WO2021238635A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021238635A1
WO2021238635A1 PCT/CN2021/092746 CN2021092746W WO2021238635A1 WO 2021238635 A1 WO2021238635 A1 WO 2021238635A1 CN 2021092746 W CN2021092746 W CN 2021092746W WO 2021238635 A1 WO2021238635 A1 WO 2021238635A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
identifier
terminal device
reference signal
channel
Prior art date
Application number
PCT/CN2021/092746
Other languages
English (en)
French (fr)
Inventor
焦春旭
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21811758.8A priority Critical patent/EP4145747A4/en
Publication of WO2021238635A1 publication Critical patent/WO2021238635A1/zh
Priority to US17/994,041 priority patent/US20230118141A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • multiple transmission and reception point multiple transmission and reception point, Multi-TRP
  • multiple panel Multi-panel
  • multiple beams multiple transmission and reception point, Multi-TRP
  • NR new radio
  • TCI transmission configuration indication
  • PC5 interface which is a communication interface between the terminal device and the terminal device.
  • the transmission link in the PC5 interface is defined as a sidelink (SL).
  • SL sidelink
  • the embodiments of the present application provide a communication method and device to realize the indication of the SL TCI mark.
  • a communication method is provided.
  • the execution subject of the method is a first terminal device.
  • the first terminal device may be a terminal device or a component (for example, a chip, a circuit, or other components) configured in the terminal device.
  • the method includes: the first terminal device sends first indication information to the second terminal device, where the first indication information is used to indicate the first side line transmission configuration indication SL TCI identifier of the first reference signal, the first SL
  • the TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first reference signal; the first terminal device sends the first reference signal to the second terminal device on the first channel.
  • the above SL TCI indication method can make up for the lack of SL TCI indication method in the current SL. Furthermore, based on the simplified definition of SL TCI identifier provided above, compared with Uu air interface, the signaling overhead of TCI indication can be reduced, and the technical problem of TCI indication method caused by too many QCL types in Uu air interface is solved.
  • the first reference signal includes a physical side row shared channel demodulation reference signal, or a physical side row control channel demodulation reference signal, or a side row channel state information reference signal, and the first indication The information is carried in the second-level side control information.
  • the method further includes: the first terminal device determines N SL-TCI SL TCI identifiers, where N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI identifier belonging to the N SL-TCI SL TCI identification number; a first terminal apparatus transmits a first configuration information to the second terminal means, the first configuration information to the second terminal means disposed to said N SL- TCI SL TCI logo.
  • the first terminal device can determine N SL-TCI SL TCI identifiers according to the number of panels, transmission beams or antennas, etc., and then, the first terminal device configures the N SL-TCI SL TCI identifiers with the second terminal device .
  • the first terminal device can configure different SL TCI identifiers for the terminal device according to its own conditions, which is highly adaptable and flexible.
  • N SL - TCI SL TCI identifiers includes:
  • the N SL-TCI SL TCI identifiers are determined according to the number of panels, transmission beams or antennas of the first terminal device.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the method further includes: the first terminal device determines N SL-TCI SL TCI identifiers according to the configuration information of the transmission resource pool, where the N SL-TCI is a positive integer greater than or equal to 1. , The first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the first terminal device and the second terminal device can each determine N SL-TCI SL TCI identifiers according to the configuration information of the transmission resource. No need to configure via additional signaling, reducing signaling overhead.
  • a communication method is provided.
  • the execution subject of the method is a second terminal device.
  • the second terminal device may be a terminal device or a component (for example, a chip, a circuit, or other components) configured in the terminal device.
  • the method includes: the second terminal device receives first indication information from the first terminal device, where the first indication information is used to indicate the first sideline transmission configuration indication SL TCI identifier of the first reference signal, and the first The SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first reference signal; the second terminal device receives the first reference signal from the first terminal device on the first channel.
  • the first reference signal includes a physical side row shared channel demodulation reference signal, or a physical side row control channel demodulation reference signal, or a side row channel state information reference signal, and the first indication The information is carried in the second-level side control information.
  • the method further includes: a second terminal device receives first configuration information from the first terminal device, where the first configuration information is used to configure N SL for the second terminal device -TCI SL TCI identifiers, the first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers; the second terminal device determines the N SL-TCI SL TCI identifiers according to the first configuration information.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the method further includes: the second terminal device determines N SL-TCI SL TCI identifiers according to the configuration information of the received resource pool, where the N SL-TCI is a positive integer greater than or equal to 1. , The first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • a communication method is provided.
  • the execution subject of the method is a first terminal device, and the method includes: the first terminal device determines the first side line transmission configuration indicator SL TCI identifier of the first signal, and the first SL TCI identifier It is used to indicate the channel characteristics of the first channel for transmitting the first signal; the first terminal device determines the first signal according to the first SL TCI identifier; the first terminal device sends the second signal to the second channel on the first channel The terminal device transmits the first signal.
  • the foregoing SL TCI indicator indication method not only makes up for the technical deficiency of the lack of SL TCI indicator in the SL, but also reduces the signaling overhead of the TCI indicator relative to the Uu air interface. Further, in this embodiment, since the first terminal device does not need to send the indication information of the SL TCI identifier, the second terminal device can determine the SL TCI identifier, which can further reduce the signaling overhead of the TCI indication.
  • the first signal is a side line synchronization signal block
  • the side line synchronization signal block includes a physical side line broadcast channel demodulation reference signal
  • the physical side line broadcast channel demodulation reference signal The initialization parameters of the sequence are determined according to the first SL TCI identifier.
  • the initialization parameters of the sequence of the demodulation reference signal of the physical side broadcast channel satisfy:
  • the c init represents the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number
  • the i S-SSB represents the side line synchronization signal block index
  • the U is an integer greater than or equal to 0
  • the mod represents a modulo operation.
  • the initialization parameters of the sequence of the demodulation reference signal of the physical side broadcast channel satisfy:
  • the c init represents the initialization parameter of the demodulation reference signal sequence of the physical side broadcast channel
  • the M is a positive integer
  • the Re represents a side line synchronization signal identifier
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel
  • the initialization parameter of the scrambling sequence of the physical sideline broadcast channel is based on Determined by the first SL TCI identifier.
  • the initialization parameter of the scrambling sequence of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the scrambling sequence of the physical side broadcast channel
  • the M is a positive integer
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the method further includes: the first terminal device determines N SL-TCI SL TCI identifiers, where N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI identifier belonging to the N SL-TCI SL TCI identification number; a first terminal apparatus transmits a first configuration information to the second terminal means, the first configuration information to the second terminal means disposed to said N SL- TCI SL TCI logo.
  • the first terminal device can determine N SL-TCI SL TCI identifiers according to the number of panels, transmission beams or antennas, etc., and then, the first terminal device configures the N SL-TCI SL TCI identifiers with the second terminal device .
  • the first terminal device can configure different SL TCI identifiers for the terminal device according to its own conditions, which is highly adaptable and flexible.
  • the determining the N SL-TCI SL TCI identifiers includes: the first terminal device determines the N SL-TCI SLs according to the number of panels, transmission beams, or antennas of the first terminal device. TCI logo.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the method further includes: the first terminal device determines N SL-TCI SL TCI identifiers according to the configuration information of the transmission resource pool, where the N SL-TCI is a positive integer greater than or equal to 1. , The first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the first terminal device and the second terminal device can each determine N SL-TCI SL TCI identifiers according to the configuration information of the transmission resource. No need to configure via additional signaling, reducing signaling overhead.
  • a communication method is provided.
  • the execution subject of the communication method is a second terminal device, including: the second terminal device receives a first signal from the first terminal device on a first channel; The first signal determines the first side line transmission configuration indication SL TCI identifier, where the first SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first signal.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel demodulation reference signal
  • the first signal is determined according to the first signal.
  • SL TCI logo including:
  • the initialization parameters of the sequence of the demodulation reference signal of the physical side broadcast channel satisfy:
  • the c init represents the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number
  • the i S-SSB represents the side line synchronization signal block index
  • the U is an integer greater than or equal to 0
  • the mod represents a modulo operation.
  • the initialization parameters of the sequence of the demodulation reference signal of the physical side broadcast channel satisfy:
  • the c init represents the initialization parameter of the demodulation reference signal sequence of the physical side broadcast channel
  • the M is a positive integer
  • the Re represents a side line synchronization signal identifier
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel
  • the first SL TCI is determined according to the first signal Identification, including:
  • the initialization parameter of the scrambling sequence of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the scrambling sequence of the physical side broadcast channel
  • the M is a positive integer
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the method further includes: the second terminal device receives first configuration information from the first terminal device, and the first configuration information is used to configure N SL-TCI SLs for the second terminal device.
  • TCI identifier the first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the method further includes: the second terminal device determines N SL-TCI SL TCI identifiers according to the configuration of the receiving resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and The first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • a device in a fifth aspect, is provided, and the beneficial effects can be referred to the description of the first aspect.
  • the communication device has the function of realizing the behavior in the method embodiment of the first aspect described above.
  • the functions can be implemented by corresponding hardware or software.
  • the piece or software includes one or more units corresponding to the above-mentioned functions.
  • a device is provided.
  • the communication device has the function of realizing the behavior in the method embodiment of the second aspect described above.
  • the functions can be implemented by corresponding hardware or software.
  • the piece or software includes one or more units corresponding to the above-mentioned functions.
  • a device in a seventh aspect, a device is provided, and the beneficial effects can be referred to the description of the third aspect.
  • the communication device has the function of realizing the behavior in the method embodiment of the first aspect described above.
  • the functions can be implemented by corresponding hardware or software.
  • the piece or software includes one or more units corresponding to the above-mentioned functions.
  • a device is provided.
  • the communication device has the function of realizing the behavior in the method embodiment of the second aspect described above.
  • the functions can be implemented by corresponding hardware or software.
  • the piece or software includes one or more units corresponding to the above-mentioned functions.
  • a device in a ninth aspect, is provided, and the device may be the terminal device in the foregoing method embodiment, or a chip set in the terminal device.
  • the device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled with the memory and a communication interface.
  • the communication device is executed by the first terminal device or the second terminal. The method performed by the device.
  • a computer program product comprising: computer program code, when the computer program code is running, the above aspects are executed by the first terminal device or the second terminal device The method is executed.
  • the present application provides a chip system including a processor for implementing the functions of the first terminal device or the second terminal device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application provides a computer-readable storage medium that stores a computer program.
  • the computer program When the computer program is run, the first terminal device or the second terminal The method performed by the device.
  • FIG. 1 is a schematic diagram of the basic architecture of the Multi-TRP technology provided by an embodiment of the application;
  • Figure 2 is a schematic diagram of a multi-panel provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a multi-beam technology provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the QCL relationship provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of the process of panel selection provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of the process of panel selection provided by an embodiment of the application.
  • FIG. 12 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of the process of panel selection provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a device provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a device provided by an embodiment of the application.
  • a terminal device can be referred to as a terminal for short, which is a device with a wireless transceiver function.
  • Terminal devices can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as airplanes, balloons, and satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety (transportation) Wireless terminal equipment in safety), wireless terminal equipment in a smart city (smart city), wireless terminal equipment in a smart home (smart home), and may also include user equipment (UE), etc.
  • UE user equipment
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5th generation (5G) network, or future evolution of public land mobile communication networks (public land mobile communication networks) Land mobile network, PLMN) terminal equipment, etc.
  • 5G future 5th generation
  • PLMN public land mobile communication networks
  • Terminal devices can sometimes also be called terminals, access terminal equipment, vehicle-mounted terminal equipment, industrial control terminal equipment, UE units, UE stations, mobile stations, mobile stations, remote stations, remote terminal equipment, mobile equipment, UE terminal equipment, terminals Equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile. The embodiments of the present application are not limited thereto.
  • the device used to implement the function of the terminal may be a terminal; it may also be a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal, and the terminal is a UE as an example to describe the technical solutions provided in the embodiments of the present application.
  • Side link can also be called side link or side link.
  • the communication interface of the side link can be called the PC5 interface.
  • the side link is used for communication between the terminal device and the terminal device, and may include a physical side link shared channel (PSSCH) and a physical side link control channel (PSCCH).
  • PSSCH can be used to carry side link data (SL data)
  • PSCCH can be used to carry side link control information (sidelink control information, SCI)
  • SCI side link scheduling allocation
  • SL SA sidelink scheduling assistance
  • SL SA is information related to data scheduling, for example, SL SA includes PSSCH resource allocation and/or modulation and coding scheme (modulation and coding scheme, MCS) and other information.
  • the sidelink communication may further include: a physical sidelink feedback channel (PSFCH).
  • the physical side link feedback channel may also be referred to as the side link feedback channel for short.
  • the sidelink feedback channel can be used to transmit sidelink feedback control information (SFCI), and the sidelink feedback control information can include channel state information (CSI), hybrid automatic At least one type of information such as hybrid automatic repeat request (HARQ) information.
  • CSI channel state information
  • HARQ information may include acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negtive acknowledgement, NACK), etc.
  • the Uu air interface can be understood as a universal UE to network interface between a terminal device and a network device, and the Uu air interface is used for communication between the terminal device and the network device.
  • Uu air interface transmission can include uplink transmission and downlink transmission.
  • the uplink transmission refers to the terminal device sending information to the network device, and the information transmitted in the uplink may be referred to as uplink information or uplink signal.
  • the uplink information or uplink signal may include one or more of an uplink data signal, an uplink control signal, and a sounding reference signal (sounding reference signal, SRS).
  • the channel used to transmit uplink information or uplink signals is called the uplink channel.
  • the uplink channel can include one or more of the physical uplink shared channel (PUSCH) and the physical uplink control channel (PUCCH). kind.
  • the PUSCH is used to carry uplink data, and the uplink data may also be referred to as uplink data information.
  • the PUCCH is used to carry the uplink control information (uplink control information, UCI) fed back by the terminal device.
  • the UCI may include one or more of channel state information (channel state information, CSI), ACK, and NACK, etc., fed back by the terminal device.
  • Downlink transmission refers to the network device sending information to the terminal device, and the downlink transmission information may be downlink information or downlink signals.
  • Downlink information or downlink signal may include one or more of downlink data signal, downlink control signal, channel state information reference signal (CSI-RS), phase tracking reference signal (PTRS) kind.
  • the channel used to transmit downlink information or downlink signals is called a downlink channel.
  • the downlink channel may include one or more of a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH). kind.
  • the PDCCH is used to carry downlink control information (DCI), the PDSCH is used to carry downlink data (data), and the downlink data may also be referred to as downlink data information.
  • the SL CSI-RS pattern in the embodiment of this application can be similar to the CSI-RS resource in the Uu air interface.
  • One SL CSI-RS pattern corresponds to a kind of SL CSI-RS configuration, and the configuration parameters can be the number of ports, frequency domain position, and Time domain location, etc., are not limited.
  • one or more SL CSI-RS patterns can be configured for the first terminal device and the second terminal device.
  • the corresponding patterns of SL CSI-RS transmitted by different panels, transmit beams or antennas may be the same or different.
  • the embodiment of the beam in the protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit the signal may be called a transmission beam (Tx beam), or may be called a spatial domain transmission filter, or may be called a spatial transmission parameter, etc.
  • the beam used to receive the signal may be called a receive beam (reception beam, Rx beam), or may be called a spatial domain receive filter, or may be called a spatial receive parameter (spatial RX parameter), and so on.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technology, and is not limited.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One or more antenna ports can be included in a beam, which are used to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • Beams generally correspond to resources.
  • the transmitting end when performing beam measurement, can measure different beams through different resources, the receiving end can feed back the measured resource quality, and the transmitting end can determine the quality of the corresponding beam.
  • the beam refers to the transmitting beam of the transmitting end.
  • each beam corresponds to a resource, so the resource index can be used to uniquely identify the beam corresponding to the resource.
  • A/B can mean A or B; the "and/or” in this application is only It is an association relationship that describes the associated object, which means that there can be three kinds of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B It can be singular or plural.
  • a and/or B which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B It can be singular or plural.
  • plural means two or more than two. "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • wireless communication systems have experienced technological evolution from the first generation of analog communication to the fifth generation of new radio (NR).
  • NR new radio
  • the resources used by wireless communication systems have gradually developed from the two dimensions of time domain and frequency domain to the three dimensions of time domain, frequency domain, and space domain.
  • the use of spatial resources originates from the development of multiple input multiple output (MIMO) systems.
  • MIMO multiple input multiple output
  • the sending end can use multiple antennas to send data
  • the receiving end can also use multiple antennas to receive data, so as to realize the parallel transmission of multiple spatial data streams between the sending end and the receiving end, which improves the communication speed on the one hand.
  • MIMO multiple input multiple output
  • technologies such as multiple transmission and reception point (Multi-TRP), multiple panel (Multi-panel), and multiple beam (Multi-beam) are in NR's Uu air interface was proposed and considered to be an important technological development direction.
  • TRP transmission and reception points
  • UE terminal device
  • TRP transmission and reception points
  • 5G base station 5G base station
  • the multi-panel technology allows multiple panels to exist on the terminal device side and the network device side, and one or more antennas are installed on each panel.
  • the use of multiple panels can avoid the overhead and power consumption issues when deploying massive MIMO systems.
  • the use of multiple panels can cover more spatial directions, thereby improving the reliability of communication.
  • the left side is a top view of the four panels
  • the right side is a plan view of a single panel.
  • four dual-polarized antennas can be installed on a single panel, and the horizontal distance between each two dual-polarized antennas is 0.5 ⁇ , where ⁇ represents the wavelength of the signal.
  • the terminal device uses four panels, it can send data to and receive data from different directions.
  • Multi-beam technology is generally applied to high frequency bands above 20 GHz.
  • network devices and terminal devices can form one or more spatial beams (beams), which improve the transmission and reception in the direction. Speed and reliability of communication.
  • the network device can use different directions of transmitting beams to transmit data to the terminal device, and the terminal device can also use different directions of receiving beams to receive data.
  • the receiving end needs to be able to distinguish the signals sent by different TRPs, panels or beams. Therefore, two important concepts are used in NR, one is quasi co-located (QCL), and the other is transmission configuration indication (TCI).
  • QCL quasi co-located
  • TCI transmission configuration indication
  • the antenna port is a logical concept widely used in the 3rd generation partnership project (3GPP), which is defined as follows: the channel characteristics experienced by a signal on a certain antenna port can be transmitted from another signal on the same antenna port The experienced channel characteristics are derived. It should be noted that the antenna port is different from the physical antenna actually used. Multiple physical antennas may correspond to the same antenna port, and one physical antenna may also correspond to multiple antenna ports.
  • 3GPP 3rd generation partnership project
  • the definition of QCL is as follows: the channel characteristics experienced by the signal on a certain antenna port can be deduced from the channel characteristics experienced by the signal on the other antenna port, and the two antenna ports are considered to be QCL .
  • the reference signal (RS) transmitted on the two antenna ports also has a QCL relationship. For example, if antenna port 1 and antenna port 2 are QCL, antenna port 1 is used to transmit the first RS, and antenna port 2 is used to transmit the second RS, then it can be considered that the first RS and the second RS also have a QCL relationship.
  • TCI is used in NR to indicate the QCL relationship of two RSs.
  • the network device can configure a TCI state (TCI-state) for the first RS through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the terminal device can determine the second RS whose first RS has a QCL relationship in a certain QCL type through the TCI state. After that, the terminal device can derive the channel characteristics of the first RS through the channel characteristics of the second RS, so as to achieve better reception of the first RS.
  • the second RS may be a channel state information reference signal (channel state information reference signal, CSI-RS) or a synchronization signal block (synchronization signal block, SSB), etc.
  • PC5 interface which is a communication interface between the terminal device and the terminal device.
  • the transmission link in the PC5 interface is a side link.
  • the current standard still lacks the configuration and indication method of the SL TCI mark, which hinders the use of MIMO technologies such as multi-panel and multi-beam in the PC5 interface.
  • the TCI configuration and indication method in the Uu air interface is described in detail, and the TCI configuration and indication method in the Uu air interface is directly applied to the PC5 interface. The problem.
  • the gNB can configure multiple TCI states for the UE through RRC signaling, and then through the media access control (MAC) control element (CE) or downlink control information (downlink control information, DCI) indicates the TCI status of a certain RS.
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • the information element (IE) of the TCI state configured through RRC signaling may include at least one of the following information elements:
  • TCI state identification gives the identification (ID) of the TCI state
  • qcl-Type1 Given a QCL relationship and the corresponding RS, qcl-Type1 continues to point to the QCL-Info information element, and the QCL-Info information element gives the specific parameters of the QCL type.
  • the QCL-Info cell further includes the following two mandatory cells, which are explained as follows:
  • Reference signal Given the RS corresponding to the QCL relationship, it can be a CSI-RS resource with a certain ID or an SSB with a certain index; it should be noted that the CSI-RS can be expressed It is a CSI-RS resource.
  • One CSI-RS resource corresponds to a CSI-RS configuration.
  • the CSI-RS configuration parameters can include parameters such as resource ID and resource mapping.
  • the resource mapping parameters can further include the number of ports, frequency domain location, and time. Domain location, etc.
  • qcl type (qcl-Type): The QCL type corresponding to the QCL relationship is given, which may be any of ⁇ typeA, typeB, typeC, typeD ⁇ .
  • a single QCL type corresponds to a combination of one or more channel characteristics, and possible channel characteristics include Doppler frequency shift, Doppler spread, average delay, delay spread, and spatial reception parameters.
  • the channel characteristic combination corresponding to each QCL type is briefly described as follows: typeA: ⁇ Doppler frequency shift, Doppler expansion, average delay, time delay expansion ⁇ ; typeB: ⁇ Doppler frequency shift, Doppler expansion ⁇ ; typeC: ⁇ Doppler frequency shift, average delay ⁇ ; typeD: ⁇ spatial receiving parameters ⁇ .
  • the channel characteristics experienced by the signals on the two antenna ports are considered to be the same in the channel characteristics corresponding to the QCL type.
  • the QCL type only corresponds to spatial reception parameters. Therefore, when two antenna ports have a QCL relationship with typeD, the channels experienced by the signals on the two antenna ports are considered to have the same spatial reception parameters.
  • the embodiment of the present application redefines the SL TCI identifier, and defines the SL TCI identifier as an identifier (ID) of the channel characteristics experienced by a signal on a certain antenna port on the SL.
  • ID an identifier
  • the UE may consider that the channel characteristics experienced by the signals with the same SL TCI identity are the same.
  • the channel characteristics may refer to spatial reception parameters, or in other words, the SL TCI identification only considers the QCL type of type D (type D) in the Uu air interface.
  • the UE can consider that the spatial reception parameters experienced by the PSSCH DMRS and the SL CSI-RS are the same. With the same spatial reception parameters, it can be considered that PSSCH DMRS and SL CSI-RS are transmitted through the same panel or beam.
  • the name of the SL TCI identifier can also be replaced with a QCL identifier (QCL ID) or a QCL number (QCL index), etc., which is not limited.
  • the value range of any SL TCI identifier in the embodiments of the present application may be An integer value in where It is a positive integer greater than or equal to 1, used to indicate the maximum number of SL TCI identifiers.
  • the TCI in the Uu air interface is in the TCI state, and the TCI state identifier and the RS and QCL types corresponding to the QCL relationship are given in the TCI state.
  • the TCI in the PC5 interface is represented by the TCI identifier, and the QCL relationship is not given, which simplifies the design and saves signaling overhead.
  • the signaling used to configure and indicate the TCI status of the RS on the Uu air interface includes signaling such as RRC, MAC CE, and DCI. This is too complicated for the configuration and instructions of the TCI in the SL scene.
  • RRC Radio Resource Control
  • MAC CE Packet Control Function
  • the embodiments of the present application provide a communication method and device, which can solve the current technical problem that the SL lacks the configuration and indication of the SL TCI identifier.
  • the indication of the SL TCI flag There are two solutions for the indication of the SL TCI flag: the first solution is an explicit indication, the first terminal device can send the first indication information to the second terminal device, and the first indication information is used to indicate the SL TCI of the first reference signal Logo.
  • the second terminal device can determine the SL TCI identifier of the first reference signal according to the foregoing first indication information.
  • the second solution is an implicit indication.
  • the first terminal device can generate the first signal according to the SL TCI identifier of the first signal, and send the first signal to the second terminal device.
  • the second terminal device may determine the SL TCI identifier of the first signal according to the first signal.
  • the first solution is that the first terminal device determines multiple SL TCI identifiers according to the number of panels, transmission beams, or antennas; after that, the first terminal device can report to the second terminal device.
  • the second solution is to configure multiple SL TCI identifiers in the resource pool in advance, and the first terminal device and the second terminal device each determine the multiple SL TCI identifiers according to the configuration information of the corresponding resource pool.
  • a network architecture which includes a first terminal device 501 and a second terminal device 502.
  • the first terminal device 501 and the second terminal device 502 may perform side-link communication through the side-link, and transmit side-link information.
  • the transmitted side link information may include data (data), scheduling assignment (scheduling assistance, SA), and so on.
  • the side link information may also include channel state information (channel state information, CSI) and hybrid automatic repeat request (HARQ) information, etc.
  • the HARQ information may specifically include acknowledgement information (acknowledgement information). , ACK) or negative acknowledgement (NACK), etc.
  • a network device 503 may be further included, and the network device 503 may be an access network device.
  • the terminal device 501 and/or the terminal device 502 can communicate with the network device 503 through a Uu air interface.
  • the Uu air interface communication includes uplink transmission and downlink transmission.
  • Uplink transmission refers to the terminal device 501 and/or the terminal device 502 sending an uplink signal or uplink information to the network device 503.
  • Downlink transmission refers to the network device 503 sending a downlink signal or downlink information to the terminal device 501 and/or the terminal device 502.
  • the communication method and device provided in the embodiments of the present application can be applied to SL scenarios, and the SL scenarios can include vehicle-to-everything (V2X) or device-to-devic (D2D) scenarios.
  • V2X vehicle-to-everything
  • D2D device-to-devic
  • the sending end UE and the receiving end UE can be described as a first terminal device and a second terminal device, respectively.
  • Both the UE and the receiving end UE take a vehicle UE as an example.
  • the sending end UE and the receiving end UE may be terminal devices of any form.
  • the above scenario also includes a sending beam.
  • the sending beam refers to a directional radiation pattern formed by the sending signal by the UE at the sending end through technologies such as multi-panel or multi-beam, which is represented by a drop shape in FIG. 6.
  • the communication method may correspond to the above-mentioned first explicit indication solution.
  • the execution subject of the method is a first terminal device and a second terminal device. It can be understood that the first terminal device and the second terminal device may be terminal devices, or components (for example, chips, circuits, or others) located in the terminal devices.
  • the process includes:
  • the first terminal device sends first indication information to the second terminal device.
  • the second terminal device receives the first indication information from the first terminal device.
  • the first terminal device sends the first RS to the second terminal device on the first channel.
  • the second terminal device receives the first RS from the first terminal device on the first channel.
  • the first indication information is used to indicate the first SL TCI identifier of the first RS
  • the first SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first RS
  • the first An SL TCI identifier is used to indicate the channel characteristics experienced by the first RS. It can be understood that since the first terminal device uses different panels, transmission beams or antennas to transmit the first RS, the channel characteristics experienced by the first RS are not the same.
  • the SL TCI logo can be used to identify different panels, transmission beams, antennas, and so on.
  • the second terminal device may determine the SL TCI identifier of the first RS according to the first indication information. Further, the second terminal device may determine the panel, the transmission beam, or the antenna through which the first terminal device transmits the first RS according to the SL TCI identifier of the first RS.
  • the first terminal device may simultaneously execute the foregoing S701 and the foregoing S702, that is, the first terminal device may simultaneously send the first indication information and the first RS to the second terminal device.
  • the first terminal device may send the first indication information and the first RS in a sequential order. For example, the first terminal device may send the first indication information first, and then send the first RS, or send the first RS first, and then send the first indication information, etc., which is not limited.
  • the first reference signal may include PSSCH DMRS, or physical sidelink control channel (PSCCH) DMRS, or SL CSI-RS, and the first indication information in S701 may be carried in the second Level SCI (2 nd stage SCI).
  • PSSCH physical sidelink control channel
  • PSCCH physical sidelink control channel
  • SL CSI-RS SL CSI-RS
  • the SCI in the side link may include a first stage SCI (1 st stage SCI) and a second stage SCI.
  • the first-level SCI is carried in the PSCCH, and the main function is to schedule the corresponding PSSCH and the second-level SCI; the second-level SCI is carried in the PSSCH, and the main function is to demodulate and decode the corresponding PSSCH and/or control HARQ and CSI Process.
  • the first terminal device may send first indication information to the second terminal device, and the first indication information may be used for Indicate the SL TCI identifier of the PSSCH DMRS and/or PSCCH DMRS, the first indication information may be carried in the M bits of the second level SCI, and M is a positive integer.
  • the second terminal device may determine the SL TCI identifier of the PSSCH DMRS and/or PSCCH DMRS according to the first indication information.
  • the M may be a positive integer defined by the standard.
  • M can be one of ⁇ 1,2,3,4,5,6 ⁇ .
  • the M may be a positive integer obtained according to the configured number of SL TCI identifiers N SL-TCI.
  • M can satisfy:
  • the first terminal device may be configured with an SL CSI-RS pattern, and the first terminal device may send the first terminal device to the second terminal device.
  • An indication information where the first indication information is used to indicate the SL TCI identifier of the SL CSI-RS.
  • the first indication information may be carried in the M bits of the second level SCI, where M is a positive integer.
  • the receiving end UE may determine the SL TCI identifier of the SL CSI-RS according to the first indication information.
  • the M can be a positive integer defined by the standard. For example, M can be one of ⁇ 1,2,3,4,5,6 ⁇ .
  • the M may be a positive integer obtained according to the configured number of SL TCI identifiers N SL-TCI.
  • the M satisfies:
  • the first terminal device can carry the above-mentioned indication information of the SL TCI identifier in the second-level SCI, otherwise, it will not be used in the second-level SCI. Carry the indication information of the above-mentioned SL TCI mark.
  • the SL TCI indication method provided above can compensate for the lack of the SL TCI indication method in the current SL. Furthermore, based on the simplified definition of SL TCI identifier provided above, compared with Uu air interface, the signaling overhead of TCI indication can be reduced, and the technical problem of TCI indication method caused by too many QCL types in Uu air interface is solved.
  • a communication method is provided, and the communication method can correspond to the above-mentioned second implicit indication scheme.
  • the execution subject of the method is a first terminal device and a second terminal device. It can be understood that the first terminal device and the second terminal device may be terminal devices, or components (for example, chips, circuits, or others) located in the terminal devices.
  • the process includes:
  • the first terminal device determines the first SL TCI identifier of the first signal, where the first SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first signal, or the first SL TCI identifier is transmission An identifier of the channel characteristics experienced by the channel of the first signal.
  • the first terminal device determines the first signal according to the first SL TCI identifier.
  • the first terminal device sends a first signal to the second terminal device on the first channel.
  • the second terminal device receives the first signal from the first terminal device on the first channel.
  • the second terminal device determines the first SL TCI identifier according to the first signal.
  • the SL TCI logo can be used to identify different panels, beams or antennas.
  • the second terminal device may further determine the panel, beam, or antenna for transmitting the first signal according to the SL TCI identifier of the first signal.
  • the first signal may be a sidelink synchronization signal block (S-SSB), and the S-SSB includes a physical sidelink broadcast channel (PSBCH) DMRS.
  • the initialization parameter of the PSBCH DMRS sequence is generated according to the first SL TCI identifier.
  • a specific implementation manner of the foregoing S802 may be: the first terminal device generates the initialization parameter of the PSBCH DMRS sequence according to the first SL TCI identifier; the first terminal device generates the PSBCH DMRS sequence according to the initialization parameter of the PSBCH DMRS sequence.
  • a specific implementation manner of the foregoing S804 may be: the second terminal device determines the initialization parameter of the PSBCH DMRS sequence according to the received PSBCH DMRS; the second terminal device determines the first SL TCI identifier according to the initialization parameter of the PSBCH DMRS sequence.
  • the initialization parameters of the aforementioned PSBCH DMRS sequence may satisfy:
  • the c init represents the initialization parameter of the PSBCH DMRS sequence, and the Represents the integer value obtained according to the S-SSB index (i S-SSB ), the Represents the sidelink synchronization signal identification (SL SSID), the n SL-TCI represents the first SL TCI identification, and n SL-TCI satisfies 0 ⁇ n SL-TCI ⁇ N SL-TCI An integer of -1. Further, optionally, the integer value is obtained according to the S-SSB index i S-SSB
  • the process meets:
  • the initialization parameters of the aforementioned PSBCH DMRS sequence may satisfy:
  • c init represents the initialization parameter of the PSBCH DMRS sequence
  • n SL-TCI represents the first SL TCI identifier
  • n SL-TCI is an integer satisfying 0 ⁇ n SL-TCI ⁇ N SL-TCI -1
  • M is a positive integer.
  • the M may be a positive integer defined by the standard.
  • M is one of ⁇ 1,2,3,4,5,6 ⁇ .
  • the M is a positive integer obtained according to the configured number of SL TCI identifiers N SL-TCI.
  • the first signal may be an S-SSB, and the S-SSB may also include PSBCH, and the initialization parameters of the scrambling sequence of the PSBCH are determined according to the first SL TCI identifier .
  • a specific implementation of the foregoing S802 may be: the first terminal device determines the scrambling sequence according to the initialization parameters of the scrambling sequence of encoded bits (encoded bits) in the PSBCH; and uses the scrambling sequence to perform the process on the PSBCH Scrambled.
  • a specific implementation of the above S804 may be: the second terminal device descrambles the PSBCH to determine the scrambling sequence of the coded bits of the PSBCH; the second terminal device determines the scrambling sequence of the coded bits of the PSBCH according to the scrambling sequence of the coded bits of the PSBCH The initialization parameter of the scrambling sequence; further, the first SL TCI identifier is determined according to the initialization parameter of the scrambling sequence.
  • the initialization parameters of the scrambling sequence of the PSBCH satisfy:
  • the c init represents the initialization parameter of the scrambling sequence of the PSBCH
  • the n SL-TCI represents the first SL TCI identifier
  • n SL-TCI is an integer satisfying 0 ⁇ n SL-TCI ⁇ N SL-TCI -1
  • M is a positive integer.
  • the M may be a positive integer defined by the standard. For example, M is one of ⁇ 1,2,3,4,5,6 ⁇ . Alternatively, the M is a positive integer obtained according to the configured number of SL TCI identifiers N SL-TCI.
  • the foregoing SL TCI indicator indication method not only compensates for the technical deficiency of the SL TCI indicator lacking in the SL, but also reduces the signaling overhead of the TCI indicator relative to the Uu air interface. Further, in this embodiment, since the first terminal device does not need to send the indication information of the SL TCI identifier, the second terminal device can determine the SL TCI identifier, which can further reduce the signaling overhead of the TCI indication.
  • the embodiment of the present application also provides a communication method, by which the first terminal device and/or the second terminal device can be configured with an SL TCI identifier.
  • the first terminal device may determine N SL-TCI SL-TCI identifiers, and send first configuration information to the second terminal device, where the first configuration information is used to configure the second terminal device N SL-TCI and SL-TCI logos.
  • the first configuration information may be carried in PC5-RRC signaling, or in the MAC CE of the PC5 interface.
  • N SL-TCI is greater than or equal to 1, less than or equal to A positive integer of, N SL-TCI SL-TCI identifiers represent the number of SL TCI identifiers that can be used by the first terminal device to send each RS.
  • N SL-TCI SL-TCI identifiers can be configured in the resource pool, where N SL-TCI is greater than or equal to 1, and less than or equal to A positive integer of, N SL-TCI SL-TCI identifiers represent the number of SL TCI identifiers that can be used by any sending device in the resource pool to send each RS.
  • the resource pool is a collection of time-frequency resources that can be used for SL transmission, and the specific form may be multiple orthogonal frequency division multiplexing (OFDM) symbols in the time domain and multiple consecutive physical resources in the frequency domain.
  • a single PRB includes 12 sub-carriers in the frequency domain.
  • the resource pool may specifically be a sending resource pool or a receiving resource pool. Accordingly, the first terminal may transmit configuration information according to the resource pool, determining N SL-TCI identification number SL-TCI. The second terminal device may receive the resource pool configuration information, determining N SL-TCI identification number SL-TCI.
  • the above-mentioned SL TCI identification configuration method makes up for the technical deficiency of the lack of SL TCI identification in the SL. And based on the simplified definition of SL TCI identification, compared with Uu air interface, it can reduce the signaling overhead of TCI configuration, and solve the technical problem that the TCI configuration method is too complicated due to the excessive QCL type in Uu air interface.
  • a communication method is provided, and the communication method may be an example of using the above-mentioned SL TCI identification method in combination with the SL TCI identification indication method.
  • the first terminal device is the transmitting end UE and the second terminal device is the receiving end UE as an example for description.
  • the process includes:
  • S901 The UE at the transmitting end determines the configuration of the SL TCI identifier, and the UE at the receiving end determines the configuration of the SL TCI identifier.
  • the sending end UE configures N SL-TCI SL-TCI identifiers, and sends configuration information to the receiving end UE.
  • the configuration information is used to configure N SL-TCI SL-TCI identifiers.
  • the configuration information is carried in PC5-RRC signaling or MAC CE, and N SL-TCI is less than or equal to Is a positive integer.
  • the configuration N SL-TCI identifies a SL-TCI resource pool (resource pool) in. Transmitting end N SL-TCI UE determines a SL-TCI identifier according to the configuration information resource pool.
  • the receiving end UE determines N SL-TCI identifiers according to the configuration information of the resource pool.
  • the UE at the sending end may indicate the SL TCI identifier of the first RS in an explicit indication manner or an implicit indication manner. If the sending end UE uses a display indication mode to indicate the SL TCI identifier of the first RS.
  • the process shown in FIG. 9 may include: S902: the sending end UE sends first indication information to the receiving end UE, where the first indication information is used to indicate the SL TCI identifier of the first RS.
  • the first RS is any RS sent by the sender UE.
  • the indication method of the SL TCI identifier may be as follows: the sending end UE sends first indication information to the receiving end UE, and the first indication information is used to indicate the PSSCH DMRS, and/or, PSCCH DMRS SL TCI identifier, the first indication information may be carried in the M bits of the second level SCI, and M is a positive integer.
  • the UE at the receiving end can determine the PSSCH DMRS and/or the SL TCI identifier of the PSCCH DMRS through the first indication information.
  • M please refer to the record in the above-mentioned flow chart of FIG. 7, which will not be described here.
  • the indication method of the SL TCI identifier may be as follows: the sending end UE configures an SL CSI-RS pattern (pattern), and the sending end UE sends the first indication information to the receiving end UE.
  • the indication information is used to indicate the SL TCI identifier of the first SL CSI-RS, and the first indication information is carried in the M bits of the second level SCI, and M is a positive integer.
  • the receiving end UE determines the SL TCI identifier of the SL CSI-RS through the first indication information.
  • the SL TCI identification can adopt an implicit fingering method.
  • the sending end UE may carry the above-mentioned SL TCI identifier of the S-SSB in the initialization parameter c init of the PSBCH DMRS sequence, or in the initialization parameter c init of the scrambling sequence of encoded bits (encoded bits) in the PSBCH .
  • the specific bearer mode please refer to the record of the process shown in FIG. 8 above, which will not be described here.
  • S903 The UE at the sending end sends the first RS to the UE at the receiving end.
  • the sending end UE may perform step S902 and step S903 at the same time, that is, the sending end UE may simultaneously send the first RS and the first indication information identified by the SL TCI of the first RS to the receiving end UE.
  • the sending end UE may perform step S902 and step S903 in a sequence.
  • the sending end UE may first perform step S902 and then step S903, or the sending end UE may first perform step S903 and then step S902, etc., which is not limited.
  • the receiving end UE determines the SL TCI identifier of the first RS according to the first indication information from the transmitting end UE.
  • the TCI framework in the Uu air interface is constructed through the definition of TCI status and QCL, and the configuration and indication method of the TCI status in the Uu air interface are given through RRC signaling, MAC CE, and DCI.
  • the TCI framework in the Uu air interface is too flexible for the PC5 interface, and its configuration and indication methods are complicated.
  • the RRC signaling and MAC CE used do not exist in the PC5 interface, and the signaling overhead is high.
  • a new SL TCI identifier is defined for the PC5 interface, and reasonable configuration and indication methods are used to complete the configuration and configuration of the SL TCI identifier through the high-level signaling and physical layer control information in the PC5 interface. Indication, reducing the signaling overhead.
  • an embodiment of the present application provides a method for panel selection, beam selection, or antenna selection, which can solve the technical problem of lack of panel selection, beam selection, or antenna selection methods in SL.
  • the description will be made by taking the first terminal device as the transmitting end UE and the second terminal device as the receiving end UE as an example.
  • the principle of this method is that the channel characteristics experienced by RSs transmitted by different panels, beams or antennas are different. Therefore, when the SL TCI logo is used to identify different channel characteristics, the SL TCI logo can also identify different panels, beams or antennas.
  • the UE at the receiving end can measure the reference signals sent by different panels, beams or antennas, and feed back the measurement results and the corresponding SL TCI identification.
  • the UE at the transmitting end selects the panel, beam or antenna according to the measurement result. For example, the transmitting UE can select the antenna, beam, or panel corresponding to the SL TCI identifier corresponding to the best measurement result.
  • the sending end UE has K candidate panels or candidate beams, and K is a positive integer.
  • the K candidate panels are equivalent to K candidate antennas.
  • the process of the embodiments of the present application is described by taking the panel selection as the candidate object as an example. It can be understood that, in addition to the panel, the actual candidate object may also be a beam or an antenna. As shown in Figure 10, the process includes:
  • S1000 the sender UE determines the RS used for panel selection.
  • the transmitting UE may determine that the RS used for panel selection is the SL CSI-RS.
  • the sending end UE may configure an SL CSI-RS pattern; the sending end UE may send indication information to the receiving end UE, and the indication information is used to configure an SL CSI-RS pattern.
  • the transmitting UE may determine that the RS used for panel selection is the S-SSB.
  • step S1000 is an optional step, that is, the sending UE may not need to determine the RS used for panel selection.
  • the RS used for panel selection may be defined by the standard, or configured by the resource pool, or pre-configured by the UE at the sending end, etc., and is not limited.
  • S1001 The UE at the transmitting end sends an RS for panel selection to the UE at the receiving end.
  • the RS used for panel selection may be SL CSI-RS
  • the transmitting UE may send SL CSI-RS and first indication information to the receiving UE, and the first indication information is used to indicate the SL CSI-RS -RS's SL TCI logo.
  • the sending end UE uses the kth panel to send the first indication information and SL CSI-RS to the receiving end UE; among them, N slot is a positive integer, and n is satisfied 0 ⁇ n ⁇ N slot -1 integer, k is an integer satisfying 0 ⁇ k ⁇ K-1, the first indication information is used to indicate the SL TCI identifier n SL of the SL CSI-RS sent in the nth slot -TCI , n SL-TCI is an integer satisfying 0 ⁇ n SL-TCI ⁇ N SL-TCI -1, and N SL-TCI is a positive integer greater than or equal to K.
  • the receiving end UE receives the first indication information and the SL CSI-RS from the transmitting end UE in N slots. And the receiving end UE determines the SL TCI identifier of the above-mentioned SL CSI-RS through the first indication information.
  • the sending UE can use panel 0 to send SL CSI-RS with SL TCI ID 0 in the 0th and 1st time slots, and the sending UE can use the panel in the 2nd and 3rd time slots.
  • 1 Send the SL CSI-RS with the SL TCI ID of 1.
  • the RS used for panel selection may be S-SSB.
  • the sending end UE may send an S-SSB to the receiving end UE, and the S-SSB may carry the first indication information identified by the SL TCI.
  • the sending end UE can use the kth panel to send the S-SSB to the receiving end UE, where the S-SSB includes the first indication information; where N slot is A positive integer, n is an integer that satisfies 0 ⁇ n ⁇ N slot -1, and k is an integer that satisfies 0 ⁇ k ⁇ K-1, and the first indication information is used to indicate the S-SSB sent in the nth slot SL TCI identification, namely n SL-TCI , n SL-TCI is an integer satisfying 0 ⁇ n SL-TCI ⁇ N SL-TCI -1, and N SL-TCI is a positive integer greater than or equal to K.
  • the receiving end UE may send an S-SSB to the receiving end UE, and
  • time slot in the embodiment of the present application is a time unit used for transmitting downlink information, or uplink information, or SL information.
  • one slot may include 14 or 12 OFDM symbols.
  • SCS subcarrier spacing
  • the number of time slots included in a frame (frame) is also different. Set a frame length to 10ms.
  • NCP normal cyclic prefix
  • the 10ms frame contains 10 time slots, and a single time slot corresponds to 1ms
  • the 10ms frame contains 20 Time slot, a single time slot corresponds to 0.5ms
  • the SCS is 60kHz
  • a 10ms frame contains 40 time slots, and a single time slot corresponds to 0.25ms
  • the SCS is 120kHz
  • a 10ms frame contains 80 time slots, and a single The time slot corresponds to 0.125ms.
  • ECP extended cyclic prefix
  • the receiving end UE measures the RS used for panel selection, and sends second indication information to the transmitting end UE according to the measurement result.
  • the second indication information may be carried in one or more MAC CEs.
  • S1003 The sending end UE performs panel selection according to the second indication information.
  • the UE at the receiving end may measure the RSs separately to obtain the measurement results.
  • the receiving end UE may send the foregoing second indication information to the sending end UE, where the second indication information is used to indicate different measurement results and the SL TCI identifier corresponding to each measurement result.
  • the sending UE selects the measurement result that meets the condition, and uses the panel corresponding to the SL TCI identifier corresponding to the measurement result that meets the condition as the selected panel.
  • the subsequent sending end UE may use the selected panel to perform data transmission with the receiving end UE.
  • the UE at the receiving end can directly select the measurement results that meet the conditions according to the measurement results of different RSs. Then, the second indication information sent by the receiving end UE to the sending end UE only carries the SL TCI identifier corresponding to the measurement result that meets the condition. The receiving end UE may use the panel corresponding to the SL TCI identifier carried in the second indication information as the selected panel.
  • the sending end UE has two panels, panel 0 and panel 1, respectively.
  • the sending end UE uses panel 0 to send SL CSI-RS in the 0th time slot, and the SL TCI identifier corresponding to panel 0 is 0.
  • the transmitting end uses panel 1 to send SL CSI-RS in the first time slot, and the SL TCI identifier corresponding to panel 1 is 1.
  • the UE at the receiving end can measure the SL CSI-RS sent in the 0th time slot, and obtain a channel measurement result of 0. In the same way, the receiving end UE can also measure the SL CSI-RS sent in the first time slot to obtain the channel measurement result 1.
  • the receiving end UE can feed back the channel measurement results of the above two SL CSI-RSs and the SL TCI identifier corresponding to each channel measurement result to the transmitting end UE respectively.
  • the receiving UE can perform panel selection according to the channel measurement result of the CSI-RS. For example, if the channel measurement result corresponding to the CSI-RS sent by panel 0 is good, the subsequent UE at the sending end may select panel 0 to communicate with the UE at the receiving end.
  • the above process of panel selection can occur on the receiving end UE side, the receiving end UE can directly select the panel based on the RS measurement result, and subsequently in the second indication information of S1002, only the selected panel can be carried
  • the SL TCI logo is sufficient.
  • the transmitting UE needs to send multiple times on different panels, and for each transmission, the receiving UE needs to feed back a measurement result. Therefore, in the above-mentioned flow shown in FIG. 10, the above-mentioned S1001 and the above-mentioned S1002 are executed cyclically.
  • the RS determined by the transmitting end UE for panel selection is SL CSI-RS. There are two panels on the UE side of the transmitting end. Then the transmitting UE needs to send SL CSI-RS on two panels respectively. And for each CSI-RS, the receiving UE needs to feed back a measurement result.
  • the sequence of execution of the foregoing processes may be: the sending end UE uses panel 0 to send SL CSI-RS0 to the receiving end UE, and the receiving end UE feeds back the measurement result of the CSI-RS0.
  • the sending end UE uses panel 1 to send SL CSI-RS1 to the receiving end UE, and the receiving end UE feeds back the measurement result of CSI-RS1.
  • the sending end UE uses panels 0 and 1 to respectively send CSI-RS0 and CSI-RS1 to the receiving end UE. After that, the UE at the receiving end feeds back the measurement results of CSI-RS0 and CSI-RS1 respectively, which is not limited.
  • the TCI frame in the Uu air interface is constructed through the definition of TCI status and QCL, and panel selection or beam selection is realized through the TCI frame.
  • the TCI framework of the Uu air interface cannot be applied to the SL due to the high signaling overhead and the lack of the required signaling on the PC5 interface.
  • the selection of the panel, beam or antenna in the SL is realized.
  • the first terminal device is the transmitting end UE and the second terminal device is the receiving end UE as an example for description.
  • the principle of this method is: pre-configure multiple SL CSI-RS patterns for the transmitting end UE and the receiving end UE.
  • the patterns of SL CSI-RS transmitted by different panels, beams or antennas may be different. Therefore, there may be a corresponding relationship between the SL CSI-RS pattern and the SL TCI identifier.
  • there may be a many-to-one relationship between the two that is, multiple SL CSI-RS patterns correspond to one SL TCI identifier.
  • the method includes:
  • N CSI-RS is a positive integer greater than or equal to 2
  • N SL-TCI is less than or equal to a positive integer of N CSI-RS.
  • the sending end UE sends first indication information to the receiving end UE, where the first indication information is used to indicate the correspondence between the N CSI-RS SL CSI-RS patterns and the N SL-TCI SL TCI identifiers .
  • the receiving end UE receives the first indication information from the sending end UE.
  • the first indication information may be carried in PC5-RRC signaling.
  • the N CSI-RS SL CSI-RS patterns are configured for panel selection or beam selection.
  • the receiving end UE determines the correspondence between the N CSI-RS SL CSI-RS patterns and the N SL-TCI SL TCI identifiers according to the first indication information.
  • the sending end UE may directly send the first SL CSI-RS to the terminal device.
  • the receiving end UE may determine the first SL according to the N CSI-RS SL CSI-RS patterns configured above and the corresponding relationship between the N SL-TCI SL TCI identifiers The SL TCI identifier corresponding to the CSI-RS pattern.
  • the sending end UE can pre-configure the corresponding relationship between the SL CSI-RS pattern and the SL TCI identification to the receiving end UE, and subsequently send The end UE no longer needs to additionally indicate the SL TCI identifier of each SL CSI-RS pattern, which reduces the signaling overhead.
  • the first terminal device is the transmitting end UE and the second terminal device is the receiving end UE as an example for description.
  • the transmitting UE may have K candidate panels or candidate beams, and K is a positive integer.
  • K is a positive integer.
  • the above candidate panel is equivalent to the candidate antenna.
  • a panel selection in which a panel is a candidate object is taken as an example for description. It can be understood that, in addition to the panel, the actual candidate can also be a beam or an antenna. As shown in Figure 13, the process includes:
  • the sending end UE configures the correspondence between N CSI-RS SL CSI-RS patterns and N SL-TCI SL TCI identifiers, and the sending end UE sends first indication information to the receiving end UE, where the first indication information is used for Indicate the corresponding relationship between the N CSI-RS SL CSI-RS patterns and the N SL-TCI SL TCI identifiers.
  • the sending end UE may send second indication information to the receiving end UE.
  • the second indication information is used to indicate that the sending end UE triggers panel selection, and the second indication information is carried in the second indication information.
  • M'bits of the level SCI M'is a positive integer.
  • M′ 1.
  • the sending end UE sends the SL CSI-RS identifiers corresponding to the N CSI-RS SL CSI-RS patterns to the receiving end UE.
  • the UE at the transmitting end uses k n panels to simultaneously transmit the SL CSI-RS corresponding to g n SL CSI-RS patterns in the nth time slot of the N slot time slots; where N slot is a positive integer, and n is satisfied 0 ⁇ n ⁇ N slot -1 integer, k n is a positive integer less than or equal to K, and k n satisfies g n is a positive integer less than or equal to N CSI-RS , and g n satisfies
  • the receiving end UE receives the SL CSI-RS corresponding to the N CSI-RS SL CSI-RS patterns from the transmitting end UE in N slots.
  • the receiving end UE determines the SL TCI identifier of each SL CSI-RS according to the N CSI-RS SL CSI-RS patterns.
  • the receiving end UE measures the received CSI-RS to obtain the measurement result, and sends third indication information to the sending end UE according to the measurement result.
  • the third indication information is used to indicate the CSI-RS corresponding to the channel measurement result.
  • SL TCI logo the sending end UE receives the third indication information from the receiving end UE.
  • the third indication information may be carried in one or more MAC CEs.
  • S1305 The UE at the sending end performs panel selection according to the third indication information.
  • the sending end UE sends RSs on different panels, antennas or beams
  • the receiving end UE measures and feeds back the RS
  • the sending end UE performs panel selection based on the feedback measurement results, which solves the lack of panels and beams in the SL.
  • the technical problem of antenna or beam selection method Furthermore, compared with the process shown in FIG. 10, the current solution uses fewer time slots to complete panel, antenna or beam selection, which improves the selection efficiency. And the second level SCI is not used to indicate the SL TCI logo, which saves signaling overhead.
  • FIG. 14 is a schematic block diagram of a device 1400 provided by an embodiment of the present application, which is used to implement the functions of the first terminal device or the second terminal device in the foregoing method.
  • the device can be a software unit or a chip system.
  • the system can be composed of chips, or can include chips and other discrete devices.
  • the device includes a communication unit 1401 and may also include a processing unit 1402.
  • the communication unit 1401 can communicate with the department.
  • the processing unit 1402 is used for processing.
  • the communication unit 1401 may also be called a communication interface, a transceiver unit, an input/output interface, and so on.
  • the apparatus 1400 can implement steps corresponding to the steps performed by the first terminal device in the process shown in FIG. 7.
  • the apparatus 1400 can be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1401 can perform the transceiving operations of the first terminal device in the above method embodiment, and the processing unit 1402 can perform the processing related operations of the first terminal device in the above method embodiment.
  • the processing unit 1402 is configured to generate first indication information and a first reference signal; the communication unit 1401 is configured to send first indication information to the second terminal device, and the first indication information is used to indicate the status of the first reference signal.
  • the first side row transmission configuration indicates the SL TCI identifier, and the first SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first reference signal; the communication unit 1401 is also used to transmit the first channel to the The second terminal device transmits the first reference signal.
  • the first reference signal includes a physical side row shared channel demodulation reference signal, or a physical side row control channel demodulation reference signal, or a side row channel state information reference signal, and the first indication information is carried in the first In the secondary side control information.
  • the processing unit 1402 is further configured to determine N SL-TCI SL TCI identifiers, where N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI identifier belongs to the N SL-TCI A SL TCI identifier; the communication unit 1401 is configured to send first configuration information to the second terminal device, where the first configuration information is used to configure the N SL-TCI SL TCI identifiers for the second terminal device .
  • the processing unit 1402 in determining N SL-TCI SL TCI identification number configured to: according to a first terminal of the panel, the number of transmit antennas or beams of determining the number N SL-TCI SL TCI identification.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processing unit 1402 is further configured to: determine N SL-TCI SL TCI identifiers according to the configuration information of the sending resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL The TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the apparatus 1400 can implement steps corresponding to the steps performed by the second terminal device in the process shown in FIG. 7.
  • the apparatus 1400 can be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1401 can perform the transceiving operations of the second terminal device in the above method embodiment, and the processing unit 1402 can perform the processing related operations of the second terminal device in the above method embodiment.
  • the communication unit 1401 is configured to receive first indication information from a first terminal device, where the first indication information is used to indicate the first side line transmission configuration indication SL TCI identifier of the first reference signal, and the first SL The TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first reference signal; the communication unit 1401 is also used to receive the first reference signal from the first terminal device on the first channel.
  • the processing unit 1402 is configured to process the first indication information and the first reference signal.
  • the first reference signal includes a physical side row shared channel demodulation reference signal, or a physical side row control channel demodulation reference signal, or a side row channel state information reference signal, and the first indication information is carried in the first In the secondary side control information.
  • the communication unit 1401 is further configured to receive first configuration information from the first terminal device, where the first configuration information is used to configure N SL-TCI SL TCI identifiers for the second terminal device,
  • the first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers;
  • the processing unit 1402 is configured to determine the N SL-TCI SL TCI identifiers according to the first configuration information.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processing unit 1402 is further configured to determine N SL-TCI SL TCI identifiers according to the configuration information of the received resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI The identifier belongs to the N SL-TCI SL TCI identifiers.
  • the apparatus 1400 may implement steps corresponding to the steps performed by the first terminal device in the process shown in FIG. 8.
  • the apparatus 1400 may be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1401 can perform the transceiving operations of the first terminal device in the above method embodiment, and the processing unit 1402 can perform the processing related operations of the first terminal device in the above method embodiment.
  • the processing unit 1402 is configured to determine the first side line transmission configuration indicator SL TCI identifier of the first signal, and the first SL TCI identifier is used to indicate the channel characteristics of the first channel through which the first signal is transmitted; the processing unit 1402, which is further configured to determine the first signal according to the first SL TCI identifier; and the communication unit 1401, which is configured to send the first signal to a second terminal device on the first channel.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel demodulation reference signal
  • the initialization parameter of a sequence of the physical sideline broadcast channel demodulation reference signal It is determined according to the first SL TCI identifier.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number
  • the i S-SSB represents the side line synchronization signal block index
  • the U is an integer greater than or equal to 0
  • the mod represents a modulo operation.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the demodulation reference signal sequence of the physical side broadcast channel
  • the M is a positive integer
  • the Re represents a side line synchronization signal identifier
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel
  • the initialization parameter of the scrambling sequence of the physical sideline broadcast channel is based on the first SL TCI identification.
  • the initialization parameter of the scrambling sequence of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the scrambling sequence of the physical side broadcast channel
  • the M is a positive integer
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the processing unit 1402 is further configured to determine N SL-TCI SL TCI identifiers, where N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI identifier belongs to the N SL-TCI A SL TCI identifier; the communication unit 1401 is further configured to send first configuration information to the second terminal device, where the first configuration information is used to configure the N SL-TCI SL TCIs for the second terminal device Logo.
  • the processing unit 1402 when determining the N SL-TCI SL TCI identifiers, is specifically configured to: determine the N SL-TCI SL TCI according to the number of panels, transmission beams or antennas of the first terminal device Logo.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processing unit 1402 is further configured to: determine N SL-TCI SL TCI identifiers according to the configuration information of the sending resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL The TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the apparatus 1400 can implement steps corresponding to the steps performed by the second terminal device in the process shown in FIG. 8.
  • the apparatus 1400 can be a terminal device, or a chip or circuit configured in the terminal device.
  • the communication unit 1401 can perform the transceiving operations of the second terminal device in the above method embodiment, and the processing unit 1402 can perform the processing related operations of the second terminal device in the above method embodiment.
  • the communication unit 1401 is configured to receive the first signal from the first terminal device on the first channel; the processing unit 1402 is configured to determine the first side line transmission configuration indication SL TCI identifier according to the first signal, the The first SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first signal.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel demodulation reference signal
  • the processing unit 1402 is determining the first signal based on the first signal.
  • the SL TCI identifier is used, it is specifically used to determine the first SL TCI identifier according to the initialization parameters of the sequence of the demodulation reference signal of the physical side broadcast channel.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number
  • the i S-SSB represents the side line synchronization signal block index
  • the U is an integer greater than or equal to 0
  • the mod represents a modulo operation.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the demodulation reference signal sequence of the physical side broadcast channel
  • the M is a positive integer
  • the Re represents a side line synchronization signal identifier
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel
  • the processing unit 1402 is determining the first SL TCI according to the first signal When identifying, it is specifically used to determine the first SL TCI identifier according to the initialization parameters of the scrambling sequence of the physical side broadcast channel.
  • the initialization parameter of the scrambling sequence of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the scrambling sequence of the physical side broadcast channel
  • the M is a positive integer
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the communication unit 1401 is further configured to: receive first configuration information from a first terminal device, where the first configuration information is used to configure N SL-TCI SL TCI identifiers for the second terminal device, and the first terminal device One SL TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processing unit 1402 is further configured to: determine N SL-TCI SL TCI identifiers according to the configuration of the receiving resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI The identifier belongs to the N SL-TCI SL TCI identifiers.
  • the division of units in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional units in each embodiment of this application can be integrated into one processing unit. In the device, it can also exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the functions of the communication unit in the foregoing embodiments may be implemented by a transceiver, and the functions of the processing unit may be implemented by a processor.
  • the transceiver may include a transmitter and/or a receiver, etc., which are used to implement the functions of the transmitting unit and/or the receiving unit, respectively.
  • the following is an example for description with reference to FIG. 15.
  • the communication device 1500 shown in FIG. 15 includes at least one processor 1501.
  • the communication device 1500 may also include at least one memory 1502 for storing program instructions and/or data.
  • the memory 1502 is coupled with the processor 1501.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, which can be electrical, mechanical, or other forms, and is used for information exchange between devices, units, or modules.
  • the processor 1501 may operate in cooperation with the memory 1502, the processor 1501 may execute program instructions stored in the memory 1502, and at least one of the at least one memory 1502 may be included in the processor 1501.
  • the apparatus 1500 may further include a communication interface 1503 for communicating with other devices through a transmission medium, so that the communication apparatus 1500 can communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • connection medium between the processor 1501, the memory 1502, and the communication interface 1503 is not limited in the embodiment of the present application.
  • the memory 1502, the processor 1501, and the communication interface 1503 are connected by a communication bus 1504.
  • the bus is represented by a thick line in FIG. 15.
  • the connection mode between other components is only a schematic illustration. , Not as a limitation.
  • the bus may include an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 15, but it does not mean that there is only one bus or one type of bus.
  • the device 1500 is configured to implement the steps executed by the first terminal device in the flow shown in FIG. 7 above.
  • the communication interface 1503 is used to perform the transceiving-related operations of the first terminal device in the above embodiment
  • the processor 1501 is used to perform the processing related operations of the first terminal device in the above method embodiment.
  • the processor 1501 is configured to generate first indication information and a first reference signal; the communication interface 1503 is configured to send first indication information to the second terminal device, and the first indication information is used to indicate the status of the first reference signal.
  • the first side row transmission configuration indicates the SL TCI identifier, and the first SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first reference signal; the communication interface 1503 is also used to transmit the first channel to the The second terminal device transmits the first reference signal.
  • the first reference signal includes a physical side row shared channel demodulation reference signal, or a physical side row control channel demodulation reference signal, or a side row channel state information reference signal, and the first indication information is carried in the first In the secondary side control information.
  • the processor 1501 is further configured to determine N SL-TCI SL TCI identifiers, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI identifier belongs to the N SL-TCI A SL TCI identifier; the communication interface 1503 is used to send first configuration information to the second terminal device, and the first configuration information is used to configure the N SL-TCI SL TCI identifiers for the second terminal device .
  • the processor 1501 determines when the number N SL-TCI SL TCI identification, specifically configured to: according to a first terminal of the panel, the number of transmit antennas or beams of determining the number N SL-TCI SL TCI identification.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processor 1501 is further configured to: determine N SL-TCI SL TCI identifiers according to the configuration information of the sending resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL The TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the communication interface 1503 is configured to receive first indication information from the first terminal device, where the first indication information is used to indicate the first sideline transmission configuration indication SL TCI identifier of the first reference signal, and the first SL The TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first reference signal; the communication interface 1503 is also used to receive the first reference signal from the first terminal device on the first channel.
  • the processor 1501 is configured to process the first indication information and the first reference signal.
  • the first reference signal includes a physical side row shared channel demodulation reference signal, or a physical side row control channel demodulation reference signal, or a side row channel state information reference signal, and the first indication information is carried in the first In the secondary side control information.
  • the communication interface 1503 is further configured to receive first configuration information from the first terminal device, where the first configuration information is used to configure N SL-TCI SL TCI identifiers for the second terminal device,
  • the first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers;
  • the processor 1501 is configured to determine the N SL-TCI SL TCI identifiers according to the first configuration information.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processor 1501 is further configured to determine N SL-TCI SL TCI identifiers according to the configuration information of the received resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI The identifier belongs to the N SL-TCI SL TCI identifiers.
  • the device 1500 is configured to implement the steps performed by the second terminal device in the flow shown in FIG. 7 above.
  • the communication interface 1503 is used to perform the transceiving-related operations of the second terminal device in the above embodiment
  • the processor 1501 is used to perform the processing related operations of the second terminal device in the above method embodiment.
  • the communication interface 1503 is configured to receive first indication information from the first terminal device, where the first indication information is used to indicate the first sideline transmission configuration indication SL TCI identifier of the first reference signal, and the first SL The TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first reference signal; the communication interface 1503 is also used to receive the first reference signal from the first terminal device on the first channel.
  • the processor 1501 is configured to process the first indication information and the first reference signal.
  • the first reference signal includes a physical side row shared channel demodulation reference signal, or a physical side row control channel demodulation reference signal, or a side row channel state information reference signal, and the first indication information is carried in the first In the secondary side control information.
  • the communication interface 1503 is further configured to receive first configuration information from the first terminal device, where the first configuration information is used to configure N SL-TCI SL TCI identifiers for the second terminal device,
  • the first SL TCI identifier belongs to the N SL-TCI SL TCI identifiers;
  • the processor 1501 is configured to determine the N SL-TCI SL TCI identifiers according to the first configuration information.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processor 1501 is further configured to determine N SL-TCI SL TCI identifiers according to the configuration information of the received resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI The identifier belongs to the N SL-TCI SL TCI identifiers.
  • the device 1500 is configured to implement the steps executed by the first terminal device in the above-mentioned flow shown in FIG. 8.
  • the communication interface 1503 is used to perform the transceiving-related operations of the first terminal device in the above embodiment
  • the processor 1501 is used to perform the processing related operations of the first terminal device in the above method embodiment.
  • the processor 1501 is configured to determine the first side line transmission configuration indication SL TCI identifier of the first signal, where the first SL TCI identifier is used to indicate the channel characteristics of the first channel through which the first signal is transmitted; 1501, further configured to determine the first signal according to the first SL TCI identifier; communication interface 1503, configured to send the first signal to a second terminal device on the first channel.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel demodulation reference signal
  • the initialization parameter of a sequence of the physical sideline broadcast channel demodulation reference signal It is determined according to the first SL TCI identifier.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number
  • the i S-SSB represents the side line synchronization signal block index
  • the U is an integer greater than or equal to 0
  • the mod represents a modulo operation.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the demodulation reference signal sequence of the physical side broadcast channel
  • the M is a positive integer
  • the Re represents a side line synchronization signal identifier
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel
  • the initialization parameter of the scrambling sequence of the physical sideline broadcast channel is based on the first SL TCI identification.
  • the initialization parameter of the scrambling sequence of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the scrambling sequence of the physical side broadcast channel
  • the M is a positive integer
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the processor 1501 is further configured to determine N SL-TCI SL TCI identifiers, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI identifier belongs to the N SL-TCI A SL TCI identifier; the communication interface 1503 is also used to send first configuration information to the second terminal device, where the first configuration information is used to configure the N SL-TCI SL TCIs for the second terminal device Logo.
  • the processor 1501 determines the N SL-TCI SL TCI identifiers, it is specifically configured to: determine the N SL-TCI SL TCI according to the number of panels, transmission beams or antennas of the first terminal device Logo.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processor 1501 is further configured to: determine N SL-TCI SL TCI identifiers according to the configuration information of the sending resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL The TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the device 1500 is configured to implement the steps performed by the second terminal device in the above-mentioned flow shown in FIG. 8.
  • the communication interface 1503 is used to perform the transceiving-related operations of the second terminal device in the above embodiment
  • the processor 1501 is used to perform the processing related operations of the second terminal device in the above method embodiment.
  • the communication interface 1503 is configured to receive the first signal from the first terminal device on the first channel; the processor 1501 is configured to determine the first sideline transmission configuration indication SL TCI identifier according to the first signal, the The first SL TCI identifier is used to indicate the channel characteristics of the first channel for transmitting the first signal.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel demodulation reference signal
  • the processor 1501 is determining the first signal based on the first signal.
  • the SL TCI identifier it is specifically used to determine the first SL TCI identifier according to the initialization parameters of the sequence of the demodulation reference signal of the physical side broadcast channel.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number
  • the i S-SSB represents the side line synchronization signal block index
  • the U is an integer greater than or equal to 0
  • the mod represents a modulo operation.
  • the initialization parameter of the sequence of the demodulation reference signal of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the demodulation reference signal sequence of the physical side broadcast channel
  • the M is a positive integer
  • the Re represents a side line synchronization signal identifier
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the first signal is a sideline synchronization signal block
  • the sideline synchronization signal block includes a physical sideline broadcast channel
  • the processor 1501 is determining the first SL TCI according to the first signal When identifying, it is specifically used to determine the first SL TCI identifier according to the initialization parameters of the scrambling sequence of the physical side broadcast channel.
  • the initialization parameter of the scrambling sequence of the physical side broadcast channel satisfies:
  • the c init represents the initialization parameter of the scrambling sequence of the physical side broadcast channel
  • the M is a positive integer
  • the n SL-TCI represents the first SL TCI identifier
  • the n SL-TCI is a natural number.
  • the communication interface 1503 is further configured to: receive first configuration information from the first terminal device, where the first configuration information is used to configure N SL-TCI SL TCI identifiers for the second terminal device, and the first terminal device One SL TCI identifier belongs to the N SL-TCI SL TCI identifiers.
  • the first configuration information is carried in a radio resource control message of the PC5 interface, or the first configuration information is carried in a media access control control element of the PC5 interface.
  • the processor 1501 is further configured to: determine N SL-TCI SL TCI identifiers according to the configuration of the receiving resource pool, where the N SL-TCI is a positive integer greater than or equal to 1, and the first SL TCI The identifier belongs to the N SL-TCI SL TCI identifiers.
  • an embodiment of the present application also provides a device, which is configured to execute the method in the above method embodiment.
  • a computer-readable storage medium includes a program, and when the program is executed by a processor, the method in the foregoing method embodiment is executed.
  • a chip comprising: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, and when the program or an instruction is executed by the processor, the device executes the method in the above method embodiment .
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can implement or execute The methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,涉及V2X、智能网联车、智能驾驶、辅助驾驶等领域,可解决当前SL缺少SL TCI标识的指示的技术问题。关于SL TCI标识的指示包括两种方案:第一种方案为显式指示,第一终端装置可向第二终端装置发送第一指示信息,第一指示信息用于指示第一参考信号的SL TCI标识。第二终端装置根据上述第一指示信息,即可确定第一参考信号的SL TCI标识。第二种方案为隐式指示,第一终端装置可根据第一信号的SL TCI标识,生成第一信号,且向第二终端装置发送第一信号。之后,第二终端装置可根据第一信号,确定第一信号的SL TCI标识。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年05月27日提交中国专利局、申请号为202010462497.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着多输入多输出(multiple input multiple output,MIMO)技术的进一步演技,多传输接收节点(multiple transmission and reception point,Multi-TRP)、多面板(multiple panel,Multi-panel)、多波束(multiple beam,Multi-beam)等技术在新空口(new radio,NR)的Uu空口中被提出。
在使用以上MIMO技术时,接收端需要有能力区分不同的TRP、面板或波束发送的信号。因此,NR中使用了两个重要概念,一个是准共址(quasi co-located,QCL),另一个是传输配置指示(transmission configuration indication,TCI)。NR中使用TCI来指示两个参考信号(reference signal,RS)的QCL关系。
在NR系统中,除了Uu空口之外,还存在PC5接口,所述PC5接口为终端装置与终端装置间的通信接口。PC5接口中的传输链路被定义为侧行链路(sidelink,SL)。然而,目前尚缺少SL TCI标识的指示方法,这阻碍了多面板和多波束等MIMO技术在PC5接口中的使用。
发明内容
本申请实施例提供一种通信方法及装置,以实现SL TCI标识的指示。
第一方面,提供一种通信方法,该方法的执行主体为第一终端装置,第一终端装置可以是终端设备,也可以是配置于终端设备中的部件(例如,芯片、电路或其它等),该方法包括:第一终端装置向第二终端装置发送第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;第一终端装置在所述第一信道向所述第二终端装置发送所述第一参考信号。
通过上述SL TCI的指示方法,可弥补当前SL中缺少SL TCI标识指示方法的缺陷。进一步,基于上述提供的简化的SL TCI标识的定义,相对于Uu空口,可减少TCI指示的信令开销,解决了Uu空口中由于QCL类型过多导致的TCI指示方法,过于复杂的技术问题。
在一种可能的设计中,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携 带于第二级的侧行控制信息中。
在一种可能的设计中,所述方法还包括:第一终端装置确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;第一终端装置向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
通过上述方法,第一终端装置可根据面板、发送波束或天线的数量等,确定N SL-TCI个SL TCI标识,之后,第一终端装置将N SL-TCI个SL TCI标识配置第二终端设备。第一终端设备可根据自身的条件不同,为终端设备配置不同的SL TCI标识,适应性较高,灵活多变。
在一种可能的设计中,所述确定N SL- TCI个SL TCI标识,包括:
根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
在一种可能的设计中,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
在一种可能的设计中,所述方法还包括:第一终端装置根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
通过上述方法,第一终端装置和第二终端设备可各自根据发送资源的配置信息,确定N SL-TCI个SL TCI标识。无需通过额外的信令进行配置,减少信令开销。
第二方面,提供一种通信方法,该方法的执行主体为第二终端装置,第二终端装置可以为终端设备,也可以为配置于终端设备中的部件(例如,芯片、电路或其它等),该方法包括:第二终端装置接收来自第一终端装置的第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;第二终端装置在所述第一信道接收来自所述第一终端装置的第一参考信号。
在一种可能的设计中,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
在一种可能的设计中,所述方法还包括:第二终端装置接收来自所述第一终端装置的第一配置信息,所述第一配置信息用于为所述第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;第二终端装置根据所述第一配置信息,确定所述N SL-TCI个SL TCI标识。
在一种可能的设计中,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
在一种可能的设计中,所述方法还包括:第二终端装置根据接收资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
第三方面,提供一种通信方法,该方法的执行主体为第一终端装置,包括:第一终端装置确定第一信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性;第一终端装置根据所述第一SL TCI标识,确定所述第一信号;第一终端装置在所述第一信道向第二终端装置发送所述第一信号。
通过上述SL TCI标识的指示方法,不但弥补了SL中缺少SL TCI标识的技术欠缺, 相对于Uu空口减少了TCI指示的信令开销。进一步,在该实施例中,由于第一终端装置无需发送SL TCI标识的指示信息,第二终端装置即可确定SL TCI标识,进一步可减少TCI指示的信令开销。
在一种可能的设计中,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述物理侧行广播信道解调参考信号的序列的初始化参数是根据所述第一SL TCI标识所确定的。
在一种可能的设计中,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000001
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
Figure PCTCN2021092746-appb-000002
表示根据所述侧行同步信号块索引得到的整数值,所述
Figure PCTCN2021092746-appb-000003
表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
所述根据所述侧行同步信号块索引得到所述
Figure PCTCN2021092746-appb-000004
满足:
Figure PCTCN2021092746-appb-000005
所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
在一种可能的设计中,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000006
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000007
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
在一种可能的设计中,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述物理侧行广播信道的加扰序列的初始化参数是根据所述第一SL TCI标识所确定的。
在一种可能的设计中,所述物理侧行广播信道的加扰序列的初始化参数满足:
Figure PCTCN2021092746-appb-000008
其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000009
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
在一种可能的设计中,所述方法还包括:第一终端装置确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;第一终端装置向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
通过上述方法,第一终端装置可根据面板、发送波束或天线的数量等,确定N SL-TCI个SL TCI标识,之后,第一终端装置将N SL-TCI个SL TCI标识配置第二终端设备。第一终端设备可根据自身的条件不同,为终端设备配置不同的SL TCI标识,适应性较高,灵活多变。
在一种可能的设计中,所述确定N SL-TCI个SL TCI标识,包括:第一终端装置根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
在一种可能的设计中,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
在一种可能的设计中,所述方法还包括:第一终端装置根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识 属于所述N SL-TCI个SL TCI标识。
通过上述方法,第一终端装置和第二终端设备可各自根据发送资源的配置信息,确定N SL-TCI个SL TCI标识。无需通过额外的信令进行配置,减少信令开销。
第四方面,提供一种通信方法,该通信方法的执行主体为第二终端装置,包括:第二终端装置在第一信道接收来自第一终端装置的第一信号;第二终端装置根据所述第一信号,确定第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性。
在一种可能的设计中,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述根据所述第一信号,确定第一SL TCI标识,包括:
根据所述物理侧行广播信道解调参考信号的序列的初始化参数,确定所述第一SL TCI标识。
在一种可能的设计中,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000010
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
Figure PCTCN2021092746-appb-000011
表示根据所述侧行同步信号块索引得到的整数值,所述
Figure PCTCN2021092746-appb-000012
表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
所述根据所述侧行同步信号块索引得到所述
Figure PCTCN2021092746-appb-000013
满足:
Figure PCTCN2021092746-appb-000014
所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
在一种可能的设计中,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000015
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000016
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
在一种可能的设计中,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述根据所述第一信号,确定所述第一SL TCI标识,包括:
根据所述物理侧行广播信道的加扰序列的初始化参数,确定所述第一SL TCI标识。
在一种可能的设计中,所述物理侧行广播信道的加扰序列的初始化参数满足:
Figure PCTCN2021092746-appb-000017
其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000018
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
在一种可能的设计中,所述方法还包括:第二终端装置接收来自第一终端装置的第一配置信息,所述第一配置信息用于为第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
在一种可能的设计中,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
在一种可能的设计中,所述方法还包括:第二终端装置根据接收资源池的配置,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于 所述N SL-TCI个SL TCI标识。
第五方面,提供一种装置,有益效果可参见第一方面的描述。所述通信装置具有实现上述第一方面的方法实施例中行为的功能。所述功能可以通过执行相应的硬件或软件。所述件或软件包括一个或多个与上述功能相对应的单元。
第六方面,提供一种装置,有益效果可参见第二方面的描述。所述通信装置具有实现上述第二方面的方法实施例中行为的功能。所述功能可以通过执行相应的硬件或软件。所述件或软件包括一个或多个与上述功能相对应的单元。
第七方面,提供一种装置,有益效果可参见第三方面的描述。所述通信装置具有实现上述第一方面的方法实施例中行为的功能。所述功能可以通过执行相应的硬件或软件。所述件或软件包括一个或多个与上述功能相对应的单元。
第八方面,提供一种装置,有益效果可参见第四方面的描述。所述通信装置具有实现上述第二方面的方法实施例中行为的功能。所述功能可以通过执行相应的硬件或软件。所述件或软件包括一个或多个与上述功能相对应的单元。
第九方面,提供了一种装置,该装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述各方面中由第一终端设备或第二终端设备所执行的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由第一终端设备或第二终端设备执行的方法被执行。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中第一终端设备或第二终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由第一终端设备或第二终端设备执行的方法。
附图说明
图1为本申请实施例提供的Multi-TRP技术的基本架构示意图;
图2为本申请实施例提供的多面板的示意图;
图3为本申请实施例提供的多波束技术的示意图;
图4为本申请实施例提供的QCL关系的示意图;
图5为本申请实施例提供的网络架构的示意图;
图6为本申请实施例提供的应用场景的示意图;
图7为本申请实施例提供的通信方法的流程示意图;
图8为本申请实施例提供的通信方法的流程示意图;
图9为本申请实施例提供的通信方法的流程示意图;
图10为本申请实施例提供的面板选择的流程示意图;
图11为本申请实施例提供的面板选择的流程示意图;
图12为本申请实施例提供的通信方法的流程示意图;
图13为本申请实施例提供的面板选择的流程示意图;
图14为本申请实施例提供的装置的一结构示意图;
图15为本申请实施例提供的装置的一结构示意图。
具体实施方式
下面对本申请实施例中所使用到的一些通信名词或术语进行解释说明,该通信名词或术语也作为本申请发明内容的一部分。
一、终端装置
终端装置可以简称为终端,是一种具有无线收发功能的设备。终端装置可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端装置可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备,以及还可以包括用户设备(user equipment,UE)等。终端装置还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来第五代(5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端装置有时也可以称为终端、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端装置也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端;也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端,以终端是UE为例,描述本申请实施例提供的技术方案。
二、侧行链路(sidelink,SL)
侧行链路,也可称为旁链路或边链路等。侧行链路的通信接口可称为PC5接口。侧行链路用于终端装置和终端装置之间的通信,可以包括物理侧行链路共享信道(physical sidelink shared channel,PSSCH)和物理侧行链路控制信道(physical sidelink control channel,PSCCH)。其中,PSSCH可以用于承载侧行链路数据(SL data),PSCCH可以用于承载侧行链路控制信息(sidelink control information,SCI),所述SCI也可以称为侧行链路调度分配(sidelink scheduling assigment,SL SA)。SL SA是用于数据调度相关的信息,比如,SL SA中包括PSSCH的资源分配和/或调制编码机制(modulation and coding scheme,MCS) 等信息。可选的,侧行链路通信还可以包括:物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)。物理侧行链路反馈信道也可以简称为侧行链路反馈信道。其中,侧行链路反馈信道可以用于传输侧行链路反馈控制信息(sidelink feedback control information,SFCI),侧行链路反馈控制信息可以包括信道状态信息(channel state information,CSI),混合自动重传请求(hybrid automatic repeat request,HARQ)信息等中的至少一种信息。其中,HARQ信息可以包括确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)等。
三、Uu空口
Uu空口可理解为通用的终端装置和网络设备之间的接口(universal UE to network interface),Uu空口用于终端装置与网络装置之间的通信。Uu空口的传输可以包括上行传输和下行传输。
其中,上行传输是指终端装置向网络装置发送信息,上行传输的信息可以称为上行信息或上行信号。上行信息或上行信号中可以包括上行数据信号,上行控制信号,探测参考信号(sounding reference signal,SRS)中的一种或多种。用于传输上行信息或上行信号的信道称为上行信道,上行信道可以包括物理上行数据信道(physical uplink shared channel,PUSCH)和物理上行控制信道(physical uplink control channel,PUCCH)中的一种或多种。PUSCH用于承载上行数据,上行数据也可以称为上行数据信息。PUCCH用于承载终端装置反馈的上行控制信息(uplink control information,UCI)。示例的,UCI中可以包括终端装置反馈的信道状态信息(channel state information,CSI)、ACK和NACK等中的一个或多个。
下行传输是指网络装置向终端装置发送信息,下行传输的信息可以为下行信息或下行信号。下行信息或下行信号可以包括下行数据信号,下行控制信号,信道状态信息参考信号(channel state information reference signal,CSI-RS),相位跟踪参考信号(phase tracking reference signal,PTRS)中的一种或多种。用于传输下行信息或下行信号的信道称为下行信道,下行信道可以包括物理下行数据信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH)中的一种或多种。所述PDCCH用于承载下行控制信息(downlink control information,DCI),PDSCH用于承载下行数据(data),下行数据也可称为下行数据信息。
四、SL CSI-RS图样
本申请实施例中的SL CSI-RS图样可与Uu空口中的CSI-RS资源类似,一个SL CSI-RS图样对应于一种SL CSI-RS配置,配置参数可以是端口数、频域位置和时域位置等,不作限定。
在本申请实施例中,可为第一终端装置和第二终端设备配置一种或多种SL CSI-RS图样。不同面板、发送波束或天线所发送的SL CSI-RS,所对应的图样可以相同,也可以不相同。
五、波束
波束在协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)等。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),或者可以称为空域发送滤波器(spatial domain transmission filter),或者可以称为空间发射参数(spatial transmission parameter)等。用于接收信号的 波束可以称为接收波束(reception beam,Rx beam),或者可以称为空域接收滤波器(spatial domain receive filter),或者可以称为空间接收参数(spatial RX parameter)等。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,窄波束,或者其他类型波束等。形成波束的技术可以是波束赋形技术或者其他技术,不作限定。比如,波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
可选的,可将具有相同或者类似通信特征的多个波束视为一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
波束一般和资源对应,例如,进行波束测量时,发送端可通过不同的资源来测量不同的波束,接收端可反馈测得的资源质量,发送端就可以确定对应波束的质量。在本申请实施例中,若未特别说明,波束是指发送端的发送波束。在波束测量中,每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在过去的几十年中,无线通信系统经历了从第一代模拟通信至第五代新无线电(new radio,NR)的技术演变。随着演变的进行,无线通信系统所使用的资源逐渐从时域和频域两个维度,发展到时域、频域和空域三个维度。空域资源的使用源自于多输入多输出(multiple input multiple output,MIMO)系统的发展。在MIMO系统中,发送端可以使用多个天线发送数据,接收端也可以使用多个天线接收数据,从而实现发送端和接收端之间多个空间数据流的并行传输,一方面提升通信速度,另一方面提高通信可靠性。随着MIMO技术的进一步演进,多传输接收节点(multiple transmission and reception point,Multi-TRP)、多面板(multiple panel,Multi-panel)、多波束(multiple beam,Multi-beam)等技术在NR的Uu空口中被提出,并被认为是重要的技术发展方向。
Multi-TRP技术的基本架构如图1所示,多个传输接收节点(transmission and reception point,TRP)可以同时向一个终端装置(例如,UE)传输数据,从而提高通信的速率和可 靠性。一种可能的TRP实现是5G基站。
多面板技术使得终端装置侧和网络装置侧可以存在多个面板(panel),每个面板上安装一个或多个天线。在网络装置侧,使用多个面板可以避免部署大规模MIMO系统时的开销和功耗问题。在终端设备侧,由于面板一般具有方向性,使用多个面板可以覆盖更多空间方向,从而提高通信的可靠性。如图2所示,左侧为四个面板的俯视图,右侧为单个面板的平视图。参见图2右侧所示,单个面板上可以安装四根双极化天线,每两根双极化天线间的水平距离为0.5λ,λ代表信号的波长。当终端装置使用四个面板时,可以向不同方向发送数据,也可以接收来自不同方向的数据。
多波束技术一般应用于20GHz以上的高频段,通过波束赋形(beamforming)技术使得网络装置和终端装置等可以形成一个或多个空间方向上的波束(beam),通过方向上的发送和接收提高通信的速率和可靠性。如图3所示,网络装置可以使用不同方向的发送波束向终端装置传输数据,终端装置也可以使用不同方向的接收波束接收数据。
在使用以上MIMO技术时,接收端需要有能力区分不同的TRP、面板或波束发送的信号。因此,NR中使用了两个重要概念,一个是准共址(quasi co-located,QCL),另一个是传输配置指示(transmission configuration indication,TCI)。
在给出QCL的定义之前,需要首先解释天线端口(antenna port)。天线端口是第三代合作伙伴计划(3rd generation partnership project,3GPP)中广泛使用的逻辑概念,其定义如下:某一天线端口上的信号所经历的信道特性可以从同一天线端口传输的另一信号所经历的信道特性推导出。需要说明的是,天线端口与实际使用的物理天线不同,多个物理天线可以对应于同一个天线端口,一个物理天线也可以对应于多个天线端口。
在天线端口的基础上,QCL的定义如下:某一天线端口上的信号所经历的信道特性可以从另一天线端口上的信号所经历的信道特性推导出,则认为两个天线端口是QCL的。与此同时,在该两个天线端口上传输的参考信号(reference signal,RS)也是具有QCL关系的。例如,天线端口1与天线端口2是QCL的,天线端口1用于传输第一RS,天线端口2用于传输第二RS,那么可以认为第一RS与第二RS也是具有QCL关系的。
NR中使用TCI来指示两个RS的QCL关系。假设,两个RS分别为第一RS和第二RS,网络装置可通过无线资源控制(radio resource control,RRC)信令为第一RS配置TCI状态(TCI-state)。如图4所示,终端装置可通过TCI状态,确定第一RS以某一QCL类型有QCL关系的第二RS。之后,终端装置可通过第二RS的信道特性,推导第一RS的信道特性,从而实现更好的接收第一RS。可选的,第二RS可为信道状态信息参考信号(channel state information reference signal,CSI-RS)或者同步信号块(synchronization signal block,SSB)等。
在NR系统中,除了Uu空口之外,还存在PC5接口,所述PC5接口为终端装置与终端装置之间的通信接口。PC5接口中的传输链路为侧行链路。然而,目前在标准中尚缺少SL TCI标识的配置和指示方法,这阻碍了多面板和多波束等MIMO技术在PC5接口中的使用。
在以下描述中,以网络装置为gNB,终端装置为UE为例,详细描述在Uu空口中TCI的配置与指示方法,以及将Uu空口中的TCI配置与指示方法,直接应用到PC5接口中存在的问题。
在Uu空口中,gNB可通过RRC信令为UE配置多个TCI状态,然后通过媒体访问控 制(media access control,MAC)控制单元(control element,CE)或下行链路控制信息(downlink control information,DCI)指示某一RS的TCI状态。
在Uu空口中,通过RRC信令所配置的TCI状态的信元(information element,IE),可包括以下的至少一个信元:
1、TCI状态标识(tci-StateId):给出TCI状态的标识(identification,ID);
2、类型1的qcl(qcl-Type1):给出一个QCL关系及对应的RS,qcl-Type1继续指向QCL-Info信元,由该QCL-Info信元给出该QCL类型的具体参数。
3、类型2的qcl(qcl-Type2):给出另一个QCL关系及对应的RS,qcl-Type2继续指向QCL-Info信元,由该QCL-Info信元给出该QCL类型的具体参数。
关于QCL-Info信元进一步包括以下两个必选信元,解释如下:
1、参考信号(referenceSignal):给出QCL关系对应的RS,可以为具有某一ID的CSI-RS资源,或者为具有某一编号(index)的SSB;需要说明的是,CSI-RS可表现为CSI-RS资源,一个CSI-RS资源对应一种CSI-RS的配置,CSI-RS的配置参数可包括资源ID、资源映射等参数,资源映射参数可进一步包括端口数、频域位置、时域位置等。
2、qcl类型(qcl-Type):给出QCL关系对应的QCL类型,可能为{typeA,typeB,typeC,typeD}中的任一个。
其中,单个QCL类型对应于一个或多个信道特性的组合,可能的信道特性包括多普勒频移、多普勒拓展、平均时延、时延拓展和空间接收参数等。各个QCL类型对应的信道特性组合简述如下:typeA:{多普勒频移,多普勒拓展,平均时延,时延拓展};typeB:{多普勒频移,多普勒拓展};typeC:{多普勒频移,平均时延};typeD:{空间接收参数}。
当两个天线端口以某一QCL类型具有QCL关系时,两个天线端口上的信号所经历的信道特性被认为在与该QCL类型对应的信道特性上是相同的。以typeD为例,该QCL类型仅对应空间接收参数,因此当两个天线端口以typeD具有QCL关系时,两个天线端口上的信号所经历的信道被认为具有相同的空间接收参数。
通过上述可以看出,在Uu空口中,考虑了多达4种QCL类型,这是为了在gNB间切换、multi-TRP等多个发送设备的场景下,UE可以确定多个发送端RS的QCL类型。然而对于车到一切V2X通信和设备至设备D2D通信等SL场景,多个发送端UE的场景可以简单分解为多个仅包含单个发送端UE和单个接收端UE的单播(unicast)链路。每个单播链路通过发送端UE和接收端UE的ID进行区分。所以,SL场景中只需要关注单播链路中各个RS之间的QCL关系即可。为此,在PC5接口中需要简化TCI定义,以降低TCI状态的配置和指示的信令开销。
基于上述,本申请实施例重新定义了SL TCI标识,将SL TCI标识定义为SL上某一天线端口上的信号所经历的信道特性的标识(ID)。UE可以认为具有相同SL TCI标识的信号所经历的信道特性是相同的。可选的,该信道特性可指空间接收参数,或者说,SL TCI标识仅考虑Uu空口中的类型D(type D)这一QCL类型。比如,若PSSCH解调参考信号(demodulation reference signal,DMRS)的SL TCI标识为0,侧行信道状态信息参考信号(sidelink channel state information reference signal,SL CSI-RS)的SL TCI标识同样为0,则UE可认为PSSCH DMRS和SL CSI-RS所经历的空间接收参数相同。空间接收参数相同可认为PSSCH DMRS与SL CSI-RS是通过同一个面板或波束发送的。需要说明的是,SL TCI标识这一名称也可以替换为QCL标识(QCL ID)或者QCL编号(QCL index)等, 不作限定。
在本申请实施例中,通过简化SL TCI标识的定义,相比于Uu空口减少了TCI的配置和指示所需要的信令开销,解决了Uu空口中QCL类型过多导致的配置和指示方法过于复杂的技术问题。
可选的,本申请实施例中的任一个SL TCI标识的取值范围可为
Figure PCTCN2021092746-appb-000019
中的一个整数值,其中
Figure PCTCN2021092746-appb-000020
为大于或等于1的正整数,用于表示SL TCI标识的最大数目。可选的,
Figure PCTCN2021092746-appb-000021
可为{8,16,32,64,128}中的一个。需要说明的是,Uu空口中的TCI表现为TCI状态,该TCI状态中给出了TCI状态的标识以及QCL关系对应的RS和QCL类型。在本申请实施例中,PC5接口中的TCI表现为TCI标识,不给出QCL关系,如此简化设计并节省信令开销。
除此之外,在Uu空口中用于实现RS的TCI状态的配置和指示的信令包括RRC、MAC CE以及DCI等信令。这对于SL场景中TCI的配置和指示是过于复杂的。另外,PC5接口中没有RRC信令,仅有PC5-RRC信令,且SL中的PC5-RRC信令中不存在类似于Uu空口中配置TCI状态的相似信元。PC5接口中的MAC CE也没有Uu空口中,激活多个TCI状态的相似MAC CE。因此,在PC5接口中,无法通过Uu空口的方法实现TCI的配置和指示。
基于上述,本申请实施例提供一种通信方法及装置,可解决当前SL缺少SL TCI标识的配置和指示的技术问题。关于SL TCI标识的指示包括两种方案:第一种方案为显式指示,第一终端装置可向第二终端装置发送第一指示信息,第一指示信息用于指示第一参考信号的SL TCI标识。第二终端装置根据上述第一指示信息,即可确定第一参考信号的SL TCI标识。第二种方案为隐式指示,第一终端装置可根据第一信号的SL TCI标识,生成第一信号,且向第二终端装置发送第一信号。之后,第二终端装置可根据第一信号,确定第一信号的SL TCI标识。关于SL TCI标识的配置包括两种方案:第一种方案为,第一终端装置根据面板、发送波束或天线的数量,确定多个SL TCI标识;之后,第一终端装置可向第二终端装置发送上述多个SL TCI标识的配置信息。第二种方案为,预先在资源池中配置多个SL TCI标识,第一终端装置和第二终端装置各自根据对应资源池的配置信息,确定多个SL TCI标识。
本申请实施例提供的通信方法及装置可应用于网络架构中。如图5所示,提供一种网络架构,包括第一终端装置501和第二终端装置502。第一终端装置501和第二终端装置502之间可通过侧行链路进行侧行链路通信,传输侧行链路信息。所传输的侧行链路信息可包括数据(data)和调度分配(scheduling assigment,SA)等。可选的,侧行链路信息中还可包括信道状态信息(channel state information,CSI)和混合自动重传请求(hybrid automatic repeat request,HARQ)信息等,HARQ信息中可具体为确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)等。
可选的,在图5所示的网络架构中,还可包括网络装置503,网络装置503可以为接入网设备。终端装置501和/或终端装置502,与网络装置503之间可通过Uu空口进行通信。所述Uu空口的通信包括上行传输和下行传输。上行传输指终端装置501和/或终端设备502,向网络装置503发送上行信号或上行信息。下行传输指网络装置503向终端装置501和/或终端装置502发送下行信号或下行信息。
本申请实施例提供的通信方法及装置可应用于SL场景中,所述SL场景可包括车到一 切(vehicle to everything,V2X)或设备到设备(device-to-devic,D2D)等场景。如图6所示,以车到车通信(vehicle to vehicle,V2V)场景为例,发送端UE和接收端UE,可以分别描述为第一终端装置和第二终端装置,图6中的发送端UE和接收端UE均以车辆UE为例。实际应用场景中的发送端UE和接收端UE可以是任意形态的终端设备。上述场景中还包括发送波束,发送波束是指发送端UE通过多面板或多波束等技术使发送信号形成的具有方向性的辐射模式,在图6中以水滴形表示。
如图7所示,提供一种通信方法,该通信方法可对应于上述第一种显式指示方案,该方法的执行主体为第一终端装置和第二终端装置。可以理解的是,第一终端装置和第二终端装置可以是终端设备,或者,位于终端设备中的部件(例如,芯片、电路或其它等)。该流程包括:
S701:第一终端装置向第二终端装置发送第一指示信息。相对应的,第二终端设备接收来自第一终端设备的第一指示信息。
S702:第一终端装置在第一信道向第二终端装置发送第一RS。相对应的,第二终端装置在第一信道上接收来自第一终端设备的第一RS。其中,所述第一指示信息用于指示第一RS的第一SL TCI标识,所述第一SL TCI标识用于指示传输所述第一RS的第一信道的信道特性,或者,所述第一SL TCI标识用于指示所述第一RS所经历的信道特性。可以理解的是,由于第一终端装置采用不同的面板、发送波束或天线发送第一RS,第一RS所经历的信道特性并不相同。因此,利用所述SL TCI标识可标识不同的面板、发送波束或天线等。在一种可能的实现方式中,第二终端设备在接收到第一指示信息之后,可根据第一指示信息,确定第一RS的SL TCI标识。进一步,第二终端设备可根据所述第一RS的SL TCI标识,可确定第一终端设备发送所述第一RS的面板、发送波束或天线等。需要说明的是,第一终端装置可同时执行上述S701和上述S702,即第一终端装置可同时向第二终端装置发送第一指示信息和第一RS。或者,第一终端装置可按先后顺序发送第一指示信息和第一RS。比如,第一终端装置可先发送第一指示信息,再发送第一RS,或者,先发送第一RS,再发送第一指示信息等,不作限定。
可选的,第一参考信号可包括PSSCH DMRS,或者,物理侧行控制信道(physical sidelink control channel,PSCCH)DMRS,或者,SL CSI-RS,上述S701中的第一指示信息可携带于第二级SCI(2 nd stage SCI)中。
应理解,侧行链路中的SCI可以包括第一级SCI(1 st stage SCI)和第二级SCI。其中,第一级SCI承载于PSCCH中,主要作用是调度对应的PSSCH以及第二级SCI;第二级SCI承载于PSSCH中,主要作用是解调、译码对应PSSCH和/或控制HARQ和CSI流程。
针对PSSCH DMRS,和/或PSCCH DMRS的SL TCI标识的指示方法,在一种可能的实现方式中,第一终端装置可向第二终端装置发送第一指示信息,所述第一指示信息可用于指示PSSCH DMRS和/或PSCCH DMRS的SL TCI标识,所述第一指示信息可承载在第二级SCI的M比特中,M为正整数。第二终端装置可根据第一指示信息,确定PSSCH DMRS和/或PSCCH DMRS的SL TCI标识。可选的,所述M可为标准定义的正整数。例如,M可为{1,2,3,4,5,6}中的一个。或者,所述M可为根据配置的SL TCI标识的数目N SL-TCI得到的正整数。例如M可满足:
Figure PCTCN2021092746-appb-000022
针对SL CSI-RS的SL TCI标识的指示方法,在一种可能的实现方式中,第一终端装置可配置一个SL CSI-RS图样(pattern),第一终端装置可向第二终端装置发送第一指示信息, 所述第一指示信息用于指示SL CSI-RS的SL TCI标识。所述第一指示信息可承载在第二级SCI的M比特中,M为正整数。接收端UE可根据所述第一指示信息,确定SL CSI-RS的SL TCI标识。同样的,所述M可为标准定义的正整数。例如,M可为{1,2,3,4,5,6}中的一个。或者,所述M可为根据配置的SL TCI标识的数目N SL-TCI得到的正整数。例如,所述M满足:
Figure PCTCN2021092746-appb-000023
可选的,可仅当第一终端装置通过第二级SCI触发信道测量时,第一终端装置才在第二级SCI中携带上述SL TCI标识的指示信息,否则在第二级SCI中不再携带上述SL TCI标识的指示信息。
在本申请实施例中,通过上述提供的SL TCI标识的指示方法,可弥补当前SL中缺少SL TCI标识指示方法的缺陷。进一步,基于上述提供的简化的SL TCI标识的定义,相对于Uu空口,可减少TCI指示的信令开销,解决了Uu空口中由于QCL类型过多导致的TCI指示方法,过于复杂的技术问题。
如图8所示,提供一种通信方法,该通信方法可对应于上述第二种隐式指示方案,该方法的执行主体为第一终端装置和第二终端装置。可以理解的是,第一终端装置和第二终端装置可以是终端设备,或者,位于终端设备中的部件(例如,芯片、电路或其它等)。该流程包括:
S801:第一终端装置确定第一信号的第一SL TCI标识,所述第一SL TCI标识用于指示传输第一信号的第一信道的信道特性,或者,所述第一SL TCI标识为传输所述第一信号的信道所经历的信道特性的标识。
S802:第一终端装置根据第一SL TCI标识,确定第一信号。
S803:第一终端装置在所述第一信道向第二终端装置发送第一信号。相应的,第二终端装置在第一信道接收来自第一终端装置的第一信号。
S804:第二终端装置根据第一信号,确定第一SL TCI标识。可选的,由于利用不同面板、波束或天线发送第一信号,第一信号所经历的信道特性并不相同。因此,利用SL TCI标识可标识不同的面板、波束或天线。在一种可能的实现方式中,第二终端设备在确定第一信号的SL TCI标识之后,可进一步根据第一信号的SL TCI标识,确定发送所述第一信号的面板、波束或天线等。
在一种可能的实现方式中,第一信号可为侧行同步信号块(sidelink synchronization signal block,S-SSB),S-SSB中包括物理侧行广播信道(physical sidelink broadcast channel,PSBCH)DMRS。所述PSBCH DMRS的序列的初始化(initialization)参数是根据第一SL TCI标识所生成的。上述S802的一种具体实现方式可为:第一终端装置根据第一SL TCI标识生成PSBCH DMRS的序列的初始化参数;第一终端装置根据PSBCH DMRS的序列的初始化参数,生成PSBCH DMRS序列。上述S804的一种具体实现方式可为:第二终端装置根据所接收的PSBCH DMRS,确定PSBCH DMRS序列的初始化参数;第二终端装置根据PSBCH DMRS序列的初始化参数,确定第一SL TCI标识。
可选的,上述PSBCH DMRS的序列的初始化参数可满足:
Figure PCTCN2021092746-appb-000024
所述c init表示PSBCH DMRS的序列的初始化参数,所述
Figure PCTCN2021092746-appb-000025
表示根据S-SSB索引(i S-SSB)得到的整数值,所述
Figure PCTCN2021092746-appb-000026
表示所述侧行同步信号标识(sidelink synchronization signal identification,SL SSID),所述n SL-TCI表示所述第一SL TCI标识,n SL-TCI为满足0≤n SL-TCI≤N SL-TCI-1的整数。进一步,可选的,根据S-SSB索引i S-SSB得到整数值
Figure PCTCN2021092746-appb-000027
的过程,满足:
Figure PCTCN2021092746-appb-000028
所述mod表示取模运算,所述U为大于或等于0的整数。例如,U为{1,2,3,4}中的一个,优选U=3。
或者,上述PSBCH DMRS的序列的初始化参数可满足:
Figure PCTCN2021092746-appb-000029
其中,c init表示PSBCH DMRS的序列的初始化参数,
Figure PCTCN2021092746-appb-000030
表示SL SSID,n SL-TCI表示第一SL TCI标识,n SL-TCI为满足0≤n SL-TCI≤N SL-TCI-1的整数,M为正整数。所述M可为标准定义的正整数。例如,M为{1,2,3,4,5,6}中的一个。或者,所述M为根据配置的SL TCI标识的数目N SL-TCI得到的正整数。例如,
Figure PCTCN2021092746-appb-000031
在另一种可能的实现方式中,第一信号可为S-SSB,所述S-SSB中同样可包括PSBCH,所述PSBCH的加扰序列的初始化参数是根据第一SL TCI标识所确定的。上述S802的一种具体实现可为:第一终端装置根据PSBCH中的编码比特(encoded bits)的加扰(scrambling)序列的初始化参数,确定加扰序列;且利用所述加扰序列对PSBCH进行加扰。上述S804的一种具体实现可为:第二终端装置对PSBCH进行解扰,确定PSBCH的编码比特的加扰序列;第二终端装置根据所述PSBCH的编码比特的加扰序列,确定PSBCH中的加扰序列的初始化参数;进一步,根据该加扰序列的初始化参数,确定第一SL TCI标识。
可选的,所述PSBCH的加扰序列的初始化参数满足:
Figure PCTCN2021092746-appb-000032
其中,所述c init表示所述PSBCH的加扰序列的初始化参数,所述
Figure PCTCN2021092746-appb-000033
表示SL SSID,所述n SL-TCI表示所述第一SL TCI标识,n SL-TCI为满足0≤n SL-TCI≤N SL-TCI-1的整数,M为正整数。所述M可为标准定义的正整数。例如,M为{1,2,3,4,5,6}中的一个。或者,所述M为根据配置的SL TCI标识的数目N SL-TCI得到的正整数。例如,
Figure PCTCN2021092746-appb-000034
在本申请实施例中,通过上述SL TCI标识的指示方法,不但弥补了SL中缺少SL TCI标识的技术欠缺,相对于Uu空口减少了TCI指示的信令开销。进一步,在该实施例中,由于第一终端装置无需发送SL TCI标识的指示信息,第二终端装置即可确定SL TCI标识,进一步可减少TCI指示的信令开销。
本申请实施例还提供一种通信方法,利用该通信方法可实现为第一终端装置和/或第二终端装置配置SL TCI标识。
在一种可能的实现方式中,第一终端装置可确定N SL-TCI个SL-TCI标识,向第二终端装置发送第一配置信息,所述第一配置信息用于为第二终端装置配置N SL-TCI个SL-TCI标识。可选的,第一配置信息可承载于PC5-RRC信令中,或者,PC5接口的MAC CE中。N SL-TCI为大于或等于1,小于或等于
Figure PCTCN2021092746-appb-000035
的正整数,N SL-TCI个SL-TCI标识表示第一终端装置发送各个RS可以使用的SL TCI标识的数目。
可选的,N SL-TCI可以是根据第一终端装置激活的或者全部的,面板的数目得到的。例如,第一终端装置具有4个面板,则第一终端装置配置N SL-TCI=4个SL-TCI标识。进一步的,当每个面板上仅有一根天线时,此时该面板的数目等价于天线的数目。或者,N SL-TCI可以是根据第一终端装置支持的发送波束的数目所确定的。例如,第一终端装置支持32个发送波束,则第一终端设备可以配置N SL-TCI=32个SL-TCI标识。
在另一种可能的实现方式中,在资源池(resource pool)中可配置有N SL-TCI个SL-TCI标识,其中N SL-TCI为大于或等于1,小于或等于
Figure PCTCN2021092746-appb-000036
的正整数,N SL-TCI个SL-TCI标识表示资源池内任意发送装置发送各个RS可以使用的SL TCI标识的数目。所述资源池是 SL传输可以使用的时频资源的集合,具体形式可以为时域上的多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号以及频域上多个连续的物理资源块(physical resource block,PRB)对应的集合。单个PRB在频域上包括12个子载波(sub-carrier)。所述资源池可具体为发送资源池或接收资源池。相应的,第一终端装置可根据发送资源池的配置信息,确定N SL-TCI个SL-TCI标识。第二终端装置可根据接收资源池的配置信息,确定N SL-TCI个SL-TCI标识。
在本申请实施例中,通过上述SL TCI标识的配置方法,弥补了SL中缺少SL TCI标识的技术欠缺。且基于提出的简化的SL TCI标识的定义,相对于Uu空口,可减少TCI配置的信令开销,解决了Uu空口中由于QCL类型过多导致的TCI配置方法过于复杂的技术问题。
需要说明的是,上述SL TCI标识的配置方法,与上述SL TCI标识的指示方法,可相结合使用,也可单独使用,不作限定。
如图9所示,提供一种通信方法,该通信方法可为上述SL TCI标识的配置方法与SL TCI标识的指示方法相结合使用的一种示例。在该流程中,以第一终端装置为发送端UE,第二终端装置为接收端UE为例进行说明。该流程包括:
S901:发送端UE确定SL TCI标识的配置,接收端UE确定SL TCI标识的配置。
一种可能的实现方式中,发送端UE配置N SL-TCI个SL-TCI标识,并向接收端UE发送配置信息,所述配置信息用于配置N SL-TCI个SL-TCI标识,所述配置信息承载于PC5-RRC信令或者MAC CE中,N SL-TCI为小于或等于
Figure PCTCN2021092746-appb-000037
的正整数。或者,在资源池(resource pool)中配置N SL-TCI个SL-TCI标识。发送端UE根据资源池的配置信息确定N SL-TCI个SL-TCI标识。接收端UE根据资源池的配置信息确定N SL-TCI个SL-TCI标识。
在本申请实施例中,发送端UE可采用显式指示方式或隐式指示方式指示第一RS的SL TCI标识。若发送端UE采用显示指示方式指示第一RS的SL TCI标识。则可选的,图9所示的流程中,可包括:S902:发送端UE向接收端UE发送第一指示信息,所述第一指示信息用于指示第一RS的SL TCI标识,所述第一RS是发送端UE发送的任意一个RS。
当第一RS为PSSCH DMRS,和/或,PSSCH DMRS时,所述SL TCI标识的指示方法可如下:发送端UE向接收端UE发送第一指示信息,所述第一指示信息用于指示PSSCH DMRS,和/或,PSCCH DMRS的SL TCI标识,所述第一指示信息可承载在第二级SCI的M比特中,M为正整数。接收端UE通过所述第一指示信息,可确定PSSCH DMRS,和/或,PSCCH DMRS的SL TCI标识。关于M,可参见上述图7流程中的记载,在此不再说明。
当第一RS为SL CSI-RS时,所述SL TCI标识的指示方法可如下:发送端UE配置SL CSI-RS图样(pattern),发送端UE向接收端UE发送第一指示信息,所述指示信息用于指示第一SL CSI-RS的SL TCI标识,所述第一指示信息承载在第二级SCI的M比特中,M为正整数。接收端UE通过所述第一指示信息,确定SL CSI-RS的SL TCI标识。
当所述第一RS为S-SSB时,SL TCI标识可采用隐式的指式方法。发送端UE可将上述S-SSB的SL TCI标识承载于PSBCH DMRS序列的初始化参数c init中,或者承载于PSBCH中的编码比特(encoded bits)的加扰(scrambling)序列的初始化参数c init中。具体的承载方式,可参见上述图8所示流程的记载,在此不再说明。
S903:发送端UE向接收端UE发送所述第一RS。
需要说明的是,发送端UE可以同时执行步骤S902和步骤S903,即发送端UE可同时向接收端UE发送第一RS,以及第一RS的SL TCI标识的第一指示信息。或者,发送端UE可按照先后顺序执行步骤S902和步骤S903。例如,发送端UE可先执行步骤S902,再执行步骤S903,或者,发送端UE可先执行步骤S903,再执行步骤S902等,不作限定。
S904:接收端UE根据来自发送端UE的所述第一指示信息,确定第一RS的SL TCI标识。
在Uu空口中,通过TCI状态、QCL的定义构建了Uu空口中的TCI框架,并通过RRC信令、MAC CE、DCI给出了Uu空口中TCI状态的配置和指示方法。Uu空口中的TCI框架对于PC5接口是过于灵活的,其配置和指示方式复杂,所使用的RRC信令以及MAC CE在PC5接口中也不存在,且信令开销大。在本申请实施例中,为PC5接口定义了一种新的SL TCI标识,并使用合理的配置和指示方法,通过PC5接口中的高层信令及物理层控制信息完成了SL TCI标识的配置和指示,减少了信令开销。
基于上述SL TCI标识的配置与指示方法,本申请实施例提供一种面板选择、波束选择或天线选择的方法,该方法可解决SL中缺少面板选择、波束选择或天线选择方法的技术问题。以第一终端装置为发送端UE,第二终端装置为接收端UE为例进行描述。
该方法的原理为:由于不同面板、波束或天线所发送的RS所经历的信道特性不同。因此当SL TCI标识用于标识不同信道特性时,SL TCI标识还可标识不同的面板、波束或天线。接收端UE可对不同面板、波束或天线发送的参考信号进行测量,且反馈测量结果和对应的SL TCI标识。发送端UE根据测量结果,进行面板、波束或天线的选择。比如,发送端UE可选择最好的测量结果所对应的SL TCI标识所对应的天线、波束或面板等。
在本申请实施例中,可设定发送端UE具有K个候选面板或候选波束,K为正整数。可选的,每个面板上仅有一根天线时,该K个候选面板等价于K个候选天线。在以下实施例中,以面板作为候选对象的面板选择为示例,描述本申请实施例的流程。可以理解的是,实际的候选对象除了面板外,还可以是波束或天线等。如图10所示,该流程包括:
可选的,S1000:发送端UE确定用于面板选择的RS。
在一种可能的实现方式中,发送端UE可确定用于面板选择的RS是SL CSI-RS。可选的,发送端UE可配置一个SL CSI-RS图样;发送端UE可向接收端UE发送指示信息,所述指示信息用于配置一个SL CSI-RS图样。或者,发送端UE可确定用于面板选择的RS是S-SSB。
需要说明的是,上述步骤S1000是可选的步骤,即发送端UE可以不需要确定用于面板选择的RS。此时,用于面板选择的RS可以是标准定义的,或者资源池配置的,或者发送端UE预配置的等,不作限定。
S1001:发送端UE向接收端UE发送用于面板选择的RS。
一种可能的实现方式,用于面板选择的RS可以为SL CSI-RS,发送端UE可向接收端UE发送SL CSI-RS和第一指示信息,所述第一指示信息用于指示SL CSI-RS的SL TCI标识。例如,发送端UE在N slot个时隙中的第n个时隙,使用第k个面板向接收端UE发送第一指示信息以及SL CSI-RS;其中,N slot为正整数,n为满足0≤n≤N slot-1的整数,k为满足0≤k≤K-1的整数,所述第一指示信息用于指示第n个时隙发送的SL CSI-RS的SL  TCI标识n SL-TCI,n SL-TCI为满足0≤n SL-TCI≤N SL-TCI-1的整数,N SL-TCI为大于或等于K的正整数。接收端UE在N slot个时隙中接收来自发送端UE的第一指示信息以及SL CSI-RS。且接收端UE通过所述第一指示信息,确定上述SL CSI-RS的SL TCI标识。
示例性的,如图11所示,发送端UE具有K=2个候选面板,两个候选面板所对应的SL TCI标识n SL-TCI分别为0和1。发送端UE可使用N slot=4个时隙分别发送SL CSI-RS。例如,发送端UE可在第0个时隙和第1个时隙使用面板0发送SL TCI标识为0的SL CSI-RS,发送端UE在第2个时隙和第3个时隙使用面板1发送SL TCI标识为1的SL CSI-RS。
另一种可能的实现方式,用于面板选择的RS可以为S-SSB。发送端UE可向接收端UE发送S-SSB,所述S-SSB中可携带有SL TCI标识的第一指示信息。例如,发送端UE在N slot个时隙中的第n个时隙,可使用第k个面板向接收端UE发送S-SSB,所述S-SSB包括第一指示信息;其中,N slot为正整数,n为满足0≤n≤N slot-1的整数,k为满足0≤k≤K-1的整数,所述第一指示信息用于指示第n个时隙发送的S-SSB的SL TCI标识,即n SL-TCI,n SL-TCI为满足0≤n SL-TCI≤N SL-TCI-1的整数,N SL-TCI为大于或等于K的正整数。接收端UE在N slot个时隙中接收来自发送端UE的S-SSB,所述S-SSB包括第一指示信息。接收端UE通过所述第一指示信息,确定S-SSB的SL TCI标识。
需要说明的是,在本申请实施例中的“时隙”是传输下行链路信息,或上行链路信息,或SL信息所使用的时间单位。可选的,一个时隙可包括14个或者12个OFDM符号。在NR系统中,对于不同的子载波间隔(subcarrier spacing,SCS),一个帧(frame)中包含的时隙数目也不同。设定一个帧长为10ms。如果使用常规循环前缀(normal cyclic prefix,NCP),则:当SCS为15kHz时,10ms的帧内包含10个时隙,单个时隙对应1ms;当SCS为30kHz时,10ms的帧内包含20个时隙,单个时隙对应0.5ms;当SCS为60kHz时,10ms的帧内包含40个时隙,单个时隙对应0.25ms;当SCS为120kHz时,10ms的帧内包含80个时隙,单个时隙对应0.125ms。或者,如果使用拓展循环前缀(extended cyclic prefix,ECP),则仅支持SCS为60kHz,10ms的帧内包含40个时隙,单个时隙对应0.25ms的配置。
S1002:接收端UE对用于面板选择的RS进行测量,根据测量结果向发送端UE发送第二指示信息。可选的,所述第二指示信息可承载在一个或者多个MAC CE中。
S1003:发送端UE根据所述第二指示信息,进行面板选择。
在一种可能的实现方式中,接收端UE在接收到通过不同面板发送的RS之后,可分别对RS进行测量,得到测量结果。接收端UE可向发送端UE发送上述第二指示信息,所述第二指示信息用于指示不同的测量结果,以及每个测量结果所对应的SL TCI标识。发送端UE在接收到不同的测量结果后,选择满足条件的测量结果,且将满足条件的测量结果所对应的SL TCI标识所对应的面板,作为选定的面板。可选的,后续发送端UE可利用选定的面板与接收端UE进行数据传输。或者,接收端UE可根据不同RS的测量结果,直接选择满足条件的测量结果。之后接收端UE向发送端UE所发送的第二指示信息中,仅携带有满足条件的测量结果所对应的SL TCI标识。接收端UE可将第二指示信息中所携带的SL TCI标识所对应的面板,作为选定的面板。
仍沿用上述图11的举例,发送端UE具有2个面板,分别为面板0和面板1。发送端UE在第0时隙使用面板0发送SL CSI-RS,面板0对应的SL TCI标识为0。发送端在第1时隙使用面板1发送SL CSI-RS,面板1对应的SL TCI标识为1。接收端UE可对第0时 隙发送的SL CSI-RS进行测量,得到信道测量结果0。同理,接收端UE也可对第1时隙发送的SL CSI-RS进行测量,得到信道测量结果1。接收端UE可向发送端UE分别反馈上述两个SL CSI-RS的信道测量结果,以及每个信道测量结果对应的SL TCI标识。之后,在S1003中,接收端UE可根据CSI-RS的信道测量结果,进行面板选择。例如,若面板0所发送的CSI-RS对应的信道测量结果较好,则后续发送端UE可选择面板0与接收端UE进行通信。或者,上述进行面板选择的过程,可发生在接收端UE侧,接收端UE可直接根据RS的测量结果,选择面板,后续在上述S1002的第二指示信息中,可仅携带有所选定面板的SL TCI标识即可。
需要说明的是,由于选择一个RS后,发送端UE需要在不同的面板上多次发送,且针对每一次发送,接收端UE均需反馈一个测量结果。因此,在上述图10所示的流程中,上述S1001与上述S1002是循环执行的。例如,发送端UE所确定的用于面板选择的RS为SL CSI-RS。发送端UE侧具有2个面板。那么发送端UE需分别在2个面板上发送SL CSI-RS。且针对每一个CSI-RS,接收端UE均需反馈一个测量结果。比如,在一种可能的实现方式中,上述过程的先后执行顺序可为:发送端UE利用面板0向接收端UE发送SL CSI-RS0,接收端UE反馈CSI-RS0的测量结果。发送端UE利用面板1向接收端UE发关SL CSI-RS1,接收端UE反馈CSI-RS1的测量结果。或者,发送端UE利用面板0和1分别向接收端UE发磅CSI-RS0和CSI-RS1。之后,接收端UE再分别反馈CSI-RS0和CSI-RS1的测量结果,不作限定。
由于在Uu空口中,通过TCI状态、QCL的定义构建了Uu空口中的TCI框架,并通过该TCI框架实现面板选择,或波束选择。然而,Uu空口的TCI框架因信令开销大,以及所需信令在PC5接口不存在而不能应用于SL中。在上述实施例中,基于提出的SL TCI标识的配置和指示方法,实现了SL中的面板、波束或天线的选择。
如图12所示,提供一种SL TCI标识的指示方法。在以下实施例中,以第一终端装置为发送端UE,第二终端装置为接收端UE为例进行描述。该方法的原理为:预先为发送端UE和接收端UE配置多个SL CSI-RS图样。由于不同面板、波束或天线所发送的SL CSI-RS的图样可以不相同。因此,SL CSI-RS图样与SL TCI标识之间可存在对应关系。两者之间,可为一对一的关系,即一个SL CSI-RS图样对应一个SL TCI标识。或者,两者之间,可为多对一的关系,即多个SL CSI-RS图样对应一个SL TCI标识。参见图12,该方法包括:
S1200:发送端UE配置N CSI-RS个SL CSI-RS图样与N SL-TCI个SL TCI标识的对应关系。其中,N CSI-RS为大于或等于2的正整数,N SL-TCI小于或等于N CSI-RS的正整数。
S1201:发送端UE向接收端UE发送第一指示信息,所述第一指示信息用于指示所述N CSI-RS个SL CSI-RS图样与所述N SL-TCI个SL TCI标识的对应关系。相应的,接收端UE接收来自发送端UE的所述第一指示信息。可选的,所述第一指示信息可携带于PC5-RRC信令中。可选的,所述N CSI-RS个SL CSI-RS图样被配置用于面板选择,或波束选择。
S1202:接收端UE根据所述第一指示信息,确定所述N CSI-RS个SL CSI-RS图样与N SL-TCI个SL TCI标识的对应关系。
在S1202之后,发送端UE可直接向终端设备发送第一SL CSI-RS。接收端UE在接收到该第一SL CSI-RS之后,可根据上述配置的N CSI-RS个SL CSI-RS图样以及所述N SL-TCI个SL TCI标识的对应关系,确定上述第一SL CSI-RS的图样所对应的SL TCI标识。
通过上述方法,提出了一种对于多个SL CSI-RS图样的SL TCI标识的指示方法,发送端UE可预先将SL CSI-RS图样与SL TCI标识的对应关系配置给接收端UE,后续发送端UE不再需要额外指示各个SL CSI-RS图样的SL TCI标识,降低了信令开销。
基于上述SL TCI标识的指示方法,提供一种面板选择、波束选择或天线选择的方法。在以下实施例中,以第一终端装置为发送端UE,第二终端装置为接收端UE为例进行描述。
同样,在本示例中,发送端UE可具有K个候选面板或候选波束,K为正整数。可选的,当每个面板上仅有一根天线上,上述候选面板等价于候选天线。在本申请实施例中,以面板作为候选对象的面板选择为例进行说明。可以理解的是,实际的候选对象除面板外,还以是波束或天线等。如图13所示,该流程包括:
S1301:发送端UE配置N CSI-RS个SL CSI-RS图样与N SL-TCI个SL TCI标识的对应关系,发送端UE向接收端UE发送第一指示信息,所述第一指示信息用于指示所述N CSI-RS个SL CSI-RS图样与N SL-TCI个SL TCI标识的对应关系。
S1302:发送端UE触发面板选择。
在一种可能的实现方式中,发送端UE可向接收端UE发送第二指示信息,所述第二指示信息用于指示发送端UE触发了面板选择,所述第二指示信息承载在第二级SCI的M′比特中,M′为正整数。可选的,M′=1。
S1303:发送端UE向接收端UE发送所述N CSI-RS个SL CSI-RS图样对应的SL CSI-RS标识。
一种可能的实现方式。发送端UE在N slot个时隙中的第n个时隙,使用k n个面板同时发送g n个SL CSI-RS图样对应的SL CSI-RS;其中,N slot为正整数,n为满足0≤n≤N slot-1的整数,k n为小于等于K的正整数,且k n满足
Figure PCTCN2021092746-appb-000038
g n为小于等于N CSI-RS的正整数,且g n满足
Figure PCTCN2021092746-appb-000039
接收端UE在N slot个时隙中接收来自发送端UE的所述N CSI-RS个SL CSI-RS图样对应的SL CSI-RS。接收端UE根据所述N CSI-RS个SL CSI-RS图样,确定各个SL CSI-RS的SL TCI标识。
S1304:接收端UE对接收到的CSI-RS进行测量,得到测量结果,根据测量结果向发送端UE发送第三指示信息,所述第三指示信息用于指示信道测量结果对应的CSI-RS的SL TCI标识。相应的,发送端UE接收来自接收端UE的第三指示信息。可选的,所述第三指示信息可承载在一个或者多个MAC CE中。
S1305:发送端UE根据所述第三指示信息进行面板选择。
在本申请实施例中,发送端UE在不同面板,天线或波束发送的RS,接收端UE对RS进行测量以及反馈,发送端UE根据反馈的测量结果进行面板选择,解决了SL中缺少面板、天线或波束选择方法这一技术问题。进一步,与上述图10所示的流程相比,当前方案使用较少的时隙即可完成面板,天线或波束选择,提高了选择效率。且不使用第二级SCI指示SL TCI标识,节省了信令开销。
以上结合图1至图13详细说明了本申请实施例提供的方法,以下结合图14和图15详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可参见上文方法实施例中的描述。
图14是本申请实施例提供的装置1400的示意性框图,用于实现上述方法中用于第一终端装置或第二终端装置的功能。该装置可以为软件单元或芯片系统。所述系统可以由芯 片构成,也可以包括芯片和其它分立器件。该装置包括通信单元1401,还可包括处理单元1402。通信单元1401,可以与处部进行通信。处理单元1402,用于进行处理。通信单元1401,还可以称为通信接口、收发单元、输入\输出接口等。
在一种示例中,装置1400可以实现对应于图7所示流程中第一终端装置执行的步骤,所述装置1400可以是终端设备,也可以是配置于终端设备中的芯片或电路等。通信单元1401可执行上文方法实施例中第一终端装置的收发操作,处理单元1402可用执行上文方法实施例中第一终端装置的处理相关操作。
比如,处理单元1402,用于生成第一指示信息和第一参考信号;通信单元1401,用于向第二终端装置发送第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;通信单元1401,还用于在所述第一信道向所述第二终端装置发送所述第一参考信号。
可选的,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
可选的,处理单元1402,还用于确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;通信单元1401,用于向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
可选的,处理单元1402在确定N SL-TCI个SL TCI标识时,具体用于:根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理单元1402,还用于:根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
在一种示例中,装置1400可以实现对应于图7所示流程中第二终端装置执行的步骤,所述装置1400可以是终端设备,也可以是配置于终端设备中的芯片或电路等。通信单元1401可执行上文方法实施例中第二终端装置的收发操作,处理单元1402可用执行上文方法实施例中第二终端装置的处理相关操作。
比如,通信单元1401,用于接收来自第一终端装置的第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;通信单元1401,还用于在所述第一信道接收来自所述第一终端装置的第一参考信号。处理单元1402,用于对第一指示信息和第一参考信号进行处理。
可选的,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
可选的,通信单元1401,还用于接收来自所述第一终端装置的第一配置信息,所述第一配置信息用于为所述第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属 于所述N SL-TCI个SL TCI标识;处理单元1402,用于根据所述第一配置信息,确定所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理单元1402,还用于根据接收资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
在一种示例中,装置1400可以实现对应于图8所示流程中第一终端装置执行的步骤,所述装置1400可以是终端设备,也可以是配置于终端设备中的芯片或电路等。通信单元1401可执行上文方法实施例中第一终端装置的收发操作,处理单元1402可用执行上文方法实施例中第一终端装置的处理相关操作。
比如,处理单元1402,用于确定第一信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性;处理单元1402,还用于根据所述第一SL TCI标识,确定所述第一信号;通信单元1401,用于在所述第一信道向第二终端装置发送所述第一信号。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述物理侧行广播信道解调参考信号的序列的初始化参数是根据所述第一SL TCI标识所确定的。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000040
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
Figure PCTCN2021092746-appb-000041
表示根据所述侧行同步信号块索引得到的整数值,所述
Figure PCTCN2021092746-appb-000042
表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
所述根据所述侧行同步信号块索引得到所述
Figure PCTCN2021092746-appb-000043
满足:
Figure PCTCN2021092746-appb-000044
所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000045
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000046
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述物理侧行广播信道的加扰序列的初始化参数是根据所述第一SL TCI标识所确定的。
可选的,所述物理侧行广播信道的加扰序列的初始化参数满足:
Figure PCTCN2021092746-appb-000047
其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000048
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,处理单元1402,还用于确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;通信单元1401,还用 于向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
可选的,处理单元1402在所述确定N SL-TCI个SL TCI标识时,具体用于:根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理单元1402,还用于:根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
在一种示例中,装置1400可以实现对应于图8所示流程中第二终端装置执行的步骤,所述装置1400可以是终端设备,也可以是配置于终端设备中的芯片或电路等。通信单元1401可执行上文方法实施例中第二终端装置的收发操作,处理单元1402可用执行上文方法实施例中第二终端装置的处理相关操作。
比如,通信单元1401,用于在第一信道接收来自第一终端装置的第一信号;处理单元1402,用于根据所述第一信号,确定第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述处理单元1402在根据所述第一信号,确定第一SL TCI标识时,具体用于:根据所述物理侧行广播信道解调参考信号的序列的初始化参数,确定所述第一SL TCI标识。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000049
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
Figure PCTCN2021092746-appb-000050
表示根据所述侧行同步信号块索引得到的整数值,所述
Figure PCTCN2021092746-appb-000051
表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
所述根据所述侧行同步信号块索引得到所述
Figure PCTCN2021092746-appb-000052
满足:
Figure PCTCN2021092746-appb-000053
所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000054
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000055
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述处理单元1402在根据所述第一信号,确定所述第一SL TCI标识时,具体用于:根据所述物理侧行广播信道的加扰序列的初始化参数,确定所述第一SL TCI标识。
可选的,所述物理侧行广播信道的加扰序列的初始化参数满足:
Figure PCTCN2021092746-appb-000056
其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整 数,所述
Figure PCTCN2021092746-appb-000057
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,通信单元1401,还用于:接收来自第一终端装置的第一配置信息,所述第一配置信息用于为第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理单元1402,还用于:根据接收资源池的配置,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
可以理解的是,上述实施例中的通信单元的功能可以由收发器实现,处理单元的功能可以由处理器实现。收发器可以包括发射器和/或接收器等,分别用于实现发送单元和/或接收单元的功能。以下结合图15举例进行说明。
图15所示的通信装置1500包括至少一个处理器1501。通信装置1500还可以包括至少一个存储器1502,用于存储程序指令和/或数据。存储器1502和处理器1501耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性、机械性或其它的形式,用于装置、单元或模块之间的信息交互。处理器1501可以和存储器1502协同操作,处理器1501可以执行存储器1502中存储的程序指令,所述至少一个存储器1502中的至少一个可以包括于处理器1501中。
装置1500还可以包括通信接口1503,用于通过传输介质和其它设备进行通信,从而用于通信装置1500可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
应理解,本申请实施例中不限定上述处理器1501、存储器1502以及通信接口1503之间的连接介质。本申请实施例在图15中以存储器1502、处理器1501以及通信接口1503之间通过通信总线1504连接,总线在图15中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
在一种示例中,装置1500用于实现上述图7所示流程中第一终端装置执行的步骤。通信接口1503用于执行上文实施例中第一终端装置的收发相关操作,处理器1501用于执行上文方法实施例中第一终端装置的处理相关操作。
例如,处理器1501,用于生成第一指示信息和第一参考信号;通信接口1503,用于向第二终端装置发送第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;通信接口1503,还用于在所述第一信道向所述第二终端装置发送所述第 一参考信号。
可选的,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
可选的,处理器1501,还用于确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;通信接口1503,用于向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
可选的,处理器1501在确定N SL-TCI个SL TCI标识时,具体用于:根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理器1501,还用于:根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
比如,通信接口1503,用于接收来自第一终端装置的第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;通信接口1503,还用于在所述第一信道接收来自所述第一终端装置的第一参考信号。处理器1501,用于对第一指示信息和第一参考信号进行处理。
可选的,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
可选的,通信接口1503,还用于接收来自所述第一终端装置的第一配置信息,所述第一配置信息用于为所述第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;处理器1501,用于根据所述第一配置信息,确定所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理器1501,还用于根据接收资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
在一种示例中,装置1500用于实现上述图7所示流程中第二终端装置执行的步骤。通信接口1503用于执行上文实施例中第二终端装置的收发相关操作,处理器1501用于执行上文方法实施例中第二终端装置的处理相关操作。
比如,通信接口1503,用于接收来自第一终端装置的第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;通信接口1503,还用于在所述第一信道接收来自所述第一终端装置的第一参考信号。处理器1501,用于对第一指示信息和第一参考信号进行处理。
可选的,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
可选的,通信接口1503,还用于接收来自所述第一终端装置的第一配置信息,所述第一配置信息用于为所述第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;处理器1501,用于根据所述第一配置信息,确定所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理器1501,还用于根据接收资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
在一种示例中,装置1500用于实现上述图8所示流程中第一终端装置执行的步骤。通信接口1503用于执行上文实施例中第一终端装置的收发相关操作,处理器1501用于执行上文方法实施例中第一终端装置的处理相关操作。
比如,处理器1501,用于确定第一信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性;处理器1501,还用于根据所述第一SL TCI标识,确定所述第一信号;通信接口1503,用于在所述第一信道向第二终端装置发送所述第一信号。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述物理侧行广播信道解调参考信号的序列的初始化参数是根据所述第一SL TCI标识所确定的。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000058
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
Figure PCTCN2021092746-appb-000059
表示根据所述侧行同步信号块索引得到的整数值,所述
Figure PCTCN2021092746-appb-000060
表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
所述根据所述侧行同步信号块索引得到所述
Figure PCTCN2021092746-appb-000061
满足:
Figure PCTCN2021092746-appb-000062
所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000063
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000064
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述物理侧行广播信道的加扰序列的初始化参数是根据所述第一SL TCI标识所确定的。
可选的,所述物理侧行广播信道的加扰序列的初始化参数满足:
Figure PCTCN2021092746-appb-000065
其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整 数,所述
Figure PCTCN2021092746-appb-000066
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,处理器1501,还用于确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;通信接口1503,还用于向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
可选的,处理器1501在所述确定N SL-TCI个SL TCI标识时,具体用于:根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处器1501,还用于:根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
在一种示例中,装置1500用于实现上述图8所示流程中第二终端装置执行的步骤。通信接口1503用于执行上文实施例中第二终端装置的收发相关操作,处理器1501用于执行上文方法实施例中第二终端装置的处理相关操作。
比如,通信接口1503,用于在第一信道接收来自第一终端装置的第一信号;处理器1501,用于根据所述第一信号,确定第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述处理器1501在根据所述第一信号,确定第一SL TCI标识时,具体用于:根据所述物理侧行广播信道解调参考信号的序列的初始化参数,确定所述第一SL TCI标识。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000067
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
Figure PCTCN2021092746-appb-000068
表示根据所述侧行同步信号块索引得到的整数值,所述
Figure PCTCN2021092746-appb-000069
表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
所述根据所述侧行同步信号块索引得到所述
Figure PCTCN2021092746-appb-000070
满足:
Figure PCTCN2021092746-appb-000071
所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
可选的,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
Figure PCTCN2021092746-appb-000072
其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000073
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述处理器1501在根据所述第一信号,确定所述第一SL TCI标识时,具体用于:根据所述物理侧行广播信道的加扰序列的初始化参数,确定所述第一SL TCI标识。
可选的,所述物理侧行广播信道的加扰序列的初始化参数满足:
Figure PCTCN2021092746-appb-000074
其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整数,所述
Figure PCTCN2021092746-appb-000075
表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
可选的,通信接口1503,还用于:接收来自第一终端装置的第一配置信息,所述第一配置信息用于为第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
可选的,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
可选的,处理器1501,还用于:根据接收资源池的配置,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
进一步的,本申请实施例还提供一种装置,所述装置用于执行上文方法实施例中的方法。一种计算机可读存储介质,包括程序,当所述程序被处理器执行时,上述方法实施例中的方法被执行。一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被运行时,使得计算机执行上文方法实施例中的方法。一种芯片,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被处理器执行时,使得装置执行上文方法实施例中的方法。
本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个 可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (63)

  1. 一种通信方法,其特征在于,包括:
    向第二终端装置发送第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;
    在所述第一信道向所述第二终端装置发送所述第一参考信号。
  2. 如权利要求1所述的方法,其特征在于,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;
    向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
  4. 如权利要求3所述的方法,其特征在于,所述确定N SL-TCI个SL TCI标识,包括:
    根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
  5. 如权利要求3或4所述的方法,其特征在于,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  6. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  7. 一种通信方法,其特征在于,包括:
    接收来自第一终端装置的第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;
    在所述第一信道接收来自所述第一终端装置的第一参考信号。
  8. 如权利要求7所述的方法,其特征在于,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
  9. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端装置的第一配置信息,所述第一配置信息用于为所述第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;
    根据所述第一配置信息,确定所述N SL-TCI个SL TCI标识。
  10. 如权利要求9所述的方法,其特征在于,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  11. 如权利要求7或8所述的方法,其特征在于,所述方法还包括:
    根据接收资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  12. 一种通信方法,其特征在于,包括:
    确定第一信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性;
    根据所述第一SL TCI标识,确定所述第一信号;
    在所述第一信道向第二终端装置发送所述第一信号。
  13. 如权利要求12所述的方法,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述物理侧行广播信道解调参考信号的序列的初始化参数是根据所述第一SL TCI标识所确定的。
  14. 如权利要求13所述的方法,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100001
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
    Figure PCTCN2021092746-appb-100002
    表示根据所述侧行同步信号块索引得到的整数值,所述
    Figure PCTCN2021092746-appb-100003
    表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
    所述根据所述侧行同步信号块索引得到所述
    Figure PCTCN2021092746-appb-100004
    满足:
    Figure PCTCN2021092746-appb-100005
    所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
  15. 如权利要求13所述的方法,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100006
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
    Figure PCTCN2021092746-appb-100007
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
  16. 如权利要求12所述的方法,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述物理侧行广播信道的加扰序列的初始化参数是根据所述第一SL TCI标识所确定的。
  17. 如权利要求16所述的方法,其特征在于,所述物理侧行广播信道的加扰序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100008
    其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整数,所述
    Figure PCTCN2021092746-appb-100009
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
  18. 如权利要求12至17中任一项所述的方法,其特征在于,所述方法还包括:
    确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;
    向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
  19. 如权利要求18所述的方法,其特征在于,所述确定N SL-TCI个SL TCI标识,包括:
    根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
  20. 如权利要求18或19所述的方法,其特征在于,所述第一配置信息承载于PC5接口 的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  21. 如权利要求12至17中任一项所述的方法,其特征在于,所述方法还包括:
    根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  22. 一种通信方法,其特征在于,包括:
    在第一信道接收来自第一终端装置的第一信号;
    根据所述第一信号,确定第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性。
  23. 如权利要求22所述的方法,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述根据所述第一信号,确定第一SL TCI标识,包括:
    根据所述物理侧行广播信道解调参考信号的序列的初始化参数,确定所述第一SL TCI标识。
  24. 如权利要求23所述的方法,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100010
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
    Figure PCTCN2021092746-appb-100011
    表示根据所述侧行同步信号块索引得到的整数值,所述
    Figure PCTCN2021092746-appb-100012
    表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
    所述根据所述侧行同步信号块索引得到所述
    Figure PCTCN2021092746-appb-100013
    满足:
    Figure PCTCN2021092746-appb-100014
    所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
  25. 如权利要求23所述的方法,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100015
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
    Figure PCTCN2021092746-appb-100016
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
  26. 如权利要求22所述的方法,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述根据所述第一信号,确定所述第一SL TCI标识,包括:
    根据所述物理侧行广播信道的加扰序列的初始化参数,确定所述第一SL TCI标识。
  27. 如权利要求26所述的方法,其特征在于,所述物理侧行广播信道的加扰序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100017
    其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整数,所述
    Figure PCTCN2021092746-appb-100018
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
  28. 如权利要求22至27中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自第一终端装置的第一配置信息,所述第一配置信息用于为第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  29. 如权利要求28所述的方法,其特征在于,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  30. 如权利要22至27中任一项所述的方法,其特征在于,所述方法还包括:
    根据接收资源池的配置,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  31. 一种终端装置,其特征在于,包括:
    处理单元,用于生成第一指示信息以及第一参考信号;
    其中,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;
    通信单元,用于向第二终端装置发送第一指示信息,以及在所述第一信道向所述第二终端装置发送所述第一参考信号。
  32. 如权利要求31所述的装置,其特征在于,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
  33. 如权利要求31或32所述的装置,其特征在于,
    所述处理单元,还用于确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;
    所述通信单元,还用于向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
  34. 如权利要求33所述的装置,其特征在于,所述处理单元在确定N SL-TCI个SL TCI标识时,具体用于:
    根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
  35. 如权利要求33或34所述的装置,其特征在于,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  36. 如权利要求31或32所述的装置,其特征在于,
    所述处理单元,还用于根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  37. 一种终端装置,其特征在于,包括:
    通信单元,用于接收来自第一终端装置的第一指示信息,所述第一指示信息用于指示第一参考信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一参考信号的第一信道的信道特性;
    所述通信单元,还用于在所述第一信道接收来自所述第一终端装置的第一参考信号;
    处理单元,用于对所述第一指示信息和所述第一参考信号进行处理。
  38. 如权利要求37所述的装置,其特征在于,所述第一参考信号包括物理侧行共享信道解调参考信号,或者物理侧行控制信道解调参考信号,或者侧行信道状态信息参考信号,所述第一指示信息携带于第二级的侧行控制信息中。
  39. 如权利要求37或38所述的装置,其特征在于,
    所述通信单元,还用于接收来自所述第一终端装置的第一配置信息,所述第一配置信息用于为所述第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;
    所述处理单元,还用于根据所述第一配置信息,确定所述N SL-TCI个SL TCI标识。
  40. 如权利要求39所述的装置,其特征在于,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  41. 如权利要求37或38所述的装置,其特征在于,
    所述处理单元,还用于根据接收资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  42. 一种终端装置,其特征在于,包括:
    处理单元,用于确定第一信号的第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性;
    所述处理单元,还用于根据所述第一SL TCI标识,确定所述第一信号;
    通信单元,用于在所述第一信道向第二终端装置发送所述第一信号。
  43. 如权利要求42所述的装置,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述物理侧行广播信道解调参考信号的序列的初始化参数是根据所述第一SL TCI标识所确定的。
  44. 如权利要求43所述的装置,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100019
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
    Figure PCTCN2021092746-appb-100020
    表示根据所述侧行同步信号块索引得到的整数值,所述
    Figure PCTCN2021092746-appb-100021
    表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
    所述根据所述侧行同步信号块索引得到所述
    Figure PCTCN2021092746-appb-100022
    满足:
    Figure PCTCN2021092746-appb-100023
    所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
  45. 如权利要求43所述的装置,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100024
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
    Figure PCTCN2021092746-appb-100025
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
  46. 如权利要求42所述的装置,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述物理侧行广播信道的加扰序列的初始化参数是根据所述第一SL TCI标识所确定的。
  47. 如权利要求46所述的装置,其特征在于,所述物理侧行广播信道的加扰序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100026
    其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整 数,所述
    Figure PCTCN2021092746-appb-100027
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
  48. 如权利要求42至47中任一项所述的装置,其特征在于,
    所述处理单元,还用于确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识;
    所述通信单元,还用于向所述第二终端装置发送第一配置信息,所述第一配置信息用于为所述第二终端装置配置所述N SL-TCI个SL TCI标识。
  49. 如权利要求48所述的装置,其特征在于,所述处理单元在确定N SL-TCI个SL TCI标识时,具体用于:
    根据第一终端装置的面板、发送波束或天线的数量,确定所述N SL-TCI个SL TCI标识。
  50. 如权利要求48或49所述的装置,其特征在于,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  51. 如权利要求42至47中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据发送资源池的配置信息,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  52. 一种终端装置,其特征在于,包括:
    通信单元,用于在第一信道接收来自第一终端装置的第一信号;
    处理单元,用于根据所述第一信号,确定第一侧行传输配置指示SL TCI标识,所述第一SL TCI标识用于指示传输所述第一信号的第一信道的信道特性。
  53. 如权利要求52所述的装置,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道解调参考信号,所述处理单元在根据所述第一信号,确定第一SL TCI标识时,具体用于:
    根据所述物理侧行广播信道解调参考信号的序列的初始化参数,确定所述第一SL TCI标识。
  54. 如权利要求53所述的装置,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100028
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述
    Figure PCTCN2021092746-appb-100029
    表示根据所述侧行同步信号块索引得到的整数值,所述
    Figure PCTCN2021092746-appb-100030
    表示所述侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数;
    所述根据所述侧行同步信号块索引得到所述
    Figure PCTCN2021092746-appb-100031
    满足:
    Figure PCTCN2021092746-appb-100032
    所述i S-SSB表示所述侧行同步信号块索引,所述U为大于或等于0的整数,所述mod表示取模运算。
  55. 如权利要求53所述的装置,其特征在于,所述物理侧行广播信道解调参考信号的序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100033
    其中,所述c init表示所述物理侧行广播信道解调参考信号的序列的初始化参数,所述M为正整数,所述
    Figure PCTCN2021092746-appb-100034
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所 述n SL-TCI为自然数。
  56. 如权利要求52所述的装置,其特征在于,所述第一信号为侧行同步信号块,所述侧行同步信号块包括物理侧行广播信道,所述处理单元在根据所述第一信号,确定所述第一SL TCI标识时,具体用于:
    根据所述物理侧行广播信道的加扰序列的初始化参数,确定所述第一SL TCI标识。
  57. 如权利要求56所述的装置,其特征在于,所述物理侧行广播信道的加扰序列的初始化参数满足:
    Figure PCTCN2021092746-appb-100035
    其中,所述c init表示所述物理侧行广播信道的加扰序列的初始化参数,所述M为正整数,所述
    Figure PCTCN2021092746-appb-100036
    表示侧行同步信号标识,所述n SL-TCI表示所述第一SL TCI标识,所述n SL-TCI为自然数。
  58. 如权利要求52至57中任一项所述的装置,其特征在于,
    所述通信单元,还用于接收来自第一终端装置的第一配置信息,所述第一配置信息用于为第二终端装置配置N SL-TCI个SL TCI标识,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  59. 如权利要求58所述的装置,其特征在于,所述第一配置信息承载于PC5接口的无线资源控制消息中,或者,所述第一配置信息承载于PC5接口的媒体接入控制控制元素中。
  60. 如权利要52至57中任一项所述的装置,其特征在于,
    所述处理单元,还用于根据接收资源池的配置,确定N SL-TCI个SL TCI标识,所述N SL-TCI为大于或等于1的正整数,所述第一SL TCI标识属于所述N SL-TCI个SL TCI标识。
  61. 一种终端装置,其特征在于,包括处理器,所述处理器与至少一个存储器耦合,所述处理器用于读取所述至少一个存储器所存储的计算机程序,以执行如权利要求1至6中任意一项所述的方法,或执行如权利要求7至11中任意一项所述的方法,或执行权利要求12至21中任意一项所述的方法,或执行权利要求22至30中任意一项所述的方法。
  62. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令以执行权利要求1至6中任意一项所述的方法,或者执行权利要求7至11中任意一项所述的方法,或执行权利要求12至21中任意一项所述的方法,或执行权利要求22至30中任意一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求1至6中任意一项所述的方法被执行,或如权利要求7至11中任意一项所述的方法被执行,或如权利要求12至21中任意一项所述的方法被执行,或如权利要求22至30中任意一项所述的方法被执行。
PCT/CN2021/092746 2020-05-27 2021-05-10 一种通信方法及装置 WO2021238635A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21811758.8A EP4145747A4 (en) 2020-05-27 2021-05-10 COMMUNICATION METHOD AND DEVICE
US17/994,041 US20230118141A1 (en) 2020-05-27 2022-11-25 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010462497.4 2020-05-27
CN202010462497.4A CN113746606B (zh) 2020-05-27 2020-05-27 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,041 Continuation US20230118141A1 (en) 2020-05-27 2022-11-25 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021238635A1 true WO2021238635A1 (zh) 2021-12-02

Family

ID=78722978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092746 WO2021238635A1 (zh) 2020-05-27 2021-05-10 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20230118141A1 (zh)
EP (1) EP4145747A4 (zh)
CN (2) CN113746606B (zh)
WO (1) WO2021238635A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230119446A1 (en) * 2021-10-18 2023-04-20 Qualcomm Incorporated Configuring sidelink transmission configuration indication state using access link signaling
WO2023142016A1 (zh) * 2022-01-29 2023-08-03 Oppo广东移动通信有限公司 无线通信的方法及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981155A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 一种波束训练方法及相关设备
CN110034798A (zh) * 2018-01-11 2019-07-19 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN110149612A (zh) * 2018-02-11 2019-08-20 华为技术有限公司 波束确定方法及第一通信设备、第二通信设备
CN110418357A (zh) * 2018-04-26 2019-11-05 华为技术有限公司 通信方法和装置
CN110996395A (zh) * 2019-12-12 2020-04-10 展讯通信(上海)有限公司 用于辅链路的传输配置信息指示方法及装置、存储介质、终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019050367A1 (ko) * 2017-09-08 2019-03-14 엘지전자 주식회사 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
US20200389883A1 (en) * 2017-11-16 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Configuring spatial qcl reference in a tci state
US20200053702A1 (en) * 2018-08-09 2020-02-13 FG Innovation Company Limited Method and apparatus for performing sidelink communication in wireless communication systems
EP3834315A4 (en) * 2018-08-09 2022-05-11 Fg Innovation Company Limited METHOD AND DEVICE FOR CARRYING OUT SIDELINK COMMUNICATION IN WIRELESS COMMUNICATION SYSTEMS
US11863268B2 (en) * 2018-08-10 2024-01-02 Qualcomm Incorporated Quasi-colocation indication for non-zero power channel state information reference signal port groups
CN113169836A (zh) * 2018-11-02 2021-07-23 鸿颖创新有限公司 用于多发射/接收点(trp)操作的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981155A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 一种波束训练方法及相关设备
CN110034798A (zh) * 2018-01-11 2019-07-19 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN110149612A (zh) * 2018-02-11 2019-08-20 华为技术有限公司 波束确定方法及第一通信设备、第二通信设备
CN110418357A (zh) * 2018-04-26 2019-11-05 华为技术有限公司 通信方法和装置
CN110996395A (zh) * 2019-12-12 2020-04-10 展讯通信(上海)有限公司 用于辅链路的传输配置信息指示方法及装置、存储介质、终端

Also Published As

Publication number Publication date
CN115987470A (zh) 2023-04-18
US20230118141A1 (en) 2023-04-20
EP4145747A1 (en) 2023-03-08
CN113746606A (zh) 2021-12-03
EP4145747A4 (en) 2023-11-08
CN113746606B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US11695451B2 (en) Electronic device, communication method and storage medium
US10075218B2 (en) Method and apparatus for FD-MIMO based multicasting in vehicular communication systems
EP2606617B1 (en) Transmission of reference signals
CN107872303B (zh) 传输反馈信息的方法和装置
CN109845131B (zh) 用于在无线通信系统中报告信道状态信息的方法和设备
US10887060B2 (en) Electronic device and communication method in a wireless communication system
WO2018141272A1 (zh) 终端、网络设备和通信方法
US9282541B2 (en) Method in which a terminal cooperates with another terminal to transmit data, and method for receiving the data
US11337188B2 (en) Method and device for transmitting/receiving uplink control information in wireless communication system
WO2021027518A1 (zh) 处理数据的方法和通信装置
CN116133135A (zh) 上行链路传输的预编码信息信令方法和装置
WO2021238635A1 (zh) 一种通信方法及装置
TW202215867A (zh) 用於進行車聯網通訊的傳輸終端和接收終端、以及在車聯網通訊系統中進行通訊的方法
WO2021136152A1 (zh) 物理信道传输方法、装置、节点和存储介质
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
CN114944891A (zh) 一种被用于无线通信的节点中的方法和装置
CN110138429A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
CN110545581B (zh) 一种被用于无线通信的节点中的方法和装置
CN102932918B (zh) 物理上行控制信道分配方法、用户设备、和基站
WO2022067749A1 (zh) 一种分集通信的方法及装置
US11569957B2 (en) Method and apparatus for transmitting and receiving downlink control channel in shortened transmission time intervals
WO2020259356A1 (zh) 通信方法和通信装置
AU2022348189A1 (en) Flexible tci state indication under unified tci framework
CN115380583A (zh) 利用预留资源的通信装置和通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021811758

Country of ref document: EP

Effective date: 20221201

NENP Non-entry into the national phase

Ref country code: DE