CN106475538A - 一种合金钢的超声‑电磁连续铸造方法 - Google Patents

一种合金钢的超声‑电磁连续铸造方法 Download PDF

Info

Publication number
CN106475538A
CN106475538A CN201610958727.XA CN201610958727A CN106475538A CN 106475538 A CN106475538 A CN 106475538A CN 201610958727 A CN201610958727 A CN 201610958727A CN 106475538 A CN106475538 A CN 106475538A
Authority
CN
China
Prior art keywords
ultrasonic
electromagnetic
magnetic stirrer
steel alloy
ultrasound wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610958727.XA
Other languages
English (en)
Other versions
CN106475538B (zh
Inventor
石琛
周亚军
毛大恒
毛向辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201610958727.XA priority Critical patent/CN106475538B/zh
Publication of CN106475538A publication Critical patent/CN106475538A/zh
Application granted granted Critical
Publication of CN106475538B publication Critical patent/CN106475538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

本发明提出一种合金钢的超声‑电磁复合能场连续铸造方法。该方法是将精炼好的钢熔体置于超声波和电磁场的联合作用下连续铸造成形,电磁能场作用是通过电磁搅拌器实现的,电磁搅拌器安装在二冷段和凝固末端,采用旋转磁场搅拌,搅拌器本体线圈为空心铜管内冷,二冷段电磁搅拌器本体安装在结晶器后1—3m;凝固末端电磁搅拌器本体安装在拉坯机前3—6m。超声波能场是通过将两套超声波装置的耐高温陶瓷工具头直接对称插入距熔池边部1/4直径部位的熔体中实现的,插入深度为20mm—70mm。本发明制备出来的合金钢铸锭组织均匀,等轴晶比例高,气孔和疏松缺陷少,生产效率高,适合批量生产。

Description

一种合金钢的超声-电磁连续铸造方法
技术领域
本发明涉及电磁场、超声波和金属凝固领域,具体地说是一种超声-电磁复合能场在高温熔体凝固成形过程中的应用。
背景技术
电磁搅拌技术可改善结晶器内的传热效率,使钢液内部的温度均匀,打断凝固前沿的枝晶,细化晶粒,减少成分偏析,扩大等轴晶区域。该技术在合金钢的熔铸过程中应用较普遍。由于电磁感应的吸肤效应,电磁搅拌的强作用区处在铸锭的表层区域,愈往中心深入则作用效果愈弱,因此在铸锭的中部存在电磁搅拌的盲区,这不利于全面提升钢锭的质量。
金属熔体超声波处理技术是国内外近年来出现的一种新型金属凝固成形方法,尤其对铝合金、镁合金等低熔点金属的超声处理进行了较多的研究,但到目前为止尚未实现工程化商业应用;而对于温度更高的钢熔体进行超声处理则研究很少,仅个别学者在实验室的小型平台上进行了简单的试验研究,离工程化应用还有很大的差距。
将超声波和电磁场同时引入到钢熔体中,用电磁场改善铸锭表层区域和次表层区域的质量,而用超声波改善铸锭中心区域的铸锭质量,实现合金钢的超声-电磁复合能场连续铸造的技术在国内外目前尚无先例。中南大学石琛、毛大恒等通过在合金钢的常规铸造中施加超声-电磁复合能场发现,超声波的空化作用和声流扰动作用及电磁场的搅拌扰动作用,使钢熔体的温度场和流场更加均匀,钢坯的晶粒明显细化,成分偏析的改善和等轴晶区域增加均比单一电磁搅拌效果好,力学性能有显著提高。
发明内容
本发明的目的在于提供一种高效、实用的适用于合金钢的超声-电磁复合能场连续铸造技术。
本发明的技术方案包括以下步骤:
1.在结晶器下端的二冷段和凝固末端分别安装不同的电磁搅拌器。二冷段电磁搅拌器本体安装在结晶器后1—3m,移动距离为1m,采用低电流(0—250A)和较高电源频率(0—20Hz)的单向旋转,最大磁感应强度600GS;凝固末端电磁搅拌器本体安装在拉坯机前3—6m,移动距离2m,采用较强电流(0—500A)、较低电源频率(0—10Hz)的双向旋转,最大磁感应强度900GS。
2、通过在距熔池边部1/4直径部位相对中心对称放置两套超声波装置1来施加超声波,超声波的功率为500W—1500W,超声波装置主要由换能器6、卧式丁字形变幅杆4和直立式耐高温陶瓷工具头5组成。
3、超声波装置1的耐高温陶瓷工具头5的长度为180mm—190mm,形状为截顶圆锥体,其底部直径为50mm,顶部直径为40mm—20mm。耐高温陶瓷工具头5和丁字形变幅杆4的连接端面的表面粗糙度≤0.8μm,耐高温陶瓷工具头5的轴线相对于连接端面的垂直度公差≤0.05μm。耐高温陶瓷工具头5通过高温热压烧结而成,其成分含量为:纳米氮化硅55%-65%,纳米氮化硼15%-20%,纳米氮化钛8%-13%,聚乙烯醇树脂7%-12%。
4、超声波的耐高温陶瓷工具头5直接插入熔体,插入深度为20mm—70mm。
5、超声波的频率为25KHz±600Hz,其工作温度范围可从室温至1600℃,在剧烈的热冲击下工具头不崩裂。
本发明具有如下特点:
(1)电磁感应器安装在结晶器下端铸锭的圆周方向,对铸锭表层和次表层产生电磁搅拌作用;在靠近熔池中心部位对称放置两套超声波装置,通过耐高温陶瓷工具头向熔体中导入超声波,施加的超声能场可以强化心部区域的搅拌作用,从而改善铸锭中心区域的质量。
(2)超声波发生器中耐高温陶瓷工具头采用截顶圆锥体的形状可有效扩大超声波在钢液中的作用区域:常规超声波导波杆的工具头为圆柱形状,该形状将超声波能量集中于工具头端面,从而使得超声波能够有效传输到工具头下方区域,但是,在模铸过程中,钢水主要通过其四周及底部的冷却作用来实现凝固的,其凝固前沿呈现V字形,圆柱形工具头在径向的超声波传导作用弱,也就对其四周的凝固前沿无法实现有效的超声波作用,而截顶圆锥体形状的工具头,其圆锥形的超声波传导面与V字形凝固前沿类似,这样超声波可以有效作用到凝固前沿,其作用区域得到扩大,也有利于铸锭晶粒的整体均匀细化。
(3)超声波发生器中耐高温陶瓷工具头与变幅杆之间的高精度连接可有效减少超声波传递过程中在连接面处的衰减。
(4)超声波发生器中耐高温陶瓷工具头采用多种耐高温纳米粉体材料合理配比后经高温热压烧结而成,纳米粉体经有效配比后在高温高压作用下形成致密的工具头材质,既可有效防止钢液对工具头的溶蚀,又能防止超声波在工具头中传播时其高频振动对工具头材质的震裂现象,从而实现在钢液凝固过程中长时间进行超声波作用。
(5)实现了合金钢连续铸造过程中超声波和电磁场参数的最佳耦合。
附图说明
图1超声波-电磁场铸造示意图;
图2超声波装置1的结构示意图;
图3常规铸造组织缺陷照片;
图4超声-电磁铸造组织缺陷照片;
图5常规铸造金相照片;
图6超声-电磁铸造金相照片。
具体实施方式
以下实施例旨在进一步说明本发明,这将有助于对本发明及其优点的进一步理解,这些实例不作为对本发明的限定,本发明的保护范围由权利要求书来决定。
实施例1:
将熔炼好的35CrMo钢水30吨经真空脱气处理后导入中间包,在熔池钢水表面加入一定量的覆盖剂,使钢水温度保持在1550℃~1560℃。
用引锭杆将钢水拉出结晶器后,使红坯穿过二冷段电磁搅拌器本体2,当拉坯速度达到1.50m/min时,由工控机给出信号控制单向旋转搅拌电流为100A、搅拌频率14Hz,产生交变磁场,对二冷段钢液进行搅拌。同时,根据铸坯质量情况,调整拉坯速度2.00~2.50m/min和结晶器冷却水量20~30m3/h;控制搅拌器本体冷却水量≥10m3/h、及时带走红坯对搅拌器本体的辐射热和线圈产生的热量,控制出水温度<48℃、以保证搅拌器的正常工作。
当红坯穿过凝固末端电磁搅拌器本体3,拉坯速度达到1.50m/min时,由工控机给出信号控制双向旋转搅拌电流为300A、搅拌频率5Hz、时间间隔为正向10s—停5s—反向10s),产生交变磁场,对红坯心部“糊状区”进行搅拌。同时,根据铸坯质量情况,调整拉坯速度2.00~2.50m/min和结晶器冷却水量20~30m3/h;控制搅拌器本体冷却水量≥12m3/h、及时带走红坯对搅拌器本体的辐射热和线圈产生的热量,控制出水温度<48℃、以保证搅拌器的正常工作。
将超声波工具头5插入熔池距边部1/4直径部位,相对熔池中心对称布置两根,插入深度30mm,超声波的频率为25.5KHz,超声波的输出功率为600W。
所用超声波装置1的耐高温陶瓷工具头5的长度为190mm,形状为截顶圆锥体,其底部直径为50mm,顶部直径为20mm。耐高温陶瓷工具头5和丁字形变幅杆4的连接端面的表面粗糙度为0.8μm,耐高温陶瓷工具头5的轴线相对于连接端面的垂直度公差为0.05μm,耐高温陶瓷工具头5的成分含量为:纳米氮化硅65%,纳米氮化硼18%,纳米氮化钛10%,聚乙烯醇树脂7%。
实施例2:
将熔炼好的35CrMo钢水30吨经真空脱气处理后导入中间包,在熔池钢水表面加入一定量的覆盖剂,使钢水温度保持在1550℃~1560℃。
用引锭杆将钢水拉出结晶器后,使红坯穿过二冷段电磁搅拌器本体2,当拉坯速度达到1.50m/min时,由工控机给出信号控制单向旋转搅拌电流为150A、搅拌频率18Hz,产生交变磁场,对二冷段钢液进行搅拌。同时,根据铸坯质量情况,调整拉坯速度2.00~2.50m/min和结晶器冷却水量20~30m3/h;控制搅拌器本体冷却水量≥10m3/h、及时带走红坯对搅拌器本体的辐射热和线圈产生的热量,控制出水温度<48℃、以保证搅拌器的正常工作。
当红坯穿过凝固末端电磁搅拌器本体3,拉坯速度达到1.50m/min时,由工控机给出信号控制双向旋转搅拌电流为380A、搅拌频率2Hz、时间间隔为正向10s—停5s—反向10s),产生交变磁场,对红坯心部“糊状区”进行搅拌。同时,根据铸坯质量情况,调整拉坯速度2.00~2.50m/min和结晶器冷却水量20~30m3/h;控制搅拌器本体冷却水量≥12m3/h、及时带走红坯对搅拌器本体的辐射热和线圈产生的热量,控制出水温度<48℃、以保证搅拌器的正常工作。
将超声波工具头5插入熔池距边部1/4直径部位,相对熔池中心对称布置两根,插入深度70mm,超声波的频率为25KHz,超声波的输出功率为1000W。
所用超声波装置1的耐高温陶瓷工具头5的长度为185mm,形状为截顶圆锥体,其底部直径为50mm,顶部直径为40mm。耐高温陶瓷工具头5和丁字形变幅杆4的连接端面的表面粗糙度为0.8μm,耐高温陶瓷工具头5的轴线相对于连接端面的垂直度公差为0.05μm,耐高温陶瓷工具头5的成分含量为:纳米氮化硅60%,纳米氮化硼20%,纳米氮化钛10%,聚乙烯醇树脂10%。
铸造组织观察表明:
超声-电磁连续铸造成形可使铸锭的平均晶粒度尺寸由3.8mm降至1.5mm,中心等轴晶率由常规铸造的19.5%提高到48.2%,并有效减少疏松缺陷,细化并减少夹杂物。
上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

1.一种合金钢的超声-电磁连续铸造方法,其特征在于:将精炼好的钢熔体置于超声波和电磁复合能场作用下连续铸造成形,强化铸造区的传热、传质和能量转换,实现晶核增殖,改变凝固行为。
2.根据权利要求1所述的一种合金钢的超声-电磁连续铸造方法,其特征在于:电磁能场作用是通过电磁搅拌器实现的,电磁搅拌器安装在二冷段和凝固末端,采用旋转磁场搅拌,搅拌器本体线圈为空心铜管内冷,二冷段电磁搅拌器本体安装在结晶器后1—3m,移动距离1m;凝固末端电磁搅拌器本体安装在拉坯机前3—6m,移动距离2m。
3.根据权利要求2所述的一种合金钢的超声-电磁连续铸造方法,其特征在于:二冷段电磁搅拌为低电流0—250A、较高电源频率0—20Hz的单向旋转,最大磁感应强度600GS;凝固末端电磁搅拌为较强电流0—500A、较低电源频率0—10Hz的双向旋转,最大磁感应强度900GS。
4.根据权利要求1所述的一种合金钢的超声-电磁连续铸造方法,其特征在于:所述的超声波由超声波装置(1)产生,超声波装置(1)由换能器(6)、卧式丁字形变幅杆(4)和直立式耐高温陶瓷工具头(5)组成。
5.根据权利要求4所述的超声-电磁连续铸造成形其特征在于:超声波装置(1)的耐高温陶瓷工具头(5)直接插入距熔池边部1/4直径部位的熔体中,插入深度为20mm—70mm,超声波装置为两套,放置位置相对熔池中心对称。
6.根据权利要求1所述的超声-电磁连续铸造成形其特征在于:超声波的频率为25KHz±600Hz,超声波的功率为500W—1500W。
7.根据权利要求4所述的超声-电磁连续铸造成形其特征在于:超声波装置(1)的耐高温陶瓷工具头(5)的长度为180mm—190mm,形状为截顶圆锥体,其底部直径为50mm,顶部直径为40mm—20mm。
8.根据权利要求4所述的超声-电磁连续铸造成形其特征在于:超声波装置1的耐高温陶瓷工具头(5)和丁字形变幅杆(4)的连接端面的表面粗糙度≤0.8μm,耐高温陶瓷工具头(5)的轴线相对于连接端面的垂直度公差≤0.05μm。
9.根据权利要求4所述的超声-电磁连续铸造成形其特征在于:超声波装置1的耐高温陶瓷工具头5的成分含量为:纳米氮化硅55%-65%,纳米氮化硼15%-20%,纳米氮化钛8%-13%,聚乙烯醇树脂7%-12%。
CN201610958727.XA 2016-10-28 2016-10-28 一种合金钢的超声-电磁连续铸造方法 Active CN106475538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610958727.XA CN106475538B (zh) 2016-10-28 2016-10-28 一种合金钢的超声-电磁连续铸造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610958727.XA CN106475538B (zh) 2016-10-28 2016-10-28 一种合金钢的超声-电磁连续铸造方法

Publications (2)

Publication Number Publication Date
CN106475538A true CN106475538A (zh) 2017-03-08
CN106475538B CN106475538B (zh) 2018-09-25

Family

ID=58271389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610958727.XA Active CN106475538B (zh) 2016-10-28 2016-10-28 一种合金钢的超声-电磁连续铸造方法

Country Status (1)

Country Link
CN (1) CN106475538B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559858A (zh) * 2017-11-02 2018-09-21 东莞市金羽丰知识产权服务有限公司 仿生湍流永磁搅拌冶炼方法
CN110181010A (zh) * 2019-07-11 2019-08-30 上海大学 一种连铸坯均质化装置及方法
CN111867750A (zh) * 2018-03-08 2020-10-30 日本制铁株式会社 连续铸造方法、板坯铸坯及连续铸造机
CN112271645A (zh) * 2020-09-18 2021-01-26 邯郸钢铁集团有限责任公司 连铸机二冷段凝固末端电磁搅拌器的电缆管线敷设方法
WO2021238220A1 (zh) * 2020-12-31 2021-12-02 河南科技大学 一种连铸用超声振动牵引复合装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132247A (ja) * 1984-11-30 1986-06-19 Kawasaki Steel Corp 連続鋳造方法
CN1702188A (zh) * 2005-06-06 2005-11-30 辽宁工学院 磁场与超声波联合处理金属熔体制备纳米晶铸锭的方法及专用设备
CN101020230A (zh) * 2006-02-14 2007-08-22 丁刚 钢结硬质合金多流连铸工艺及设备
CN101381790A (zh) * 2008-10-23 2009-03-11 衡阳华菱连轧管有限公司 电炉冶炼10Cr9Mo1VNbN铁素体耐热钢经水平连铸成圆管坯的方法
CN101909783A (zh) * 2007-12-27 2010-12-08 Posco公司 利用超声波的输入来控制钢的凝固组织的方法
CN102284686A (zh) * 2011-08-24 2011-12-21 东北大学 组合外场作用下大尺寸镁合金板坯连铸装置与方法
CN104384483A (zh) * 2014-11-30 2015-03-04 中南大学 一种处理高温熔体的超声波导入装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132247A (ja) * 1984-11-30 1986-06-19 Kawasaki Steel Corp 連続鋳造方法
CN1702188A (zh) * 2005-06-06 2005-11-30 辽宁工学院 磁场与超声波联合处理金属熔体制备纳米晶铸锭的方法及专用设备
CN101020230A (zh) * 2006-02-14 2007-08-22 丁刚 钢结硬质合金多流连铸工艺及设备
CN101909783A (zh) * 2007-12-27 2010-12-08 Posco公司 利用超声波的输入来控制钢的凝固组织的方法
CN101381790A (zh) * 2008-10-23 2009-03-11 衡阳华菱连轧管有限公司 电炉冶炼10Cr9Mo1VNbN铁素体耐热钢经水平连铸成圆管坯的方法
CN102284686A (zh) * 2011-08-24 2011-12-21 东北大学 组合外场作用下大尺寸镁合金板坯连铸装置与方法
CN104384483A (zh) * 2014-11-30 2015-03-04 中南大学 一种处理高温熔体的超声波导入装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559858A (zh) * 2017-11-02 2018-09-21 东莞市金羽丰知识产权服务有限公司 仿生湍流永磁搅拌冶炼方法
CN111867750A (zh) * 2018-03-08 2020-10-30 日本制铁株式会社 连续铸造方法、板坯铸坯及连续铸造机
CN110181010A (zh) * 2019-07-11 2019-08-30 上海大学 一种连铸坯均质化装置及方法
CN112271645A (zh) * 2020-09-18 2021-01-26 邯郸钢铁集团有限责任公司 连铸机二冷段凝固末端电磁搅拌器的电缆管线敷设方法
WO2021238220A1 (zh) * 2020-12-31 2021-12-02 河南科技大学 一种连铸用超声振动牵引复合装置
CN114173956A (zh) * 2020-12-31 2022-03-11 河南科技大学 一种连铸用超声振动牵引复合装置

Also Published As

Publication number Publication date
CN106475538B (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
CN106475538B (zh) 一种合金钢的超声-电磁连续铸造方法
CN110280746B (zh) 一种单源高强超声辅助铸造大规格2xxx系铝合金圆锭的方法
CN100515606C (zh) 功率超声与低频电磁协同作用的轻合金水平连续铸造方法及设备
CN103789599B (zh) 连续铸轧制备B4C/Al中子吸收材料板材的方法
CN203508950U (zh) 一种转棒诱导金属液快速大量形核的装置
CN101745629A (zh) 环缝式电磁搅拌制备半固态合金流变浆料或坯料的方法
CN101181739A (zh) 复合电磁连续铸造高取向细晶金属材料的方法及其装置
CN203610629U (zh) 铜管水平连铸气体保护结晶器
CN107214322B (zh) 静磁场复合旋转磁场均质化大型铸锭凝固组织的方法及其装置
CN102528002A (zh) 一种施加复合电磁场的高温合金细晶铸造工艺方法和装置
CN107447163A (zh) 工业铸造现场超声波处理铁水的装置和方法
CN102179505A (zh) 一种同频脉冲磁场与脉冲电流细化金属凝固组织的方法
CN203635889U (zh) 一种连续制备大尺寸高品质铝合金铸锭的装置
CN104745843B (zh) 一种自动化合金流变浆料制备及流变成型的装置和方法
CN103162550B (zh) 一种铸造用金属熔体的处理装置及方法
CN104259441A (zh) 内置冷芯和顶置电磁场铸造大型钢锭的方法
CN103008623A (zh) 利用强磁场细化晶粒的方法及其专用金属凝固铸造装置
CN103273020A (zh) 一种模铸钢锭用的电磁加热帽口装置
CN105234356B (zh) 一种变质剂诱导孕化铝合金半固态浆料的制备方法
CN103464705A (zh) 一种减缓结晶器液面波动的电磁控流方法
WO2010000209A1 (zh) 环缝式电磁搅拌制备半固态合金浆料的装置及方法
KR20210091272A (ko) 반고체 슬러리의 제조 장치
CN103658572A (zh) 铜管水平连铸气体保护结晶器及其制备铜合金管的方法
CN101250608A (zh) 一种超声波直接引入钢液改善钢质量的方法
CN210730934U (zh) 一种制备铝合金半固态浆料的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant