WO2021235467A1 - 疾患の進行度を判定するための装置、方法、プログラム及びシステム - Google Patents

疾患の進行度を判定するための装置、方法、プログラム及びシステム Download PDF

Info

Publication number
WO2021235467A1
WO2021235467A1 PCT/JP2021/018908 JP2021018908W WO2021235467A1 WO 2021235467 A1 WO2021235467 A1 WO 2021235467A1 JP 2021018908 W JP2021018908 W JP 2021018908W WO 2021235467 A1 WO2021235467 A1 WO 2021235467A1
Authority
WO
WIPO (PCT)
Prior art keywords
decrease
determined
oxygen saturation
state
load
Prior art date
Application number
PCT/JP2021/018908
Other languages
English (en)
French (fr)
Inventor
晃太 佐竹
Original Assignee
株式会社Cureapp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Cureapp filed Critical 株式会社Cureapp
Priority to US17/926,332 priority Critical patent/US20230190187A1/en
Priority to CN202180036458.0A priority patent/CN115666380A/zh
Publication of WO2021235467A1 publication Critical patent/WO2021235467A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4842Monitoring progression or stage of a disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present invention relates to a device, method, program and system for determining the degree of disease progression.
  • An object of the present invention is to provide a device, a system, a method and a program for determining the degree of disease progression.
  • the device is a device for determining the degree of disease progression, and obtains continuously measured arterial blood oxygen saturation, and the continuously measured arterial blood oxygen saturation. Based on the degree, the measured arterial oxygen saturation is determined as a decrease-related index related to the decrease due to the exercise load, the information indicating the magnitude of the exercise load is acquired, and the information indicating the magnitude of the exercise load and the information indicating the magnitude of the exercise load are obtained. The degree of disease progression is determined based on the determined decline-related index.
  • the decrease-related index includes a decrease integral value based on the time integration of the arterial blood oxygen saturation from the start of the decrease in the arterial blood oxygen saturation to the steady state at the time of loading, and determines the decrease-related index. That includes determining the reduced integrated value of the measured arterial oxygen saturation based on the continuously measured arterial oxygen saturation, the determination of which is the magnitude of the exercise load. It may include determining the progression of respiratory and cardiovascular disease based on the information provided and the determined reduced integral value.
  • the determination is to determine the decrease integral boundary threshold value and the decrease integral exacerbation threshold value smaller than the decrease integral boundary threshold value based on the information indicating the magnitude of the exercise load, and the determined decrease integral value is determined. If it is equal to or less than the decrease integral boundary threshold value and larger than the decrease integral exacerbation threshold value, it may be determined to be a boundary state, and if it is equal to or less than the decrease integral exacerbation threshold value, it may be determined to be an exacerbation state.
  • the device After the boundary state is determined in the determination, the device acquires the newly measured arterial blood oxygen saturation, and re-executes the determination based on the acquired arterial oxygen saturation.
  • the boundary state is determined repeatedly more than a predetermined number of times, the exacerbation state may be determined.
  • the decrease-related index includes the time required to start the decrease from the start of the load state due to exercise to the start of the decrease in arterial blood oxygen saturation, and determining the decrease-related index indicates that the load state due to exercise has started.
  • the determination may include determining the degree of disease progression based on the information indicating the magnitude of the exercise load and the determined time required to start the decline.
  • the decrease-related index includes the steady saturation degree at load, which is the steady state of arterial blood oxygen after the decrease of the arterial blood oxygen saturation starts, and the determination of the decrease-related index is continued. Including determining the steady state saturation under load based on the arterial oxygen saturation measured in the arterial blood, the determination includes information indicating the magnitude of the exercise load and the determined steady state saturation under load. May include determining the degree of disease progression based on.
  • the device may present warning information based on the degree of progression of the determined respiratory disease.
  • the device may continuously measure and obtain arterial oxygen saturation.
  • the device may detect the movement of the user's body and generate and acquire information indicating the magnitude of the exercise load.
  • the method in one embodiment of the present invention is a method for determining the degree of disease progression, in which a computer is used to obtain a continuously measured arterial oxygen saturation, and the continuously measured arterial oxygen saturation. Based on the arterial oxygen saturation, the step of determining the decrease-related index of the measured arterial oxygen saturation related to the decrease due to the exercise load, the step of acquiring the information indicating the magnitude of the exercise load, and the above-mentioned exercise load. Based on the information indicating the magnitude of the disease and the determined reduction-related index, the step of determining the degree of disease progression is performed.
  • the program in one embodiment of the present invention can be a program for causing a computer to execute the above method.
  • the system in one embodiment of the present invention is a system for determining the degree of disease progression, which continuously measures arterial oxygen saturation and is based on the continuously measured arterial oxygen saturation. Determine the reduction-related index of the measured arterial blood oxygen saturation related to the decrease due to exercise load, obtain the information indicating the magnitude of the exercise load, and obtain the information indicating the magnitude of the exercise load and the determined decrease. Determine the degree of disease progression based on relevant indicators.
  • FIG. 1 shows a system configuration diagram in one embodiment of the present invention.
  • the system 100 is used to determine the degree of progression of a disease such as respiratory disease or cardiovascular disease (respiratory / cardiovascular disease) that causes hypoxemia due to circulatory respiratory dyskinesia such as pneumonia, COPD, chronic respiratory failure and chronic heart failure. It is used and includes an arterial blood oxygen saturation measuring device 101 and a user device 102 used by a user who is a subject. The arterial blood oxygen saturation measuring device 101 and the user device 102 are connected by wire communication or wireless communication.
  • a disease such as respiratory disease or cardiovascular disease (respiratory / cardiovascular disease) that causes hypoxemia due to circulatory respiratory dyskinesia such as pneumonia, COPD, chronic respiratory failure and chronic heart failure.
  • It is used and includes an arterial blood oxygen saturation measuring device 101 and a user device 102 used by a user who is a subject.
  • the arterial blood oxygen saturation measuring device 101 and the user device 102 are connected by wire communication or wireless communication.
  • FIG. 2 shows an example of the hardware configuration diagram of the arterial blood oxygen saturation measuring device 101 and the user device 102.
  • the arterial blood oxygen saturation measuring device 101 and the user device 102 include processing devices 201, 251, output devices 202, 252, input devices 203, 253, storage devices 204, 254, and communication devices 205, 255, respectively. It is an electronic device.
  • the arterial blood oxygen saturation measuring device 101 includes an arterial blood oxygen saturation measuring device 207 and a physical activity sensor 208. Each of these components is connected by buses 200 and 250, but each of them may be individually connected as needed.
  • Programs 206 and 256 are stored in the storage devices 204 and 254. Programs are sometimes called apps.
  • Each of the processing devices 201 and 251 performs various processes based on the input data from the programs 206, 256, the input devices 203, 253, the data received from the communication devices 205, 255, and the like. It is equipped with a processor that controls each device included in each of the processing devices 201 and 251, the arterial blood oxygen saturation measuring device 101, and the user device 102, and performs various processing using the registers and storage devices 204 and 254 included in the processor as work areas. ..
  • the output devices 202 and 252 output screen display and sound according to the control of the processing devices 201 and 251.
  • the input devices 203 and 253 have a function of receiving input from the user, such as a keyboard, a touch panel, a touch pad, and an input button.
  • the storage devices 204 and 254 include a main memory, a buffer memory and a storage, and include a storage device and a magnetic storage device using a flash memory such as a RAM which is a volatile memory and an eMMC, UFS, SSD which is a non-volatile memory. It is a storage device provided in a general computer.
  • the storage devices 204 and 254 may also include external memory.
  • the communication devices 205 and 255 perform wired communication using an Ethernet (registered trademark) cable or the like, wireless communication such as Bluetooth (registered trademark) and wireless LAN, and are performed between the arterial blood oxygen saturation measuring device 101 and the user device 102. It enables communication.
  • the arterial blood oxygen saturation measuring device 207 is a pulse oximeter that measures percutaneous arterial oxygen saturation (SpO 2 ), but any device that measures the user's arterial oxygen saturation. It doesn't matter what it is.
  • the physical activity sensor 208 uses at least one of a gyro sensor, an acceleration sensor, an orientation sensor, and a GPS sensor to detect the movement of the user's body and generate information indicating the state of the user's physical activity.
  • the arterial blood oxygen saturation measuring device 101 can be attached to the user, and it is possible to measure SpO 2 and the state of the user's physical activity while exercising.
  • the physical activity information indicating the state of the user's physical activity includes information indicating the user's physical movement together with the time information. Therefore, the physical activity information can indicate the timing at which the user starts exercising, and can further indicate the magnitude of the exercise load.
  • the physical activity sensor 208 estimates the exercise intensity (METs) as the magnitude of the exercise load associated with the time information based on the detected body movement of the user. For example, it is estimated whether the state is (i) walking, (ii) biking, fast walking, (iii) climbing stairs, jogging, (iv) running, or carrying heavy luggage, and each estimated physical activity state is obtained.
  • METs exercise intensity
  • a general method can be used to detect the movement of the user's body and estimate the exercise intensity. Instead of such a discrete exercise load value, a continuous exercise load value may be estimated based on physical activity information. Further, the magnitude of the exercise load is not limited to the exercise intensity, and may be any index as long as it can indicate the magnitude of the exercise load.
  • the physical activity information including the exercise load associated with the time information generated by the physical activity sensor 208 is transmitted to the user device 102, and the physical activity sensor 208 is the detected user's body.
  • Information indicating the movement of the motion may be transmitted to the user apparatus 102 together with the time information, and the start timing of the exercise and the magnitude of the exercise load may be determined based on the information received by the user apparatus 102.
  • the arterial blood oxygen saturation measuring device 101 may be configured not to include the physical activity sensor 208. In this case, by inputting the time when the user starts the physical activity and the exercise load via the user interface of the arterial blood oxygen saturation measuring device 101 or the user device 102, the timing and the exercise when the user device 102 starts the physical activity. Information indicating the magnitude of the load can be acquired. Further, as for the exercise load, a predetermined exercise load may be stored in the user device 102 and used.
  • each program is executed in the processing apparatus shown in FIG. 2, and by operating in cooperation with each hardware, the functions described below are executed, and each function is realized. It can also be realized by hardware by configuring an electronic circuit or the like for the purpose.
  • the arterial blood oxygen saturation measuring device 101 is, for example, a smart watch including a physical activity sensor, but as a pulse oximeter in which physical activity information is manually input by the user as described above and only SpO 2 is measured. May be good.
  • the user device 102 is a smart phone, it may be a desktop computer, a laptop computer, a portable information terminal, a mobile phone, or a tablet terminal. It is assumed that the arterial blood oxygen saturation measuring device 101 and the user device 102 are wirelessly connected by Bluetooth (registered trademark).
  • the user measures SpO 2 as a reference index. For example, a user suffering from a respiratory / circulatory disease is examined by a doctor, and since the symptoms are stable at that time, it is determined that the user should be treated at home. Then, according to the doctor's instructions, at the time of examination, a smart watch, which is an arterial blood oxygen saturation measuring device 101, is worn to walk for a predetermined time (for example, 30 minutes), and physical activity information and SpO 2 during that period are continuously provided. To measure.
  • a smart watch which is an arterial blood oxygen saturation measuring device 101
  • a respiratory / circulatory disease progression determination application for carrying out the present invention is installed on the user's smart phone 102, the measured SpO 2 and the physical activity information are received from the smart watch, and the measured SpO 2 is used. It is stored as a reference index for exercise intensity indicated by physical activity information (S301).
  • SpO 2 measured at the time of diagnosis by a doctor is not necessarily a measured value in a healthy state, but since it is a measured value when it is determined by a doctor to be in a stable state, it can be used as a reference.
  • a smart watch 101 equipped with a pulse oximeter can be usually worn and used, and the exercise intensity and SpO 2 measured during that period can be used as a reference index. Since the measured value obtained from normal life is considered to be the measured value in a healthy state, it can be used as a reference index.
  • Table 1 and FIG. 4 show an example of data as a reference index.
  • Tables 1 and 4 show SpO 2 and exercise intensity measured during a 30-minute walk wearing a smartwatch equipped with a pulse oximeter. Since the METs changed from 1 (rest) to 3 (walking) at 12:00, it is shown that walking was started. Then, SpO 2 , which was 100%, decreased to 99% at 12:10:00 due to the exercise load due to walking, decreased to 97% at 12:19: 00, and became a steady state at 97%. It is shown. The steady state arterial oxygen saturation under load is referred to as the steady state saturation under load.
  • the fluctuation of SpO 2 for a predetermined period is monitored, and if the state in which there is no fluctuation of a predetermined ratio or more continues for a certain period or longer, it is determined to be a steady state, and the average of SpO 2 for that fixed period is determined.
  • the value may be the steady saturation under load.
  • a steady state is set when the fluctuation rate with respect to the average value for 1 minute is within 5% (for example, the average value is 97% and the fluctuation range is within 96.515 to 97.485%) for 10 minutes.
  • the average value for 10 minutes is defined as the steady state saturation under load.
  • SpO 2 when it is determined to be a steady state by other criteria may be defined as the steady state saturation under load.
  • the continuous measurement may be performed at all times while wearing the smartwatch as the arterial blood oxygen saturation measuring device 101, or the arterial blood oxygen saturation measuring device 101 may be worn immediately before the start of exercise. You may start it manually. For example, walking may be performed several times a day at a fixed time, and continuous measurement may be started immediately before the start of walking.
  • the smart watch 101 transmits the measured SpO 2 at predetermined intervals, and the user device 102, which is a smart phone, receives and acquires the measured SpO 2 (S304). Further, the smart watch 101 also transmits physical activity information including information indicating the measured exercise intensity at predetermined intervals, and the user device 102, which is a smart phone, receives and acquires the physical activity information (S306). It is assumed that the information indicating the exercise intensity and SpO 2 are associated with the time information and indicate when the estimated value or the measured value is. The measured value of SpO 2 and the physical activity information may be transmitted and received together as one piece of information.
  • the user apparatus 102 determines a decrease-related index of the measured SpO 2 related to the decrease due to the exercise load, and the information indicating the magnitude of the exercise load and the determined decrease.
  • the degree of disease progression is determined based on the relevant index (S308).
  • Reduction indicators associated with reduced due exercise of the SpO 2 is an index showing an aspect of a reduction manner and extent such a reduction in time to decrease SpO 2 by exercise, for example, (i) a arterial oxygen saturation Decreased integrated value determined based on the time integration of arterial blood oxygen saturation from the start of the decrease to the steady state at the time of loading, (ii) the arterial blood oxygen saturation after the start of the loading state due to exercise. It can be the time required to start the decrease until the decrease starts and (iii) the steady saturation under load, which is the oxygen saturation of the arterial blood when the oxygen saturation of the arterial blood starts to decrease.
  • the present invention can be carried out using only one reduction-related index, or can be carried out using two or more reduction-related indexes.
  • processing is executed in parallel or in series for the three reduction-related indexes, the reduction integral value, the reduction start time, and the steady state saturation under load, and the most serious judgment result among the judgment results is the final judgment result. Can be determined as.
  • the user device 102 corrects the determination result in S308 based on the history of the previous determination result (S310). For example, when the boundary state is continuously determined, the exacerbation state and the determination can be corrected.
  • the previous determination result is stored in the storage device 254 in order to correct the determination result based on the history of the determination result.
  • the stored determination result is the corrected determination result.
  • the determined states are three states, a stable state, a boundary state, and an exacerbation state, but may be only two states, a stable state and an exacerbation state, or four or more states.
  • a stable state is a state of calm without exacerbation of respiratory or cardiovascular disease
  • a borderline state is a state in which the possibility of exacerbation of respiratory or cardiovascular disease cannot be ruled out but is not exacerbated.
  • the exacerbation is a condition in which the respiratory or circulatory disease is likely to be exacerbated and requires close examination and treatment at a medical institution.
  • S308 It is determined whether or not the determination result in S308 is a boundary state (S501). When it is in the boundary state, it is determined whether or not the previous determination result is in the exacerbation state (S502). When the previous determination result is in the exacerbation state, the determination result is corrected to the exacerbation state even if the present determination result is a boundary condition (S504). This is because an exacerbation condition is a serious condition that requires urgent medical examination by a doctor, and if it is determined to be an exacerbation condition even once, it is not preferable to determine that the exacerbation condition has been resolved without a diagnosis by a doctor. ..
  • the previous state is not an exacerbation state
  • the determination result is corrected to the exacerbation state (S504).
  • the determination result of the boundary state is maintained (S508).
  • the determination result in S308 is corrected based on the history of the previous determination result, but the determination result may be used as it is without making the correction based on the history.
  • the user device 102 determines whether or not the determination result is in the boundary state or the exacerbation state (S312).
  • warning information based on the determination result is presented (S314).
  • the warning information can be displayed on the display which is the output device 252 of the user device 102, the warning sound can be output by voice, or the warning information can be output.
  • warning information is displayed on the display as the output device of the user device 102, and when it is determined that the exacerbation state is present,“ Blood oxygen saturation under load is saturated. The degree of deterioration is noted, suggesting that pneumonia may be exacerbated. Please see a hospital and see a doctor. " Further, for example, warning information may be transmitted to an electronic device (not shown) used by a doctor via the Internet, and the warning information may be presented to the doctor.
  • the arterial blood oxygen saturation measuring device 101 continuously measures SpO 2 and physical activity information during S304 to S314.
  • the progress determination process may be terminated without returning to S304 after presenting the warning information. If it is determined in S312 that the state is not a boundary state or an exacerbation state, that is, if it is determined to be a stable state, the process returns to S304 without issuing warning information. If it is determined to be in a stable state, information indicating that the state is stable may be presented to the user.
  • the decrease integral value is determined based on the time integral of the arterial oxygen saturation from the start of the decrease in the arterial oxygen saturation to the steady state at the time of loading.
  • decrease integral value I as shown in Equation 1, the arterial blood oxygen saturation up to the point of reduction in the arterial oxygen saturation is changed from the time of starting (T s) in a steady state when the load (T K)
  • T s time of starting
  • K steady state saturation under load
  • the lower integral value of the reference index shown in FIG. 4 is the area of the portion A in FIG.
  • S304 it is determined in S304 whether or not the decrease in SpO 2 has started based on the SpO 2 measured values acquired so far (S701). If it has not started, the reduction-related index determination and progress determination processing are terminated, and the process returns to S304. If it has started, it is determined whether or not SpO 2 is in the steady state under load (S702). If it is not in the steady state, the decrease-related index determination and the progress determination process are terminated, and the process returns to S304.
  • the correction process (S310) may not be executed unless the determination result is output by S308, or it is determined that the determination result is not in the boundary state (S501), and the state of the determination result is maintained (S508). May be terminated. After that, in S312, since it is neither a boundary state nor an exacerbation state, it returns to S304.
  • the decrease integral value is determined (S704). More specifically, the timing at which the decrease in SpO 2 starts based on the acquired SpO 2 measurement value (T s ), the timing at which SpO 2 becomes a steady state under load (TK), and the steady state saturation under load (TK). (K) is determined, and the lower integral value is calculated according to the above-mentioned formula 1.
  • Table 2 and FIG. 8 show an example of the SpO 2 measured value and the exercise load, which are the targets for determining the degree of disease progression.
  • the line 801 shows the transition of the reference index SpO 2
  • the line 802 shows the transition of the measured SpO 2 to be determined.
  • the start timing of the decrease may be the first timing of the decrease from 100%, but the timing (12:09:15) immediately before the timing of the decrease from 100% may be set as the start point.
  • the timing may be set to be a predetermined value or more lower than 100%. Any timing may be used as long as it indicates that the arterial oxygen saturation has decreased.
  • the decrease integral threshold value is a threshold value for determining the measured SpO 2 to be determined as a stable state, a boundary state, and an exacerbation state.
  • the lower integral boundary threshold value and the lower integral exacerbation threshold value smaller than the lower integral boundary threshold value are determined. If the determined decrease integral value is equal to or greater than the decrease integral boundary threshold value, it is determined to be in a stable state, and if it is smaller than the decrease integral boundary threshold value and greater than or equal to the decrease integral exacerbation threshold value, it is determined to be in a boundary state and smaller than the decrease integral exacerbation threshold value. If it is, it is judged to be in an exacerbated state.
  • the decrease integral boundary threshold value and the decrease integral exacerbation threshold value can be determined as a function of exercise intensity, and are calculated by the following equations 2 and 3 in the present embodiment, but are not limited thereto.
  • the METs under load are the METs to be determined.
  • Decline Integral Boundary Threshold Reference Decline Integral Value x 0.85
  • Decline integral exacerbation threshold reference drop integral value x (100-(15 + 2log 2 (METs under load))) / 100
  • the reference decrease integral value is a decrease integral value that serves as a reference index, and can be determined based on the exercise load.
  • the exercise load in the determination target is also walking (3METs), and the reduced integral value calculated based on the measured value measured by actually walking at the time of the doctor's examination in S301 is used as the reference lower integrated value. ..
  • the reference decrease integral value may be determined based on the data such as the user's gender, age, weight, etc., regardless of the measured value by the user, or the reference decrease integral value predetermined for all users may be used. May be good.
  • the reference decrease integral value (reference METs) is, for example, the reference decrease integral value determined by actually walking as described above, and the reference METs are the exercise intensity at that time, here, 3METs.
  • the loaded METs are the measured METs at the time of measuring the measured arterial oxygen saturation to be determined.
  • the integrated value (B) is calculated as 525.
  • the reference drop integral value (6METs) 404.68 based on the number 4, the reference drop integral value (A) and the jogging exercise load (6METs). Can be calculated.
  • the determination target decrease integral value (B) is equal to or less than the decrease integral boundary threshold value and smaller than the decrease integral exacerbation threshold value, so that it is determined to be in an exacerbation state.
  • the disease progression is determined only once for each exercise from the decrease in arterial oxygen saturation due to the exercise load to the steady state under load. Once the determination is made, the determination result at that time is stored in the storage device 254 of the user apparatus 102. Based on the physical activity information and the measured value of the arterial blood oxygen saturation, the progress determination process is not performed until it is determined that the arterial blood oxygen saturation has reached the resting steady state once the exercise is completed, and the resting steady state is reached. After it is determined that the disease has been reached, the exercise can be started again to determine the degree of disease progression based on the reduced integrated value. When this is repeated, if it is determined to be a boundary state a predetermined number of times, for example, twice in a row, it is determined to be an exacerbation state.
  • the fact that the decrease integral value of the judgment target is lower than the reference decrease integral value indicates that the arterial oxygen saturation due to exercise load is decreased in a shorter time than the reference index, and the disease. It is possible to detect a decrease in the gas exchange reserve function due to the above, and it is possible to determine the degree of disease progression based on the degree of the decrease.
  • time required to start the decrease is used as the decrease-related index.
  • the part different from the example of the decrease integral value will be described in detail, and the description of the same part will be omitted.
  • the time required to start the decrease is the time required from the start of the load state due to exercise to the start of the decrease in the arterial blood oxygen saturation.
  • Decrease start time required for SpO 2 can be determined by identifying the timing at which the decrease in SpO 2 measured with the timing at which the load state is initiated by the movement has started. That is, the time required to start the decrease can be calculated by subtracting the time when the load state due to exercise starts from the time when the decrease of SpO 2 starts.
  • FIG. 10 shows an example of the acquired SpO 2 to be determined.
  • the line 1001 shows the transition of the reference index SpO 2
  • the lines 1002, 1003, 1004 show the transition of the measured SpO 2 to be determined.
  • the reference index is the time point of T s0 (12:10: 00)
  • the judgment target 1 is the time point of T s1 (12:09: 00). 2 started to decrease at the time of T s2 (12:08:15), and the determination target 3 started to decrease at the time of T s3 (12:07:30).
  • the physical activity information acquired in S306 is assumed to be acquired as data in which exercise intensity information is associated with time information as shown in Tables 1 and 2, and here, a reference index and determination are made. It is assumed that the physical activity information of each of the subjects 1 to 3 indicates that walking (3METs) was started from 12:00. Therefore, the time required to start the decrease of the reference index and the judgment targets 1 to 3 is t 0 (10:00), t 1 (9:00), t 2 (8:15), and t 3 (7:30), respectively. be.
  • the decrease start time threshold is a threshold for determining the measured SpO 2 to be determined as a stable state, a boundary state, and an exacerbation state.
  • the required time boundary threshold value and the required time exacerbation threshold value smaller than the required time boundary threshold value are determined. If the determined decrease start required time is equal to or greater than the required time boundary threshold value, it is determined to be in a stable state, and if it is smaller than the required time boundary threshold value and greater than or equal to the required time exacerbation threshold value, it is determined to be in a boundary state. If it is small, it is judged to be in an exacerbated state.
  • the decrease start time threshold value can be determined as a function of exercise intensity, and is calculated by the following equations 5 and 6 in the present embodiment, but is not limited thereto.
  • [Number 5] Time required boundary threshold standard time required x 0.85
  • [Number 6] Required time exacerbation threshold Standard required time x (100-(15 + 2log 2 (METs under load))) / 100
  • the standard required time can be determined based on the exercise load.
  • the time required to start the decrease determined based on the actual measurement by walking performed at the time of diagnosis is set as the reference time required for walking, and the exercise load in the determination target is also walking (3METs).
  • Use the standard time required You may also measure jogging or the like, store a reference index corresponding to the exercise load, and select the reference required time according to the exercise load to be determined.
  • S902 It is determined whether or not the decrease start required time determined in S902 is equal to or longer than the required time boundary threshold value (S906), and if it is true, it is determined to be in a stable state (S910), and if it is false, it is determined. Further, it is determined whether or not the required time exacerbation threshold value or more is exceeded (S908). If it is true, it is determined to be a boundary state (S912), and if it is false, it is determined to be an exacerbation state (S914).
  • the fact that the reduction start time of the judgment target is shorter than the reference start time means that the gas exchange reserve function due to the disease is reduced, and the disease is based on the degree of shortening.
  • the degree of progress can be determined.
  • the steady state saturation under load is the arterial blood oxygen saturation when the arterial blood oxygen saturation starts to decrease and then becomes a steady state.
  • FIG. 12 shows an example of the acquired SpO 2 measurement value to be determined.
  • the line 1201 shows the transition of the reference index SpO 2
  • the lines 1202 and 1203 show the transition of the measured SpO 2 to be determined.
  • the reference index (1201) started to decrease at 12:10 and reached a steady state at 12:19:00.
  • the steady state saturation under load is 97%.
  • Judgment target 1 (1202) starts to decrease at 12:09: 00, reaches a steady state at 12:18:30, and has a steady state saturation under load of 96%.
  • Judgment target 2 (1203) starts to decrease at 12:08:30, reaches a steady state under load at 12:17:00, and has a steady state saturation under load of 94%.
  • the steady-state threshold value under load is a threshold value for determining the measured SpO 2 to be determined as a stable state, a boundary state, and an exacerbation state.
  • the steady-state boundary threshold value at load and the steady-state exacerbation threshold value at load smaller than the boundary-like threshold value are determined.
  • the determined steady saturation under load is equal to or higher than the steady boundary threshold under load, it is determined to be in a stable state, and when it is smaller than the steady boundary threshold under load and greater than or equal to the steady exacerbation threshold under load, it is determined to be in a boundary state. If it is smaller than the time-steady exacerbation threshold, it is judged to be an exacerbation state.
  • the steady-state threshold value under load can be determined as a function of exercise intensity, and is calculated by the following equations 8 and 9 in the present embodiment, but is not limited thereto.
  • [Number 8] Steady boundary threshold under load Steady saturation under reference load x 0.98
  • Steady exacerbation threshold under load Steady saturation under load x (100-(2 + log 2 (METs under load))) / 100
  • the steady saturation at reference load can be determined based on the exercise load.
  • the steady saturation under load determined based on the actual measurement by walking performed at the time of diagnosis is defined as the steady saturation under load during walking, and the exercise load in the determination target is also walking (3METs).
  • the steady saturation degree at the reference load during walking is used. It is also possible to actually measure jogging or the like, store a reference index corresponding to the exercise load, and select the steady saturation degree at the reference load according to the exercise load to be determined.
  • the steady load saturation determined in S1106 is equal to or higher than the steady state threshold value under load. If it is true, it is determined to be in a stable state (S1110), and if it is false, it is determined to be in a stable state. Further, it is determined whether or not it is equal to or higher than the steady exacerbation threshold under load (S1108). If it is true, it is determined to be a boundary state (S1112), and if it is false, it is determined to be an exacerbation state (S1114).
  • the determination target 1 Since the determination target 1 has a steady state saturation under load of 96%, it is determined to be in a stable state because it is equal to or higher than the steady state boundary threshold under load (95.06%), and the determination target 2 has a steady state saturation under load of 94%. Therefore, since it is smaller than the steady-state boundary threshold value (95.06%) under load and equal to or higher than the steady-state exacerbation threshold value (93.42%) under load, it is determined that the boundary state is reached.
  • the fact that the steady-state saturation under load of the judgment target is lower than the steady-state saturation under reference load means that the gas exchange reserve function due to the disease is lowered, and it is based on the degree of the decrease.
  • the degree of disease progression can be determined.
  • the user's (measured person's) gas exchange reserve capacity for the increased oxygen demand due to exercise decreases.
  • the present invention makes it possible to determine the degree of disease progression by detecting a decrease in gas exchange reserve function based on an index related to a decrease in arterial oxygen saturation due to exercise load.
  • the method and degree of decrease in arterial oxygen saturation varies depending on the magnitude of the exercise load.
  • a decrease-related index related to the decrease in the measured arterial oxygen saturation due to the exercise load is determined, and the exercise load is determined.
  • Information indicating the magnitude is acquired, and the degree of progression of the disease is determined based on the information indicating the magnitude of the exercise load and the determined reduction-related index.
  • the threshold value is determined in the determination process (S308), but it may be determined when the reference index is acquired (S301). For example, when it is decided to make a determination during walking, since the magnitude of the exercise load is determined, each threshold value can be determined at the stage when the reference index is acquired.
  • the present invention is realized by using two devices, the arterial blood oxygen saturation measuring device 101 and the user device 102, but all the functions may be realized by one device. ..
  • the user-worn user device 102 may include an arterial blood oxygen saturation measuring device 207 and a physical activity sensor 208 to carry out the functions of the above-mentioned arterial blood oxygen saturation measuring device 101. It is also possible to realize this by sharing and implementing the above-mentioned functions by three or more devices.
  • System 101 Arterial blood oxygen saturation measuring device 102: User device 200: Bus 201: Processing device 202: Output device 203: Input device 204: Storage device 205: Communication device 206: Program 207: Arterial blood oxygen saturation measuring device 208 : Physical activity sensor 250: Bus 251: Processing device 252: Output device 253: Input device 254: Storage device 255: Communication device 256: Program

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Urology & Nephrology (AREA)
  • Ecology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

疾患の進行度を判定するための装置、方法、プログラム及びシステムを提供する。疾患の進行度を判定するための装置であって、継続的に測定された動脈血酸素飽和度を取得し、前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定し、運動負荷の大きさを示す情報を取得し、前記運動負荷の大きさを示す情報及び前記決定された低下関連指標に基づいて、疾患の進行度を判定する、ことを特徴とする装置。

Description

疾患の進行度を判定するための装置、方法、プログラム及びシステム
 本発明は疾患の進行度を判定するための装置、方法、プログラム及びシステムに関する。
 診療現場では様々な呼吸器・循環器関連疾患の治療を行っているが(先行文献1)、間質性肺炎やウィルス性肺炎やCOPDなど呼吸器疾患は、病院で診断後に内服処方で在宅で経過を見る中で一部急激増悪してしまう事例がある。現状では、患者が咳、痰、呼吸苦などの自覚症状の悪化から病院受診し、病院でSpO2/Xp/CT/採血などの診察を経て、そうした増悪を診断し、入院による治療強化や場合によっては重症化し、人工呼吸器管理など集中治療が必要となることがある。
特開2011-12796号
 こうした増悪を初期の段階で見つけ出し早期の追加治療を行うことで、入院加療や人工呼吸器管理を必要とせず、致死率の改善にも寄与することが可能であると考えられるが、医師及び患者は、増悪症状として咳・痰・呼吸苦などの自覚症状悪化前に早期に増悪の兆候を見つけ出すことができないため、疾患が進行し深刻な自覚症状が発現するまで病院での受診に至らない場合があるという課題がある。
 本発明は、疾患の進行度を判定するための装置、システム、方法及びプログラムを提供することを目的とする。
 本発明は上記の課題に鑑みてなされたものであり、以下のような特徴を有している。すなわち、本発明の一実施態様における装置は、疾患の進行度を判定するための装置であって、継続的に測定された動脈血酸素飽和度を取得し、前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定し、運動負荷の大きさを示す情報を取得し、前記運動負荷の大きさを示す情報及び前記決定された低下関連指標に基づいて、疾患の進行度を判定する。
 また、前記低下関連指標は、動脈血酸素飽和度の低下が開始してから負荷時の定常状態になるまでの動脈血酸素飽和度の時間積分に基づく低下積分値を含み、前記低下関連指標を決定することは、前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の低下積分値を決定すること、を含み、前記判定することは、前記運動負荷の大きさを示す情報及び前記決定された低下積分値に基づいて、呼吸・循環器疾患の進行度を判定すること、を含んでもよい。
 前記判定することは、前記運動負荷の大きさを示す情報に基づいて、低下積分境界閾値及び当該低下積分境界閾値より小さい低下積分増悪閾値を決定することと、前記決定された低下積分値が、前記低下積分境界閾値以下であり低下積分増悪閾値より大きい場合は境界状態と判定し、前記低下積分増悪閾値以下である場合は増悪状態と判定することと、を含んでもよい。
 前記装置は、前記判定することにおいて境界状態と判定された後、新たに測定された動脈血酸素飽和度を取得し、当該取得された動脈血酸素飽和度に基づいて前記判定することを再実行し、境界状態と判定されることが所定回数以上繰り返された場合、増悪状態と判定するようにしてもよい。
 前記低下関連指標は、運動による負荷状態が開始してから動脈血酸素飽和度の低下が開始するまでの低下開始所要時間を含み、前記低下関連指標を決定することは、運動による負荷状態が開始したタイミングを示す情報を取得することと、前記負荷状態が開始したタイミング及び前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の低下開始所要時間を決定することと、を含み、前記判定することは、前記運動負荷の大きさを示す情報及び前記決定された低下開始所要時間に基づいて、疾患の進行度を判定すること、を含んでもよい。
 前記低下関連指標は、動脈血酸素飽和度の低下が開始した後、定常状態となった際の動脈血酸素飽和度である負荷時定常飽和度を含み、前記低下関連指標を決定することは、前記継続的に測定された動脈血酸素飽和度に基づいて、負荷時定常飽和度を決定することを含み、前記判定することは、前記運動負荷の大きさを示す情報及び前記決定された負荷時定常飽和度に基づいて、疾患の進行度を判定すること、を含んでもよい。
 前記装置は、前記判定された呼吸器疾患の進行度に基づいて警告情報を提示してもよい。
 前記装置は、動脈血酸素飽和度を継続的に測定して取得してもよい。
 前記装置は、ユーザの身体の動きを検出して運動負荷の大きさを示す情報を生成して取得してもよい。
 本発明の一実施態様における方法は、疾患の進行度を判定するための方法であって、コンピュータに、継続的に測定された動脈血酸素飽和度を取得する段階と、前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定する段階と、運動負荷の大きさを示す情報を取得する段階と、前記運動負荷の大きさを示す情報及び前記決定された低下関連指標に基づいて、疾患の進行度を判定する段階と、を実行させる。
 本発明の一実施態様におけるプログラムは、前記方法をコンピュータに実行させるためのプログラムとすることができる。
 本発明の一実施態様におけるシステムは、疾患の進行度を判定するためのシステムであって、動脈血酸素飽和度を継続的に測定し、前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定し、運動負荷の大きさを示す情報を取得し、前記運動負荷の大きさを示す情報及び前記決定された低下関連指標に基づいて、疾患の進行度を判定する。
 本発明を用いることにより、疾患の進行度を判定するための装置、システム、方法及びプログラムを提供することを可能とする。
本発明の一実施形態に係るシステムの構成図である。 本発明の一実施形態に係る動脈血酸素飽和度測定器及びユーザ装置のハードウェア構成図である。 本発明の一実施形態に係るフローチャートである。 本発明の一実施形態に係る基準指標の動脈血酸素飽和度の時間推移を示す図である。 本発明の一実施形態に係る判定補正のフローチャートである。 本発明の一実施形態に係る基準指標の低下積分値を示す図である。 本発明の一実施形態に係る低下積分値を用いた場合のフローチャートである。 本発明の一実施形態に係る判定対象の低下積分値を示す図である。 本発明の一実施形態に係る低下開始所要時間を用いた場合のフローチャートである。 本発明の一実施形態に係る低下開始所要時間を示す図である。 本発明の一実施形態に係る負荷時定常飽和度を用いた場合のフローチャートである。 本発明の一実施形態に係る負荷時定常飽和度を示す図である。
 図1は本発明の一つの実施形態におけるシステム構成図を示す。システム100は、肺炎、COPD、慢性呼吸不全及び慢性心不全など循環呼吸動態異常で低酸素血症を引き起こす呼吸器疾患または循環器疾患(呼吸・循環器疾患)といった疾患の進行度を判定するために使用されるものであり、動脈血酸素飽和度測定器101及び被測定者であるユーザが使用するユーザ装置102を備える。動脈血酸素飽和度測定器101とユーザ装置102とは有線通信または無線通信によって接続される。
 図2は動脈血酸素飽和度測定器101及びユーザ装置102のハードウェア構成図の一例を示す。本実施形態において、動脈血酸素飽和度測定器101及びユーザ装置102は、処理装置201、251、出力装置202、252、入力装置203、253、記憶装置204、254及び通信装置205、255をそれぞれ備える電子装置である。動脈血酸素飽和度測定器101は動脈血酸素飽和度測定装置207及び身体活動センサ208を備える。これらの各構成装置はバス200、250によって接続されるが、それぞれが必要に応じて個別に接続される形態であってもかまわない。記憶装置204、254には、プログラム206、256が記憶される。プログラムはアプリと呼ぶことがある。
 処理装置201、251の各々は、プログラム206、256、入力装置203、253からの入力データまたは通信装置205、255から受信したデータ等に基づいて各種の処理を行う。処理装置201、251、動脈血酸素飽和度測定器101、ユーザ装置102の各々が備える各装置を制御するプロセッサを備えており、プロセッサが含むレジスタや記憶装置204、254をワーク領域として各種処理を行う。
 出力装置202、252は、処理装置201、251の制御に従って、画面の表示や音声を出力する。入力装置203、253は、キーボード、タッチパネル、タッチパッド、入力ボタン等のようにユーザからの入力を受け付ける機能を有するものである。
 記憶装置204、254は、メインメモリ、バッファメモリ及びストレージを含み、揮発性メモリであるRAM及び不揮発性メモリであるeMMC、UFS、SSDのようなフラッシュメモリを用いた記憶装置及び磁気記憶装置等の一般的なコンピュータが備える記憶装置である。記憶装置204、254は、外部メモリを含むこともできる。通信装置205、255は、イーサネット(登録商標)ケーブル等を用いた有線通信、Bluetooth(登録商標)及び無線LAN等の無線通信を行い、動脈血酸素飽和度測定器101とユーザ装置102との間で通信を行うことを可能とする。
 動脈血酸素飽和度測定装置207は、本実施形態においては経皮的動脈血酸素飽和度(SpO2)を測定するパルスオキシメータとするが、ユーザの動脈血酸素飽和度を測定するものであればどのようなものであってもかまわない。
 身体活動センサ208は、ジャイロセンサ、加速度センサ、方位センサ及びGPSセンサのうちの少なくとも1つを用いて、ユーザの身体の動き検出して、ユーザの身体活動の状態を示す情報を生成するものである。ここでは動脈血酸素飽和度測定器101はユーザに装着可能であり、運動をしながらSpO2の測定及びユーザの身体活動の状態の測定を行うことが可能とする。
 ユーザの身体活動の状態を示す身体活動情報は、ユーザの身体の動きを示す情報を時刻情報とともに示す情報を含む。したがって、身体活動情報は、ユーザが運動を開始したタイミングを示し、さらに、運動負荷の大きさを示すことができる。ここでは、身体活動センサ208が、検出されたユーザの身体の動きに基づいて、時刻情報に対応付けられた運動負荷の大きさとして運動強度(METs)を推定するものとする。例えば、(i)歩行、(ii)自転車、早歩き、(iii)階段上り、ジョギング、(iv)ランニング、重い荷物運びのいずれの状態であるかを推定し、各推定された身体活動状態に基づいて(i)歩行=3METs、(ii)自転車、早歩き=4.5METs、(iii)階段上り、ジョギング=6METs、(iv)ランニング、重い荷物運び=8METSと運動負荷を推定するものとする。
 ユーザの身体の動きを検出して運動強度を推定する手法は一般的なものを用いることができる。このような離散的な運動負荷の値ではなく、身体活動情報に基づいて連続的な運動負荷の値を推定してもかまわない。また、運動負荷の大きさは運動強度に限定されるものではなく、運動負荷の大きさを示すことができる指標であればどのようなものであってもかまわない。
 本実施形態においては身体活動センサ208が生成した、時刻情報に対応付けられた運動負荷を含む身体活動情報をユーザ装置102へ送信するものとするが、身体活動センサ208は検出されたユーザの身体の動きを示す情報を時刻情報とともにユーザ装置102へ送信し、ユーザ装置102が受信した情報に基づいて運動の開始タイミング及び運動負荷の大きさを決定するようにしてもよい。
 さらに、動脈血酸素飽和度測定器101は身体活動センサ208を含まない構成とすることもできる。この場合、ユーザが動脈血酸素飽和度測定器101またはユーザ装置102のユーザインタフェースを介して、身体活動を開始した時刻及び運動負荷を入力することで、ユーザ装置102が身体活動を開始したタイミング及び運動負荷の大きさを示す情報を取得することができる。また、運動負荷については予め定められた運動負荷をユーザ装置102に記憶して、これを用いるようにしてもよい。
 本実施形態においては、図2に記載された処理装置において各プログラムが実行され、各ハードウェアと協働して動作することにより、以下に説明する機能が実行されるが、各機能を実現するための電子回路等を構成することによりハードウェアによっても実現できる。
 本実施形態において動脈血酸素飽和度測定器101は、例えば身体活動センサを含むスマートウォッチとするが、身体活動情報は前述のようなユーザによる手動入力し、SpO2の測定のみを行うパルスオキシメータとしてもよい。ユーザ装置102はスマートホンとするが、デスクトップコンピュータやノートパソコンであってもよいし、携帯型情報端末、携帯電話、タブレット端末であってもよい。動脈血酸素飽和度測定器101とユーザ装置102とはBluetooth(登録商標)によって無線接続されるものとする。
 次に、図3を参照しながら、本実施形態におけるシステムの動作について説明する。ユーザは、基準指標とするためのSpO2の測定を行う。例えば、呼吸・循環器疾患を患ったユーザは、医師の診察を受け、その時点においては症状が安定した状態であるため、自宅療養を行うものと判断される。そして、医師の指示により、診察時に、動脈血酸素飽和度測定器101であるスマートウォッチを装着して、所定の時間(例えば30分間)の歩行を行い、その間の身体活動情報及びSpO2を継続的に測定する。さらに、ユーザのスマートホン102に本発明を実施するための呼吸・循環器疾患進行度判定アプリをインストールし、測定されたSpO2及び身体活動情報をスマートウォッチより受信し、測定されたSpO2を身体活動情報が示す運動強度のための基準指標として記憶する(S301)。
 医師の診断時に測定されたSpO2は必ずしも健常状態の測定値ではないが、医師によって安定状態と判定されたときの測定値であるから、これを基準として用いることができる。医師の診察時に測定することに代えて、普段からパルスオキシメータを備えるスマートウォッチ101を装着して使用し、その間に測定された運動強度及びSpO2を基準指標として用いることもできる。通常の生活から取得された測定値は健常状態における測定値であると考えられるため、基準指標として用いることができる。
 基準指標となるデータの一例を表1及び図4に示す。
Figure JPOXMLDOC01-appb-T000001
 表1及び図4は、パルスオキシメータを備えるスマートウォッチを装着して、30分間の歩行を行い、その間に測定されたSpO2及び運動強度を示している。12:00:00にMETsが1(安静)から3(歩行)に変化したから、歩行を開始したことが示されている。そして、100%であったSpO2が歩行による運動負荷により12:10:00に99%に低下し、12:19:00に97%に低下し、97%にて定常状態となったことが示されている。負荷時定常状態の動脈血酸素飽和度を負荷時定常飽和度ということとする。
 定常状態と判定するために、所定期間のSpO2の変動を監視し、所定割合以上の変動がない状態が、一定期間以上継続した場合に定常状態と判定し、その一定期間のSpO2の平均値を負荷時定常飽和度としてもよい。ここでは、1分間の平均値に対する変動率が5%以内(例えば平均値が97%であり変動幅が96.515~97.485%以内)の状態が10分間継続した場合に定常状態とし、その10分間の平均値を負荷時定常飽和度とする。その他の基準により定常状態と判定されたときのSpO2を負荷時定常飽和度としてもよい。
 その後、スマートウォッチ101を用いて、呼吸・循環器疾患進行度判定のためのSpO2及び身体活動情報の継続的な測定を開始する(S302)。継続的な測定は、動脈血酸素飽和度測定器101としてのスマートウォッチを装着している間は常に測定するようにしてもよいし、運動を開始する直前に動脈血酸素飽和度測定器101を装着して、手動にて開始してもよい。例えば、一日に数回、決まった時間に歩行を行うようにし、その歩行開始の直前に継続測定を開始してもよい。
 スマートウォッチ101は測定されたSpO2を所定間隔毎に送信し、スマートホンであるユーザ装置102はこれを受信して、取得する(S304)。また、スマートウォッチ101は測定された運動強度を示す情報を含む身体活動情報も所定間隔毎に送信し、スマートホンであるユーザ装置102はこれを受信して、取得する(S306)。運動強度を示す情報及びSpO2は時刻情報が関連付けられ、いつの推定値ないし測定値であるかを示しているものとする。SpO2の測定値及び身体活動情報は一つの情報としてまとめて送受信されてもかまわない。
 ユーザ装置102は、取得されたSpO2測定値に基づいて、測定されたSpO2の、運動負荷による低下に関連する低下関連指標を決定し、運動負荷の大きさを示す情報及び決定された低下関連指標に基づいて、疾患の進行度を判定する(S308)。
 SpO2の運動負荷による低下に関連する低下関連指標は、運動負荷によってSpO2が低下する際の低下の仕方や程度等の低下の態様を示す指標であり、例えば、(i)動脈血酸素飽和度の低下が開始してから負荷時の定常状態になるまでの動脈血酸素飽和度の時間積分に基づいて決定される低下積分値、(ii)運動による負荷状態が開始してから動脈血酸素飽和度の低下が開始するまでの低下開始所要時間及び(iii)動脈血酸素飽和度の低下が開始した後、定常状態となった際の動脈血酸素飽和度である負荷時定常飽和度とすることができる。
 本発明は、1つの低下関連指標のみを用いて実施することもできるし、2以上の低下関連指標を用いても実施可能である。例えば、低下関連指標として低下積分値、低下開始所要時間及び負荷時定常飽和度の3つについて並列ないし直列に処理を実行し、それぞれの判定結果のうちもっとも深刻な判定結果を最終的な判定結果として決定することができる。
 次に、ユーザ装置102は、以前の判定結果の履歴に基づいて、S308における判定結果を補正する(S310)。例えば、継続的に境界状態と判定された場合には、増悪状態と判定を補正することができる。判定結果の履歴に基づいて判定結果を補正するために以前の判定結果を記憶装置254に記憶する。ここでは、記憶される判定結果は補正後の判定結果とする。
 図5に示した処理フローに基づいて判定結果の補正処理の一例について説明する。本実施形態では、判定される状態は、安定状態、境界状態及び増悪状態の3つの状態とするが、安定状態及び増悪状態の2つだけとしてもよいし、4つ以上の状態としてもよい。安定状態は、呼吸器疾患または循環器疾患の悪化なく落ち着いている状態であり、境界状態は、呼吸器疾患または循環器疾患悪化の可能性を否定できないが悪化しているとまではいえない状態であり、増悪状態は、呼吸器疾患または循環器疾患が悪化している可能性が高く、医療機関での精査加療を要する状態である。
 S308における判定結果が境界状態であるか否かを判定する(S501)。境界状態であった場合には、一回前の判定結果が増悪状態であったか否かを判定する(S502)。前の判定結果が増悪状態であった場合には、今回の判定結果が境界条件であったとしても、判定結果を増悪状態に補正する(S504)。増悪状態は医師による緊急の診察が必要な深刻な状態であり、一度でも増悪状態と判定された場合には、医師による診断なしに増悪状態が解消したと判定されることは好ましくないからである。
 前回の状態が増悪状態でない場合には、以前の判定結果の履歴に基づいて、所定回数以上境界状態が維持されているか否かを判定する(S506)。所定回数以上境界状態が維持されている場合には、判定結果を増悪状態に補正する(S504)。所定回数以上境界状態が維持されていない場合には、境界状態という判定結果を維持する(S508)。
 S501において、判定結果が境界条件ではない場合、判定結果の状態が維持される(S508)。すなわち、安定状態または増悪状態と判定された場合には、その安定状態または増悪状態との判定結果の状態を維持し、判定結果の補正は行わない。
 本実施形態においては、以前の判定結果の履歴に基づいて、S308における判定結果を補正するものとしたが、履歴に基づく補正を行わず、判定結果をそのまま用いてもかまわない。
 次に、ユーザ装置102は、判定結果が境界状態または増悪状態であるか否かを判定する(S312)。境界状態または増悪状態である場合には、判定結果に基づいた警告情報を提示する(S314)。例えば、警告情報をユーザ装置102の出力装置252であるディスプレイに警告情報を表示したり、音声で警告音を出力したり、警告情報を出力することができる。
 例えば、境界状態であると判定されたときには「負荷時の血中酸素飽和度の悪化を認めますが、そこまで程度は強くなく、肺炎増悪を積極的に疑う状態ではありません。データを今後注意深く測定し、肺炎増悪の兆候があれば、お伝えします。」との警告情報をユーザ装置102の出力装置としてのディスプレイに表示し、増悪状態であると判定されたときには「負荷時の血中酸素飽和度の悪化を認め、肺炎の増悪の可能性を示唆されます。病院を受診し、医師の診察を受けてください。」と表示することができる。また、例えば、医師が使用する電子装置(図示せず)に警告情報をインターネットを介して送信し、医師に対して警告情報を提示してもよい。
 警告情報の提示が終了するとS304へ戻り、SpO2測定値を新たに取得し、S306~S314までの処理を繰り返し実行する。動脈血酸素飽和度測定器101はSpO2及び身体活動情報の測定をS304~S314の間も継続的に行っている。
 増悪状態と判定された場合には、警告情報を提示した後、S304へ戻らずに進行度判定処理を終了してもよい。S312において境界状態又は増悪状態ではないと判定された場合、すなわち、安定状態と判定された場合には、警告情報が出されることなく、S304へ戻る。安定状態と判定された場合は安定状態であることを伝える情報をユーザに提示してもよい。
 次に、低下関連指標として(i)低下積分値、(ii)低下開始所要時間及び(iii)負荷時定常飽和度を用いた場合の低下関連指標決定及び進行度判定(S308)の具体的な処理についてそれぞれ説明する。
[低下積分値]
 まず、低下関連指標として低下積分値を用いた場合の実施形態を説明する。前述のとおり、低下積分値は、動脈血酸素飽和度の低下が開始してから負荷時の定常状態になるまでの動脈血酸素飽和度の時間積分に基づいて決定される。
 ここでは、低下積分値Iは、数1に示すように、動脈血酸素飽和度の低下が開始した時点(Ts)から負荷時の定常状態になった時点(TK)までの動脈血酸素飽和度(SpO2(t))と負荷時定常飽和度(K)の差分の時間積分値とする。例えば、図4に示した基準指標の低下積分値は、図6の部分Aの面積である。負荷時定常飽和度(K)との差分とせずに、動脈血酸素飽和度の低下が開始した時点(Ts)から負荷時の定常状態になった時点(TK)までの動脈血酸素飽和度(SpO2(t))の時間積分値としてもよい。
Figure JPOXMLDOC01-appb-M000002
  図3に示した進行度判定処理フローのうち、低下関連指標決定及び進行度判定(S308)について、低下関連指標として低下積分値を用いた場合の具体的な処理フローを図7に示す。
 まず、S304においてこれまでに取得されたSpO2測定値に基づいてSpO2の低下が開始したか否かを判定する(S701)。開始していなければ、低下関連指標決定及び進行度判定処理を終了し、S304へ戻る。開始していれば、SpO2が負荷時定常状態となっているか否かを決定する(S702)。定常状態となっていなければ、低下関連指標決定及び進行度判定処理を終了し、S304へ戻る。
 補正処理(S310)は判定結果がS308により出力されなければ実行されないようにしてもよいし、判定結果は境界状態ではない(S501)と判断し、判定結果の状態を維持(S508)として、処理を終了してもよい。その後、S312においては境界状態でも増悪状態でもないからS304へ戻る。
 定常状態となっていれば、低下積分値を決定する(S704)。より具体的には、取得されたSpO2測定値に基づいてSpO2の低下が開始したタイミング(Ts)、SpO2が負荷時定常状態となったタイミング(TK)及び負荷時定常飽和度(K)を決定し、前述の数式1に従って低下積分値を算出する。
 疾患の進行度の判定対象となっているSpO2測定値及び運動負荷の一例を表2及び図8に示す。図8において線801は基準指標のSpO2の遷移を示し、線802は判定対象となっている測定されたSpO2の遷移を示している。
Figure JPOXMLDOC01-appb-T000003
 判定対象の測定値においては、12:00:00から歩行が開始され、12:09:30にSpO2が99%となり、12:15:15にSpO2が定常状態(96%)となったことがわかる。したがって、低下開始タイミング(Ts)は12:09:30であり、負荷定常状態となったタイミング(TK)は12:15:15であり、負荷時定常飽和度(K)は96%である。このときの測定されたSpO2の低下積分値は図8に示された部分Bの面積である。
 なお、低下開始タイミングは、本実施形態においては、100%から低下した最初のタイミングとしたが100%から低下したタイミングの一つ前のタイミング(12:09:15)を開始点としてもよいし、100%から所定値以上低下したタイミングとしてもよい。動脈血酸素飽和度が低下したことを示すタイミングであればどのようなタイミングであってもよい。
 次に、ユーザ装置102は、低下積分閾値を決定する(S706)。低下積分閾値は判定対象となっている測定されたSpO2が安定状態、境界状態及び増悪状態と判定されるための閾値である。ここでは低下積分境界閾値及び当該低下積分境界閾値より小さい低下積分増悪閾値を決定する。決定された低下積分値が、低下積分境界閾値以上である場合は安定状態と判定し、低下積分境界閾値より小さく低下積分増悪閾値以上である場合は境界状態と判定し、低下積分増悪閾値より小さい場合は増悪状態と判定する。
 低下積分境界閾値及び低下積分増悪閾値は運動強度の関数として決定することができ、本実施形態において、以下の数2及び3により算出するものとするが、これに限定されるものではない。負荷時METsは、判定対象のMETsである。
〔数2〕
 低下積分境界閾値=基準低下積分値×0.85
〔数3〕
 低下積分増悪閾値=基準低下積分値×(100-(15+2log2(負荷時METs)))/100
 基準低下積分値は基準指標となる低下積分値であり、運動負荷に基づいて決定することができる。本実施形態では、判定対象における運動負荷も歩行(3METs)であり、S301において医師の診察時に実際に歩行を行って測定した測定値に基づいて算出された低下積分値を基準低下積分値として用いる。ジョギング等についても実測を行い運動負荷に対応する基準指標を記憶し、判定対象の運動負荷に応じて基準指標を選択してもよい。ユーザによる実測値によらず、ユーザの性別、年齢、体重等のデータに基づいて、基準低下積分値を決定してもよいし、全ユーザに対して予め決められた基準低下積分値を用いてもよい。
 また、一つの運動負荷に対して決められた基準低下積分値に基づく演算によって他の運動負荷についての基準低下積分値を算出してもよい。例えば、以下に示す数4に基づいて算出することができる。
〔数4〕
 基準低下積分値(負荷時METs)=
  基準低下積分値(基準METs)×log2(基準METs)/log2(負荷時METs)
 基準低下積分値(基準METs)は例えば前述のように実際に歩行を行って決定された基準低下積分値であり、基準METsはその際の運動強度、ここでは3METsである。負荷時METsは、判定対象となる測定された動脈血酸素飽和度の測定時のMETsである。歩行時の基準低下積分値が決定されれば、ジョギングなどその他の運動負荷に対する基準低下積分値を算出し、これに基づいて進行度判定を行うことができる。
 ここでは負荷時METs=3であるから、表1に示した歩行時の測定値を基準指標とする。基準指標低下積分値(A)=660、負荷時METs=3であるから、数2及び3に基づいて、低下積分境界閾値=561、低下積分増悪閾値=540.08と算出され、判定対象低下積分値(B)=525と算出される。
 なお、判定対象の測定値がジョギング時の測定データであれば、数4、基準低下積分値(A)及びジョギングの運動負荷(6METs)に基づいて基準低下積分値(6METs)=404.68と算出することができる。
 S704において決定された低下積分値が低下積分境界閾値以上であるか否か判定し(S708)、真である場合には、安定状態であると判定し(S712)、偽である場合には、さらに低下積分増悪閾値以上であるか否かを判定する(S710)。真である場合には境界状態と判定し(S714)、偽である場合は増悪状態と判定する(S716)。本実施形態においては判定対象低下積分値(B)は低下積分境界閾値以下であり、低下積分増悪閾値より小さいから、増悪状態と判定される。
 その後、S310において履歴情報に基づいて再判定が行われる。低下積分値による疾患進行度の判定は、運動負荷による動脈血酸素飽和度の低下から負荷時定常状態に至るまでの一回の運動に対して一回のみ行われる。一回判定が行われるとその際の判定結果をユーザ装置102の記憶装置254に記憶する。身体活動情報及び動脈血酸素飽和度の測定値に基づいて、一度運動が終了して動脈血酸素飽和度が安静時定常状態に至ったと判定されるまで進行度判定処理を行わず、安静時定常状態に至ったと判定された後、再度運動を開始して、低下積分値による疾患進行度の判定を行うようにすることができる。これを繰り返した場合に、所定回数、例えば2回連続で、境界状態と判定された場合、増悪状態と判定される。
 判定対象の低下積分値が基準低下積分値と比較して低下しているということは、運動負荷による動脈血酸素飽和度が基準指標に比べて短時間で低下していることを示しており、疾患によるガス交換予備機能の低下を検出することができ、その低下の程度に基づいて疾患の進行度を判定することができる。
[低下開始所要時間]
 次に、低下関連指標として低下開始所要時間を用いた場合の実施形態について説明する。低下積分値の実施例と異なる部分について詳細に説明し、同様の部分については説明を省略する。前述のとおり、低下開始所要時間は、運動による負荷状態が開始してから動脈血酸素飽和度の低下が開始するまでの所要時間である。
  図3に示した進行度判定処理フローのうち、低下関連指標決定及び進行度判定(S308)について、低下関連指標として低下開始所要時間を用いた場合の具体的な処理フローを図9に示す。
 まず、S304においてこれまでに取得されたSpO2測定値に基づいてSpO2の低下が開始したか否かを判定する(S901)。開始していなければ、低下関連指標決定及び進行度判定処理を終了し、S304へ戻る。開始していれば、SpO2の低下開始所要時間を決定する(S902)。
 SpO2の低下開始所要時間は、運動による負荷状態が開始したタイミングと測定されたSpO2の低下が開始したタイミングを特定することにより決定することができる。すなわち、SpO2の低下が開始した時刻から運動による負荷状態が開始した時刻を減算することにより、低下開始所要時間を算出することができる。
 判定対象となっている取得されたSpO2の例を図10に示す。図10において線1001は基準指標のSpO2の遷移を示し、線1002、1003、1004は判定対象となっている測定されたSpO2の遷移を示している。
 図10に示されたSpO2の各測定値によれば基準指標はTs0(12:10:00)の時点で、判定対象1はTs1(12:09:00)の時点で、判定対象2はTs2(12:08:15)の時点で、判定対象3はTs3(12:07:30)の時点でそれぞれ低下が開始している。
 本実施形態においては、S306において取得される身体活動情報は、表1及び2に示されるように運動強度の情報が時刻情報に対応付けたデータとして取得されるものとし、ここでは基準指標、判定対象1~3のそれぞれの身体活動情報はいずれも12:00:00から歩行(3METs)を開始したことを示しているものとする。したがって、基準指標、判定対象1~3のそれぞれの低下開始所要時間はt0(10:00)、t1(9:00)、t2(8:15)及びt3(7:30)である。
 次に、低下開始所要時間閾値を決定する(S904)。低下開始所要時間閾値は判定対象となっている測定されたSpO2が安定状態、境界状態及び増悪状態と判定されるための閾値である。ここでは所要時間境界閾値及び当該所要時間境界閾値より小さい所要時間増悪閾値を決定する。決定された低下開始所要時間が、所要時間境界閾値以上である場合は安定状態と判定し、所要時間境界閾値より小さく所要時間増悪閾値以上である場合は境界状態と判定し、所要時間増悪閾値より小さい場合は増悪状態と判定する。
 低下開始所要時間閾値は運動強度の関数として決定することができ、本実施形態において、以下の数5及び6により算出するものとするが、これに限定されるものではない。
〔数5〕
 所要時間境界閾値=基準所要時間×0.85
〔数6〕
 所要時間増悪閾値=基準所要時間×(100-(15+2log2(負荷時METs)))/100
 基準所要時間は運動負荷に基づいて決定することができる。本実施形態では前述のとおり診断時に行った歩行による実測に基づいて決定された低下開始所要時間を歩行時の基準所要時間とし、判定対象における運動負荷も歩行(3METs)であるから、歩行時の基準所要時間を用いる。ジョギング等についても実測を行い運動負荷に対応する基準指標を記憶し、判定対象の運動負荷に応じて基準所要時間を選択してもよい。
 一つの基準指標、例えば、歩行時の基準所要時間に基づく演算によって他の運動負荷についての基準所要時間を算出してもよい。例えば、以下に示す数7に基づいて算出することができる。
〔数7〕
 基準所要時間(負荷時METs)=
         基準所要時間(基準METs)+log3(基準METs/負荷時METs)
 ここでは診断時の実測値に基づいて基準所要時間=10:00とし、基準指標及び判定対象いずれもMETs=3であるから、数5及び6に基づいて、所要時間境界閾値tt1=8:30、所要時間増悪閾値tt2=8:11と算出される。
 S902において決定された低下開始所要時間が所要時間境界閾値以上であるか否か判定し(S906)、真である場合には、安定状態であると判定し(S910)、偽である場合には、さらに所要時間増悪閾値以上であるか否かを判定する(S908)。真である場合には境界状態と判定し(S912)、偽である場合は増悪状態と判定する(S914)。
 ここでは、判定対象1は、低下開始所要時間t1=9:00であり、所要時間境界閾値tt1=8:30以上であるから、安定状態と判定される。判定対象2は、低下開始所要時間t2=8:15であり、所要時間境界閾値tt1=8:30より小さく、所要時間増悪閾値tt2=8:11以上であるから、境界状態と判定される。判定対象3は、低下開始所要時間t3=7:30であり、所要時間増悪閾値より小さいから、増悪状態と判定される。
 判定対象の低下開始所用時間が基準開始所用時間と比較して短くなっているということは、疾患によるガス交換予備機能が低下していることを意味し、その短くなっている程度に基づいて疾患の進行度を判定することができる。
[負荷時定常飽和度]
 次に、低下関連指標として負荷時定常飽和度を用いた場合の実施形態について説明する。低下積分値及び低下開始所要時間の実施例と異なる部分について詳細に説明し、同様の部分については説明を省略する。前述のとおり、負荷時定常飽和度は、動脈血酸素飽和度の低下が開始した後、定常状態となった際の動脈血酸素飽和度である。
 図3に示した進行度判定処理フローのうち、低下関連指標決定及び進行度判定(S308)について、低下関連指標として負荷時定常飽和度を用いた場合の具体的な処理フローを図11に示す。
 まず、S304においてこれまでに取得されたSpO2測定値に基づいてSpO2が運動負荷により低下した後、定常状態になったか否かを判定する(S1101)。定常状態となっていなければ、低下関連指標決定及び進行度判定処理を終了し、S304へ戻る。定常状態となっていれば、負荷時定常飽和度を決定する(S1102)。
 判定対象となっている取得されたSpO2測定値の例を図12に示す。図12において線1201は基準指標のSpO2の遷移を示し、線1202、1203は判定対象となっている測定されたSpO2の遷移を示している。
 図12に示されたSpO2の各測定値によれば基準指標(1201)は12:10:00で低下を開始し、12:19:00に定常状態に至った。負荷時定常飽和度は97%である。判定対象1(1202)は12:09:00に低下を開始し、12:18:30に定常状態に至り、負荷時定常飽和度は96%である。判定対象2(1203)は12:08:30に低下を開始し、12:17:00に負荷時定常状態に至り、負荷時定常飽和度は94%である。
 次に、負荷時定常閾値を決定する(S1104)。負荷時定常閾値は判定対象となっている測定されたSpO2が安定状態、境界状態及び増悪状態と判定されるための閾値である。ここでは負荷時定常境界閾値及び当該境界状閾値より小さい負荷時定常増悪閾値を決定する。決定された負荷時定常飽和度が、負荷時定常境界閾値以上である場合は安定状態と判定し、負荷時定常境界閾値より小さく負荷時定常増悪閾値以上である場合は境界状態と判定し、負荷時定常増悪閾値より小さい場合は増悪状態と判定する。
 負荷時定常閾値は運動強度の関数として決定することができ、本実施形態において、以下の数8及び9により算出するものとするが、これに限定されるものではない。
〔数8〕
 負荷時定常境界閾値=基準負荷時定常飽和度×0.98
〔数9〕
 負荷時定常増悪閾値=基準負荷時定常飽和度×(100-(2+log2(負荷時METs)))/100
 基準負荷時定常飽和度は運動負荷に基づいて決定することができる。本実施形態では前述のとおり診断時に行った歩行による実測に基づいて決定された負荷時定常飽和度を歩行時の基準負荷時定常飽和度とし、判定対象における運動負荷も歩行(3METs)であるから、歩行時の基準負荷時定常飽和度を用いる。ジョギング等についても実測を行い運動負荷に対応する基準指標を記憶し、判定対象の運動負荷に応じて基準負荷時定常飽和度を選択してもよい。
 また、一つの運動負荷に対して決められた基準負荷時定常飽和度に基づく演算によって他の運動負荷についての基準負荷時定情報飽和度を算出してもよい。例えば、以下に示す数10に基づいて算出することができる。
〔数10〕
 基準負荷時定常飽和度(負荷時METs)=
        基準負荷時定情飽和度(基準METs)+log2(基準METs/負荷時METs)
 ここでは歩行時に実測された負荷時定常飽和度を基準負荷時定常飽和度=97%とし、基準指標及び判定対象いずれもMETs=3であるから、数8及び9に基づいて、負荷時定常境界閾値=95.06%(線1204)であり、負荷時定常増悪閾値=93.42%(線1205)である。
 S1106において決定された負荷時定常飽和度が負荷時定常境界閾値以上であるか否か判定し、真である場合には、安定状態であると判定し(S1110)、偽である場合には、さらに負荷時定常増悪閾値以上であるか否かを判定する(S1108)。真である場合には境界状態と判定し(S1112)、偽である場合は増悪状態と判定する(S1114)。
 判定対象1は負荷時定常飽和度が96%であるから、負荷時定常境界閾値(95.06%)以上であり、安定状態と判定され、判定対象2は負荷時定常飽和度が94%であるから、負荷時定常境界閾値(95.06%)より小さく、負荷時定常増悪閾値(93.42%)以上であるから、境界状態であると判定される。
 判定対象の負荷時定常飽和度が基準負荷時定常飽和度と比較して低下しているということは、疾患によるガス交換予備機能の低下していることを意味し、その低下の程度に基づいて疾患の進行度を判定することができる。
 呼吸器疾患または循環器疾患といった疾患が進行すると運動により増加する酸素需要に対しての、ユーザ(被測定者)のガス交換の予備能が低下する。本発明は、動脈血酸素飽和度の運動負荷による低下関連指標に基づいて、ガス交換予備機能の低下を検出することで疾患の進行度を判定することを可能とする。
 運動負荷の大きさによって動脈血酸素飽和度の低下の仕方、程度が変動する。前述の本発明の実施形態においては、継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定し、運動負荷の大きさを示す情報を取得し、運動負荷の大きさを示す情報及び決定された低下関連指標に基づいて、疾患の進行度を判定する。運動負荷の大きさを考慮することにより、運動負荷によって低下する動脈血酸素飽和度に関連する低下関連指標に基づいて疾患の進行度を適切に判定することが可能となる。
 前述の各実施形態においては、閾値の決定は判定処理(S308)において実行するものとしたが、基準指標を取得した際(S301)に決定してもよい。例えば、歩行時に判定を行うことが決まっている場合には、運動負荷の大きさは決まっているから、基準指標を取得した段階で各閾値を決定することができる。
 前述の実施形態においては、動脈血酸素飽和度測定器101とユーザ装置102という2つの装置を用いて本発明を実現するものとしたが、一つの装置ですべての機能を実現するようにしてもよい。例えば、ユーザが装着可能なユーザ装置102が動脈血酸素飽和度測定装置207及び身体活動センサ208を備え、前述の動脈血酸素飽和度測定器101の機能を実施することも可能である。また、3つ以上の装置が前述の機能を分担して実施することによって実現することも可能である。
 以上に説明してきた各実施形態は、本発明を説明するための例示であり、本発明はこれらの実施形態に限定されるものではない。本発明は、その要旨を逸脱しない限り、種々の形態で実施することができる。
100  :システム
101  :動脈血酸素飽和度測定器
102  :ユーザ装置
200  :バス
201  :処理装置
202  :出力装置
203  :入力装置
204  :記憶装置
205  :通信装置
206  :プログラム
207  :動脈血酸素飽和度測定装置
208  :身体活動センサ
250  :バス
251  :処理装置
252  :出力装置
253  :入力装置
254  :記憶装置
255  :通信装置
256  :プログラム

Claims (12)

  1.  疾患の進行度を判定するための装置であって、
     継続的に測定された動脈血酸素飽和度を取得し、
     前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定し、
     運動負荷の大きさを示す情報を取得し、
     前記運動負荷の大きさを示す情報及び前記決定された低下関連指標に基づいて、疾患の進行度を判定する、
     ことを特徴とする装置。
  2.  前記低下関連指標は、動脈血酸素飽和度の低下が開始してから負荷時の定常状態になるまでの動脈血酸素飽和度の時間積分に基づく低下積分値を含み、
     前記低下関連指標を決定することは、前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の低下積分値を決定すること、を含み、
     前記判定することは、前記運動負荷の大きさを示す情報及び前記決定された低下積分値に基づいて、呼吸・循環器疾患の進行度を判定すること、を含む、
     請求項1に記載の装置。
  3.  前記判定することは、
      前記運動負荷の大きさを示す情報に基づいて、低下積分境界閾値及び当該低下積分境界閾値より小さい低下積分増悪閾値を決定することと、
      前記決定された低下積分値が、前記低下積分境界閾値以下であり低下積分増悪閾値より大きい場合は境界状態と判定し、前記低下積分増悪閾値以下である場合は増悪状態と判定することと、
     を含む、
     請求項2に記載の装置。
  4.  前記判定することにおいて境界状態と判定された後、新たに測定された動脈血酸素飽和度を取得し、当該取得された動脈血酸素飽和度に基づいて前記判定することを再実行し、境界状態と判定されることが所定回数以上繰り返された場合、増悪状態と判定する、請求項3に記載の装置。
  5.  前記低下関連指標は、運動による負荷状態が開始してから動脈血酸素飽和度の低下が開始するまでの低下開始所要時間を含み、
     前記低下関連指標を決定することは、
      運動による負荷状態が開始したタイミングを示す情報を取得することと、
      前記負荷状態が開始したタイミング及び前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の低下開始所要時間を決定することと、
     を含み、
     前記判定することは、前記運動負荷の大きさを示す情報及び前記決定された低下開始所要時間に基づいて、疾患の進行度を判定すること、を含む、
     請求項1から4のいずれか1項に記載の装置。
  6.  前記低下関連指標は、動脈血酸素飽和度の低下が開始した後、定常状態となった際の動脈血酸素飽和度である負荷時定常飽和度を含み、
     前記低下関連指標を決定することは、前記継続的に測定された動脈血酸素飽和度に基づいて、負荷時定常飽和度を決定することを含み、
     前記判定することは、前記運動負荷の大きさを示す情報及び前記決定された負荷時定常飽和度に基づいて、疾患の進行度を判定すること、を含む、
     請求項1~5のいずれか1項に記載の装置。
  7.  前記判定された呼吸器疾患の進行度に基づいて警告情報を提示する、ことを特徴とする請求項1~6のいずれか1項に記載の装置。
  8.  動脈血酸素飽和度を継続的に測定して取得する、ことを特徴とする請求項1~7のいずれか1項に記載の装置。
  9.  ユーザの身体の動きを検出して運動負荷の大きさを示す情報を生成して取得する、ことを特徴とする請求項1~8のいずれか1項に記載の装置。
  10.  疾患の進行度を判定するための方法であって、コンピュータに、
     継続的に測定された動脈血酸素飽和度を取得する段階と、
     前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定する段階と、
     運動負荷の大きさを示す情報を取得する段階と、
     前記運動負荷の大きさを示す情報及び前記決定された低下関連指標に基づいて、疾患の進行度を判定する段階と、
     を実行させることを特徴とする方法。
  11.  請求項10に記載の方法をコンピュータに実行させるためのプログラム。
  12.  疾患の進行度を判定するためのシステムであって、
     動脈血酸素飽和度を継続的に測定し、
     前記継続的に測定された動脈血酸素飽和度に基づいて、測定された動脈血酸素飽和度の、運動負荷による低下に関連する低下関連指標を決定し、
     運動負荷の大きさを示す情報を取得し、
     前記運動負荷の大きさを示す情報及び前記決定された低下関連指標に基づいて、疾患の進行度を判定する、
     ことを特徴とするシステム。
PCT/JP2021/018908 2020-05-19 2021-05-19 疾患の進行度を判定するための装置、方法、プログラム及びシステム WO2021235467A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/926,332 US20230190187A1 (en) 2020-05-19 2021-05-19 Device, method, program, and system for determining degree of progression of disease
CN202180036458.0A CN115666380A (zh) 2020-05-19 2021-05-19 用于判定疾病的发展程度的装置、方法、程序以及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087192A JP2021180732A (ja) 2020-05-19 2020-05-19 疾患の進行度を判定するための装置、方法、プログラム及びシステム
JP2020-087192 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021235467A1 true WO2021235467A1 (ja) 2021-11-25

Family

ID=78605997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018908 WO2021235467A1 (ja) 2020-05-19 2021-05-19 疾患の進行度を判定するための装置、方法、プログラム及びシステム

Country Status (4)

Country Link
US (1) US20230190187A1 (ja)
JP (1) JP2021180732A (ja)
CN (1) CN115666380A (ja)
WO (1) WO2021235467A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023151321A (ja) * 2022-03-31 2023-10-16 オムロンヘルスケア株式会社 診療支援システム、診療支援装置及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034472A (ja) * 2003-07-17 2005-02-10 Teijin Ltd 急性増悪の発生予測方法
JP2005253865A (ja) * 2004-03-15 2005-09-22 Seiko Epson Corp 生体評価装置、生体評価方法、生体評価プログラム及び記録媒体
US20110106201A1 (en) * 2009-10-30 2011-05-05 Sourav Bhunia Implantable heart failure monitor
JP2017153581A (ja) * 2016-02-29 2017-09-07 フクダ電子株式会社 生体活動表示装置、生体活動表示方法及び歩行試験システム
US20170296104A1 (en) * 2014-09-25 2017-10-19 Aseptika Ltd Medical devices and related methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034472A (ja) * 2003-07-17 2005-02-10 Teijin Ltd 急性増悪の発生予測方法
JP2005253865A (ja) * 2004-03-15 2005-09-22 Seiko Epson Corp 生体評価装置、生体評価方法、生体評価プログラム及び記録媒体
US20110106201A1 (en) * 2009-10-30 2011-05-05 Sourav Bhunia Implantable heart failure monitor
US20170296104A1 (en) * 2014-09-25 2017-10-19 Aseptika Ltd Medical devices and related methods
JP2017153581A (ja) * 2016-02-29 2017-09-07 フクダ電子株式会社 生体活動表示装置、生体活動表示方法及び歩行試験システム

Also Published As

Publication number Publication date
CN115666380A (zh) 2023-01-31
US20230190187A1 (en) 2023-06-22
JP2021180732A (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
JP6270225B2 (ja) 肺活量及び体力を測定するシステム及び方法
CN101296651B (zh) 用于确定患者血压的系统和方法
WO2013151717A1 (en) User interface enhancements for physiological parameter monitoring platform devices
JP2016505297A (ja) データ収集頻度と悪化検出アルゴリズムの閾値を最適化するシステムと方法
JP6635507B2 (ja) 精神状態判定方法及び精神状態判定プログラム
EP2763029A1 (en) Biological information monitor and biological information monitoring system
JP2008067892A (ja) 生体解析装置及びプログラム
Takahashi et al. Validation of Omron RS8, RS6, and RS3 home blood pressure monitoring devices, in accordance with the European Society of Hypertension International Protocol revision 2010
US11191483B2 (en) Wearable blood pressure measurement systems
US11410774B2 (en) Computer system, cognitive function evaluation method, and program
US20210118539A1 (en) Medication management device, medication management method, and non-transitory computer-readable storage medium storing medication management program
US11779259B2 (en) Cognitive function evaluation device, cognitive function evaluation system, cognitive function evaluation method, and recording medium
JP2010035896A (ja) 自律神経機能診断装置およびプログラム
WO2021235467A1 (ja) 疾患の進行度を判定するための装置、方法、プログラム及びシステム
CN110446458B (zh) 信息处理装置和信息处理程序
WO2021004168A1 (zh) 一种具备人工智能的医疗数据整合系统及方法
JP2017123897A (ja) 生体情報処理システム、電子機器、プログラム及び生体情報処理システムの制御方法
JP6401297B2 (ja) インスリン分泌能分析装置、当該装置を備えるインスリン分泌能分析システム及びインスリン分泌能分析方法
JP6765998B2 (ja) 情報処理装置および情報処理プログラム
JP4500758B2 (ja) カロリー消費量の測定装置およびその方法
WO2018168804A1 (ja) 血圧関連情報表示装置および方法
KR102431065B1 (ko) 오브젝트 연속 입력 결과에 기반한 스트레스 레벨 결정 장치, 방법 및 프로그램
JP2016195656A (ja) 自律神経機能診断装置およびプログラム
CN113180672B (zh) 一种肌力检测方法、装置以及计算机可读存储介质
JP2018527133A (ja) 別の検査を提案するパルスオキシメータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808648

Country of ref document: EP

Kind code of ref document: A1