WO2021237840A1 - 光学系统 - Google Patents

光学系统 Download PDF

Info

Publication number
WO2021237840A1
WO2021237840A1 PCT/CN2020/097433 CN2020097433W WO2021237840A1 WO 2021237840 A1 WO2021237840 A1 WO 2021237840A1 CN 2020097433 W CN2020097433 W CN 2020097433W WO 2021237840 A1 WO2021237840 A1 WO 2021237840A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
aspheric
lenses
plastic
Prior art date
Application number
PCT/CN2020/097433
Other languages
English (en)
French (fr)
Inventor
李佳妮
若林央
陈扬辉
Original Assignee
深圳市伯森光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市伯森光电科技有限公司 filed Critical 深圳市伯森光电科技有限公司
Publication of WO2021237840A1 publication Critical patent/WO2021237840A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the invention relates to an optical system, in particular to an optical system capable of replacing lenses.
  • optical systems such as surveillance cameras and vehicle cameras
  • the market requires diversification of lens angles, focal lengths, and sensor types.
  • in-vehicle cameras require diversification of specifications for observation and automated response depending on the use (for example, monitoring the front, monitoring the rear, observing the situation in the car, etc.) and vehicle models.
  • diversification it is also pursuing cost reduction, miniaturization, and high performance.
  • plastic aspheric lenses In optical systems such as surveillance cameras and vehicle-mounted cameras, the use of plastic aspheric lenses is effective for cost reduction, miniaturization, and high performance.
  • the cost of the components of the plastic aspheric lens is low, the cost of making the mold of the plastic aspheric lens is quite high.
  • Optical systems with diversified optical performance usually use different plastic aspheric lenses. Therefore, in the case of producing optical systems with diversified optical performance, different molds need to be prepared to make different plastic aspheric lenses. The cost is very high, so not only did not reduce the cost of the optical system, but increased the cost of the optical system.
  • the present invention provides a low-cost, miniaturized and high-performance optical system with diversified optical performance.
  • an embodiment of the present invention provides an optical system, including: at least one aspheric lens, the at least one aspheric lens is formed of plastic and is a lens commonly used in various optical systems; and at least one A spherical lens, the at least one spherical lens is formed of glass, and can be replaced to change the optical performance of the optical system.
  • miniaturization, high performance, and cost reduction of the parts themselves can be achieved by using plastic aspheric lenses, and the initial cost can be reduced by universalizing the costly plastic aspheric lens in a variety of optical systems. Investment, thereby reducing costs.
  • the diversification of the optical performance such as the change of the viewing angle and the diversification of the sensor can be realized. As a result, both the initial cost and the cost of the components themselves are reduced, and it is possible to provide a low-cost, compact and high-performance optical system with diversified optical performance.
  • FIG. 1 is a configuration diagram of an imaging device 10 according to the first embodiment.
  • FIG. 2 is a configuration diagram of the imaging device 20 obtained by replacing the glass spherical lens in the imaging device 10 of Example 1. As shown in FIG.
  • FIG. 3 is a diagram showing the relationship between the field of view of the lens unit 100 and the MTF of the first embodiment.
  • FIG. 4 is a diagram showing the relationship between the field of view of the lens unit 200 and the MTF of the first embodiment.
  • FIG. 5 is a configuration diagram of the imaging device 30 of the second embodiment.
  • FIG. 6 is a configuration diagram of the imaging device 40 obtained by replacing the glass spherical lens in the imaging device 30 of Example 2. As shown in FIG.
  • FIG. 7 is a diagram showing the relationship between the field of view of the lens unit 300 and the MTF of the second embodiment.
  • FIG. 8 is a diagram of the relationship between the field of view of the lens unit 400 and the MTF of the second embodiment.
  • 10-40 imaging device; 100-400: lens unit; 110-410: first lens group; 120-420: second lens group; 130-430: diaphragm; L1-L6: first lens to sixth lens ; 500: flat glass filter; 600, 700: image sensor.
  • the optical system of the embodiment of the present invention is composed of a plastic aspheric lens and a glass spherical lens.
  • the plastic aspheric lens is universal in a variety of optical systems.
  • the glass spherical lens is replaceable.
  • the universal plastic aspheric lens can be replaced
  • the different glass spherical lenses form an optical system with variable focal length and replaceable lenses.
  • the optical system includes: at least one aspheric lens, the at least one aspheric lens is formed of plastic, and is a lens commonly used in various optical systems; and at least one spherical lens, the at least one spherical lens is formed of glass, It can be replaced to change the optical performance of the optical system.
  • the total number of lens elements of the optical system is six, among which three are plastic aspheric lenses and three are glass spherical lenses.
  • three plastic aspheric lenses the resolution of the optical system can be improved.
  • the volume of the optical system can be reduced, and the optical system can be miniaturized.
  • the three plastic aspheric lenses are universalized, thus reducing the development cost of the optical system.
  • the above 6 lenses can be composed of a glass spherical first lens L1, a glass spherical second lens L2, a plastic aspheric third lens L3, a glass spherical fourth lens L4,
  • the fifth lens L5 of plastic aspheric surface and the sixth lens L6 of plastic aspheric surface are composed of the first lens L1, the second lens L2 and the fifth lens L5 are all concave lenses, and the third lens L3, the fourth lens L4 and the first lens
  • the six lenses L6 are all convex lenses.
  • the first lens L1 and the second lens L2 are meniscus concave lenses
  • the third lens L3 is a meniscus convex lens
  • the fourth lens L4 and the sixth lens L6 are biconvex lenses
  • the fifth lens L5 is a biconcave lens.
  • focal length of the third lens L3 and the combined focal length of the fifth lens L5 and the sixth lens L6 satisfy the following conditional formula:
  • f3 is the focal length of the third lens L3
  • f56 is the combined focal length of the fifth lens L5 and the sixth lens L6, and f is the focal length of the optical system.
  • the focal lengths of the three lenses are limited to a certain range. Since the three lenses of the third lens L3, the fifth lens L5 and the sixth lens L6 are universal lenses, by limiting the focal lengths of these three lenses to a certain range, the difficulty of matching with the replaced glass lens can be reduced .
  • the optical system may also be an optical system including a first lens group with negative refractive power, a diaphragm, a second lens group with positive refractive power, and a flat glass filter arranged in order from the object side to the image side, Among them, the first lens group is composed of 3 lenses, and the second lens group is composed of 3 lenses.
  • the first lens group consists of the first lens L1 to the third lens L3 arranged in order from the object side to the image side
  • the second lens group consists of the fourth lens L4 to the sixth lens L4 to the sixth lens arranged in order from the object side to the image side.
  • the first lens L1 and the second lens L2 are glass spherical concave lenses
  • the third lens L3 is a plastic aspheric convex lens
  • the fourth lens L4 is a glass spherical convex lens
  • the fifth lens L5 is a plastic aspheric concave lens
  • the sixth lens L6 is a convex lens with a plastic aspheric surface.
  • the first lens L1 and the second lens L2 are glass spherical meniscus lenses
  • the third lens L3 is a plastic aspheric meniscus lens
  • the fourth lens L4 is a glass spherical biconvex lens
  • the fifth lens L5 is A plastic aspheric biconcave lens
  • the sixth lens L6 is a plastic aspheric biconvex lens.
  • z is the distance between the point on the curved surface of the aspheric lens and the apex of the curved surface in the direction of the optical axis
  • y is the distance between the point on the curved surface of the aspheric lens and the optical axis
  • c is the curvature at the apex of the curved surface
  • k is two Subsurface coefficients
  • B, C, D, E, F are fourth-order surface coefficients, sixth-order surface coefficients, eighth-order surface coefficients, tenth-order surface coefficients, and twelfth-order surface coefficients.
  • the above conditional expression is an aspheric function expression, and the aspheric surface shape determined by the function expression has axisymmetric characteristics. Therefore, the mold of the aspheric lens having the aspheric surface shape determined by the function expression is easy to manufacture. In addition, since the difficulty of manufacturing the mold of the aspheric lens is low, the manufacturing cost of the mold of the aspheric lens is also low.
  • the relationship between the viewing angle and the image height is referred to as the projective method.
  • the projective method is fixed regardless of the change of the focal length, that is, the projective method is always isometric projection regardless of the change of the focal length. Since changing the projective method of the optical system requires changing the aspheric lens of the optical system, by making the projective method of the optical system always equidistant projection, it is possible to realize the generalization of the aspheric lens.
  • the projective method may be an equidistant projective method.
  • the equidistant projection method can make the corresponding radial distances of the objects at the same angle of view on the image plane equal, so it can easily extract the spatial angular coordinate information of the target from the image, so that the target information can be extracted It has good real-time performance.
  • FIG. 1 is a configuration diagram of an imaging device 10 according to the first embodiment.
  • the imaging device 10 has a lens unit 100, an image sensor 600 such as CMOS or CCD, and a flat glass filter 500 provided between the lens unit 100 and the image sensor 600.
  • the image sensor 600 has a photosensitive surface IS.
  • the flat glass filter 500 is a filter for cutting off light of a specific wavelength.
  • the imaging device 10 has a fixing mechanism that fixes the lens unit 100, the flat glass filter 500, and the image sensor 600.
  • the lens unit 100 includes a first lens group 110 with negative refractive power, a diaphragm 130, and a second lens group 120 with positive refractive power, which are sequentially arranged from the object side to the image side.
  • the first lens group 110 is composed of a first lens L1, a second lens L2, and a third lens L3 arranged in order from the object side to the image side
  • the second lens group 120 is composed of a fourth lens L4 arranged in order from the object side to the image side.
  • the fifth lens L5 and the sixth lens L6, the first lens L1 and the second lens L2 are glass spherical meniscus lenses convex to the object side
  • the third lens L3 is a plastic aspheric surface convex to the image side
  • the fourth lens L4 is a biconvex lens with a glass spherical surface
  • the fifth lens L5 is a biconcave lens with a plastic aspheric surface
  • the sixth lens L6 is a biconvex lens with a plastic aspheric surface.
  • the imaging device 20 has a lens unit 200, an image sensor 600 such as CMOS or CCD, and a flat glass filter 500 disposed between the lens unit 200 and the image sensor 600, and the image sensor 600 has a photosensitive surface IS.
  • the flat glass filter 500 is a filter for cutting off light of a specific wavelength.
  • the imaging device 20 has a fixing mechanism that fixes the lens unit 200, the flat glass filter 500, and the image sensor 600.
  • the lens unit 200 includes a first lens group 210 having negative refractive power, a diaphragm 230, and a second lens group 220 having positive refractive power, which are sequentially arranged from the object side to the image side.
  • the first lens group 210 is composed of a first lens L1', a second lens L2', and a third lens L3 that are sequentially arranged from the object side to the image side.
  • the second lens group 220 is composed of a fourth lens that is sequentially arranged from the object side to the image side.
  • the lens L4', the fifth lens L5 and the sixth lens L6 are composed.
  • the first lens L1' and the second lens L2' are meniscus lenses convex to the object side with a glass spherical surface
  • the third lens L3 is a plastic aspherical lens.
  • a convex meniscus lens on the image side the fourth lens L4' is a biconvex lens with a glass spherical surface
  • the fifth lens L5 is a biconcave lens with a plastic aspheric surface
  • the sixth lens L6 is a biconvex lens with a plastic aspheric surface.
  • three plastic aspheric lenses namely the third lens L3, the fifth lens L5, and the sixth lens L6 are the same as the lens unit 100, and three glass spherical lenses, namely the first lens L1 ', the second lens L2' and the fourth lens L4' are different from the lens unit 100.
  • the lens unit 100 and the lens unit 200 of this embodiment three plastic aspheric lenses, that is, the third lens L3, the fifth lens L5, and the sixth lens L6 are used, which can improve the resolution capability of the optical system.
  • the volume of the lens unit 100 and the lens unit 200 is reduced, and the lens unit 100 and the lens unit 200 are miniaturized.
  • the three plastic aspheric lenses are commonly used in the imaging device 10 and the imaging device 20, thereby reducing the development cost of the optical system.
  • the first lens L1 (first lens L1'), the second lens L2 (second lens L2'), and the fourth lens L4 (fourth lens L4') ) Is a glass spherical lens independently designed according to the imaging requirements of the imaging device 10 (imaging device 20).
  • the lens unit 100 and the lens unit 200 of this embodiment by using 3 different glass spherical lenses with 3 universal plastic aspheric lenses, it is possible to achieve different focal lengths and field angle ranges on the same image sensor. .
  • the focal length f of the lens unit 100 of the imaging device 10 of this embodiment is 1.92 mm, the number of aperture f/# is 2.2, the horizontal field of view is 180°, and the total length TTL is 20.3 mm.
  • the focal length f of the lens unit 200 of the imaging device 20 of this embodiment is 2.59 mm, the number of aperture f/# is 2.2, the horizontal field of view is 128°, and the total length TTL is 18.3 mm.
  • the design parameters of the lens unit 100 of this embodiment are shown in Table 1-1.
  • the unit of surface radius and thickness is mm.
  • the design parameters of the lens unit 200 of this embodiment are shown in Table 1-2.
  • the unit of surface radius and thickness is mm.
  • the aspheric parameters of the third lens, the fifth lens, and the sixth lens of the lens units 100 and 200 of this embodiment are shown in Table 1-3.
  • FIG. 3 is a diagram showing the relationship between the field of view and MTF of the lens unit 100 of this embodiment.
  • FIG. 4 is a diagram showing the relationship between the field of view and MTF of the lens unit 200 of this embodiment.
  • FIG. 5 is a configuration diagram of the imaging device 30 of the second embodiment.
  • the imaging device 30 has a lens unit 300, an image sensor 700 such as CMOS or CCD, and a flat glass filter 500 provided between the lens unit 300 and the image sensor 700.
  • the image sensor 700 has a photosensitive surface IS.
  • the flat glass filter 500 is a filter for cutting off light of a specific wavelength.
  • the imaging device 30 has a fixing mechanism that fixes the lens unit 300, the flat glass filter 500, and the image sensor 700.
  • the lens unit 300 includes a first lens group 310 with negative refractive power, a diaphragm 330, and a second lens group 320 with positive refractive power, which are sequentially arranged from the object side to the image side.
  • the first lens group 310 is composed of a first lens L1, a second lens L2, and a third lens L3 arranged in order from the object side to the image side
  • the second lens group 320 is composed of a fourth lens L4 arranged in order from the object side to the image side.
  • the fifth lens L5 and the sixth lens L6, the first lens L1 and the second lens L2 are glass spherical meniscus lenses convex to the object side
  • the third lens L3 is a plastic aspheric surface convex to the image side
  • the fourth lens L4 is a biconvex lens with a glass spherical surface
  • the fifth lens L5 is a biconcave lens with a plastic aspheric surface
  • the sixth lens L6 is a biconvex lens with a plastic aspheric surface.
  • FIG. 6 is a configuration diagram of the imaging device 40 obtained by replacing the glass spherical lens in the imaging device 30 of the second embodiment.
  • the imaging device 40 has a lens unit 400, an image sensor 700 such as CMOS or CCD, and a flat glass filter 500 provided between the lens unit 400 and the image sensor 700.
  • the image sensor 700 has a photosensitive surface IS.
  • the flat glass filter 500 is a filter for cutting off light of a specific wavelength.
  • the imaging device 40 has a fixing mechanism that fixes the lens unit 400, the flat glass filter 500, and the image sensor 700.
  • the lens unit 400 includes a first lens group 410 with negative refractive power, a diaphragm 430, and a second lens group 420 with positive refractive power, which are sequentially arranged from the object side to the image side.
  • the first lens group 410 is composed of a first lens L1', a second lens L2', and a third lens L3 that are sequentially arranged from the object side to the image side.
  • the second lens group 420 is composed of a fourth lens that is sequentially arranged from the object side to the image side.
  • the lens L4', the fifth lens L5 and the sixth lens L6 are composed.
  • the first lens L1' and the second lens L2' are meniscus lenses convex to the object side with a glass spherical surface
  • the third lens L3 is a plastic aspherical lens.
  • a convex meniscus lens on the image side the fourth lens L4' is a biconvex lens with a glass spherical surface
  • the fifth lens L5 is a biconcave lens with a plastic aspheric surface
  • the sixth lens L6 is a biconvex lens with a plastic aspheric surface.
  • three plastic aspheric lenses namely the third lens L3, the fifth lens L5, and the sixth lens L6 are the same as the lens unit 300, and three glass spherical lenses, namely the first lens L1 ', the second lens L2' and the fourth lens L4' are different from the lens unit 300.
  • the lens unit 300 and the lens unit 400 of this embodiment three plastic aspheric lenses, that is, the third lens L3, the fifth lens L5, and the sixth lens L6 are used, which can improve the resolution of the optical system.
  • the volume of the lens unit 300 and the lens unit 400 is reduced, and the lens unit 300 and the lens unit 400 are miniaturized.
  • the three plastic aspheric lenses are commonly used in the imaging device 30 and the imaging device 40, thereby reducing the development cost of the optical system.
  • the first lens L1 (first lens L1'), the second lens L2 (second lens L2'), and the fourth lens L4 (fourth lens L4') ) Is a glass spherical lens independently designed according to the imaging requirements of the imaging device 30 (imaging device 40).
  • the lens unit 300 and the lens unit 400 of this embodiment by using three different glass spherical lenses with three universal plastic aspheric lenses, it is possible to achieve different focal lengths and field angle ranges on the same image sensor. .
  • the focal length f of the lens unit 300 of the imaging device 30 of this embodiment is 1.86 mm, the number of aperture f/# is 2.2, the horizontal field of view is 180°, and the total length TTL is 20.0 mm.
  • the focal length f of the lens unit 400 of the imaging device 40 of this embodiment is 2.48 mm, the number of aperture f/# is 2.2, the horizontal field of view is 125°, and the total length TTL is 18.7 mm.
  • the design parameters of the lens unit 300 of this embodiment are shown in Table 2-1.
  • the unit of surface radius and thickness is mm.
  • the design parameters of the lens unit 400 of this embodiment are shown in Table 2-2.
  • the unit of surface radius and thickness is mm.
  • the aspheric parameters of the third lens, the fifth lens, and the sixth lens of the lens unit 100 or 200 of this embodiment are shown in Table 2-3.
  • FIG. 7 is a diagram showing the relationship between the field of view and MTF of the lens unit 300 of this embodiment.
  • FIG. 8 is a diagram showing the relationship between the field of view and MTF of the lens unit 400 of this embodiment.
  • the plastic aspheric lenses L3, L5, and L6 are universalized, and only the glass spherical lenses L1, L2, L4 need to be replaced. The demand for camera devices.
  • the lens units 100 and 200 of Embodiment 1 and the lens units 300 and 400 of Embodiment 2 are all devices that can meet the requirements of using the same image sensor to achieve different focal lengths and angles of view. Therefore, it may be considered to combine the imaging device 10 with the imaging device 30 or the imaging device 40, or to combine the imaging device 20 with the imaging device 30 or the imaging device 40, thereby using different image sensors to achieve the same number of apertures and views. Field angle.
  • the plastic aspheric lens with high research and development cost By designing the plastic aspheric lens with high research and development cost to be used in various lens units, the research and development cost and cycle of various lens units can be greatly reduced, the utilization rate of the plastic aspheric mold is also improved, and the production cost is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)

Abstract

一种光学系统包括:至少一个非球面透镜(L3,L5,L6),至少一个非球面透镜(L3,L5,L6)由塑料形成,是在多种光学系统中通用的透镜;以及至少一个球面透镜(L1,L2,L4),至少一个球面透镜(L1,L2,L4)由玻璃形成,能够被更换以改变光学系统的光学性能。由此能够提供一种低成本、小型化且高性能化的、光学性能多样化的光学系统。

Description

光学系统 技术领域
本发明涉及一种光学系统,尤其涉及一种能够更换透镜的光学系统。
背景技术
关于监控摄像头、车载摄像头等光学系统,市场要求镜头的视角、焦距、传感器的种类等多样化。特别是车载摄像头,根据用途(例如,监控前方、监控后方、观察车内情况等)和车型的不同,要求观察用、自动化应对等的规格多样化。另外,在谋求上述的多样化的同时,还谋求成本降低、小型化、高性能化等。
在监控摄像头、车载摄像头等光学系统中,使用塑料非球面透镜对于成本降低、小型化、高性能化而言是有效的。然而,塑料非球面透镜虽然部件本身的成本低,但是制作塑料非球面透镜的模具的费用相当高。光学性能多样化的光学系统通常会采用不同的塑料非球面透镜,因此在生产光学性能多样化的光学系统的情况下,需要准备不同的模具以制作不同的塑料非球面透镜,这会导致在模具上的花费非常高,因此不仅没有降低光学系统的成本,反而提高了光学系统的成本。
发明内容
发明要解决的问题
本发明提供一种低成本、小型化且高性能化的、光学性能多样化的光学系统。
用于解决问题的方案
为达到上述目的,本发明的实施方式提供了一种光学系统,包括:至少一个非球面透镜,所述至少一个非球面透镜由塑料形成,是在多种光学系统中通用的透镜;以及至少一个球面透镜,所述至少一个球面透镜由玻璃形成, 能够被更换以改变所述光学系统的光学性能。
发明的效果
根据上述结构,通过使用塑料非球面透镜来实现小型化、高性能化和部件本身的成本降低,并且通过将模具费用高昂的塑料非球面透镜在多种光学系统中通用化,能够减少初期费用的投入,从而降低成本。另外,通过更换不需要模具、初期费用较少的玻璃球面透镜,来实现视角的变化、传感器的多样化等光学性能的多样化。由此,无论是初期费用还是部件本身的成本都降低,从而能够提供一种低成本、小型化且高性能化的、光学性能多样化的光学系统。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。
图1是实施例1的摄像装置10的结构图。
图2是实施例1的更换了摄像装置10中的玻璃球面透镜所得到的摄像装置20的结构图。
图3是实施例1的透镜单元100的视场与MTF的关系图。
图4是实施例1的透镜单元200的视场与MTF的关系图。
图5是实施例2的摄像装置30的结构图。
图6是实施例2的更换了摄像装置30中的玻璃球面透镜所得到的摄像装置40的结构图。
图7是实施例2的透镜单元300的视场与MTF的关系图。
图8是实施例2的透镜单元400的视场与MTF的关系图。
附图标记说明
10~40:摄像装置;100~400:透镜单元;110~410:第一透镜组;120~420:第二透镜组;130~430:光阑;L1~L6:第一透镜~第六透镜;500:平面玻璃滤光片;600、700:图像传感器。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。另外,附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。
本发明实施方式的光学系统使用塑料非球面透镜和玻璃球面透镜构成,塑料非球面透镜在多种光学系统中通用化,玻璃球面透镜是可更换的,通过通用化的塑料非球面透镜和被更换的不同的玻璃球面透镜,形成了焦距可变的可更换透镜的光学系统。
换言之,光学系统包括:至少一个非球面透镜,所述至少一个非球面透镜由塑料形成,是在多种光学系统中通用的透镜;以及至少一个球面透镜,所述至少一个球面透镜由玻璃形成,能够被更换以改变所述光学系统的光学性能。
由此,通过使用塑料非球面透镜来实现小型化、高性能化和部件本身的成本降低,并且通过将模具费用高昂的塑料非球面透镜在多种光学系统中通用化,能够减少初期费用的投入,从而降低成本。另外,通过更换不需要模具、初期费用较少的玻璃球面透镜,来实现视角的变化、传感器的多样化等光学性能的多样化。由此,无论是初期费用还是部件本身的成本都降低,从而能够提供一种低成本、小型化且高性能化的、光学性能多样化的光学系统。
举例而言,光学系统的透镜片数合计为6片,其中,3片是塑料非球面透镜,3片是玻璃球面透镜。通过使用3片塑料非球面透镜,可以提高光学系统的解像能力。另外,能够减小光学系统的体积,使光学系统小型化。另外,3片塑料非球面透镜被通用化,因此降低了光学系统的研发成本。
例如,上述6片透镜可以由从物体侧向像侧依次配置的玻璃球面的第一透镜L1、玻璃球面的第二透镜L2、塑料非球面的第三透镜L3、玻璃球面的第四透镜L4、塑料非球面的第五透镜L5以及塑料非球面的第六透镜L6组成,其中,第一透镜L1、第二透镜L2和第五透镜L5均为凹透镜,第三透镜L3、第四透镜L4和第六透镜L6均为凸透镜。通过设为将正负透镜相间地设置这样的设置方式,能够有效地校正光学系统的色差。优选的是,第一透镜L1和第二透镜L2为弯月凹透镜,第三透镜L3为弯月凸透镜,第四透镜L4和第六透镜L6为双凸透镜,第五透镜L5为双凹透镜。
另外,第三透镜L3的焦距、以及第五透镜L5与第六透镜L6的组合焦距满足以下条件式:
4<f3/f<8,
40<|f56|/f<80
其中,f3为第三透镜L3的焦距,f56为第五透镜L5和第六透镜L6的组合焦距,f为光学系统的焦距。
在第三透镜L3、第五透镜L5以及第六透镜L6这三片透镜满足上述条件式的情况下,这三片透镜的焦距被限定在一定范围内。由于第三透镜L3、第五透镜L5以及第六透镜L6这三片透镜是通用的透镜,因此通过使这三片透镜的焦距限定在一定范围内,能够减少与被更换的玻璃透镜匹配的难度。
另外,光学系统也可以是包括从物体侧向像侧依次配置的具有负光焦度的第一透镜组、光阑、具有正光焦度的第二透镜组以及平面玻璃滤光片的光学系统,其中,第一透镜组由3片透镜组成,第二透镜组由3片透镜组成。
举例而言,第一透镜组由从物体侧向像侧依次配置的第一透镜L1~第三透镜L3组成,第二透镜组由从物体侧向像侧依次配置的第四透镜L4~第六透 镜L6组成,第一透镜L1和第二透镜L2是玻璃球面的凹透镜,第三透镜L3是塑料非球面的凸透镜,第四透镜L4是玻璃球面的凸透镜,第五透镜L5是塑料非球面的凹透镜,第六透镜L6是塑料非球面的凸透镜。优选的是,第一透镜L1和第二透镜L2是玻璃球面的弯月凹透镜,第三透镜L3是塑料非球面的弯月凸透镜,第四透镜L4是玻璃球面的双凸透镜,第五透镜L5是塑料非球面的双凹透镜,第六透镜L6是塑料非球面的双凸透镜。
另外,光学系统中的非球面透镜的表面形状均满足以下条件式:
Figure PCTCN2020097433-appb-000001
其中,z为非球面透镜的曲面上的点与曲面顶点在光轴方向上的距离,y为非球面透镜的曲面上的点与光轴的距离,c为曲面顶点处的曲率,k为二次曲面系数,B、C、D、E、F分别为四阶曲面系数、六阶曲面系数、八阶曲面系数、十阶曲面系数、十二阶曲面系数。
上述条件式是一个非球面函数式,由该函数式决定的非球面形状具有轴对称的特点,因此,具有由该函数式决定的非球面形状的非球面透镜的模具是很容易制造的。另外,由于非球面透镜的模具的制造难度低,因此非球面透镜的模具的制造成本也低。
另外,在本发明中,将视角与像高的关系称为射影方式。在本实施方式的光学系统中,射影方式与焦距的变更无关都是固定的,也就是说射影方式与焦距的变更无关地始终为等距射影。由于变更光学系统的射影方式需要变更光学系统的非球面透镜,因此通过使光学系统的射影方式始终为等距射影,能够实现非球面透镜的通用化。
例如,射影方式可以是等距离射影方式。等距离射影方式可以使位于相同视场角的物体在像面上对应的径向距离相等,因此能够方便地从图像中提取目标物在空间上的角坐标信息,从而使目标物的信息的提取具有很好的实时性。
下面,列举摄像装置为例,结合附图对光学系统的实施例详细地进行说 明。
实施例1
图1是实施例1的摄像装置10的结构图。如图1所示,摄像装置10具有透镜单元100、CMOS或CCD等图像传感器600以及设置在透镜单元100与图像传感器600之间的平面玻璃滤光片500。图像传感器600具有感光面IS。平面玻璃滤光片500是用于使特定波长的光截止的滤波器。另外,虽然没有图示,但是摄像装置10具有对透镜单元100、平面玻璃滤光片500和图像传感器600进行固定的固定机构。
透镜单元100包括从物体侧向像侧依次配置的具有负光焦度的第一透镜组110、光阑130以及具有正光焦度的第二透镜组120。第一透镜组110由从物体侧向像侧依次配置的第一透镜L1、第二透镜L2和第三透镜L3组成,第二透镜组120由从物体侧向像侧依次配置的第四透镜L4、第五透镜L5和第六透镜L6组成,第一透镜L1和第二透镜L2是玻璃球面的向物体侧凸出的弯月凹透镜,第三透镜L3是塑料非球面的向像侧凸出的弯月凸透镜,第四透镜L4是玻璃球面的双凸透镜,第五透镜L5是塑料非球面的双凹透镜,第六透镜L6是塑料非球面的双凸透镜。
图2是实施例1的更换了摄像装置10中的玻璃球面透镜所得到的摄像装置20的结构图。如图2所示,摄像装置20具有透镜单元200、CMOS或CCD等图像传感器600以及设置在透镜单元200与图像传感器600之间的平面玻璃滤光片500,图像传感器600具有感光面IS。平面玻璃滤光片500是用于使特定波长的光截止的滤波器。另外,虽然没有图示,但是摄像装置20具有对透镜单元200、平面玻璃滤光片500和图像传感器600进行固定的固定机构。
透镜单元200包括从物体侧向像侧依次配置的具有负光焦度的第一透镜组210、光阑230以及具有正光焦度的第二透镜组220。第一透镜组210由从物体侧向像侧依次配置的第一透镜L1’、第二透镜L2’和第三透镜L3组成,第二透镜组220由从物体侧向像侧依次配置的第四透镜L4’、第五透镜L5和第六透镜L6组成,第一透镜L1’和第二透镜L2’是玻璃球面的向物体侧凸出的 弯月凹透镜,第三透镜L3是塑料非球面的向像侧凸出的弯月凸透镜,第四透镜L4’是玻璃球面的双凸透镜,第五透镜L5是塑料非球面的双凹透镜,第六透镜L6是塑料非球面的双凸透镜。
在本实施例中的透镜单元200中,3片塑料非球面透镜、即第三透镜L3、第五透镜L5、第六透镜L6与透镜单元100相同,3片玻璃球面透镜、即第一透镜L1’、第二透镜L2’、第四透镜L4’与透镜单元100不同。
在本实施例的透镜单元100和透镜单元200中,使用了3片塑料非球面透镜、即第三透镜L3、第五透镜L5、第六透镜L6,可以提高光学系统的解像能力,同时,减小透镜单元100和透镜单元200的体积,使透镜单元100和透镜单元200小型化。另外,3片塑料非球面透镜在摄像装置10和摄像装置20中被通用化,因此降低了光学系统的研发成本。
另外,本实施例的透镜单元100(透镜单元200)中,第一透镜L1(第一透镜L1’)、第二透镜L2(第二透镜L2’)、第四透镜L4(第四透镜L4’)是根据摄像装置10(摄像装置20)的摄像要求而独立设计的玻璃球面透镜。在本实施例的透镜单元100和透镜单元200中,通过使用不同的3片玻璃球面透镜搭配通用的3片塑料非球面透镜,可以实现在同一个图像传感器上得到不同的焦距和视场角范围。
本实施例的摄像装置10的透镜单元100的焦距f为1.92mm,光圈数f/#为2.2,水平视场角为180°,总长TTL为20.3mm。
在实施例1的摄像装置10中,射影方式为等距射影(y=fθ)。这是最适合水平视角180°的所谓鱼眼透镜的方式。
本实施例的摄像装置20的透镜单元200的焦距f为2.59mm,光圈数f/#为2.2,水平视场角为128°,总长TTL为18.3mm。
在水平视角128°的情况下,一般来说,多数情况下射影方式y=f tanθ,但在本实施例中为等距射影(y=fθ)。由于变更射影方式需要变更非球面透镜,因此能够通过使本实施例的摄像装置10和摄像装置20的射影方式为等距射影(y=fθ),来实现非球面透镜的通用化。
例如,本实施例的透镜单元100的设计参数如表1-1所示。表面半径和厚度的单位均为mm。
表1-1
Figure PCTCN2020097433-appb-000002
Figure PCTCN2020097433-appb-000003
例如,本实施例的透镜单元200的设计参数如表1-2所示。表面半径和厚度的单位均为mm。
表1-2
Figure PCTCN2020097433-appb-000004
Figure PCTCN2020097433-appb-000005
例如,本实施例的透镜单元100和200的第三透镜、第五透镜、第六透镜的非球面参数如表1-3所示。
表1-3
Figure PCTCN2020097433-appb-000006
图3是本实施例的透镜单元100的视场与MTF关系图。图4是本实施例的透镜单元200的视场与MTF关系图。
实施例2
图5是实施例2的摄像装置30的结构图。如图5所示,摄像装置30具有透镜单元300、CMOS或CCD等图像传感器700以及设置在透镜单元300与图像传感器700之间的平面玻璃滤光片500。图像传感器700具有感光面IS。平面玻璃滤光片500是用于使特定波长的光截止的滤波器。另外,虽然没有图示, 但是摄像装置30具有对透镜单元300、平面玻璃滤光片500和图像传感器700进行固定的固定机构。
透镜单元300包括从物体侧向像侧依次配置的具有负光焦度的第一透镜组310、光阑330以及具有正光焦度的第二透镜组320。第一透镜组310由从物体侧向像侧依次配置的第一透镜L1、第二透镜L2和第三透镜L3组成,第二透镜组320由从物体侧向像侧依次配置的第四透镜L4、第五透镜L5和第六透镜L6组成,第一透镜L1和第二透镜L2是玻璃球面的向物体侧凸出的弯月凹透镜,第三透镜L3是塑料非球面的向像侧凸出的弯月凸透镜,第四透镜L4是玻璃球面的双凸透镜,第五透镜L5是塑料非球面的双凹透镜,第六透镜L6是塑料非球面的双凸透镜。
图6是本实施例2的更换了摄像装置30中的玻璃球面透镜所得到的摄像装置40的结构图。如图6所示,摄像装置40具有透镜单元400、CMOS或CCD等图像传感器700以及设置在透镜单元400与图像传感器700之间的平面玻璃滤光片500。图像传感器700具有感光面IS。平面玻璃滤光片500是用于使特定波长的光截止的滤波器。另外,虽然没有图示,但是摄像装置40具有对透镜单元400、平面玻璃滤光片500和图像传感器700进行固定的固定机构。
透镜单元400包括从物体侧向像侧依次配置的具有负光焦度的第一透镜组410、光阑430以及具有正光焦度的第二透镜组420。第一透镜组410由从物体侧向像侧依次配置的第一透镜L1’、第二透镜L2’和第三透镜L3组成,第二透镜组420由从物体侧向像侧依次配置的第四透镜L4’、第五透镜L5和第六透镜L6组成,第一透镜L1’和第二透镜L2’是玻璃球面的向物体侧凸出的弯月凹透镜,第三透镜L3是塑料非球面的向像侧凸出的弯月凸透镜,第四透镜L4’是玻璃球面的双凸透镜,第五透镜L5是塑料非球面的双凹透镜,第六透镜L6是塑料非球面的双凸透镜。
在本实施例中的透镜单元400中,3片塑料非球面透镜、即第三透镜L3、第五透镜L5、第六透镜L6与透镜单元300相同,3片玻璃球面透镜、即第一透镜L1’、第二透镜L2’、第四透镜L4’与透镜单元300不同。
在本实施例的透镜单元300和透镜单元400中,使用了3片塑料非球面透镜、即第三透镜L3、第五透镜L5、第六透镜L6,可以提高光学系统的解像能力,同时,减小透镜单元300和透镜单元400的体积,使透镜单元300和透镜单元400小型化。另外,3片塑料非球面透镜在摄像装置30和摄像装置40中被通用化,因此降低了光学系统的研发成本。
另外,本实施例的透镜单元300(透镜单元400)中,第一透镜L1(第一透镜L1’)、第二透镜L2(第二透镜L2’)、第四透镜L4(第四透镜L4’)是根据摄像装置30(摄像装置40)的摄像要求而独立设计的玻璃球面透镜。在本实施例的透镜单元300和透镜单元400中,通过使用不同的3片玻璃球面透镜搭配通用的3片塑料非球面透镜,可以实现在同一个图像传感器上得到不同的焦距和视场角范围。
本实施例的摄像装置30的透镜单元300的焦距f为1.86mm,光圈数f/#为2.2,水平视场角为180°,总长TTL为20.0mm。
本实施例的摄像装置40的透镜单元400的焦距f为2.48mm,光圈数f/#为2.2,水平视场角为125°,总长TTL为18.7mm。
摄像装置30及摄像装置40的射影方式与摄像装置10及摄像装置20的情况同样,均为等距射影(y=fθ)。
例如,本实施例的透镜单元300的设计参数如表2-1所示。表面半径和厚度的单位均为mm。
表2-1
Figure PCTCN2020097433-appb-000007
Figure PCTCN2020097433-appb-000008
本实施例的透镜单元400的设计参数如表2-2所示。表面半径和厚度的单位均为mm。
表2-2
Figure PCTCN2020097433-appb-000009
Figure PCTCN2020097433-appb-000010
本实施例的透镜单元100或200的第三透镜、第五透镜、第六透镜的非球面参数如表2-3所示。
表2-3
Figure PCTCN2020097433-appb-000011
图7是本实施例的透镜单元300的视场与MTF关系图。图8是本实施例的透镜单元400的视场与MTF关系图。
实施例3
在实施例1的透镜单元100、200以及实施例2的透镜单元300、400中,塑料非球面透镜L3、L5、L6被通用化,只需要更换玻璃球面透镜L1、L2、L4就可以满足不同的摄像装置的需求。
实施例1的透镜单元100、200以及实施例2的透镜单元300、400都是可以满足使用同一个图像传感器来实现不同焦距和视场角的需求的装置。因此,可以考虑通过将摄像装置10与摄像装置30或摄像装置40进行组合,或者将摄像装置20与摄像装置30或摄像装置40进行组合,由此使用不同的图像传感器实现相同的光圈数和视场角。
通过将研发成本高的塑料非球面透镜设计为在各种透镜单元中通用,能够极大地降低各种透镜单元的研发成本和周期,还提高了塑料非球面模具的利用率,降低生产成本。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种光学系统,其特征在于,包括:
    至少一个非球面透镜,所述至少一个非球面透镜由塑料形成,是在多种光学系统中通用的透镜;以及
    至少一个球面透镜,所述至少一个球面透镜由玻璃形成,能够被更换以改变所述光学系统的光学性能。
  2. 根据权利要求1所述的光学系统,其特征在于,
    所述光学系统的透镜由3片所述非球面透镜和3片所述球面透镜组成。
  3. 根据权利要求2所述的光学系统,其特征在于,
    所述光学系统包括从物体侧向像侧依次配置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,所述第一透镜和所述第二透镜是玻璃球面的凹透镜,所述第三透镜是塑料非球面的凸透镜,所述第四透镜是玻璃球面的凸透镜,所述第五透镜是塑料非球面的凹透镜,所述第六透镜是塑料非球面的凸透镜。
  4. 根据权利要求3所述的光学系统,其特征在于,
    所述第一透镜和所述第二透镜是玻璃球面的弯月凹透镜,所述第三透镜是塑料非球面的弯月凸透镜,所述第四透镜是玻璃球面的双凸透镜,所述第五透镜是塑料非球面的双凹透镜,所述第六透镜是塑料非球面的双凸透镜。
  5. 根据权利要求4所述的光学系统,其特征在于,
    满足以下条件式:
    4<f3/f<8
    40<|f56|/f<80
    其中,f3为所述第三透镜的焦距,
    f56为所述第五透镜和第六透镜的组合焦距,
    f为所述光学系统的焦距。
  6. 根据权利要求2所述的光学系统,其特征在于,
    所述光学系统包括从物体侧向像侧依次配置的具有负光焦度的第一透镜组、光阑、具有正光焦度的第二透镜组以及平面玻璃滤光片,所述第一透 镜组由3片透镜组成,所述第二透镜组由3片透镜组成。
  7. 根据权利要求6所述的光学系统,其特征在于,
    所述第一透镜组由从物体侧向像侧依次配置的第一透镜、第二透镜以及第三透镜组成,所述第二透镜组由从物体侧向像侧依次配置的第四透镜、第五透镜以及第六透镜组成,所述第一透镜和所述第二透镜是玻璃球面的凹透镜,所述第三透镜是塑料非球面的凸透镜,所述第四透镜是玻璃球面的凸透镜,所述第五透镜是塑料非球面的凹透镜,所述第六透镜是塑料非球面的凸透镜。
  8. 根据权利要求2所述的光学系统,其特征在于,
    所述光学系统中的各非球面透镜满足以下条件式:
    Figure PCTCN2020097433-appb-100001
    其中,z为所述非球面透镜的曲面上的点与曲面顶点在光轴方向上的距离,
    y为所述非球面透镜的曲面上的点与光轴的距离,
    c为所述曲面顶点处的曲率,
    k为二次曲面系数,
    B为四阶曲面系数,
    C为六阶曲面系数,
    D为八阶曲面系数,
    E为十阶曲面系数,
    F为十二阶曲面系数。
  9. 根据权利要求1所述的光学系统,其特征在于,
    所述光学系统的射影方式是固定的。
  10. 根据权利要求9所述的光学系统,其特征在于,
    所述光学系统的射影方式是等距离射影方式。
PCT/CN2020/097433 2020-05-29 2020-06-22 光学系统 WO2021237840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010479109.3A CN111726488B (zh) 2020-05-29 2020-05-29 光学系统
CN202010479109.3 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021237840A1 true WO2021237840A1 (zh) 2021-12-02

Family

ID=72565563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097433 WO2021237840A1 (zh) 2020-05-29 2020-06-22 光学系统

Country Status (2)

Country Link
CN (1) CN111726488B (zh)
WO (1) WO2021237840A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073577A1 (en) * 2007-09-19 2009-03-19 Samsung Electro-Mechanics Co., Ltd. Super wide angle optical system
CN106597639A (zh) * 2016-12-19 2017-04-26 南阳师范学院 一种玻璃塑料组合镜片定焦鱼眼境头
CN206362992U (zh) * 2016-12-27 2017-07-28 东莞市宇瞳光学科技股份有限公司 高清鱼眼镜头
CN108594406A (zh) * 2018-06-09 2018-09-28 福建福光股份有限公司 一种2.8mm的高清日夜共焦镜头
CN109581633A (zh) * 2018-12-29 2019-04-05 河南翊轩光电科技有限公司 一种总长短无热化的鱼眼高清光学镜头

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216456A (en) * 1990-10-29 1993-06-01 Volk Donald A Optical device for use with a slit lamp biomicroscope
US5991089A (en) * 1997-01-31 1999-11-23 U.S. Precision Lens Inc. Long focal length projection lenses for use with large pixelized panels
JP4654506B2 (ja) * 1999-12-02 2011-03-23 株式会社ニコン ズームレンズ
CN101339289B (zh) * 2007-07-02 2010-08-11 大立光电股份有限公司 广角镜头
CN102253474A (zh) * 2011-01-17 2011-11-23 深圳市保千里电子有限公司 一种低成本小型化多倍光学变焦镜头
CN102253473B (zh) * 2011-01-17 2012-07-18 深圳市保千里电子有限公司 一种低成本的高分辨率光学变焦镜头
JP5966341B2 (ja) * 2011-12-19 2016-08-10 大日本印刷株式会社 画像処理装置、画像処理方法、画像処理装置用プログラム、画像表示装置
JP6798803B2 (ja) * 2016-06-28 2020-12-09 天津欧菲光電有限公司Tianjin Ofilm Opto Electronics Co., Ltd 撮像レンズおよび撮像装置
CN106772940A (zh) * 2016-12-27 2017-05-31 东莞市宇瞳光学科技股份有限公司 高像素超短星光级镜头
CN108535834B (zh) * 2017-03-01 2021-01-12 宁波舜宇车载光学技术有限公司 光学镜头和成像设备
US11546509B2 (en) * 2018-01-22 2023-01-03 Maxell, Ltd. Portable device
CN209400782U (zh) * 2019-03-07 2019-09-17 南阳市海科光电有限责任公司 一种大光圈车载镜头光学系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073577A1 (en) * 2007-09-19 2009-03-19 Samsung Electro-Mechanics Co., Ltd. Super wide angle optical system
CN106597639A (zh) * 2016-12-19 2017-04-26 南阳师范学院 一种玻璃塑料组合镜片定焦鱼眼境头
CN206362992U (zh) * 2016-12-27 2017-07-28 东莞市宇瞳光学科技股份有限公司 高清鱼眼镜头
CN108594406A (zh) * 2018-06-09 2018-09-28 福建福光股份有限公司 一种2.8mm的高清日夜共焦镜头
CN109581633A (zh) * 2018-12-29 2019-04-05 河南翊轩光电科技有限公司 一种总长短无热化的鱼眼高清光学镜头

Also Published As

Publication number Publication date
CN111726488A (zh) 2020-09-29
CN111726488B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN107817576B (zh) 光学成像系统
CN106154497B (zh) 光学成像系统
TWI528049B (zh) 定焦鏡頭
CN106324802B (zh) 光学成像系统
TWI660193B (zh) 光學鏡頭
CN106324803B (zh) 光学成像系统
WO2020107759A1 (zh) 光学镜头及成像设备
JPH11153752A (ja) 明るい広角レンズ
WO2021007930A1 (zh) 一种近距离成像用微型成像镜头
TW202009587A (zh) 光學成像模組、成像系統及其製造方法
JP5247307B2 (ja) 広角レンズおよび撮像モジュール
TW202037956A (zh) 五片式廣角鏡片組
CN113391430A (zh) 光学系统、镜头模组和电子设备
WO2021017095A1 (zh) 一种摄像头模组
TWI763908B (zh) 光學成像模組
TWI665484B (zh) 四片式紅外單波長鏡片組
JP3749130B2 (ja) 撮像レンズ
TWI795309B (zh) 成像透鏡系統
TW202240235A (zh) 成像透鏡組及攝像模組
TWI772737B (zh) 光學成像系統
CN113219628A (zh) 光学系统、取像模组及电子设备
CN115166949B (zh) 光学镜头、摄像模组及智能终端
TWM598410U (zh) 光學成像系統
WO2021237840A1 (zh) 光学系统
JP2016057563A (ja) 広角レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20937961

Country of ref document: EP

Kind code of ref document: A1