WO2021238863A1 - 一种倒车控制方法、系统及车辆 - Google Patents

一种倒车控制方法、系统及车辆 Download PDF

Info

Publication number
WO2021238863A1
WO2021238863A1 PCT/CN2021/095519 CN2021095519W WO2021238863A1 WO 2021238863 A1 WO2021238863 A1 WO 2021238863A1 CN 2021095519 W CN2021095519 W CN 2021095519W WO 2021238863 A1 WO2021238863 A1 WO 2021238863A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
reversing
trajectory
information
obstacle
Prior art date
Application number
PCT/CN2021/095519
Other languages
English (en)
French (fr)
Inventor
高通
魏宏
范志超
马炳旭
许东春
郝鹏
杨建长
王冲
徐荣昌
白金彪
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP21813549.9A priority Critical patent/EP4159593A4/en
Priority to US17/925,556 priority patent/US20230192086A1/en
Publication of WO2021238863A1 publication Critical patent/WO2021238863A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18036Reversing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems

Definitions

  • the present disclosure relates to the field of automobile technology, and in particular to a reversing control method, system and vehicle.
  • the driver In the process of driving the vehicle, the driver needs to observe the surrounding pedestrians, vehicles and other obstacles while operating the steering wheel to drive the vehicle into a specific position when reversing, which is inconvenient; Big safety hazard.
  • a reversing radar is usually installed on the vehicle to detect the distance of obstacles behind the vehicle, and to warn the distance based on the distance, or collect the image of the rear of the vehicle through the camera on the vehicle, and pass the vehicle near the driving position.
  • the display unit of the computer displays the image so that the driver can back up safely based on information such as warnings and images.
  • the present disclosure aims to propose a reversing control method, system and vehicle to solve the problem of inconvenience and high safety hazard caused by the obstruction of the driver’s vision and the need to pay attention to multi-party information when the existing vehicle is reversing. .
  • the embodiment of the present disclosure provides a reversing control method, which may include:
  • the vehicle is controlled to drive in reverse according to the second reverse trajectory.
  • control of the vehicle to reversing according to the first reversing trajectory further includes
  • the vehicle is controlled to drive in reverse according to the third reverse trajectory.
  • determining the second reverse trajectory of the vehicle according to the first reverse trajectory and the first environmental obstacle information includes:
  • a second reversing trajectory of the vehicle is determined, so that the vehicle bypasses the first obstacle during reversing.
  • determining the second reverse trajectory of the vehicle according to the first reverse trajectory and the first environmental obstacle information includes:
  • a second reversing trajectory of the vehicle is determined so that the second reversing trajectory and the obstacle trajectory information do not have an overlapping position.
  • the method further includes:
  • the driving speed of the vehicle is less than or equal to the first speed, acquiring the driving path information of the vehicle and the second environmental obstacle information;
  • the first reversing trajectory of the vehicle is determined according to the driving path information and the second environmental obstacle information.
  • the method further includes:
  • the traveling speed of the vehicle is greater than the second speed
  • the determined first reversing trajectory is cleared, and the second speed is greater than or equal to the first speed.
  • the method before determining the second reversing trajectory of the vehicle according to the position information of the first obstacle and the real-time position information of the vehicle, the method further includes:
  • control of the vehicle to reversing according to the first reversing trajectory further includes:
  • Another objective of the embodiments of the present disclosure is to provide a reversing control system, which may include:
  • the first reversing trajectory acquisition module is used to obtain the first reversing trajectory of the vehicle after receiving the reversing instruction for the vehicle
  • a vehicle control module configured to control the vehicle to drive in reverse according to the first reverse trajectory in response to the reversing instruction
  • Obstacle information acquisition module used to acquire the first environmental obstacle information of the vehicle during reversing driving
  • the second reversing trajectory acquisition module is used to determine the second reversing trajectory of the vehicle based on the first reversing trajectory and the first environmental obstacle information when the first environmental obstacle information reaches a preset condition ;
  • the vehicle control module is also used to control the vehicle to reverse driving according to the second reverse trajectory.
  • a real-time information acquisition module for acquiring real-time location information of the vehicle
  • a third reversing trajectory acquisition module configured to determine a third reversing trajectory according to the first reversing trajectory and the real-time position information when the real-time position information deviates from the first reversing trajectory;
  • the vehicle control module is also used to control the vehicle to reverse driving according to the third reverse trajectory.
  • the second reversing trajectory acquisition module includes:
  • the first obstacle sub-module is configured to determine whether there is a stationary first obstacle in the first environmental obstacle information according to the first reversing trajectory;
  • the first information sub-module is used to obtain the position information of the first obstacle and the real-time position information of the vehicle when the first obstacle exists;
  • the first reversing trajectory sub-module is used to determine the second reversing trajectory of the vehicle according to the position information of the first obstacle and the real-time position information of the vehicle, so that the vehicle can bypass during reversing The first obstacle.
  • the second reversing trajectory acquisition module includes:
  • the second obstacle sub-module is configured to determine whether there is a moving second obstacle in the first environmental obstacle information according to the first reversing trajectory;
  • the second information sub-module is used to obtain obstacle trajectory information of the second obstacle when the second obstacle exists
  • the second reversing trajectory sub-module is used to determine the second reversing trajectory of the vehicle according to the obstacle trajectory information and the first reversing trajectory, so that the second reversing trajectory does not overlap with the obstacle trajectory information Location.
  • the obstacle information acquisition module is further configured to acquire the driving path information of the vehicle and the second environmental obstacle information when the driving speed of the vehicle is less than or equal to the first speed ;
  • the first reversing trajectory acquisition module is further configured to determine the first reversing trajectory of the vehicle according to the driving path information and the second environmental obstacle information.
  • the first reversing trajectory acquisition module is also used for clearing the determined first reversing trajectory when the driving speed of the vehicle is greater than a second speed, and the second speed is greater than or equal to the first reversing trajectory.
  • the second reversing trajectory acquisition module further includes:
  • the first reversing trajectory submodule is further configured to determine whether there is a second reversing trajectory according to the position information of the first obstacle and the real-time position information of the vehicle;
  • the vehicle control module is further configured to control the vehicle to end the reverse driving when the second reverse trajectory does not exist.
  • the system also includes:
  • the information prompt module is used for prompting the real-time remaining distance of the first reversing trajectory during the reversing driving process.
  • Another object of the present disclosure is to provide a vehicle that includes a system that implements the above-mentioned reversing control method; or, the vehicle includes the above-mentioned reversing control system.
  • the first reversing trajectory of the vehicle can be obtained, and the vehicle can be controlled to reverse according to the first reversing trajectory, eliminating the need for the driver to control the vehicle, avoiding tedious operations by the driver; and driving in reverse
  • the first reversing trajectory can be adjusted according to the vehicle's first environmental obstacle information to obtain the second reversing trajectory, and then the vehicle can be controlled to reverse according to the second reversing trajectory, which can avoid the danger caused by environmental obstacles during the reversing process. It solves the hidden safety hazards in the process of reversing the vehicle.
  • FIG. 1 is a schematic flowchart of a reversing control method proposed in an embodiment of the disclosure
  • FIG. 2 is a schematic flowchart of another reversing control method proposed in an embodiment of the disclosure.
  • Fig. 3 is a schematic diagram of a method for calculating the degree of vehicle deviation provided in an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a third reversing trajectory provided in an embodiment of the disclosure.
  • FIG. 5 is a schematic flowchart of yet another reversing control method provided in an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of a first reversing trajectory provided in an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of another first reversing trajectory provided in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of a method for calculating wheel circumference provided in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of calculating a straight distance of a vehicle provided in an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of calculating a turning distance of a vehicle provided in an embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of yet another first reversing trajectory provided in an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of a first reversing trajectory deviation correction provided in an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of a second reversing trajectory provided in an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of another second reversing trajectory provided in an embodiment of the disclosure.
  • FIG. 15 is a schematic diagram of yet another second reversing trajectory provided in an embodiment of the disclosure.
  • 16 is a schematic diagram of a real-time remaining distance prompt interface provided in an embodiment of the disclosure.
  • FIG. 17 is a schematic structural diagram of a reversing control system provided in an embodiment of the disclosure.
  • FIG. 18 is an example diagram of a vehicle system architecture provided in an embodiment of the disclosure.
  • FIG. 19 is a schematic diagram of the application of a reversing control process provided in an embodiment of the disclosure.
  • FIG. 20 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • FIG. 21 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • FIG. 1 shows a schematic flowchart of a reversing control method provided by an embodiment of the present disclosure.
  • the method may include step 101 to step 105.
  • Step 101 After receiving the reversing instruction for the vehicle, obtain the first reversing trajectory of the vehicle.
  • the reversing instruction to the vehicle may be received while the vehicle is running, which may be the reversing instruction input by the driver of the current vehicle through the on-board computer, or the reversing instruction input by the driver through a third-party electronic device
  • the reversing instruction sent to at least one vehicle such as by receiving the driver’s click operation on the "Automatic Reversing" and “Reversing Assist” buttons on the display unit of the on-board computer to confirm the acceptance of the reversing instruction, or receiving the driver via a mobile phone or tablet
  • the method of receiving the reversing instruction is not limited in the embodiment of the present disclosure.
  • the first reversing trajectory of the vehicle can be obtained after the reversing instruction is received, where the first reversing trajectory may be pre-recorded before receiving the reversing instruction, and the vehicle is moving forward within a preset time period or a preset distance
  • the reverse trajectory of the trajectory can also be a reversing trajectory that is pre-collected of the vehicle's environmental obstacle information and planned according to the destination pointed to by the reversing instruction.
  • the display unit can be used to indicate to the driver that it cannot proceed. Reversing assistance information, so that the driver can control the vehicle to reverse in time, or re-collect the vehicle's environmental obstacle information to plan the first reversing trajectory.
  • the current safety settings of the vehicle can also be checked, which may include brake status, door status, seat belt status, rearview mirror status, steering wheel Status, etc.
  • the driver can be prompted to step on the brake first, and then the driver is prompted to check or use the BCM (Body Control Module) to determine whether the door is closed, whether the seat belt is fastened, whether the steering wheel is released, whether the rearview mirror is closed, etc.
  • BCM Body Control Module
  • BCM is an integrated module of multiple control functions such as vehicle light control, wiper control, door lock control, rearview mirror control and so on.
  • the driver can release the brake to confirm that the safety setting check is complete, or through the various control functions of the BCM to confirm that the safety setting check is complete, or receive the driver’s "safety confirmation" and "complete safety setting” on the display unit. Wait until the button is clicked to confirm that the security setting check is complete.
  • the status information of the driver and/or other occupants in the vehicle can be obtained through the seat belt sensor, seat pressure sensor, etc., so as to determine the intention of the driver and/or other occupants to determine whether to proceed. Reversing.
  • Step 102 In response to the reversing instruction, control the vehicle to reversing according to the first reversing trajectory.
  • the vehicle after acquiring the first reversing trajectory, the vehicle can be controlled to reverse along the first reversing trajectory in response to the reversing instruction, which may include controlling the steering wheel angle, gear position, engine power output, and driving status of the vehicle to thereby Control the direction, distance, speed, etc. of the vehicle.
  • the reversing instruction which may include controlling the steering wheel angle, gear position, engine power output, and driving status of the vehicle to thereby Control the direction, distance, speed, etc. of the vehicle.
  • the current steering wheel angle information of the vehicle can be obtained through the vehicle's EPS (Electric Power Steering), and the steering wheel steering target angle can be controlled; it can be obtained through the vehicle's TCU (Transmission Control Unit, automatic transmission control unit)
  • the current power output of the engine can be obtained through the ECM (Engine Control Module) of the vehicle, and the engine can be controlled to switch to the target power output; it can be through the ESP of the vehicle (Electronic Stability Program, Body Electronic Stability Program)
  • Obtain the current driving state of the vehicle such as vehicle driving distance information, wheel speed pulse information, etc., and control the braking force of each wheel to adjust the vehicle to the target driving state, and control through the cooperation of various parts of the vehicle
  • the target angle, target gear, target power output, and target driving state are all related to the first reverse trajectory.
  • Those skilled in the art can also control and cooperate with various components of the vehicle through other control units, modules or systems, which are not specifically limited in the embodiments of the present disclosure.
  • Step 103 Acquire first environmental obstacle information of the vehicle during reversing driving.
  • various sensors such as ultrasonic sensors, image sensors, etc., mounted on the vehicle can be used to obtain the first environmental obstacle information of the vehicle during the reversing process of the vehicle to determine whether the vehicle is still or moving in the driving environment.
  • the obstacles include the position, shape, size, movement direction, movement speed, etc. of the obstacle.
  • the types of sensors in the embodiments of the present disclosure and the type and quantity of the first environmental obstacle information obtained by the sensors are not limited.
  • Step 104 When the first environmental obstacle information reaches a preset condition, determine a second reverse trajectory of the vehicle according to the first reverse trajectory and the first environmental obstacle information.
  • the reverse trajectory of the forward trajectory of the vehicle within a preset time period or a preset distance may also be pre-collected environmental obstacle information of the vehicle , And the reversing trajectory planned according to the destination pointed to by the reversing instruction. Therefore, when the vehicle is reversing according to the first reversing trajectory, the obstacles that existed before receiving the reversing instruction have a lower impact on the reversing process of the vehicle. At this time, you can When the first environmental obstacle information reaches the preset condition, the second reverse trajectory of the vehicle is determined according to the first environmental obstacle information and the first reverse trajectory.
  • the first reversing trajectory may be corrected according to the first environmental obstacle information, and the corrected first reversing trajectory is used as the second reversing trajectory.
  • the preset condition may be the degree of change of the first environmental obstacle information compared to the environmental obstacle information when the first reversing trajectory is determined.
  • the degree of change reaches the preset degree of change, the first environmental obstacle information is considered
  • the degree of change can be the degree of change in the number and position of new or reduced obstacles, or the degree of change in the position and shape of obstacles, which are not specifically described in the embodiments of the present disclosure. limit.
  • Step 105 Control the vehicle to drive in reverse according to the second reverse trajectory.
  • the process of controlling the vehicle to reverse driving according to the second reversing trajectory is similar to the process of step 102, and will not be repeated here.
  • the first reversing trajectory of the vehicle after receiving the reversing instruction for the vehicle, the first reversing trajectory of the vehicle can be obtained, and the vehicle can be controlled to reverse according to the first reversing trajectory, and the driver does not need to control the vehicle, thereby avoiding the driver’s cumbersomeness
  • the first reversing trajectory can be adjusted according to the first environmental obstacle information of the vehicle to obtain the second reversing trajectory, and then the vehicle can be controlled to reverse according to the second reversing trajectory, which can avoid the The danger caused by environmental obstacles solves the hidden safety hazards in the process of reversing the vehicle.
  • Fig. 2 is a schematic flowchart of another reversing control method provided in an embodiment of the present disclosure. As shown in Fig. 2, the method may include:
  • Step 201 After receiving the reversing instruction for the vehicle, obtain the first reversing trajectory of the vehicle.
  • Step 202 In response to the reversing instruction, control the vehicle to reversing according to the first reversing trajectory.
  • step 201 to step 202 can be correspondingly referred to the related description of step 101 to step 102. To avoid repetition, details are not described herein again.
  • Step 203 Acquire real-time location information of the vehicle.
  • the real-time position information of the vehicle when the vehicle is reversing according to the first reversing trajectory, the real-time position information of the vehicle can be acquired.
  • the real-time coordinates of the center of the rear axle of the vehicle and the real-time coordinates of the center of the front axle can be acquired.
  • the embodiment of the present disclosure does not limit the manner of obtaining the real-time location information of the vehicle.
  • Step 204 When the real-time position information deviates from the first reversing trajectory, determine a third reversing trajectory according to the first reversing trajectory and the real-time position information.
  • the real-time position information of the vehicle can be controlled to be close to the coordinate points in the first reversing trajectory, so as to control the rotation direction and moving distance of the vehicle.
  • cumulative calculation errors may occur, which may result in errors between the acquired real-time position information and the actual real-time position information of the vehicle.
  • each time real-time position information is acquired it can be judged whether the real-time position information of the vehicle deviates from the first
  • the reverse trajectory for example, can calculate at least one of the position deviation, direction deviation and curvature deviation of the point with the shortest distance between the real-time position information and the first reverse trajectory, and determine the degree of deviation of the vehicle from the first reverse trajectory according to the calculation result.
  • the third reversing trajectory can be determined according to the first reversing trajectory and real-time position information.
  • the driving reversing trajectory is regarded as the third reversing trajectory.
  • Fig. 3 is a schematic diagram of a method for calculating the degree of vehicle deviation in an embodiment of the present disclosure. As shown in Fig. 3, it includes a first reversing trajectory 301 and a vehicle 302.
  • the real-time position information 3021, the coordinate point 3011 is the shortest point on the first reverse trajectory 301 from the real-time position information 3021, and the position deviation is ⁇ Z.
  • the correction to return to the first reverse trajectory can be determined according to the real-time position information 3021 Trajectory, and use the corrected trajectory to the first reverse trajectory as the third reverse trajectory 303.
  • Step 205 Control the vehicle to drive in reverse according to the third reverse trajectory.
  • the center of rotation Q(X, Y) can be determined according to the corrected trajectory, so as to calculate the actual radius of curvature R of the vehicle, thereby obtaining the size of the front wheel turning angle of the vehicle, and according to the relationship of the steering wheel transmission ratio Obtain the target steering wheel angle to control the vehicle to reverse according to the third reversing trajectory.
  • Fig. 4 is a schematic diagram of the third reversing trajectory in the embodiment of the present disclosure. As shown in Fig. 4, it includes a first reversing trajectory 401, a vehicle 402, and a third reversing trajectory 403. The real-time position information of 402 determines the third reversing trajectory 403 to correct the vehicle position.
  • Step 206 Acquire first environmental obstacle information of the vehicle during reversing driving.
  • Step 207 When the first environmental obstacle information reaches a preset condition, determine a second reverse trajectory of the vehicle according to the first reverse trajectory and the first environmental obstacle information.
  • Step 208 Control the vehicle to drive in reverse according to the second reverse trajectory.
  • step 206 to step 208 can be correspondingly referred to the related description of step 103 to step 105. To avoid repetition, details are not described herein again.
  • the first reversing trajectory of the vehicle after receiving the reversing instruction for the vehicle, the first reversing trajectory of the vehicle can be obtained, and the vehicle can be controlled to reverse according to the first reversing trajectory, and the driver does not need to control the vehicle, thereby avoiding the driver’s cumbersomeness
  • the first reversing trajectory can be adjusted according to the first environmental obstacle information of the vehicle or the real-time position information of the vehicle to obtain the second reversing trajectory or the third reversing trajectory, and then controlling the vehicle according to the second reversing trajectory Or the third reversing trajectory for reversing driving can avoid the danger caused by environmental obstacles during the reversing process, and solve the hidden safety hazards in the reversing process of the vehicle.
  • Fig. 5 is a schematic flowchart of another method for reversing control in an embodiment of the present disclosure. As shown in Fig. 5, the method may include:
  • Step 501 In a case where the driving speed of the vehicle is less than or equal to the first speed, obtain the driving path information of the vehicle and the second environmental obstacle information.
  • the vehicle’s travel path information and the second environmental obstacle information can be acquired through various sensors of the vehicle.
  • the second environmental obstacle information may include other vehicles, pedestrians, road signs and other obstacles in the surrounding environment during the forward movement of the vehicle Information, etc.
  • the method for obtaining the driving route information and the second environmental obstacle information is not limited.
  • the vehicle since the vehicle usually needs to be decelerated when reversing, it can be determined that the vehicle is likely to reverse when the driving speed of the vehicle is less than or equal to the first speed.
  • the driving path information of the vehicle and The second environmental obstacle information is to avoid information redundancy caused by too much information.
  • the first speed can be 14 kilometers per hour, 15 kilometers per hour, 20 kilometers per hour, and so on.
  • the driving route information and/or the second environmental obstacle information for the latest preset time period or the preset distance, such as the driving route information and/or the second environmental obstacle information within 10 minutes, 20 minutes, or 50 meters , 60 meters, 70 meters, driving route information and/or second environmental obstacle information, etc.
  • Step 502 Determine the first reversing trajectory of the vehicle according to the driving path information and the second environmental obstacle information.
  • the first reversing trajectory of the vehicle can be determined according to the driving path information and the second environmental obstacle information, where the first reversing trajectory may include the driving path trajectory determined according to the driving path information, and according to the second environmental obstacle
  • the route map information determined by the information where the travel route trajectory may include the direction, angle, distance, etc. of the vehicle, and the route map information may include the number, type, shape, and spatial distribution of obstacles.
  • the Free Space algorithm can be used to identify the second environmental obstacle information, thereby generating corresponding route map information, and the road condition to which the first reversing track belongs can also be determined according to the route map information, such as open area, narrow Lane and so on.
  • the determined first reversing trajectory can be saved in the on-board computer of the vehicle, or sent to a third-party electronic device, server, etc. for storage.
  • the direction of the rear wheel axis of the vehicle is taken as the X axis direction
  • the longitudinal direction of the vehicle is taken as the Y axis direction
  • the center of the rear wheel axis is taken as the origin to determine the coordinates of the vehicle.
  • the coordinates (X, Y) of the vehicle can be relative to the The relative value of world coordinates.
  • FIG. 6 is a schematic diagram of a first reversing trajectory in an embodiment of the present disclosure.
  • the obstacles can be determined Is the road boundary.
  • the driving path information of the vehicle 601 can be obtained every 1 meter, such as the vehicle coordinate points (X, Y), etc., and the second environmental obstacle information such as the coordinate points (X 1 , Y 1 ), (X 2 , Y 2 ) ⁇ .
  • FIG. 7 is a schematic diagram of another first reversing trajectory in an embodiment of the present disclosure.
  • the driving path information of the vehicle 701 every 1 meter such as vehicle coordinate points (X, Y), etc.
  • the environmental obstacle information determines that the road condition is an open area.
  • the distance of the travel path trajectory can be calculated by wheel speed pulses, that is, the distance of the travel path trajectory can be calculated by calculating the vehicle travel distance in one pulse of the wheel, and then counting the number of wheel pulses.
  • Fig. 8 is a schematic diagram of a method for calculating the circumference of a wheel in an embodiment of the present disclosure. As shown in Fig. 8, the wheel rotates once, and the vehicle travel distance is the circumference of the wheel, which is calculated by the following formula (1):
  • D is the total wheel diameter, which can be calculated by the following formula (2):
  • d is the diameter of the wheel hub, usually in inches;
  • m is the tire width of the wheel;
  • n is the aspect ratio of the wheel, which is obtained by calculating the percentage of the tire cross section height H to its maximum cross section width W.
  • the vehicle travel distance S1 in 1 wheel pulse can be calculated by the following formula (3):
  • N can be 96.
  • FIG. 9 is a schematic diagram of calculating the straight distance of a vehicle in an embodiment of the present disclosure.
  • the vehicle 901 moves straight from the W1 position to the W2 position, which can be determined by the number of wheel pulses and the vehicle travel distance S1 in 1 wheel pulse.
  • Calculating the movement distance L of the rear wheel axle center is the distance L1 as the trajectory of the vehicle travel path.
  • FIG. 10 is a schematic diagram of calculating a turning distance of a vehicle in an embodiment of the present disclosure.
  • the vehicle 1001 when the vehicle 1001 turns from the W1 position to the W2 position, it can be determined by the number of wheel pulses and the vehicle travel distance S1 in 1 wheel pulse.
  • the steering wheel angle calculation to calculate the rear wheel axle center movement distance L is the distance L1 as the trajectory of the vehicle travel path, the calculation formula (4) is as follows:
  • can be calculated by the following formula (5):
  • Step 503 When the driving speed of the vehicle is greater than the second speed, clear the determined first reversing trajectory, and the second speed is greater than or equal to the first speed.
  • a second speed that is greater than or equal to the first speed can be determined, and when the traveling speed of the vehicle is greater than the second speed Next, clear the determined first reversing trajectory, so as to avoid the accumulation of a large amount of information and affect the efficiency of calculation.
  • Step 504 After receiving the reversing instruction for the vehicle, obtain the first reversing trajectory of the vehicle.
  • Step 505 In response to the reversing instruction, control the vehicle to reverse according to the first reversing trajectory.
  • step 504 to step 505 can be correspondingly referred to the related description of step 101 to step 102. To avoid repetition, details are not repeated here.
  • the vehicle when the road condition is determined to be a narrow lane based on the route map information, after the vehicle receives the reversing instruction, it can first obtain the environmental obstacle information on the left and right sides of the vehicle, and obtain the driving path trajectory. At this time, according to the driving path The trajectory, the environmental obstacle information on the left and right sides of the vehicle, and the coordinate information of the vehicle center point position obtained in real time are used to fit the first reversing trajectory of the vehicle reversing in real time.
  • the first reversing trajectory can be fitted by various methods such as a straight line equation, a circle equation, and a polynomial curve equation.
  • safety, driving comfort experience, etc. can also be further considered. For example, smooth the trajectory of the driving path with more turns, and replan the trajectory of the driving path with more obstacles.
  • Fig. 11 is a schematic diagram of another first reversing trajectory in an embodiment of the present disclosure.
  • the vehicle 1101 reverses from the coordinate point 1102 to the coordinate point 1103, and the distance between the coordinate point 1102 and the coordinate point 1103 includes the driving path trajectory 1104.
  • the driving path trajectory 1104 turns a lot, and it is not suitable to be directly used as the first reversing trajectory.
  • it can be re-planned according to the direction of the driving path trajectory 1104 to obtain a smoother first reversing trajectory 1105, thereby avoiding multiple times during reversing. Steering to improve the efficiency of reversing.
  • the real-time position information of the vehicle when reversing through the first reversing trajectory, the real-time position information of the vehicle can be obtained, and when the real-time position information of the vehicle deviates from the first reversing trajectory, the third reversing trajectory is obtained by correcting the real-time position information of the vehicle.
  • the correction process can be correspondingly referred to the related description of step 204, and to avoid repetition, it will not be repeated here.
  • FIG. 12 is a schematic diagram of a first reversing track deviation correction in an embodiment of the present disclosure.
  • the vehicle 1201 reverses from the coordinate point 1202 to the coordinate point 1203, and the distance between the coordinate point 1202 and the coordinate point 1203 includes the driving path trajectory 1204 and The first reversing track 1205.
  • the current coordinate point 1206 of the vehicle 1201 deviates from the coordinate point 1202.
  • the deviation correction may be performed on the first reverse trajectory 1205 to obtain the third reverse trajectory 1207.
  • Step 506 Obtain first environmental obstacle information of the vehicle during reversing driving.
  • step 506 may correspond to the related description of step 103, and in order to avoid repetition, details are not repeated here.
  • Step 507 Determine whether there is a stationary first obstacle in the first environmental obstacle information according to the first reversing trajectory.
  • the first environmental obstacle information can be compared with the map path information in the first reverse trajectory, and the size, shape, location, etc. of the obstacle can be determined from the first environmental obstacle information, and compared with the map path information The degree of change to determine whether there is an obstacle whose degree of change reaches the preset degree of change.
  • the obstacles can be classified into stationary or moving obstacles.
  • the stationary obstacle can be used as the first obstacle, such as road signs, other parked vehicles, buildings, and so on.
  • Step 508 When the first obstacle exists, obtain the position information of the first obstacle and the real-time position information of the vehicle.
  • the position information of the first obstacle and the real-time position information of the vehicle can be obtained, wherein the position information of the first obstacle can be obtained from the first environmental obstacle. It is determined in the information that the method for obtaining the real-time position information of the vehicle can correspond to the relevant description of step 203, which does not avoid repetition, and will not be repeated here.
  • Step 509 Determine a second reversing trajectory of the vehicle according to the position information of the first obstacle and the real-time position information of the vehicle, so that the vehicle can bypass the first obstacle during reversing. .
  • the second reversing trajectory of the vehicle can be determined according to the position information of the first obstacle and the real-time position information of the vehicle.
  • the position information of the first obstacle and the real-time position information of the vehicle can be determined first.
  • the first reversing trajectory traverse to determine the multiple coordinate points near the real-time position information in the first reversing trajectory, and obtain the continuous coordinate points from the multiple coordinate points to obtain the second reversing trajectory on other trajectories; when the distance is greater than
  • a new second reversing trajectory may also be re-planned according to the position information of the first obstacle and the real-time position information of the vehicle, which is not specifically limited in the embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a second reverse trajectory in an embodiment of the present disclosure. As shown in FIG. 13, it includes a vehicle 1301, a driving path trajectory 1302, a first reverse trajectory 1303, a first obstacle 1304, and a second reverse trajectory 1305.
  • the vehicle 1301 reaches point A while reversing along the first reversing trajectory 1303, the first obstacle 1304 is detected. Since the distance from point A to the first obstacle 1504 is less than the preset correction distance, the driving path trajectory can be considered at this time 1302.
  • the second reversing trajectory 1305 can be determined according to the position information of the first obstacle 1304 and the real-time position information of the vehicle 1301, so that the vehicle 1301 is based on the first obstacle 1304.
  • the second reversing trajectory 1305 can go from point A of the first reversing trajectory 1303 to point B of the driving path trajectory 1302, and then reversing along the driving path trajectory 1302 to bypass the first obstacle 1304; and it is bypassing the first obstacle After 1304, the driving path trajectory 1302 can be transferred to the first reverse trajectory 1303 to reverse driving to obtain the second reverse trajectory.
  • the second reverse trajectory 1305 includes a partial travel path trajectory 1302, a part of the first reverse trajectory 1303, and a reverse trajectory AB.
  • FIG. 14 is a schematic diagram of another second reversing trajectory in an embodiment of the present disclosure. As shown in FIG. 14, it includes a vehicle 1401, a driving path trajectory 1402, a first reversing trajectory 1403, a first obstacle 1404, and a second reversing trajectory 1405.
  • the vehicle 1401 reaches point A while reversing along the first reversing trajectory 1403, the first obstacle 1404 is detected. Since the distance between point A and the first obstacle 1504 is less than the preset correction distance, at this time, the travel path trajectory can be considered 1402.
  • the vehicle 1401 can re-plan to bypass the first obstacle after turning from point A of the first reverse trajectory 1403 to point B of the driving path trajectory 1402
  • the reverse trajectory BC of the object 1404 is used to bypass the first obstacle 1404; and after the first obstacle 1404 is bypassed, the reverse trajectory BC can be transferred to the first reverse trajectory 1403 to travel in reverse to obtain the second reverse trajectory. Afterwards, you can continue to drive in reverse along the second reverse trajectory, or re-plan the reverse trajectory according to the first environmental obstacle information and the second reverse trajectory.
  • the second reverse trajectory 1405 includes part of the first reverse trajectory 1403 and the reverse trajectory ABC.
  • FIG. 15 is a schematic diagram of another second reverse trajectory in an embodiment of the present disclosure. As shown in FIG. 15, it includes a vehicle 1501, a driving path trajectory 1502, a first reverse trajectory 1503, a first obstacle 1504, and a second reverse trajectory 1505.
  • the vehicle 1501 reaches point A while reversing along the first reversing trajectory 1503, the first obstacle 1504 is detected. Since the distance from point A to the first obstacle 1504 is greater than the preset correction distance, at this time, it can be re-planned to bypass The reverse trajectory AB of the first obstacle 1504. In addition, the reverse trajectory AB may return to the first reverse trajectory 1503.
  • the second reverse trajectory 1505 includes part of the first reverse trajectory 1503 and the reverse trajectory AB.
  • the method further includes:
  • Sub-step S11 Determine whether there is a second reversing trajectory according to the position information of the first obstacle and the real-time position information of the vehicle.
  • the vehicle can be controlled to end reversing, such as controlling the vehicle to stop, or reminding the driver to perform vehicle control, etc., and further can prompt the location of the first obstacle so that the driver can understand the current road conditions.
  • Step 510 Determine whether there is a moving second obstacle in the first environmental obstacle information according to the first reversing trajectory.
  • the moving obstacle may be determined as the second obstacle, such as pedestrians, other vehicles in motion, etc., and the method for determining whether there is a second obstacle may correspond to the relevant description of step 507, in order to avoid repetition
  • the embodiments of the present disclosure do not specifically limit this.
  • Step 511 In a case where the second obstacle exists, obtain obstacle trajectory information of the second obstacle.
  • the obstacle trajectory information of the second obstacle can be obtained, where the obstacle trajectory information can include the trajectory information of the second obstacle that has moved, and can also further include the trajectory information predicted for the second obstacle, and
  • the second obstacle is a pedestrian as an example.
  • a mechanical learning algorithm for segmentation of significant human instances in the video image can be used to identify pedestrians around the vehicle to obtain pedestrian obstacle trajectory information.
  • Step 512 Determine a second reversing trajectory of the vehicle according to the obstacle trajectory information and the first reversing trajectory, so that the second reversing trajectory and the obstacle trajectory information do not overlap.
  • the second reversing trajectory does not have an overlapping position with the obstacle trajectory information, which can be used to control the vehicle before reaching the overlap position of the obstacle trajectory information and the first reversing trajectory when the vehicle is reversing according to the second reversing trajectory. Stop, control the vehicle to reverse after the second obstacle passes through the overlap position; it may also be able to bypass the overlap position of the obstacle trajectory information and the first reverse trajectory when the vehicle is reversing according to the second reverse trajectory, as implemented in the present disclosure
  • the example does not make specific restrictions on this.
  • Step 513 Control the vehicle to drive in reverse according to the second reverse trajectory.
  • step 513 may correspond to the related description of step 102, and to avoid repetition, it will not be repeated here.
  • the method further includes:
  • Sub-step S21 in the process of reversing, prompting the real-time remaining distance of the first reversing trajectory.
  • the real-time distance of the reversing vehicle in the process of reversing driving, can also be calculated, and the real-time remaining distance can be calculated according to the actual distance of the first reversing trajectory.
  • the calculation method of the real-time distance can correspond to the step 502 Related descriptions, in order to avoid repetition, will not repeat them here.
  • the real-time remaining distance can be prompted by displaying the corresponding distance value on the display unit of the onboard computer, or the real-time remaining distance can be prompted by voice output.
  • the embodiment of the present disclosure does not limit the way of prompting the real-time remaining distance.
  • FIG. 16 is a schematic diagram of a real-time remaining distance prompt interface provided by an embodiment of the present disclosure.
  • the display interface includes a key area 1601, a prompt area 1602, and an image area 1603.
  • the key area 1601 can display for triggering Corresponding function buttons, such as the "reverse assist" button 16011; the prompt area 1602 is used to indicate that the reverse is in progress, and displays the real-time remaining distance "39m”.
  • the image area 1603 can display the images taken by the front and rear cameras of the vehicle so that the driver’s current surrounding environment can further avoid eliminating safety hazards.
  • FIG. 17 shows a schematic structural diagram of a reversing control system according to an embodiment of the present disclosure.
  • the system includes:
  • the first reversing trajectory acquisition module 1701 is configured to obtain the first reversing trajectory of the vehicle after receiving a reversing instruction for the vehicle
  • the vehicle control module 1702 is configured to control the vehicle to drive in reverse according to the first reverse trajectory in response to the reversing instruction;
  • Obstacle information acquisition module 1703 configured to acquire first environmental obstacle information of the vehicle during reversing driving
  • the second reversing trajectory acquisition module 1704 is configured to determine the second reversing of the vehicle according to the first reversing trajectory and the first environmental obstacle information when the first environmental obstacle information reaches a preset condition Trajectory
  • the vehicle control module 1702 is also used to control the vehicle to reverse driving according to the second reverse trajectory.
  • the system also includes
  • a real-time information acquisition module for acquiring real-time location information of the vehicle
  • a third reversing trajectory acquisition module configured to determine a third reversing trajectory according to the first reversing trajectory and the real-time position information when the real-time position information deviates from the first reversing trajectory;
  • the vehicle control module 1702 is also used to control the vehicle to drive in reverse according to the third reverse trajectory.
  • the second reversing trajectory acquisition module 1704 includes:
  • the first obstacle sub-module is configured to determine whether there is a stationary first obstacle in the first environmental obstacle information according to the first reversing trajectory;
  • the first information sub-module is used to obtain the position information of the first obstacle and the real-time position information of the vehicle when the first obstacle exists;
  • the first reversing trajectory sub-module is used to determine the second reversing trajectory of the vehicle according to the position information of the first obstacle and the real-time position information of the vehicle, so that the vehicle can bypass during reversing The first obstacle.
  • the second reversing trajectory acquisition module 1704 includes:
  • the second obstacle sub-module is configured to determine whether there is a moving second obstacle in the first environmental obstacle information according to the first reversing trajectory;
  • the second information sub-module is used to obtain obstacle trajectory information of the second obstacle when the second obstacle exists
  • the second reversing trajectory sub-module is used to determine the second reversing trajectory of the vehicle according to the obstacle trajectory information and the first reversing trajectory, so that the second reversing trajectory does not overlap with the obstacle trajectory information Location.
  • the obstacle information acquisition module 1703 is further configured to acquire the driving path information of the vehicle and the second environment when the driving speed of the vehicle is less than or equal to the first speed. Obstacle information
  • the first reversing trajectory acquisition module 1701 is further configured to determine the first reversing trajectory of the vehicle according to the driving path information and the second environmental obstacle information.
  • the first reversing trajectory acquisition module 1701 is further configured to clear the determined first reversing trajectory when the driving speed of the vehicle is greater than the second speed, and the second speed is greater than or Equal to the first speed.
  • the second reversing trajectory acquisition module 1704 further includes:
  • the first reversing trajectory submodule is further configured to determine whether there is a second reversing trajectory according to the position information of the first obstacle and the real-time position information of the vehicle;
  • the vehicle control module is further configured to control the vehicle to end the reverse driving when the second reverse trajectory does not exist.
  • system further includes:
  • the information prompt module is used for prompting the real-time remaining distance of the first reversing trajectory during the reversing driving process.
  • An embodiment of the present disclosure also provides a vehicle, which includes a system that implements the above-mentioned reversing control method; or, the vehicle includes the above-mentioned reversing control system.
  • FIG. 18 is an example diagram of a vehicle system architecture provided by an embodiment of the present disclosure. As shown in FIG. 18, in practical applications, the embodiment of the present disclosure can be applied to an ECU (Electronic Control) equipped with RADS (Road Alignment Design). Unit, electronic control unit) vehicle, in which RADS ECU can record and clear the vehicle's forward trajectory, playback the forward trajectory, correct the vehicle position, re-plan the forward trajectory and other functions.
  • ECU Electronic Control
  • RADS Rad Alignment Design
  • RADS ECU can drive various sensors (sensors) to collect the environmental obstacle information of the vehicle, and filter and calculate the environmental obstacle information collected to determine the environmental status around the vehicle; it can also confirm the TCU Feedback gear information, and output the instruction to switch to the target gear to the TCU; you can also confirm the steering wheel angle information fed back by the EPS, and output the instruction to switch to the target steering wheel angle to the EPS; you can also use the wheel speed pulse information fed back by the ESP Confirm the driving distance of the vehicle to determine whether to drive the ESP for brake control; you can also confirm the engine power output information fed back by the ECM, and output the instruction to switch to the target power output of the engine to the ECM; you can also confirm the PEPS (Passive Entry Passive Start, keyless Enter and start the vehicle battery mode fed back by the system, and output an instruction to switch to the target vehicle battery mode to the PEPS.
  • the target target gear, target steering wheel angle, target power output, target vehicle battery mode, etc. may be determined
  • the RADS ECU can also receive the reverse command through the HUT (Head Unit, display unit); it can also confirm that the door of the vehicle is in the open/closed state through the door status information output by the BCM, and output the door open/close command to the BCM; also
  • the information of the driver or other people in the car can be collected through the seat belt sensor and the seat pressure sensor, so as to determine the driving intention of the driver or other people in the car, etc.; it can also be used to obtain the driving path information, the first environmental obstacle information, etc. , And the obtained first reversing trajectory, second reversing trajectory, and third reversing trajectory, etc., are stored in an eMMC (Embedded MultiMedia Card) storage module.
  • eMMC Embedded MultiMedia Card
  • Fig. 19 is a schematic diagram of the application of a reversing control process provided by an embodiment of the present disclosure. As shown in Fig. 19, in the vehicle system architecture shown in Fig. 18, the implementation process of the reversing control by the RADS ECU system for reversing assistance is as follows:
  • Step 1901 Receive a reversing instruction through the display unit.
  • Step 1902 Determine whether the engine is running normally. If not, go to step 1903; if yes, go to step 1904.
  • Step 1903 It is determined that the reverse driving has failed to turn on, and the reverse assist is exited.
  • Step 1904 Determine whether the first reversing track is saved. If not, go to step 1903; if yes, go to step 1905.
  • Step 1905 Determine whether the RADS ECU system is operating normally. If not, go to step 1903; if yes, go to step 1906.
  • Step 1906 Determine whether the current gear is a reverse gear. If not, go to step 1907; if yes, go to step 1908.
  • Step 1907 Determine whether the current gear is switched to the reverse gear within the first preset switching time. If not, go to step 1903; if yes, go to step 1908.
  • Step 1908 shaking hands with ESP, EPS, TCU, BCM, ECM, seat belt sensor and seat pressure sensor.
  • Step 1909 Check whether the safety settings of the vehicle have been confirmed. If not, go to step 1903, and if yes, go to step 1910.
  • Step 1910 Determine whether the braking state is braking. If yes, go to step 1911; if not, go to step 1912.
  • Step 1911 it is determined whether the brake state is switched to release the brake within the second preset switching time. If not, go to step 1903, and if yes, go to step 1912.
  • Step 1912 control the vehicle to reverse according to the first reverse trajectory.
  • Step 1913 After the vehicle is reversing along the first reversing trajectory, exit the reversing assist.
  • the first reversing trajectory of the vehicle after receiving the reversing instruction for the vehicle, the first reversing trajectory of the vehicle can be obtained, and the vehicle can be controlled to reverse according to the first reversing trajectory, and the driver does not need to control the vehicle to avoid
  • the cumbersome operation of the driver is eliminated, and the first reversing trajectory can be adjusted according to the first environmental obstacle information of the vehicle during the reversing process to obtain the second reversing trajectory, and then the vehicle can be controlled to reverse according to the second reversing trajectory.
  • the danger caused by environmental obstacles during the reversing process solves the hidden safety hazards in the reversing process of the vehicle.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without creative work.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 20 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 21.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 20.
  • the program code can be compressed in a suitable form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种倒车控制方法、系统及车辆,涉及汽车技术领域,在接收到对车辆的倒车指令后,可以获取车辆的第一倒车轨迹,并控制车辆根据第一倒车轨迹倒车行驶,无需驾驶员对车辆进行控制,避免了驾驶员的繁琐操作,并且在倒车行驶过程中能够根据车辆的第一环境障碍信息对第一倒车轨迹进行调整,获得第二倒车轨迹,再控制车辆根据第二倒车轨迹进行倒车行驶,能够避免倒车行驶过程中由于环境障碍造成的危险,解决了车辆倒车过程中的安全隐患。

Description

一种倒车控制方法、系统及车辆
相关申请的交叉引用
本公开要求在2020年05月25日提交中国专利局、申请号为202010458179.0、名称为“一种倒车控制方法、系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及汽车技术领域,特别涉及一种倒车控制方法、系统及车辆。
背景技术
在车辆驾驶的过程中,由于倒车时驾驶员需要一边观察周边的行人、车辆等障碍物,一边操作方向盘将车辆驶入特定位置,操作不便;而且倒车时向后行驶使得视线受阻,造成了极大的安全隐患。
目前,为了安全、高效的倒车,通常在车辆上设置倒车雷达以探测车辆后方障碍物距离,并根据距离的远近示警,或通过车辆上的摄像头采集车辆后方的图像,并通过车辆驾驶位附近行车电脑的显示单元显示该图像,以便驾驶员根据示警、图像等信息进行安全倒车。
但是,通过对障碍物距离示警难以帮助驾驶员实际了解车辆后方障碍物的实际分布情况,而显示车辆后方图像信息又使得驾驶员需要同时关注行车电脑显示单元、方向盘和车辆前方,操作不便、安全隐患大。
发明内容
有鉴于此,本公开旨在提出一种倒车控制方法、系统及车辆,以解决现有车辆在倒车行驶过程中,由于驾驶员视线受阻且需要关注多方信息导致的操作不便、安全隐患大的问题。
为达到上述目的,本公开的技术方案是这样实现的:
本公开实施例提供了一种倒车控制方法,该方法可以包括:
在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹;
响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶;
在倒车行驶过程中,获取所述车辆的第一环境障碍信息;
在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹;
控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
进一步地,所述响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶之后,还包括
获取所述车辆的实时位置信息;
在所述实时位置信息偏离所述第一倒车轨迹的情况下,根据所述第一倒车轨迹和所述实时位置信息,确定第三倒车轨迹;
控制所述车辆根据所述第三倒车轨迹进行倒车行驶。
进一步地,所述在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹,包括:
根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在静止的第一障碍物;
在所述第一障碍物存在的情况下,获取所述第一障碍物的位置信息,以及所述车辆的实时位置信息;
根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定所述车辆的第二倒车轨迹,以使所述车辆在倒车行驶过程中绕过所述第一障碍物。
进一步地,所述在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹,包括:
根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在移动的第二障碍物;
在所述第二障碍物存在的情况下,获取所述第二障碍物的障碍轨迹信息;
根据所述障碍轨迹信息以及所述第一倒车轨迹,确定所述车辆的第二倒车轨迹,以使所述第二倒车轨迹与所述障碍轨迹信息不存在重合位置。
进一步地,所述在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹之前,还包括:
在所述车辆的行驶速度小于或等于第一速度的情况下,获取所述车辆的行驶路径信息以及第二环境障碍信息;
根据所述行驶路径信息以及所述第二环境障碍信息,确定所述车辆的所述第一倒车轨迹。
进一步地,所述在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹之前,还包括:
在所述车辆的行驶速度大于第二速度的情况下,清除已确定的所述第一倒车轨迹,所述第二速度大于或等于第一速度。
进一步地,所述根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定所述车辆的第二倒车轨迹之前,还包括:
根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定是否存在第二倒车轨迹;
在所述第二倒车轨迹不存在的情况下,控制所述车辆结束倒车行驶。
进一步地,所述响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶之后,还包括:
在倒车行驶过程中,提示所述第一倒车轨迹的实时剩余距离。
本公开实施例的另一目的还在于提出一种倒车控制系统,该系统可以包括:
第一倒车轨迹获取模块,用于在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹
车辆控制模块,用于响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶;
障碍信息获取模块,用于在倒车行驶过程中,获取所述车辆的第一环境障碍信息;
第二倒车轨迹获取模块,用于在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹;
所述车辆控制模块,还用于控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
进一步地,所述的系统中,还包括
实时信息获取模块,用于获取所述车辆的实时位置信息;
第三倒车轨迹获取模块,用于在所述实时位置信息偏离所述第一倒车轨迹的情况下,根据所述第一倒车轨迹和所述实时位置信息,确定第三倒车轨迹;
所述车辆控制模块,还用于控制所述车辆根据所述第三倒车轨迹进行倒车行驶。
进一步地,所述的系统中,所述第二倒车轨迹获取模块,包括:
第一障碍子模块,用于根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在静止的第一障碍物;
第一信息子模块,用于在所述第一障碍物存在的情况下,获取所述第一障碍物的位置信息,以及所述车辆的实时位置信息;
第一倒车轨迹子模块,用于根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定所述车辆的第二倒车轨迹,以使所述车辆在倒车行驶过程中绕过所述第一障碍物。
进一步地,所述的系统中,所述第二倒车轨迹获取模块,包括:
第二障碍子模块,用于根据所述第一倒车轨迹确定所述第一环境障碍信 息中是否存在移动的第二障碍物;
第二信息子模块,用于在所述第二障碍物存在的情况下,获取所述第二障碍物的障碍轨迹信息;
第二倒车轨迹子模块,用于根据所述障碍轨迹信息以及所述第一倒车轨迹,确定所述车辆的第二倒车轨迹,以使所述第二倒车轨迹与所述障碍轨迹信息不存在重合位置。
进一步地,所述的系统中,所述障碍信息获取模块,还用于在所述车辆的行驶速度小于或等于第一速度的情况下,获取所述车辆的行驶路径信息以及第二环境障碍信息;
所述第一倒车轨迹获取模块,还用于根据所述行驶路径信息以及所述第二环境障碍信息,确定所述车辆的所述第一倒车轨迹。
进一步地,所述第一倒车轨迹获取模块,还用于在所述车辆的行驶速度大于第二速度的情况下,清除已确定的所述第一倒车轨迹,所述第二速度大于或等于第一速度。
进一步地,所述的系统中,所述第二倒车轨迹获取模块,还包括:
所述第一倒车轨迹子模块,还用于根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定是否存在第二倒车轨迹;
所述车辆控制模块,还用于在所述第二倒车轨迹不存在的情况下,控制所述车辆结束倒车行驶。
进一步地,所述的系统中,还包括:
信息提示模块,用于在倒车行驶过程中,提示所述第一倒车轨迹的实时剩余距离。
本公开的再一目的在于提出一种车辆,所述车辆包括实现如上所述的倒车控制方法的系统;或,所述车辆包括如上所述的倒车控制系统。
相对于在先技术,本公开所述的倒车控制方法、系统及车辆具有以下优势:
在接收到对车辆的倒车指令后,可以获取车辆的第一倒车轨迹,并控制车辆根据第一倒车轨迹倒车行驶,无需驾驶员对车辆进行控制,避免了驾驶员的繁琐操作;并且在倒车行驶过程中能够根据车辆的第一环境障碍信息对第一倒车轨迹进行调整,获得第二倒车轨迹,再控制车辆根据第二倒车轨迹进行倒车行驶,能够避免倒车行驶过程中由于环境障碍造成的危险,解决了车辆倒车过程中的安全隐患。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例中提出的一种倒车控制方法的流程示意图;
图2为本公开实施例中提出的另一种倒车控制方法的流程示意图;
图3是本公开实施例中提供的车辆偏离程度的计算方法示意图;
图4为本公开实施例中提供的第三倒车轨迹示意图;
图5为本公开实施例中提供的又一种倒车控制方法的流程示意图;
图6为本公开实施例中提供的一种第一倒车轨迹的示意图;
图7为本公开实施例中提供的另一种第一倒车轨迹的示意图;
图8为本公开实施例中提供的车轮周长计算方法示意图;
图9为本公开实施例中提供的一种车辆直行距离计算示意图;
图10为本公开实施例中提供的一种车辆转弯距离计算示意图;
图11为本公开实施例中提供的又一种第一倒车轨迹示意图;
图12为本公开实施例中提供的一种第一倒车轨迹偏离修正示意图;
图13为本公开实施例中提供的一种第二倒车轨迹示意图;
图14为本公开实施例中提供的另一种第二倒车轨迹示意图;
图15为本公开实施例中提供的又一种第二倒车轨迹示意图;
图16为本公开实施例中提供的一种实时剩余距离提示界面示意图;
图17为本公开实施例中提供的一种倒车控制系统的结构示意图;
图18为本公开实施例中提供的一种车辆系统架构示例图;
图19为本公开实施例中提供的一种倒车控制流程应用示意图;
图20示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图21示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
下面将参考附图更详细地描述本申请的实施例。虽然附图中显示了本申请的实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更彻底地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
请参阅图1,示出了本公开实施例所提供的一种倒车控制方法的流程示意图,该方法可以包括步骤101至步骤105。
步骤101、在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹。
本公开实施例中,可以在车辆行驶的过程中,接收对车辆的倒车指令,其中,可以是接收当前车辆的驾驶员通过车载电脑输入的倒车指令,也可以是接收驾驶员通过第三方电子设备向至少一个车辆发送的倒车指令,如通过接收驾驶员对车载电脑的显示单元上“自动倒车”、“倒车辅助”等按键的点击操作,确定接收倒车指令,或者,接收驾驶员通过手机、平板电脑或笔记本电脑等电子设备发送的倒车指令,本公开实施例中对接收倒车指令的方式不作限定。
本公开实施例中,在接收到倒车指令后可以获取车辆的第一倒车轨迹,其中,第一倒车轨迹可以是接收倒车指令前预先记录的,车辆在预设时间段或预设距离内前行轨迹的反向轨迹,也可以是预先采集车辆的环境障碍信息,并根据倒车指令指向的目的地规划的倒车轨迹。在无法获取车辆的第一倒车轨迹的情况下,如未预先记录或由于当前环境障碍信息过少、错误、冲突等原因等无法规划第一倒车轨迹时,可以通过显示单元向驾驶员提示无法进行倒车辅助的信息,以便驾驶员及时自行控制车辆进行倒车,或重新采集车辆的环境障碍信息以规划第一倒车轨迹。
本公开实施例中,在接收到倒车指令后,获取车辆的第一倒车轨迹前还可以检查当前车辆的安全设置,其中,可以包括刹车状态、车门状态、安全带状态、后视镜状态、方向盘状态等。可选地,可以先提示驾驶员踩刹车,再提示驾驶员检查或通过BCM(Body Control Module,车身控制模块)确定车门是否关闭、是否系安全带、是否松开方向盘、是否关闭后视镜等,BCM是车辆的灯光控制、雨刮控制、门锁控制、后视镜控制等多项控制功能集成模块。此时,可以通过驾驶员松开刹车确认安全设置检查完毕,也可以通过BCM的各项控制功能确定安全设置检查完毕,也可以接收驾驶员对显示单元上“安全确认”、“完成安全设置”等按键的点击操作确定安全设置检查完毕。可选地,还可以通过车辆中安全带传感器、座椅压力传感器等获取驾驶员和/或其他车内人员的状态信息,从而确定驾驶员和/或其他车内人员的意图,以确定是否进行倒车行驶。
步骤102、响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶。
本公开实施例中,获取第一倒车轨迹后,可以响应于该倒车指令控制车辆沿第一倒车轨迹倒车行驶,其中,可以包括通过控制车辆的方向盘角度、档位、发动机动力输出、行驶状态从而控制车辆的行驶方向、距离、速度等。可选地,可以通过车辆的EPS(Electric Power Steering,电动助力转向)获取 车辆当前的方向盘角度信息,并控制方向盘转向目标角度;可以通过车辆的TCU(Transmission Control Unit,自动变速箱控制单元)获取车辆当前的档位信息,并控制切换到目标档位;可以通过车辆的ECM(Engine Control Module,引擎控制模块)获取发动机当前的动力输出,并控制发动机切换到目标动力输出;可以通过车辆的ESP(Electronic Stability Program,车身电子稳定系统)获取车辆当前的行驶状态,如车辆行驶距离信息、轮速脉冲信息等,并控制各车轮的制动力调整车辆至目标行驶状态,通过车辆各部件的配合控制车辆沿第一倒车轨迹倒车行驶。其中,目标角度、目标档位、目标动力输出以及目标行驶状态均与第一倒车轨迹相关。本领域技术人员也可通过其他控制单元、模块或系统对车辆的各部件控制配合,本公开实施例对此不作具体限制。
步骤103、在倒车行驶过程中,获取所述车辆的第一环境障碍信息。
本公开实施例中,可以通过车辆上搭载的各类传感器如超声波传感器、图像传感器等,以获取车辆倒车行驶过程中车辆的第一环境障碍信息,以确定车辆的行驶环境中存在的静止或移动的障碍物,包括障碍物的位置、形状、大小、移动方向、移动速度等,本公开实施例传感器的种类,以及通过传感器获取的第一环境障碍信息的种类和数量不作限制。
步骤104、在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹。
本公开实施例中,由于第一倒车轨迹可以是接收倒车指令前预先记录的,车辆在预设时间段或预设距离内前行轨迹的反向轨迹,也可以是预先采集车辆的环境障碍信息,并根据倒车指令指向的目的地规划的倒车轨迹,因此,车辆在根据第一倒车轨迹倒车行驶时,接收倒车指令前已存在的障碍物对车辆的倒车行驶过程影响较低,此时,可以在第一环境障碍信息达到预设条件的情况下,根据第一环境障碍信息以及第一倒车轨迹,确定车辆的第二倒车轨迹。可选地,可以是根据第一环境障碍信息对第一倒车轨迹进行修正,并将修正后的第一倒车轨迹作为第二倒车轨迹。
本公开实施例中,预设条件可以是第一环境障碍信息相比于确定第一倒车轨迹时的环境障碍信息的变化程度,当变化程度达到预设变化程度时,则认为第一环境障碍信息达到预设条件,可选地,变化程度可以是新增或减少障碍物的数量、位置等的变化程度,也可以是障碍物的位置、形状的变化程度等,本公开实施例对此不作具体限制。
步骤105、控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
本公开实施例中,控制车辆根据第二倒车轨迹进行倒车行驶的过程与步骤102的过程类似,在此不再赘述。
本公开实施例中,在接收到对车辆的倒车指令后,可以获取车辆的第一倒车轨迹,并控制车辆根据第一倒车轨迹倒车行驶,无需驾驶员对车辆进行 控制,避免了驾驶员的繁琐操作,并且在倒车行驶过程中能够根据车辆的第一环境障碍信息对第一倒车轨迹进行调整,获得第二倒车轨迹,再控制车辆根据第二倒车轨迹进行倒车行驶,能够避免倒车行驶过程中由于环境障碍造成的危险,解决了车辆倒车过程中的安全隐患。
图2是本公开实施例中提供的另一种倒车控制方法的流程示意图,如图2所示,该方法可以包括:
步骤201、在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹。
步骤202、响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶。
本公开实施例中,步骤201至步骤202可以对应参照步骤101至步骤102的相关描述,为避免重复,在此不再赘述。
步骤203、获取所述车辆的实时位置信息。
本公开实施例中,在车辆根据第一倒车轨迹进行倒车行驶时,可以获取车辆的实时位置信息,可选地,可以通过获取车辆的后轮轴中心的实时坐标、前轴中心的实时坐标等获取车辆的实时位置信息,本公开实施例对获取车辆的实时位置信息的方式不作限定。
步骤204、在所述实时位置信息偏离所述第一倒车轨迹的情况下,根据所述第一倒车轨迹和所述实时位置信息,确定第三倒车轨迹。
本公开实施例中,在倒车过程中,可以控制车辆的实时位置信息靠近第一倒车轨迹中的坐标点,从而控制车辆的转动方向、移动距离等。此时,可能发生累积计算误差从而导致获取的实时位置信息可能与车辆的实际实时位置信息存在误差,可选地,可以在每次获取实时位置信息后,判断车辆的实时位置信息是否偏离第一倒车轨迹,如,可以计算实时位置信息距第一倒车轨迹距离最短的点的位置偏差、方向偏差和曲率偏差的至少一种,并根据计算结果确定车辆偏离第一倒车轨迹的偏离程度,在偏离程度达到预设偏离程度时,可以根据第一倒车轨迹和实时位置信息确定第三倒车轨迹。如,根据实时位置信息规划不与第一倒车轨迹重合的第三倒车轨迹,或根据实时位置信息规划回到第一倒车轨迹的修正轨迹,并将从修正轨迹回到第一倒车轨迹并继续倒车行驶的倒车轨迹作为第三倒车轨迹。
图3是本公开实施例中一种车辆偏离程度的计算方法示意图,如图3所示,包括第一倒车轨迹301、车辆302,可以看出车辆后轮轴中心坐标O(X,Y)为车辆的实时位置信息3021,坐标点3011为第一倒车轨迹301上距实时位置信息3021距离最短的点,位置偏差为△Z,此时,可以根据实时位置信息3021确定回到第一倒车轨迹的修正轨迹,并将修正轨迹到第一倒车轨迹作为第三倒车轨迹303。
步骤205、控制所述车辆根据所述第三倒车轨迹进行倒车行驶。
本公开实施例中,如图3所示可以根据修正轨迹确定旋转中心Q(X,Y),从而计算出车辆的实际曲率半径R,从而得出车辆前轮转角大小,并根据方向盘传动比关系得到目标方向盘转角,从而控制车辆根据第三倒车轨迹倒车行驶。
图4是本公开实施例中第三倒车轨迹示意图,如图4所示,包括第一倒车轨迹401、车辆402、第三倒车轨迹403,在车辆402偏离第一倒车轨迹的情况下,根据车辆402的实时位置信息确定第三倒车轨迹403,以校正车辆位置。
步骤206、在倒车行驶过程中,获取所述车辆的第一环境障碍信息。
步骤207、在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹。
步骤208、控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
本公开实施例中,步骤206至步骤208可以对应参照步骤103至步骤105的相关描述,为避免重复,在此不再赘述。
本公开实施例中,在接收到对车辆的倒车指令后,可以获取车辆的第一倒车轨迹,并控制车辆根据第一倒车轨迹倒车行驶,无需驾驶员对车辆进行控制,避免了驾驶员的繁琐操作,并且在倒车行驶过程中能够根据车辆的第一环境障碍信息或车辆的实时位置信息对第一倒车轨迹进行调整,获得第二倒车轨迹或第三倒车轨迹,再控制车辆根据第二倒车轨迹或第三倒车轨迹进行倒车行驶,能够避免倒车行驶过程中由于环境障碍造成的危险,解决了车辆倒车过程中的安全隐患。
图5是本公开实施例中又一种倒车控制方法的流程示意图,如图5所示,该方法可以包括:
步骤501、在所述车辆的行驶速度小于或等于第一速度的情况下,获取所述车辆的行驶路径信息以及第二环境障碍信息。
本公开实施例中,在车辆前进行驶的过程中,可以通过车辆的各类传感器获取车辆的行驶路径信息以及第二环境障碍信息,其中,行驶路径信息可以包括车辆前进行驶过程中,每隔预设时间间隔或预设距离间隔获取的坐标点,或通过卫星定位获得的车辆前进路径等;第二环境障碍信息可以包括车辆前进行驶过程中,周边环境中的其他车辆、行人、路标等障碍物信息等,本公开实施例中对获取行驶路径信息以及第二环境障碍信息的方法不做限定。
本公开实施例中,由于倒车时通常需要对车辆减速,因此,可以在车辆的行驶速度小于或等于第一速度时,确定车辆有可能会进行倒车,此时,可以获取车辆的行驶路径信息以及第二环境障碍信息,以避免过多信息造成的信息冗余,可选地,第一速度可以是14千米每小时、15千米每小时、20千米每小时等。进一步的,可以获取最近预设时间段或预设距离的行驶路径信 息和/或第二环境障碍信息,如10分钟、20分钟内的行驶路径信息和/或第二环境障碍信息,或50米、60米、70米内的行驶路径信息和/或第二环境障碍信息等。
步骤502、根据所述行驶路径信息以及所述第二环境障碍信息,确定所述车辆的所述第一倒车轨迹。
本公开实施例中,可以根据行驶路径信息以及第二环境障碍信息,确定车辆的第一倒车轨迹,其中,第一倒车轨迹可以包括根据行驶路径信息确定的行驶路径轨迹,以及根据第二环境障碍信息确定的路径地图信息,其中,行驶路径轨迹可以包括车辆前进的方向、角度、距离等,路径地图信息可以包括障碍物的数量、种类、形状、空间分布等。可选地,可以采用Free Space(自由空间)算法对第二环境障碍信息进行识别,从而生成对应的路径地图信息,还可以根据路径地图信息确定第一倒车轨迹所属的路况,如空旷区域、窄巷等。另外,可以将确定的第一倒车轨迹保存在车辆的车载电脑中,或发送到第三方电子设备、服务器等存储。
如,将车辆后轮轴方向作为X轴方向,车辆纵向方向作为Y轴方向,将后轮轴中心作为原点,从而确定车辆的坐标,其中,车辆的坐标(X、Y)可以是该坐标轴相对于世界坐标的相对值。
图6是本公开实施例中一种第一倒车轨迹的示意图,如图6所示,当根据第二环境障碍信息确定车辆601左右两侧3米内存在连续障碍物时,可以将障碍物确定为道路边界,此时,可以每隔1米获取车辆601的行驶路径信息,如车辆坐标点(X,Y)等,以及第二环境障碍信息如车辆两侧障碍物的坐标点(X 1,Y 1)、(X 2,Y 2)······。根据行驶路径信息确定车辆从坐标点602至坐标点603间50米的行驶路径轨迹604,以及第二环境障碍信息确定路况为窄巷,并确定车辆两侧的道路边界605。
图7是本公开实施例中另一种第一倒车轨迹的示意图,如图7所示,当根据第二环境障碍信息确定车辆701左右两侧3米内不存在连续障碍物时,此时,可以每隔1米获取车辆701的行驶路径信息,如车辆坐标点(X,Y)等,根据行驶路径信息确定车辆从坐标点702至坐标点703间50米的行驶路径轨迹704,以及根据第二环境障碍信息确定路况为空旷区域。
本公开实施例中,行驶路径轨迹的距离可以通过轮速脉冲计算,即通过计算车轮1个脉冲中车辆行驶距离,再统计车轮脉冲个数从而计算行驶路径轨迹的距离。
图8是本公开实施例中车轮周长计算方法示意图,如图8所示,车轮转动一圈,车辆行驶距离为车轮的周长,通过如下公式(1)计算得到:
S=πD           (1)
其中,D为车轮总直径,可以通过如下公式(2)计算得到:
D=2.54d+2mn         (2)
其中,d为轮毂的直径,通常单位为英寸;m为车轮的胎宽;n为车轮的扁平比,通过计算轮胎横断面高度H占其横断面最大宽度W的百分比得到。
当车轮转动一圈的车轮脉冲个数为N时,车轮1个脉冲中车辆行驶距离S1可以通过如下公式(3)计算得到:
S1=S/N            (3)
其中,N可以为96个。
图9是本公开实施例中一种车辆直行距离计算示意图,如图9所示,车辆901从W1位置直行移动到W2位置,可以通过车轮脉冲个数以及车轮1个脉冲中车辆行驶距离S1,计算后轮轴中心移动距离L就是作为车辆行驶路径轨迹的距离L1。
图10是本公开实施例中一种车辆转弯距离计算示意图,如图10所示,车辆1001从W1位置转弯移动到W2位置时,可以通过车轮脉冲个数、车轮1个脉冲中车辆行驶距离S1以及方向盘角度计算计算后轮轴中心移动距离L就是作为车辆行驶路径轨迹的距离L1,计算公式(4)如下所示:
L=R·α       (4)
其中,L为车辆后车轴中心移动的距离;R为当前方向盘角度下后车轴中心对应的转弯半径;α为车辆从位置W1到位置W2车辆的行驶角度;L1为车辆内圆后车轮轴心行驶的距离;R1为当前方向盘角度下内圆后车轮轴心对应的转弯半径;O点为车辆行驶弧长对应的圆心。
此时,α可以通过如下公式(5)计算得到:
α=L1/R1        (5)
步骤503、在所述车辆的行驶速度大于第二速度的情况下,清除已确定的所述第一倒车轨迹,所述第二速度大于或等于第一速度。
本公开实施例中,由于车辆行驶速度较高时,驾驶员的驾驶意图通常是前进,因此,可以确定大于或等于第一速度的第二速度,并在车辆的行驶速度大于第二速度的情况下,清除已确定的第一倒车轨迹,从而避免大量信息的累积,影响计算的效率。
步骤504、在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹。
步骤505、响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶。
本公开实施例中,步骤504至步骤505可对应参照步骤101至步骤102的相关描述,为避免重复,在此不再赘述。
本公开实施例中,当根据路径地图信息确定路况为窄巷时,车辆在接收 到倒车指令后,可以先获取车辆左右两侧的环境障碍信息,并获取行驶路径轨迹,此时,根据行驶路径轨迹、车辆左右两侧的环境障碍信息以及实时获取的车辆中心点位置坐标信息,实时拟合车辆倒车行驶的第一倒车轨迹。可选地,可以通过由直线方程、圆方程及多项式曲线方程等多种方式拟合第一倒车轨迹,另外,也可以进一步考虑安全性、驾驶舒适体验等。如对转向较多的行驶路径轨迹进行平滑,对绕行障碍物较多的行驶路径轨迹进行重新规划等。
图11是本公开实施例中又一种第一倒车轨迹示意图,如图11所示,车辆1101从坐标点1102倒车至坐标点1103,坐标点1102至坐标点1103间包括行驶路径轨迹1104,可以看出,行驶路径轨迹1104转向较多,不宜直接作为第一倒车轨迹,此时,可以根据行驶路径轨迹1104的走向重新规划,获得较为平滑的第一倒车轨迹1105,从而避免倒车过程中多次转向,提高倒车的效率。
本公开实施例中,通过第一倒车轨迹进行倒车时,可以获取车辆的实时位置信息,并在车辆的实时位置信息偏离第一倒车轨迹时根据车辆的实时位置信息进行修正获得第三倒车轨迹,修正过程可对应参考步骤204的相关描述,为避免重复,在此不再赘述。
图12是本公开实施例中一种第一倒车轨迹偏离修正示意图,如图12所示,车辆1201从坐标点1202倒车至坐标点1203,坐标点1202至坐标点1203间包括行驶路径轨迹1204和第一倒车轨迹1205。但是,车辆1201当前的坐标点1206偏离坐标点1202,此时,可以对第一倒车轨迹1205进行偏离修正以获得第三倒车轨迹1207。
步骤506、在倒车行驶过程中,获取所述车辆的第一环境障碍信息。
本公开实施例中,步骤506可对应参照步骤103的相关描述,为避免重复,在此不再赘述。
步骤507、根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在静止的第一障碍物。
本公开实施例中,可以将第一环境障碍信息与第一倒车轨迹中的地图路径信息进行对比,从第一环境障碍信息中确定障碍物的尺寸、形状、位置等,并比较与地图路径信息的变化程度,以确定是否出现变化程度达到预设变化程度的障碍物。可选地,可以将障碍物分为静止或移动的障碍物,此时,可以将静止的障碍物作为第一障碍物,如路标、其他停泊的车辆、建筑等。
步骤508、在所述第一障碍物存在的情况下,获取所述第一障碍物的位置信息,以及所述车辆的实时位置信息。
本公开实施例中,在确定存在静止的第一障碍物的情况下,可以获取第一障碍物的位置信息,以及车辆的实时位置信息,其中第一障碍物的位置信 息可以从第一环境障碍信息中确定,车辆的实时位置信息的获取方法可对应参照步骤203的相关描述,未避免重复,在此不再赘述。
步骤509、根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定所述车辆的第二倒车轨迹,以使所述车辆在倒车行驶过程中绕过所述第一障碍物。
本公开实施例中,可以根据第一障碍物的位置信息以及车辆的实时位置信息确定车辆的第二倒车轨迹,可选地,可以根据先确定第一障碍物的位置信息以及车辆的实时位置信息之间的距离,当距离小于或等于预设修正距离时,可以确定除第一倒车轨迹外其他轨迹,如行驶路径轨迹,是否可以绕开该第一障碍物,若是则可以根据实时位置信息与第一倒车轨迹,遍历确定第一倒车轨迹中距实时位置信息附近的多个坐标点,并从多个坐标点中连续的坐标点以获得修正到其他轨迹上获得第二倒车轨迹;当距离大于预设修正距离时,也可以根据第一障碍物的位置信息以及车辆的实时位置信息重新规划新的第二倒车轨迹,本公开实施例对此不作具体限制。
图13是本公开实施例中一种第二倒车轨迹示意图,如图13所示,包括车辆1301、行驶路径轨迹1302、第一倒车轨迹1303、第一障碍物1304、第二倒车轨迹1305。车辆1301沿第一倒车轨迹1303上倒车行驶时到达A点时,检测到第一障碍物1304,由于A点距离第一障碍物1504的距离小于预设修正距离,此时,可以考虑行驶路径轨迹1302,由于沿行驶路径轨迹1302不会遇到第一障碍物1304,因此,可以根据第一障碍物1304的位置信息以及车辆1301的实时位置信息,确定第二倒车轨迹1305,使得车辆1301根据第二倒车轨迹1305可以从第一倒车轨迹1303的A点转到行驶路径轨迹1302的B点,再沿行驶路径轨迹1302倒车行驶,以绕过第一障碍物1304;而且在绕过第一障碍物1304后,可以从行驶路径轨迹1302转到第一倒车轨迹1303倒车行驶以获得第二倒车轨迹。之后可以继续沿第二倒车轨迹倒车行驶,也可以根据第一环境障碍信息和第二倒车轨迹重新规划倒车轨迹。此时,第二倒车轨迹1305包括部分行驶路径轨迹1302、部分第一倒车轨迹1303以及倒车轨迹AB。
图14是本公开实施例中另一种第二倒车轨迹示意图,如图14所示,包括车辆1401、行驶路径轨迹1402、第一倒车轨迹1403、第一障碍物1404、第二倒车轨迹1405。车辆1401沿第一倒车轨迹1403上倒车行驶时到达A点时,检测到第一障碍物1404,由于A点距离第一障碍物1504的距离小于预设修正距离,此时,可以考虑行驶路径轨迹1402,由于沿行驶路径轨迹1402会遇到第一障碍物1404,因此,车辆1401在从第一倒车轨迹1403的A点转到行驶路径轨迹1402的B点后,可以重新规划绕过第一障碍物1404的倒车轨迹BC,以绕过第一障碍物1404;而且在绕过第一障碍物1404后,可以从 倒车轨迹BC转到第一倒车轨迹1403倒车行驶以获得第二倒车轨迹。之后可以继续沿第二倒车轨迹倒车行驶,也可以根据第一环境障碍信息和第二倒车轨迹重新规划倒车轨迹。此时,第二倒车轨迹1405包括部分第一倒车轨迹1403以及倒车轨迹ABC。
图15是本公开实施例中又一种第二倒车轨迹示意图,如图15所示,包括车辆1501、行驶路径轨迹1502、第一倒车轨迹1503、第一障碍物1504、第二倒车轨迹1505。车辆1501沿第一倒车轨迹1503上倒车行驶时到达A点时,检测到第一障碍物1504,由于A点距离第一障碍物1504的距离大于预设修正距离,此时,可以重新规划绕开第一障碍物1504的倒车轨迹AB。另外,倒车轨迹AB可以回到第一倒车轨迹1503。之后可以继续沿第二倒车轨迹倒车行驶,也可以根据第一环境障碍信息和第二倒车轨迹重新规划倒车轨迹。此时,第二倒车轨迹1505包括部分第一倒车轨迹1503以及倒车轨迹AB。
上述图13和图14中车辆切换至第二倒车轨迹时,可以先控制车辆档位切到前进档,调整修正车身角度,进入第二倒车轨迹,然后控制车辆档位切到后退档,沿着第二倒车轨迹倒车行驶,做避障处理。图15则继续保持后退档,调整修正车身角度进入第二倒车轨迹倒车行驶,做避障处理即可。
可选地,所述步骤509之前,还包括:
子步骤S11、根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定是否存在第二倒车轨迹。
子步骤S12在所述第二倒车轨迹不存在的情况下,控制所述车辆结束倒车行驶。
本公开实施例中,可能由于计算能力有限、信息采集不足等原因,导致无法根据第一障碍物的位置信息以及车辆的实时位置信息获得能够绕开第一障碍物的第二倒车轨迹,此时,可以控制车辆结束倒车行驶,如控制车辆刹停,或提醒驾驶员进行车辆控制等,进一步还可以提示第一障碍物的位置,以便驾驶员了解当前路况。
步骤510、根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在移动的第二障碍物。
本公开实施例中,可以将移动的障碍物确定为第二障碍物,如行人、行驶中的其他车辆等,确定是否存在第二障碍物的方法可对应参照步骤507的相关描述,为避免重复,本公开实施例对此不作具体限制。
步骤511、在所述第二障碍物存在的情况下,获取所述第二障碍物的障碍轨迹信息。
本公开实施例中,可以获取第二障碍物的障碍轨迹信息,其中,障碍轨迹信息可以包括第二障碍物已移动的轨迹信息,也可以进一步包括对第二障碍物预测的轨迹信息,以第二障碍物为行人为例,可以通过视频图像中显著 人体实例分割的机械学习算法,对车辆四周的行人进行识别,从而获得行人的障碍轨迹信息。
步骤512、根据所述障碍轨迹信息以及所述第一倒车轨迹,确定所述车辆的第二倒车轨迹,以使所述第二倒车轨迹与所述障碍轨迹信息不存在重合位置。
本公开实施例中,第二倒车轨迹与所述障碍轨迹信息不存在重合位置,可以是在车辆根据第二倒车轨迹倒车行驶时,能够到达障碍轨迹信息与第一倒车轨迹的重合位置前控制车辆刹停,第二障碍物通过该重合位置后再控制车辆倒车行驶;也可以是在车辆根据第二倒车轨迹倒车行驶时,能够绕开障碍轨迹信息与第一倒车轨迹的重合位置,本公开实施例对此不作具体限制。
步骤513、控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
本公开实施例中,步骤513可以对应参照步骤102的相关描述,为避免重复,在此不再赘述。
可选地,所述步骤505之后,还包括:
子步骤S21、在倒车行驶过程中,提示所述第一倒车轨迹的实时剩余距离。
本公开实施例中,在倒车行驶过程中,还可以计算已倒车行驶的实时距离,并根据第一倒车轨迹的实际距离计算其实时剩余距离,其中,实时距离的计算方法可对应参照步骤502的相关描述,为避免重复,在此不再赘述。另外,本公开实施例中,可以通过车载电脑的显示单元显示对应的距离数值提示实时剩余距离,也可以通过语音输出提示实时剩余距离等,本公开实施例对提示实时剩余距离的方式不作限定。
图16是本公开实施例提供的一种实时剩余距离提示界面示意图,如图16所示,该显示界面包括按键区1601、提示区1602、图像区1603,其中,按键区1601可以显示用于触发对应功能的按键,如“倒车辅助”按键16011,;提示区1602用于提示倒车行驶进行中,并显示实时剩余距离“39m”,可选地,还可以提示“请注意周边环境,随时准备刹车”,以提示驾驶员倒车行驶即将结束,避免突然刹车造成的驾驶体验差;图像区1603可以显示车辆车前、车后摄像头拍摄到的图像以便驾驶员车辆当前周围环境,进一步避免消除安全隐患。
本公开的另一目标在于提出一种倒车控制系统,其中,请参阅图17,图17示出了本公开实施例所提出的一种倒车控制系统的结构示意图,所述系统包括:
第一倒车轨迹获取模块1701,用于在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹
车辆控制模块1702,用于响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶;
障碍信息获取模块1703,用于在倒车行驶过程中,获取所述车辆的第一环境障碍信息;
第二倒车轨迹获取模块1704,用于在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹;
所述车辆控制模块1702,还用于控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
可选地,所述的系统中,还包括
实时信息获取模块,用于获取所述车辆的实时位置信息;
第三倒车轨迹获取模块,用于在所述实时位置信息偏离所述第一倒车轨迹的情况下,根据所述第一倒车轨迹和所述实时位置信息,确定第三倒车轨迹;
所述车辆控制模块1702,还用于控制所述车辆根据所述第三倒车轨迹进行倒车行驶。
可选地,所述的系统中,所述第二倒车轨迹获取模块1704,包括:
第一障碍子模块,用于根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在静止的第一障碍物;
第一信息子模块,用于在所述第一障碍物存在的情况下,获取所述第一障碍物的位置信息,以及所述车辆的实时位置信息;
第一倒车轨迹子模块,用于根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定所述车辆的第二倒车轨迹,以使所述车辆在倒车行驶过程中绕过所述第一障碍物。
可选地,所述的系统中,所述第二倒车轨迹获取模块1704,包括:
第二障碍子模块,用于根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在移动的第二障碍物;
第二信息子模块,用于在所述第二障碍物存在的情况下,获取所述第二障碍物的障碍轨迹信息;
第二倒车轨迹子模块,用于根据所述障碍轨迹信息以及所述第一倒车轨迹,确定所述车辆的第二倒车轨迹,以使所述第二倒车轨迹与所述障碍轨迹信息不存在重合位置。
可选地,所述的系统中,所述障碍信息获取模块1703,还用于在所述车辆的行驶速度小于或等于第一速度的情况下,获取所述车辆的行驶路径信息以及第二环境障碍信息;
所述第一倒车轨迹获取模块1701,还用于根据所述行驶路径信息以及所述第二环境障碍信息,确定所述车辆的所述第一倒车轨迹。
可选地,所述第一倒车轨迹获取模块1701,还用于在所述车辆的行驶速 度大于第二速度的情况下,清除已确定的所述第一倒车轨迹,所述第二速度大于或等于第一速度。
可选地,所述的系统中,所述第二倒车轨迹获取模块1704,还包括:
所述第一倒车轨迹子模块,还用于根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定是否存在第二倒车轨迹;
所述车辆控制模块,还用于在所述第二倒车轨迹不存在的情况下,控制所述车辆结束倒车行驶。
可选地,所述的系统中,还包括:
信息提示模块,用于在倒车行驶过程中,提示所述第一倒车轨迹的实时剩余距离。
本公开实施例还提出了一种车辆,所述车辆包括实现如上所述的倒车控制方法的系统;或,所述车辆包括如上所述的倒车控制系统。
所述倒车控制系统、车辆与上述倒车控制方法相对于现有技术所具有的优势相同,在此不再赘述。
图18是本公开实施例提供的一种车辆系统架构示例图,如图18所示,在实际应用中,本公开实施例可以应用于搭载RADS(Road Alignment Design,道路线形设计)ECU(Electronic Control Unit,电子控制单元)的车辆,其中,RADS ECU可以实现记录及清除车辆的前行轨迹、回放前行轨迹、校正车辆位置、重新规划前行轨迹等功能。如在具体执行过程中,RADS ECU可以驱动各类SENSOR(传感器)采集车辆的环境障碍信息,并对采集到的环境障碍信息进行筛选、计算处理等从而确定车辆周边的环境状态;也可以确认TCU反馈的档位信息,并向TCU输出切换至目标档位的指令;也可以确认EPS反馈的方向盘角度信息,并向EPS输出切换至目标方向盘角度的指令;也可以通过ESP反馈的轮速脉冲信息确认车辆行驶距离,从而判断是否驱动ESP进行刹车控制;也可以确认ECM反馈的发动机动力输出信息,并向ECM输出切换至发动机目标动力输出的指令;也可以确认PEPS(Passive Entry Passive Start,无钥匙进入及启动系统)反馈的车辆电池模式,并向PEPS输出切换至目标车辆电池模式的指令。其中,目标目标档位、目标方向盘角度、目标动力输出、目标车辆电池模式等,可以是RADS ECU根据第一倒车轨迹或第二倒车轨迹的路径、方向等确定的,本公开实施例对此不作具体限定。
另外,RADS ECU也可以通过HUT(Head Unit,显示单元)接收倒车指令;也可以通过BCM输出的车门状态信息确认车辆的车门处于开启/关闭状态,并向BCM输出车门开启/关闭指令等;也可以通过安全带传感器、座椅压力传感器采集车内驾驶员或其他人员的信息,从而判断车内驾驶员或其他人员的驾驶意图等;也可以将获取的行驶路径信息、第一环境障碍信息等,以及获取的第一倒车轨迹、第二倒车轨迹、第三倒车轨迹等存入eMMC (Embedded Multi Media Card,嵌入式多媒体卡)存储模块。
图19是本公开实施例提供的一种倒车控制流程应用示意图,如图19所示,在图18所示的车辆系统架构中,通过RADS ECU系统执行倒车辅助的倒车控制实现流程如下:
步骤1901、通过显示单元接收倒车指令。
步骤1902、确定发动机是否正常运行中。若否,执行步骤1903;若是,则执行步骤1904。
步骤1903、确定倒车行驶开启失败,退出倒车辅助。
步骤1904、确定是否保存有第一倒车轨迹。若否,执行步骤1903;若是,则执行步骤1905。
步骤1905、确定RADS ECU系统是否正常运行中。若否,执行步骤1903;若是,则执行步骤1906。
步骤1906、确定当前档位是否为后退档。若否,则执行步骤1907;若是,则执行步骤1908。
步骤1907、确定当前档位是否在第一预设切换时间内切换为后退档。若否,执行步骤1903;若是,则执行步骤1908。
步骤1908、与ESP、EPS、TCU、BCM、ECM、安全带传感器和座椅压力传感器握手。
步骤1909、检测车辆的安全设置是否确认完毕。若否,则执行步骤1903,若是,则执行步骤1910。
步骤1910、确定刹车状态是否为踩刹车。若是,则执行步骤1911;若否,则执行步骤1912.
步骤1911、确定刹车状态是否在第二预设切换时间内切换为松开刹车。若否,则执行步骤1903,若是,则执行步骤1912。
步骤1912、控制车辆根据第一倒车轨迹倒车行驶。
步骤1913、在车辆沿第一倒车轨迹倒车行驶结束后,退出倒车辅助。
综上所述,本公开实施例中,在接收到对车辆的倒车指令后,可以获取车辆的第一倒车轨迹,并控制车辆根据第一倒车轨迹倒车行驶,无需驾驶员对车辆进行控制,避免了驾驶员的繁琐操作,并且在倒车行驶过程中能够根据车辆的第一环境障碍信息对第一倒车轨迹进行调整,获得第二倒车轨迹,再控制车辆根据第二倒车轨迹进行倒车行驶,能够避免倒车行驶过程中由于环境障碍造成的危险,解决了车辆倒车过程中的安全隐患。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例 方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图20示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图21所述的便携式或者固定存储单元。该存储单元可以具有与图20的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种倒车控制方法,其特征在于,所述方法包括:
    在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹;
    响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶;
    在倒车行驶过程中,获取所述车辆的第一环境障碍信息;
    在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹;
    控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
  2. 根据权利要求1所述的方法,其特征在于,所述响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶之后,还包括:
    获取所述车辆的实时位置信息;
    在所述实时位置信息偏离所述第一倒车轨迹的情况下,根据所述第一倒车轨迹和所述实时位置信息,确定第三倒车轨迹;
    控制所述车辆根据所述第三倒车轨迹进行倒车行驶。
  3. 根据权利要求1或2所述的方法,其特征在于,所述在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹,包括:
    根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在静止的第一障碍物;
    在所述第一障碍物存在的情况下,获取所述第一障碍物的位置信息,以及所述车辆的实时位置信息;
    根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定所述车辆的第二倒车轨迹,以使所述车辆在倒车行驶过程中绕过所述第一障碍物。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹,包括:
    根据所述第一倒车轨迹确定所述第一环境障碍信息中是否存在移动的第二障碍物;
    在所述第二障碍物存在的情况下,获取所述第二障碍物的障碍轨迹信息;
    根据所述障碍轨迹信息以及所述第一倒车轨迹,确定所述车辆的第二倒车轨迹,以使所述第二倒车轨迹与所述障碍轨迹信息不存在重合位置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹之前,还包括:
    在所述车辆的行驶速度小于或等于第一速度的情况下,获取所述车辆的行驶路径信息以及第二环境障碍信息;
    根据所述行驶路径信息以及所述第二环境障碍信息,确定所述车辆的所述第一倒车轨迹。
  6. 根据权利要求5所述的方法,其特征在于,所述在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹之前,还包括:
    在所述车辆的行驶速度大于第二速度的情况下,清除已确定的所述第一倒车轨迹,所述第二速度大于或等于所述第一速度。
  7. 根据权利要求3所述的方法,其特征在于,所述根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定所述车辆的第二倒车轨迹之前,还包括:
    根据所述第一障碍物的位置信息以及所述车辆的实时位置信息,确定是否存在第二倒车轨迹;
    在所述第二倒车轨迹不存在的情况下,控制所述车辆结束倒车行驶。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶之后,还包括:
    在倒车行驶过程中,提示所述第一倒车轨迹的实时剩余距离。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶,包括:
    获取所述车辆当前的方向盘角度信息,控制所述车辆的方向盘转向目标角度;
    获取所述车辆当前的档位信息,控制所述车辆的档位切换至目标档位;
    获取所述车辆的发动机的当前动力输出,控制所述发动机切换到目标动力输出;
    获取所述车辆当前的行驶状态,控制所述车辆的车轮制动力,以调整至 目标行驶状态;
    其中,所述目标角度、所述目标档位、所述目标动力输出以及所述目标行驶状态与所述第一倒车轨迹相关。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述在倒车行驶过程中,获取所述车辆的第一环境障碍信息,包括:
    在倒车行驶过程中,通过超声波传感器或图像传感器获取所述车辆的第一环境障碍信息。
  11. 一种倒车控制系统,其特征在于,所述系统包括:
    第一倒车轨迹获取模块,用于在接收到对车辆的倒车指令后,获取所述车辆的第一倒车轨迹
    车辆控制模块,用于响应于所述倒车指令,控制所述车辆根据所述第一倒车轨迹进行倒车行驶;
    障碍信息获取模块,用于在倒车行驶过程中,获取所述车辆的第一环境障碍信息;
    第二倒车轨迹获取模块,用于在所述第一环境障碍信息达到预设条件的情况下,根据所述第一倒车轨迹以及所述第一环境障碍信息,确定所述车辆的第二倒车轨迹;
    所述车辆控制模块,还用于控制所述车辆根据所述第二倒车轨迹进行倒车行驶。
  12. 一种车辆,其特征在于,所述车辆包括实现如权利要求1~10任一项所述的倒车控制方法的系统。
  13. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-10中任一项所述的倒车控制方法。
  14. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-10中任一项所述的倒车控制方法。
  15. 一种计算机可读介质,其中存储了如权利要求14所述的计算机程序。
PCT/CN2021/095519 2020-05-25 2021-05-24 一种倒车控制方法、系统及车辆 WO2021238863A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21813549.9A EP4159593A4 (en) 2020-05-25 2021-05-24 METHOD AND SYSTEM FOR REVERSE AND VEHICLE CONTROL
US17/925,556 US20230192086A1 (en) 2020-05-25 2021-05-24 Reversing control method and system and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010458179.0A CN111674465B (zh) 2020-05-25 2020-05-25 一种倒车控制方法、系统及车辆
CN202010458179.0 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021238863A1 true WO2021238863A1 (zh) 2021-12-02

Family

ID=72434276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095519 WO2021238863A1 (zh) 2020-05-25 2021-05-24 一种倒车控制方法、系统及车辆

Country Status (4)

Country Link
US (1) US20230192086A1 (zh)
EP (1) EP4159593A4 (zh)
CN (1) CN111674465B (zh)
WO (1) WO2021238863A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968246A (zh) * 2021-12-08 2022-01-25 广州文远知行科技有限公司 障碍物倒车轨迹预测方法、装置、设备及可读存储介质
CN115512571A (zh) * 2022-09-28 2022-12-23 上汽通用五菱汽车股份有限公司 一种倒车环境监测方法、装置、设备以及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111674465B (zh) * 2020-05-25 2022-01-04 长城汽车股份有限公司 一种倒车控制方法、系统及车辆
CN114516323A (zh) * 2020-11-20 2022-05-20 奥迪股份公司 一种车辆的倒车辅助方法、装置及车辆
CN113619679B (zh) * 2021-08-27 2023-06-20 中汽创智科技有限公司 电动汽车倒车循迹方法、装置、存储介质和终端
CN114475603A (zh) * 2021-11-19 2022-05-13 纵目科技(上海)股份有限公司 自动倒车方法、系统、设备及计算机可读存储介质
CN114995440A (zh) * 2022-06-15 2022-09-02 中国第一汽车股份有限公司 车辆控制方法、装置、车辆及存储介质
CN114919662A (zh) * 2022-06-16 2022-08-19 岚图汽车科技有限公司 一种动态倒车辅助线的建立方法、装置和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103373349A (zh) * 2012-04-19 2013-10-30 现代摩比斯株式会社 自动泊车辅助系统的障碍物避碰装置及方法
KR20160056561A (ko) * 2014-11-12 2016-05-20 현대모비스 주식회사 자율주행차량의 장애물 회피 시스템 및 방법
CN106183992A (zh) * 2013-10-04 2016-12-07 本田技研工业株式会社 停车辅助装置
US20170036695A1 (en) * 2015-08-03 2017-02-09 Hyundai Mobis Co., Ltd. Parking assistance apparatus and method of controlling the same
CN107169468A (zh) * 2017-05-31 2017-09-15 北京京东尚科信息技术有限公司 用于控制车辆的方法和装置
CN108248688A (zh) * 2016-12-29 2018-07-06 长城汽车股份有限公司 倒车辅助线设置方法及倒车辅助系统
DE102017124661A1 (de) * 2017-10-23 2019-04-25 Connaught Electronics Ltd. Verfahren zum Unterstützen eines Benutzers eines Kraftfahrzeugs beim Einparken auf einem Parkplatz, entsprechendes Computerprogrammprodukt, entsprechende Fahrerassistenzvorrichtung und entsprechendes Kraftfahrzeug
CN110316182A (zh) * 2018-03-29 2019-10-11 深圳市航盛电子股份有限公司 一种自动泊车系统及方法
CN111674465A (zh) * 2020-05-25 2020-09-18 长城汽车股份有限公司 一种倒车控制方法、系统及车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2340980B1 (en) * 2009-12-30 2012-05-30 Magneti Marelli S.p.A. Parking assistant system
KR20120025170A (ko) * 2010-09-07 2012-03-15 주식회사 만도 주차 제어 방법 및 그 장치
CN104819724B (zh) * 2015-03-02 2018-04-03 北京理工大学 一种基于gis的无人地面车辆自主行驶辅助系统
CN104859545A (zh) * 2015-06-05 2015-08-26 寅家电子科技(上海)有限公司 倒车轨迹线自动调整装置及方法
KR101965829B1 (ko) * 2016-10-04 2019-08-13 엘지전자 주식회사 자동주차 보조장치 및 이를 포함하는 차량
CN109709945B (zh) * 2017-10-26 2022-04-15 深圳市优必选科技有限公司 一种基于障碍物分类的路径规划方法、装置及机器人
JP6897597B2 (ja) * 2018-02-16 2021-06-30 トヨタ自動車株式会社 駐車支援装置
CN108437981B (zh) * 2018-03-01 2020-02-21 东软集团股份有限公司 一种自动倒车方法及装置
CN110271537B (zh) * 2019-06-04 2020-10-16 浙江吉利控股集团有限公司 一种自动泊车方法、装置及设备
CN110562244A (zh) * 2019-08-07 2019-12-13 武汉乐庭软件技术有限公司 一种基于目标停车位出库的自动泊车轨迹规划方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103373349A (zh) * 2012-04-19 2013-10-30 现代摩比斯株式会社 自动泊车辅助系统的障碍物避碰装置及方法
CN106183992A (zh) * 2013-10-04 2016-12-07 本田技研工业株式会社 停车辅助装置
KR20160056561A (ko) * 2014-11-12 2016-05-20 현대모비스 주식회사 자율주행차량의 장애물 회피 시스템 및 방법
US20170036695A1 (en) * 2015-08-03 2017-02-09 Hyundai Mobis Co., Ltd. Parking assistance apparatus and method of controlling the same
CN108248688A (zh) * 2016-12-29 2018-07-06 长城汽车股份有限公司 倒车辅助线设置方法及倒车辅助系统
CN107169468A (zh) * 2017-05-31 2017-09-15 北京京东尚科信息技术有限公司 用于控制车辆的方法和装置
DE102017124661A1 (de) * 2017-10-23 2019-04-25 Connaught Electronics Ltd. Verfahren zum Unterstützen eines Benutzers eines Kraftfahrzeugs beim Einparken auf einem Parkplatz, entsprechendes Computerprogrammprodukt, entsprechende Fahrerassistenzvorrichtung und entsprechendes Kraftfahrzeug
CN110316182A (zh) * 2018-03-29 2019-10-11 深圳市航盛电子股份有限公司 一种自动泊车系统及方法
CN111674465A (zh) * 2020-05-25 2020-09-18 长城汽车股份有限公司 一种倒车控制方法、系统及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4159593A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113968246A (zh) * 2021-12-08 2022-01-25 广州文远知行科技有限公司 障碍物倒车轨迹预测方法、装置、设备及可读存储介质
CN115512571A (zh) * 2022-09-28 2022-12-23 上汽通用五菱汽车股份有限公司 一种倒车环境监测方法、装置、设备以及存储介质
CN115512571B (zh) * 2022-09-28 2023-12-19 上汽通用五菱汽车股份有限公司 一种倒车环境监测方法、装置、设备以及存储介质

Also Published As

Publication number Publication date
EP4159593A1 (en) 2023-04-05
US20230192086A1 (en) 2023-06-22
CN111674465A (zh) 2020-09-18
CN111674465B (zh) 2022-01-04
EP4159593A4 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2021238863A1 (zh) 一种倒车控制方法、系统及车辆
US10282995B2 (en) Mobile robot having collision avoidance system for crossing a road from a pedestrian pathway
CN102768808B (zh) 辅助驾驶员的装置和方法
US9283960B1 (en) Control of a vehicle to automatically exit a parking space
CN106183813B (zh) 用于停泊车辆的方法和装置
US8232893B2 (en) Parking assist apparatus and method
JP5477515B2 (ja) 駐車支援装置
AU2017390929B2 (en) Method and system for providing an at least partially automatic guidance of a following vehicle
JP6047083B2 (ja) 駐車支援システム
EP3215400B1 (en) Method for operating a driver assistance system of a motor vehicle, driver assistance system and motor vehicle
US20130169792A1 (en) Method for assisting in a parking operation for a motor vehicle, driver assistance system and a motor vehicle
JP2010149723A (ja) 駐車支援装置
JP2014501401A (ja) 車両の自己運動を求めるための方法およびシステム
US11505194B2 (en) Vehicle travel control method and travel control device
JP5595186B2 (ja) 目標軌道算出装置
CN111016884A (zh) 一种智能点对点泊车方法及系统
JP2010205078A (ja) 駐車支援装置
EP3679441B1 (en) Mobile robot having collision avoidance system for crossing a road from a pedestrian pathway
JP2012131460A (ja) 目標軌道算出装置
JP5504968B2 (ja) 駐車支援システム
JP5397329B2 (ja) 駐車支援装置
CN110371025A (zh) 超车工况的前置碰撞检测的方法、系统、设备及存储介质
CN113734154A (zh) 一种自动倒车方法及系统
JP2020166479A (ja) 運転支援装置
US20240140426A1 (en) Follow mode in autonomous driving system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813549

Country of ref document: EP

Effective date: 20230102