JP2005253865A - 生体評価装置、生体評価方法、生体評価プログラム及び記録媒体 - Google Patents

生体評価装置、生体評価方法、生体評価プログラム及び記録媒体 Download PDF

Info

Publication number
JP2005253865A
JP2005253865A JP2004072824A JP2004072824A JP2005253865A JP 2005253865 A JP2005253865 A JP 2005253865A JP 2004072824 A JP2004072824 A JP 2004072824A JP 2004072824 A JP2004072824 A JP 2004072824A JP 2005253865 A JP2005253865 A JP 2005253865A
Authority
JP
Japan
Prior art keywords
biological
oxygen saturation
intensity
living body
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004072824A
Other languages
English (en)
Other versions
JP2005253865A5 (ja
JP4534535B2 (ja
Inventor
Tsukasa Kosuda
司 小須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004072824A priority Critical patent/JP4534535B2/ja
Publication of JP2005253865A publication Critical patent/JP2005253865A/ja
Publication of JP2005253865A5 publication Critical patent/JP2005253865A5/ja
Application granted granted Critical
Publication of JP4534535B2 publication Critical patent/JP4534535B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】 ユーザが手軽に生体評価を行えるようにする。
【解決手段】 ユーザの抹消部から、少なくとも血中の酸素飽和度を含む生体情報を生体センサユニット102を用いて光学的に測定すると共に、ユーザの体動強度たる加速度を体動センサ140を用いて検出し、加速度と前記酸素飽和度との値に基づいて前記生体を評価するようにした。
【選択図】 図5

Description

本発明は、生体機能の評価を行うための技術に関する。
従来から、生体情報計測装置として、パルスオキシメータが知られている。このパルスオキシメータは、赤色光(例えば波長660nm)と赤外光(例えば波長940nm)の夫々異なった2波長の光を生体組織に時分割に照射し、動脈血中の酸素飽和度を非侵襲に連続測定するものである(例えば、特許文献1参照)。このような非侵襲に生体状態を測定する生体情報計測装置としては、上記パルスオキシメータ以外にも、血圧計や体温計等が知られている。
特許第3116255号公報
上記のように、酸素飽和度や血圧、体温等の生体情報を計測する装置は従来から存在するものの、そのときの健康状態や体力状態といった生体に関する評価を簡単に行うことのできる装置は無かった。特に、体力状態の評価にあっては、従来、運動強度を軽いものから強いものへ段階的に変化させて、そのときの脈波の変化から最大酸素摂取量を計算により求め、その結果に基づいて評価するといった手法が用いられており、特別な運動をすることなく体力評価を行うことはできなかった。
本発明は、上述した事情に鑑みてなされたものであり、ユーザが手軽に生体評価を行うことができる生体評価装置、生体評価方法、生体評価プログラム及び記録媒体を提供することを目的とする。
上記目的を達成するために、本発明は、生体の抹消部から、少なくとも血中の酸素飽和度を含む生体情報を光学的に測定する生体情報測定手段と、前記生体の体動強度を検出する体動検出手段と、前記体動強度と前記酸素飽和度との値に基づいて前記生体を評価する生体評価手段とを具備することを特徴とする生体評価装置を提供する。
この生体評価装置によれば、生体の体動強度と前記酸素飽和度との値に基づいて生体を評価する構成であるため、ユーザは、特別な運動をせずとも普段の動作を行うだけで、手軽に生体評価を行うことができる。
ここで、生体評価手段は、前記体動強度が第1基準強度以下の場合に、前記酸素飽和度が第1基準酸素飽和度を下回っているときに、前記生体に異常があると評価する構成が望ましい。また、この第1基準強度は、日常動作に相当する運動強度に設定されるのが好ましい。この構成によれば、日常動作程度の軽い運動時における生体情報を検出し、当該検出結果に基づいて生体異常の評価を行うため、ユーザは特に激しい運動等をしなくとも普段の生活行動をするだけで簡単に生体評価を行うことができる。
また上記望ましい構成において、前記生体評価手段は、前記体動強度が前記第1基準強度よりも大きい値である第2基準強度以上である場合に、前記酸素飽和度が前記第1基準酸素飽和度よりも小さい値である第2基準酸素飽和度を下回っているときに、前記生体が体力不足であると評価する構成が望ましい。
これらの望ましい構成によれば、ユーザは、日常動作よりも比較的激しい運動をするだけで、体力状態の評価を行うことができ、さらに、軽い運動時には上記生体異常の評価が行われるため、より多様な生体評価を行うことができる。
なお、前記第1基準強度は、0.5G〜1G(G:重力加速度)の値に設定されると共に、前記第1基準酸素飽和度は、90%〜95%の値に設定される構成が好ましく、また、前記第2基準強度は、1.5G〜2G(G:重力加速度)の値に設定されると共に、前記第2基準酸素飽和度は、85%〜99%の値に設定される構成が好ましい。
なお、前記生体情報測定手段は、前記生体の指又は手首から前記生体情報を測定すると共に、前記体動検出手段は、前記生体の腕の軸方向の加速度に基づいて前記体動強度を検出する構成としても良い。
また、前記体動検出手段は、前記生体の腰の上下動の加速度に基づいて前記体動強度を検出する構成としても良く、この構成によれば、運動に基づく生体の体動強度をより正確に検出することが可能となる。
なお、上記生体評価装置は、前記生体に装着される携帯型に構成されるのが好ましく、これにより、ユーザは、当該生体評価装置を装着して日常生活を送るだけで、手軽に生体評価を行うことができる。
また本発明は、上記目的を達成するために、生体の抹消部から、少なくとも血中の酸素飽和度を含む生体情報を光学的に測定すると共に、前記生体の体動強度を検出する第1ステップと、前記体動強度と前記酸素飽和度との値に基づいて前記生体を評価する第2ステップとを具備することを特徴とする生体評価方法を提供する。
また本発明は、上記目的を達成するために、生体の抹消部から生体信号を光学的に検出する生体信号検出手段と、前記生体の体動強度を検出する体動検出手段を備えた生体評価装置を、前記生体信号に基づいて、少なくとも血中の酸素飽和度を含む生体情報を算出する生体情報算出手段、前記体動強度と前記酸素飽和度との値に基づいて前記生体を評価する生体評価手段として機能させるための生体評価プログラムを提供する。
また、本発明は、上記生体評価プログラムを電気通信回線を介して一般ユーザに配布したり、当該生体評価プログラムを、CD−ROMや、フロッピー(登録商標)ディスク、光記録ディスクといった、コンピュータに読み取り可能な記録媒体に格納して一般ユーザに配布する、といった態様でも実施可能である。
本発明によれば、ユーザが手軽に生体評価を行うことができる。
以下図面を参照して、本発明の実施の形態について説明する。本実施形態の生体評価装置は、携帯型に構成され、歩行などの比較的軽度な運動中における酸素飽和度SPO2の変化をユーザ(生体)の末梢部から検出し、この検出結果に基づいてユーザの生体評価を行う事を特徴としたものである。以下、当該生体評価装置について詳細に説明する。
<第1実施形態>
図1は、本実施形態に係る生体評価装置の外観構成を、その使用の態様と共に示す図である。この図に示すように、生体評価装置1は、腕時計構造を有する装置本体100と、この装置本体100に設けられ、腕時計における12時方向からユーザの手首に巻きついて6時方向で固定されるリストバンド103とを備え、腕時計型のリスト機器として構成されている。上記装置本体100の上面には、酸素飽和度SPO2や体動加速度、時刻といった各種情報が表示される液晶表示部108が設けられ、また装置本体100の外周部には、ユーザが各種情報を入力する際に用いる入力手段としてのボタンスイッチ111が設けられている。さらに、装置本体100の表面(液晶表示部108が設けられた面)には、開始・終了ボタン116が設けられている。この開始・終了ボタン116は、ユーザが当該生体評価装置1に対して、酸素飽和度SPO2や体動加速度に基づく生体評価の評価開始あるいは終了を指示する際に用いられる。
装置本体100の6時方向の外周部には、コネクタ部105が設けられ、このコネクタ部105には、コネクタピース106が着脱自在に取り付けられ、このコネクタピース106には、生体評価に用いられる生体情報をユーザの末梢部から検出する生体センサユニット102が接続される。すなわち、生体評価装置1は、コネクタピース106が取り外されている場合には、腕時計として機能し、コネクタピース106が装着されている場合には、健康状態や体力状態を評価する携帯型の生体評価装置として機能可能となる。コネクタピース106には、ケーブル101を介して生体センサユニット102が接続され、生体センサユニット102により、ユーザの生体情報が検出される。具体的には、この生体センサユニット102は、図2に示すように、センサ用固定バンド104によって、ユーザの末梢部たる指の根元近傍に固定され、血管に光を照射することで生体情報を検出する。なお、ユーザの手の甲にコネクタ部105が当接する等して、ユーザの手の動きが規制されるのを防止するために、コネクタ部105を装置本体100の外周の内、腕時計における3時方向に設けるのが望ましい。
図3は、生体センサユニット102の構成を模式的に示す図である。この図に示すように、生体センサユニット102は、センサ枠1020と、当該センサ枠1020の下面を塞ぐ裏蓋1021と、上面を塞ぐガラス板1023とを有するユニット本体102aを備え、このユニット本体102aには、回路基板1026と、この回路基板1026上に実装された2つのLED1022a、1022bと、フォトディテクタ1024とが内蔵されている。また、回路基板1026には、ケーブル101が接続され、このケーブル101を介して、フォトディテクタ1024からの検出信号たる生体検出信号が装置本体100に出力される。また、回路基板1026への電力供給も、装置本体100に内蔵された電池(不図示)からケーブル101を介して行われる。
上記LED1022aは波長(中心波長)が約940nmの赤外光を照射するものであり、また、LED1022bは波長(中心波長)が約660nmの赤色光を照射するものである。LED1022a、1022bの出射面及びフォトディテクタ1024の受光面は、各々ガラス板1023と対向しており、LED1022a、1022bの各々から血管に向けて照射された光が当該血管にて反射され、その反射光量がガラス板1023を透過してフォトディテクタ1024にて検出される。
このフォトディテクタ1024の上面には、図4に示すように、受光面を分割するように、互いに透過波長特性の異なる2つの透過フィルタ1024a、1024bが貼り付けられている。透過フィルタ1024aは、LED1022aの波長域(すなわち940nm付近)の光のみを透過し、透過フィルタ1024bは、LED1022bの波長域(すなわち660nm付近)の光のみを透過する。この構成により、1つのフォトディテクタ1024により、LED1022a、1022bの各々の波長域の光量を検出することが可能となっている。生体情報測定時には、LED1022a、1022bが時分割に交互に発光し、LED1022aあるいはLED1022bの発光により検出された反射光量が生体検出信号として装置本体100に出力される。
上記ガラス板1023は、少なくともLED1022a、1022bの波長域(940nm付近及び660nm付近)に高い透過特性を有するガラス材料から形成され、その他の波長域の光については、ガラス板1023の表面に貼り付けられた透過フィルタ(図示せず)によりカットされる構成となっており、この構成により、ユニット本体102a内への外来光の侵入が極力防止され、フォトディテクタ1024に外来光によるノイズが含まれるのが防止されるようになっている。なお、本実施形態では、フォトディテクタ1024が反射光を検出する構成としているが、これに限らず、当該フォトディテクタ1024を、指を挟んでLED1022a、1022bと対向配置し、指を透過した光を受光する構成としても良い。
図5は、生体評価装置1の機能的構成を示すブロック図である。この図において、CPU130は、当該生体評価装置1の各部の動作を制御する制御手段、生体センサユニット102からの生体検出信号に基づいて血中の酸素飽和度SPO2を演算する処理、生体を評価するための演算処理等の各種演算処理を実行する演算手段として機能するものである。ROM132は、例えばEEPROM(Electrically Erasable Programmable ROM)などの書き換え可能なメモリであり、CPU130によって実行される制御プログラムや、上記各処理のためのプログラム、各種データを記憶するものである。RAM134は、CPU130のワークエリアとして用いられ、CPU130による演算結果や各種データを一時的に記憶するものである。計時回路136は、所定周波数(例えば32.768kHz)のクロック信号を出力する発振回路1360と、発振回路1360からのクロック信号を分周して1Hzのクロック信号をCPU130に出力する分周回路1361とを備え、このクロック信号をCPU130に出力するものである。CPU130は、1Hzのクロック信号に基づき計時処理を行う。入力部138は、上述したボタンスイッチ111および開始・終了ボタン116に対応するものであり、ユーザの各ボタン操作に応じた信号をCPU130に出力する。液晶表示部108はCPU130の制御に従って画面を表示するものであり、LCD(Liquid Crystal Display)を備えている。なお、液晶表示部108に有機ELディスプレイを用いる構成としても良い事は勿論である。
生体信号増幅回路120は、生体センサユニット102からの生体検出信号を増幅してA/D変換回路122に出力する。A/D変換回路122は、CPU130から制御信号が入力されている間だけ、アナログ信号の生体検出信号をデジタル信号に変換してCPU130に出力するものである。CPU130は、A/D変換回路122から出力されている生体検出信号を一定期間取り込み、FFT(高速フーリエ変換)処理を実行することにより生体検出信号の周波数成分を算出し、生体信号Fsa、Fsbを求める。具体的には、生体センサユニット102が備える2つのLED1022a、1022bに対応する反射光量を個々に検出すべく、CPU130は、時分割にLED1022a、1022bを交互に発光させ、そして、LED1022aの発光時に検出された生体検出信号に基づく生体信号Fsaと、LED1022bの発光時に検出された生体検出信号に基づく生体信号Fsbとを個別に求める。
上記生体検出信号、引いては、生体信号Fsa、Fsbには、血中の酸素飽和度SPO2を示す情報が含まれている。詳述すると、LED1022a、1022bから指に向けて光を照射すると、この光が血管に届いて血液中のヘモグロビン(酸化ヘモグロビン、還元ヘモグロビン)によって一部が吸収され、一部が反射される。生体(血管)から反射してきた光は、フォトディテクタ1024によって受光され、その受光量変化は、血液の脈波によって生じる血量変化に対応し、血量が多いときには、ヘモグロビンでの光の吸収が増大するため、反射光が弱くなる一方、血量が少なくなると反射光が強くなる。従って、反射光強度の変化をフォトディテクタ1024で監視すれば、反射光強度の脈動周期(すなわち生体信号Fsa、Fsb)から脈拍を検出することも可能となる。なお、この酸素飽和度SPO2や脈拍数等の具体的な算出方法については、従来と同様であるため、その詳細な説明については省略する。
次いで、体動センサ140は、ユーザの体動として腕の動きを検出するものである。詳述すると、ユーザが運動等している場合、生体信号Fsa、Fsbには、体動(本実施形態では、腕の動き)に応じた周波数成分が含まれてしまうため、生体情報(酸素飽和度)をより正確に測定するためには、生体信号Fsa、Fsbから体動成分を除去する必要がある。そこで、本実施形態では、生体評価装置1に上記体動センサ140を設ける構成としている。この体動センサ140は、ユーザの体動として、歩行等の運動に伴う腕の振りの繰り返し運動を検出するための加速度センサを有し、腕の振りに伴う、腕の軸方向(延長方向)の加速度を体動信号として体動信号増幅回路142に出力する。
この加速度センサについて詳述すると、本実施形態では、加速度センサとして差動キャパシタ型センサを用いている。図6は、この作動キャパシタ型センサの構造を概略的に示す図である。また、図7は、加速度の加わっていない状態における差動キャパシタ型センサの一部拡大図である。図6に示すように、差動キャパシタ型センサ400は、2軸の角度センサであり、第1の感度軸LX1と、第2の感度軸LX2を有し、図7に示すように、一対の固定軸401に可撓性を有する各テザー402が支持されている。そして一対のテザー402は、両側からビーム(梁)403を支持している。各ビーム403には、側方に突設された電極403Aが設けられており、一対の固定外側電極404A、404Bに各固定外側電極404A、404Bからほぼ同一の距離を有する位置に各固定外側電極404に対向するように保持されている。これにより、電極403Aと各固定外側電極404A、404Bとはそれぞれ、略同一の容量を有するコンデンサとして機能している。
図8は、加速度の加わった状態における差動キャパシタ型センサの一部拡大図である。図7で示した状態において、差動キャパシタ型センサ400が傾けられると、テザー402が重力加速度によりたわみ、図8に示したような状態となる。この結果、例えば、図8に示すような場合には、電極403Aと固定外側電極404Aとの距離G1は、電極403Aと固定外側電極404Bとの距離G2よりも大きくなる。すなわち、電極403Aと固定外側電極404Bとで構成されるコンデンサの容量の方が大きくなる。従って、この容量差は、重力加速度(G)の大きさ、すなわち、傾けた角度に比例することとなるので、容量差を計測することにより角度を検出することが可能となり、また、この検出値から、腕の振りに伴う、腕の軸方向の加速度を算出することができるのである。
体動信号増幅回路142は、体動信号を増幅して、A/D変換回路122に出力するものである。A/D変換回路122は、上述したように、CPU130から制御信号が入力されている間だけ、体動信号をアナログ/デジタル変換して、CPU130に出力する。すなわち、A/D変換回路122は、生体信号増幅回路120からの生体検出信号と体動信号増幅回路142からの体動信号を一定時間ごとに交互に受け取り(すなわち、時分割)、アナログ/デジタル変換してCPU130に出力する。CPU130は、デジタル信号に変換された体動信号を一定期間取り込み、FFT処理を実行することにより体動信号の周波数成分を算出し、体動信号Ftを求める。そして、CPU130は、上記生体信号Fsa、Fsbから体動成分を取り除くべく、生体信号Fsa、Fsbから体動信号Ftを減算して酸素飽和度SPO2を求める。
上記構成の下、本実施形態の生体評価装置1は、ユーザによって評価開始指示がなされると、ユーザの生体情報を測定すると共に、当該生体情報に基づいて、健康状態や体力状態といった生体評価を実行する。以下、この生体評価処理について図9を参照して説明する。
図9は、生体評価処理のフローチャートである。この図に示すように、生体評価装置1のCPU130は、ユーザによって開始・終了ボタン116が操作され生体評価開始指示がなされたことを検出すると(ステップS1:Yes)、A/D変換回路122に制御信号を出して、これを動作させると共に、生体センサユニット102のLED1022a、1022b及び体動センサ140の各々を排他的(時分割)に動作させ、LED1022aの発光に基づく生体検出信号と、LED1022bの発光に基づく生体検出信号と、体動信号とを時分割に取り込む(ステップS2)。次いで、CPU130は、生体検出信号と体動信号の各々に対してFFT処理を実行し、生体信号Fsa、Fsbと、体動信号Ftの各々を算出する(ステップS3)。そして、CPU130は、生体信号Fsa、Fsbから体動成分を除去すべく、生体信号Fsa、Fsbの各々から体動信号Ftを減算し(ステップS4)、この減算後の生体信号Fsa、Fsbに基づいて酸素飽和度SPO2(すなわち生体情報)を算出する(ステップS5)。なお、末梢部の血流変化に伴うフォトディテクタ1024の受光量変化からユーザの脈拍数を酸素飽和度SPO2に加えて算出して液晶表示部108に表示するようにしても良い。
次いで、CPU130は、酸素飽和度SPO2と共に上記体動センサ140によって検出された加速度を体動として液晶表示部108に表示する(ステップS6:図12参照)。そして、CPU130は、この酸素飽和度SPO2と体動とに基づいて生体評価を行う(ステップS7)。詳述すると、発明者は、酸素飽和度SPO2及び体動(運動強度)と、健康状態及び体力状態との関係について、次のような知見を得ている。
図11は、酸素飽和度SPO2(%)と体動(運動強度)たる加速度(G)との関係を示す図である。この図には、健康状態或いは体力状態が異なる3人の被験者による計測結果が示されている。すなわち、図中、菱形◆は、健康状態及び体力状態が共に良好な被験者Aについての測定結果を示し、黒丸●は、健康状態が良好であるものの比較的体力の無い(心肺機能の弱い)被験者Bについての測定結果を示し、また、白丸○は、体力は良好であるものの健康状態の良くない(喫煙等により呼吸器系(特に気管支)に疾患のある)被験者Cについての測定結果を示している。なお、同図に示す実線、一点鎖線及び二点鎖線は、被験者A〜Cの測定結果を補間する多項式を示すものであり、実線が被験者A、一点鎖線が被験者B、二点鎖線が被験者Cに対応する。
この図において、加速度(G)が0G〜1G(G:重力加速度)程度の運動強度は日常動作に相当し、加速度が1G程度で、おおよそ歩行時の運動強度に相当する。また、加速度(G)が1G以上の場合の運動強度は、歩行よりも比較的激しい運動に相当する。健康状態及び体力状態が共に良好な被験者Aにあっては、運動の加速度Gの変化に対して酸素飽和度SPO2が比較的一定している。また、被験者Cについては、日常動作に相当する軽い運動時には、酸素飽和度SPO2の変化がみられないものの、運動強度が強くなるにつれ(加速度(G)が大きくなるにつれ)、酸素飽和度SPO2が大きく減少する。また、被験者Bについては、日常動作に相当する軽い運動のとき(加速度(G)が小さいとき)から酸素飽和度SPO2が減少傾向を示している。
以上のことから、加速度(G)が小さい値領域、すなわち、日常動作に相当する比較的軽度な運動時において酸素飽和度SPO2が減少する場合には、ユーザの健康状態が悪いことを示すことになる。また、比較的軽度な運動時において酸素飽和度SPO2に減少傾向がみられないものの、加速度(G)が大きい値領域、すなわち、比較的激しい運動時において酸素飽和度SPO2が減少傾向を示す場合には、体力が比較的無いことを示すことになる。
そこで、本実施形態の生体評価装置1のCPU130は、生体評価に際し、図10に示すように、ユーザが日常動作に相当する軽度な運動中であるか否かを判断するために、体動センサ140により検出された加速度が第1基準加速度以下(例えば1G)であるか否かを判断する(ステップS101)。そして、加速度が第1基準加速度以下である場合、CPU130は、酸素飽和度SPO2が第1基準酸素飽和度(例えば、92%)を下まわっていれば(ステップS102:YES)、ユーザの健康状態が悪く、生体に何らかの異常があると判断し(ステップS103)、また、酸素飽和度SPO2が第1基準酸素飽和度以上であれば、比較的激しい運動時について判断すべく、処理手順をステップS101に戻す。
一方、ステップS101の判断の結果、体動センサ140により検出された加速度が第1基準加速度より大きい場合、CPU130は、比較的激しい運動中であるか否かを判断するために、体動センサ140により検出された加速度が第2基準加速度以上(例えば2G)であるかを判断する(ステップS104)。加速度が第2基準加速度に達していなければ測定対象領域外であるため、CPU130は処理を終了する。一方、加速度が第2基準加速度以上である場合、CPU130は、酸素飽和度SPO2が第2基準酸素飽和度(例えば、88%)を下まわっていれば(ステップS105:YES)、ユーザに体力がないと判断し(ステップS106)、また、酸素飽和度SPO2が第2基準酸素飽和度(例えば、88%)以上であれば、ユーザが健康であると判断する(ステップS107)。なお、本実施形態では、第1基準加速度として1Gを、第2基準加速度として2Gを例示したが、これに限らず、例えば第1基準加速度としては0.5G〜1Gの値を用いることができ、また、第2基準加速度としては1.5G〜2Gの値を用いることもできる。また同様に、第1基準酸素飽和度としては90%〜95%の値を用いることができ、第2基準加速度としては85%〜90%の値を用いることができる。そして、これら第1、第2基準加速度及び第1、第2基準酸素飽和度の値は、あらかじめROM132に格納され、上記生体評価時に参照される。
さて、その後CPU103は、図9に示すステップS8に処理手順を進め、上記ステップS7における判断結果を液晶表示部108に表示する。表示の具体的態様としては、「健康異常」や「体力不足」、「健康」といった文字表示があり、また、これらの状態を示す図象(アイコン)の表示等も考えられる。
以上説明したように、本実施形態の生体評価装置1によれば、日常動作に相当する軽い運動時における生体情報(具体的には、酸素飽和度SPO2)を検出し、当該検出結果に基づいて健康状態の評価といった生体評価を行う構成としたため、ユーザは特に激しい運動等をしなくとも普段の生活行動をするだけで簡単に生体評価を行うことができる。特に、生体評価装置1が腕時計型(すなわちリスト機器型)等の携帯型に構成されているため、日常生活の中で生体評価を容易に行うことができる。
特に、酸素飽和度SPO2の変化を検出することで、例えば煙草の吸いすぎや受動喫煙等によって発生する呼吸器系の異常を健康状態の異常として検出することができる。
さらに本実施形態の生体評価装置1によれば、日常動作よりも比較的激しい運動時における生体状態を検出し、当該検出結果に基づいて体力状態といった生体評価を、上記健康状態の評価に加えて行う構成としたため、より多様な生体評価を行うことができる。
<第2実施形態>
次いで、本発明の第2実施形態について説明する。上述した第1実施形態においては、腕時計(リスト機器)型に構成された生体評価装置1に体動センサ140を内蔵し、体動としての腕の動きを検出する構成について例示した。これに対して、本実施形態では、図13に示すように、生体評価装置1をユーザUの手首に装着されるリスト側機器200と、腰に装着される腰側機器300とを備える構成とすると共に、当該腰側機器300にも体動センサ301を内蔵した構成としている。以下、かかる構成の生体評価装置1について詳述する。
図14は生体評価装置1のリスト側機器200の機能的構成を示すブロック図であり、図15は生体評価装置1の腰側機器300の機能的構成を示すブロック図である。図14に示すリスト側機器200は、無線回路150を備える点の他は、第1実施形態に示した装置本体100と同様な構成を有している。一方、図15に示す腰側機器300は、ユーザの腰の上下動に伴う加速度を検出し、体動信号としてリスト側機器200に無線により送信するものである。具体的には、腰側機器300は、ユーザの腰の上下動を検出する加速度センサを有した体動センサ301と、当該体動センサ301の検出信号たる体動信号(加速度)を増幅する体動信号増幅回路302と、増幅された体動信号をアナログ/デジタル変換してCPU304に出力するA/D変換回路304と、リスト側機器200と無線通信するための無線回路305とを備えている。このCPU304は、腰側機器300の各部を制御する他、体動信号が入力された場合には、無線回路305を制御して、その体動信号をリスト側機器200に送信する。また、これらの構成要素の他にも腰側機器300は、リスト側機器200と同様に、CPU304のワークエリアとして用いられるRAM306と、プログラムや各種データを格納するROM307と、操作子たる入力部308と、表示部たる液晶表示部309と、計時回路310とを備えている。
ここで、腰側機器300のCPU304は、腰の動きに基づいて検出した体動信号をリスト側機器200に送信する場合には、計時回路310による計時情報を付与して送信する。一方、リスト側機器200のCPU130が、腰側機器300から体動信号を受信した場合には、その体動信号に付与された計時情報に基づいて、その体動信号が腰側機器300にて検出されたタイミングにおける酸素飽和度SPO2を特定することで、体動信号と酸素飽和度SPO2との同期がとられる。そして、これらの体動信号と酸素飽和度SPO2とに基づいて、図10に示す生体評価を行う。また、体動強度や酸素飽和度SPO2などの値は、図13に示すように、腰側機器300の液晶表示部309に表示される。
このように、本実施形態においては、体動としてユーザの腰の動きを検出する構成としたため、より正確に、ユーザの運動に基づく体動を検出することが可能となる。詳述すると、腕は、歩行等の運動以外でも頻繁に動作させられる。従って、ユーザの腰の上下動を体動として検出する構成とすることで、運動に基づく体動をより正確に検出することが可能となり、結果として、生体評価の精度を向上させることが可能となる。
なお、本実施形態において、上記リスト側機器200に内蔵された体動センサ140からの検出信号は、酸素飽和度SPO2を算出する際に、その体動成分を除去するために使用される。また、腰側機器300にて検出された体動信号と、リスト側機器200にて検出された体動信号との相関を予め特定しておき、この相関に基づいてリスト側機器200にて検出された体動信号を補正するように構成することで、腰側機器300を用いずに、リスト側機器200のみを用いて、精度よく生体評価を行うことも可能である。
また、毎回の生体評価ごとの測定値(運動強度や酸素飽和度SPO2)を腰側機器300に記録し、管理可能な構成としても良い。
<変形例>
上述した第1及び第2実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形可能である。そこで、以下、各種の変形例について説明する。
例えば、上述した各実施形態では、生体評価装置1が生体情報を検出する抹消部として指の根元付近を例示したが、これに限らず、指先や手首等のその他の抹消部であっても良い。
また例えば、上述した各実施形態では、1つのフォトディテクタ1024を用いて2つの波長の光を時分割に受光し、この受光結果に基づいて生体情報を算出する構成としたが、これに限らず、各波長の光ごとに、1つずつのフォトディテクタを用いる構成としても良い。これにより、時分割にLED等を駆動する必要が無く、また、演算処理も容易となる。
また例えば、上述した各実施形態では、体動センサ140を用いて、フォトディテクタ1024にて受光された受光結果(生体検出信号)から体動成分を取り除く構成としたが、これに限らない。すなわち、体動センサ140の代わりに、予想される擬似的な体動成分を予めROM132に格納し、これを用いて受光結果(生体検出信号)から体動成分を取り除くようにしても良い。
また例えば、上述した各実施形態では、生体評価装置1を腕時計型のリスト機器として構成した場合について例示したが、これに限らず、携帯型であれば、任意の形状等に構成することが可能である。
本発明の第1実施形態に係る生体評価装置の外観構成を示す図である。 生体センサユニットの装着の態様を示す図である。 生体センサユニットの構成を模式的に示す側断面図である。 生体センサユニットの構成を模式的に示す上面図である。 生体評価装置の機能的構成を示すブロック図である。 加速度センサである差動キャパシタ型センサのセンサ構造概略図である。 差動キャパシタ型センサの一部拡大図である。 差動キャパシタ型センサの動作説明図である。 生体評価処理を示すフローチャートである。 生体評価の手順を示すフローチャートである。 酸素飽和度及び体動と健康状態及び体力状態との関係を示す図である。 測定結果の表示態様の一例を示す図である。 第2実施形態の構成を腰側機器の外観図と共に示す図である。 本発明の第2実施形態に係るリスト側機器のブロック図である。 同腰側機器のブロック図である。
符号の説明
1…生体評価装置、102…生体センサユニット、130…CPU、132…ROM、140、301…体動センサ、200…リスト側機器、300…腰側機器、400…差動キャパシタ型センサ(加速度センサ)、1022a、1022b…LED、1024…フォトディテクタ。

Claims (11)

  1. 生体の抹消部から、少なくとも血中の酸素飽和度を含む生体情報を光学的に測定する生体情報測定手段と、
    前記生体の体動強度を検出する体動検出手段と、
    前記体動強度と前記酸素飽和度との値に基づいて前記生体を評価する生体評価手段と
    を具備することを特徴とする生体評価装置。
  2. 前記生体評価手段は、
    前記体動強度が第1基準強度以下の場合に、前記酸素飽和度が第1基準酸素飽和度を下回っているときに、前記生体に異常があると評価する
    ことを特徴とする請求項1に記載の生体評価装置。
  3. 前記生体評価手段は、
    前記体動強度が前記第1基準強度よりも大きい値である第2基準強度以上である場合に、前記酸素飽和度が前記第1基準酸素飽和度よりも小さい値である第2基準酸素飽和度を下回っているときに、前記生体が体力不足であると評価する
    ことを特徴とする請求項2に記載の生体評価装置。
  4. 前記第1基準強度は、0.5G〜1G(G:重力加速度)の値に設定されると共に、
    前記第1基準酸素飽和度は、90%〜95%の値に設定される
    ことを特徴とする請求項2に記載の生体評価装置。
  5. 前記第2基準強度は、1.5G〜2G(G:重力加速度)の値に設定されると共に、
    前記第2基準酸素飽和度は、85%〜99%の値に設定される
    ことを特徴とする請求項3に記載の生体評価装置。
  6. 前記生体情報測定手段は、前記生体の指又は手首から前記生体情報を測定すると共に、
    前記体動検出手段は、前記生体の腕の軸方向の加速度に基づいて前記体動強度を検出する
    ことを特徴とする請求項1乃至5のいずれかに記載の生体評価装置。
  7. 前記体動検出手段は、前記生体の腰の上下動の加速度に基づいて前記体動強度を検出する
    ことを特徴とする請求項1乃至5のいずれかに記載の生体評価装置。
  8. 前記生体に装着される携帯型に構成されたことを特徴とする請求項1乃至7のいずれかに記載の生体評価装置。
  9. 生体の抹消部から、少なくとも血中の酸素飽和度を含む生体情報を光学的に測定すると共に、前記生体の体動強度を検出する第1ステップと、
    前記体動強度と前記酸素飽和度との値に基づいて前記生体を評価する第2ステップと
    を具備することを特徴とする生体評価方法。
  10. 生体の抹消部から生体信号を光学的に検出する生体信号検出手段と、前記生体の体動強度を検出する体動検出手段を備えた生体評価装置を、
    前記生体信号に基づいて、少なくとも血中の酸素飽和度を含む生体情報を算出する生体情報算出手段、
    前記体動強度と前記酸素飽和度との値に基づいて前記生体を評価する生体評価手段
    として機能させるための生体評価プログラム。
  11. 生体の抹消部から生体信号を光学的に検出する生体信号検出手段と、前記生体の体動強度を検出する体動検出手段を備えた生体評価装置を、
    前記生体信号に基づいて、少なくとも血中の酸素飽和度を含む生体情報を算出する生体情報算出手段、
    前記体動強度と前記酸素飽和度との値に基づいて前記生体を評価する生体評価手段
    として機能させるための生体評価プログラムを記録したコンピュータ読み取り可能な記録媒体。
JP2004072824A 2004-03-15 2004-03-15 生体評価装置、及び生体評価装置の制御方法 Expired - Fee Related JP4534535B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072824A JP4534535B2 (ja) 2004-03-15 2004-03-15 生体評価装置、及び生体評価装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072824A JP4534535B2 (ja) 2004-03-15 2004-03-15 生体評価装置、及び生体評価装置の制御方法

Publications (3)

Publication Number Publication Date
JP2005253865A true JP2005253865A (ja) 2005-09-22
JP2005253865A5 JP2005253865A5 (ja) 2007-04-19
JP4534535B2 JP4534535B2 (ja) 2010-09-01

Family

ID=35080163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072824A Expired - Fee Related JP4534535B2 (ja) 2004-03-15 2004-03-15 生体評価装置、及び生体評価装置の制御方法

Country Status (1)

Country Link
JP (1) JP4534535B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043232A1 (ja) * 2005-10-07 2007-04-19 Sony Computer Entertainment Inc. 電子通信方法、電子通信システム、通信端末、およびサーバ
EP2022394A1 (en) 2007-08-03 2009-02-11 Konica Minolta Sensing, Inc. Pulse oximeter
JP2011520517A (ja) * 2008-05-14 2011-07-21 エスペンユーエスエー ホールディング,リミテッド ライアビリティー カンパニー 身体活動モニタ及びデータ収集ユニット
JP2015107152A (ja) * 2013-12-03 2015-06-11 パシフィックメディコ株式会社 パルスオキシメータ
WO2016046522A1 (en) * 2014-09-25 2016-03-31 Aseptika Ltd Medical devices and related methods
JP2017153581A (ja) * 2016-02-29 2017-09-07 フクダ電子株式会社 生体活動表示装置、生体活動表示方法及び歩行試験システム
US10537257B2 (en) 2015-04-21 2020-01-21 Shinano Kenshi Co., Ltd. Biological information reading device
WO2020203020A1 (ja) * 2019-04-04 2020-10-08 旭化成株式会社 生体情報測定器及びこれを用いた生体情報測定方法
WO2021235467A1 (ja) * 2020-05-19 2021-11-25 株式会社Cureapp 疾患の進行度を判定するための装置、方法、プログラム及びシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102551735B (zh) * 2011-12-31 2014-12-03 北京超思电子技术股份有限公司 血氧测量仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100127A (ja) * 1993-10-08 1995-04-18 Chiesuto M I Kk 酸素飽和度測定記録装置
JP2001321361A (ja) * 2000-05-18 2001-11-20 Nippon Koden Corp 生理機能検査装置および生理機能検査結果表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100127A (ja) * 1993-10-08 1995-04-18 Chiesuto M I Kk 酸素飽和度測定記録装置
JP2001321361A (ja) * 2000-05-18 2001-11-20 Nippon Koden Corp 生理機能検査装置および生理機能検査結果表示装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043232A1 (ja) * 2005-10-07 2007-04-19 Sony Computer Entertainment Inc. 電子通信方法、電子通信システム、通信端末、およびサーバ
EP2022394A1 (en) 2007-08-03 2009-02-11 Konica Minolta Sensing, Inc. Pulse oximeter
JP2009034427A (ja) * 2007-08-03 2009-02-19 Konica Minolta Sensing Inc パルスオキシメータ
JP2011520517A (ja) * 2008-05-14 2011-07-21 エスペンユーエスエー ホールディング,リミテッド ライアビリティー カンパニー 身体活動モニタ及びデータ収集ユニット
JP2015107152A (ja) * 2013-12-03 2015-06-11 パシフィックメディコ株式会社 パルスオキシメータ
US10729358B2 (en) 2014-09-25 2020-08-04 Aseptika Ltd Medical devices and related methods
WO2016046522A1 (en) * 2014-09-25 2016-03-31 Aseptika Ltd Medical devices and related methods
US10537257B2 (en) 2015-04-21 2020-01-21 Shinano Kenshi Co., Ltd. Biological information reading device
JP2017153581A (ja) * 2016-02-29 2017-09-07 フクダ電子株式会社 生体活動表示装置、生体活動表示方法及び歩行試験システム
WO2020203020A1 (ja) * 2019-04-04 2020-10-08 旭化成株式会社 生体情報測定器及びこれを用いた生体情報測定方法
JPWO2020203020A1 (ja) * 2019-04-04 2021-12-23 旭化成株式会社 生体情報測定器及びこれを用いた生体情報測定方法
JP7228678B2 (ja) 2019-04-04 2023-02-24 旭化成株式会社 生体情報測定器及びこれを用いた生体情報測定方法
WO2021235467A1 (ja) * 2020-05-19 2021-11-25 株式会社Cureapp 疾患の進行度を判定するための装置、方法、プログラム及びシステム

Also Published As

Publication number Publication date
JP4534535B2 (ja) 2010-09-01

Similar Documents

Publication Publication Date Title
US8126526B2 (en) Pulse wave analyzing device
WO2015159692A1 (ja) 脈波伝播時間計測装置および生体状態推定装置
US8496595B2 (en) Method and device for measuring the pulse by means of light waves with two wavelengths
JP5979604B2 (ja) 生体情報検出装置及び生体情報検出方法、生体情報検出プログラム
WO2015049963A1 (ja) 生体情報測定装置および該方法
US8600468B2 (en) Biometric information measuring apparatus and biometric information measuring system
RU2008121193A (ru) Пульсовый оксигемометр одноразового применения
KR20170019189A (ko) 혈압 추정 방법 및 장치
JP2005040608A (ja) スポーツにおけるトレーニング調整方法および装置
EP2229880A1 (en) Headband integrated monitoring unit using an accelerometer
EP2289405B1 (en) Biological information monitor
JP5578100B2 (ja) 脈波計測装置およびプログラム
JP2016112277A (ja) 血圧計測装置、電子機器及び血圧計測方法
JP2006212161A (ja) 生体情報測定システム、生体情報測定装置及びデータ処理装置
JP4385677B2 (ja) 生体情報計測装置
JP4534535B2 (ja) 生体評価装置、及び生体評価装置の制御方法
JP4433756B2 (ja) 生体情報計測装置及びその制御方法、制御プログラム及び記録媒体
JP2013000540A (ja) 脈波検出装置、及び脈波検出システム
JPH07284490A (ja) グルコース濃度測定装置
JP2003310579A (ja) 生体監視装置
JP5077326B2 (ja) 生体情報計測装置及びその制御方法、制御プログラム
JP7138244B2 (ja) 血圧測定装置、血圧測定システム、血圧測定方法、及び、血圧測定プログラム
JP6197926B2 (ja) 生体情報検出装置及び生体情報検出方法、生体情報検出プログラム
JP6925918B2 (ja) センサシステム及び電子機器
WO2017018116A1 (ja) センサモジュールおよび生体関連情報表示システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees