WO2021238041A1 - 试管旋转机构及试管旋转扫码装置 - Google Patents
试管旋转机构及试管旋转扫码装置 Download PDFInfo
- Publication number
- WO2021238041A1 WO2021238041A1 PCT/CN2020/123497 CN2020123497W WO2021238041A1 WO 2021238041 A1 WO2021238041 A1 WO 2021238041A1 CN 2020123497 W CN2020123497 W CN 2020123497W WO 2021238041 A1 WO2021238041 A1 WO 2021238041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test tube
- cam
- driving shaft
- sliding block
- rotate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10821—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/02—Laboratory benches or tables; Fittings therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10821—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
- G06K7/10831—Arrangement of optical elements, e.g. lenses, mirrors, prisms
Definitions
- the invention relates to the technical field of medical equipment, and more specifically to a test tube rotating mechanism and a test tube rotating code scanning device.
- test tubes with barcodes are distributed to different instruments for testing of related items.
- the barcode contains the patient's personal data, and the hospital needs to identify the barcode on the test tube.
- the sample test tube with barcode is placed on the test tube rack first, and then enters the automatic sampling station of the testing instrument. Since the user places the sample test tube, the barcode direction is not necessarily facing the scanner, so it is necessary to rotate the sample test tube so that the barcode is scanned directly instrument.
- the mechanism for realizing the rotation of the sample test tube on the market usually adopts electromagnet clamping and motor rotation to realize the clamping and rotation of the sample test tube, respectively. Because the electromagnet's moving speed is too fast, it will cause a lot of noise. In addition, the electromagnet can only generate the ideal electromagnetic force when it reaches the designated position, so there are cases where the motor cannot drive the sample to rotate.
- the technical problem to be solved by the present invention is to provide a test tube rotating mechanism, which can accurately clamp the sample test tube and drive the test tube to rotate without using an electromagnet.
- the technical solution of the present invention is to provide a test tube rotating mechanism, which includes a fixed block.
- the fixed block is provided with a clamping rotating assembly and a cam groove.
- the clamping rotating assembly includes a motor, a driving shaft, a cam, a one-way bearing, and a rotating gear.
- the motor drives the driving shaft to rotate
- the driving shaft drives the rotating gear to rotate
- the driving shaft is connected with the cam through a one-way bearing and drives the cam to rotate
- the cam groove is provided with a cam rib, and the peripheral surface of the cam is always in contact with the cam rib.
- the test tube rotating mechanism of the present invention has the following advantages: the active shaft is connected to the cam through a one-way bearing, and the one-way locking feature of the one-way bearing is used to drive the cam to rotate, so that the cam drives the active shaft to approach the sample test tube and finally
- the rotating gear is used to clamp the sample test tube, and the one-way bearing is used to prevent the cam from rotating with the driving shaft, and the driving shaft drives the rotating gear to keep the sample test tube and drive the sample test tube to rotate, so that the sample test tube can be accurately clamped without using an electromagnet And drive the test tube to rotate.
- the one-way bearing is fixed on the cam via a bearing pressing plate.
- the one-way locking feature of the one-way bearing is used to drive the cam to rotate more reliably.
- the fixed block is further provided with a sliding block fixing seat, at least one sliding rod is arranged on the sliding block fixing seat, and a spring and a sliding block are arranged on the sliding rod. Connect and drive the sliding block to slide along the sliding rod and compress the spring.
- the sliding block is provided with a shaft hole, a sliding block bearing is connected in the shaft hole, and the driving shaft is connected with the sliding block through the sliding block bearing.
- the natural length of the spring is greater than the length difference between the sliding rod and the sliding block.
- the slider is far away from the sample test tube relative to the spring.
- a chopper plate is provided on the slider, and a groove-type photocoupler for sensing the position information of the chopper plate is provided on the side of the fixed block corresponding to the chopper plate.
- the slot-type optocoupler can collect the position information of the slider by sensing the position of the chopper, and then determine the position information of the active shaft.
- the fixed block is further provided with a reflective light coupler, and the reflective light coupler is used to determine whether there is a sample test tube to be rotated.
- the reflective light coupler is used to determine whether there is a sample test tube to be rotated.
- the technical problem to be solved by the present invention is to provide a test tube rotating code scanning device, which can accurately clamp the sample test tube and drive the test tube to rotate without using an electromagnet.
- the technical solution of the present invention is to provide a test tube rotating code scanning device, which includes a scanner and any one of the above-mentioned test tube rotating mechanisms.
- the scanning window of the scanner is aligned with the side of the sample test tube for scanning and attaching to the sample test tube. Barcode on the.
- the test tube rotary code scanning device of the present invention has the following advantages: the active shaft is connected to the cam through a one-way bearing, and the one-way locking feature of the one-way bearing is used to drive the cam to rotate, so that the cam drives the active shaft close to the sample test tube Finally, the rotating gear is used to clamp the sample test tube, and the one-way bearing is used to prevent the cam from rotating with the driving shaft, and the driving shaft drives the rotating gear to always clamp the sample test tube and drive the sample test tube to rotate, so as to achieve accuracy without the use of electromagnets Clamp the sample tube and drive the tube to rotate.
- Fig. 1 is a schematic diagram of the structure of the test tube rotating mechanism of the present invention.
- Fig. 2 is a left side view of Fig. 1.
- Figure 3 is a view from the A-A direction of Figure 1.
- Test tube 2. Fixing block, 2-1, Cam rib, 3. Slider holder, 3-1, Slider, 3-2, Spring, 4. Slider, 4- 1. Chopper, 5. Motor, 6, Drive shaft, 7, Slider bearing, 8, Cam, 8-1, Clamping point, 9, One-way bearing, 10, Rotating gear, 11, Groove optocoupler , 12, reflective optocoupler, 13, bearing pressure plate.
- the test tube rotating mechanism of the present invention includes a fixed block 2, which is provided with a clamping rotating assembly; the clamping rotating assembly includes a motor 5, a driving shaft 6, a cam 8, and a one-way bearing 9.
- Rotating gear 10, driving shaft 6 is connected with motor 5, cam 8, rotating gear 10, motor 5 drives driving shaft 6 to rotate
- cam 8 is provided with an eccentric hole, and a one-way bearing 9 is provided in the eccentric hole.
- the bearing 9 is fixed on the cam 8 through the bearing pressing plate 13, and the driving shaft 6 is connected to the cam 8 through the one-way bearing 9, and the rotating gear 10 is located under the cam 8;
- the fixed block 2 is provided with a cam groove, and the cam groove is opposite to the test tube 1.
- a cam rib 2-1 is provided on one side of the cam 8 and when the cam 8 rotates in the cam groove, the peripheral surface of the cam 8 conflicts with the cam rib 2-1, and the point on the peripheral surface of the cam 8 that is farthest from the driving shaft 6 It is the clamping point 8-1.
- the driving shaft 6 is driven to reverse.
- the driving shaft 6 drives the one-way bearing 9 and the cam 8 to rotate in the reverse direction, making the clamping point 8-1 to the cam
- the rib 2-1 is close, that is, the cam 8 pushes the driving shaft 6 so that the driving shaft 6 drives the rotating gear 10 to move in the direction of the test tube 1, until the clamping point 8-1 conflicts with the cam rib 2-1, and the rotating gear 10 clamps Tighten the test tube 1; then the motor rotates forward to drive the driving shaft 6 to rotate forward.
- the one-way bearing 9 only acts as a bearing.
- the cam 8 does not rotate with the driving shaft 6, the rotating gear 10 always clamps the test tube 1, and the driving shaft 6 drives the rotating gear 10 rotates forward, and the rotating gear 10 engages and drives the test tube 1 to make the test tube 1 rotate synchronously.
- the fixed block 2 is also provided with a sliding block fixing seat 3, a sliding rod 3-1 is arranged on the sliding block fixing seat 3, a spring 3-2 and a sliding block 4 are arranged on the sliding rod 3-1, and the spring 3-2 is located in the test tube
- the slider 4 On the side of 1, the slider 4 is located on the side of the cam rib 2-1, the slider 4 can slide along the slide bar 3-1, the spring 3-2 can expand and contract along the slide bar 3-1, the spring 3-2
- the natural length is greater than the difference between the length of the slider 3-1 and the slider 4.
- the slider 4 always compresses the spring 3-2, and the elastic force of the spring 3-2 on the slider 4 is transmitted to the cam 8 through the driving shaft 6, so that the circumference of the cam 8 The face always conflicts with the cam rib 2-1.
- the sliding block 4 is also provided with a shaft hole, a sliding block bearing 7 is connected in the shaft hole, and the driving shaft 6 is connected to the sliding block 4 through the sliding block bearing 7.
- the cam 8 pushes the active shaft 6 to move in the direction of the test tube 1
- the slider 4 moves in the direction of the test tube 1 under the drive of the active shaft 6, and the spring 3-2 is gradually compressed by the slider 4, and the compressed spring 3-2
- the reverse thrust of the slider 4 is transmitted to the cam 8 via the driving shaft 6, so that the resisting force between the cam 8 and the cam rib 2-1 is also increased, and the static friction generated is also increased, and the rotating gear 10 is clamped
- the test tube 1 and the driving shaft 6 only drive the one-way bearing 9 to rotate relative to the cam 8, the maximum static friction generated between the cam 8 and the cam rib 2-1 ensures that the cam 8 can be prevented from rotating, so that the rotating gear 10 is always clamped
- the test tube 1 can also drive the test tube 1 to rotate.
- the sliding block 4 is also provided with a light chopper 4-1, and a groove-type photocoupler 11 is provided on the side of the fixed block 2 corresponding to the light chopper 4-1. Position to collect the position information of the slider 4, and then determine whether the active shaft 6 is in the reset position. When the test tube rotating mechanism of the present invention is powered on, restarted, or before performing the task of rotating the test tube, it is necessary to set the active shaft 6 in the reset position, and only the slot-type optical coupler 11 senses the chopper on the slider 4 At the 4-1 position, the reset of the master axis 6 is completed.
- a reflective photocoupler 12 is also provided on the fixed block 2 at a position corresponding to the test tube 1, and the reflective photocoupler 12 is used to determine whether there is a test tube that needs to be rotated and scanned.
- test tube rotating mechanism of the present invention is as follows:
- the reflective optocoupler 12 judges whether there is a test tube that needs to be rotated and scanned;
- judging whether the rotating gear 10 clamps the test tube 1 and whether the test tube 1 has been rotated synchronously with the driving shaft 6 can be achieved by controlling the motor running time; if it is a stepping motor, it can also be achieved by This is achieved by controlling the number of steps of the stepper motor.
- the test tube rotating mechanism of the present invention is applied to a test tube rotating code scanning device.
- a code scanner is provided on one side of the test tube 1.
- the barcode scanner quickly scans the barcode on the test tube 1.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Clinical Laboratory Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Devices For Use In Laboratory Experiments (AREA)
Abstract
一种试管旋转机构,包括固定块(2),固定块(2)上设置有夹紧旋转组件和凸轮槽,夹紧旋转组件包括电机(5)、主动轴(6)、凸轮(8)、单向轴承(9)、旋转齿轮(10),电机(5)驱动主动轴(6)转动,主动轴(6)驱动旋转齿轮(10)转动,主动轴(6)通过单向轴承(9)与凸轮(8)连接并驱动凸轮(8)转动,凸轮槽上设置有凸轮挡边,凸轮(8)的周面与凸轮挡边始终接触。主动轴(6)利用单向轴承(9)的单向锁定特性驱动凸轮(8)转动,使凸轮(8)带动主动轴(6)靠近样本试管(1)并使旋转齿轮(10)夹紧样本试管(1),再利用单向轴承(9)的轴承作用使凸轮(8)不随主动轴(6)转动,而主动轴(6)带动旋转齿轮(10)夹紧样本试管(1)并带动样本试管(1)转动,实现不采用电磁铁就能准确夹紧样本试管并带动试管旋转。
Description
本发明涉及医疗器械的技术领域,更确切地说涉及一种试管旋转机构及试管旋转扫码装置。
在血液检验时,带有条码的试管被分发至不同的仪器进行相关项目的检测,条码上包含患者的个人资料,医院需要对试管上的条码进行识别。贴条码的样品试管先被放置于试管架上,再进入检测仪器的自动进样台中,由于用户放置样品试管时,条码方向不一定正对扫描仪,因此需要旋转样品试管,让条码正对扫描仪。
目前市面上实现样品试管旋转的机构通常是采用电磁铁夹紧和电机旋转的方式分别实现样品试管的夹紧和旋转。由于电磁铁的运动速度过快,会导致噪音较大,另外,电磁铁只有到指定位置才能产生理想的电磁力,因此存在电机无法带动样品旋转的情况。
发明内容
本发明要解决的技术问题是,提供一种试管旋转机构,不采用电磁铁就能准确夹紧样品试管并带动试管旋转。
本发明的技术解决方案是,提供一种试管旋转机构,包括固定块,固定块上设置有夹紧旋转组件和凸轮槽,夹紧旋转组件包括电机、主动轴、凸轮、单向轴承、旋转齿轮,电机驱动主动轴转动,主动轴驱动旋转齿轮转动,主动轴通过单向轴承与凸轮连接并驱动凸轮转动,凸轮槽上设置有凸轮挡边,凸轮的周面与凸轮挡边始终接触。
与现有技术相比,本发明的试管旋转机构有以下优点:主动轴通过单向轴承与凸轮连接,利用单向轴承的单向锁定特性驱动凸轮转动,使凸轮带动主动轴靠近样本试管并最终使旋转齿轮夹紧样本试管,再利用单向轴承的轴承作用使凸轮不随主动轴转动,而主动轴带动旋转齿轮始终样本试管并带动样本试管转动,实现不采用电磁铁就能准确夹紧样本试管并带动试管旋转。
优选的,单向轴承通过轴承压板固定在凸轮上。采用此结构,使利用单向轴承的单向锁定特性驱动凸轮转动更可靠。
优选的,固定块上还设置有滑块固定座,滑块固定座上设置有至少一条滑杆,滑杆上设 置有弹簧和滑块,弹簧相对滑块远离凸轮挡边,主动轴与滑块连接并驱动滑块沿滑杆滑动并压缩弹簧。采用此结构,可以保证当滑块压缩弹簧时,弹簧对滑块的弹力经主动轴传递给凸轮,使凸轮的周面与凸轮挡边抵触。
优选的,滑块上设置有轴孔,轴孔内连接有滑块轴承,主动轴通过滑块轴承与滑块连接。采用此结构,可以保证主动轴既能带动滑块沿滑杆滑动,又能相对滑块转动。
优选的,弹簧的自然长度大于滑杆与滑块的长度差。采用此结构,可以保证滑块始终压缩弹簧,弹簧对滑块的弹力经主动轴传递给凸轮,使凸轮的周面与凸轮挡边始终抵触。
优选的,滑块相对弹簧远离样本试管。采用此结构,可以保证在旋转齿轮夹紧样本试管时,弹簧被压缩到最短,弹簧对滑块的弹力最大,凸轮的周面与凸轮挡边之间的抵触力最大,凸轮挡边对凸轮的静摩擦力也就最大,随后在凸轮不随主动轴转动时,保证凸轮不会发生转动,使主动轴带动旋转齿轮始终夹紧样本试管并带动样本试管转动。
优选的,滑块上设置有斩光片,固定块上对应斩光片的一侧设置有用于感应斩光片位置信息的槽型光耦。采用此结构,槽型光耦可以通过感应斩光片的位置来采集滑块的位置信息,进而确定主动轴的位置信息。
优选的,固定块还设置有反射光耦,反射光耦用于判断是否有待旋转的样本试管。采用此结构,可以根据是否有待旋转的样本试管来决定是否启动电机。
本发明要解决的技术问题是,提供一种试管旋转扫码装置,不采用电磁铁就能准确夹紧样品试管并带动试管旋转。
本发明的技术解决方案是,提供一种试管旋转扫码装置,包括扫描器及上述任何一项的试管旋转机构,扫描器的扫描窗口对准样本试管的侧面,用于扫描贴附在样本试管上的条码。
与现有技术相比,本发明的试管旋转扫码装置有以下优点:主动轴通过单向轴承与凸轮连接,利用单向轴承的单向锁定特性驱动凸轮转动,使凸轮带动主动轴靠近样本试管并最终使旋转齿轮夹紧样本试管,再利用单向轴承的轴承作用使凸轮不随主动轴转动,而主动轴带动旋转齿轮始终夹紧样本试管并带动样本试管转动,实现不采用电磁铁就能准确夹紧样本试管并带动试管旋转。
图1为本发明的试管旋转机构的结构示意图。
图2为图1的左视图。
图3位图1的A-A方向视图。
如图中所示:1、试管,2、固定块,2-1、凸轮挡边,3、滑块固定座,3-1、滑杆,3-2、弹簧, 4、滑块,4-1、斩光片,5、电机,6、主动轴,7、滑块轴承,8、凸轮,8-1、夹紧点,9、单向轴承,10、旋转齿轮,11、槽型光耦,12、反射光耦,13、轴承压板。
为了更好得理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而非严格按比例绘制。
还应理解的是,用语“包括”、“具有”、“包含”、“包含有”,当在本说明书中使用时表示存在所述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其他特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“…至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修改列表中的单独元件。
如图1至图3中所示,本发明的试管旋转机构包括固定块2,固定块2上设置有夹紧旋转组件;夹紧旋转组件包括电机5、主动轴6、凸轮8、单向轴承9、旋转齿轮10,主动轴6与电机5、凸轮8、旋转齿轮10均连接,电机5驱动主动轴6转动,凸轮8上设置有偏心孔,偏心孔中设置有单向轴承9,单向轴承9通过轴承压板13固定在凸轮8上,主动轴6通过单向轴承9与凸轮8连接,旋转齿轮10位于凸轮8的下方;固定块2上设置有凸轮槽,凸轮槽上与试管1相对的一侧设置有一条凸轮挡边2-1,凸轮8在凸轮槽中转动时,凸轮8的周面与凸轮挡边2-1抵触,凸轮8周面上离主动轴6最远的的点为夹紧点8-1。当电机反转时,驱动主动轴6反转,由于单向轴承9与凸轮8锁紧,所以主动轴6带动单向轴承9和凸轮8同步反向旋转,使夹紧点8-1向凸轮挡边2-1靠近,即凸轮8推动主动轴6使主动轴6带动旋转齿轮10向试管1的方向移动,直至夹紧点8-1与凸轮挡边2-1抵触,则旋转齿轮10夹紧试管1;然后电机正转,驱动主动轴6正转,单向轴承9只起轴承的作用,凸轮8不随主动轴6转动,旋转齿轮10始终夹紧试管1,且主动轴6带动旋转齿轮10正转,旋转齿轮10对试管1啮合传动使试管1同步旋转。
固定块2上还设置有滑块固定座3,滑块固定座3上设置有滑杆3-1,滑杆3-1上设置有弹簧3-2和滑块4,弹簧3-2位于试管1的一侧,滑块4位于凸轮挡边2-1的一侧,滑块4可以沿滑杆3-1滑动,弹簧3-2可以沿滑杆3-1方向伸缩,弹簧3-2的自然长度大于滑杆3-1与滑块4的长度差,滑块4始终压缩弹簧3-2,弹簧3-2对滑块4的弹力经主动轴6传递给凸轮8,使凸轮8的周面与凸轮挡边2-1始终抵触。滑块4上还设置有轴孔,轴孔内连接有滑块轴 承7,主动轴6通过滑块轴承7与滑块4连接。当凸轮8推动主动轴6向试管1的方向移动时,滑块4在主动轴6的带动下同时向试管1的方向移动,弹簧3-2逐渐被滑块4压缩,此时被压缩的弹簧3-2对滑块4的反推力又经主动轴6传递给凸轮8,使凸轮8与凸轮挡边2-1之间的抵触力也增大,产生静摩擦力也增大,在旋转齿轮10夹紧试管1且主动轴6只带动单向轴承9相对凸轮8转动时,凸轮8与凸轮挡边2-1之间产生的最大的静摩擦力保证能阻止凸轮8转动,从而使旋转齿轮10始终夹紧试管1并能带动试管1转动。
滑块4上还设置有斩光片4-1,固定块2上对应斩光片4-1的一侧设置有槽型光耦11,槽型光耦11通过感应斩光片4-1的位置来采集滑块4的位置信息,进而判断主动轴6是否在复位位置。当本发明的试管旋转机构在上电、重启时或执行旋转试管的任务之前,都需要将主动轴6设置在复位位置,且只有在槽型光耦11感应到滑块4上的斩光片4-1位置时,主动轴6的复位才完成。固定块2上对应试管1的位置处还设置有反射光耦12,反射光耦12用于判断是否有试管需要进行旋转扫码。
本发明的试管旋转机构的工作原理如下:
1、上电,将主动轴6复位,并通过槽型光耦11判断主动轴6是否复位完成;
2、反射光耦12判断当前是否有试管需要进行旋转扫码;
3、若试管架中有试管待旋转,则启动电机反转,驱动主动轴6通过单向轴承9带动凸轮8在凸轮槽中紧贴凸轮挡边2-1同步反向旋转,凸轮8同时推动主动轴6向试管1的方向移动,滑块4在主动轴6的带动下同时向试管1的方向移动并逐渐增大压缩弹簧3-2的力度,直至主动轴6带动旋转齿轮10夹紧试管1;
4、启动电机正转,驱动主动轴6带动旋转齿轮10正转且凸轮8不随主动轴6转动,凸轮8与凸轮挡边2-1之间的静摩擦力阻止凸轮8随意转动,主动轴6未发生移动,旋转齿轮10始终夹紧试管1且旋转齿轮10对试管1啮合传动,使试管1同步主动轴6旋转。
本发明的试管旋转机构中,判断旋转齿轮10是否夹紧试管1,以及试管1是否已经随主动轴6同步旋转一周,可以通过控制电机运转的时间来达成;如果是步进电机,也可以通过控制步进电机的步数来达成。
将本发明的试管旋转机构应用在试管旋转扫码装置中,在试管1的一侧设置扫码器,当试管旋转机构将试管1旋转至试管1上的条形码正对扫码器的扫描窗口时,扫码器迅速扫描试管1上的条形码。
以上仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。
Claims (9)
- 一种试管旋转机构,包括固定块(2),固定块(2)上设置有夹紧旋转组件和凸轮槽,其特征在于,夹紧旋转组件包括电机(5)、主动轴(6)、凸轮(8)、单向轴承(9)、旋转齿轮(10),电机(5)驱动主动轴(6)转动,主动轴(6)驱动旋转齿轮(10)转动,主动轴(6)通过单向轴承(9)与凸轮(8)连接并驱动凸轮(8)转动,凸轮槽上设置有凸轮挡边(2-1),凸轮(8)的周面与凸轮挡边(2-1)始终接触。
- 根据权利要求1所述的试管旋转机构,其特征在于,单向轴承(9)通过轴承压板(13)固定在凸轮(8)上。
- 根据权利要求1所述的试管旋转机构,其特征在于,固定块(2)上还设置有滑块固定座(3),滑块固定座(3)上设置有至少一条滑杆(3-1),滑杆(3-1)上设置有弹簧(3-2)和滑块(4),弹簧(3-2)相对滑块(4)远离凸轮挡边(2-1),主动轴(6)与滑块(4)连接并驱动滑块(4)沿滑杆(3-1)滑动并压缩弹簧(3-2)。
- 根据权利要求3所述的试管旋转机构,其特征在于,滑块(4)上设置有轴孔,轴孔内连接有滑块轴承(7),主动轴(6)通过滑块轴承(7)与滑块(4)连接。
- 根据权利要求3所述的试管旋转机构,其特征在于,弹簧(3-2)的自然长度大于滑杆(3-1)与滑块(4)的长度差。
- 根据权利要求3所述的试管旋转机构,其特征在于,滑块(4)相对弹簧(3-2)远离样本试管。
- 根据权利要求3所述的试管旋转机构,其特征在于,滑块(4)上设置有斩光片(4-1),固定块(2)上对应斩光片(4-1)的一侧设置有用于感应斩光片(4-1)位置信息的槽型光耦(11)。
- 根据权利要求1所述的试管旋转机构,其特征在于,固定块(2)还设置有反射光耦(12),反射光耦(12)用于判断是否有待旋转的样本试管。
- 一种试管旋转扫码装置,其特征在于,包括扫描器及如权利要求1至7中任意一项所述的试管旋转机构,扫描器的扫描窗口对准样本试管的侧面,用于扫描贴附在样本试管上的条码。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010471901.4 | 2020-05-29 | ||
CN202010471901.4A CN112149437A (zh) | 2020-05-29 | 2020-05-29 | 试管旋转机构及试管旋转扫码装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021238041A1 true WO2021238041A1 (zh) | 2021-12-02 |
Family
ID=73892177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/123497 WO2021238041A1 (zh) | 2020-05-29 | 2020-10-26 | 试管旋转机构及试管旋转扫码装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112149437A (zh) |
WO (1) | WO2021238041A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114770060A (zh) * | 2022-03-24 | 2022-07-22 | 昆山宇源机电有限公司 | 汽车轮毂的旋转扫码自动化供料设备 |
CN115350949A (zh) * | 2022-09-09 | 2022-11-18 | 湖州市乐民健康投资有限公司 | 一种检验试管分类识别筛选设备 |
CN117101753A (zh) * | 2023-10-23 | 2023-11-24 | 鹍远泰州医学检验实验室有限公司 | 一种肿瘤科检测用样品存放装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113985050A (zh) * | 2021-10-09 | 2022-01-28 | 赫菲斯科技(深圳)有限公司 | 血栓弹力图仪旋转扫码机构 |
CN114955512B (zh) * | 2022-05-27 | 2023-09-29 | 中元汇吉生物技术股份有限公司 | 试管旋转机构和流水线样本传送系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170328927A1 (en) * | 2014-10-28 | 2017-11-16 | Leadway (Hk) Limited | Full-automatic biochemical analyzer, and sampling device and sampling method thereof |
CN108268809A (zh) * | 2018-02-08 | 2018-07-10 | 迪瑞医疗科技股份有限公司 | 试管旋转机构及试管旋转扫码装置 |
CN209132780U (zh) * | 2018-12-12 | 2019-07-19 | 深圳普门科技股份有限公司 | 自动旋转标识扫描机构 |
CN110398592A (zh) * | 2019-08-02 | 2019-11-01 | 深圳市爱康生物科技有限公司 | 一种全自动样本处理设备的试管条码扫描及摄像系统 |
CN110866414A (zh) * | 2019-12-16 | 2020-03-06 | 基蛋生物科技股份有限公司 | 旋转试管扫码装置、系统以及试管扫码流水线 |
CN111077331A (zh) * | 2019-12-25 | 2020-04-28 | 中科精瓒(武汉)医疗技术有限公司 | 一种血栓弹力图仪样本盘 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202686795U (zh) * | 2012-05-11 | 2013-01-23 | 邹洪 | 一种单动力源束带机 |
CN103106384B (zh) * | 2013-01-22 | 2015-05-20 | 无锡研中科技有限公司 | 试管扫描用旋转装置 |
KR101604415B1 (ko) * | 2014-10-07 | 2016-03-18 | 주식회사 코렌스 | 원통캠을 이용한 밸브조립체 |
CN212433768U (zh) * | 2020-05-29 | 2021-01-29 | 宁波美康盛德生物科技有限公司 | 试管旋转机构及试管旋转扫码装置 |
-
2020
- 2020-05-29 CN CN202010471901.4A patent/CN112149437A/zh active Pending
- 2020-10-26 WO PCT/CN2020/123497 patent/WO2021238041A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170328927A1 (en) * | 2014-10-28 | 2017-11-16 | Leadway (Hk) Limited | Full-automatic biochemical analyzer, and sampling device and sampling method thereof |
CN108268809A (zh) * | 2018-02-08 | 2018-07-10 | 迪瑞医疗科技股份有限公司 | 试管旋转机构及试管旋转扫码装置 |
CN209132780U (zh) * | 2018-12-12 | 2019-07-19 | 深圳普门科技股份有限公司 | 自动旋转标识扫描机构 |
CN110398592A (zh) * | 2019-08-02 | 2019-11-01 | 深圳市爱康生物科技有限公司 | 一种全自动样本处理设备的试管条码扫描及摄像系统 |
CN110866414A (zh) * | 2019-12-16 | 2020-03-06 | 基蛋生物科技股份有限公司 | 旋转试管扫码装置、系统以及试管扫码流水线 |
CN111077331A (zh) * | 2019-12-25 | 2020-04-28 | 中科精瓒(武汉)医疗技术有限公司 | 一种血栓弹力图仪样本盘 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114770060A (zh) * | 2022-03-24 | 2022-07-22 | 昆山宇源机电有限公司 | 汽车轮毂的旋转扫码自动化供料设备 |
CN115350949A (zh) * | 2022-09-09 | 2022-11-18 | 湖州市乐民健康投资有限公司 | 一种检验试管分类识别筛选设备 |
CN117101753A (zh) * | 2023-10-23 | 2023-11-24 | 鹍远泰州医学检验实验室有限公司 | 一种肿瘤科检测用样品存放装置 |
CN117101753B (zh) * | 2023-10-23 | 2023-12-15 | 鹍远泰州医学检验实验室有限公司 | 一种肿瘤科检测用样品存放装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112149437A (zh) | 2020-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021238041A1 (zh) | 试管旋转机构及试管旋转扫码装置 | |
JP4511388B2 (ja) | 容量注入ポンプ | |
CN108268809B (zh) | 试管旋转机构及试管旋转扫码装置 | |
CN207632081U (zh) | 一种试管自动抓取扫码机构 | |
CN212433768U (zh) | 试管旋转机构及试管旋转扫码装置 | |
US10278621B2 (en) | Analytical system for examining a body fluid and method for the operation of an analytical system | |
CN111077331A (zh) | 一种血栓弹力图仪样本盘 | |
CN108489837A (zh) | 智能化混凝土强度测试装置 | |
CN112014271A (zh) | 血细胞分析设备、血样自动混匀装置、血样自动混匀方法 | |
CN113633320A (zh) | 咽拭子采样系统的采样头部装置 | |
CN213381619U (zh) | 样本分析仪、夹爪组件 | |
CN208140568U (zh) | 一种结构一体化的偏振光学成像装置 | |
CN112161926B (zh) | 一种荧光免疫分析仪及试剂卡插装导引防拔机构 | |
CN115406638A (zh) | 一种椎弓根钉钉帽与固定垫环抗旋测试装置及测试方法 | |
CN215894649U (zh) | 一种旋转装置、扫码装置及体外诊断装置 | |
JP2754381B2 (ja) | レンズ鏡筒の駆動装置 | |
JP3199845B2 (ja) | チューブクランプ装置 | |
CN214278957U (zh) | 一种试管扫码装置 | |
CN109646091A (zh) | 用于固定穿刺针的装置 | |
JP2008015033A (ja) | 拡大撮像装置 | |
CN216485069U (zh) | 驱动装置及分析仪 | |
CN215296877U (zh) | 一种推片装置及推片染色机 | |
CN211603227U (zh) | 一种血栓弹力图仪样本盘 | |
CN116269479A (zh) | 一种超声波诊断仪 | |
CN114950218B (zh) | 一种样本全自动混匀系统及混匀方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20938350 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20938350 Country of ref document: EP Kind code of ref document: A1 |