pair formed by the line segment pair can exist is set as the search range of the corner pair candidate (see FIGS. 9B and 9D). As a result, the process of searching for a corner pair candidate can be reduced, and the inspection process based on the distance between corner points can be completed promptly.
- the pattern inspection / measurement system 100 assigns the rotation direction of the line segment forming the corner point as an additional attribute to the design data in order to distinguish between the convex pattern and the concave pattern (FIG. 3). reference). Thereby, the corner pair candidate can be specified while identifying the three-dimensional shape pattern on the design data which is the two-dimensional data.
- the pattern inspection / measurement system 100 excludes the corner points from the corner pair candidates (see FIG. 10). As a result, only the corner points within the shortest distance from the corner points of interest are specified as corner pair candidates, so that the inspection process based on the distance between the corner points can be reduced.
- the computer system 116 further performs the following processing after S404.
- the corner points of the normal attribute existing in the range described with reference to FIGS. 9A to 9E are extracted.
- the computer system 116 adopts only the two corner point pairs having the shortest distance between the corner points among the extracted corner points as the corner pair candidates, and excludes the others from the corner pair candidates.
- the computer system 116 further performs the following processing after S404.
- a group of corner points having a dense attribute existing in the range described with reference to FIGS. 9A to 9E is extracted. There are the following two extraction methods.
- the computer system 116 adopts only two corner point pairs having the shortest distance between corner points among the corner points belonging to the same dense corner point cloud as corner pair candidates, and excludes the others from the corner pair candidates (method). 1).
- the computer system 116 sets only the central corner point among the corner points belonging to the same dense corner point cloud as the corner point, and excludes the others from the corner points (method 2).
- the method 2 since the dense corner point cloud can be regarded as one corner point, it is possible to reduce the time for searching for the two corner point pairs having the shortest distance between the corner points.
- the difference is considered to be small regardless of which point is the corner point, but in the second embodiment, the difference is considered to be the largest in the dense range, at the center of the dense range.
- the located point is a corner point.
- the computer system 116 can narrow down the corner pair candidates in advance. This makes it possible to reduce the inspection process based on the distance between the corner points.
- FIG. 13 is an example of a screen interface (GUI) provided by the computer system 116.
- the computer system 116 can display a GUI such as a screen 1301 or 1302 on a display device such as a display included in the input / output device 121.
- the screen 1301 is a screen that displays (1) the shape pattern 1303 on the design data, (2) the corner pair candidate 1304 specified on the design data, (3) the line segment 1305 connecting the corner pairs, and the like.
- the screen 1302 has (1) the outline line 1306 of the pattern actually formed, (2) the estimated position of the corner point 1307, (3) the line segment 1308 connecting the estimated corner points, (4) the distance between the corners 1309, and the like. It is a screen to display.
- the user can also switch between screens 1301 and 1302. Furthermore, the design data and the actual pattern can be displayed together.
- the computer system 116 may output an alert or the like indicating that the calculated distance between the corner points deviates from the design data by a reference value or more.
- the alert may be presented on the GUI described with reference to FIG. 13, or may be output in other formats.
- an index value indicating the quality of the pattern such as the amount of deviation from the amount of design data, may be output.
- the arithmetic processing unit 117 and the image processing unit 118 can be configured by hardware such as a circuit device that implements the function, and software that implements the function is a CPU (Central Processing Unit) or the like. It can also be configured by running on the processor of. Similarly, the arithmetic processing unit 112 and the control unit 113 can be configured by hardware or software executed by the processor.
- hardware such as a circuit device that implements the function
- software that implements the function is a CPU (Central Processing Unit) or the like. It can also be configured by running on the processor of.
- the arithmetic processing unit 112 and the control unit 113 can be configured by hardware or software executed by the processor.
- SEM101 has been exemplified as a means for acquiring an image of a shape pattern formed on a sample 107, but the present disclosure is not limited to this. If the computer system 116 can process the image of the shape pattern to identify the corner points, other means may be used.
- the semiconductor sample has been exemplified as an example of the sample 107, but the present disclosure is not limited to this, and can be applied to other shape patterns formed on the sample.
- Pattern inspection / measurement system 101 Scanning electron microscope 102: Electron beam column 103: Electron source 104: Electron beam 105: Vacuum sample chamber 106: XY stage 107: Sample 108: Secondary electrons or backscattered electrons 109: A / D converter 110: Network 111: Computer system 112: Arithmetic processing unit 113: Control unit 114: Storage unit 115: Network 116: Computer system 117: Arithmetic processing unit 118: Image processing unit 119: Storage unit 120: Design information database 121: Input / output device
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
- Holo Graphy (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
図1は、パターン検査・計測システム100の構成図である。パターン検査・計測システム100は、半導体試料上に形成された形状パターンを検査・計測するシステムである。パターン検査・計測システム100は、走査型電子顕微鏡(SEM)101、コンピュータシステム111と116、設計情報データベース120、入出力装置121、を備える。これらはネットワーク115を介して相互接続されている。
演算処理部112が有するレシピ作成機能によって作成されたレシピにしたがって、SEM101は、試料107のSEM画像を撮像する。制御部113は、SEM画像を記憶部114に格納するとともに、撮像条件などの付帯情報を記憶部114に保存する。
コンピュータシステム116は、ネットワークを介してコンピュータシステム111の記憶部114に保存されているSEM画像と付帯情報を取得する(S202)。コンピュータシステム116は、設計情報データベース120から、SEM画像に対応する設計データを取得し(S203)、SEM画像および設計データを読み込む(S204)。
コンピュータシステム116は、読み込んだ設計データに対して付加情報を設定する。本ステップにおける付加情報は、設計データ上に形成されている形状パターンが、後述する凸パターンと凹パターンのいずれであるのかを区別するために付与するものである。具体例については図3を用いて説明する。
コンピュータシステム116は、読み込んだSEM画像と設計データとの間の位置合わせ処理を実施する。位置合わせの手法としては、テンプレートマッチングや正規化相関法を用いたパターンマッチングなど、公知の手法を用いることができる。
コンピュータシステム116は、S206においてSEM画像との位置合わせを実施した設計データを用いて、計測位置候補とするコーナーペアを自動取得する。本ステップの詳細は、図4を用いて説明する。
コンピュータシステム116は、検査対象とする回路パターンを撮像したSEM画像を用いて、回路パターンの輪郭線を抽出する。本ステップの詳細は、図11を用いて説明する。
コンピュータシステム116は、S207で取得した設計データ上のコーナーペア候補と、S208で抽出した輪郭線とを用いて、コーナーペア候補を形成している各コーナー点に対応する輪郭線上の点(または領域)を特定する。コンピュータシステム116は、この特定した位置を、実際の形状パターン上におけるコーナー点の推定位置とする。
本ステップにおいて、輪郭線のなかからコーナー点の位置を推定する手法としては、対象のコーナー点から任意の方向に対応点を探索することでコーナー点の位置を推定する、あるいは対象のコーナー点を通る任意の角度を有する直線と輪郭線の交点を対応点とし、コーナー点の推定位置とする、などの手法を用いることができる。ただしこの手法では、コーナー点の位置を推定することができないかあるいは誤検出してしまう可能性がある。そこで、取得した輪郭線の距離変換画像を作成し、前記距離変換画像のグラデーション方向の重みを、前記探索方向に加算することにより、誤検出等の可能性を緩和してもよい。距離変換画像とは、輪郭線情報に基づき、最近傍の輪郭線までの距離を輝度値とした画像であり、輪郭線に近づくにつれて輝度値が低くなる。
コンピュータシステム116は、ペアとして存在する各コーナー推定位置周辺で、コーナー間距離が最短となる点の組み合わせを探索し、最短の距離となる組み合わせを取得する。本ステップにおいて取得する最短の距離を、コーナー間距離とする。本ステップの例は図12を用いて説明する。
コンピュータシステム116は、設計データ上の各コーナー点に対して、以下に説明する付加情報を付与する。
コンピュータシステム116は、設計データ上の各コーナー点を、図3で説明した回転方向に基づいて、8タイプに分類する。この付加情報の具体例については図5を用いて説明する。この付加情報は、後続処理における便宜のために付与する、演算処理上の必要性のためのものである。
実際に形成される形状パターン上には、コーナー点として形成することを意図したものではない、微小な段差が形成される場合がある、例えばOPC(Optical Proximity Correction)パターンがこれに相当する。コンピュータシステム116は、このような微小段差によって形成されているコーナー点に対して、検査対象から除外することを表す、対象外属性を付与する。この属性の具体例については図6Aを用いて説明する。
OPCパターンほど小さな段差ではないが、隣接するコーナー間の距離が密集していると、コーナー点間距離を計測するコーナーペアが極端に増える可能性がある。そこでコンピュータシステム116は、このような密集コーナー群に対して、密集属性を付与する。この属性の具体例については図6Bを用いて説明する。この属性の使い方の例については実施形態2で説明する。
コンピュータシステム116は、対象外属性と密集属性いずれにも属さないコーナー点に対して、通常属性を付与する。通常属性は、コーナー点間距離を計測する対象とすべきコーナー点であることを意味する。
コンピュータシステム116は、各コーナー点について、設計データの左上角を原点とする極座標を算出し、その極座標を各コーナーの位置情報として付与する。極座標の例は図7で説明する。
コンピュータシステム116は、S301で設定した付加情報を用いて、コーナー点間距離を計測する候補(以下ではコーナーペア候補と呼ぶ)を特定する。コーナーペア候補とするのは、(a)1つの閉領域のなかの対角配置された2つのコーナー点、(b)2つの閉領域がそれぞれ有するコーナー点のうち対向配置されている2つのコーナー点、のいずれかである。本ステップの具体例は、図8A~図8Eを用いて説明する。
コンピュータシステム116は、対象外属性を付与したコーナー点を、コーナーペア候補から除外する。またコンピュータシステム116は、上記(a)においては対角配置された2つのコーナー点のみをコーナーペア候補とするので、隣接している2つのコーナー点はコーナーペア候補から除外する。さらにコンピュータシステム116は、例えばコーナー点1:コーナー点2のペアと、コーナー点2:コーナー点1のペアなどのように、重複するコーナー点ペアは1つとみなして、いずれか1つのコーナー点ペアのみを採用する。以上はS403においても同様である。
コンピュータシステム116は、コーナー点間距離を計測するコーナーペアを、コーナーペア候補のなかから絞り込む。具体的には、S402の(a)については、対角配置関係となる座標領域のうち閾値距離以内に含まれる2つのコーナー点のみを計測対象とし、S402の(b)については対向配置関係となる座標領域のうち閾値距離以内に含まれる2つのコーナー点のみを計測対象として採用する。本ステップの具体例は、図9A~図9Eを用いて説明する。
本ステップにおいて、コンピュータシステム116は、閾値距離以内に含まれるコーナー点を全て計測対象として採用する。したがって閾値距離以内に、複数のコーナーペア候補が存在する場合もある。
コンピュータシステム116は、コーナーペア候補として採用した2つのコーナー点を結ぶ線分が、形状パターンを形成する線分と交差する場合、その2つのコーナー点はコーナーペア候補から除外する。本ステップの例は図10を用いて説明する。
本実施形態1に係るパターン検査・計測システム100は、コーナーペア候補を設計データ上で特定し、そのコーナーペア候補と、実際に形成されている形状パターン上においてコーナーペア候補に対応する輪郭線との間の相対位置関係を特定することにより、コーナー点を特定する。これにより、実パターン上におけるコーナー点を精度よく特定することができる。
実施形態1においては、図9A~図9Eで説明した範囲内に存在するコーナーペア候補を全て抽出することとした。本開示の実施形態2においては、図9A~図9Eで説明した範囲内に存在するコーナーペア候補を、コーナー点間距離にしたがってあらかじめ絞り込む動作例を説明する。パターン検査・計測システム100の構成は実施形態1と同じであるので、以下では探索範囲に関する差異点について主に説明する。
図13は、コンピュータシステム116が提供する画面インターフェース(GUI)の例である。コンピュータシステム116は、入出力装置121が備えるディスプレイなどの表示装置上に、画面1301や1302などのGUIを表示することができる。
本開示は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101:走査型電子顕微鏡
102:電子線カラム
103:電子源
104:電子線
105:真空試料室
106:XYステージ
107:試料
108:2次電子または後方散乱電子
109:A/D変換器
110:ネットワーク
111:コンピュータシステム
112:演算処理部
113:制御部
114:記憶部
115:ネットワーク
116:コンピュータシステム
117:演算処理部
118:画像処理部
119:記憶部
120:設計情報データベース
121:入出力装置
Claims (15)
- 試料上に形成された形状パターンを検査または計測するパターン検査・計測装置であって、
前記形状パターンを撮像した画像から、前記形状パターンのうちコーナー点を含むコーナーパターンを検出する、コンピュータシステムを備え、
前記コンピュータシステムは、前記コーナーパターンの座標と形状を、前記形状パターンの設計データから取得し、
前記コンピュータシステムは、前記設計データから取得した前記コーナーパターンの座標と形状に基づき、互いからの距離が所定距離以内である2つの前記コーナー点をコーナーペア候補として特定し、
前記コンピュータシステムは、前記コーナーペア候補を形成する前記形状パターンの位置と、前記設計データ上における前記コーナーペア候補の位置との間の相対関係にしたがって、前記コーナーペア候補を形成する前記形状パターン上の2つのコーナー点の座標を特定する
ことを特徴とするパターン検査・計測装置。 - 前記コンピュータシステムは、前記コーナーパターンのなかから、第1コーナー点および第2コーナー点を抽出し、
前記コンピュータシステムは、前記第1コーナー点と前記第2コーナー点との間の距離が第1閾値未満である場合は、前記第1コーナー点と前記第2コーナー点のうち少なくともいずれかを、前記コーナーペア候補から除外する
ことを特徴とする請求項1記載のパターン検査・計測装置。 - 前記コンピュータシステムは、線分を接続することによって構成された閉領域を形成する1つの前記コーナーパターンのうち、隣接するコーナー点を除いた2つのコーナー点を、前記1つのコーナーパターンが有する内部コーナー点ペアとして抽出し、
前記コンピュータシステムは、前記抽出した内部コーナー点ペアを、前記コーナーペア候補として特定する
ことを特徴とする請求項1記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記内部コーナー点ペアを抽出する際には、
線分を接続することによって構成された閉領域のうち、隣接するコーナー点を除いた2つのコーナー点が存在可能な範囲のみを、前記設計データ上で探索する
ことを特徴とする請求項3記載のパターン検査・計測装置。 - 前記設計データは、2次元形状を記述したデータであり、
前記コンピュータシステムは、前記形状パターンのうち、2次元平面の法線方向に沿って突出することにより形成されている突出形状パターンと、陥没することにより形成されている陥没形状パターンとを区別し、
前記コンピュータシステムは、前記突出形状パターンと前記陥没形状パターンそれぞれについて、前記内部コーナー点ペアを抽出する
ことを特徴とする請求項3記載のパターン検査・計測装置。 - 前記コンピュータシステムは、線分を接続することによって構成された閉領域を形成する2つの前記コーナーパターンのうち一方が有する第1コーナー点と、他方が有しかつ前記第1コーナー点に対して対向配置された第2コーナー点とを、外部コーナー点ペアとして抽出し、
前記コンピュータシステムは、前記抽出した外部コーナー点ペアを、前記コーナーペア候補として特定する
ことを特徴とする請求項1記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記外部コーナー点ペアを抽出する際には、
線分を接続することによって構成された閉領域を形成する2つの前記コーナーパターンがそれぞれ有するコーナー点のうち、互いに対して対向配置された2つのコーナー点が存在可能な範囲のみを、前記設計データ上で探索する
ことを特徴とする請求項6記載のパターン検査・計測装置。 - 前記設計データは、2次元形状を記述したデータであり、
前記コンピュータシステムは、前記形状パターンのうち、2次元平面の法線方向に沿って突出することにより形成されている突出形状パターンと、陥没することにより形成されている陥没形状パターンとを区別し、
前記コンピュータシステムは、前記突出形状パターンと前記陥没形状パターンそれぞれについて、前記外部コーナー点ペアを抽出する
ことを特徴とする請求項6記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記コーナーパターンのなかから、第3パターンと第4パターンを抽出し、
前記コンピュータシステムは、前記設計データが記述している線分が、前記第3パターンと前記第4パターンを結ぶ線分と交差する場合は、前記第3パターンと前記第4パターンのうち少なくともいずれかを、前記コーナーペア候補から除外する
ことを特徴とする請求項1記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記座標を特定した2つのコーナー点間の距離を、前記コーナーペア候補を形成する2つの前記コーナー点間の距離として、算出および出力する
ことを特徴とする請求項1記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記コーナーペア候補を複数個特定し、
前記コンピュータシステムは、
前記複数個のコーナーペア候補のうち、第1コーナーペア候補を形成する一方のコーナー点と、第2コーナーペア候補を形成する一方のコーナー点との間の距離が基準閾値以内であり、かつ、前記第1コーナーペア候補を形成する他方のコーナー点と、前記第2コーナーペア候補を形成する他方のコーナー点との間の距離が前記基準閾値以内である場合は、
前記第1コーナーペア候補に含まれるコーナー点と前記第2コーナーペア候補に含まれるコーナー点の全組み合わせのうち、互いの間の距離が最も短いもののみを抽出し、それ以外のコーナー点については前記コーナーペア候補から除外する
ことを特徴とする請求項10記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記コーナー点のうち、互いの間の距離が第1閾値未満であるものを、対象外ペアとして抽出し、
前記コンピュータシステムは、前記コーナー点のうち、互いの間の距離が前記第1閾値以上第2閾値未満であるものを、密集コーナー群として抽出し、
前記コンピュータシステムは、前記内部コーナー点ペアから前記対象外ペアと前記密集コーナー群を除外したもののうち互いの間の距離が最も小さい2つの前記コーナー点を、前記コーナーペア候補として特定し、
前記コンピュータシステムは、前記内部コーナー点ペアに含まれかつ前記密集コーナー群に含まれる前記コーナー点のうち、互いの間の距離が最も小さい2つの前記コーナー点を、前記コーナーペア候補として特定する、あるいは、前記コンピュータシステムは、前記内部コーナー点ペアに含まれかつ前記密集コーナー群に含まれる前記コーナー点のうち、前記密集コーナー群から1点を抽出し、その抽出したコーナー点を前記コーナーペア候補として特定する
ことを特徴とする請求項3記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記コーナー点のうち、互いの間の距離が第1閾値未満であるものを、対象外ペアとして抽出し、
前記コンピュータシステムは、前記コーナー点のうち、互いの間の距離が前記第1閾値以上第2閾値未満であるものを、密集コーナー群として抽出し、
前記コンピュータシステムは、前記外部コーナー点ペアから前記対象外ペアと前記密集コーナー群を除外したもののうち互いの間の距離が最も小さい2つの前記コーナー点を、前記コーナーペア候補として特定し、
前記コンピュータシステムは、前記外部コーナー点ペアに含まれかつ前記密集コーナー群に含まれる前記コーナー点のうち、互いの間の距離が最も小さい2つの前記コーナー点を、前記コーナーペア候補として特定する、あるいは、前記コンピュータシステムは、前記外部コーナー点ペアに含まれかつ前記密集コーナー群に含まれる前記コーナー点のうち、前記密集コーナー群から1点を抽出し、その抽出したコーナー点を前記コーナーペア候補として特定する
ことを特徴とする請求項6記載のパターン検査・計測装置。 - 前記コンピュータシステムは、前記コーナーペア候補を形成する2つの前記コーナー点と、そのコーナー点間の距離とを画面表示する、画面インターフェースを備える
ことを特徴とする請求項10記載のパターン検査・計測装置。 - 試料上に形成された形状パターンを検査または計測する処理をコンピュータに実行させるパターン検査・計測プログラムであって、
前記パターン検査・計測プログラムは、前記コンピュータに、
前記形状パターンを撮像した画像から、前記形状パターンのうちコーナー点を含むコーナーパターンを検出するステップを実行させ、
前記コーナーパターンを検出するステップにおいては、前記コンピュータに、
前記コーナーパターンの座標と形状を、前記形状パターンの設計データから取得するステップ、
前記設計データから取得した前記コーナーパターンの座標と形状に基づき、互いからの距離が所定距離以内である2つの前記コーナー点をコーナーペア候補として特定するステップ、
前記コーナーペア候補を形成する前記形状パターンの位置と、前記設計データ上における前記コーナーペア候補の位置との間の相対関係にしたがって、前記コーナーペア候補を形成するステップ、
を実行させる
ことを特徴とするパターン検査・計測プログラム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227040602A KR20230002905A (ko) | 2020-05-25 | 2020-05-25 | 패턴 검사·계측 장치, 패턴 검사·계측 프로그램 |
CN202080101151.XA CN115698627A (zh) | 2020-05-25 | 2020-05-25 | 图案检查/测量装置、图案检查/测量程序 |
US17/926,651 US20230194253A1 (en) | 2020-05-25 | 2020-05-25 | Pattern Inspection/Measurement Device, and Pattern Inspection/Measurement Program |
PCT/JP2020/020576 WO2021240610A1 (ja) | 2020-05-25 | 2020-05-25 | パターン検査・計測装置、パターン検査・計測プログラム |
TW110109950A TWI776430B (zh) | 2020-05-25 | 2021-03-19 | 圖案檢測/測量裝置及圖案檢測/測量程式 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/020576 WO2021240610A1 (ja) | 2020-05-25 | 2020-05-25 | パターン検査・計測装置、パターン検査・計測プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021240610A1 true WO2021240610A1 (ja) | 2021-12-02 |
Family
ID=78723250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020576 WO2021240610A1 (ja) | 2020-05-25 | 2020-05-25 | パターン検査・計測装置、パターン検査・計測プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230194253A1 (ja) |
KR (1) | KR20230002905A (ja) |
CN (1) | CN115698627A (ja) |
TW (1) | TWI776430B (ja) |
WO (1) | WO2021240610A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194734A (ja) * | 2002-08-08 | 2003-07-09 | Ngk Spark Plug Co Ltd | 印刷パターンの検査方法及び検査装置 |
JP2012112951A (ja) * | 2010-11-20 | 2012-06-14 | Koh Young Technology Inc | 検査方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11201919A (ja) | 1998-01-16 | 1999-07-30 | Toshiba Corp | パターン検査装置およびその方法ならびにパターン検査処理プログラムを記録した記録媒体 |
TWI249020B (en) * | 2004-12-16 | 2006-02-11 | Pou Yuen Technology Co Ltd | Multi-point iterated three-dimensional coordinate positioning method |
-
2020
- 2020-05-25 WO PCT/JP2020/020576 patent/WO2021240610A1/ja active Application Filing
- 2020-05-25 KR KR1020227040602A patent/KR20230002905A/ko unknown
- 2020-05-25 CN CN202080101151.XA patent/CN115698627A/zh active Pending
- 2020-05-25 US US17/926,651 patent/US20230194253A1/en active Pending
-
2021
- 2021-03-19 TW TW110109950A patent/TWI776430B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003194734A (ja) * | 2002-08-08 | 2003-07-09 | Ngk Spark Plug Co Ltd | 印刷パターンの検査方法及び検査装置 |
JP2012112951A (ja) * | 2010-11-20 | 2012-06-14 | Koh Young Technology Inc | 検査方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI776430B (zh) | 2022-09-01 |
KR20230002905A (ko) | 2023-01-05 |
TW202144770A (zh) | 2021-12-01 |
US20230194253A1 (en) | 2023-06-22 |
CN115698627A (zh) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101828124B1 (ko) | 패턴 평가 방법 및 패턴 평가 장치 | |
US20210358101A1 (en) | Processing image data sets | |
JP5937878B2 (ja) | パターンマッチング方法及び装置 | |
TWI686718B (zh) | 判定用於樣本上之關注區域之座標 | |
US9040937B2 (en) | Charged particle beam apparatus | |
JP6134366B2 (ja) | 画像処理装置およびコンピュータプログラム | |
JP5525421B2 (ja) | 画像撮像装置および画像撮像方法 | |
US9311697B2 (en) | Inspection method and device therefor | |
JP5948138B2 (ja) | 欠陥解析支援装置、欠陥解析支援装置で実行されるプログラム、および欠陥解析システム | |
TW201842329A (zh) | 圖案測定裝置,及半導體計測系統 | |
TW201510878A (zh) | 計測裝置 | |
US10296702B2 (en) | Method of performing metrology operations and system thereof | |
TWI683379B (zh) | 圖案測定裝置及電腦程式 | |
JP2013140468A (ja) | パターンマッチング装置、検査システム、及びコンピュータプログラム | |
WO2021240610A1 (ja) | パターン検査・計測装置、パターン検査・計測プログラム | |
US20240304563A1 (en) | Position Specification Method, Position Specification Program, and Inspection Apparatus | |
JP6484031B2 (ja) | ビーム条件設定装置、及び荷電粒子線装置 | |
JP2013250104A (ja) | 寸法測定装置、及びコンピュータープログラム | |
JP2013243230A (ja) | パターン評価装置、及びコンピュータープログラム | |
US20230052350A1 (en) | Defect inspecting system and defect inspecting method | |
Kyogoku et al. | A method for dynamic placement of overlay measurement area cursors using segmentation technique | |
JP2020067779A (ja) | ウェーハに形成されたパターンの欠陥を検出する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20938194 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227040602 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20938194 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |