WO2021235094A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2021235094A1
WO2021235094A1 PCT/JP2021/013101 JP2021013101W WO2021235094A1 WO 2021235094 A1 WO2021235094 A1 WO 2021235094A1 JP 2021013101 W JP2021013101 W JP 2021013101W WO 2021235094 A1 WO2021235094 A1 WO 2021235094A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
annealing
groove
rolling direction
mass
Prior art date
Application number
PCT/JP2021/013101
Other languages
English (en)
French (fr)
Inventor
博貴 井上
健 大村
義悠 市原
重宏 ▲高▼城
邦浩 千田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP21808063.8A priority Critical patent/EP4155423A4/en
Priority to CN202180025447.2A priority patent/CN115335546B/zh
Priority to CA3167818A priority patent/CA3167818C/en
Priority to MX2022014337A priority patent/MX2022014337A/es
Priority to US17/998,926 priority patent/US20230212706A1/en
Priority to JP2021541175A priority patent/JP7006851B1/ja
Priority to KR1020227028519A priority patent/KR20220128430A/ko
Publication of WO2021235094A1 publication Critical patent/WO2021235094A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/14Etching locally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet suitable for an iron core material such as a transformer and a method for manufacturing the same.
  • a grain-oriented electrical steel sheet having a crystal structure whose ⁇ 001> orientation, which is an axis for easily magnetizing iron, is highly aligned in the rolling direction of the steel sheet, is particularly used as an iron core material for a power transformer.
  • transformers are roughly classified into stacked iron core transformers and wound iron core transformers according to their iron core structure.
  • a product core transformer is a transformer that forms an iron core by laminating steel plates cut into a predetermined shape.
  • a wound iron core transformer is one in which steel plates are wound to form an iron core.
  • the magnetic domain subdivision technique is a technique for subdividing the width of a magnetic domain and reducing iron loss by introducing non-uniformity into the surface of a steel sheet by a physical method.
  • Patent Document 1 describes a technique for subdividing a magnetic domain by forming a linear groove in a direction intersecting the rolling direction of a grain-oriented electrical steel sheet. Further, in Patent Document 2, a groove having a depth of more than 5 ⁇ m is formed in a base metal portion with a load of 882 to 2156 MPa (90 to 220 kgf / mm 2) on a finish-annealed steel sheet, and then heated at a temperature of 750 ° C. or higher. A technique for subdividing a magnetic domain by processing is described. These techniques are so-called heat-resistant magnetic domain subdivision techniques in which the effect does not disappear even if strain removal and annealing are performed after transformer assembly.
  • the steel plate is bent when the steel plates are wound to form an iron core. Since strain is introduced into the steel sheet by the bending process, the magnetic characteristics deteriorate at that portion and the iron loss of the iron core increases. Therefore, in general, after forming the iron core, strain removal and annealing are performed to eliminate the strain introduced into the bent portion.
  • Such strain-removing annealing is performed at a high temperature of about 800 ° C. in an atmosphere of an inert gas (argon, nitrogen, etc.) or a heat-generating modified gas (DX gas, etc.).
  • an inert gas argon, nitrogen, etc.
  • DX gas heat-generating modified gas
  • nitriding or carburizing may occur during annealing.
  • Nitrogen and carbon that have entered the steel may combine with other elements in the steel during cooling after annealing or after aging, and precipitate in the steel as nitrides or carbides, degrading the magnetic properties. ..
  • the annealing temperature or annealing atmosphere is controlled so that such deterioration of magnetic characteristics does not occur. There is.
  • the surface of grain-oriented electrical steel sheet which is an iron core material, is coated with a coating for the purpose of ensuring insulation and rust resistance.
  • a coating is a coating composed of a forsterite coating and a tension coating, and this coating contributes to the suppression of nitriding and carburizing during the strain-removing annealing described above.
  • the heat-resistant magnetic domain subdivision material for wound core transformers has better iron loss characteristics than steel sheets that do not introduce physical non-uniformity such as grooves and markings, but nitriding during strain relief annealing. There was a problem that carburizing was likely to occur.
  • An object of the present invention is to provide a grain-oriented electrical steel sheet capable of overcoming the above-mentioned problems and effectively suppressing carburizing and nitriding during strain-removing annealing in combination with a manufacturing method thereof.
  • a dense and uniform forsterite coating is also applied to the lower part (bottom) of the linear groove formed in the steel sheet. Forming a layer is of utmost importance.
  • the starting point for carburizing and nitriding is a surface reaction.
  • a gas having carburizing or nitriding ability for example, carbon dioxide gas, nitrogen gas, ammonia gas
  • carbon or nitrogen radicals are generated.
  • the forsterite coating layer is densely formed, so that the invasion is suppressed and the formation of carbides and nitrides is suppressed. Therefore, the denseness of the forsterite coating layer is important.
  • the groove portion may not be covered with a dense film depending on the method for forming the groove.
  • the method disclosed in Patent Document 3 described above discloses a method of forming a groove by irradiating a steel sheet after secondary recrystallization annealing (finish annealing) with a high-power laser beam.
  • the forsterite coating is destroyed when the groove is formed by the high-power laser.
  • a recess is formed in a steel sheet after finish annealing or an insulating film is formed by a gear type roll, and fine particles are formed in the recess during strain relief annealing. When the mold roll is pressed, the forsterite coating layer is also destroyed.
  • the present invention has been obtained based on the above findings, and the gist structure of the present invention is as follows.
  • 1. A directional electromagnetic steel sheet having a plurality of grooves on one side of the steel sheet, which extends linearly in a direction crossing the rolling direction and is arranged at intervals in the rolling direction, and has at least a forsterite coating on the surface of the steel sheet.
  • a grain-oriented electrical steel sheet formed at the bottom of the groove, wherein the average thickness of the forsterite film is 0.45 ⁇ m or more, and the standard deviation ⁇ of the thickness is 0.34 ⁇ m or less.
  • a slab for directional electromagnetic steel sheets is hot-rolled to obtain a hot-rolled sheet, and then the hot-rolled sheet is cold-rolled once or two or more times with intermediate annealing sandwiched between them to finish the steel sheet to the final thickness. After that, the steel sheet is decarburized and annealed, then the surface of the steel sheet is coated with an annealing separator, the steel sheet is finally finish-annealed, and then the steel sheet is flattened and annealed.
  • a resist ink is applied to one side of the steel sheet, and the laser is linearly scanned with respect to the coated surface in a direction crossing the rolling direction of the steel sheet.
  • electrolytic etching was performed on the removed portion to form a linear shape across the rolling direction of the steel sheet. Forming multiple grooves that extend to and are spaced apart in the rolling direction.
  • a method for manufacturing a grain-oriented electrical steel sheet wherein scanning of the laser is performed with the irradiation energy of the laser being less than 30 J / m and the temperature of the steel sheet being 40 ° C. or higher and lower than 200 ° C.
  • the directional electromagnetic steel sheet according to the present invention has a plurality of grooves on one side of the steel sheet, which extend linearly in a direction crossing the rolling direction and are arranged at intervals in the rolling direction, and at least a forsterite coating is formed on the surface of the steel sheet.
  • the grain-oriented electrical steel sheet is further provided with a tension coating on the forsterite coating.
  • the average forsterite film thickness formed on the bottom of the linear groove (groove bottom) is 0.45 ⁇ m or more, and the standard deviation ⁇ of the forsterite film thickness is It is important that is 0.34 ⁇ m or less. Then, the grain-oriented electrical steel sheet according to the present invention can be suitably obtained by the method for manufacturing a grain-oriented electrical steel sheet according to the present invention, which will be described later.
  • Example 1> Contains C: 0.07% by mass, Si: 3.4% by mass, Mn: 0.1% by mass, Ni: 0.2% by mass, Al: 240% by mass, S: 20% by mass, N: 90% by mass and Se: 180% by mass.
  • a steel slab (slab for directional electromagnetic steel plate) having a composition of Fe and unavoidable impurities was produced by continuous casting for the balance. The slab was heated to 1430 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.2 mm. The hot-rolled plate was annealed at 1100 ° C. for 20 seconds.
  • Masking is performed by printing and applying resist ink on one side of the steel sheet using a groove roll having grooves having a width of 100 to 250 mm at a circumferential pitch of 3 mm, and a groove having a depth of 25 ⁇ m is formed in a portion not printed with resist.
  • Electrolytic etching was performed as described above (resist condition 1).
  • resist condition 1 As another condition, after applying resist ink to one side of the steel sheet, the laser is repeatedly scanned linearly in the direction orthogonal to the rolling direction (width direction) and at intervals of 3 mm in the rolling direction. , The resist ink was peeled off and removed at intervals of 3 mm in the rolling direction.
  • the resist ink remaining on the steel sheet was removed under any condition.
  • the above laser has a peeling width of 100 to 250 mm, and the single mode fiber laser uses a galvano scanner method to set the irradiation energy to 25 J / m so that the resist ink is continuously peeled from end to end in the width direction of the steel sheet. Irradiated.
  • the temperature of the steel sheet when irradiating the laser was changed in various ways. In the present specification, the temperature of the steel sheet is the temperature on the surface of the steel sheet on the laser irradiation side of the steel sheet, and can be measured by, for example, a non-contact infrared radiation thermometer.
  • the surface of the steel sheet is annealed with MgO as the main component.
  • the agent was applied, and final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was carried out under the conditions of 1160 ° C. and 10 hours.
  • an insulating film made of 60% by mass colloidal silica and aluminum phosphate was applied, and tension coating was performed by baking at 850 ° C. This tension coating coating process also serves as flattening annealing.
  • the forsterite film thickness formed on the bottom of the groove was investigated by the method described later, and the average and standard deviation were calculated.
  • the forsterite film thickness at the bottom of the groove is 0.31 to 0.82 ⁇ m on average and 0.22 to 0.74 ⁇ m standard deviation under resist condition 1, and 0.32 to 0.91 ⁇ m on average and 0.05 to 0.43 ⁇ m standard deviation under resist condition 2. Samples were obtained respectively.
  • a region centered on the center of the groove and having a width half the width of the groove w is defined as the bottom of the groove.
  • the groove width w is a portion (non-coated area) where the resist ink is not masked during electrolytic etching, and is along a direction perpendicular to the direction in which the linear groove extends (rolling direction in FIG. 2). Means length. Further, the groove center means the position of the center of the groove width w in the rolling direction.
  • the thickness of the forsterite coating is measured for any five linear grooves in one cross-section observation sample, and the average is defined as the forsterite film thickness at that location.
  • 20 cross-section observation samples were collected from one steel plate sample (width direction: 1000 mm x rolling direction: 500 mm), the forsterite film thickness at the bottom of each groove was calculated, and the average value thereof was calculated. And the standard deviation.
  • the region of the forsterite film can be judged from the contrast of the SEM observation image, but it may be easier to judge by the contrast of the backscattered electron image (BSE). If it is difficult to judge from the contrast of the image, it may be appropriately judged by elemental analysis by EDX whether it is a forsterite film region depending on whether or not Mg is contained. In the present specification, it is judged by the contrast of the image in the BSE image.
  • strain removal annealing (for the purpose of eliminating the influence of shearing) is performed under the conditions of an argon atmosphere and 800 ° C ⁇ 3 h, and the sample is used as an Epstein test. Magnetic measurement was performed by the method. Furthermore, in order to investigate the effect of strain removal annealing in the carburized atmosphere, the sample was again subjected to CO: 0.5vol%, CO 2 : 13vol%, H 2 O: 2.5vol%, H 2 : 1vol%, residual gas. Annealing was carried out in a mixed gas of N 2 (dew point: 20 ° C.) under the condition of 870 ° C. ⁇ 2 h, and magnetic measurement was performed by the Epstein test method.
  • the Epstein test results before and after strain removal annealing in a carburized atmosphere mixed gas were compared, and the amount of increase / decrease in W 17/50 (iron loss when excited to 1.7 T at 50 Hz) was determined.
  • the carbon content was chemically analyzed before and after strain removal and annealing in the mixed gas.
  • the results of chemical analysis before and after annealing in a carburized atmosphere mixed gas were compared to determine the amount of increase or decrease in carbon.
  • Table 1 shows the average and standard deviation of the forsterite film thickness formed at the bottom of the groove, and the increase / decrease in W 17/50 and the increase / decrease in carbon (carburizing amount) before and after strain removal annealing in the carburized atmosphere mixed gas.
  • FIGS. 3 and 4 resist condition 1
  • FIGS. 5 and 6 resist condition 2
  • the average forsterite film thickness formed at the bottom of the groove is 0.45 ⁇ m or more for both the increase / decrease in iron loss W 17/50 and the increase / decrease in carbon (carburizing amount), the increase in iron loss is kept low and carburized. It turned out that there is a condition that the amount can be kept low. Further investigation reveals that even among steel sheets with an average forsterite film thickness of 0.45 ⁇ m or more, the condition that the increase in iron loss and the increase in carburizing amount can be significantly suppressed is the standard deviation of the forsterite film thickness. Was found to be 0.34 ⁇ m or less. When the forsterite film thickness is formed satisfying such a low standard deviation, it is considered that the high denseness of the forsterite film is satisfied. It should be noted that the forsterite film thickness within the above-mentioned predetermined range could be realized only under the resist condition 2 in which the resist was peeled off by the laser.
  • electrolytic etching is performed on the removed portion to form a plurality of grooves extending linearly in a direction crossing the rolling direction of the steel sheet and arranging at intervals in the rolling direction.
  • the groove in order to form a forsterite film on the bottom of the groove well, the groove should be formed at least before the final finish annealing (more specifically, before the application of the annealing separator) when the forsterite film is formed. It means that you need to do it.
  • the width of the peeled portion of the resist ink is uniform, that is, within ⁇ 10 ⁇ m, so that the method of digging the groove at the time of etching is uniform.
  • the formation of the groove using laser scanning under predetermined conditions can make the thickness of the forsterite film formed on the groove uniform, and satisfy the requirement for the standard deviation of the forsterite film thickness. It is considered to be one factor that can be made to occur.
  • ⁇ Experiment 2> Contains C: 0.07% by mass, Si: 3.4% by mass, Mn: 0.1% by mass, Ni: 0.2% by mass, Al: 240% by mass, S: 20% by mass, N: 90% by mass and Se: 180% by mass.
  • a steel slab (slab for directional electromagnetic steel plate) having a composition of Fe and unavoidable impurities was produced by continuous casting for the balance. The slab was heated to 1430 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.2 mm. The hot-rolled plate was annealed at 1100 ° C. for 20 seconds.
  • Intermediate annealing was carried out under the conditions of. Further, after removing the subscale on the surface by pickling the cold-rolled sheet after intermediate annealing with hydrochloric acid pickling, cold rolling was carried out again to obtain a steel sheet having a final sheet thickness of 0.23 mm.
  • the laser After applying resist ink to one side of the steel sheet, the laser is repeatedly scanned linearly in the direction orthogonal to the rolling direction and at intervals of 3 mm in the rolling direction, with an interval of 3 mm in the rolling direction.
  • the resist ink was peeled off and removed.
  • Laser irradiation is performed with a peeling width of 100 to 250 mm
  • a single mode fiber laser is performed by a galvano scanner method
  • the irradiation energy is 15 to 50 J / m
  • the resist ink is completely peeled continuously from end to end in the width direction of the steel sheet. bottom.
  • the temperature of the steel sheet was changed to 15 to 250 ° C., and laser irradiation was performed.
  • electrolytic etching was performed so that a groove having a depth of 25 ⁇ m was formed. After electrolytic etching, the resist ink remaining on the steel sheet was removed.
  • the agent was applied, and final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was carried out under the conditions of 1160 ° C. and 10 hours.
  • an insulating film made of 60% by mass colloidal silica and aluminum phosphate was applied, and tension coating was performed by baking at 850 ° C. This tension coating coating process also serves as flattening annealing.
  • the forsterite film thickness formed on the bottom of the groove was investigated, and the average and standard deviation were calculated.
  • Table 2 and FIG. 7 summarize the relationship between the irradiation energy and the temperature of the steel sheet at the time of resist peeling and the average and standard deviation of the forsterite film thickness formed at the bottom of the groove of the resulting steel sheet.
  • the average forsterite film thickness formed at the bottom of the groove is 0.45 ⁇ m when the laser is scanned under the conditions that the laser irradiation energy is less than 30 J / m and the steel plate temperature is 40 ° C or higher and lower than 200 ° C. It was found that the standard deviation ⁇ satisfies the above and the standard deviation ⁇ is 0.34 ⁇ m or less.
  • the lower limit of the steel plate temperature: 40 ° C. or higher is shown by a solid line
  • the upper limit of the steel plate temperature: less than 200 ° C. and the upper limit of the irradiation energy: less than 30 J / m are shown by a dotted line.
  • the inventors have explained the reason why the laser irradiation energy is less than 30 J / m under one condition that the average forsterite film thickness is 0.45 ⁇ m or more and the standard deviation ⁇ is 0.34 ⁇ m or less. I'm guessing. That is, when the irradiation energy of the laser is large, the steel plate around the irradiated portion (that is, the portion where the groove is formed in the next process) remains distorted, so that the method of digging the groove in the electrolytic etching in the next process varies. Occurs. As a result, the unevenness of the groove bottom becomes large, so that the thickness of the forsterite film formed on the groove bottom also varies.
  • the reason why the average forsterite film thickness is 0.45 ⁇ m or more and the standard deviation ⁇ is 0.34 ⁇ m or less is that laser scanning is performed under the condition that the steel plate temperature is 40 ° C or higher and lower than 200 ° C. .
  • the inventors speculate as follows. That is, when the temperature of the steel sheet is 40 ° C. or higher, the temperature distribution in the resist ink thin film becomes uniform when the laser is irradiated, and the toughness in the resist ink thin film becomes uniform. As a result, the ink is easily peeled off uniformly when irradiated with the laser, so that the shape of the groove is stabilized and the thickness of the forsterite film formed on the bottom thereof is less likely to vary. On the other hand, if the temperature of the steel sheet is raised to 200 ° C. or higher, the resist ink cannot be peeled off satisfactorily even by laser irradiation, because the resist ink thin film becomes too soft.
  • the linear groove in the present embodiment is electrolyzed to the non-coated area after the resist ink for etching is applied and adhered to one side of the steel sheet before the application of the annealing separator (that is, before the final finish annealing). It is a method of forming by etching treatment. It is preferable to form linear grooves in the steel sheet after the final cold rolling and before decarburization annealing.
  • a method of applying resist ink to the entire surface of one side of the steel sheet and then peeling and removing the ink under the above conditions by laser irradiation is suitable.
  • the groove formation is performed by applying an annealing separator on which the forsterite film is formed. It is essential to carry out before final finishing annealing.
  • the "direction across the rolling direction” is preferably within ⁇ 30 ° as a deviation with respect to the direction orthogonal to the rolling direction of the linear groove.
  • the term “linear” includes not only a solid line but also a dotted line such as a dotted line or a broken line.
  • the method for manufacturing the grain-oriented electrical steel sheet of the present invention is limited to the method for forming a groove for subdividing the magnetic domain and the matters not directly related to the control of the thickness of the forsterite coating formed on the bottom of the groove.
  • the recommended composition and manufacturing conditions of the steel sheet are illustrated below.
  • the component composition of the slab for grain-oriented electrical steel sheets may be any component composition that causes secondary recrystallization.
  • an inhibitor for example, when using an AlN-based inhibitor, Al and N should be contained, and when using an MnS / MnSe-based inhibitor, Mn and Se and / or S should be contained in appropriate amounts. Just do it. Of course, both inhibitors may be used in combination.
  • the preferable contents of Al, N, S and Se are Al: 0.01 to 0.065% by mass, N: 0.005 to 0.012% by mass, S: 0.005 to 0.03% by mass and Se: 0.005 to 0.03% by mass, respectively. be.
  • Al, N, S and Se are purified and each of them is reduced to the content of unavoidable impurities.
  • the present invention can also be applied to grain-oriented electrical steel sheets that do not use inhibitors and have limited contents of Al, N, S, and Se.
  • the amounts of Al, N, S and Se are preferably suppressed to Al: less than 100 mass ppm, N: less than 50 mass ppm, S: less than 50 mass ppm, and Se: less than 50 mass ppm, respectively.
  • the other component compositions are as follows. C: 0.08% by mass or less If the amount of C exceeds 0.08% by mass, it will be difficult to reduce C to 50% by mass or less where magnetic aging does not occur during the manufacturing process, so it should be 0.08% by mass or less. preferable.
  • the lower limit is not particularly required because secondary recrystallization is possible even with a material containing no C, but it is usually 0.001% by mass or more.
  • Si 2.0-8.0% by mass
  • Si is an element effective for increasing the electric resistance of steel and improving iron loss, but it is difficult to achieve a sufficient iron loss reduction effect unless the content is less than 2.0% by mass.
  • the amount of Si is preferably 2.0% by mass or more, and preferably 8.0% by mass or less.
  • Mn 0.005 to 1.0% by mass
  • Mn is an element necessary for improving hot workability, but its addition effect is poor when the content is less than 0.005% by mass.
  • the amount of Mn is preferably 0.005% by mass or more, and preferably 1.0% by mass or less.
  • Ni 0.03 to 1.50% by mass
  • Sn 0.01 to 1.50% by mass
  • Sb 0.005 to 1.50% by mass
  • Cu 0.03 to 3.0% by mass
  • P 0.03 to 0.50% by mass
  • Mo 0.005 to 0.10% by mass
  • Cr At least one Ni selected from 0.03 to 1.50% by mass is a useful element for improving the hot-rolled plate structure and improving the magnetic properties.
  • the content is less than 0.03% by mass, the effect of improving the magnetic properties is small.
  • the content exceeds 1.50% by mass, the secondary recrystallization becomes unstable and the magnetic characteristics tend to deteriorate.
  • the amount of Ni is preferably 0.03% by mass or more, and preferably 1.50% by mass or less.
  • Sn, Sb, Cu, P, Mo and Cr are elements useful for improving the magnetic properties, respectively, but if all of them do not meet the lower limit of each component described above, the effect of improving the magnetic properties is small.
  • the upper limit of each component described above is exceeded, the development of secondary recrystallized grains is likely to be inhibited. Therefore, it is preferable to contain each in the above range. It is preferable that the balance other than the above-mentioned components is unavoidable impurities mixed in the manufacturing process and Fe which is the main component.
  • the amount of the components other than C and the inhibitor component contained in the steel material is also contained in the product plate as it is.
  • C is preferably reduced by decarburization annealing, and is preferably reduced to 0.003% by mass or less in the product plate in order to prevent an increase in iron loss due to magnetic aging.
  • the inhibitor component is purified by the final finish annealing described later, and the content of the product board is reduced to the extent of unavoidable impurities.
  • the slab having the above-mentioned component composition suitablely can be heated according to a conventional method prior to hot rolling.
  • the heating temperature is preferably 1150 ° C. or higher, and preferably 1450 ° C. or lower.
  • hot rolling is performed to obtain a hot rolled plate.
  • hot rolling may be performed immediately without heating.
  • hot rolling may be performed separately, or the preparation of thin slabs and hot rolling may be combined.
  • the annealing temperature of the hot-rolled plate is preferably 800 ° C. or higher, and preferably 1100 ° C. or lower.
  • the hot-rolled plate annealing temperature is less than 800 ° C., the band structure in hot rolling remains, it becomes difficult to obtain a sized primary recrystallization structure, and the development of secondary recrystallization is likely to be hindered. ..
  • the hot-rolled plate annealing temperature exceeds 1100 ° C., the particle size after hot-rolled plate annealing becomes too coarse, and it becomes extremely difficult to obtain a sized primary recrystallized structure.
  • the intermediate annealing temperature is preferably 800 ° C. or higher, and preferably 1150 ° C. or lower.
  • the intermediate annealing time is preferably about 10 to 100 s.
  • the steel sheet is decarburized and annealed.
  • decarburization annealing it is preferable to target an annealing temperature of 750 to 900 ° C., an oxidizing atmosphere P (H 2 O) / P (H 2 ): 0.25 to 0.60, and an annealing time of about 50 to 300 s.
  • the grooves are formed in the steel sheet after the final cold rolling and before decarburization annealing.
  • the annealing separator is applied to one side or both sides of the steel sheet. It is preferable to apply an annealing separator on both sides of the steel sheet.
  • the main component of the annealing separator is MgO, and the coating amount on both sides of the steel sheet is about 8 to 15 g / m 2 , which is suitable for forming a forsterite film having a predetermined thickness.
  • Final finish annealing is performed for the purpose of secondary recrystallization and formation of a forsterite film.
  • the annealing temperature is 1100 ° C. or higher and the annealing time is 30 minutes or longer.
  • the tension coating examples include an inorganic coating containing silica, a ceramic coating, and the like, and any of a physical vapor deposition method, a chemical vapor deposition method, and the like can be performed by a conventional method.
  • the grain-oriented electrical steel sheet according to the present invention can be preferably obtained by going through the above-mentioned steps, but the above-mentioned steps and manufacturing conditions may all be according to a conventional method.
  • a steel slab (slab for directional electromagnetic steel plate) having a composition of Fe and unavoidable impurities was produced by continuous casting for the balance. The slab was heated to 1430 ° C. and then hot-rolled to obtain a hot-rolled plate having a plate thickness of 2.2 mm. The hot-rolled plate was annealed at 1100 ° C. for 20 seconds.
  • Grooves were formed on one side of the steel sheet under the conditions shown in Table 3.
  • the groove formation pattern shown in Table 3 is as follows. In each case, the groove width was adjusted to 150 ⁇ m. I After final finish etching, grooves with a depth of 10 ⁇ m were formed with gear-shaped rolls with 5 mm intervals. II After final finish etching, grooves with a depth of 15 ⁇ m were formed with high-power laser irradiation. After applying resist ink with a pattern that has a coating area, after applying resist ink with a pattern that has a non-application area at 3mm intervals with an IV inkjet printer (200dpi) that has a groove with a depth of 20 ⁇ m formed in the non-application area by electrolytic etching.
  • an IV inkjet printer 200dpi
  • the forsterite film thickness formed on the bottom of the groove of the test piece thus obtained was investigated, and the average and standard deviation of the forsterite film thickness were calculated by the same procedure as in Experiment 1 described above. Further, the test piece is sheared to a size of 30 ⁇ 280 mm, subjected to strain-removing annealing (for the purpose of eliminating the influence of shearing) under the conditions of an argon atmosphere and 800 ° C. ⁇ 3 h, and then the Epstein test method is applied to the sample. Magnetic measurement was performed at.
  • Table 3 shows the average and standard deviation of the forsterite film thickness formed at the bottom of the groove, the amount of increase / decrease in W 17/50 and the amount of increase / decrease in nitrogen (nitriding amount) before and after strain removal annealing in the nitriding atmosphere mixed gas. And are also written.
  • the irradiation energy and the steel plate temperature are shown as “-”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

歪み取り焼鈍中の浸炭や窒化を効果的に抑制することができる耐熱型の磁区細分化処理を施した方向性電磁鋼板を提供する。該方向性電磁鋼板は、片面に、圧延方向を横切る向きに線状に延びかつ該圧延方向に間隔を置いて並ぶ、複数本の溝を有し、前記鋼板の表面に少なくともフォルステライト被膜をそなえ、前記溝の底部に形成された前記フォルステライト被膜厚さの平均が0.45μm以上であって、かつかかる厚さの標準偏差σが0.34μm以下である。

Description

方向性電磁鋼板およびその製造方法
 本発明は、変圧器などの鉄心材料に好適な方向性電磁鋼板およびその製造方法に関する。
 鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有する方向性電磁鋼板は、特に電力用変圧器の鉄心材料として用いられている。
 ここで、変圧器は、その鉄心構造から積鉄心変圧器と巻鉄心変圧器に大別される。積鉄心変圧器とは、所定の形状に切断した鋼板を積層することによって鉄心を形成するものである。一方、巻鉄心変圧器は、鋼板を巻き重ねて鉄心を形成するものである。変圧器鉄心として要求される特性は種々あるが、特に重要なのは鉄損が低減されて小さいことである。
 そして、かかる鉄損の低減に必要な効果を有する材料の開発が年々強く求められてきている。
 その観点で、鉄心の素材である方向性電磁鋼板に要求される特性としても、鉄損が小さいことは重要である。そのための技術の一つとして、磁区細分化技術がある。
 磁区細分化技術とは、鋼板の表面に対して物理的な手法で不均一性を導入することにより、磁区の幅を細分化して鉄損を低減する技術である。
 例えば、特許文献1には、方向性電磁鋼板の圧延方向と交差する向きに線状の溝を形成することで、磁区を細分化する技術が記載されている。また、特許文献2には、仕上げ焼鈍済みの鋼板に882~2156MPa(90~220kgf/mm2)の荷重で地鉄部分に深さ5μm超の溝を形成したのち、750℃以上の温度で加熱処理することにより、磁区を細分化する技術が記載されている。
 これらの技術は、トランス組立後に歪み取り焼鈍を行ってもその効果が消失しない、いわゆる耐熱型の磁区細分化技術である。
特開昭63-42332号公報 特公昭63-44804号公報 特許第5771620号公報
 ここで、巻鉄心変圧器の製作では、鋼板を巻き重ねて鉄心を形成する際に、鋼板の曲げ加工を行う。曲げ加工により、鋼板に歪みが導入されるため、その部分において磁気特性が劣化し、鉄心の鉄損が増大する。そのため、一般的には鉄心形成後、歪み取り焼鈍を行い、曲げ加工部に導入された歪みを解消する。
 かかる歪み取り焼鈍は、800℃程度の高温にて、不活性ガス(アルゴン、窒素等)や、発熱型変成ガス(DXガス等)の雰囲気内で行われる。その際、窒素やDXガスといった窒化や浸炭性を有するガスを用いる焼鈍においては、焼鈍中に窒化や浸炭が生じる可能性がある。
 鋼中に侵入した窒素や炭素は、焼鈍後の冷却中あるいはその後の時効により、他の鋼中元素と結合し、窒化物や、炭化物として鋼中に析出し、磁気特性を劣化させる場合がある。通常、こういった磁気特性の劣化が生じないよう、焼鈍温度あるいは焼鈍雰囲気をコントロールするが、ガスのコストメリットやユーティリティの都合で、窒化や、浸炭が生じるうる状況で、歪み取り焼鈍を行う場合がある。
 他方、鉄心素材である方向性電磁鋼板の表面には、絶縁性、耐錆性などを確保することを目的として、被膜が施されている。一般的には、かかる被膜は、フォルステライト被膜と張力コーティングとからなる被膜であり、この被膜が上述した歪み取り焼鈍中の窒化や浸炭の抑制に寄与する。
 しかしながら、前述の耐熱型の磁区細分化が施された鋼板においては、溝やケガキ等の物理的な不均一性が導入されているため、その不均一な部分においては、必然的に被膜の形成が不十分もしくは被膜の形成が不均一となってしまう。
 その結果、巻鉄心変圧器用の耐熱型の磁区細分化材は、溝やケガキ等の物理的な不均一性を導入しない鋼板に比べて、鉄損特性に優れるものの、歪み取り焼鈍中に窒化や浸炭が生じやすいという問題点があった。
 本発明は、上記の問題を克服し、歪み取り焼鈍中の浸炭や窒化を効果的に抑制できる方向性電磁鋼板をその製造方法と併せて提供することを目的とする。
 耐熱型の磁区細分化処理を施した材料において、歪み取り焼鈍中の浸炭や窒化を抑制するためには、鋼板に形成した線状溝の下部(底部)にも緻密で、均一なフォルステライト被膜層を形成することが最も重要である。
 一般的に、浸炭や窒化の起点となるのは表面反応である。かかる表面反応は、鋼板表面において、浸炭や窒化能を有するガス(例えば二酸化炭素ガス、窒素ガス、アンモニアガス)が分解し、炭素や窒素のラジカルが生成する。その後、炭素、窒素のラジカルは鋼板内部に侵入して拡散し、冷却中に鋼中の他の元素(珪素など)と結合し、炭化物や窒化物を生成する。かかる炭化物や窒化物は鋼板の磁気特性を劣化させるため、後に行われる歪み取り焼鈍後の鋼板の磁気特性は劣化する。
 ここで、浸炭や窒化を防ぐためには、鋼板表面でのラジカルの生成、並びにその侵入および拡散をそれぞれ抑止することが重要である。
 まず、鋼板表面でのラジカルの生成を防ぐためには、地鉄表面が歪み取り焼鈍で用いるガスに対して露出することなく、緻密な被膜によって覆われていることが肝要である。
 次に、その後の炭素、窒素のラジカルが鋼板内部に侵入することを防ぐためには、フォルステライト被膜層が緻密に形成されていることで、その侵入が抑制され、炭化物や窒化物の形成を抑制できるので、フォルステライト被膜層の緻密性が重要である。
 ここで、耐熱型の磁区細分化処理を施した鋼板用材料について、溝の形成方法によっては、溝部が緻密な被膜に覆われない場合がある。
 例えば前記した特許文献3に開示されている方法では、二次再結晶焼鈍(仕上げ焼鈍)後の鋼板に、高出力レーザビームを照射することで、溝を形成する方法が開示されている。この方法では、高出力レーザでの溝形成の際に、フォルステライト被膜が破壊されてしまう。
 また、前記した特許文献2に開示されている、仕上げ焼鈍後あるいは絶縁被膜形成後の鋼板に、歯車型ロールにて凹部を形成し、歪み取り焼鈍時に凹部に微細粒を形成する方法では、歯車型ロールを押しつける時に、やはりフォルステライト被膜層が破壊されてしまう。
 一方、前記した特許文献1に開示されている、冷間圧延後、仕上げ焼鈍前に、鋼板表面にエッチング処理により溝を形成する方法においては、溝底部にもフォルステライト被膜層が形成され、歪み取り焼鈍中の浸炭や窒化を抑制する点で好適である。
 但し、このような、冷間圧延後、仕上げ焼鈍前に、鋼板表面にエッチング処理により溝を形成する方法においても、溝底部のフォルステライトの形成の仕方にはバラつきがある。
 そこで、発明者らが鋭意検討した結果、その形成の仕方のバラつきを小さく抑えることで、歪み取り焼鈍中の浸炭や窒化を最も抑制できることが明らかになった。
 すなわち、以下の条件を満たすような方向性電磁鋼板を製造することで、その後の工程である鉄心加工の際に行われる歪み取り焼鈍中の浸炭や窒化を効果的に抑制できることを知見した。
 本発明は上記の知見に基づき得られたものであり、本発明の要旨構成は次のとおりである。
1.鋼板の片面に、圧延方向を横切る向きに線状に延びかつ該圧延方向に間隔を置いて並ぶ、複数本の溝を有し、前記鋼板の表面に少なくともフォルステライト被膜をそなえる方向性電磁鋼板であって、
 前記溝の底部に形成された前記フォルステライト被膜厚さの平均が0.45μm以上であって、かつかかる厚さの標準偏差σが0.34μm以下である方向性電磁鋼板。
2.方向性電磁鋼板用スラブを、熱間圧延して熱延板を得、ついで該熱延板に1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げた鋼板を得たのち、該鋼板に脱炭焼鈍を施し、ついで前記鋼板の表面に焼鈍分離剤を塗布してから、前記鋼板に最終仕上げ焼鈍を行ったのち、前記鋼板に平坦化焼鈍を施す一連の工程を有する方向性電磁鋼板の製造方法において、
 前記冷間圧延後かつ前記焼鈍分離剤の塗布前に、前記鋼板の片面にレジストインクを塗布し、該塗布面に対して、レーザを前記鋼板の圧延方向を横切る向きに線状に走査することを該圧延方向に間隔を置いて繰り返し、前記レーザが照射された部分のレジストインクを除去した後、該除去された部分に電解エッチングを施すことにより、前記鋼板の圧延方向を横切る向きに線状に延びかつ該圧延方向に間隔を置いて並ぶ、複数本の溝を形成し、
 前記レーザの走査は、該レーザの照射エネルギーを30J/m未満および前記鋼板の温度を40℃以上200℃未満として行う、方向性電磁鋼板の製造方法。
 本発明によれば、歪み取り焼鈍中の浸炭や窒化を効果的に抑制することができる、耐熱型の磁区細分化処理を施した方向性電磁鋼板およびその製造方法を提供することができる。
断面観察用試料を採取する場所を示した図である。 溝底部の定義を示した図である。 実験1の条件1における溝底部のフォルステライト被膜厚さの平均とW17/50の増減量との関係を示した図である。 実験1の条件1における溝底部のフォルステライト被膜厚さの平均と炭素の増減量との関係を示した図である。 実験1の条件2における溝底部のフォルステライト被膜厚さの平均とW17/50の増減量との関係を示した図である。 実験1の条件2における溝底部のフォルステライト被膜厚さの平均と炭素の増減量との関係を示した図である。 レジスト剥離時の照射エネルギーおよび鋼板温度と、その結果得られた鋼板の溝底部に形成したフォルステライト被膜厚さの平均および標準偏差との関係を示した図である。
 以下、本発明の実施形態について詳細を説明する。
 本発明に従う方向性電磁鋼板は、鋼板の片面に、圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の溝を有し、鋼板表面に少なくともフォルステライト被膜をそなえる。方向性電磁鋼板は、フォルステライト被膜上に更に張力コーティングをそなえることが好ましい。また、本発明に従う方向性電磁鋼板は、上記線状溝の底部(溝底部)に形成されたフォルステライト被膜厚さの平均が0.45μm以上であって、該フォルステライト被膜厚さの標準偏差σが0.34μm以下であることが肝要である。
 そして、本発明に従う方向性電磁鋼板は、後述する本発明に従う方向性電磁鋼板の製造方法により好適に得ることができる。
 以下、溝底部に形成するフォルステライト被膜の条件について検討した実験結果について記す。
<実験1>
 C:0.07質量%、Si:3.4質量%、Mn:0.1質量%、Ni:0.2質量%、Al:240質量ppm、S:20質量ppm、N:90質量ppmおよびSe:180質量ppmを含有し、残部はFeおよび不可避不純物の組成からなる鋼スラブ(方向性電磁鋼板用スラブ)を、連続鋳造にて製造した。該スラブを1430℃に加熱後、熱間圧延により板厚:2.2mmの熱延板とした。該熱延板に対して、1100℃で20秒の熱延板焼鈍を施した。ついで、熱延板焼鈍後の熱延板に対する冷間圧延により中間板厚:0.40mmとしたのち、酸化度P(H2O)/P(H2)=0.40、温度:1000℃、時間:70秒の条件で中間焼鈍を実施した。さらに、中間焼鈍後の冷延板に対する塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、最終板厚:0.23mmの冷延板(または、単に「鋼板」ともいう)とした。
 かかる鋼板の片面に、幅が100~250mmの溝を周方向ピッチ3mmで有する溝ロールを用いてレジストインクを印刷塗布することでマスキングし、レジスト印刷されない部分に深さ25μmの溝が形成されるように電解エッチングを施した(レジスト条件1)。また、別の条件として、鋼板の片面にレジストインクを塗布したあと、レーザを圧延方向と直交する向き(幅方向)に、かつ、圧延方向に3mmの間隔を置きながら繰り返し線状に走査して、圧延方向に3mmの間隔を置いてレジストインクを剥離除去した。その後条件1と同様に、深さ25μmの溝が形成されるように電解エッチングを施した(レジスト条件2)。電解エッチング後は、いずれの条件においても鋼板に残存するレジストインクを除去した。なお、上記レーザは、剥離幅100~250mmで、シングルモードファイバーレーザをガルバノスキャナー方式によって、照射エネルギーを25J/mとし、鋼板の幅方向に端から端まで連続的にレジストインクを剥離するように照射した。また、レーザを照射する際の鋼板温度は種々に変化させた。なお、本明細書において、上記鋼板温度は、鋼板のレーザ照射側における鋼板表面での温度とし、例えば非接触式の赤外線放射温度計によって測定可能である。
 ついで、酸化度P(H2O)/P(H2)=0.44~0.60、均熱温度820℃で300秒保持する脱炭焼鈍を施した後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1160℃、10hの条件で実施した。そして、60質量%のコロイダルシリカとリン酸アルミニウムからなる絶縁被膜を塗布し、850℃にて焼付ける張力コーティングを行った。なお、この張力コーティング塗布処理は、平坦化焼鈍も兼ねている。
 かくして得られた張力コーティング塗布処理後の試験片について、後述の方法にて、溝底部に形成したフォルステライト被膜厚さを調査し、その平均と標準偏差を算出した。溝底部のフォルステライト被膜厚さは、レジスト条件1では平均が0.31~0.82μm、標準偏差が0.22~0.74μmの試料が、レジスト条件2では平均が0.32~0.91μm、標準偏差が0.05~0.43μmの試料がそれぞれ得られた。
[[溝底部のフォルステライト被膜厚さ測定]]
 図1に示すように、線状溝部を6個含むように圧延方向に断面観察用試料を採取する。さらに、その試料の断面をSEMにて観察し、溝底部のフォルステライト被膜の厚さを測定する。
 本明細書では、図2に示すように、溝中央を中心とし、溝幅wの半分の幅を持つ領域を溝底部と定義する。なお、上記溝幅wとは、電解エッチング時にレジストインクのマスキングが施されていない部分(非塗布域)であって、線状溝が延びる方向に垂直な方向(図2の圧延方向)に沿った長さを意味する。また、溝中央とは、上記溝幅wの圧延方向中心の位置を意味する。
 1つの断面観察用試料の内、任意の5個の線状溝部についてフォルステライト被膜の厚さを測定しその平均をその箇所のフォルステライト被膜厚さと定義する。また、1枚の鋼板試料(幅方向:1000mm×圧延方向:500mm)で、20か所の断面観察用試料を採取し、それぞれの溝底部のフォルステライト被膜厚さを算出し、それらの平均値と標準偏差を求める。
 フォルステライト被膜の領域は、SEM観察画像のコントラストより判断できるが、反射電子像(BSE)のコントラストで判断する方がわかりやすい場合もある。また、画像のコントラストより判断しにくい場合は、EDXによる元素分析により、Mgが含まれるか否かで、フォルステライト被膜領域であるかを適宜判断してもよい。本明細書では、BSE像における画像のコントラストにより判断した。
[[磁気測定]]
 上記張力コーティング塗布処理後の試験片を、30×280mmの大きさにせん断後、アルゴン雰囲気、800℃×3hの条件で歪み取り焼鈍(せん断による影響を排除する目的)を行い試料とし、エプスタイン試験法にて磁気測定を行った。さらに、浸炭雰囲気における歪み取り焼鈍の影響を調査するために、かかる試料を、再度、CO:0.5vol%、CO2:13vol%、H2O:2.5vol%、H2:1vol%、残ガスN2(露点:20℃)の混合ガス中で、870℃×2hの条件で焼鈍を実施し、エプスタイン試験法にて磁気測定を行った。
 上記試料について、浸炭雰囲気混合ガス中での歪み取り焼鈍前後でのエプスタイン試験結果を比較し、W17/50(50Hzで1.7Tまで励磁したときの鉄損)の増減量を求めた。また、混合ガス中での歪み取り焼鈍前後で、炭素量を化学分析した。浸炭雰囲気混合ガス中での焼鈍前後での化学分析結果を比較し、炭素の増減量を求めた。
 溝底部に形成したフォルステライト被膜厚さの平均および標準偏差と、浸炭雰囲気混合ガス中での歪み取り焼鈍前後でのW17/50の増減量および炭素の増減量(浸炭量)とを表1、ならびに、図3、4(レジスト条件1)および図5、6(レジスト条件2)にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
 鉄損W17/50の増減量、炭素の増減量(浸炭量)共に、溝底部に形成したフォルステライト被膜厚さの平均が0.45μm以上において、鉄損の増加量を低く抑え、かつ、浸炭量も低く抑えられる条件があることが判明した。さらに、詳しく調査すると、フォルステライト被膜厚さの平均が0.45μm以上である鋼板の中でも、鉄損の増加と浸炭量の増加とを著しく抑制できている条件は、フォルステライト被膜厚さの標準偏差が0.34μm以下であることが判明した。フォルステライト被膜厚さが、かかる低い標準偏差を満足して形成されると、該フォルステライト被膜の高い緻密性が満足されるものと考えられる。
 なお、上記所定範囲のフォルステライト被膜厚さを実現できたのは、レーザによるレジスト剥離を行ったレジスト条件2のみにおいてであった。
 次に、上記の溝底部のフォルステライト被膜厚さの平均が0.45μm以上、かつその標準偏差が0.34μm以下を満たす鋼板が安定的に達成できる条件を実験的に探索したところ、
(1) 冷間圧延後かつ焼鈍分離剤の塗布前(つまり、最終仕上げ焼鈍前)に、鋼板の片面にレジストインクを塗布する
(2) 上記レジストインクを塗布した鋼板の塗布面に対して、レーザを鋼板の圧延方向を横切る向きに線状に走査することを圧延方向に間隔を置いて繰り返し、レーザを走査してなる照射部のレジストインクを除去した後、該除去部に電解エッチングを施すことにより、鋼板の圧延方向を横切る向きに線状に延びかつ圧延方向に間隔を置いて並ぶ、複数本の溝を形成する
(3) 上記レーザの走査は、該レーザの照射エネルギーが30J/m未満および鋼板温度が40℃以上200℃未満の条件下で行う
との3要件を満足することが必要であることが明らかになった。
 上記(1)について、溝底部にフォルステライト被膜を良好に形成するためには、少なくともフォルステライト被膜が形成される最終仕上げ焼鈍前(さらに言えば、焼鈍分離剤の塗布前)に溝の形成を行う必要がある、ということである。
 上記(2)については、従来のようにレジストインクを印刷する場合には、非印刷部分(エッチングにより溝が形成される部分)に、隣接する印刷部分からレジストインクのダレが生じて非印刷部分の幅が不均一となり、形成後の溝幅が不均一になることが避けられない。かように溝幅が不均一となると、局所的な溝幅のバラつきに応じてエッチングの際の溝の掘れ方にバラつきが生じる。その結果、溝底部の凹凸が大きくなり、さらにはその底部に形成されるフォルステライト被膜の厚みにもバラつきが生じるため、本発明の目的が達成されないものと考えられる。
 他方、本発明のように、レーザの照射によりレジストインクを剥離する方法は、レジストインクの剥離部の幅が均一、すなわち±10μm程度以内となるので、エッチングの際の溝の掘れ方が均一となる。その結果、所定の条件下でのレーザ走査を利用した溝の形成は、その上に形成されるフォルステライト被膜の厚みを均一にでき、かつ、フォルステライト被膜厚さの標準偏差にかかる要件を満足させることのできる一要因と考えられる。
 上記(3)については、以下、その条件が本発明に適することを明らかにした実験をもって説明する。
<実験2>
 C:0.07質量%、Si:3.4質量%、Mn:0.1質量%、Ni:0.2質量%、Al:240質量ppm、S:20質量ppm、N:90質量ppmおよびSe:180質量ppmを含有し、残部はFeおよび不可避不純物の組成からなる鋼スラブ(方向性電磁鋼板用スラブ)を、連続鋳造にて製造した。該スラブを1430℃に加熱後、熱間圧延により板厚:2.2mmの熱延板とした。該熱延板に対して、1100℃で20秒の熱延板焼鈍を施した。ついで、熱延板焼鈍後の熱延板に対する冷間圧延により中間板厚:0.40mmとし、酸化度P(H2O)/P(H2)=0.40、温度:1000℃、時間:70秒の条件で中間焼鈍を実施した。さらに、中間焼鈍後の冷延板に対する塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、最終板厚:0.23mmの鋼板とした。
 かかる鋼板の片面にレジストインクを塗布したあと、レーザを圧延方向と直交する向きに、かつ、圧延方向に3mmの間隔を置きながら繰り返し線状に走査して、圧延方向に3mmの間隔を置いてレジストインクを剥離除去した。レーザ照射は、剥離幅100~250mmで、シングルモードファイバーレーザをガルバノスキャナー方式によって行い、照射エネルギーを15~50J/mとし、鋼板の幅方向に端から端まで連続的にレジストインクを完全に剥離した。その際、鋼板温度を15~250℃に変化させて、レーザ照射を行った。その後、深さ25μmの溝が形成されるように電解エッチングを施した。電解エッチング後、鋼板に残存するレジストインクを除去した。
 ついで、酸化度P(H2O)/P(H2)=0.44~0.60、均熱温度820℃で300秒保持する脱炭焼鈍を施し、その後、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1160℃、10hの条件で実施した。そして、60質量%のコロイダルシリカとリン酸アルミニウムからなる絶縁被膜を塗布し、850℃にて焼付ける張力コーティングを行った。この張力コーティング塗布処理は、平坦化焼鈍も兼ねている。
 その後、前述の方法にて、溝底部に形成したフォルステライト被膜厚さを調査し、その平均と標準偏差を算出した。
 レジスト剥離時の照射エネルギーおよび鋼板温度と、その結果得られた鋼板の溝底部に形成したフォルステライト被膜厚さの平均および標準偏差との関係を、表2および図7にまとめた。その結果、レーザの照射エネルギーが30J/m未満、かつ、鋼板温度が40℃以上200℃未満の条件下でレーザ走査した場合において、溝底部に形成されるフォルステライト被膜厚さの平均が0.45μm以上、かつ、その標準偏差σが0.34μm以下を満たすことが判明した。
 なお、図7において、鋼板温度の下限:40℃以上は実線により示し、鋼板温度の上限:200℃未満および照射エネルギーの上限:30J/m未満は点線により示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
 フォルステライト被膜厚さの平均が0.45μm以上、その標準偏差σが0.34μm以下となる一条件が、レーザの照射エネルギーを30J/m未満とすることの理由について、発明者らは以下のように推測している。
 すなわち、レーザの照射エネルギーが大きい場合、照射部(つまり、次工程で溝が形成される部分)周辺の鋼板に歪みが残存するため、次工程である電解エッチングの際の溝の掘れ方にバラつきが生じる。その結果、溝底部の凹凸が大きくなるため、溝底部に形成するフォルステライト被膜の厚さにもバラつきが生じる。
 また、フォルステライト被膜厚さの平均が0.45μm以上、その標準偏差σが0.34μm以下となる更なる条件が、鋼板温度40℃以上200℃未満の条件下でレーザ走査を行うことである理由について、発明者らは以下のように推測している。
 すなわち、鋼板温度を40℃以上にすると、レーザ照射される際の、レジストインク薄膜内の温度分布が均一となって、レジストインク薄膜内の靭性が均一となる。その結果、レーザ照射された際に均一にインクが剥離しやすくなるため、溝の形状が安定することとなり、その底部に形成するフォルステライト被膜の厚さのバラつきが生じにくくなる。一方、鋼板温度を200℃以上に上げ過ぎると、レーザ照射によってもレジストインクを良好に剥離できなくなってしまうが、これは、レジストインク薄膜が柔らかくなり過ぎるからである。
[[溝の形成方法]]
 本実施形態における線状溝は、前述のとおり、焼鈍分離剤の塗布前(つまり、最終仕上げ焼鈍前)の鋼板の片面にエッチング用のレジストインクを塗布・付着させたのち、非塗布域に対する電解エッチング処理により形成する方法とする。最終冷間圧延後かつ脱炭焼鈍前の鋼板に線状溝を形成することが好ましい。溝パターンの形成における非塗布域の形成は、レジストインクを鋼板の片面全面に塗布した後、レーザ照射にて上記の条件でインクを剥離除去する方法が適する。溝底部にフォルステライト被膜が均一かつ緻密に形成されることが、歪み取り焼鈍中の窒化、浸炭の抑制に重要であるため、溝形成を、フォルステライト被膜が形成される焼鈍分離剤の塗布および最終仕上げ焼鈍前に実施することが必須である。
 本明細書において、「圧延方向を横切る向き」とは、線状溝の圧延方向と直交する向きに対するずれとして±30°以内とすることが好ましい。また、本明細書において、「線状」とは、実線だけでなく、点線や破線など点列状も含むものとする。
 本発明の方向性電磁鋼板を製造する方法については、上記磁区細分化のための溝の形成方法、およびその溝底部に形成されたフォルステライト被膜の厚さのコントロールに直接関係しない事柄については限定されないが、推奨される鋼板の成分組成および製造条件について以下に例示する。
 [成分組成]
 本発明において、方向性電磁鋼板用スラブの成分組成は、二次再結晶が生じる成分組成であればよい。また、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSとを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl、N、SおよびSeの好適含有量は、それぞれ、Al:0.01~0.065質量%、N:0.005~0.012質量%、S:0.005~0.03質量%、Se:0.005~0.03質量%である。なお、最終仕上げ焼鈍においてAl、N、SおよびSeは純化され、それぞれ不可避的不純物程度の含有量に低減される。
 さらに、本発明は、Al、N、S、Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。この場合には、Al、N、SおよびSe量はそれぞれ、Al:100質量ppm未満、N:50質量ppm未満、S:50質量ppm未満、Se:50質量ppm未満に抑制することが好ましい。
 その他の成分組成について述べると、次のとおりである。
C:0.08質量%以下
 C量は、0.08質量%を超えると、磁気時効の起こらない50質量ppm以下まで製造工程中にCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はないが、通常0.001質量%以上である。
Si:2.0~8.0質量%
 Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果を達成し難い。一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下し易い。そのため、Si量は2.0質量%以上とすることが好ましく、8.0質量%以下とすることが好ましい。
Mn:0.005~1.0質量%
 Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しい。一方、1.0質量%を超えると製品板の磁束密度が低下し易い。そのため、Mn量は0.005質量%以上とすることが好ましく、1.0質量%以下とすることが好ましい。
 以上が好適な基本成分であるが、かかる基本成分以外に、磁気特性改善成分として、次に述べる元素を、好適な任意添加成分として適宜含有させることができる。
Ni:0.03~1.50質量%、Sn:0.01~1.50質量%、Sb:0.005~1.50質量%、Cu:0.03~3.0質量%、P:0.03~0.50質量%、Mo:0.005~0.10質量%およびCr:0.03~1.50質量%のうちから選んだ少なくとも1種
 Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さい。一方、含有量が1.50質量%を超えると二次再結晶が不安定になり磁気特性が劣化し易い。そのため、Ni量は0.03質量%以上とすることが好ましく、1.50質量%以下とすることが好ましい。
 また、Sn、Sb、Cu、P、MoおよびCrは、それぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限量に満たないと、磁気特性の向上効果が小さい。一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害され易い。そのため、それぞれ上記の範囲で含有させることが好ましい。
 なお、上記した成分以外の残部は、製造工程において混入する不可避的不純物および主成分であるFeであることが好ましい。また、製品板(方向性電磁鋼板)においては、Cおよびインヒビター成分以外の成分は鋼素材(方向性電磁鋼板用スラブ)において含有させた量がそのまま製品板にも含有される。一方、Cは脱炭焼鈍により低減され、製品板では磁気時効による鉄損増大を防ぐために0.003質量%以下に低減されることが好ましい。また、インヒビター成分は後述の最終仕上げ焼鈍にて純化され、製品板では不可避的不純物程度の含有量に低減されることが好ましい。
 次に、本発明の方向性電磁鋼板の製造方法について説明する。
 [加熱]
 上記した成分組成を好適に有するスラブは熱間圧延に先立ち、常法に従い加熱することができる。加熱温度は、1150℃以上が好ましく、1450℃以下が好ましい。
 [熱間圧延]
 好適には上記加熱後に、熱間圧延を行って熱延板を得る。鋳造後、加熱せずに直ちに熱間圧延を行ってもよい。薄鋳片の場合には、熱間圧延を別途行ってもよいし、薄鋳片の調製と熱間圧延とを兼ねてもよい。
 熱間圧延を実施する場合は、粗圧延最終パスの圧延温度を900℃以上で実施することが好ましく、仕上げ圧延最終パスの圧延温度を700℃以上で実施することが好ましい。
 [熱延板焼鈍]
 その後、必要に応じて熱延板焼鈍を施す。このとき、製品板において、ゴス組織を高度に発達させるためには、熱延板焼鈍温度として800℃以上が好適であり、1100℃以下が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を得ることが困難になって、二次再結晶の発達が阻害され易い。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎるために、整粒した一次再結晶組織を得ることが極めて困難となる。
 [冷間圧延]
 その後、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚を有する鋼板を得る。中間焼鈍温度は800℃以上とすることが好適であり、1150℃以下とすることが好適である。また、中間焼鈍時間は、10~100s程度とすることが好ましい。
 [脱炭焼鈍]
 その後、鋼板に脱炭焼鈍を行う。脱炭焼鈍では、焼鈍温度750~900℃、酸化性雰囲気P(H2O)/P(H2):0.25~0.60および焼鈍時間:50~300s程度をそれぞれ目標とすることが好ましい。
 なお、上述したとおり、鋼板への溝の形成は、最終冷間圧延後かつ脱炭焼鈍前に行うことが好ましい。
[焼鈍分離剤の塗布]
 その後、鋼板の片面又は両面に焼鈍分離剤を塗布する。鋼板の両面に焼鈍分離剤を塗布することが好ましい。焼鈍分離剤は、主成分をMgOとし、塗布量を鋼板の両面でそれぞれ8~15g/m2程度とすることが、所定の厚さを有するフォルステライト被膜を形成するために好適である。
[最終仕上げ焼鈍]
 その後、二次再結晶およびフォルステライト被膜の形成を目的として最終仕上げ焼鈍を施す。
 所定の厚さを有するフォルステライト被膜を形成する観点から、焼鈍温度は1100℃以上、焼鈍時間は30分以上とすることがそれぞれ好ましい。
 [張力コーティングおよび平坦化焼鈍]
 最終仕上げ焼鈍後には、平坦化焼鈍を行って形状を矯正することが、方向性電磁鋼板を鉄心加工した際の占積率を改善させるうえで有効である。平坦化焼鈍は、焼鈍温度750~950℃、焼鈍時間10~200s程度を目標にそれぞれ実施するのが好適である。
 なお、本発明では、平坦化焼鈍前または後に、鋼板表面に張力コーティング(絶縁被膜)を施すことが好ましい。張力コーティングとは、鉄損低減のために、鋼板に張力を付与するコーティングを意味する。張力コーティングとしては、シリカを含有する無機系コーティング、セラミックコーティング等が挙げられ、物理蒸着法、化学蒸着法等の、いずれも常法により行うことができる。
 また、上記した工程を経ることで本発明に従う方向性電磁鋼板が好適に得られるが、上述していない工程および製造条件は、いずれも常法によればよい。
 C:0.07質量%、Si:3.4質量%、Mn:0.1質量%、Ni:0.2質量%、Al:240質量ppm、S:20質量ppm、N:90質量ppmおよびSe:180質量ppmを含有し、残部はFeおよび不可避不純物の組成からなる鋼スラブ(方向性電磁鋼板用スラブ)を、連続鋳造にて製造した。該スラブを1430℃に加熱後、熱間圧延により板厚:2.2mmの熱延板とした。該熱延板に対して、1100℃で20秒の熱延板焼鈍を施した。ついで、熱延板焼鈍後の熱延板を冷間圧延により中間板厚:0.40mmとしたのち、酸化度P(H2O)/P(H2)=0.40、温度:1000℃、時間:70秒の条件で中間焼鈍を施した。ついで、中間焼鈍後の熱延板に対する塩酸酸洗により表面のサブスケールを除去したのち、再度、冷間圧延を実施して、最終板厚:0.23mmの鋼板とした。
 表3に示す条件で、上記鋼板の片面に溝形成を行った。
 表3に示した溝形成パターンは以下の通りである。なお、いずれも溝幅は150μmとなるよう調整した。
 I  最終仕上げ焼鈍後、5mm間隔の歯車型ロールで深さ10μmの溝を形成した
 II  最終仕上げ焼鈍後、高出力レーザ照射にて深さ15μmの溝を形成した
 III 溝ロールにて3mm間隔の非塗布域を有するパターンでレジストインクを塗布後、電解エッチングで非塗布域に深さ20μmの溝を形成した
 IV インクジェットプリンタ(200dpi)にて3mm間隔の非塗布域を有するパターンでレジストインクを塗布後、電解エッチングで非塗布域に深さ20μmの溝を形成した
 V  鋼板の片面にレジストインクを塗布したあと、レーザを圧延方向と直交する向きに、かつ、圧延方向に3mmの間隔を置きながら繰り返し線状に走査して、圧延方向に3mmの間隔を置いてレジストインクを剥離除去した。レーザ照射は、シングルモードファイバーレーザをガルバノスキャナー方式によって行い、鋼板の幅方向に端から端まで連続的にレジストインクを完全に剥離した。その後、深さ25μmの溝が形成されるように電解エッチングを施した。
 上記溝形成パターンのうちレジストインクを塗布した条件では、電解エッチング後に鋼板に残存するレジストインクを除去した。
 ついで、酸化度P(H2O)/P(H2)=0.44、均熱温度820℃で300秒保持する脱炭焼鈍を施したのち、鋼板表面にMgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を1160℃、10hの条件で行った。さらに、60質量%のコロイダルシリカとリン酸アルミニウムからなる絶縁被膜を塗布したのち、850℃にて焼付ける張力コーティングを行って試験片とした。この張力コーティング塗布処理は、平坦化焼鈍も兼ねている。
 かくして得られた試験片の溝底部に形成されたフォルステライト被膜厚さを調査し、前記した実験1と同じ手順でフォルステライト被膜厚さの平均と標準偏差を算出した。
 また、前記試験片を、30×280mmの大きさにせん断後、アルゴン雰囲気、800℃×3hの条件で歪み取り焼鈍(せん断による影響を排除する目的)を施したのち、その試料についてエプスタイン試験法にて磁気測定を行った。さらに、窒化雰囲気における歪み取り焼鈍の影響を調査するために、再度、NH3:12~15vol%、残ガスとしてN2:H2=1:3のアンモニア分解ガス(混合ガス)中で、820℃×2hの条件の歪み取り焼鈍を実施した。この歪み取り焼鈍後の試料についてエプスタイン試験法にて磁気測定を行った。窒化雰囲気混合ガスを用いた歪み取り焼鈍前後でのエプスタイン試験結果を比較し、W17/50の増減量を求めた。また、かかる歪み取り焼鈍前後で窒素量を化学分析し、該焼鈍前後での化学分析結果を比較し、窒素の増減量を求めた。
 表3に、溝底部に形成したフォルステライト被膜厚さの平均および標準偏差と、窒化雰囲気混合ガス中での歪み取り焼鈍前後でのW17/50の増減量および窒素の増減量(窒化量)とを併記する。表3中、レジストインクの除去を目的としたレーザ走査を行っていない試験No.1~4については、照射エネルギー及び鋼板温度を「-」として示す。
 表3に示したとおり、本発明に適合する条件で、所定の平均厚さおよび標準偏差を満たすフォルステライト被膜を溝底部に形成した場合、歪み取り焼鈍中の窒化を効果的に抑制でき、かつ磁気特性に優れた方向性電磁鋼板を得ることができた。
Figure JPOXMLDOC01-appb-T000005

Claims (2)

  1.  鋼板の片面に、圧延方向を横切る向きに線状に延びかつ該圧延方向に間隔を置いて並ぶ、複数本の溝を有し、前記鋼板の表面に少なくともフォルステライト被膜をそなえる方向性電磁鋼板であって、
     前記溝の底部に形成された前記フォルステライト被膜厚さの平均が0.45μm以上であって、かつかかる厚さの標準偏差σが0.34μm以下である方向性電磁鋼板。
  2.  方向性電磁鋼板用スラブを、熱間圧延して熱延板を得、ついで該熱延板に1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚に仕上げた鋼板を得たのち、該鋼板に脱炭焼鈍を施し、ついで前記鋼板の表面に焼鈍分離剤を塗布してから、前記鋼板に最終仕上げ焼鈍を行ったのち、前記鋼板に平坦化焼鈍を施す一連の工程を有する方向性電磁鋼板の製造方法において、
     前記冷間圧延後かつ前記焼鈍分離剤の塗布前に、前記鋼板の片面にレジストインクを塗布し、該塗布面に対して、レーザを前記鋼板の圧延方向を横切る向きに線状に走査することを該圧延方向に間隔を置いて繰り返し、前記レーザが照射された部分のレジストインクを除去した後、該除去された部分に電解エッチングを施すことにより、前記鋼板の圧延方向を横切る向きに線状に延びかつ該圧延方向に間隔を置いて並ぶ、複数本の溝を形成し、
     前記レーザの走査は、該レーザの照射エネルギーを30J/m未満および前記鋼板の温度を40℃以上200℃未満として行う、方向性電磁鋼板の製造方法。
PCT/JP2021/013101 2020-05-19 2021-03-26 方向性電磁鋼板およびその製造方法 WO2021235094A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP21808063.8A EP4155423A4 (en) 2020-05-19 2021-03-26 GRAIN-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD FOR MANUFACTURING SAME
CN202180025447.2A CN115335546B (zh) 2020-05-19 2021-03-26 取向性电磁钢板及其制造方法
CA3167818A CA3167818C (en) 2020-05-19 2021-03-26 Grain-oriented electrical steel sheet and method of manufacturing same
MX2022014337A MX2022014337A (es) 2020-05-19 2021-03-26 Lamina de acero electrico de grano orientado y metodo para su fabricacion.
US17/998,926 US20230212706A1 (en) 2020-05-19 2021-03-26 Grain-oriented electrical steel sheet and method of manufacturing same
JP2021541175A JP7006851B1 (ja) 2020-05-19 2021-03-26 方向性電磁鋼板およびその製造方法
KR1020227028519A KR20220128430A (ko) 2020-05-19 2021-03-26 방향성 전기 강판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-087743 2020-05-19
JP2020087743 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021235094A1 true WO2021235094A1 (ja) 2021-11-25

Family

ID=78708449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013101 WO2021235094A1 (ja) 2020-05-19 2021-03-26 方向性電磁鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US20230212706A1 (ja)
EP (1) EP4155423A4 (ja)
JP (1) JP7006851B1 (ja)
KR (1) KR20220128430A (ja)
CN (1) CN115335546B (ja)
CA (1) CA3167818C (ja)
MX (1) MX2022014337A (ja)
WO (1) WO2021235094A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118063086A (zh) * 2024-04-17 2024-05-24 四川坤鸿电子科技有限公司 一种玻璃盖板切割系统及切割方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342332A (ja) 1986-08-06 1988-02-23 Kawasaki Steel Corp 低鉄損方向性電磁鋼板の製造方法
JPS6344804B2 (ja) 1985-09-20 1988-09-07 Nippon Steel Corp
US4904312A (en) * 1987-08-22 1990-02-27 British Steel Plc Method of electrolytically etching linear impressions in electrical steel
JP2012036447A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012036446A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP5771620B2 (ja) 2009-12-04 2015-09-02 ポスコ 低鉄損高磁束密度の方向性電磁鋼板
JP2016113643A (ja) * 2014-12-11 2016-06-23 Jfeスチール株式会社 冷延鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法
JP2017025377A (ja) * 2015-07-22 2017-02-02 Jfeスチール株式会社 鋼板表面に線状溝を形成する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344804A (ja) 1986-08-13 1988-02-25 井関農機株式会社 対地作業機のミツクスコントロ−ル装置
JPS6376819A (ja) * 1986-09-18 1988-04-07 Kawasaki Steel Corp 低鉄損方向性電磁鋼板およびその製造方法
JP5923881B2 (ja) * 2010-06-30 2016-05-25 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5240334B2 (ja) * 2010-09-10 2013-07-17 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3257973B1 (en) * 2015-02-10 2021-08-18 JFE Steel Corporation Manufacturing method for grain oriented electrical steel sheet
EP3330388B1 (en) * 2015-07-28 2021-09-01 JFE Steel Corporation Linear groove formation method and linear groove formation device
WO2019065645A1 (ja) * 2017-09-28 2019-04-04 Jfeスチール株式会社 方向性電磁鋼板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344804B2 (ja) 1985-09-20 1988-09-07 Nippon Steel Corp
JPS6342332A (ja) 1986-08-06 1988-02-23 Kawasaki Steel Corp 低鉄損方向性電磁鋼板の製造方法
US4904312A (en) * 1987-08-22 1990-02-27 British Steel Plc Method of electrolytically etching linear impressions in electrical steel
JP5771620B2 (ja) 2009-12-04 2015-09-02 ポスコ 低鉄損高磁束密度の方向性電磁鋼板
JP2012036447A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012036446A (ja) * 2010-08-06 2012-02-23 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2016113643A (ja) * 2014-12-11 2016-06-23 Jfeスチール株式会社 冷延鋼帯の線状溝形成方法および方向性電磁鋼板の製造方法
JP2017025377A (ja) * 2015-07-22 2017-02-02 Jfeスチール株式会社 鋼板表面に線状溝を形成する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155423A4

Also Published As

Publication number Publication date
MX2022014337A (es) 2022-12-13
CN115335546B (zh) 2023-09-29
EP4155423A4 (en) 2023-10-11
CA3167818C (en) 2023-12-12
CA3167818A1 (en) 2021-11-25
US20230212706A1 (en) 2023-07-06
EP4155423A1 (en) 2023-03-29
CN115335546A (zh) 2022-11-11
JPWO2021235094A1 (ja) 2021-11-25
KR20220128430A (ko) 2022-09-20
JP7006851B1 (ja) 2022-02-10

Similar Documents

Publication Publication Date Title
KR100297046B1 (ko) 매우철손이낮은방향성전자강판과그제조방법
WO2013099272A1 (ja) 方向性電磁鋼板およびその製造方法
KR101593346B1 (ko) 방향성 전기 강판 및 그 제조 방법
EP2799566B1 (en) Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
RU2771318C1 (ru) Способ производства листа электротехнической стали с ориентированной зеренной структурой
JP2012177164A (ja) 方向性電磁鋼板の製造方法
WO2019013351A1 (ja) 方向性電磁鋼板及びその製造方法
EP1411139B1 (en) Ultra-high magnetic flux density unidirectional electrical sheet excellent in high magnetic field iron loss and coating characteristics and production method therefor
JP5712667B2 (ja) 方向性電磁鋼板の製造方法
WO2020149351A1 (ja) 方向性電磁鋼板の製造方法
JP7006851B1 (ja) 方向性電磁鋼板およびその製造方法
EP3556877B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP6465048B2 (ja) 方向性電磁鋼板の製造方法
EP3913076A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JPH07320922A (ja) 鉄損の低い一方向性電磁鋼板
CN114222828B (zh) 线状槽形成方法及取向性电磁钢板的制造方法
WO2020149327A1 (ja) 方向性電磁鋼板の製造方法
WO2020149326A1 (ja) 方向性電磁鋼板の製造方法
JP7260799B2 (ja) 方向性電磁鋼板の製造方法
WO2020158893A1 (ja) 方向性電磁鋼板およびそれを用いた鉄心
JP5845848B2 (ja) 方向性電磁鋼板の製造方法
JP7230930B2 (ja) 方向性電磁鋼板の製造方法
JP7010321B2 (ja) 方向性電磁鋼板およびその製造方法
JP7375670B2 (ja) 方向性電磁鋼板およびその製造方法
EP3947755B1 (en) Iron-silicon material suitable for medium frequency applications

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021541175

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3167818

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021808063

Country of ref document: EP

Effective date: 20221219