WO2021238220A1 - 一种连铸用超声振动牵引复合装置 - Google Patents

一种连铸用超声振动牵引复合装置 Download PDF

Info

Publication number
WO2021238220A1
WO2021238220A1 PCT/CN2020/142464 CN2020142464W WO2021238220A1 WO 2021238220 A1 WO2021238220 A1 WO 2021238220A1 CN 2020142464 W CN2020142464 W CN 2020142464W WO 2021238220 A1 WO2021238220 A1 WO 2021238220A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum chamber
ultrasonic vibration
crystallizer
metal rod
ultrasonic
Prior art date
Application number
PCT/CN2020/142464
Other languages
English (en)
French (fr)
Inventor
宋克兴
李韶林
曹军
周延军
丁雨田
封存利
吴保安
吕长春
国秀花
张彦敏
张学宾
皇涛
刘海涛
程楚
张朝民
彭晓文
Original Assignee
河南科技大学
河南理工大学
河南优克电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南科技大学, 河南理工大学, 河南优克电子材料有限公司 filed Critical 河南科技大学
Priority to CN202080050871.8A priority Critical patent/CN114173956A/zh
Priority to PCT/CN2020/142464 priority patent/WO2021238220A1/zh
Publication of WO2021238220A1 publication Critical patent/WO2021238220A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means

Definitions

  • the invention belongs to the technical field of continuous casting, and specifically relates to an ultrasonic vibration traction composite device for continuous casting.
  • wires With the wide application of metal and alloy wires in the fields of electronics, automobiles, and data transmission, the wires are required to be thinner (less than 0.02mm in diameter), longer in length, and have a consistent structure and uniform composition.
  • the blank puts forward higher requirements.
  • the inconsistent structure and uneven composition of the wire blanks directly lead to wire breakage, mechanical properties (strength, elongation, etc.) Applications in fields such as data transmission. Improving the uniformity and performance of wire structure components is an urgent problem to be solved in wire processing.
  • the purpose of the present invention is to provide an ultrasonic vibration traction composite device for continuous casting, so as to at least solve the problem that there are many dendrites in the solidification structure of the metal rod blank, which is not conducive to subsequent drawing.
  • An ultrasonic vibration traction composite device for continuous casting includes:
  • the continuous feeding device includes a first vacuum chamber, a second vacuum chamber and a third vacuum chamber arranged in sequence from top to bottom.
  • the first vacuum chamber and the second vacuum chamber are connected by a plug-in valve, and the plug-in valve is used for control
  • the material conveying channel between the vacuum chambers, the second vacuum chamber and the third vacuum chamber are hermetically connected;
  • the smelting device includes a crucible and a heating coil, the crucible is arranged inside the second vacuum chamber, the heating coil is used to heat the crucible, the feeding port of the crucible is located below the insert valve, and the bottom of the crucible is provided with a liquid flow port;
  • the crystallizer device includes a crystallizer, the crystallizer is arranged in the second vacuum chamber, and is connected with the third vacuum chamber through a profile, and the inlet of the crystallizer is in communication with the liquid flow port;
  • the ultrasonic vibration device is arranged on the outside of the crystallizer, and the ultrasonic vibration device is used to generate ultrasonic waves to generate ultrasonic vibration to the crystallizer;
  • the metal rod cooling device is set at the outlet of the metal rod under the third vacuum chamber to cool the metal rod.
  • the metal rod passes through the crystallizer, the third vacuum chamber and the metal rod cooling device from the bottom of the crucible Be led out
  • the traction device is connected with the metal rod and can pull the metal rod to move up and down.
  • a protective sleeve is sleeved on the periphery of the mold, and the ultrasonic vibration device acts on the mold through the protective sleeve;
  • the protective sleeve is a copper protective sleeve.
  • a cooling water sleeve is sleeved on the outer periphery of the protective sleeve, a cooling water pipe is arranged in the cooling water sleeve, the cooling water pipe is used to pass circulating cooling water, and the cooling water sleeve is used to cool the crystallizer; ultrasonic vibration device Pass through the cooling water sleeve and contact the protective sleeve;
  • the cooling water sleeve is a copper sleeve.
  • the ultrasonic vibration device includes an ultrasonic horn, the ultrasonic horn is arranged in a horizontal direction, the ultrasonic horn penetrates the cooling water sleeve and contacts the protective cover, and the power of the ultrasonic horn is 0.5-5 kW.
  • the ultrasonic horn is arranged outside the crystallizer where the molten metal solidification front is located in the crystallizer.
  • the ultrasonic vibrating device includes a plurality of ultrasonic horns, the plurality of ultrasonic horns are evenly distributed along the height direction, and penetrate the cooling water jacket and then contact the protective cover.
  • a thermal pad is arranged between the crucible and the crystallizer.
  • a sealing head is provided between the metal rod outlet under the third vacuum chamber and the metal rod cooling device, and the metal rod is led out by the traction device after passing through the double-layer sealing ring in the sealing head and the metal rod cooling device;
  • a rubber sealing ring is provided at the junction of the second vacuum chamber and the third vacuum chamber.
  • the heating coil is arranged outside the second vacuum chamber.
  • the device further includes a stirring device, which passes through the second vacuum chamber and enters the crucible.
  • the ultrasonic vibration traction composite device for continuous casting of the present invention is provided with an ultrasonic vibration device, and the ultrasonic horn in the ultrasonic vibration device is set on the outside of the mold where the liquid metal solidification front is located in the mold, so that the liquid metal alloy solidification front generates ultrasonic waves Vibration breaks the newly formed dendritic arms at the solidification front back into the melt and becomes a nucleated embryo, which not only avoids the formation of dendrites, but also provides more nucleating particles to achieve crystal grains. Axialization and crystal refinement are conducive to the subsequent drawing of the metal rod; the structure and performance of the wire blank are stabilized, and it is beneficial to increase the length of the drawn wire in the later stage.
  • a protective cover is arranged between the ultrasonic vibration device and the crystallizer, which prevents the ultrasonic vibration from directly acting on the graphite crystallizer and improves the service life of the crystallizer.
  • the ultrasonic vibration traction composite device for continuous casting of the present invention is arranged on the periphery of the mold and is also provided with a cooling water sleeve.
  • the cooling water sleeve is made of copper and has circulating cooling water inside, which is beneficial to speed up the cooling of the mold. Speeding up the cooling reaction speed is conducive to the realization of grain refinement.
  • Figure 1 is a schematic structural diagram of an ultrasonic vibration traction composite device for continuous casting according to an embodiment of the present invention
  • FIG. 2 is a comparison diagram of the solidified structure of a metal rod prepared by using the device in the embodiment of the present invention and a solidified structure of a metal rod prepared by a non-ultrasonic vibration device (where a is the solidified structure of the non-ultrasonic vibration device; b is the solidified structure of the ultrasonic vibration device).
  • an ultrasonic vibration traction composite device for continuous casting is provided.
  • the device of the present invention allows metals and alloys to be added to a high-vacuum smelting device through a continuous feeding device, and the metal Melting and stirring are carried out under the condition of a vacuum degree higher than 5 ⁇ 10 -2 Pa, and continuous casting is realized at a set speed (0-1500mm/min) under the protection of inert gas.
  • An ultrasonic vibration device is installed in the front of the mold device. In this way, a wireless-length metal rod with equiaxed crystals and fine crystals is obtained, which avoids the formation of dendrites, facilitates subsequent drawing operations on the metal rod, and obtains a wire with stable blank structure and performance.
  • the device of the present invention includes a continuous feeding device, a smelting device, a crystallizer device, an ultrasonic vibration device 10, a metal rod cooling device 14 and a traction device 15.
  • the continuous feeding device includes a first vacuum chamber 1, a second vacuum chamber 2 and a third vacuum chamber 3 arranged in sequence from top to bottom.
  • the first vacuum chamber 1 is used to place raw materials
  • the first vacuum chamber 1 and the second vacuum chamber 2 is connected by a plug-in valve 4, which is used to control the material conveying channel between the vacuum chambers.
  • a plug-in valve 4 which is used to control the material conveying channel between the vacuum chambers.
  • the second vacuum chamber 2 and the third vacuum chamber 3 are connected in a sealed manner.
  • a rubber sealing ring 12 is provided at the junction of the second vacuum chamber 2 and the third vacuum chamber 3 to achieve a sealed connection.
  • a vent is opened in the second vacuum chamber 2 so as to input inert gas into the second vacuum chamber 2.
  • the smelting device includes a crucible 6 and a heating coil 7.
  • the crucible 6 is set inside the second vacuum chamber 2.
  • the heating coil 7 is used to heat the crucible 6.
  • the feeding port of the crucible 6 is located under the insert valve 4, when the insert valve 4 is opened ,
  • the raw materials in the first vacuum chamber 1 are added to the crucible 6.
  • the continuous feeding device has a first vacuum chamber 1 and a second vacuum chamber 2, which can smelt the raw materials in the crucible 6, and place the materials needed for the next smelting in the first vacuum chamber 1, thereby realizing continuous feeding and realizing metal and metal Continuous production and processing of alloy rods.
  • due to the third vacuum chamber 3, it can not only be used to fix the mold device, and the mold device is connected to the upper part of the third vacuum chamber 3, but also can ensure that the metal or alloy rod is not oxidized when it leaves the mold 8.
  • the heating coil 7 is arranged outside the second vacuum chamber 2 to reduce the volume of the second vacuum chamber 2 and thereby reduce the time and cost of vacuuming the second vacuum chamber 2.
  • the bottom of the crucible 6 is provided with a liquid flow port, so that the metal liquid can completely flow out of the crucible 6, thereby helping to save materials.
  • the device further includes a stirring device 5 which passes through the second vacuum chamber 2 and enters the crucible 6.
  • the stirring device 5 can stir the melted raw materials, and the inert gas will be filled and stirred to ensure that the alloy has a uniform composition.
  • the crucible 6 is located in the second vacuum chamber 2, so that no metal and alloy liquid will splash out during stirring, and will not harm the operator.
  • the crystallizer device includes a crystallizer 8.
  • the crystallizer 8 is arranged in the second vacuum chamber 2 and is connected with the third vacuum chamber 3 through a profile.
  • the inlet of the crystallizer 8 is connected with the liquid outlet of the crucible 6 to receive The molten metal flowing out in 6 realizes the crystallization of the metal and alloy liquid.
  • a high-density heat-resistant pad 16 is arranged between the crucible 6 and the crystallizer 8, and the temperature of the molten metal before entering the crystallizer 8 can be prevented from being lowered by the heat-resistant pad 16 being arranged.
  • the thermal insulation pad 16 has good thermal insulation efficiency, which increases the degree of supercooling during the solidification process. If the thermal pad 16 is not added, the degree of subcooling will be reduced.
  • the temperature of the metal liquid should be as high as possible before entering the crystallizer 8, and the liquid in the crucible is at a high temperature by relying on the heat-resistant pad 16; after the metal liquid enters the crystallizer 8, the cooling system realizes rapid temperature drop and improves the subcooling of the solidification process.
  • the purpose of the thermal pad 16 is to maximize the degree of undercooling in the solidification process of the molten metal and obtain a fine-grained structure.
  • the present invention is provided with an ultrasonic vibration device 10, which is arranged on the outside of the mold 8, and the ultrasonic vibration device 10 is in contact with the mold 8, and the ultrasonic vibration device 10 is used to generate ultrasonic waves to generate ultrasonic vibrations on the mold 8; Ground, an ultrasonic horn is provided in the ultrasonic vibrating device 10 to play the role of ultrasonic vibration.
  • the ultrasonic horn is arranged outside the mold 8 where the molten metal solidification front is located in the mold 8, that is, the ultrasonic horn is set just after the initial crystallization of the liquid metal.
  • the dendrite arms just formed at the solidification front of the liquid metal are broken back into the melt and become nucleated embryos, which not only avoids the formation of dendrites, but also provides more nucleating particles to achieve crystals. Isometric and crystallized grains.
  • the metal rod cooling device 14 is arranged at the outlet of the metal rod 17 below the third vacuum chamber 3 for cooling the metal rod 17.
  • the metal rod 17 passes through the crystallizer 8, the third vacuum chamber 3 and the metal rod from the bottom of the crucible 6
  • the cooling device 14 is then led out; cooling water is passed into the metal rod cooling device 14 to cool the metal rod 17, so as to prevent the metal rod 17 from being oxidized when it leaves the third vacuum chamber 3.
  • a sealing head 13 is provided between the outlet of the metal rod 17 below the third vacuum chamber 3 and the metal rod cooling device 14, and the metal rod 17 passes through the double-layer sealing ring 131 and the metal rod cooling device 14 in the sealing head 13.
  • the metal rod cooling device 14 is then led out by the traction device 15.
  • a double-layer sealing ring 131 is provided in the sealing head 13. The double-layer sealing ring 131 can prevent gas from entering the third vacuum chamber 3 from the periphery of the starter rod or the metal rod 17.
  • the initial solidification of the liquid metal requires the use of an ingot bar.
  • the ingot bar is set at the liquid outlet at the bottom of the crucible 6, and the ingot bar passes through the mold 8, the third vacuum chamber 3, and the seal in sequence.
  • the head 13 and the metal rod cooling device 14 are connected with a traction device 15 at the lower part of the induction rod.
  • the induction rod is drawn out by the double guide wheels of the traction device 15, and the induction rod is used for forming the initial metal rod 17.
  • the traction device 15 is used to traction the metal rod 17, and under the action of the guide wheel of the traction device 15, the metal rod 17 can move up and down.
  • the traction device 15 adopts double guide wheels for traction, and the traction motor is a servo motor, thereby realizing continuous and intermittent traction.
  • the metal or alloy melt is solidified in the crystallizer 8.
  • the outermost layer of the crystallizer 8 is provided with a cooling water jacket 9 capable of passing cooling water, and the cooling water jacket 9 is provided with Cooling water pipe 91, cooling water pipe 91 is used to pass in circulating cooling water, cooling water sleeve 9 is used to accelerate the cooling of crystallizer 8, increase the degree of subcooling in the solidification process of liquid metal, so as to achieve grain refinement during solidification , The higher the degree of undercooling, the better the grain refinement.
  • the ultrasonic vibration device 10 penetrates the cooling water jacket 9 to act on the crystallizer 8.
  • the cooling water sleeve 9 adopts a copper sleeve.
  • the cooling water sleeve 9 may be a pure copper sleeve or a copper alloy sleeve.
  • the copper material has high heat dissipation efficiency and facilitates the heat dissipation and heat conduction of the mold 8.
  • a protective sleeve 11 is sleeved on the periphery of the mold 8, a cooling water sleeve 9 is arranged on the outer layer of the protective sleeve 11 and fixed on the protective sleeve 11, and the ultrasonic vibration device 10 acts through the protective sleeve 11.
  • the protective sleeve 11 is a copper protective sleeve 11, the protective sleeve mainly plays a role of buffer protection, and at the same time needs to ensure the heat transfer efficiency.
  • the copper protective sleeve 11 can be a pure copper protective sleeve or a copper alloy protective sleeve, so as to enable good heat transfer between the mold 8 and the cooling water sleeve 9. Since the crystallizer 8 is made of graphite, the direct action of the ultrasonic vibrating device 10 on the graphite crystallizer 8 will cause greater damage to the life of graphite. Therefore, a protective cover 11 made of copper is added between the crystallizer 8 and the ultrasonic vibrating device 10, The ultrasonic vibration device 10 acts on the copper protective sleeve 11 so that the ultrasonic vibration is evenly transmitted to the crystallizer 8. The cooling water sleeve 9 is sleeved on the outer layer of the protective sleeve 11.
  • the ultrasonic vibration device 10 is provided with an ultrasonic horn, which is arranged in a horizontal direction, and the ultrasonic horn penetrates the cooling water sleeve 9 and contacts the protective sleeve 11 ,
  • the ultrasonic horn must avoid the cooling water pipe 91 when passing through the cooling water sleeve 9 to not affect the operation of circulating water.
  • the ultrasonic vibration generated by the ultrasonic horn indirectly acts on the crystallizer 8.
  • the power of the ultrasonic horn is 0.5-5KW (such as 1KW, 1.5KW, 2KW, 2.5KW, 3KW, 3.5KW, 4KW, 4.5KW), preferably 2KW, and this range of power can be
  • the dendrite arms formed at the initial stage of solidification of the metal or alloy are broken to form multiple nucleated crystal blanks to realize equiaxed and refined crystal grains.
  • the diameter of the ultrasonic horn is 10 mm.
  • the ultrasonic vibration device 10 includes a plurality of ultrasonic horns, the plurality of ultrasonic horns are evenly distributed along the height direction, the ultrasonic horns are all arranged in a horizontal direction, and the ultrasonic horns penetrate the cooling water After the sleeve 9, one end of the ultrasonic horn is in contact with the protective sleeve 11 and ultrasonic vibration is applied to the protective sleeve 11 through the end.
  • the multiple ultrasonic horns must avoid the cooling water pipe 91 of the cooling water sleeve 9.
  • the ultrasonic vibration traction composite device for continuous casting of the present invention performs the continuous casting of metal or alloy rod blanks according to the following steps:
  • the ultrasonic vibration device 10 After stirring, turn on the cooling water in the traction device 15, the ultrasonic vibration device 10, the cooling water sleeve 9 and the metal rod cooling device 14, set the traction speed to 1-50mm/min, carry out continuous traction, and start the ingot Prepare the metal rod 17; in the continuous casting production process, when the ingot rod is completely drawn out by the guide wheel, the guide wheel starts to pull the metal rod 17;
  • step 8 After all the metals or alloys in the first vacuum chamber 1 fall into the crucible 6 in the second vacuum chamber 2, close the flapper valve 4, and load a certain amount (for example, 3 kg) of metal or alloy into the first vacuum chamber 2.
  • the first vacuum chamber 1 is evacuated to 5 ⁇ 10 -2 Pa, step 7 is repeated to realize continuous feeding, and the continuous casting production process of the metal rod 17 is completed.
  • the improved continuous casting machine of the present invention is equipped with an ultrasonic vibration device, which causes the alloy solidification front to generate ultrasonic vibration, breaks the newly formed dendritic arms at the solidification front back into the melt, and becomes a nucleated crystal embryo, which not only avoids The formation of dendrites, while providing more nucleation particles, to achieve equiaxed and refined crystal grains.
  • the solidification structure of the metal rod prepared by using this device is compared with the solidification structure of the metal rod prepared by the patent number CN104308107B "a vertical vacuum melting inert gas protection continuous feeding continuous casting machine" without the ultrasonic vibration device, as shown in Figure 2. As shown, there are many dendrites in the solidification structure under the non-ultrasonic vibration device, and after ultrasonic vibration is added, the solidification structure becomes equiaxed crystals and the grains are refined.
  • the metal rod structure prepared by the device of the present invention not only avoids the formation of dendrites, but also provides more nucleation particles, realizing equiaxed and refined crystal grains, which is beneficial to the subsequent drawing of the metal rod. . Stabilizes the structural composition and performance of the wire blank, which is beneficial to increase the length of the drawn wire in the later stage.
  • a protective cover is arranged between the ultrasonic vibration device and the crystallizer, which prevents the ultrasonic vibration from directly acting on the graphite crystallizer and improves the service life of the crystallizer.
  • the ultrasonic vibration traction composite device for continuous casting of the present invention is arranged on the periphery of the mold and is also provided with a cooling water sleeve.
  • the cooling water sleeve is made of copper and has circulating cooling water inside, which is beneficial to speed up the cooling of the mold. Speeding up the cooling reaction speed is conducive to the realization of grain refinement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

本发明提供一种连铸用超声振动牵引复合装置,包括:连续加料装置,包括从上至下依次设置的第一真空室、第二真空室和第三真空室;熔炼装置,包括坩埚和加热线圈;结晶器装置,包括结晶器,结晶器设置在第二真空室内;超声振动装置,超声振动装置设置在结晶器的外侧,超声振动装置用于产生超声波从而对结晶器产生超声振动;金属杆冷却装置,金属杆冷却装置设置在第三真空室下方的金属杆出口处,用于对金属杆进行冷却;牵引装置,牵引装置与金属杆连接并可牵引金属杆上下移动。该装置能够实现金属杆坯组织晶粒的等轴化和细晶化,利于金属杆的后续拉拔,且结晶器的使用寿命高。

Description

一种连铸用超声振动牵引复合装置 技术领域
本发明属于连铸技术领域,具体涉及一种连铸用超声振动牵引复合装置。
背景技术
随着金属及合金线材在电子、汽车、数据传输领域内的广泛应用,要求线材直径更细(直径小于0.02mm)、长度更长,并具有一致的组织结构和均匀的成份,这就对线材坯料提出更高要求。线材坯料组织结构不一致、组份不均匀等直接导致线材加工过程中的断线和线材机械性能(强度、伸长率等)、电学性能不稳定,严重影响了金属及合金线材在电子、汽车及数据传输等领域内的应用。提高线材组织成分均匀性及性能是线材加工中亟待解决的问题。
河南理工大学曹军等人曾发明“一种竖引式真空熔炼惰性气体保护连续加料连铸机”,中国专利号为CN104308107B,取得了良好的效果,解决了材料利用率、真空度、合金杆氧化等问题,但该工艺生产合金元素含量较高的杆坯时,由于结晶装置中凝固条件的限制,凝固组织中存在较多枝晶,此类组织不利于杆坯的后续拉拔。如何通过设备或工艺改进,将凝固组织控制为等轴晶,是当前面临的首要问题。
因此,需要提供一种针对上述现有技术不足的改进技术方案。
发明内容
本发明的目的在于提供一种连铸用超声振动牵引复合装置,以至少解决目前金属杆坯凝固组织中枝晶较多,不利于后续拉拔的问题。
为了实现上述目的,本发明提供如下技术方案:
一种连铸用超声振动牵引复合装置,装置包括:
连续加料装置,包括从上至下依次设置的第一真空室、第二真空室和第三真空室,第一真空室与第二真空室之间通过插板阀连接,插板阀用于控制真空室之间物料输送通道,第二真空室与第三真空室密封连接;
熔炼装置,包括坩埚和加热线圈,坩埚设置在第二真空室内部,加热线圈用于对坩埚进行加热,坩埚的加料口位于插板阀下方,坩埚的底部设置有流液口;
结晶器装置,包括结晶器,结晶器设置在第二真空室内,且与第三真空室通过型面连接,结晶器的入口与流液口连通;
超声振动装置,超声振动装置设置在结晶器的外侧,超声振动装置用于产生超声波从而对结晶器产生超声振动;
金属杆冷却装置,金属杆冷却装置设置在第三真空室下方的金属杆出口处,用于对金属杆进行冷却,金属杆从坩埚的底部经过结晶器、第三真空室和金属杆冷却装置后被引出;
牵引装置,牵引装置与金属杆连接并可牵引金属杆上下移动。
优选,结晶器的外围套接有保护套,超声振动装置通过保护套作用于结晶器上;
优选地,保护套为铜材质保护套。
优选,保护套的外围套接有冷却水套管,冷却水套管内设置有冷却水管道,冷却水管道用于通入循环冷却水,冷却水套管用于对结晶器进行降温冷却;超声振动装置贯穿冷却水套管与保护套接触;
优选地,冷却水套管为铜材质套管。
优选,超声振动装置包括超声变幅杆,超声变幅杆呈水平方向设置,超声变幅杆贯穿冷却水套管与保护套接触,超声变幅杆的功率为0.5~5KW。
优选,超声变幅杆设置在结晶器内金属液凝固前沿所在的结晶器外侧。
优选,超声振动装置包括多个超声变幅杆,多个超声变幅杆沿高度方向均匀分布,且贯穿冷却水套管后与保护套接触。
优选,坩埚与结晶器之间设置有阻热垫。
优选,第三真空室下方的金属杆出口与金属杆冷却装置之间设置有密封头,金属杆穿过密封头中的双层密封圈和金属杆冷却装置后被牵引装置引出;
优选地,第二真空室和第三真空室的连接处设置有橡胶密封圈。
优选,加热线圈设置在第二真空室外部。
优选,装置还包括搅拌装置,搅拌装置穿过第二真空室进入坩埚中。
与最接近的现有技术相比,本发明提供的技术方案具有如下优异效果:
本发明的连铸用超声振动牵引复合装置设置有超声振动装置,且超声振动装置内的超声变幅杆设置在结晶器内金属液凝固前沿所在的结晶器外侧,使金属合金液体凝固前沿产生超声振动,将凝固前沿的刚形成的枝晶臂打碎回到熔体中,成为形核的晶胚,不仅避免了枝晶的形成,同时提供了更多的形核质点,实现晶粒的等轴化和细晶化,利于金属杆的后续拉拔;稳定了线材坯料的组织成份和性能,有利于提高后期拉拔线材的长度。
在超声振动装置和结晶器之间设置有保护套,避免了超声振动直接作用于石墨材质的结晶器,提高了结晶器的使用寿命。
本发明的连铸用超声振动牵引复合装置设置在结晶器的外围还设置有冷却水套管,冷却水套管采用铜材质且内部通入有循环冷却水,有利于加快结晶器的冷却降温,加快冷却反应速度,有利于实现晶粒细化。
附图说明
图1为本发明实施例的连铸用超声振动牵引复合装置的结构示意图;
图2为采用本发明实施例中的装置制备的金属杆凝固组织和无超声振动装置制备的金属杆凝固组织对照图(其中a为无超声振动装置凝固组织;b为超声振动装置凝固组织)。
图中:1、第一真空室;2、第二真空室;3、第三真空室;4、插板阀;5、搅拌装置;6、坩埚;7、加热线圈;8、结晶器;9、冷却水套管;91、冷却水管道;10、超声振动装置;11、保护套;12、橡胶密封圈;13、密封头;131、双层密封圈;14、金属杆冷却装置;15、牵引装置;16、阻热垫;17、金属杆。
具体实施方式
如图1所示,根据本发明的实施例,提供了一种连铸用超声振动牵引复合装置,本发明的装置可以使金属及合金通过连续加料装置加入到高真空的熔炼装置中,将金属在真空度高于5×10 -2Pa条件下进行熔炼和搅拌,并在惰性气体保护下按照设定速度(0-1500mm/min)实现连续铸造,在结晶器装置 前沿设置有超声振动装置,从而获得无线长度的具有等轴晶和细晶的金属杆,避免了树枝晶的形成,有利于对金属杆进行后续的拉拔操作,获得稳定坯料组织和性能的线材。
本发明的装置包括连续加料装置、熔炼装置、结晶器装置、超声振动装置10、金属杆冷却装置14和牵引装置15。
连续加料装置包括从上至下依次设置的第一真空室1、第二真空室2和第三真空室3,第一真空室1中用于放置原料,第一真空室1与第二真空室2之间通过插板阀4连接,插板阀4用于控制真空室之间物料输送通道,当需要向第二真空室2内加料时,打开插板阀4,加料结束后关闭插板阀4。第二真空室2与第三真空室3密封连接,优选地,第二真空室2和第三真空室3的连接处设置有橡胶密封圈12以实现密封连接。第二真空室2中开有通气口,以便向第二真空室2中输入惰性气体。
熔炼装置包括坩埚6和加热线圈7,坩埚6设置在第二真空室2内部,加热线圈7用于对坩埚6进行加热,坩埚6的加料口位于插板阀4下方,打开插板阀4时,第一真空室1中的原料加入到坩埚6中。连续加料装置具有第一真空室1和第二真空室2,可以在坩埚6中熔炼原料的同时,往第一真空室1中放置下次熔炼所需要的材料,从而实现连续加料,实现金属及合金棒的连续生产加工。同时,由于具有第三真空室3,其不但能用于固定结晶器装置,且结晶器装置与第三真空室3上部连接,还能确保金属或合金杆离开结晶器8时不被氧化。
本发明的具体实施例中,加热线圈7设置在第二真空室2外部,可以减少第二真空室2的体积,从而减少给第二真空室2抽真空的时间和成本。坩埚6的底部设置有流液口,使得金属液体可以完全流出坩埚6,从而有利于节省材料。
本发明的具体实施例中,装置还包括搅拌装置5,搅拌装置5穿过第二真空室2进入坩埚6中。待原料在坩埚6中熔化后,搅拌装置5可以搅拌熔化后的原料,将实现充入惰性气体搅拌,保证合金具有均匀的成分。坩埚6位于第二真空室2中,所以搅拌时不会有金属及合金液体溅出,不会伤害操作工人。
结晶器装置包括结晶器8,结晶器8设置在第二真空室2内,且与第三 真空室3通过型面连接,结晶器8的入口与坩埚6的流液口连通,以接纳从坩埚6中流出的熔化金属实现金属及合金液体的结晶。
本发明的具体实施例中,坩埚6与结晶器8之间设置有高密度阻热垫16,通过设置阻热垫16能够防止进入结晶器8之前金属液体的温度降低。阻热垫16具有良好的隔热效率,使得凝固过程过冷度增加。如果不加阻热垫16,会使得过冷度降低。金属液体在进入结晶器8之前温度要尽可能高,依靠阻热垫16实现坩埚中的液体处于高温状态;金属液体进入结晶器8后,冷却系统实现迅速降温,提高凝固过程的过冷度。阻热垫16目的是最大限度的增加金属液体凝固过程的过冷度,获得细晶组织。
本发明中设置有超声振动装置10,超声振动装置10设置在结晶器8的外侧,超声振动装置10与结晶器8接触,超声振动装置10用于产生超声波从而对结晶器8产生超声振动;优选地,超声振动装置10中设置有超声变幅杆,起到超声振动作用,超声变幅杆设置在结晶器8内金属液凝固前沿所在的结晶器8外侧,即设置在金属液体刚进行初始结晶凝固的位置,将液体金属凝固前沿刚形成的枝晶臂打碎回到熔体中,成为形核的晶胚,不仅避免了枝晶的形成,同时提供了更多的形核质点,实现晶粒的等轴化和细晶化。
金属杆冷却装置14设置在第三真空室3下方的金属杆17出口处,用于对金属杆17进行冷却,金属杆17从坩埚6的底部经过结晶器8、第三真空室3和金属杆冷却装置14后被引出;金属杆冷却装置14中通入冷却水冷却金属杆17,从而避免金属杆17从第三真空室3离开时被氧化。
在本发明的具体实施例中,第三真空室3下方的金属杆17出口与金属杆冷却装置14之间设置有密封头13,金属杆17穿过密封头13中的双层密封圈131和金属杆冷却装置14后被牵引装置15引出。密封头13中设置有双层密封圈131,通过双层密封圈131可以防止气体从引锭杆或者金属杆17周边进入第三真空室3。
在连铸生产过程中,金属液体初始凝固过程中需要使用引锭杆,引锭杆设置在坩埚6底部的流液口处,引锭杆依次穿过结晶器8、第三真空室3、密封头13和金属杆冷却装置14,引锭杆下部连接有牵引装置15,通过牵引装置15的双导轮牵引,将引锭杆牵引出,引锭杆用于初始金属杆17的成型。引锭杆被引出后,牵引装置15用于对金属杆17进行牵引,在牵引装置15 的导轮作用下,金属杆17可进行上下移动。
本发明的具体实施例中,牵引装置15采用双导轮牵引,牵引电机为伺服电机,从而实现连续和间断牵引。
本发明的具体实施例中,金属或合金熔体在结晶器8中凝固,在结晶器8的最外层设置有能够通入冷却水的冷却水套管9,冷却水套管9内设置有冷却水管道91,冷却水管道91用于通入循环冷却水,冷却水套管9用以加速结晶器8降温冷却,增加金属液体凝固过程的过冷度,以实现凝固时的晶粒细化,过冷度越高越有利于晶粒细化。超声振动装置10贯穿冷却水套管9作用于结晶器8上。优选地,冷却水套管9采用铜材质套管,冷却水套管9可以为纯铜材质套管,也可以为铜合金材质套管,铜材质散热效率高,便于结晶器8散热和热传导。
本发明的具体实施例中,结晶器8的外围套接有保护套11,冷却水套管9设置在保护套11的外层并固定在保护套11上,超声振动装置10通过保护套11作用于结晶器8上;优选地,保护套11为铜材质保护套11,保护套主要是起到缓冲保护作用,同时需要保证传热效率。铜材质保护套11可以为纯铜保护套,也可以为铜合金保护套,以便使结晶器8和冷却水套管9之间进行良好的热传递。由于结晶器8为石墨材质,超声振动装置10直接作用于石墨结晶器8会对石墨寿命危害较大,因此在结晶器8和超声振动装置10之间加一层铜材质的保护套11,将超声振动装置10作用于铜保护套11上,进而使得超声振动均匀传递到结晶器8上。冷却水套管9套接在保护套11外层,超声振动装置10中设置有超声变幅杆,超声变幅杆呈水平方向设置,超声变幅杆贯穿冷却水套管9与保护套11接触,超声变幅杆在贯穿冷却水套管9的时候要避开冷却水管道91,不影响循环水的操作,超声变幅杆产生超声振动间接作用在结晶器8上。
本发明的具体实施例中,超声变幅杆的功率为0.5~5KW(比如1KW、1.5KW、2KW、2.5KW、3KW、3.5KW、4KW、4.5KW),优选为2KW,此范围功率下可以将金属或合金凝固初期形成的枝晶臂打碎,形成多个形核的晶坯,实现晶粒的等轴化和细晶化。优选地,超声变幅杆的直径为10mm。
本发明的其他实施例中,超声振动装置10包括多个超声变幅杆,多个超声变幅杆沿高度方向均匀分布,超声变幅杆均呈水平方向设置,且超声变幅 杆贯穿冷却水套管9后,超声变幅杆的一端部与保护套11接触通过端部对保护套11施加超声振动,多个超声变幅杆均要避开冷却水套管9的冷却水管道91,在结晶器装置较大时,多个超声变幅杆沿上下方向同时作用于结晶器8上,可以对结晶器8产生均匀振动,确保将凝固前沿刚形成的枝晶臂打碎,生成等轴晶。
本发明的连铸用超声振动牵引复合装置在进行金属或合金杆坯的连铸时,按照以下步骤进行:
1.清理坩埚6,将初始定型用的引锭杆穿过结晶器装置、密封头13、金属杆冷却装置14、牵引装置15的导轮,确保引锭杆的头部正好与坩埚6底部相平,压紧牵引装置15的导轮使其固定;
2.将待熔炼金属或合金(有色金属)放置在位于第二真空室2的坩埚6中,关闭位于第一真空室1和第二真空室2之间的插板阀4;并将一定量(例如3公斤)的金属或合金放入第一真空室1中;
3.对第一真空室1和第二真空室2进行抽真空至真空度高于5×10 -2Pa后,开启加热线圈7的电源对坩埚6中的金属或合金加热;
4.待坩埚6中的金属或合金熔化后,停止对第二真空室2抽真空,并通过输气口对第二真空室2中充入惰性气体至正压;
5.向下移动搅拌装置5,将搅拌装置5插入金属或合金液体中,通过搅拌装置5的搅拌向金属或合金溶液中通入惰性气体,实现通气搅拌;
6.搅拌好之后,开启牵引装置15、超声振动装置10、冷却水套管9和金属杆冷却装置14中的冷却水,设定牵引速度为1-50mm/min,进行连续牵引,开始引锭制备金属杆17;在连铸生产过程中,当引锭杆被导轮完全牵引出后,导轮开始对金属杆17进行牵引;
7.在牵引的过程中,停止对第一真空室1抽真空,缓慢打开插板阀4,第一真空室1中的金属或合金由于重力作用落入到第二真空室2中的坩埚6中;
8.待第一真空室1中的金属或合金全部落入第二真空室2中的坩埚6中之后,关闭插板阀4,将一定量(例如3公斤)的金属或合金装入第一真空室1中,并对第一真空室1抽真空至5×10 -2Pa,重复步骤7实现连续加料,完成金属杆17的连铸生产过程。
本发明经过改进后的连铸机安装有超声振动装置,使合金凝固前沿产生超声振动,将凝固前沿的刚形成的枝晶臂打碎回到熔体中,成为形核的晶胚,不仅避免了枝晶的形成,同时提供了更多的形核质点,实现晶粒的等轴化和细晶化。使用本装置制备的金属杆凝固组织和未使用超声振动装置的专利号为CN104308107B的“一种竖引式真空熔炼惰性气体保护连续加料连铸机”制备的金属杆凝固组织进行对比,如图2所示,无超声振动装置下的凝固组织中,有较多树枝晶,而加入超声振动后,凝固组织变为等轴晶,同时晶粒细化。
综上,本发明的装置制备的金属杆组织不仅避免了枝晶的形成,同时提供了更多的形核质点,实现晶粒的等轴化和细晶化,有利于金属杆的后续拉拔。稳定了线材坯料的组织成份和性能,有利于提高后期拉拔线材的长度。
在超声振动装置和结晶器之间设置有保护套,避免了超声振动直接作用于石墨材质的结晶器,提高了结晶器的使用寿命。
本发明的连铸用超声振动牵引复合装置设置在结晶器的外围还设置有冷却水套管,冷却水套管采用铜材质且内部通入有循环冷却水,有利于加快结晶器的冷却降温,加快冷却反应速度,有利于实现晶粒细化。

Claims (10)

  1. 一种连铸用超声振动牵引复合装置,其特征在于,装置包括:
    连续加料装置,包括从上至下依次设置的第一真空室、第二真空室和第三真空室,第一真空室与第二真空室之间通过插板阀连接,插板阀用于控制真空室之间物料输送通道,第二真空室与第三真空室密封连接;
    熔炼装置,包括坩埚和加热线圈,坩埚设置在第二真空室内部,加热线圈用于对坩埚进行加热,坩埚的加料口位于插板阀下方,坩埚的底部设置有流液口;
    结晶器装置,包括结晶器,结晶器设置在第二真空室内,且与第三真空室通过型面连接,结晶器的入口与流液口连通;
    超声振动装置,超声振动装置设置在结晶器的外侧,超声振动装置用于产生超声波从而对结晶器产生超声振动;
    金属杆冷却装置,金属杆冷却装置设置在第三真空室下方的金属杆出口处,用于对金属杆进行冷却,金属杆从坩埚的底部经过结晶器、第三真空室和金属杆冷却装置后被引出;
    牵引装置,牵引装置与金属杆连接并可牵引金属杆上下移动。
  2. 如权利要求1的连铸用超声振动牵引复合装置,其特征在于,结晶器的外围套接有保护套,超声振动装置通过保护套作用于结晶器上。
  3. 如权利要求2的连铸用超声振动牵引复合装置,其特征在于,保护套的外围套接有冷却水套管,冷却水套管内设置有冷却水管道,冷却水管道用于通入循环冷却水,冷却水套管用于对结晶器进行降温冷却;超声振动装置贯穿冷却水套管与保护套接触。
  4. 如权利要求3的连铸用超声振动牵引复合装置,其特征在于,超声振动装置包括超声变幅杆,超声变幅杆呈水平方向设置,超声变幅杆贯穿冷却水套管与保护套接触,超声变幅杆的功率为0.5~5KW。
  5. 如权利要求4的连铸用超声振动牵引复合装置,其特征在于,超声变幅杆设置在结晶器内金属液凝固前沿所在的结晶器外侧。
  6. 如权利要求4的连铸用超声振动牵引复合装置,其特征在于,超声振动装置包括多个超声变幅杆,多个超声变幅杆沿高度方向均匀分布,且贯穿冷却水套管后与保护套接触。
  7. 如权利要求1的连铸用超声振动牵引复合装置,其特征在于,坩埚与结晶器之间设置有阻热垫。
  8. 如权利要求1的连铸用超声振动牵引复合装置,其特征在于,第三真空室下方的金属杆出口与金属杆冷却装置之间设置有密封头,金属杆穿过密封头中的双层密封圈和金属杆冷却装置后被牵引装置引出。
  9. 如权利要求1的连铸用超声振动牵引复合装置,其特征在于,加热线圈设置在第二真空室外部。
  10. 如权利要求1的连铸用超声振动牵引复合装置,其特征在于,装置还包括搅拌装置,搅拌装置穿过第二真空室进入坩埚中。
PCT/CN2020/142464 2020-12-31 2020-12-31 一种连铸用超声振动牵引复合装置 WO2021238220A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080050871.8A CN114173956A (zh) 2020-12-31 2020-12-31 一种连铸用超声振动牵引复合装置
PCT/CN2020/142464 WO2021238220A1 (zh) 2020-12-31 2020-12-31 一种连铸用超声振动牵引复合装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142464 WO2021238220A1 (zh) 2020-12-31 2020-12-31 一种连铸用超声振动牵引复合装置

Publications (1)

Publication Number Publication Date
WO2021238220A1 true WO2021238220A1 (zh) 2021-12-02

Family

ID=78745612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142464 WO2021238220A1 (zh) 2020-12-31 2020-12-31 一种连铸用超声振动牵引复合装置

Country Status (2)

Country Link
CN (1) CN114173956A (zh)
WO (1) WO2021238220A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875257A (zh) * 2022-05-25 2022-08-09 哈尔滨工业大学 一种制备高温合金的高频感应加热凝固装置与方法
CN114959322A (zh) * 2022-04-25 2022-08-30 西北工业大学 一种利用正交三维超声制备Cu-Ni-Si合金的方法
CN115464108A (zh) * 2022-11-01 2022-12-13 华北理工大学 一种连续铸造机
CN117483691A (zh) * 2023-11-07 2024-02-02 滁州润峰机械制造有限公司 一种连续铸造机金属原料混合出料装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622167B (zh) * 2022-03-17 2023-11-10 金川集团股份有限公司 一种高纯镍蒸发料的生产装置
CN118002767A (zh) * 2024-04-10 2024-05-10 东北大学 一种振动激冷形核的装置及工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112039A (zh) * 1994-05-14 1995-11-22 潘代发 金属铸拉制造法及设备
CN101905295A (zh) * 2010-08-05 2010-12-08 安徽工业大学 一种采用超声波振动的连铸结晶器装置
CN201832965U (zh) * 2010-10-09 2011-05-18 太仓市金鑫铜管有限公司 一种铜合金管水平连铸超声波结晶器
CN104308107A (zh) * 2014-10-10 2015-01-28 河南理工大学 一种竖引式真空熔炼惰性气体保护连续加料连铸机
KR20150020829A (ko) * 2013-08-19 2015-02-27 한국생산기술연구원 초음파 가진기
CN106475538A (zh) * 2016-10-28 2017-03-08 中南大学 一种合金钢的超声‑电磁连续铸造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100515606C (zh) * 2007-03-19 2009-07-22 东北大学 功率超声与低频电磁协同作用的轻合金水平连续铸造方法及设备
CN102990026A (zh) * 2012-05-31 2013-03-27 江苏科技大学 一种铜合金板带水平连铸用施加超声场的装置及其方法
CN109261917A (zh) * 2018-11-28 2019-01-25 苏州创浩新材料科技有限公司 一种制备小直径铜银合金的超声连铸设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112039A (zh) * 1994-05-14 1995-11-22 潘代发 金属铸拉制造法及设备
CN101905295A (zh) * 2010-08-05 2010-12-08 安徽工业大学 一种采用超声波振动的连铸结晶器装置
CN201832965U (zh) * 2010-10-09 2011-05-18 太仓市金鑫铜管有限公司 一种铜合金管水平连铸超声波结晶器
KR20150020829A (ko) * 2013-08-19 2015-02-27 한국생산기술연구원 초음파 가진기
CN104308107A (zh) * 2014-10-10 2015-01-28 河南理工大学 一种竖引式真空熔炼惰性气体保护连续加料连铸机
CN106475538A (zh) * 2016-10-28 2017-03-08 中南大学 一种合金钢的超声‑电磁连续铸造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959322A (zh) * 2022-04-25 2022-08-30 西北工业大学 一种利用正交三维超声制备Cu-Ni-Si合金的方法
CN114959322B (zh) * 2022-04-25 2022-11-25 西北工业大学 一种利用正交三维超声制备Cu-Ni-Si合金的方法
CN114875257A (zh) * 2022-05-25 2022-08-09 哈尔滨工业大学 一种制备高温合金的高频感应加热凝固装置与方法
CN114875257B (zh) * 2022-05-25 2022-11-01 哈尔滨工业大学 一种制备高温合金的高频感应加热凝固装置与方法
CN115464108A (zh) * 2022-11-01 2022-12-13 华北理工大学 一种连续铸造机
CN115464108B (zh) * 2022-11-01 2023-01-31 华北理工大学 一种连续铸造机
CN117483691A (zh) * 2023-11-07 2024-02-02 滁州润峰机械制造有限公司 一种连续铸造机金属原料混合出料装置

Also Published As

Publication number Publication date
CN114173956A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2021238220A1 (zh) 一种连铸用超声振动牵引复合装置
CN110026541B (zh) 超薄壁高气密性铝合金件真空熔炼、变压力凝固成型方法
CN104308107A (zh) 一种竖引式真空熔炼惰性气体保护连续加料连铸机
CN107988567B (zh) 一种大长度铜基非晶合金高速铁路用接触线生产工艺及设备
CN107138699A (zh) 键合丝连铸炉
CN110831713A (zh) 一种采用电磁搅拌技术的低压充型方法及装置
US10094001B2 (en) Method for producing eutectic copper-iron alloy
CN115007839A (zh) 一种半固态流变成形低压铸造方法
CN111690852B (zh) 一种高屈服高延伸率手机中板用压铸合金材料及其制备方法
CN103143690A (zh) 一种直接制备金属棒材或线材的连铸装置及方法
JPS61169149A (ja) 連続鋳造方法
KR20100050307A (ko) 고순도 실리콘의 연속주조 장치 및 방법
JPH0230698A (ja) シリコン鋳造装置
LU501137B1 (en) Ultrasonic vibration traction compound apparatus used for continuous casting
JPH01264920A (ja) シリコン鋳造装置
CN206828617U (zh) 真空熔炼镍锭生产惰性气体保护装置
CN108188369A (zh) 一种半固态流变成形方法及装置
CN109014088A (zh) 熔炼方法
JPH08318349A (ja) 鋳造用金属ビレットの製造方法及びその製造装置
CN105950895A (zh) 一种小晶片led封装用微细银合金键合线的制造方法
CN114850450B (zh) 难熔高活多元复杂合金悬浮感应熔炼负压吸铸装置及方法
CN114939633B (zh) 无氧化高纯净大体积半固态浆料制备及成形的系统与工艺
CN219531631U (zh) 一种用于金属硅的真空熔炼炉
CN114289704B (zh) 一种电渣重熔锭坯生产装置及生产系统
CN114850450A (zh) 难熔高活多元复杂合金悬浮感应熔炼负压吸铸装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937710

Country of ref document: EP

Kind code of ref document: A1