WO2021238225A1 - 光学镜片和光删组合分解2d视频为3d视频的立体眼镜 - Google Patents

光学镜片和光删组合分解2d视频为3d视频的立体眼镜 Download PDF

Info

Publication number
WO2021238225A1
WO2021238225A1 PCT/CN2021/000096 CN2021000096W WO2021238225A1 WO 2021238225 A1 WO2021238225 A1 WO 2021238225A1 CN 2021000096 W CN2021000096 W CN 2021000096W WO 2021238225 A1 WO2021238225 A1 WO 2021238225A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
glasses
lens
lenses
light
Prior art date
Application number
PCT/CN2021/000096
Other languages
English (en)
French (fr)
Inventor
刘简
Original Assignee
刘简
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘简 filed Critical 刘简
Publication of WO2021238225A1 publication Critical patent/WO2021238225A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/14Mirrors; Prisms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention is a kind of 3D glasses that converts 2D videos into 3D videos by wearing the glasses, through the front end of the glasses.
  • the left and right lenses shoot 2D video images, and the 2D video decomposed from the left and right lenses at the back of the glasses enters the left and right eyes respectively, and you can see the 3D video converted from the 2D video into a 3D video.
  • the stereo glasses can convert 2D video into 3D video without any video information processing, and only decompose and shift the optical path.
  • a kind of current 3D glasses are glasses for watching 3D movies and TV screens.
  • the 3D video screen is a video screen synthesized by the left and right eyes after shooting at an angle with two 2D shooting lenses on the left and right of the actual shooting scene.
  • the two 2D video screens synthesized on the left and right produce 3D stereoscopic visual effects.
  • This kind of 3D glasses now has a time-sharing switch type liquid crystal lens glasses that uses the shutter as the light valve liquid crystal.
  • the switching frequency is 120Hz to change the amplitude, and the left and right eyes can watch the corresponding 2D video separately.
  • the technical characteristics of wearing this kind of 3D glasses are: 1 ) Looking at two-angle 2D images of the same shooting scene; 2) Looking at the 2D images of two different scenes of the same shooting scene;
  • the principle and application technology of refraction and reflection optics for prism lenses and curved lenses including triangular prisms, including equilateral triangular prisms and right-angle triangular prisms;
  • Chinese patent CN104246579A published on December 24, 2014, discloses a kind of stereo glasses that can turn 2D images or object images into stereo 3D images for viewing.
  • the main technical feature is that there are two sets of mirrors in the glasses.
  • the angle combination makes the 2D image or object image light reflected by the two sets of mirrors on the left and right of the glasses, and enters the left and right eyes at different light angles, forming angular vision difference, which conforms to the technical characteristics of the two-angle 2D image in 1) above Three-dimensional.
  • the effect of the stereo vision is still insufficient;
  • the present invention uses optical lenses 2, 10 and 3, 11, with prisms (curved lenses) as the representative of two or more combined lenses and the left and right glasses frame alternately transparent grating technology means, decomposing the 2D video light into A into two different light rays A1 and A2 are a combination of optical lens and optical cut to decompose 2D video into 3D video glasses production method, including the existing combination of optical lens and grating, characterized in that: the optical lens combination, so that the incident light in the combined lens Internal refraction and reflection occur repeatedly to determine the outgoing optical lens and incoming optical lens, so that the direction of the outgoing light and the incoming light are the same parallel light, and the outgoing light and incoming light are shifted in parallel, thus forming a combined spectroscopic lens;
  • the parallel light of the left and right combination splitting lenses produces opposite refraction and reflection at the corresponding interface points of the left and right optical lens groups.
  • the incoming light undergoes different refraction and reflection at the mirror interface, so that the incident light and the outgoing light form an angle, changing the optical path, and using two or more optical lenses represented by the prism, Combined into a prism (or optical lens) combination, this prism (or optical lens) combination, the bottom surface is a square or parallelogram, the light-in optical lens and the light-out optical lens are a symmetrical combination of opposites to each other, so this triangular prism
  • the incident light mirror surface and the outgoing light mirror surface of the combined lens group are parallel.
  • the triangular prism lens (optical lens) combined lens Both are equivalent to a "planar lens";
  • the optical lenses mentioned in 1) and 2) above are representative of the 2, 10 and 3, 11 right-angled triangular prism light-transmitting lenses shown in Figure 2.
  • the larger the angle between the long right-angled side surface and the inclined surface of the lens is The thicker the plano lens combined with the triangular prism lens of 2), when the glasses are made according to 2), the thick end mirror has a greater displacement relative to the front end mirror, so that the light entering the left and right eyes also obtains a greater incident light displacement The difference in the visual distance is enhanced.
  • the thick combination plan lens with a large angle will increase the weight of the glasses.
  • the above-mentioned triangular prism lens with a small angle and a small thickness is used, and the inner surfaces of the two lenses are separated by a distance.
  • the separation distance is preferably 1/6 of the longest dimension of the spacer surface, so that the thickness of the combined "planar lens" with a small angle is the same as the thickness of the combined flat lens with a large angle, and the light transfer effect of the two is almost the same. The latter is reduced in weight;
  • the left and right lens combination of the glasses is more than two optical lenses, with prisms or curved lenses, because the front and rear optical lenses in the frame are symmetrical and reversed.
  • the combination of left and right glasses is also opposite to each other, so that the technical characteristics of the left and right combination lenses are: 2D video incident light enters the corresponding plane or On the curved surface, and make the incident light and the corresponding light emitted from the rear mirror of the respective combined mirror in a parallel direction, because the incident angle of the A light of the 2D video into the two front-end mirrors is opposite to each other, and the incident light is combined on the left and right.
  • the refraction and reflection of the corresponding light in the lens are also opposite to each other.
  • the light passes through the refraction and reflection of different phases in the left and right combined lens, and the light A of the 2D video is decomposed into two different light rays, A1 and A2, which are incident at the same time.
  • the light path is changed many times to cause the emergent light to shift to the incident light, so that the left and right sides of the exit mirror produce images of human eyes whose displacements are opposite to each other and smaller than the thickness d, which increases the effect of decomposing A into A1 and A2.
  • the use of a combination of curved lenses to decompose the A positions A1 and A2 is also achieved by applying the technical means of refraction and reflection on the corresponding curved mirrors of the left and right curved lens combinations that are opposite to each other.
  • the 2D video space is alternately decomposed into two equal amounts of different 2D video spaces using the alternate transparent light deletion technology of 4 left gratings and 5 right gratings to enter the left and right eyes. Based on the natural attributes of ergonomics, the four-dimensional visual space increases the sense of three-dimensional vision.
  • the appearance and internal structure of the glasses are composed of: 1 glasses case, 6 left glasses frame, 7 right glasses frame, 6 left glasses frame And 7 In the right glasses frame, two sets of optical lenses are assembled, 2 left front optical lens, left rear optical lens, 3 right front optical lens, 11 right rear optical lens, and two sets of left and right optical lenses are arranged alternately between the two sets of optical lenses in the glasses frame.
  • transparent grating, 4 and 5 the left and right alternately transparent gratings alternately transparent grating.
  • the two sets of optical lenses are two sets of triangular prism lenses, 2 left front triangular prism lens, 10 left rear triangular prism lens and 3 right front triangular prism lens, 11Right rear triangular prism sheet.
  • the left and right glasses frames are equipped with (right-angle or equilateral) prism lens: 2 left front prism lens, 10 left rear prism lens and 3 left front prism lens, 11
  • the two sets of lenses of the right rear triangular prism lens are equivalent to two angled 2D shooting lenses; the assembly is shown in Figure 2.
  • the 6 left glasses frame and the 7 right glasses frame of the 1 glasses case are embedded in each other.
  • the front and rear two triangular prism sheets in the left and right glasses frames correspond to the same mirror surface Stacked into a rectangular parallelepiped or parallelepiped; two triangular prism sheets assembled in the left and right frames, corresponding to the same triangular prism faces, are superimposed to form a rectangular parallelepiped or parallelepiped, that is, a quadrangular prism with a rectangular or flat quadrilateral bottom surface.
  • 3D glasses that combines optical lens and optical deletion to decompose 2D video into 3D video.
  • the angle between the overlapping surface and the screen plane shown in Figure 2 is ⁇
  • the angle between the overlapping surface of the triangular prism and the screen plane as shown in Figure 2 is 30 degrees.
  • corresponding to the maximum viewing angle width of the left and right glasses, with a maximum included angle of less than 70 degrees, ⁇ 1 and ⁇ 2 are assembled in the left and right glasses frame to obtain the maximum splitting effect of the left and right lens combination; by installing two prisms in reverse, the objective lens has two rays The optical path is changed in the opposite direction, so that the optical path of the visual image is not changed.
  • the objective lens has the same flat lens, but because the incident angle of the flat light from the 2D display screen into the two sets of lenses is different, the refraction and reflection effect of the combination of the left and right prism lenses of the glasses , 10 left rear triangular prism lens, 11 right rear triangular prism lens, come out of different angles of light in the same video, decomposing the incident light into different light from the left and right glasses, which is equivalent to producing a difference in visual distance between the two eyes.
  • 3D glasses It is a kind of 3D glasses that combines optical lens and optical cut to decompose 2D video into 3D video. It is equipped with two left and right alternating transparent blocking lenses, including time-sharing shutter liquid crystal lens: 4 left time-sharing switch liquid crystal lens and 5 right time-sharing switch LCD lens.
  • the left and right eyeglass frames, 6, 7 are equipped with alternate transparent blocking lenses: 4 left alternately through lens, 5 right Alternate pass lens, two alternating transparent liquid crystal lenses on the left and right, including time-sharing shutter liquid crystal lenses: 4 left time-sharing shutter liquid crystal lenses, 5 right time-sharing shutter liquid crystal lenses; 4 left time-sharing shutter liquid crystal lenses and 5
  • the right time-sharing shutter type liquid crystal lens is assembled between the two triangular prism superimposed mirrors in the two glasses frame, or is installed in front or behind the triangular prism lens group; the 2D video is alternately blocked by the frequency of the left and right blocking lenses of the glasses, which is equivalent to alternate shooting 2D video images; the alternating transparent blocking lens selects time-sharing shutter liquid crystal lenses, and pulsed square wave voltage is applied to the two lenses, so that the time-sharing shutter liquid crystal lens alternately blocks 2D video, and obtains different transparent square
  • two time-sharing shutter liquid crystal lenses are used to form the blocking lenses in the left and right eyeglass frames, which are installed in the front and back three prism lenses.
  • the pulsed square wave voltage of 3 ⁇ 20V alternately provides square wave pulse voltage to the left and right liquid crystal glasses.
  • the square wave frequency of the input pulse voltage is 5 ⁇ 35Hz, so that the liquid crystal semiconductors of the left and right glasses are alternated under the action of the cross-body voltage.
  • Transparency is performed by alternately changing between the end of one light transmission and the beginning of light transmission, so that the left and right eyeglass frames are alternately transparent, resulting in a three-dimensional vision.
  • the frequency of the left and right glasses frame is 5 ⁇ 35 frames/sec.
  • the time-sharing switch liquid crystal lens is controlled by the 9-minute time switch liquid crystal lens pulse frequency controller.
  • the input square wave pulse voltage of the liquid crystal lens is 3 ⁇ 20V, square wave pulse.
  • the frequency is 5 to 35 Hz/sec.
  • the parallel rays of light coming out of the 2D video in all directions are stereoscopic vision rays.
  • the two groups of optical lenses represented by triangular prism translucent lenses in the left and right eyeglass frames of the glasses are superimposed back and forth, so that the light entering the left and right lens groups will reflect and refract the light more through the combination of the prism lens (optical lens).
  • the secondary function and the triangular prism lens are combined into two combined plano lenses with eight-character positioning, which decomposes and shifts the light rays in the same direction of the 2D video into two light rays with different angles and two 2D video images with different displacements.
  • the images in different positions enter the left and right eyes separately, which solves the problem of the "interference" of the stereo vision of the two eyes caused by the same 2D video of parallel light.
  • the actual three-dimensional effect detection It is the basic technical principle of 3D movies to see 2D video with a single eye.
  • the three-dimensional effect of the glasses of the present invention is tested: first see the 2D video with a single eye, see the single-eye stereo video, and then put on the glasses to watch the 2D video , What you see is a better stereoscopic video than what you see with a single eye.
  • Invented stereo glasses have a deep stereo vision, but no angular stereo vision; 3D glasses have angular stereo vision, but no deep stereo vision. Therefore, the invented stereo glasses have a better stereo vision in panoramic images than 3D glasses, which is the stereo vision seen by the two eyes without the sharpness of the visual angle.
  • Figure 1 is a structural diagram of the technical features of the method of the present invention. Symbol name of the structure shown in Figure 1:
  • Figure 2 is the overall structure of the three-dimensional glasses including the eyeglass housing 1, left and right eyeglass frames 6, 7, eyeglass legs 8 and nose bridge 9, and the right-angle prism sheets 2, 4 and 3, 5 in the eye frame, The frontal front view of the shape and positional relationship and the virtual block diagram of the two straight triangular prism sheet obliquely facing the assembly position 2. Symbol names of components shown in Figure 2:
  • Figure 1 shows the appearance and internal components, structure, shape composition and positional relationship of the 3D glasses designed according to the technical features of the 3D glasses described in [0008].
  • the glasses are composed of: 1 glasses case, 6 left glasses frame , 7 Right glasses frame, left and right glasses frames are equipped with (right-angle or equilateral) prism lens: 2 left front prism lens, 3 right front prism lens, 4 left rear prism lens, 5 right rear prism lens, two sets of lenses, equivalent to
  • the 2D images form two shooting lenses with an outer angle.
  • the angle is the angle between the left and right front mirrors of the glasses. It is appropriate to take 150 ⁇ 90 degrees.
  • the front and back of the 6 left glasses frame and the 7 right glasses frame, each phase is embedded with two right eye frame prism lens front and rear assembling position 1.
  • imaginary square The front and rear two right-angle prism sheets 2, 4, 3, and 5 shown in box 2. are reversely assembled.
  • the front two and the back two prism lenses on the left and the right are installed in the opposite direction, so that the 2D video light is in the opposite direction.
  • the incident angle enters the front mirrors of the left and right glasses frames, and the incoming light is refracted and reflected in opposite directions through the subsequent three interfaces to change the optical path. Due to the parallel symmetry of the front and rear mirrors, the optical path direction of the visual image does not change.
  • the objective lens has the same plane lens, but because the plane light from the 2D display screen enters the two sets of lenses at different angles of incidence, the combination of the left and right prism lenses of the glasses has multiple refraction and reflection effects. It is the light from different angles of the same video, and the light is displaced. The incident light is decomposed into different light from the left and right glasses.
  • the photosensitive points of the two eyes also have a displacement difference, which is equivalent to a light difference and a displacement image with different angles of the two eyes. Sensitivity difference, these two visual distance differences are combined into a stereoscopic vision.
  • two right-angle prism lenses 2, 4 and 3, 5 are installed in the front and rear ends of the left and right glasses frames 6, 7 of the glasses case 1).
  • the incident angle of the front incident surface of the flat mirror is within the scope of the guaranteed viewing angle, and the angle of installation is as large as possible to increase the reflection angle and increase the amount of reflection.
  • Different light makes the left and right three prism sheets 10 and 11 emit more light from different angles, and the visual difference between the two groups of light is greater, and a stronger sense of stereo vision is obtained;
  • Fig. 2 is a diagram of the assembly structure of stereo glasses.
  • the appearance of the glasses housing 1) is based on a kind of glasses with usual left and right eyeglass frames 6, 7 which are equipped with more than two optical lenses.
  • Here are equipped with front (right-angle) triangular prism sheets 2, 3 and rear (right-angle) triangular prism sheets 4, 5, the front and rear two 8-15 degree right-angled triangular prism oblique planes are shown in the dashed box 2 of Figure 2.
  • Opposite Pitch assembly to form a combined light-transmitting prism with a rectangular (or parallelogram) bottom surface, and the internal facing surfaces are spaced apart to increase the "thickness" of the rectangular (or parallelogram) prism lens, thereby increasing the displacement of the lens;
  • the combined lens thickness is the same, it is obtained by reducing the thickness of the right-angle prism lens and increasing the distance between the front and rear lenses.
  • ⁇ mm install the above 2 mirrors (right angle) prism lens, the left and right lenses on the front of the glasses are symmetrical and in the same direction, and the 2D screen surface is assembled at the opposite angle.
  • the angle between the parallel plane and the screen surface is also maximized under the condition of ensuring the light extraction effect of the wide viewing angle, so that the incident light is reflected and refracted differently, and the glasses can have a wider field of view; two stacks of front and back
  • the angle between the surfaces is less than 45 degrees), the better the splitting effect, that is, the better the parallax effect of the light.
  • the left and right eyeglass frames 6 and 7 are inverted inwardly to each other, so that the reverse image displacement occurs when the 2D video passes through the eyeglass lenses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Nonlinear Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了光学镜片和光栅组合分解2D视频为3D视频的立体眼镜,涉及3D影视技术领域。该立体眼镜,用光学镜片和交替通透光栅的左右镜片组分解2D视频为2个不同视频,其特征在于:进入和出来的左右眼镜框的同一平行光在组合镜片对应界面发生互为反向折射和反射,所述组合镜片为三棱镜,组合镜片中的两三棱镜叠合成底面呈长方形或平形四边形的组合棱镜;进入左右眼镜框的光被交替通透的光栅等量时空分解,分解2D视频画面为两个不同画面,所述光栅为左右交替通透分时快门式液晶镜片,戴上这种三棱镜片组和分时快门式液晶镜片的立体眼镜,实现了2D视频转换为3D立体视觉影像的观看。

Description

光学镜片和光删组合分解2D视频为3D视频的立体眼镜
现有的3D电影,戴上3D眼镜,左右眼看到的是屏幕上两个不同拍摄角度的2D视频;本发明是一种戴上该眼镜看2D视频转换成3D视频的立体眼镜,通过眼镜前端左右镜片拍摄2D视频画面、从眼镜后端左右镜片分解出来的2D视频分别进入左右眼、可以看到2D视频转换成3D视频的立体影像。该立体眼镜,可以把2D视频不做任何视频信息处理,只分解和位移光路,即可转换为3D视频。
背景技术
现在2D视频拍摄是单镜头拍摄,技术特征是拍摄视频影像存在单眼立体影像。
一种现在的3D眼镜,是看3D影视画面的眼镜。3D影视画面是对实际拍摄物景用左右两个2D拍摄镜头,成角度进行拍摄后显示的左右眼合成的影视画面,左右合成的两个2D影视画面产生3D立体视觉效果。这种3D眼镜现在有一种采用快门为光阀液晶的分时开关式液晶镜片眼镜,以开关频率是120Hz变换幅度,左右眼分别观看对应的2D视频;戴这种3D眼镜的技术特征为:1)看的是同一拍摄物景的两个角度2D影像;2)看的是.同一拍摄物景的两个不同画面的2D影像;
棱镜镜片和曲面镜片的折射、反射光学原理和应用技术,包括三棱镜片,有等边三角棱镜和直角三角棱镜;
中国专利CN104246579A,公开日期2014年12月24日,公开了一种可将2D影像或物体图像变成立体3D影像观看的立体眼镜,其主要技术特证是眼镜里左右两组几个反射镜的角度组合,使得2D影像或物体图像光线经过眼镜左右两组几个反射镜反射后,以不同的光线角度进入左右眼,形成角度视觉差, 符合上述1)的两个角度2D影像的技术特征的立体感。但由于缺少上述2)的两个不同画面的2D影像的技术特征,使得立体视觉感的效果仍然不足;
PCT公布(WO/2018/152654)了一种2D视频转换为3D视频的理论方法和眼镜装置的发明申请(申请号PCT/CN2017/000187),公布日:30.08.2018,申请文件公开了一种依据发现的科学理论方法制作2D视频转换为3D视频的眼镜的技术方法,用分解2D视频4维空间的理论方法解读产生视距差的眼镜制作方法,眼镜分解2D视频A为等量的不同的A1和A2视频。
发明内容
【技术方案要解决的技术问题】
要解决单眼立体影像的两眼看2D视频而不能看到3D立体影像的问题,要克服,已公开的中国专利CN104246579A,因缺少两个不同画面的2D影像,而使得眼镜立体感效果不足、不能实用的缺陷,要解决的问题如下:
1.不用再专门拍摄两个角度影视画面的3D影视,戴上该3D眼镜看2D画面的电影电视,通过解决2D视频同一组平行光线的同一个视频图像直接进入双眼产生立体视觉感的相互“干扰”而看不到3D立体影像的问题,能够看到3D立体影像;
2.克服在中国专利CN104246579A中反光镜片不能透光分光和移光而直接看视频以及立体视觉感的效果不足的缺陷;
3.克服现在3D影视角度拍摄视频的不同角度进入左右眼所产生视觉疲劳感的缺陷。
【解决问题所采用的技术手段】
如说明书附图1所示,对照上述1)、2)所表述的两个角度2D影像和 2个不同画面2D影像的3D眼镜技术特征和PCT公布(WO/2018/152654)的眼镜分解2D视频为等量的不同的A1和A2视频的技术特征,两者科学实质相同,一个是两个拍摄空间形成两个A1和A2显示空间,另一个是一个拍摄空间形成两个A1和A2显示空间,A1和A2进入人左右眼视觉空间,产生了物理学意义上的人体工学的视觉“4维空间”,前者产生不同角度图像的视距差,后者产生不同光线和分解2D视频为左右不同画面的视距差。本发明是采用2、10和3、11光学镜片的以棱镜(曲面透镜)为代表两枚以上组合镜片和左右眼镜镜框交替通透光栅技术手段,分解2D视频光线为A为两个不同的光线A1和A2,是一种光学镜片和光删的组合分解2D视频为3D视频的眼镜的制作方法,包括现有的光学镜片和光栅的组合,其特征在于:光学镜片组合,使得入射光线在组合镜片内反复发生折射和反射,确定射出光学镜片与射入光学镜片,使得射出光线方向与射入光线为相同的平行光线,出射光线与射入光线发生了平行位移,由此构成组合分光镜片;进入左右两组合分光镜片的平行光,发生左右两个光学镜片组对应界面点上的互为反向的折射和反射,同时可加入左右两个交替通透的光栅,实现分解A光为A1光和A2光,实现视距差立体视觉感。其中组合棱镜透光镜片分光式立体眼镜为表的主要技术特征为:
1)利用三棱镜为代表的光学镜片,进入光线在镜界面发生不同的折射反射,使得入射光和出射光成角度,改变了光路,又利用两个或两个以上以三棱镜为代表的光学镜片,组合成一个三棱镜(或光学镜片)组合体,这个三棱镜(或光学镜片)组合体,底面外形是一个正方形或平行四边形的进光光学镜片和出光光学镜片互为反向的对称组合,这样这个三棱镜组合镜片组的射进光镜面和射出光镜面是平行的,依据光路的可逆性原理,不管底面为正方形或平行四边形棱镜组合体内部的棱镜之间角度关系怎样,三棱镜片(光学镜片)组合镜片都 相当一枚“平光镜片”;
2)用两枚1)所述的“平光镜片”作为立体眼镜的左右眼镜框的左右眼镜片,左右两枚组合平光镜片内部镜面互为反向角度,并且两平光镜片前后镜面随同左右镜框一起互成角度150~90度的倒“V”字形,使得进入左右镜面的2D视频光线A入射角不同,由于光线组合镜内部的反射和折射都是互为相反的,A光线的在左右组合镜内部被多次互为反向地反射和折射而过滤掉了,后端镜面出来的是左右眼镜框内光学镜片组合分解了A光线为A1和A2光线;
3)上述1)、2)所述的光学镜片,代表性的有附图2所示的2、10和3、11直角三棱镜透光镜片,镜片的长直角边面和斜面的夹角度越大的三棱镜镜片组合成的平光镜片也越厚,依据2)所述做成眼镜时,厚端镜面相对前端镜面获得了更大的位移,使得进入左右眼的光线也获得来更大的入射光位移差,增强了视距差感,然尔,这种大夹角度的组合平光镜片太厚会增加眼镜的重量,所以,采用上述夹角度小的厚度小的三棱镜镜片,两镜片内面间隔出距离,间隔距离是间隔面最长尺寸的1/6为宜,使的小夹角度的组合“平光镜片”的厚度等同大夹角度的组合平光镜片的厚度,两者得分光移光效果及乎相同,后者重量减轻;
4)盖括1)、2)、3)的综合技术手段所代表的技术特征,得出眼镜左右镜片组合是两枚以上光学镜片,有棱镜或曲面透镜,因为镜框里前后光学镜片是对称反向组合,左右眼镜组合也互为反向,使得左右组合镜片所具有的技术特征为;2D视频入射光线以最大的互为相反的相同入射角射入左右组合镜的左右前镜片对应的平面或曲面上,并且使得射入光线同各自的组合镜后镜面射出的对应光线在一个平行方向上,因为2D视频的A光线射入两前端镜面光线的入射角互为相反最大,入射光线在左右组合镜片里使之对应的光线的折射和反射也互为相反,光线经过左右组合镜片内反复不同方相的折射反射,把2D视频的光线A 分解成了A1和A2两个不同的光线,同时入射光线经多次改变光路使得出射光线对入射光线产生位移,使得出镜面出来左右两个产生了互为反向小于厚度d的位移的人眼成像,增加了分解A为A1、A2的效果。使用曲面透镜的组合分解A位A1、A2,也是通过应用左右曲面镜片组合的对应曲面镜面上互为反向的折射和反射的技术手段来实现的。
5)如说明书附图1所示,利用4左光栅、5右光栅的交替通透光删技术,把2D视频空间交替地时空地分解为2个等量的不同的2D视频空间,进入左右眼的4维视觉空间,依据人体工学的自然属性,增加了立体视觉感。
对照上述1)、2)所表述的两个角度2D影像和2个不同画面2D影像的3D眼镜技术特征,是一种利用光学镜片和光删组合分解2D视频为3D视频的方法制作的光学镜片和光删的组合分解2D视频为3D视频的立体眼镜,如说明书附图1所示,眼镜外型和内部构造组成:包括1眼镜机壳、6左眼镜框、7右眼镜框,在6左眼镜框和7右眼镜框内,装配两组光学镜片,2左前光学镜片、左后光学镜片和3右前光学镜片、11右后光学镜片,在眼镜框内的两组光学镜片之间装配左右两个交替通透光栅,4左交替通透 光栅和5右交替通透光栅
是一种光学镜片和光删组合分解2D视频为3D视频的立体眼镜,如附图2所示两组光学镜片是两组三棱镜片,2左前三棱镜片、10左后三棱镜片和3右前三棱镜片、11右后三棱镜片。
,是一种光学镜片和光删组合分解2D视频为3D视频的立体眼镜,左右眼镜框里装配有(直角或等边)三棱镜片:2左前三棱镜片、10左后三棱镜片和3左前三棱镜片、11右后三棱镜片的两组镜片,相当于成角度的两个2D拍摄拍摄镜头;装配如附图2所示,在1眼镜机壳的6左眼镜框和7右眼镜框前后,各相嵌有两枚图1的右眼睛框三棱镜片前后装配位置1的虚方框1和左眼 睛框三棱镜片前后装配位置2的虚方框2的所示互为反向装配的直角三棱镜片,2左前三棱镜片、3右前三棱镜片、10左后三棱镜片、11右后三棱镜片的是以相同的斜面或直角面对向叠合实施装配,装配后左右眼镜框内前后两三棱镜片的对应相同的镜面叠合成长方六面体或平行六面体;装配在左右镜框里的两枚三棱镜片,对应相同的三棱镜面叠合形成长方六面体或平行六面体,即底面为长方形或平形四边形的四棱柱体。
是一种光学镜片和光删组合分解2D视频为3D视频的立体眼镜,其附图2所示的叠合面与屏幕平面夹角¥,斜边角度30度三棱镜的叠合面与屏幕平面夹角¥,对应左右眼镜最大视角宽度,以小于70度的最大夹角¥1和¥2装配于左右眼镜框中,获得左右两镜片组合最大分光效果;通过反向安装两枚三棱镜,使得物镜光线两次相互反方向的改变光路,使得视觉图像光路没有发生改变,看物镜效果同一平面透镜,但由于来自2D显示屏幕平面光进入两组镜片的入射角不同,通过眼镜左右三棱镜片组合的折射反射作用,10左后三棱镜片、11右后三棱镜片出来的是同视频的不同角度的光线,分解入射光线为左右眼镜不同的光线,相当于产生了两眼视角不同的的视距差。
是一种光学镜片和光删组合分解2D视频为3D视频的立体眼镜,装配左右两个交替通透遮挡镜片,包括分时快门式液晶镜片:4左分时开关式液晶镜片和5右分时开关式液晶镜片。
是一种利用光学镜片和光删组合分解2D视频为3D视频的立体眼镜,附图2所示,在左右眼镜框,6、7里装配交替通透遮挡镜片:4左交替通透镜片、5右交替通透镜片,为左右两个交替通透液晶镜片,包括分时快门式液晶镜片:4左分时快门式液晶镜片,5右分时快门式液晶镜片;4左分时快门式液晶镜片和5右分时快门式液晶镜片装配在两眼镜框内两三棱镜叠合镜面之间,或 着装在三棱镜片组的前面或后面;通过眼镜的左右两遮挡镜片频率交替遮挡2D视频,相当于交替拍摄2D视频画面;交替通透遮挡镜片选用分时快门式液晶镜片,两镜片加以脉冲方波电压,使得分时快门式液晶镜片的交替遮挡2D视频,获得左右眼不同的以方波频率交替通透不同画面的两个2D视频。
是一种光学镜片和光删组合分解2D视频为3D视频的立体眼镜,附图2所示,采用两枚分时快门式液晶镜片组成左右眼镜框里的遮挡镜片,安装在前后两枚三棱镜片当中或镜片组前后,脉冲正方波3~20V电压交替给左右液晶眼镜片提供方波脉冲电压,输入脉冲电压的方波频率为5~35Hz,使左右两眼镜片液晶半导体在交体电压作用下交替通透,均以是一个透光结束一个透光开始的交替变换进行,使得左右眼镜框交替通透,产生立体感视觉。左右眼镜框交替通透变换频率为5~35幅/秒;分时开关式液晶镜片由9分时开关式液晶镜片脉冲频率控制器控制液晶镜片输入方波脉冲电压为3~20V,正方波脉冲频率为5~35Hz/秒。
【技术方案的效果】
2D视频出来的各个方向上平行光线是立体视觉光线,两眼直接看屏幕时,两眼相对平行光线的对称性和视频图像的相同性,干扰了两眼对2D视频的立体视觉感的生成。本眼镜左右眼镜框里的两组前后反向叠合的以三棱镜透光镜片为代表的光学镜片,使得射入左右镜片组的光线,通过三棱镜片(光学镜片)组合对光线反射、折射的多次作用和三棱镜镜片组合成的两个呈八字定位的组合平光镜镜片,分解和位移了2D视频的同方向光线为两个不同角度方向光线和两个不同位移的2D视频画面,不同角度光线的不同位置画面分别进入左右眼,解决了平行光线的相同2D视频对双眼立体视觉感的“干扰”而使其消失的问题,人眼感受到的是左右眼不同光线和位移到眼睛不同感光位置的这两个视 距差效果,实现了戴上眼镜直接看2D视频,获得3D立体视觉效果。
实际立体效果的检测。单眼看2D视频,能够看到立体视频是现在3D电影的基本技术原理,检测了本发明眼镜的立体感效果是:先单眼看2D视频,看到了单眼的立体视频,再戴上眼镜看2D视频,看到的是比单眼看到的更好的立体视频。
发明立体眼镜的立体视觉感效果与现在影院式3D眼镜的视觉效果的比较:
1)单眼立体感效果:戴各自眼镜单眼看视频的立体视觉感,发明立体眼镜优于3D眼镜;
2)双眼立体感效果:发明立体眼镜有纵深立体视觉感,没有角度立体视觉感;3D眼镜有角度立体视觉感,但没有纵深立体视觉感。所以,发明立体眼镜的在全景画面立体视觉感优于3D眼镜,是两眼看到的没有视觉角度锐度的立体视觉感。
.附图说明
图1是本发明方法的技术特征构造图。附图1所示构造符号名称:
2左前光学镜片,3右前光学镜片,4左交替通透光栅,5右交替通透光栅,10左后光学镜片,11右后光学镜片,1、6、7、8、9、12所示构造符号名称同附图2所示构件符号名称。
图2是本发明方法具体实施立体眼镜的包括眼镜外壳1、左右眼镜框6、7、眼镜腿8和鼻架9,眼框内的直角三棱镜片2、4和3、5、的整体结构、形状和位置关系的正面主视图和两直三棱镜片斜面对向装配位置2的虚框图。附图2所示构件符号名称:
1眼镜机壳
2左前(直角)三棱镜片
3右前(直角)三棱镜片
4左分时开关式液晶镜片
5右分时开关式液晶镜片
6左眼镜框
7右眼镜框
8眼镜腿
9分时开关式液晶镜片脉冲频率控制器
10左后(直角)三棱镜片
11右后(直角)三棱镜片
12眼镜鼻架
具体实施方式
【实施方式】
附图1所示的是依据【0008】所述立体眼镜技术特征所设计的立体眼镜的外型和内部元件、构造、形状组成和位置关系,眼镜组成为:1眼镜机壳、6左眼镜框、7右眼镜框,左右眼镜框里装配有(直角或等边)三棱镜片:2左前三棱镜片、3右前三棱镜片、4左后三棱镜片、5右后三棱镜片的两组镜片,相当于对2D画面成外夹角角度的两个拍摄镜头,这个夹角是眼镜前端左右两前镜面夹角¥,¥取150~90度为宜;装配如附图1所示,在1眼镜机壳的6左眼镜框和7右眼镜框前后,各相嵌有两枚图1的右眼睛框三棱镜片前后装配位置1.的虚方框1.和左眼睛框三棱镜片前后装配位置2.的虚方框2.的所示前后两互为反向装配的直角三棱镜片2、4和、3、5,通过反向安装左右前两枚和后两 枚三棱镜镜片,使得2D视频光线以互为反向的入射角进入左右眼镜框的前镜面,进入光线通过后续的3个介面互为反方向地折射和反射改变光路,因组合前镜面和后镜面的平行对称,视觉图像光路方向没有发生改变,看物镜效果同一平面透镜,但由于来自2D显示屏幕平面光进入两组镜片的入射角不同,通过眼镜左右三棱镜片组合的多次反复折射反射作用,4左后三棱镜片、5右后三棱镜片出来的是同视频的不同角度的光线,并且光线发生了位移,分解入射光线为左右眼镜不同的光线,两眼的感光点也发生了位移差,相当于产生了两眼不同的角度光线差和位移图像感光差,这两个视距差合成为立体视觉感。
如附图1所示,在眼镜机壳1)左右眼镜框6、7里前后端安装各两枚直角三棱镜片2、4和3、5,选用角度60度直角三棱镜片,两斜面向内对向装配成底面长方形的组合“平光镜”,平光镜前入射面的入射角在保证视角范围,尽可能大角度安装,增加反射角度,增加反射量,进入左右眼镜框镜面折射光线和反射为角度不同的光线,使得左右两后三棱镜片10、11出来更多不同角度光线,两组光线视觉差就更大,获得了更强的立体视觉感;
【实施例】
附图2是立体眼镜的装配结构图,所示眼镜外壳1)的外形是依据一种具有通常左右眼镜框6、7的眼镜,眼镜左右眼镜框6、7内所装配有两枚以上光学镜片,这里装配有前(直角)三棱镜片2、3和后(直角)三棱镜片4、5,前后两8~15度直角三棱镜斜角面按附图2的虚方框2所示图.对向间距装配,形成底面为长方形(或平行四边形)的组合透光棱镜,内部对向面有间隔距离,是为了增加长方形(或平行四边形)棱镜镜片的“厚度”,以此增大出镜画面位移;在组合镜片厚度相同,是通过减小直角三棱镜镜片的厚度,增加前后镜片间隔,获得的,如说明书附图索示在眼镜机壳1左右眼镜框6、7里前后端棱镜 斜面对向间隔4~mm安装上面2枚镜(直角)三棱镜片,眼镜前左右两镜片对称同向对2D屏幕面成反向角度装配,眼镜后左右两直角三棱镜眼镜片的斜面与前左右两直角三棱镜片的斜面的平行面与屏幕面的夹角也使在确保获得交宽视野角度取光效果的条件下最大化,使入射光线呈不同反射、折射来进行分光,并且眼镜能有较宽视野;前后两叠合直角三棱镜片组的如附图1.的两个装配位置2的虚方框图内镜片组所示的进光面、叠合面对2D视频图像平面夹角¥越大(叠合面与2D屏幕面的夹角小于45度),分光效果即光线视距差效果越好,同时互为反向内斜的左右眼镜框6、7,使得2D视频通过眼镜镜片时产生反向图像位移。

Claims (8)

  1. 一种光学镜片和光删组合分解2D视频为3D视频的眼镜的方法,包括组合光学镜片和光栅,其特征在于:两枚以上光学镜片组合,使得入射光线在组合镜片内反复发生折射和反射,射出光学镜片与射入光学镜片使得射出光线方向与射入光线为相同的平行光线,并且出射光线与射入光线发生了平行位移,由此构成组合分光镜片;进入左右两组合分光镜片的平行光:A光在两组合镜片的对应界面点上的互为反向的折射和反射,左右交替通透分光,分解A光为A1光和A2光。
  2. 一种依据权利要求1所述的一种光学镜片和光栅组合的方法所设计的一种光学镜片和光删组合来分解2D视频为3D视频的眼镜立体眼镜;包括眼镜机壳(1)、左眼镜框(6)和右眼镜框(7),其特征在于:在左眼镜框(6)和右眼镜框(7)内,前后装配两组光学镜片,眼镜框内的两组光学镜片之间,装配左右两个交替通透液晶镜片。
  3. 依据权利要求2所述的一种光学镜片和光栅组合分解2D视频为3D视频的立体眼镜,其特征在于:两组光学镜片是两组三棱镜片,左眼镜框里的左前三棱镜片(2)、左眼镜框里的左后三棱镜片(10)和右眼镜框里的右前三棱镜片(3)、右眼镜框里的右后三棱镜片(11)。
  4. 依据权利要求3所述的一种光学镜片和光栅组合分解2D视频为3D视频的立体眼镜,其特征在于:眼镜框内前端的左前三棱镜片(2)和右前三棱镜片(3)与眼镜框内后端的左后三棱镜片(10)和右后三棱镜片(11)的三棱面是以相同的斜面或直角面对向叠合实施装配,装配后左右眼镜框内前后两三棱镜片的对应相同的镜面叠合成长方六面体或平行六面体。
  5. 依据权利要求4所述的一种光学镜片和光栅组合分解2D视频为3D视频的立体眼镜,其特征在于:左右两三棱镜的叠合面与屏幕平面夹角¥,对应左右眼 镜最大视角宽度,以小于70度最大夹角¥1和¥2装配于左右眼镜框中,获得左右两镜片组合最大分光效果。
  6. 依据权利要求2所述的一种光学镜片和光栅组合分解2D视频为3D视频的立体眼镜,其特征在于:左右两个交替通透液晶镜片,包括分时快门式液晶镜片:左分时快门式液晶镜片(4),右分时快门式液晶镜片(5)。
  7. 依据权利要求6所述的一种光学镜片和光栅组合分解2D视频为3D视频的立体眼镜,其特征在于:左分时快门式液晶镜片(4)和右分时快门式液晶镜片(5)装配在两眼镜框内两三棱镜叠合镜面之间,或着装在三棱镜片组的前面或后面。
  8. 依据权利要求7所述的一种光学镜片和光栅组合分解2D视频为3D视频的立体眼镜,其特征在于:左右眼镜框交替通透,交替通透均以是一个透光结束一个透光开始的交替变换进行,交替通透变换频率为5~35幅/秒;分时开关式液晶镜片由液晶镜片脉冲频率控制器(9)控制液晶镜片输入方波脉冲电压为3~20V,正方波脉冲频率为5~35Hz/秒。
PCT/CN2021/000096 2020-05-26 2021-05-10 光学镜片和光删组合分解2d视频为3d视频的立体眼镜 WO2021238225A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020926119.2U CN213634009U (zh) 2020-05-26 2020-05-26 看2d视频为3d视频的立体眼镜
CN202020926119.2 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021238225A1 true WO2021238225A1 (zh) 2021-12-02

Family

ID=76619644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/000096 WO2021238225A1 (zh) 2020-05-26 2021-05-10 光学镜片和光删组合分解2d视频为3d视频的立体眼镜

Country Status (3)

Country Link
JP (1) JP3233322U (zh)
CN (1) CN213634009U (zh)
WO (1) WO2021238225A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2052544U (zh) * 1989-02-21 1990-02-07 张火荣 电视图象立体化眼镜
US5002364A (en) * 1986-03-04 1991-03-26 Georgia Tech Research Corp. Stereoscopic process and apparatus using different deviations of different colors
CN203025424U (zh) * 2012-12-19 2013-06-26 虢登科 3d影像观看装置
CN104246579A (zh) * 2012-03-28 2014-12-24 金城都 可将2d影像或物体图像变成立体3d影像观看的立体眼镜
US20160070112A1 (en) * 2014-09-05 2016-03-10 Jay Song Adjustable optical stereoscopic glasses
US20170038598A1 (en) * 2015-03-04 2017-02-09 Jay Song Adjustable optical stereoscopic glasses
CN107660276A (zh) * 2015-03-04 2018-02-02 宋杰 可调节光学立体眼镜
CN110800292A (zh) * 2017-02-22 2020-02-14 刘简 2d视频转换为3d视频的理论方法和眼镜装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002364A (en) * 1986-03-04 1991-03-26 Georgia Tech Research Corp. Stereoscopic process and apparatus using different deviations of different colors
CN2052544U (zh) * 1989-02-21 1990-02-07 张火荣 电视图象立体化眼镜
CN104246579A (zh) * 2012-03-28 2014-12-24 金城都 可将2d影像或物体图像变成立体3d影像观看的立体眼镜
CN203025424U (zh) * 2012-12-19 2013-06-26 虢登科 3d影像观看装置
US20160070112A1 (en) * 2014-09-05 2016-03-10 Jay Song Adjustable optical stereoscopic glasses
US20170038598A1 (en) * 2015-03-04 2017-02-09 Jay Song Adjustable optical stereoscopic glasses
CN107660276A (zh) * 2015-03-04 2018-02-02 宋杰 可调节光学立体眼镜
CN110800292A (zh) * 2017-02-22 2020-02-14 刘简 2d视频转换为3d视频的理论方法和眼镜装置

Also Published As

Publication number Publication date
JP3233322U (ja) 2021-08-05
CN213634009U (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN111158153B (zh) 近眼显示装置和增强现实设备
CN104380177B (zh) 定向显示装置中的偏振恢复
EP0602934B1 (en) Autostereoscopic directional display apparatus
US4588259A (en) Stereoscopic optical system
US7690794B2 (en) Image-combining device and projection display apparatus having image-combining devices incorporated therein
EP0460873A1 (en) Apparatus for displaying an image
US20130114007A1 (en) Auto-stereoscopic multi-dimensional display component and display thereof
CN111487786A (zh) 一种光学显示系统及控制方法、显示装置
EP2759864A1 (en) Glasses-free reflective 3D color display
CN102298216A (zh) 一种用于普通照相机或摄像机的立体镜头
US11194158B2 (en) Light guide with beam separator for dual images
CN111105735A (zh) 一种全固态全息投影器
KR20210049594A (ko) 공간 영상 투영 장치
WO2021238225A1 (zh) 光学镜片和光删组合分解2d视频为3d视频的立体眼镜
KR102172408B1 (ko) 공간 영상 투영 장치
JP2004226928A (ja) 立体画像表示装置
CN211294572U (zh) 一种全固态全息投影器
CN103257450B (zh) 分光结构及具有该分光结构的光机系统
Ueda et al. P‐7: Multilayered Integral Imaging with Improved Image Clarity
Dong et al. P‐68: Dual‐Side Floating Autostereoscopic 3D Display Based on Micro‐Prism Array and Lenticular Sheet
WO2021143640A1 (zh) 一种全固态全息拍摄器及全固态全息投影器
KR102012454B1 (ko) 공간 영상 투영 장치
JP2012042599A (ja) 反射型再帰性フロントスクリーンおよび反射型立体表示用スクリーン
JP2999953B2 (ja) 偏光眼鏡を用いた立体映像表示装置
CN101833230B (zh) 一种拍摄和观看宽银幕立体电影和电视的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC - (EPO FORM 1205A) - 16.03.2023

122 Ep: pct application non-entry in european phase

Ref document number: 21814630

Country of ref document: EP

Kind code of ref document: A1