WO2021237825A1 - 一种高阻燃性的同轴射频电缆及其制备方法 - Google Patents
一种高阻燃性的同轴射频电缆及其制备方法 Download PDFInfo
- Publication number
- WO2021237825A1 WO2021237825A1 PCT/CN2020/096469 CN2020096469W WO2021237825A1 WO 2021237825 A1 WO2021237825 A1 WO 2021237825A1 CN 2020096469 W CN2020096469 W CN 2020096469W WO 2021237825 A1 WO2021237825 A1 WO 2021237825A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- radio frequency
- layer
- frequency cable
- coaxial radio
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/295—Protection against damage caused by extremes of temperature or by flame using material resistant to flame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1834—Construction of the insulation between the conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1869—Construction of the layers on the outer side of the outer conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1878—Special measures in order to improve the flexibility
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/016—Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/016—Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
- H01B13/0165—Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables of the layers outside the outer conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/067—Insulating coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/443—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
- H01B3/445—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
- H01B7/2806—Protection against damage caused by corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/28—Protection against damage caused by moisture, corrosion, chemical attack or weather
- H01B7/282—Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
- H01B7/29—Protection against damage caused by extremes of temperature or by flame
- H01B7/292—Protection against damage caused by extremes of temperature or by flame using material resistant to heat
Definitions
- the invention belongs to the technical field of cable processing, and specifically relates to a high flame-retardant coaxial radio frequency cable and a preparation method thereof.
- a cable is usually a rope-like cable formed by twisting several or several groups of wires. Each group of wires is insulated from each other and often twisted around a center. The entire outer layer is covered with a highly insulating coating. It is mostly erected in the air or installed underground or underwater for telecommunications or power transmission. In 1832, the Russian military veteran Xu Linge buried the telegraph line underground. The six wires were insulated from each other with rubber and placed in a glass tube. This was the earliest underground cable in the world.
- An insulated wire composed of one or more mutually insulated conductive cores placed in a sealed sheath.
- a protective covering layer can be added for transmission, distribution of electric energy or transmission of electrical signals.
- the main difference between it and ordinary wires is that the cable size is larger and the structure is more complicated.
- the cable is mainly composed of the following 4 parts.
- Conductive core made of high-conductivity material (copper or aluminum). According to the requirements of the laying and use conditions for the flexibility of the cable, each core may be formed by a single wire or multiple wires twisted.
- 2Insulation layer The insulating material used for the cable should have high insulation resistance, high breakdown electric field strength, low dielectric loss and low dielectric constant. Commonly used insulating materials in cables include oil-impregnated paper, polyvinyl chloride, polyethylene, cross-linked polyethylene, rubber, etc.
- 3Sealing sheath protect the insulated wire core from damage from machinery, moisture, moisture, chemicals, light, etc.
- sealing sheaths For insulation that is susceptible to moisture, lead or aluminum extruded sealing sheaths are generally used. 4Protective cover layer: used to protect the sealing sheath from mechanical damage. Generally, galvanized steel tape, steel wire or copper tape, copper wire, etc. are used as armor to wrap around the sheath (called armored cable).
- Radio frequency coaxial cable is a cable used to transmit electromagnetic wave energy in the radio frequency range. It is a kind of signal transmission line. Radio frequency coaxial cable is an important part of the coaxial cable transmission system. It is an indispensable component in various electronic systems and equipment. It is widely used in radio mobile communications, broadcasting and television, radar, electronic navigation, and satellites. , Rockets, missiles, computers, and electronic instrumentation.
- the radio frequency coaxial cable has the following characteristics: stable transmission performance, high shielding performance, and less external interference; it can transmit a wide frequency band with low transmission loss; small antenna effect and low radiation loss; simple structure, easy to install and use, and compare economy.
- the published Chinese patent with publication number CN101866717A discloses a high-temperature-resistant flame-retardant coaxial cable, which includes a central conductor arranged in sequence from the inside to the outside, an irradiation cross-linked foamed flame-retardant polyethylene insulation layer, and a copper foil shield Layer, copper wire braided outer conductor layer and outer sheath layer.
- the insulating layer is made of PE base material with appropriate flame-retardant masterbatch and nucleating agent
- the insulating core wire is foamed and extruded by a physical foaming machine, and the resulting hair
- the foamed flame-retardant polyethylene insulation layer is irradiated by an electron accelerator, and a high-voltage electron beam is generated by the electron accelerator to act on the foamed flame-retardant polyethylene insulation layer, which changes the internal structure of the foamed flame-retardant polyethylene insulation layer.
- the chain-like macromolecular structure becomes a three-dimensional network structure, so that the foamed flame-retardant polyethylene insulation layer has better physical properties after being cross-linked.
- the cable in this application has poor insulation, high dielectric constant, and fast signal attenuation, which is not conducive to signal transmission.
- the outer sheath layer has a high flame-retardant and heat-insulating ability, which reduces the overall use time of the cable and is easy to wear.
- the insulation capacity between the inner and outer conductors of the coaxial cable is poor, which affects the signal transmission.
- the present invention provides a high flame-retardant coaxial radio frequency cable, which can effectively flame-retardant, and at the same time, the insulation between the inner and outer conductors is very strong, the signal transmission is accurate, and the interference is less.
- the present invention is a high flame-retardant coaxial radio frequency cable, which includes an inner conductor, an insulating layer, an outer conductor, a heat insulation layer, and a sheath layer sequentially arranged from the inside to the outside, and the heat insulation layer and the sheath layer are interspersed with each other.
- the inner conductor is one or two of oxygen-free copper, copper-clad steel, and copper alloy
- the outer conductor is one or two of oxygen-free copper and aluminum.
- the material of the insulating layer is polytetrafluoroethylene. Wherein, the porosity of the polytetrafluoroethylene is 25-30%.
- Polytetrafluoroethylene has excellent chemical resistance. Strong acids, strong bases or strong oxidants and organic solvents have no effect on it. Strong acids, strong bases and strong oxidants cannot work on it even at high temperatures.
- PTFE has excellent high temperature and low temperature resistance, the short-term use temperature can reach up to 300 °C, and the long-term continuous working temperature range is very wide. Under no-load conditions, the size can remain stable even at 250°C; if there is a load, creep will occur. In the range of minus 70°C-80°C, it can still remain soft, and it will not be brittle at -250°C.
- PTFE has excellent electrical properties, and its dielectric properties and electrical insulation properties are basically not affected by changes in temperature, humidity and frequency.
- the dielectric constant of PTFE is the smallest among solid insulating materials, and it is basically not affected by frequency and temperature changes.
- the insulation resistance of PTFE is extremely high, the volume resistivity is >107 ⁇ •cm, and the surface resistivity is high.
- PTFE is self-extinguishing and cannot burn. Its oxygen index is as high as 95, which is the largest among all plastics. .
- PTFE also has good moisture resistance and water resistance. Due to the shielding effect of fluorine atoms, its moisture permeability and water absorption are extremely low. After being soaked in water for 24 hours, the water absorption is almost equal to zero, and the insulation resistance after soaking is basically unchanged.
- the inside of the PTFE insulation with a certain porosity is composed of countless small nodes and stretched micro fibers connected to each other.
- the shape of the node is a long strip, and the long axis direction of the node is perpendicular to the direction of the fine fiber; the fine fiber is pulled out from the small node, centered on the node, and the direction of the fine fiber is parallel to the stretching direction;
- the dots and nodes are connected by micro-fibers, and the micro-fibers overlap each other to form voids.
- the size of the voids determines the size of the final pore size.
- PTFE has a certain porosity inside, which reduces its dielectric constant, reduces the attenuation caused by conductor resistance loss and attenuation caused by insulation dielectric loss.
- the attenuation constant is an important parameter of radio frequency cables and can reflect the transmission of electromagnetic wave energy along the cable.
- the size of the loss at the time, the use of a certain porosity of polytetrafluoroethylene as an insulating layer can reduce the electrical loss of the conductor.
- a method for preparing a high flame-retardant coaxial radio frequency cable based on the foregoing includes the following steps:
- the dispersion resin is a dispersion obtained by emulsion polymerization. It is a white loose powder obtained after agglomeration and drying. It is also a white fibrous particle.
- the diameter of the secondary particle after agglomeration is 300-700 ⁇ m. , The apparent density is 350-600g/L, the specific surface area is 10-12m2/g);
- the thermal insulation layer includes the following components in parts by weight: 80-100 parts of methyl vinyl silicone rubber, 20-32 parts of silicon dioxide, 34-39 parts of magnesium oxide, 3.4-8 parts of microencapsulated red phosphorus , 1.8-3.2 parts of vulcanizing agent, 10-14 parts of calcium carbonate.
- the molecular structure of methyl vinyl silicone rubber with low unsaturation gives silicone rubber excellent heat aging resistance, weather resistance and resistance to ultraviolet and ozone erosion. At the same time, it greatly improves the vulcanization activity and the crosslinking efficiency of the vulcanizate. Can reduce the amount of vulcanizing agent. When the temperature changes, the interaction between the molecules
- the force changes little, so the rubber elasticity can be maintained in a fairly wide temperature range.
- organic groups on the silicon atom which reduces the symmetry of the molecular chain, thereby lowering its crystallization temperature and glass transition temperature, and has excellent flame retardancy.
- a flame retardant system composed of magnesium oxide and microencapsulated red phosphorus is added to methyl vinyl silicone rubber.
- Microencapsulated red phosphorus is one of the main flame retardant synergists. It has a synergistic effect on ATH, MH, etc.
- red phosphorus itself is combustible. Red phosphorus cannot be used alone as a flame retardant.
- the synergistic flame retardant effect of microencapsulated red phosphorus and magnesium oxide is due to the dehydration of MH at high temperature, which fully converts red phosphorus into phosphoric acid and phosphoric acid. Polymetaphosphoric acid, and the strong dehydration effect of polymetaphosphoric acid will in turn promote the dehydration effect of MH, thereby enhancing the dehydration endothermic and char-forming effect of the system, showing an excellent synergistic flame-retardant effect.
- the vulcanizing agent is 2,4-dichlorobenzoyl.
- the thermal insulation layer comprises the following components in parts by weight: 90 parts of methyl vinyl silicone rubber, 26 parts of silicon dioxide, 35 parts of magnesium oxide, 7 parts of microencapsulated red phosphorus, 2. 2.5 parts of 4-dichlorobenzoyl, 12 parts of calcium carbonate.
- the reaction temperature of the polymerization reaction in step (1) is 50-60°C.
- microporous PTFE film Use a certain thickness of microporous PTFE film, cut it into a certain width, and wrap the inner conductor of the cable on a single-head or multi-head wrapping machine multiple times or multiple layers to form a cable insulation layer. It can be applied to various low-loss microwave coaxial cables.
- the microporous PTFE film has a very low dielectric constant. Its unique porous structure can minimize the dielectric constant of the insulation and make the signal transmission time in the cable. The loss and distortion of the cable are minimized.
- the inner and outer diameters of the insulating tube are reduced to make it close to the core wire of the inner conductor.
- the microporous polytetrafluoroethylene has a certain porosity inside, so that its dielectric constant is reduced, the attenuation caused by conductor resistance loss and the attenuation caused by insulation dielectric loss can be reduced, and the conductor loss and signal distortion can be reduced .
- the material of the thermal insulation layer has a good flame-retardant effect.
- Fig. 1 is a schematic structural diagram of a high flame-retardant coaxial radio frequency cable provided in a specific embodiment of the present invention.
- inner conductor 1 insulating layer 2
- outer conductor 3 heat insulating layer 4
- sheath layer 5 sheath layer 5
- ceramsite 6 ceramsite 6.
- the present invention is a high flame-retardant coaxial radio frequency cable, which includes an inner conductor 1, an insulating layer 2, an outer conductor 3, a heat insulation layer 4, and a sheath layer 5 arranged in sequence from the inside to the outside.
- the heat insulation layer 4, Ceramsite 6 is interspersed between the sheath layer 5, the inner conductor 1 is one or two of oxygen-free copper, copper-clad steel, and copper alloy, and the outer conductor 3 is a kind of oxygen-free copper or aluminum.
- the material of the insulating layer 2 is polytetrafluoroethylene. Wherein, the porosity of the polytetrafluoroethylene is 25%.
- a method for preparing a high flame-retardant coaxial radio frequency cable based on the foregoing includes the following steps:
- the reaction temperature is 50°C.
- the emulsion is obtained.
- the dispersion resin is obtained; it is a dispersion obtained by the emulsion polymerization method and a white loose powder obtained after agglomeration and drying. It is also a white Fibrous particles, the diameter of the secondary particles after agglomeration is 300-700 ⁇ m, the apparent density is 350-600g/L, and the specific surface area is 10-12m2/g;
- the thermal insulation layer 4 includes the following components in parts by weight: 80 parts of methyl vinyl silicone rubber, 20 parts of silicon dioxide, 34 parts of magnesium oxide, 3.4 parts of microencapsulated red phosphorus, 2,4-dichloro 1.8 parts of benzoyl and 10 parts of calcium carbonate.
- the present invention is a high flame-retardant coaxial radio frequency cable, which includes an inner conductor 1, an insulating layer 2, an outer conductor 3, a heat insulation layer 4, and a sheath layer 5 arranged in sequence from the inside to the outside.
- the heat insulation layer 4, Ceramsite 6 is interspersed between the sheath layer 5, the inner conductor 1 is one or two of oxygen-free copper, copper-clad steel, and copper alloy, and the outer conductor 3 is a kind of oxygen-free copper or aluminum.
- the material of the insulating layer 2 is polytetrafluoroethylene. Wherein, the porosity of the polytetrafluoroethylene is 30%.
- a method for preparing a high flame-retardant coaxial radio frequency cable based on the foregoing includes the following steps:
- the thermal insulation layer 4 includes the following components in parts by weight: 90 parts of methyl vinyl silicone rubber, 26 parts of silicon dioxide, 35 parts of magnesium oxide, 7 parts of microencapsulated red phosphorus, 2,4-dichloro 2.5 parts of benzoyl and 12 parts of calcium carbonate.
- the present invention is a high flame-retardant coaxial radio frequency cable, which includes an inner conductor 1, an insulating layer 2, an outer conductor 3, a heat insulation layer 4, and a sheath layer 5 arranged in sequence from the inside to the outside.
- the heat insulation layer 4, Ceramsite 6 is interspersed between the sheath layer 5, the inner conductor 1 is one or two of oxygen-free copper, copper-clad steel, and copper alloy, and the outer conductor 3 is a kind of oxygen-free copper or aluminum.
- the material of the insulating layer 2 is polytetrafluoroethylene. Wherein, the porosity of the polytetrafluoroethylene is 28%.
- a method for preparing a high flame-retardant coaxial radio frequency cable based on the foregoing includes the following steps:
- the thermal insulation layer 4 includes the following components in parts by weight: 100 parts of methyl vinyl silicone rubber, 32 parts of silicon dioxide, 39 parts of magnesium oxide, 8 parts of microencapsulated red phosphorus, 2,4-dichloro 3.2 parts of benzoyl and 14 parts of calcium carbonate.
- the microporous polytetrafluoroethylene has a certain porosity inside, so that its dielectric constant is reduced, the attenuation caused by conductor resistance loss and the attenuation caused by insulation dielectric loss can be reduced, and the conductor loss and signal distortion can be reduced .
- the material of the thermal insulation layer 4 has a good flame-retardant effect.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Insulated Conductors (AREA)
Abstract
本发明提供一种高阻燃性的同轴射频电缆及其制备方法,具体涉及属于电缆加工技术领域,一种高阻燃性的同轴射频电缆,包括由内至外依次设置的内导体、绝缘层、外导体、绝热层、护套层,所述绝热层、护套层之间夹杂陶粒,所述内导体为无氧铜、铜包钢、铜合金中的一种或两种,所述外导体为无氧铜、铝中的种或两种,所述绝缘层的材质为聚四氟乙烯。本发明中微孔的聚四氟乙烯内部具有一定的孔隙率,使得其介电常数降低,降低因导体电阻损耗引起的衰减和绝缘介质损耗引起的衰减,能够降低导体的电损,信号失真情况。同时绝热层的材料具有很好的阻燃效果。
Description
本发明属于电缆加工技术领域,具体涉及一种高阻燃性的同轴射频电缆及其制备方法。
电缆通常是由几根或几组导线绞合而成的类似绳索的电缆,每组导线之间相互绝缘,并常围绕着一根中心扭成,整个外面包有高度绝缘的覆盖层。多架设在空中或装在地下、水底,用于电讯或电力输送。1832年,沙俄退伍军官许林格将电报线路埋在地下,六根导线之间彼此用橡胶绝缘后同放在玻璃管内,这就是世界上最早的一条地下电缆。
由一根或多根相互绝缘的导电线心置于密封护套中构成的绝缘导线。其外可加保护覆盖层,用于传输、分配电能或传送电信号。它与普通电线的差别主要是电缆尺寸较大,结构较复杂。
电缆主要由以下4部分组成。①导电线芯:用高电导率材料(铜或铝)制成。根据敷设使用条件对电缆柔软程度的要求,每根线心可能由单根导线或多根导线绞合而成。②绝缘层:用作电缆的绝缘材料应当具有高的绝缘电阻,高的击穿电场强度,低的介质损耗和低的介电常数。电缆中常用的绝缘材料有油浸纸、聚氯乙烯、聚乙烯、交联聚乙烯、橡皮等。③密封护套:保护绝缘线心免受机械、水分、潮气、化学物品、光等的损伤。对于易受潮的绝缘,一般采用铅或铝挤压密封护套。④保护覆盖层:用以保护密封护套免受机械损伤。一般采用镀锌钢带、钢丝或铜带、铜丝等作为铠甲包绕在护套外(称铠装电缆)。
射频同轴电缆是用来传输射频范围内电磁波能量的电缆,它是信号传输线的一种。射频同轴电缆是同轴电缆传输系统中的重要组成部分,它是各种电子系统和仪器设备中不可缺少的元器件,被广泛应用于无线电移动通信、广播和电视、雷达、电子导航、卫星、火箭、导弹、计算机以及电子仪器仪表等方面。射频同轴电缆具有以下一些特点:传输性能稳定,屏蔽性能高,受外界干扰小;可以传输较宽的频带,传输损耗小;天线效应小,辐射损耗小;结构简单,安装和使用方便,比较经济。
已公开的公开号为CN101866717A的中国专利中公开了一种耐高温阻燃同轴电缆,包括由内至外依次设置的中心导体、辐照交联发泡阻燃聚乙烯绝缘层、铜箔屏蔽层、铜丝编织外导体层和外护套层,由于绝缘层由PE基料配以适量阻燃母料和成核剂,经物理发泡机发泡押出绝缘芯线,由其生成的发泡阻燃聚乙烯绝缘层再经电子加速器辐照,通过电子加速器产生高压电子束流作用在发泡阻燃聚乙烯绝缘层上,使发泡阻燃聚乙烯绝缘层内部结构发生改变,由原来链状大分子结构变为三维网状结构,从而使发泡阻燃聚乙烯绝缘层交联后具有更佳的物理性能,不仅可长期工作在125℃的环境,并且具有阻燃特性、耐电压性强、耐气候性好、机械性能优、传输性能优良等优点。该申请中的电缆绝缘能力不好,介电常数高,电缆信号衰减快,不利于信号传输。另外外护套层的阻燃隔热能力高,降低电缆整体的使用时间,易磨损,同轴电缆内外导体之间的绝缘能力差,影响信号的传输。
有鉴于此,本发明提供一种高阻燃性的同轴射频电缆,能够有效阻燃,同时内外导体之间的绝缘能力很强,信号传输准确,干扰少。
本发明为一种高阻燃性的同轴射频电缆,包括由内至外依次设置的内导体、绝缘层、外导体、绝热层、护套层,所述绝热层、护套层之间夹杂陶粒,所述内导体为无氧铜、铜包钢、铜合金中的一种或两种,所述外导体为无氧铜、铝中的种或两种。所述绝缘层的材质为聚四氟乙烯。其中,所述聚四氟乙烯的孔隙率为25-30%。
聚四氟乙烯具有极优异的耐化学腐蚀性,强酸、强碱或强氧化剂及有机溶剂等对它均不起作用,强酸、强碱、强氧化剂即使在高温时也不能对它起作用,在王水中煮沸也不起变化。聚四氟乙烯具有优良的耐高温、低温性能,短期使用温度最高可达300℃,长期连续工作温度范围很宽。在无载荷的条件下,即使到250℃,尺寸仍可保持稳定;如果有载荷,则会发生蠕变。在零下70℃-80℃范围时,仍可保持柔软,在-250℃,也不变脆。这样能够提高同轴电缆的使用周期,提高其使用年限,长期使用或者存储不会发生质量变化。聚四氟乙烯的电性能十分优异,其介电性能和电绝缘性能基本上不受温度、湿度和频率变化的影响。聚四氟乙烯的介电常数ԑ是固体绝缘材料中最小的,而且基本不受频率和温度变化的影响。同时,聚四氟乙烯的绝缘电阻极高,体积电阻率>107Ω•cm,表面电阻率高,聚四氟乙烯具有自熄性,不能燃烧,它的氧指数高达95,是所有塑料中最大的。聚四氟乙烯还具有很好的耐湿性和耐水性。由于氟原子具有屏蔽作用,使其透湿性和吸水性极微,放在水中浸泡24小时吸水性几乎等于零,而且浸泡后的绝缘电阻基本不变。
带有一定孔隙率的聚四氟乙烯绝缘内部是由无数小结点与伸展形成的微细纤维相互连接构成。结点的形状为长条形,结点的长轴方向垂直于微细纤维的方向;微细纤维是从小结点中被拉出,以结点为中心,微细纤维的方向与拉伸方向平行;结点与结点之间通过微细纤维相连接,微细纤维相互交错叠加形成空隙,空隙的大小决定着最终孔径的大小。
聚四氟乙烯内部具有一定的孔隙率,使得其介电常数降低,降低因导体电阻损耗引起的衰减和绝缘介质损耗引起的衰减,衰减常数至射频电缆的重要参数,能够反映电磁波能量沿电缆传输时的损耗的大小,使用带有一定孔隙率的聚四氟乙烯作为绝缘层能够降低导体的电损。
一种基于前文所述的一种高阻燃性的同轴射频电缆的制备方法,包括以下步骤:
(1)制备绝缘层
在聚合釜中加入水、分散剂(如全氟辛酸钱),将气相的单体四氟乙烯
压入反应釜中,加入催化剂进行聚合反应,用过硫酸钾、亚硫酸氢钠、硫酸亚铁组成的氧化还原体系来引发聚合,聚合完毕后,得到乳液,再经过机械搅拌、凝聚、洗涤、干燥后,得到分散树脂,分散树脂是由乳液聚合法得到的分散液,经凝聚、干燥后制得的白色松散粉末,也是一种白色纤维状颗粒,凝聚后次级粒子的直径为300-700μm,表观密度为350-600g/L,比表面积为10-12m2/g);
(2)向所述分散树脂中加入树脂、助挤剂,经压延机制成薄膜,干燥后对薄膜进行纵向、横向拉伸,热处理定型得到聚四氟乙烯薄膜,薄膜就具有可纤维状微孔的结构;
(3)采用绕包的方法将聚四氟乙烯薄膜绕包在内导体上,所述的绕包的搭盖率为35-42%;
(4)将外导体包覆在聚四氟乙烯薄膜层上;
(5)将绝热层包覆于外导体上,在绝热层上涂抹一层胶,然后粘附陶粒;
(6)将护套层包覆于陶粒层的外围。
其中,所述绝热层按重量份计包括以下组份:甲基乙烯基硅橡胶80-100份、二氧化硅20-32份、氧化镁34-39份、微胶囊化红磷3.4-8份、硫化剂1.8-3.2份、碳酸钙10-14份。
甲基乙烯基硅橡胶具有低不饱和度的分子结构使硅橡胶具有优良的耐热老化性、耐候性及耐紫外线和臭氧侵蚀,同时大大提高了硫化活性,提高硫化胶的交联效率,从而可以减少硫化剂用量。当温度变化时,分子之间的作用
力改变很少,因而可以在相当宽的温度范围内保持橡胶弹性。此外,硅原子上带有有机基团,使其分子链的对称性下降,从而使其结晶温度和玻璃化温度降低,阻燃能力优异。甲基乙烯基硅橡胶中加入氧化镁、微胶囊化红磷组成的阻燃体系,微胶囊化红磷是主要的阻燃协效剂之一,它对ATH、MH等都有协
同阻燃作用,但红磷自身可燃,红磷不能单独作为阻燃剂使用,微胶囊化红磷与氧化镁的协同阻燃效应是由于MH在高温下脱水,使红磷充分转化为磷酸和聚偏磷酸,而聚偏磷酸的强烈脱水作用又会反过来促进MH的脱水作用,从而增强了体系的脱水吸热、成炭作用,体现出优异的协同阻燃的作用。
其中,所述硫化剂为2,4-二氯苯甲酰。
作为优选的一种方案,所述绝热层按重量份计包括以下组份:甲基乙烯基硅橡胶90份、二氧化硅26份、氧化镁35份、微胶囊化红磷7份、2,4-二氯苯甲酰2.5份、碳酸钙12份。
步骤(1)所述的聚合反应的反应温度为50-60℃。
采用一定厚度的微孔聚四氟乙烯薄膜,切成一定宽度,在单头或多头绕包机上对电缆内导体进行多次或多层绕包,形成电缆绝缘层。可应用于各种低损耗微波同轴电缆微孔聚四氟乙烯薄膜具有极低的介电常数,其独特的多孔结构可以使绝缘的介电常数降至最低,并使电缆中的信号传输时的损耗和失真降至最低,电缆的衰减一方面绝缘管的内、外径缩小使之紧贴在内导体芯线上,另一方面聚四氟乙烯绝缘管体在受到拉伸后,内部形成由无数微小结点和微细纤维组成的网状微孔结构纵向拉伸倍数越大,绝缘内部形成的微小结点长径比越大,伸展出的微细纤维越细、长度越长,形成的微孔的孔径增大、分布更均匀,孔隙率就越高,使绝缘的介电常数就越小。
本发明中微孔的聚四氟乙烯内部具有一定的孔隙率,使得其介电常数降低,降低因导体电阻损耗引起的衰减和绝缘介质损耗引起的衰减,能够降低导体的电损,信号失真情况。同时绝热层的材料具有很好的阻燃效果。
图1为本发明具体实施方式中提供的一种高阻燃性的同轴射频电缆的结构示意图。
其中:内导体1、绝缘层2、外导体3、绝热层4、护套层5,陶粒6。
本发明的具体实施方式
下面结合具体实施方式对本发明进行详细描述。
实施例1
本发明为一种高阻燃性的同轴射频电缆,包括由内至外依次设置的内导体1、绝缘层2、外导体3、绝热层4、护套层5,所述绝热层4、护套层5之间夹杂陶粒6,所述内导体1为无氧铜、铜包钢、铜合金中的一种或两种,所述外导体3为无氧铜、铝中的种或两种。所述绝缘层2的材质为聚四氟乙烯。其中,所述聚四氟乙烯的孔隙率为25%。
一种基于前文所述的一种高阻燃性的同轴射频电缆的制备方法,包括以下步骤:
(1)制备绝缘层2
在聚合釜中加入水、分散剂,将气相的单体四氟乙烯压入反应釜中,加入催化剂进行聚合反应,用过硫酸钾、亚硫酸氢钠、硫酸亚铁组成的氧化还原体系来引发聚合,反应温度为50℃。聚合完毕后,得到乳液,再经过经机械搅拌、凝聚、洗涤、干燥后,得到分散树脂;是由乳液聚合法得到的分散液,经凝聚、干燥后制得的白色松散粉末,也是一种白色纤维状颗粒,凝聚后次级粒子的直径为300-700μm,表观密度为350-600g/L,比表面积为10-12m2/g;
(2)向所述分散树脂中加入树脂、助挤剂,经压延机制成薄膜,干燥后对薄膜进行纵向、横向拉伸,热处理定型得到聚四氟乙烯薄膜,薄膜就具有可纤维状微孔的结构;
(3)采用绕包的方法将聚四氟乙烯薄膜绕包在内导体1上,所述的绕包的搭盖率为35%;
(4)将外导体3包覆在聚四氟乙烯薄膜层上;
(5)将绝热层4包覆于外导体3上,在绝热层4上涂抹一层胶,然后粘附陶粒6;
(6)将护套层5包覆于陶粒6层的外围。
其中,所述绝热层4按重量份计包括以下组份:甲基乙烯基硅橡胶80份、二氧化硅20份、氧化镁34份、微胶囊化红磷3.4份、2,4-二氯苯甲酰1.8份、碳酸钙10份。
实施例2
本发明为一种高阻燃性的同轴射频电缆,包括由内至外依次设置的内导体1、绝缘层2、外导体3、绝热层4、护套层5,所述绝热层4、护套层5之间夹杂陶粒6,所述内导体1为无氧铜、铜包钢、铜合金中的一种或两种,所述外导体3为无氧铜、铝中的种或两种。所述绝缘层2的材质为聚四氟乙烯。其中,所述聚四氟乙烯的孔隙率为30%。
一种基于前文所述的一种高阻燃性的同轴射频电缆的制备方法,包括以下步骤:
(1)制备绝缘层2
在聚合釜中加入水、分散剂,将气相的单体四氟乙烯压入反应釜中,加入催化剂进行聚合反应,用过硫酸钾、亚硫酸氢钠、硫酸亚铁组成的氧化还原体系来引发聚合,反应温度为55℃,聚合完毕后,得到乳液,再经过经机械搅拌、凝聚、洗涤、干燥后,得到分散树脂;
(2)向所述分散树脂中加入树脂、助挤剂,经压延机制成薄膜,干燥后对薄膜进行纵向、横向拉伸,热处理定型得到聚四氟乙烯薄膜,薄膜就具有可纤维状微孔的结构;
(3)采用绕包的方法将聚四氟乙烯薄膜绕包在内导体1上,所述的绕包的搭盖率为35-42%;
(4)将外导体3包覆在聚四氟乙烯薄膜层上;
(5)将绝热层4包覆于外导体3上,在绝热层4上涂抹一层胶,然后粘附陶粒6;
(6)将护套层5包覆于陶粒6层的外围。
其中,所述绝热层4按重量份计包括以下组份:甲基乙烯基硅橡胶90份、二氧化硅26份、氧化镁35份、微胶囊化红磷7份、2,4-二氯苯甲酰2.5份、碳酸钙12份。
实施例3
本发明为一种高阻燃性的同轴射频电缆,包括由内至外依次设置的内导体1、绝缘层2、外导体3、绝热层4、护套层5,所述绝热层4、护套层5之间夹杂陶粒6,所述内导体1为无氧铜、铜包钢、铜合金中的一种或两种,所述外导体3为无氧铜、铝中的种或两种。所述绝缘层2的材质为聚四氟乙烯。其中,所述聚四氟乙烯的孔隙率为28%。
一种基于前文所述的一种高阻燃性的同轴射频电缆的制备方法,包括以下步骤:
(1)制备绝缘层2
在聚合釜中加入水、分散剂,将气相的单体四氟乙烯压入反应釜中,加入催化剂进行聚合反应,用过硫酸钾、亚硫酸氢钠、硫酸亚铁组成的氧化还原体系来引发聚合,反应温度为60℃。聚合完毕后,得到乳液,再经过经机械搅拌、凝聚、洗涤、干燥后,得到分散树脂;
(2)向所述分散树脂中加入树脂、助挤剂,经压延机制成薄膜,干燥后对薄膜进行纵向、横向拉伸,热处理定型得到聚四氟乙烯薄膜,薄膜就具有可纤维状微孔的结构;
(3)采用绕包的方法将聚四氟乙烯薄膜绕包在内导体1上,所述的绕包的搭盖率为39%;
(4)将外导体3包覆在聚四氟乙烯薄膜层上;
(5)将绝热层4包覆于外导体3上,在绝热层4上涂抹一层胶,然后粘附陶粒6;
(6)将护套层5包覆于陶粒6层的外围。
其中,所述绝热层4按重量份计包括以下组份:甲基乙烯基硅橡胶100份、二氧化硅32份、氧化镁39份、微胶囊化红磷8份、2,4-二氯苯甲酰3.2份、碳酸钙14份。
本发明中微孔的聚四氟乙烯内部具有一定的孔隙率,使得其介电常数降低,降低因导体电阻损耗引起的衰减和绝缘介质损耗引起的衰减,能够降低导体的电损,信号失真情况。同时绝热层4的材料具有很好的阻燃效果。
本发明不局限于上述具体的实施方式,本发明可以有各种更改和变化。凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。
Claims (8)
- 一种高阻燃性的同轴射频电缆,其特征在于,包括由内至外依次设置的内导体、绝缘层、外导体、绝热层、护套层,所述绝热层、护套层之间夹杂陶粒,所述内导体为无氧铜、铜包钢、铜合金中的一种或两种,所述外导体为无氧铜、铝中的一种或两种,所述绝缘层的材质为聚四氟乙烯。
- 根据权利要求1所述的一种高阻燃性的同轴射频电缆,其特征在于,所述聚四氟乙烯的孔隙率为25-30%。
- 一种基于权利要求1或2所述的一种高阻燃性的同轴射频电缆的制备方法,其特征在于,包括以下步骤:(1)制备绝缘层在聚合釜中加入水、分散剂,将气相的单体四氟乙烯压入反应釜中,加入催化剂进行聚合反应,聚合完毕后,得到乳液,再经过凝聚、干燥,得到分散树脂;(2)向所述分散树脂中加入树脂、助挤剂,经压延机制成薄膜,干燥后对薄膜进行纵向、横向拉伸,热处理定型得到聚四氟乙烯薄膜;(3)采用绕包的方法将聚四氟乙烯薄膜绕包在内导体上;(4)将外导体包覆在聚四氟乙烯薄膜层上;(5)将绝热层包覆于外导体上,在绝热层上涂抹一层胶,然后粘附陶粒;(6)将护套层包覆于陶粒层的外围。
- 根据权利要求3所述的一种高阻燃性的同轴射频电缆的制备方法,其特征在于,所述绝热层按重量份计包括以下组份:甲基乙烯基硅橡胶80-100份、二氧化硅20-32份、氧化镁34-39份、微胶囊化红磷3.4-8份、硫化剂1.8-3.2份、碳酸钙10-14份。
- 根据权利要求4所述的一种高阻燃性的同轴射频电缆的制备方法,其特征在于,所述硫化剂为2,4-二氯苯甲酰。
- 根据权利要求5所述的一种高阻燃性的同轴射频电缆的制备方法,其特征在于,所述绝热层按重量份计包括以下组份:甲基乙烯基硅橡胶90份、二氧化硅26份、氧化镁35份、微胶囊化红磷7份、2,4-二氯苯甲酰2.5份、碳酸钙12份。
- 根据权利要求6所述的一种高阻燃性的同轴射频电缆的制备方法,其特征在于,步骤(3)所述的绕包的搭盖率为35-42%。
- 根据权利要求7所述的一种高阻燃性的同轴射频电缆的制备方法,其特征在于,步骤(1)所述的聚合反应的反应温度为50-60℃。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010446885.3 | 2020-05-25 | ||
CN202010446885.3A CN111627606A (zh) | 2020-05-25 | 2020-05-25 | 一种高阻燃性的同轴射频电缆及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021237825A1 true WO2021237825A1 (zh) | 2021-12-02 |
Family
ID=72260702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/096469 WO2021237825A1 (zh) | 2020-05-25 | 2020-06-17 | 一种高阻燃性的同轴射频电缆及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111627606A (zh) |
WO (1) | WO2021237825A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113724936B (zh) * | 2021-08-11 | 2023-09-26 | 广东速联科技术股份有限公司 | 一种低温超导同轴电缆及加工工艺 |
CN116082058B (zh) * | 2023-01-14 | 2023-07-28 | 商洛学院 | 一种铁尾矿基超强陶粒及其制备方法、包含其的混凝土 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07335027A (ja) * | 1994-06-08 | 1995-12-22 | Hitachi Cable Ltd | 含フッ素エラストマ被覆電線・ケーブル及びその製造方法 |
EP0957493A1 (en) * | 1998-05-14 | 1999-11-17 | Champlain Cable Corporation | Improved automotive-wire insulation |
CN102127181A (zh) * | 2011-01-31 | 2011-07-20 | 中昊晨光化工研究院 | 一种制备聚四氟乙烯分散树脂的方法 |
CN104319008A (zh) * | 2014-10-29 | 2015-01-28 | 江苏俊知技术有限公司 | 一种耐高温低损耗复合绝缘同轴电缆 |
CN104327516A (zh) * | 2014-11-10 | 2015-02-04 | 吉林省中科电缆附件有限公司 | 一种电缆用阻燃硅橡胶 |
CN107513168A (zh) * | 2017-08-22 | 2017-12-26 | 江苏泛亚微透科技股份有限公司 | 具有导热、隔热、导电、电磁屏蔽等功能的膨体聚四氟乙烯膜涂层复合材料及其制备方法 |
CN108341999A (zh) * | 2018-02-02 | 2018-07-31 | 安徽渡江电缆集团有限公司 | 一种耐海水腐蚀电缆护套材料 |
CN110931155A (zh) * | 2019-12-31 | 2020-03-27 | 安徽宏源特种电缆股份有限公司 | 一种高频大功率低损耗射频电缆及其制备方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19544912A1 (de) * | 1995-12-01 | 1997-06-05 | Gore W L & Ass Gmbh | PTFE-Körper aus mikroporösem Polytetrafluorethylen mit Füllstoff und Verfahren zu dessen Herstellung |
KR101064102B1 (ko) * | 2006-09-22 | 2011-09-08 | 쿠라베 가부시키가이샤 | Ptfe 다공체, ptfe 혼합체, ptfe 다공체의 제조방법, 및 ptfe 다공체를 이용한 전선·케이블 |
CN101328235B (zh) * | 2008-08-01 | 2010-11-03 | 上海三爱富新材料股份有限公司 | 改性聚四氟乙烯树脂的制备方法 |
CN101980401A (zh) * | 2010-12-01 | 2011-02-23 | 天津安讯达科技有限公司 | 低损耗稳相同轴射频电缆及其制造工艺 |
CN202058486U (zh) * | 2011-05-24 | 2011-11-30 | 浙江万马集团特种电子电缆有限公司 | 低烟低毒阻燃环保型同轴电缆 |
CN203013905U (zh) * | 2012-12-20 | 2013-06-19 | 四川九洲线缆有限责任公司 | 一种射频电缆 |
CN203056070U (zh) * | 2012-12-28 | 2013-07-10 | 辽宁金环电缆有限公司 | 一种稳相低损耗射频同轴电缆 |
CN103612397B (zh) * | 2013-11-22 | 2016-02-24 | 湖州森诺氟材料科技有限公司 | 一种用于电子通信密封行业的聚四氟乙烯微孔膜及其制备方法 |
CN204303400U (zh) * | 2015-01-09 | 2015-04-29 | 芜湖航飞科技股份有限公司 | 一种航空航天用耐高温绕包安装线 |
CN205122228U (zh) * | 2015-09-29 | 2016-03-30 | 上海市凌桥环保设备厂有限公司 | 电缆 |
CN107868162B (zh) * | 2016-09-26 | 2020-07-14 | 中昊晨光化工研究院有限公司 | 一种高分子量聚四氟乙烯分散树脂及其制备方法 |
CN106832960A (zh) * | 2017-02-24 | 2017-06-13 | 华东理工大学 | 一种陶瓷化阻燃耐火硅橡胶复合材料及其制备方法 |
JP6893496B2 (ja) * | 2017-09-25 | 2021-06-23 | 日星電気株式会社 | 同軸ケーブル |
CN108912359A (zh) * | 2018-06-12 | 2018-11-30 | 苏州优可发新材料科技有限公司 | 一种高泡压聚四氟乙烯微孔膜及其制备方法 |
CN109621737A (zh) * | 2019-01-07 | 2019-04-16 | 浙江净膜环保有限责任公司 | 高孔隙率的ptfe/pfa复合膜的制备方法 |
CN209929050U (zh) * | 2019-07-31 | 2020-01-10 | 江苏艾力升电缆有限公司 | 一种使用寿命长的同轴电缆 |
CN210403247U (zh) * | 2019-07-31 | 2020-04-24 | 沈阳北阳氟塑料有限公司 | 一种电缆用聚四氟乙烯薄膜 |
CN210167150U (zh) * | 2019-08-07 | 2020-03-20 | 江苏联东康电子科技有限公司 | 一种阻燃耐高温的同轴线 |
CN110643294A (zh) * | 2019-09-25 | 2020-01-03 | 苏州盛达飞智能科技股份有限公司 | 一种聚四氟乙烯胶带的制备方法 |
-
2020
- 2020-05-25 CN CN202010446885.3A patent/CN111627606A/zh active Pending
- 2020-06-17 WO PCT/CN2020/096469 patent/WO2021237825A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07335027A (ja) * | 1994-06-08 | 1995-12-22 | Hitachi Cable Ltd | 含フッ素エラストマ被覆電線・ケーブル及びその製造方法 |
EP0957493A1 (en) * | 1998-05-14 | 1999-11-17 | Champlain Cable Corporation | Improved automotive-wire insulation |
CN102127181A (zh) * | 2011-01-31 | 2011-07-20 | 中昊晨光化工研究院 | 一种制备聚四氟乙烯分散树脂的方法 |
CN104319008A (zh) * | 2014-10-29 | 2015-01-28 | 江苏俊知技术有限公司 | 一种耐高温低损耗复合绝缘同轴电缆 |
CN104327516A (zh) * | 2014-11-10 | 2015-02-04 | 吉林省中科电缆附件有限公司 | 一种电缆用阻燃硅橡胶 |
CN107513168A (zh) * | 2017-08-22 | 2017-12-26 | 江苏泛亚微透科技股份有限公司 | 具有导热、隔热、导电、电磁屏蔽等功能的膨体聚四氟乙烯膜涂层复合材料及其制备方法 |
CN108341999A (zh) * | 2018-02-02 | 2018-07-31 | 安徽渡江电缆集团有限公司 | 一种耐海水腐蚀电缆护套材料 |
CN110931155A (zh) * | 2019-12-31 | 2020-03-27 | 安徽宏源特种电缆股份有限公司 | 一种高频大功率低损耗射频电缆及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111627606A (zh) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20200070788A (ko) | 고분자-탄소 복합체 차폐층을 포함하는 고차폐 경량화 케이블 | |
WO2021237825A1 (zh) | 一种高阻燃性的同轴射频电缆及其制备方法 | |
CN204720186U (zh) | 4g通信基站用集束信号电缆 | |
CN204087894U (zh) | 阻燃隔火中压电缆 | |
CN105489268A (zh) | 信号电缆 | |
CN110148490B (zh) | 一种抗压防静电煤矿用电缆 | |
CN116230307A (zh) | 一种防水耐高温核级控制电缆及其制备方法 | |
WO2005081896A2 (en) | Plenum cable | |
CN113658748A (zh) | 一种辐照交联高性能高阻燃电线电缆及其制备方法 | |
CN108417301A (zh) | 一种中压抗水树交联聚乙烯绝缘电力电缆及生产工艺 | |
CN115785555B (zh) | 一种铝合金导体交联聚乙烯绝缘阻燃电缆 | |
CN108428497A (zh) | 一种环保网络数据电缆及其制备方法 | |
CN210182130U (zh) | 一种耐紫外环保型集通电与通信一体的同心电缆 | |
CN214671946U (zh) | 一种高电压用阻燃电力电缆 | |
CN112201393A (zh) | 一种移动便携式充电装置用电缆 | |
CN219800531U (zh) | 一种耐火耐高温高频同轴电缆 | |
CN104733108A (zh) | 一种变频电缆 | |
CN219321091U (zh) | 一种抗干扰视频同轴电线电缆 | |
RU166060U1 (ru) | Кабель электрический с теплостойкой резиновой изоляцией холодостойкий | |
CN217690528U (zh) | 一种新型绝缘耐高温的高压线 | |
CN212782777U (zh) | 一种同心式辐照交联电线电缆 | |
CN213303736U (zh) | 一种阻燃机场助航灯光电缆 | |
CN109036664A (zh) | 高阻燃高耐候的新能源汽车用电线及其制备方法 | |
CN114597002B (zh) | 一种485线电缆制备方法 | |
CN211294692U (zh) | 耐用电缆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20937669 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20937669 Country of ref document: EP Kind code of ref document: A1 |