WO2021235060A1 - 電子機器、電子機器の検査方法、および電子機器の検査システム - Google Patents

電子機器、電子機器の検査方法、および電子機器の検査システム Download PDF

Info

Publication number
WO2021235060A1
WO2021235060A1 PCT/JP2021/010285 JP2021010285W WO2021235060A1 WO 2021235060 A1 WO2021235060 A1 WO 2021235060A1 JP 2021010285 W JP2021010285 W JP 2021010285W WO 2021235060 A1 WO2021235060 A1 WO 2021235060A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
load
energy harvesting
voltage
storage element
Prior art date
Application number
PCT/JP2021/010285
Other languages
English (en)
French (fr)
Inventor
祐樹 京田
智之 清水
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2022524900A priority Critical patent/JP7498272B2/ja
Publication of WO2021235060A1 publication Critical patent/WO2021235060A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This disclosure relates to an electronic device equipped with a photoelectric conversion element, an inspection method for an electric device, and a technology for an inspection system for the electronic device.
  • Patent Document 1 discloses a transmission device, a transmission method, and a program.
  • the beacon detects the illuminance on the panel surface of the solar cell from the output voltage, output current, power generation amount, etc. of the solar cell (step S11).
  • the beacon substitutes the illuminance detected in step S11 into the conversion function F or the conversion function G to calculate the radio wave transmission interval or the radio wave transmission intensity, and sets it as a control parameter of the radio wave transmitted from the transmitting unit (step). S12).
  • the beacon transmits and controls radio waves based on the control parameters set in step S12 (step S13).
  • the purpose of this disclosure is to provide technology for efficiently inspecting power generation capacity.
  • the environmental power generation element the load to which the power generated by the environmental power generation element is supplied, the hysteresis switch connected between the environmental power generation element and the load, and the environmental power generation element and the hysteresis switch.
  • a first land electrically connected to one end of the power storage element and one end of the hysteresis switch, and the other end of the power storage element and electrically.
  • a second land connected to and equipped with an electronic device is provided.
  • the electronic device 100 with a solar cell As an example of an electronic device equipped with a photoelectric conversion element, the overall configuration of the electronic device 100 with a solar cell according to the present embodiment will be described.
  • the electronic device 100 with a solar cell is formed in a vertically long substantially rectangular shape in a front view.
  • the electronic device 100 with a solar cell is used by being attached to, for example, a wall surface or a ceiling.
  • a plurality of electronic devices with solar cells 100 are arranged in a building, an underground mall, or the like.
  • each of the electronic devices with solar cells 100 emits a specific signal from the antenna.
  • a terminal such as a smartphone held by a passerby can receive the signal to identify its own detailed current position or acquire other information.
  • each of the electronic devices with solar cells 100 performs various measurements with various sensors.
  • the electronic device 100 with a solar cell mainly has a front cover 10, a cushion material 11, and a dye-sensitized solar cell 20 (hereinafter, may be referred to as DSC). ), A printed wiring board 30, and a back cover 40.
  • DSC dye-sensitized solar cell 20
  • the front cover 10 is formed with an opening for exposing the power generation portion, that is, the light receiving portion of the dye-sensitized solar cell 20.
  • the front cover 10 is, for example, a resin molded product.
  • the cushion material 11 has elasticity and can absorb various impacts given to the dye-sensitized solar cell 20.
  • the dye-sensitized solar cell 20 can be used even in an indoor environment.
  • the dye-sensitized solar cell 20 can easily generate electricity even with the light of a fluorescent lamp or LED lighting.
  • a so-called energy harvesting element in the field of energy harvesting may be used instead of the dye-sensitized solar cell 20.
  • the opening may not be formed in the front cover 10.
  • the printed wiring board 30 is a board having conductor wiring, and electronic components are attached and electrically connected to each other.
  • the printed wiring board may be referred to as a wiring board or a board.
  • the back cover 40 is made of resin or the like.
  • the back cover 40 is fixed to the front cover 10 by screwing or fitting a claw.
  • the front cover 10 and the back cover 40 form a housing for accommodating the dye-sensitized solar cell 20 and the printed wiring board 30. ⁇ Inspection mechanism of electronic device 100 with solar cell>
  • the electronic device 100 with a solar cell is mainly composed of a dye-sensitized solar cell 20, a power storage element 52, a hysteresis switch 53, a load 60, and the like. ..
  • the inspection pad TP1 is electrically connected to one end of the power storage element 52 and one end of the hysteresis switch 53.
  • the inspection pad TP2 is electrically connected to the other end of the power storage element 52.
  • the dye-sensitized solar cell 20 is used, but it can be applied to any so-called energy harvesting element in the field of energy harvesting.
  • the energy harvesting element is not limited to the dye-sensitized solar cell 20, and a perovskite type solar cell, an organic thin-film solar cell, an a-Si solar cell, a vibration power generation element, a thermal power generation element, or the like can be used.
  • the power storage element 52 includes a plurality of capacitors C1 and the like. In another embodiment, the power storage element 52 may be, for example, a secondary battery.
  • the total capacitance of the plurality of capacitors C1 of the power storage element 52 according to the present embodiment is 100 ⁇ F to 5 mF.
  • the load 60 to which the electric power generated by the dye-sensitized solar cell 20 is supplied is not particularly limited, but for example, a transmitter such as a beacon, a microcomputer, a temperature sensor, a humidity sensor, various sensors such as a piezoelectric sensor, and the like. Can be mentioned.
  • the load 60 may be a battery such as a lithium ion battery.
  • the electronic device 100 with a solar cell is equipped with a wireless communication antenna as a load 60.
  • the wireless communication antenna is, for example, a beacon, and emits a Bluetooth (registered trademark) radio wave in order to acquire position information on the receiver side every 50 msec.
  • the radio wave transmission interval of the wireless communication antenna is not particularly limited, but is, for example, every predetermined period of 50 msec or more and 24 hours or less, preferably every predetermined period of 100 msec or more and 30 sec or less, and more preferably every predetermined period of 100 msec or more and 1 sec or less. ..
  • the inspection mechanism of the electronic device 100 with a solar cell will be described in detail.
  • it may temporarily operate even in an illuminance environment below the original operating lower limit illuminance in the inspection process, etc., so the operating lower limit illuminance is accurate. It is difficult to guarantee.
  • a power storage element when moving a semiconductor load (device using a microcomputer or the like, a communication module equipped with a wireless communication antenna for transmitting a beacon, etc.) using the power charged by the dye-sensitized solar cell 20, a power storage element is used.
  • the inrush current is generated at the start of the load at the moment when the charging voltage exceeds the minimum operating voltage of the load, and the charging voltage drops.
  • the charging voltage falls below the minimum operating voltage of the load, and the load stops, leading to a symptom that the load cannot be started.
  • the hysteresis switch 53 turns on when it exceeds the on voltage, that is, the first reference voltage, and turns off when it falls below the off voltage, that is, the second reference voltage. Since it is designed so that on voltage> off voltage, it will not turn on unless it reaches the on voltage even if it exceeds the off voltage in the off state, and it will not turn off even if it falls below the on voltage in the on state. Turns off after falling below the off voltage.
  • the first reference voltage is preferably set to 65% or more and 90% or less of the open circuit voltage Voc of the dye-sensitized solar cell 20. Further, it is preferable that the second reference voltage is lower than the first reference voltage and is set to be equal to or higher than the minimum operating voltage of the load 60.
  • This value is based on the maximum power point voltage Vpmax of the dye-sensitized solar cell.
  • This ratio varies depending on environmental factors such as power generation efficiency and individual difference factors such as the amount of dye adsorption of the dye-sensitized solar cell and the cell size. Therefore, this ratio is set to 80%, and the range of ⁇ 10% is first set as the allowable range.
  • the allowable range is 15% in the negative direction.
  • the first reference voltage is preferably set to 65% or more and 90% or less of the open circuit voltage Voc of the dye-sensitized solar cell 20.
  • the first reference voltage is set to 75% or more and 85% or less of the open circuit voltage Voc of the dye-sensitized solar cell 20.
  • the second reference voltage is lower than the first reference voltage and is set to be equal to or higher than the minimum operating voltage of the load 60. This value is a value in which the ratio of Voc and Vpmax is 80% and the range of ⁇ 5% is an allowable range as described above.
  • the electric power generated by the dye-sensitized solar cell 20 is stored in a power storage element 52 such as a capacitor. Then, when the charging voltage exceeds the on voltage, the hysteresis switch 53 is turned on and power is supplied to the load 60 such as the communication module.
  • the generated power exceeds the load power, the power continues to be supplied to the load 60, and continuous operation is performed to maintain the on state.
  • the charging voltage is equal to or higher than the off voltage, so the charging voltage remains on for a while and the charging voltage decreases. Eventually, the charging voltage falls below the off voltage and reaches turn-off, resulting in intermittent operation.
  • the wireless communication antenna even if the generated power is lower than the load power, it will operate temporarily, and even if the operation is confirmed under certain environmental conditions, is it possible to continue operating under those environmental conditions? I can't judge whether or not. For example, when the load 60 is a wireless communication antenna, even if the generated power temporarily falls below the load power at the time of transmission after the wireless communication antenna transmits radio waves once, the wireless communication antenna will transmit radio waves next time. If the generated power exceeds the standby load power, even if the generated power is lower than the average load power, it is mistaken that the wireless communication antenna emits the next radio wave and the wireless communication antenna continues to operate continuously. There is a risk of making a judgment.
  • the environment of the electronic device 100 with a solar cell is measured by measuring the voltage between the terminals of the inspection pad TP1 and the inspection pad TP2 (charging voltage of the power storage element 52) at the time of operation check. It is configured to clearly determine whether or not it will continue to operate under the conditions. Specifically, the light receiving surface of the dye-sensitized solar cell 20 is exposed to light of a constant illuminance, and the charging voltage of the power storage element 52 at that time is observed. It can be determined that continuous operation at the illuminance is guaranteed if the charging voltage increases with the passage of time from the time of starting.
  • the charging voltage of the power storage element 52 is observed for a certain period of time in a lighting environment in which the electronic device 100 with a solar cell is actually installed. It can be determined that continuous operation under the lighting environment is guaranteed if the charging voltage increases with the passage of time from the time of starting.
  • a balanced state is reached with a voltage at which the power generation and power consumption are balanced.
  • t1 indicates the time when the load 60 is activated
  • t2 and t3 indicate the time when the load 60 (wireless communication antenna) transmits radio waves.
  • the possibility of continuous operation is determined by the differential value obtained by the difference dv between the voltage at the predetermined time dt, the voltage at the start of operation, and the voltage after the predetermined time, that is, the slope, and if it is positive, continuous operation is possible.
  • t1 indicates the time when the load 60 is activated
  • t2 and t3 indicate the time when the load 60 (wireless communication antenna) transmits radio waves
  • t4 indicates the time when the load 60 is stopped
  • t5 indicates the time when the load 60 is restarted. This is related to the hysteresis characteristic explained earlier, and until the operation start voltage (around 3V in the example) is reached, the power consumption is close to 0, so charging proceeds, and the circuit starts at the operation start voltage and the power is increased. When the consumption starts, the power consumption is larger, so the voltage drops with time. When the voltage drops to the lower limit of operation voltage (around 2V in the example), the circuit shuts down and charging proceeds again.
  • charging is performed in a state where the load 60 does not operate while the voltage is rising.
  • the graph shown in FIG. 6 and the slope of the voltage are indicators for determining the minimum operating illuminance. That is, the inspection according to the present embodiment enables more reliable operation guarantee. For example, if the charging voltage of the power storage element 52 after a predetermined period from the start of operation of the load 60 is lower than the charging voltage of the power storage element 52 at the start of operation of the load 60, the electronic device 100 with a solar cell cannot actually be installed. Can be determined to be.
  • FIG. 7 shows a state in which the dye-sensitized solar cell 20 and the printed wiring board 30 are laminated in this order on the cover 10 in which the light receiving surface portion of the dye sensitized solar cell 20 is opened, and the printed wiring board 30 with respect to the light receiving surface is shown. Shows the back side.
  • the inspection pads 51a and 51b are exposed on the surface of the printed wiring board 30 opposite to the surface connected to the dye-sensitized solar cell 20.
  • the inspection pads 51a and 51b may be collectively referred to as an inspection pad 51.
  • the inspection pad 51a corresponds to the inspection pad TP1 in FIG. 4
  • the inspection pad 51b corresponds to the inspection pad TP2 in FIG.
  • the inspection pads 51a and 51b are also referred to as lands.
  • a dye-sensitized solar cell 20 is attached from the center to one end of the printed wiring board 30, and a load 60 such as a communication module and storage are stored in the same surface space on the other end side. Electrical components such as the element 52, the hysteresis switch 53, and various wirings are arranged.
  • the inspection pads 51a and 51b are provided on the side of the printed wiring board 30 opposite to the dye-sensitized solar cell 20 and the power storage element 52.
  • a plurality of power storage elements 52 are connected in parallel, a wiring 55 is drawn from the positive side of the plurality of power storage elements 52 to the first inspection pad 51a, and a second from the negative side of the plurality of power storage elements 52.
  • the wiring 55 is drawn up to the inspection pad 51b.
  • the inspection worker can determine whether or not the electronic device 100 with a solar cell has sufficient power generation capacity with the dye-sensitized solar cell 20 and the printed wiring board 30 attached to the cover 10. It is possible to determine whether or not the dye-sensitized solar cell 20 and the printed wiring board 30 are attached to the 10 in a normal position and posture.
  • the inspection worker arranges the electronic device 100 with a solar cell at a planned mounting location, for example, a wall or a ceiling, with the voltmeter connected to the first inspection pad 51a and the second inspection pad 51b. ..
  • the transition of the voltage of the power storage element 52 can be acquired by measuring the value of the voltmeter for a predetermined period. That is, it is possible to determine whether or not sufficient power can be continuously applied to the load 60 at the position where the dye-sensitized solar cell 20 is actually arranged, without being affected by the cover or the housing. ..
  • the predetermined period is preferably, for example, 30 seconds or less.
  • the dye increases. Since the generated power of the solar cell 20 is larger than the power consumed by the load 60 of the communication module or the like, the inspection worker determines that the electronic device 100 with the solar cell can be installed.
  • the dye increases. Since the generated power of the solar cell 20 is smaller than the power consumed by the load 60 of the communication module or the like, the inspection worker determines that the electronic device 100 with the solar cell cannot be installed.
  • the inspection worker arranges the light on a desk so that the light of the light is irradiated upward, and the light is in a state where the dye-sensitized solar cell 20 is directed downward.
  • the electronic device 100 with a solar cell is arranged above the above.
  • the transition of the voltage of the power storage element 52 can be obtained by measuring the voltages of the first inspection pad 51a and the second inspection pad 51b for a predetermined period, for example, 30 seconds or 1 minute. That is, it is possible to determine whether or not the dye-sensitized solar cell 20 can continue to supply sufficient power to the load 60 by a predetermined illuminance without being affected by the cover or the housing.
  • the predetermined period is preferably, for example, 30 seconds or less.
  • the inspection system 1 including the electronic device 100 with a solar cell and the inspection device 80 according to the above embodiment will be described.
  • the inspection device 80 mainly includes a voltmeter 81, a control unit 82, a display 83, and a speaker 84.
  • the voltmeter 81 is electrically connected to the inspection pad TP1 and the inspection pad TP2.
  • the voltmeter 81 measures the voltage between the inspection pad TP1 and the inspection pad TP2, and inputs the measurement result to the control unit 82.
  • the control unit 82 accumulates the charging voltage for a predetermined period and displays it on the display 83 as shown in FIG. That is, the inspection device 80 in the present embodiment measures the voltage waveform between the inspection pads TP1 and TP2 directly connected to the power storage element 52 in more detail, and observes the operating state of the load 60. By looking at the voltage waveform, it is possible to observe the voltage fluctuation when the device actually operates, so it is possible to guarantee that proper operation is being performed. For example, by confirming the waveform of the portion surrounded by the circle frame of t6 shown in FIG. 11, it can be determined that the load 60 is activated because a part of the electric power stored in the power storage element 52 is consumed.
  • FIG. 12 is an image diagram in which the control unit 82 displays the voltage waveform between the inspection pads TP1 and TP2 of the electronic device 100 with a solar cell having a radio antenna for transmitting radio waves as a load 60 at intervals of 100 msec on the display 83.
  • the round frame shown in FIG. 12 indicates the point where the voltage drops, and it can be seen that the voltage drops every 100 msec. That is, it can be guaranteed that the product operates normally at intervals of 100 msec as specified.
  • FIG. 13 displays a voltage waveform between the inspection pads TP1 and TP2 of the electronic device 100 with a solar cell when the control unit 82 activates a wireless antenna that transmits radio waves at intervals of 100 msec as a load 60 on the display 83.
  • the round frame shown in FIG. 13 indicates the point where the voltage has dropped, and it can be seen that the voltage drop is larger than that at the time of radio wave transmission.
  • the inspection worker can determine the operating state based on the difference in the voltage drop.
  • the control unit 82 measures the charging voltage for a predetermined period, and when the decrease in the charging voltage can be recognized after the turn-on voltage, that is, the first reference voltage is exceeded, the speaker 84 is used. It is preferable to output an error sound. This makes it possible to efficiently detect the electronic device 100 with a solar cell whose continuous operation cannot be guaranteed.
  • the control unit 82 may display the display 83 as an error instead of outputting the error sound from the speaker 84.
  • the control unit 82 measures the charging voltage for a predetermined period, and when the turn-on voltage, that is, the first reference voltage is exceeded and then drops to the turn-off voltage, that is, the second reference voltage or less, an error sound is emitted from the speaker 84. It may be output. This also makes it possible to detect the electronic device 100 with a solar cell whose continuous operation cannot be guaranteed.
  • the control unit 82 may display the display 83 as an error instead of outputting the error sound from the speaker 84.
  • Both the display 83 and the speaker 84 are members for notifying information. Therefore, in the present specification, the display 83 and the speaker 84 may be included and referred to as a notification unit. ⁇ Third embodiment>
  • a power meter 89 for measuring the power consumption of the load 60 may be added to the inspection system 1 of the above embodiment. Then, the control unit 82 may accumulate the charging voltage of the power storage element 52 for a predetermined period and the power consumption of the load 60, and display the graph showing the transition between the two on the display 83. This also makes it possible to detect the electronic device 100 with a solar cell whose continuous operation cannot be guaranteed.
  • the charging / discharging circuit 90 may be mounted on the above inspection system 1. As shown in FIG. 15, the charge / discharge circuit 90 is connected to the inspection pad TP1 and the inspection pad TP2. That is, the charge / discharge circuit 90 is connected in parallel with the power storage element 52.
  • control unit 82 controls the charge / discharge circuit 90 to arbitrarily operate the amount of electric power stored in the power storage element 52 in the electronic device 100 with a solar cell to store electricity. It is possible to measure and store the voltage change between the inspection pads TP1 and TP2 of the electronic device 100 with a solar cell in various states such as guaranteeing the operation when the amount of electric power is small, and to display it on the display 83. can.
  • the inspection system 1 when the power storage element 52 has a large capacity or when the inspection time becomes long when charging by energy harvesting, the inspection system 1 is quickly charged until just before the load 60 is started. It can also be used when it is difficult to guarantee continuous operation because it takes too much time to discharge.
  • the voltage between the inspection pads TP1 and TP2 is measured, and the determination is made based on the state of the voltage drop.
  • the capacity of the power storage element 52 becomes large, the voltage drop becomes small as the starting power of the load 60 becomes low, and the determination becomes difficult.
  • a new inspection pad TP3 is provided between the hysteresis switch 53 and the load 60.
  • the inspection pad TP3 is exposed on the surface of the printed wiring board 30 opposite to the surface connected to the dye-sensitized solar cell 20 like the inspection pads TP1 and TP2. .. Then, the voltage between the inspection pads TP3-TP2 is measured. Since the voltage between the inspection pads TP3 and TP2 is the voltage applied to the load 60, it is referred to as a load voltage in this specification.
  • the amount of change in the voltage between the inspection pads TP3-TP2 at the start of operation Is larger than the amount of change in voltage between the inspection pads TP1 and TP2. More specifically, as shown in FIG. 17, the increase width of the voltage between the inspection pads TP3-TP2 when turned on is larger than the increase width of the voltage between the inspection pads TP1-TP2. Therefore, it is less likely that the detection will be missed, and it can be reliably determined whether or not the power is supplied to the load 60.
  • the voltage between the inspection pads TP3-TP2 is lower than the voltage between the inspection pads TP1 and TP2 by a slight voltage drop due to the hysteresis switch 53.
  • the voltage between the inspection pads TP3 and TP2 is more accurate than the voltage between the inspection pads TP1 and TP2.
  • the inspection pads TP1-TP2 are added to the voltage information between the inspection pads TP3-TP2. Information on the voltage between them may be required.
  • the state transition of the hysteresis switch 53 is the power supplied by the dye sensitized solar cell 20 as it is. It is indistinguishable whether it was caused by the operation of the amount of electric power stored in the power storage element 52 by the charge / discharge circuit 90.
  • the charge / discharge circuit 90 controls to stop charging / discharging at the voltage immediately before the hysteresis switch 53 turns on or off, so that the final state transition of the hysteresis switch 53 is surely dye-sensitized solar cell 20.
  • the hysteresis switch 53 is in the off state, that is, when the voltage of the power storage element 52 is lower than the first threshold voltage, the voltage between the inspection pads TP3-TP2 is always close to 0V.
  • the timing at which the load 60 is started can be accurately obtained, so that the inspection accuracy is improved. ..
  • the amount of change in voltage between inspection pads TP1-TP2 exceeds the first predetermined value, or the amount of change in voltage between inspection pads TP3-TP2 is When the second predetermined value is exceeded, it is determined that the load 60 has been started. It is preferable to set the second predetermined value larger than the first predetermined value.
  • the load is applied when the voltage change between the inspection pads TP3-TP2 exceeds the second predetermined value without utilizing the voltage change between the inspection pads TP1 and TP2. It may be determined that 60 has been activated.
  • the electronic device 100 with a solar cell according to the fifth embodiment and the inspection device 80 according to the second embodiment may be combined to form an inspection system.
  • the voltmeter 81 is electrically connected to the inspection pad TP3 and the inspection pad TP2.
  • the voltmeter 81 measures the voltage between the inspection pad TP3 and the inspection pad TP2, that is, the load voltage, and inputs the measurement result to the control unit 82.
  • the control unit 82 may measure the load voltage for a predetermined period and output an error sound from the speaker 84 if a decrease in the load voltage can be recognized after the turn-on voltage, that is, the first reference voltage is exceeded. ..
  • control unit 82 measures the load voltage for a predetermined period, and when the turn-on voltage, that is, the first reference voltage is exceeded and then drops to the turn-off voltage, that is, the second reference voltage or less, an error sound is emitted from the speaker 84. It may be output. This makes it possible to efficiently detect the electronic device 100 with a solar cell whose continuous operation cannot be guaranteed.
  • Inspection system 10 Front cover 11: Cushion material 20: Dye-sensitized solar cell 30: Printed wiring board 31a: Conductive cushion material 31b: Conductive cushion material 40: Back cover 51: Inspection pad 51a: First inspection Pad 51b: Second inspection pad 52: Power storage element 53: Hysteresis switch 55: Wiring 60: Load 80: Inspection device 81: Voltage meter 82: Control unit 83: Display 84: Speaker 89: Power meter 90: Charge / discharge circuit 100 : Electronic device with solar cell C1: Capacitor F: Conversion function G: Conversion function TP1: Inspection pad TP2: Inspection pad TP3: Inspection pad

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

環境発電素子と、環境発電素子が発電した電力が供給される負荷(60)と、環境発電素子と負荷との間に接続されるヒステリシススイッチ(53)と、環境発電素子とヒステリシススイッチとの間で、環境発電素子と並列に接続された少なくとも1つの蓄電素子(52)と、蓄電素子の一端およびヒステリシススイッチの一端に電気的に接続された第1のランド(51a)と、蓄電素子の他端と電気的に接続された第2のランド(51b)と、を備えた電子機器(100)が提供される。

Description

[規則37.2に基づきISAが決定した発明の名称] 電子機器、電子機器の検査方法、および電子機器の検査システム
 本開示は、光電変換素子を搭載した電子機器、電気機器の検査方法、および電子機器の検査システムの技術に関する。
 従来から、太陽電池などの光電変換素子を搭載した電子機器が知られている。たとえば、特開2017-208939号公報(特許文献1)には、発信装置、発信方法、及びプログラムが開示されている。特許文献1によると、ビーコンは、太陽電池の出力電圧、出力電流、発電量等から太陽電池のパネル面の照度を検知する(ステップS11)。続いて、ビーコンは、ステップS11において検知された照度を変換関数F又は変換関数Gに代入して電波発信間隔又は電波発信強度を算出し、発信部から発信する電波の制御パラメータとして設定する(ステップS12)。そして、ビーコンは、ステップS12において設定した制御パラメータに基づいて、電波を発信制御する(ステップS13)。
特開2017-208939号公報
 本開示の目的は、発電能力を効率的に検査するための技術を提供することにある。
 本開示の一態様に従うと、環境発電素子と、環境発電素子が発電した電力が供給される負荷と、環境発電素子と負荷との間に接続されるヒステリシススイッチと、環境発電素子とヒステリシススイッチとの間で、環境発電素子と並列に接続された少なくとも1つの蓄電素子と、蓄電素子の一端およびヒステリシススイッチの一端に電気的に接続された第1のランドと、蓄電素子の他端と電気的に接続された第2のランドと、を備えた電子機器が提供される。
 以上のように、本開示によれば、発電能力を効率的に検査するための技術が提供される。
第1の実施の形態にかかる太陽電池付電子機器100の全体を示す正面図である。 第1の実施の形態にかかる太陽電池付電子機器100の使用状態を示すイメージ図である。 第1の実施の形態にかかる太陽電池付電子機器100の組み立て正面斜視図である。 第1の実施の形態にかかるプリント配線基板30の回路図である。 第1の実施の形態にかかる蓄電素子の電圧の推移を示す第1のグラフである。 第1の実施の形態にかかる蓄電素子の電圧の推移を示す第2のグラフである。 第1の実施の形態にかかる太陽電池付電子機器100のプリント配線基板の背面図である。 第1の実施の形態にかかるプリント配線基板30の構成を示す正面斜視図である。 第1の実施の形態にかかるプリント配線基板30と色素増感太陽電池20と検査パッド51と蓄電素子52の配置構成を示す断面図である。 第2の実施の形態にかかる太陽電池付電子機器100の全体構成を示す図である。 第2の実施の形態にかかる蓄電素子の電圧の推移を示す第1のグラフである。 第2の実施の形態にかかる蓄電素子の電圧の推移を示す第2のグラフである。 第2の実施の形態にかかる蓄電素子の電圧の推移を示す第3のグラフである。 第3の実施の形態にかかる太陽電池付電子機器100の全体構成を示す図である。 第4の実施の形態にかかる太陽電池付電子機器100の全体構成を示す図である。 第5の実施の形態にかかるプリント配線基板30の回路図である。 第5の実施の形態にかかる検査パッドTP1-TP2間の電圧および検査パッドTP3-TP2間の電圧の推移を示すグラフである。
 以下、図面を参照しつつ、本開示の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
 <第1の実施の形態>
 <太陽電池付電子機器100の全体構成>
 光電変換素子を搭載する電子機器の一例として、本実施の形態にかかる太陽電池付電子機器100の全体構成について説明する。図1を参照して、太陽電池付電子機器100は、正面視において、縦長の略長方形に形成されている。
 そして、図2に示すように、太陽電池付電子機器100は、たとえば、壁面や天井などに取り付けられて使用される。好ましくは、建物や地下街などに、複数の太陽電池付電子機器100が配置される。たとえば、太陽電池付電子機器100の各々は、アンテナから特定の信号を発信する。通行人が保持するスマートフォンなどの端末は、当該信号を受信して、自身の詳しい現在位置を特定したり、その他の情報を取得したりすることができる。また、太陽電池付電子機器100の各々は、各種センサで各種測定を行ったりする。
 図3に示すように、本実施の形態にかかる太陽電池付電子機器100は、主に、正面カバー10と、クッション材11と、色素増感太陽電池20(以下、DSCと称する場合もある。)と、プリント配線基板30と、背面カバー40とを有する。
 正面カバー10には、色素増感太陽電池20の発電部すなわち受光部が露出するための開口部が形成される。正面カバー10は、たとえば樹脂成型品である。
 クッション材11は、弾性を有し、色素増感太陽電池20に与えられる各種の衝撃を吸収することができる。
 色素増感太陽電池20は、屋内環境下、でも利用できる。色素増感太陽電池20は、蛍光灯やLED照明の光などでも発電しやすい。また、別の実施形態では、色素増感太陽電池20に代えて、エネルギーハーベスティングの分野における、いわゆる環境発電素子を用いてもよい。色素増感太陽電池20に代えて、振動発電素子、熱発電素子を用いる場合、正面カバー10に開口部が形成されなくてもよい。
 プリント配線基板30は、導体の配線を有する基板であり、電子部品を取り付けてそれらを電気的に接続する。本明細書では、プリント配線基板を、配線基板または基板と呼ぶこともある。
 背面カバー40は、樹脂などで構成される。背面カバー40は、正面カバー10とビス止めまたはツメ嵌合等で固定される。正面カバー10と背面カバー40とによって、色素増感太陽電池20およびプリント配線基板30を収容する筐体を形成する。
 <太陽電池付電子機器100の検査機構>
 本実施の形態にかかる太陽電池付電子機器100は、図4に示すように、主に、色素増感太陽電池20、主に、蓄電素子52、ヒステリシススイッチ53、負荷60などによって構成されている。検査パッドTP1は、蓄電素子52の一端およびヒステリシススイッチ53の一端に電気的に接続されている。検査パッドTP2は、蓄電素子52の他端に電気的に接続されている。
 本実施の形態においては、色素増感太陽電池20が利用されているが、エネルギーハーベスティングの分野における、いわゆる環境発電素子であれば、適用可能である。環境発電素子とは、色素増感太陽電池20に限らず、ペロブスカイト型太陽電池、有機薄膜太陽電池、a-Si太陽電池、振動発電素子、熱発電素子などを用いることができる。
 蓄電素子52は、本実施の形態においては、複数のコンデンサC1などを含む。別の実施形態では、蓄電素子52は、たとえば、二次電池であってもよい。本実施の形態にかかる蓄電素子52の複数のコンデンサC1の静電容量の合計は、100μF~5mFである。
 色素増感太陽電池20が発電した電力が供給される負荷60としては、特に限定するものではないが、たとえば、ビーコンなどの発信機、マイコン、温度センサ、湿度センサ、圧電センサなどの各種センサなどが挙げられる。なお、負荷60は、上記以外にリチウムイオン電池などの電池であってもよい。
 より詳細には、本実施の形態においては、太陽電池付電子機器100は、負荷60として、無線通信アンテナを搭載する。たとえば、無線通信アンテナは、たとえば、ビーコンであり、50msec毎に受信機側の位置情報取得するためにBluetooth(登録商標)の電波を発信する。無線通信アンテナの電波発信間隔は、特に限定されないが、たとえば、50msec以上24時間以下の所定期間毎、好ましくは100msec以上30sec以下の所定期間毎、より好ましくは100msec以上1sec以下の所定期間毎である。
 以下では、本実施の形態にかかる太陽電池付電子機器100の検査機構について詳述する。色素増感太陽電池20の光発電素子の動作下限照度を測定する場合において、検査工程等で本来の動作下限照度以下の照度環境でも一時的に動作してしまう場合があり、動作下限照度を正確に保障することが困難である。
 より詳細には、色素増感太陽電池20により充電された電力を用いて半導体負荷(マイコン等を用いた機器、ビーコン発信用の無線通信アンテナを備えた通信モジュール、など)を動かす場合、蓄電素子と負荷を直接つなぐと、充電電圧が負荷の最低動作電圧を上回った瞬間、負荷の起動時に突入電流が発生し、充電電圧がドロップする。その結果、充電電圧が負荷の最低動作電圧を下回り、負荷が停止するため、負荷を起動できないというような症状に至る。
 このため、本実施の形態などにかかる太陽電池付電子機器100に関しては、図4に示すように、ヒステリシススイッチ53を搭載することが有効である。ヒステリシススイッチ53は、オン電圧すなわち第1基準電圧を超えるとターンオンし、オフ電圧すなわち第2基準電圧を下回るとターンオフとなる。オン電圧>オフ電圧となるように設計されているため、オフの状態においてオフ電圧を超えてもオン電圧に達さない限りターンオンしないし、またオンの状態でオン電圧を下回ってもターンオフせずにオフ電圧を下回ってからターンオフする。
 なお、第1基準電圧は、色素増感太陽電池20の開放電圧Vocの65%以上90%以下に設定されることが好ましい。また、第2基準電圧は、第1基準電圧よりも低く、かつ負荷60の最低動作電圧以上に設定されることが好ましい。
 この値は、色素増感太陽電池の最大電力点電圧Vpmaxに基づく。たとえば、ある6セルの色素増感太陽電池の実測値は、Voc=3.8V、Vpmax=3.0Vであり、VocとVpmaxの比率は約78.9%である。この比率は、発電効率等の環境要因と、色素増感太陽電池の色素吸着量やセルサイズ等の個体差要因によって変動する。そこで、この比率を80%として、まずその±10%の範囲を許容範囲とする。さらに、高照度環境では効率・フィルファクタが大きく低下する為、マイナス方向へは15%の範囲を許容範囲とする。これにより、第1基準電圧は、色素増感太陽電池20の開放電圧Vocの65%以上90%以下に設定されることが好ましい。
 また、第1基準電圧は、色素増感太陽電池20の開放電圧Vocの75%以上85%以下に設定されることがさらに好ましい。また、第2基準電圧は、第1基準電圧よりも低く、かつ負荷60の最低動作電圧以上に設定されることが好ましい。この値は、上記と同様にVocとVpmaxの比率を80%として、その±5%の範囲を許容範囲とした値である。
 そして、本実施の形態にかかる太陽電池付電子機器100に関しては、色素増感太陽電池20によって発電された電力はコンデンサなどの蓄電素子52に蓄えられる。そして、充電電圧がオン電圧を上回ると、ヒステリシススイッチ53がターンオンし、通信モジュールなどの負荷60に電力が供給される。
 この時、発電電力が負荷電力を上回っていれば、負荷60に電力が供給され続け、オン状態を維持するため連続動作となる。一方、発電電力が負荷電力を下回るような場合でも充電電圧はオフ電圧以上であるため、しばらくオン状態となり充電電圧が減少していく。そしていずれは充電電圧がオフ電圧を下回ってターンオフにまで至るため、結果的に間欠動作となる。
 このように、発電電力が負荷電力を下回るような場合でも一時的には動作してしまい、ある環境条件下で動作確認を行っても、その環境条件において連続的に動作し続けることが可能か否かの判断ができない。たとえば、負荷60が無線通信アンテナの場合、無線通信アンテナが一度電波を発信してから一時的に発電電力が発信時負荷電力を下回ったとしても、次に無線通信アンテナが電波を発信するまでに発電電力が待機時負荷電力を上回っていれば、発電電力が平均負荷電力を下回っていても、無線通信アンテナが次の電波を発信し、無線通信アンテナが連続的に動作し続けていると誤った判断がされる恐れがある。
 そこで、本実施の形態にかかる太陽電池付電子機器100に関しては、動作確認の際に検査パッドTP1と検査パッドTP2の端子間の電圧(蓄電素子52の充電電圧)を測定する事で、その環境条件下において動作し続けるかどうかを明確に判断する構成となっている。具体的には、色素増感太陽電池20の受光面に一定照度の光を当て、その際の蓄電素子52の充電電圧を観測する。時間経過に対し、充電電圧が起動時より増加していればその照度における連続動作は保証されると判断することができる。また、太陽電池付電子機器100が実際に設置される照明環境下において、一定時間、蓄電素子52の充電電圧を観測する。時間経過に対し、充電電圧が起動時より増加していればその照明環境下における連続動作は保証されると判断することができる。
 より詳細には、発電電力>消費電力が成立する(発電電力が大きい)場合、図5に示すように発電電力と消費電力とがつり合う電圧で均衡状態となる。図5において、t1は負荷60が起動した時間を示し、t2およびt3は負荷60(無線通信アンテナ)が電波を発信した時間を示す。この状態では、連続動作が可能であることがグラフからわかるため、連続動作が保証される。具体的には、所定時間dtと動作開始時の電圧と所定時間後の電圧との差dvにより求められる微分値すなわち傾きにより連続動作の可否が求められ、正の場合連続動作可能である。
 一方、発電電力>消費電力が成立しない(消費電力が大きい)場合、図6に示すように電圧の上下運動がみられる。図6において、t1は負荷60が起動した時間を示し、t2およびt3は負荷60(無線通信アンテナ)が電波を発信した時間を示す。また、図6において、t4は負荷60が停止した時間を示し、t5は負荷60が再起動した時間を示す。これは先に説明したヒステリシス特性が関与しており、動作開始電圧(例では3V付近)に到達するまでは消費電力は0に近いため充電が進行し、動作開始電圧で回路が起動し電力の消費が始まると消費電力のほうが大きいため電圧が時間とともに下降していく。動作下限電圧(例では2V付近)まで低下すると回路がシャットダウンし、再び充電が進行するというサイクルとなる。
 図6に示す状態では、電圧上昇中は負荷60が動作しない状態で充電が行われている。このように、図6に示すグラフを見ることによって連続動作が保証されないことがわかるため、図6に示すグラフや電圧の傾きが最低動作照度を決定するための指標となることがわかる。つまり、本実施の形態にかかる検査によって、より信頼性の高い動作保証が可能となる。たとえば、負荷60の動作開始時の蓄電素子52の充電電圧より、負荷60の動作開始から所定の期間後の蓄電素子52の充電電圧が低い場合、太陽電池付電子機器100が実際に設置不可能であると判定することができる。
 なお、図6に示す状態に関しても、定期的に動作させる負荷60、たとえばビーコンであれば、一定間隔で電波を発信している恐れがある。つまり、発信間隔を検査するだけでは連続動作可能かどうか判定はできない。
 <太陽電池付電子機器100の組み立て工程と検査工程>
 以下、本実施の形態にかかる太陽電池付電子機器100の検査工程について詳述する。図7は、色素増感太陽電池20の受光面の部分が開口されたカバー10に、色素増感太陽電池20、プリント配線基板30を順に積層された状態で、受光面に対するプリント配線基板30の裏面を示す。
 本実施の形態においては、この状態において、プリント配線基板30の色素増感太陽電池20と接続されている面とは反対側の面に、検査パット51aおよび51bが露出している。なお、本明細書では、検査パット51aおよび51bをまとめて検査パッド51と呼ぶこともある。また、検査パッド51aは図4における検査パッドTP1に対応し、検査パッド51bは図4における検査パッドTP2に対応する。また、検査パッド51aおよび51bは、ランドとも呼ばれる。
 より詳細には、図8および図9に示すように、プリント配線基板30の中央から一端にかけて色素増感太陽電池20が取り付けられ、他端側の同一面スペースに通信モジュールなどの負荷60や蓄電素子52やヒステリシススイッチ53や各種配線などの電装部品が配置される。本実施の形態においては、プリント配線基板30の、色素増感太陽電池20や蓄電素子52とは反対側に検査パッド51a,51bが設けられる。より詳細には、複数の蓄電素子52が並列に接続され、複数の蓄電素子52のプラス側から第1の検査パッド51aまで配線55が引かれ、複数の蓄電素子52のマイナス側から第2の検査パッド51bまで配線55が引かれる。
 これによって、検査作業員は、カバー10に、色素増感太陽電池20とプリント配線基板30とが取り付けられた状態で、太陽電池付電子機器100が十分な発電能力を有するか否か、あるいはカバー10に対して正常な位置や姿勢で色素増感太陽電池20とプリント配線基板30とが取り付けられているか否かを判断することができる。
 具体的には、検査作業員は、第1の検査パッド51aと第2の検査パッド51bに電圧計を接続した状態で、太陽電池付電子機器100を取り付け予定箇所、たとえば壁や天井に配置する。この状態で、所定期間、電圧計の値を測定することによって、蓄電素子52の電圧の推移を取得することができる。つまり、色素増感太陽電池20が実際に配置される位置において、負荷60に対して十分な電力を与え続けられるかどうかを、カバーや筐体の影響を受けることなく判別する事が可能となる。なお、所定期間は、たとえば30秒以下であることが好ましい。
 そして、図5に示すように、検査パッド51a,51b間の電圧が負荷ON状態でも増加していく場合、あるいは測定開始時よりも所定期間後の充電電圧が上昇している場合は、色素増感太陽電池20の発電電力が通信モジュールなどの負荷60の消費電力よりも大きいため、検査作業員は、太陽電池付電子機器100を設置可能であると判断する。一方、図6に示すように、検査パッド51a,51b間の電圧が負荷ON状態で減少していく場合、あるいは測定開始時よりも所定期間後の充電電圧が減少している場合は、色素増感太陽電池20の発電電力が通信モジュールなどの負荷60の消費電力よりも小さいため、検査作業員は、太陽電池付電子機器100を設置不可能であると判断する。
 あるいは、検査作業員は、太陽電池付電子機器100の出荷前に、ライトの光が上方に照射されるように机上に配置して、色素増感太陽電池20を下に向けた状態で当該ライトの上方に太陽電池付電子機器100を配置する。この状態で、所定期間、たとえば30秒や1分間など、第1の検査パッド51aと第2の検査パッド51bの電圧を測定することによって、蓄電素子52の電圧の推移を取得することができる。つまり、所定の照度によって色素増感太陽電池20が負荷60に対して十分な電力を与え続けられるかどうかを、カバーや筐体の影響を受けることなく判別する事が可能となる。なお、所定期間は、たとえば30秒以下であることが好ましい。
 そして、図5に示すように、検査パッド51a,51b間の電圧が負荷ON状態でも増加していく場合、あるいは測定開始時よりも所定期間後の充電電圧が上昇している場合は、色素増感太陽電池20の発電電力が通信モジュールなどの負荷60の消費電力よりも大きいため、検査作業員は、太陽電池付電子機器100を出荷可能であると判断する。一方、図6に示すように、検査パッド51a,51b間の電圧が負荷ON状態で減少していく場合、あるいは測定開始時よりも所定期間後の充電電圧が減少している場合は、色素増感太陽電池20の発電電力が通信モジュールなどの負荷60の消費電力よりも小さいため、検査作業員は、太陽電池付電子機器100を出荷不可能であると判断する。
 <第2の実施の形態>
 上記の実施の形態の太陽電池付電子機器100と検査装置80とを含む検査システム1について説明する。図10に示すように、検査装置80は、主に、電圧計81と、制御部82と、ディスプレイ83と、スピーカ84とを含む。
 電圧計81は、検査パッドTP1と検査パッドTP2に電気的に接続される。電圧計81は、検査パッドTP1と検査パッドTP2との間の電圧を測定して、測定結果を制御部82に入力する。
 制御部82は、所定期間の充電電圧を蓄積して、図11に示すように、ディスプレイ83に表示させる。つまり、本実施の形態における検査装置80は、蓄電素子52と直接接続された検査パッドTP1-TP2間の電圧波形をより詳しく測定し、負荷60の動作状態を観測するものである。電圧波形を見ることで、デバイスが実際に動作した時の電圧変動を観測できるため、適切な動作が行われていることを保証できる。たとえば、図11に示す、t6の丸枠で囲まれた部分の波形を確認することで、蓄電素子52に蓄積された電力の一部が消費されたため、負荷60が起動したことが判断できる。また、図11に示すt7の丸枠で囲まれた部分の波形を確認することで、蓄電素子52に蓄積された電力の一部が消費され、かつ、負荷60が起動したときよりも消費電力が小さいので、負荷60から電波が発信されたことを判断できる。つまり、単なる電圧値としてだけでなく、時間変化を含めた波形として参照することでより詳細な観測が可能になる。
 たとえば、負荷60の動作中において、消費電力が変動する動作を行う場合は端子間電圧も変動する。図12は、制御部82が、ディスプレイ83に、負荷60として100msec間隔で電波を発信する無線アンテナを有する太陽電池付電子機器100の検査パッドTP1-TP2間の電圧波形を表示したイメージ図である。図12に記載された丸枠は、電圧が降下した点を示し、100msec毎に電圧が降下していることがわかる。つまり、仕様通り100msec間隔で正常に動作していることが保証できる。
 また、図13は、制御部82が、ディスプレイ83に、負荷60として100msec間隔で電波を発信する無線アンテナを起動したときの太陽電池付電子機器100の検査パッドTP1-TP2間の電圧波形を表示したイメージ図である。図13に記載された丸枠は、電圧が降下した点を示し、電波発信時よりも大きな電圧降下が起こっていることが分かる。このように、本実施の形態においては、検査作業員が電圧降下の違いによって動作状態の判定ができる。
 また、図10に戻って、制御部82は、所定期間の充電電圧を測定して、ターンオン電圧すなわち第1基準電圧を超えた後において、充電電圧の低下が認識できた場合は、スピーカ84からエラー音を出力させることが好ましい。これによって、連続動作が保証できない太陽電池付電子機器100を効率的に検知することができる。なお、制御部82は、スピーカ84からエラー音を出力させるかわりに、ディスプレイ83にエラーであることを表示させても良い。
 なお、制御部82は、所定期間の充電電圧を測定して、ターンオン電圧すなわち第1基準電圧を超えた後において、ターンオフ電圧すなわち第2基準電圧以下まで下がった場合に、スピーカ84からエラー音を出力させてもよい。これによっても、連続動作が保証できない太陽電池付電子機器100を検知することができる。なお、制御部82は、スピーカ84からエラー音を出力させるかわりに、ディスプレイ83にエラーであることを表示させても良い。
 なお、ディスプレイ83およびスピーカ84は共に、情報を通知する部材である。従って、本明細書では、ディスプレイ83およびスピーカ84を包含して、通知部と呼ぶこともある。
 <第3の実施の形態>
 図14に示すように、上記の実施の形態の検査システム1に負荷60の消費電力を測定する電力計89を追加してもよい。そして、制御部82は、所定期間の蓄電素子52の充電電圧と、負荷60の消費電力とを蓄積して、両者の推移を示すグラフを重ねてディスプレイ83に表示させてもよい。これによっても、連続動作が保証できない太陽電池付電子機器100を検知することができる。
 <第4の実施の形態>
 また、上記の検査システム1に充放電回路90を搭載してもよい。図15に示すように、充放電回路90は、検査パッドTP1および検査パッドTP2に接続される。つまり、蓄電素子52に並列に充放電回路90を接続する。
 本実施の形態においては、制御部82は、充放電回路90を制御することによって、太陽電池付電子機器100の内の蓄電素子52に蓄えられている電力量を任意に操作することによって、蓄電電力量が僅かな状態での動作保証など、様々な状態での太陽電池付電子機器100の検査パッドTP1-TP2間の電圧変化を測定して蓄積したり、ディスプレイ83に表示したりすることができる。
 また、本実施の形態にかかる検査システム1は、蓄電素子52が大容量の場合や、環境発電での充電では検査時間が長くなってしまう場合などに、負荷60の起動直前まで急速充電させることや、放電に時間がかかりすぎるために連続動作の保証が困難である場合などにも利用できる。
 <第5の実施の形態>
 上記の実施の形態においては、負荷60が起動したかどうかを判断するために、検査パッドTP1-TP2間の電圧を測定し、その電圧降下の状態によって判断していた。しかし、蓄電素子52の容量が大きくなったり、負荷60の低起動電力化などにつれて電圧降下が小さくなり、判断が難しくなったりする可能性がある。
 そこで、本実施の形態においては、図16に示すように、ヒステリシススイッチ53と負荷60との間に、新たな検査パッドTP3を設ける。なお、図示していないが、検査パッドTP3は、検査パットTP1およびTP2と同様に、プリント配線基板30の色素増感太陽電池20と接続されている面とは反対側の面に露出している。そして、検査パッドTP3-TP2間の電圧を測定する。検査パッドTP3-TP2間の電圧は、負荷60にかけられた電圧であるため、本明細書では負荷電圧と呼ぶ。検査パッドTP3-TP2間の電圧は、接続された負荷60に電力供給が開始されたと同時に0Vから蓄電素子52の電圧に変化する為、動作開始時の検査パッドTP3-TP2間の電圧の変化量は、検査パッドTP1-TP2間の電圧の変化量よりも大きくなる。より詳細には、図17に示すように、ONした場合における、検査パッドTP3-TP2間の電圧の上昇幅の方が、検査パッドTP1-TP2間の電圧の上昇幅よりも大きくなる。したがって、検出取りこぼしが起こりにくくなり、負荷60に電力供給がされたか否かが確実に判定できる。
 検査パッドTP3-TP2間の電圧は、検査パッドTP1-TP2間の電圧と比較すると、ヒステリシススイッチ53によるわずかな電圧降下分だけ低くなる。負荷60にかかる電圧の情報としては、検査パッドTP3-TP2間の電圧の方が、検査パッドTP1-TP2間の電圧より正確である。
 また、上記の第4の実施の形態で説明したように、上記の検査システム1に充放電回路90を接続した場合、検査パッドTP3-TP2間の電圧の情報に加えて、検査パッドTP1-TP2間の電圧の情報が必要となる場合がある。たとえば、充放電回路90が主に検査時間の短縮を目的として利用され、充放電回路90が充放電を行う場合、そのままではヒステリシススイッチ53の状態遷移が、色素増感太陽電池20が供給する電力により引き起こされたのが、充放電回路90による蓄電素子52に蓄えられている電力量の操作によって引きこされたのかの区別がつかない。そのため、充放電回路90は、ヒステリシススイッチ53がターンオンまたはターンオフする直前の電圧で充放電を停止する制御を行うことで、ヒステリシススイッチ53の最終的な状態遷移が、確実に色素増感太陽電池20によって引き起こされるようにする。たとえば、ヒステリシススイッチ53がオフ状態のとき、すなわち蓄電素子52の電圧が第一閾値電圧よりも低い時は、検査パッドTP3-TP2間の電圧は常に0Vに近い。そのため、検査パッドTP3-TP2間の電圧の情報のみでは、蓄電素子53の電圧を監視してヒステリシススイッチのターンオン直前に充放電回路90による充電を停止するという制御を行うことはできない。検査パッドTP3-TP2間の電圧に加えて検査パッドTP1-TP2間の電圧の情報があれば、このような制御を行うことが可能である。また、上記理由により、検査パッドTP3-TP2間の電圧に加えて検査パッドTP1-TP2間の電圧が判れば、蓄電素子53の充電状態をモニタリングすることや、蓄電素子53そのものの検査を同時に行うこともできる。
 また、検査パッドTP3-TP2間の電圧と測定検査パッドTP1-TP2間の電圧とを組み合わせて利用することによって、負荷60が起動されたタイミングを正確に得ることができる為、検査精度が向上する。たとえば、本実施の形態にかかる検査システム1においては、検査パッドTP1-TP2間の電圧の変化量が第1の所定値を超えた場合、または、検査パッドTP3-TP2間の電圧の変化量が第2の所定値を超えた場合、に負荷60が起動されたと判断する。第1の所定値よりも第2の所定値を大きく設定することが好ましい。
 ただし、本実施の形態にかかる検査システム1においては、検査パッドTP1-TP2間の電圧変化を利用せずに、検査パッドTP3-TP2間の電圧変化が第2の所定値を超えた場合に負荷60が起動されたと判断してもよい。
 なお、今回開示された実施の形態を組み合わせることも可能である。たとえば、第5の実施の形態に係る太陽電池付電子機器100と、第2の実施の形態に係る検査装置80とを組み合わせ、検査システムとしても良い。この場合、電圧計81は、検査パッドTP3と検査パッドTP2に電気的に接続される。電圧計81は、検査パッドTP3と検査パッドTP2との間の電圧、すなわち負荷電圧を測定して、測定結果を制御部82に入力する。制御部82は、所定期間の負荷電圧を測定して、ターンオン電圧すなわち第1基準電圧を超えた後において、負荷電圧の低下が認識できた場合は、スピーカ84からエラー音を出力させても良い。また、制御部82は、所定期間の負荷電圧を測定して、ターンオン電圧すなわち第1基準電圧を超えた後において、ターンオフ電圧すなわち第2基準電圧以下まで下がった場合に、スピーカ84からエラー音を出力させてもよい。これによって、連続動作が保証できない太陽電池付電子機器100を効率的に検知することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1   :検査システム
10  :正面カバー
11  :クッション材
20  :色素増感太陽電池
30  :プリント配線基板
31a :導電性クッション材
31b :導電性クッション材
40  :背面カバー
51  :検査パッド
51a :第1の検査パッド
51b :第2の検査パッド
52  :蓄電素子
53  :ヒステリシススイッチ
55  :配線
60  :負荷
80  :検査装置
81  :電圧計
82  :制御部
83  :ディスプレイ
84  :スピーカ
89  :電力計
90  :充放電回路
100 :太陽電池付電子機器
C1  :コンデンサ
F   :変換関数
G   :変換関数
TP1 :検査パッド
TP2 :検査パッド
TP3 :検査パッド

Claims (27)

  1.  環境発電素子と、
     前記環境発電素子が発電した電力が供給される負荷と、
     前記環境発電素子と前記負荷との間に接続されるヒステリシススイッチと、
     前記環境発電素子と前記ヒステリシススイッチとの間で、前記環境発電素子と並列に接続された少なくとも1つの蓄電素子と、
     前記蓄電素子の一端および前記ヒステリシススイッチの一端に電気的に接続された第1のランドと、
     前記蓄電素子の他端に電気的に接続された第2のランドと、を備えた電子機器。
  2.  前記環境発電素子と前記ヒステリシススイッチと前記蓄電素子とを搭載した基板をさらに備え、
     前記第1のランドと前記第2のランドは、前記基板の前記環境発電素子が搭載された面の裏面から露出している、請求項1に記載の電子機器。
  3.  前記第1のランドと前記第2のランドに電気的に接続され、前記蓄電素子の充電電圧を測定する電圧計をさらに備える、請求項1または2のいずれか1項に記載の電子機器。
  4.  制御回路と、
     通知部とをさらに備え、
     前記制御回路は、前記電圧計の測定結果が第1基準電圧を超えた後の所定の期間内に前記第1基準電圧よりも低い第2基準電圧を下回った場合に、前記通知部にエラーを発信するよう指示する、請求項3に記載の電子機器。
  5.  環境発電素子と、
     前記環境発電素子が発電した電力が供給される負荷と、
     前記環境発電素子と前記負荷との間に接続されるヒステリシススイッチと、
     前記環境発電素子と前記ヒステリシススイッチとの間で、前記環境発電素子と並列に接続された少なくとも1つの蓄電素子と、
     前記ヒステリシススイッチの一端および前記負荷の一端に電気的に接続された第3のランドと、
     前記負荷の他端に電気的に接続された第2のランドと、を備えた電子機器。
  6.  前記環境発電素子と前記ヒステリシススイッチと前記蓄電素子とを搭載した基板をさらに備え、
     前記第3のランドと前記第2のランドは、前記基板の前記環境発電素子が搭載された面の裏面から露出している、請求項5に記載の電子機器。
  7.  前記第3のランドと前記第2のランドに電気的に接続され、前記負荷にかけられた負荷電圧を測定する第2の電圧計をさらに備える、請求項5または6のいずれか1項に記載の電子機器。
  8.  制御回路と、
     通知部とをさらに備え、
     前記制御回路は、前記第2の電圧計の測定結果が第1基準電圧を超えた後の所定の期間内に前記第1基準電圧よりも低い第2基準電圧を下回った場合に、前記通知部にエラーを発信するよう指示する、請求項7に記載の電子機器。
  9.  前記環境発電素子の受光部分を露出し、前記基板の前記環境発電素子が搭載された面を覆うカバー、をさらに備えた、請求項2または6のいずれか1項に記載の電子機器。
  10.  前記負荷はアンテナを含む、請求項1から9のいずれか1項に記載の電子機器。
  11.  前記アンテナから発信される電波または電磁波の発信間隔は、50ミリ秒以上24時間以下である、請求項10に記載の電子機器。
  12.  前記負荷がセンサを含む、請求項1から11のいずれか1項に記載の電子機器。
  13.  前記少なくとも1つの蓄電素子を含む蓄電回路の静電容量の合計は、100μF以上5mF以下である、請求項1から12のいずれか1項に記載の電子機器。
  14.  前記環境発電素子は、光電変換素子である、請求項1から13のいずれか1項に記載の電子機器。
  15.  環境発電素子と、
     前記環境発電素子が発電した電力が供給される負荷と、
     前記環境発電素子と前記負荷との間に接続されるヒステリシススイッチと、
     前記環境発電素子と前記ヒステリシススイッチとの間で、前記環境発電素子と並列に接続された少なくとも1つの蓄電素子と、を備える電気機器の検査方法であって、
     前記電子機器を設置したい場所において、前記蓄電素子の充電電圧または前記負荷にかけられた負荷電圧を所定の期間観測する、電気機器の検査方法
  16.  前記充電電圧または前記負荷電圧が、第1基準電圧を超えた後の所定の期間内に前記第1基準電圧よりも低い第2基準電圧を下回った場合に、前記設置したい場所では前記電子機器の設置不可と判定する、請求項15に記載の電子機器の検査方法。
  17.  前記所定の期間とは、30秒以下である、請求項15または16に記載の電子機器の検査方法。
  18.  前記第1基準電圧は、前記環境発電素子のVocの65%以上90%以下であり、前記第2基準電圧は前記負荷の最低動作電圧以上である、請求項16に記載の電子機器の検査方法。
  19.  前記第1基準電圧は、前記環境発電素子のVocの75%以上85%以下であり、前記第2基準電圧は前記負荷の最低動作電圧以上である、請求項16に記載の電子機器の検査方法。
  20.  前記負荷の動作開始時の前記充電電圧または前記負荷電圧より、前記負荷の動作開始から所定の期間後の前記充電電圧または前記負荷電圧が低い場合、前記電子機器を設置不可と判定する、請求項15に記載の電子機器の検査方法。
  21.  前記環境発電素子は、光電変換素子である、請求項15から20のいずれか1項に記載の電子機器の検査方法。
  22.  環境発電素子と、
     前記環境発電素子が発電した電力を消費する負荷と、
     前記環境発電素子と前記負荷との間に接続されたヒステリシススイッチと、
     前記環境発電素子と前記ヒステリシススイッチとの間で、前記環境発電素子と並列に接続された少なくとも1つの蓄電素子と、を含む電子機器と、
     前記蓄電素子の充電電圧または前記負荷にかけられた負荷電圧を測定する電圧計とを備える電子機器の検査システム。
  23.  所定の期間における、前記電圧計の測定結果の推移を表示するディスプレイをさらに備える、請求項22に記載の電子機器の検査システム。
  24.  前記負荷の消費電力を測定する電力計をさらに備え、
     前記ディスプレイは、前記所定の期間における、前記電圧計の測定結果および前記電力計の測定結果を表示する、請求項23に記載の電子機器の検査システム。
  25.  前記負荷はアンテナであって、前記アンテナから発信される電波または電磁波の発信間隔は、50ミリ秒~1秒である、請求項22から24のいずれか1項に記載の電子機器の検査システム。
  26.  前記蓄電素子に電力を供給し、および/または前記蓄電素子に貯められた電力を放電する、充放電回路を、さらに備える、請求項22から25のいずれか1項に記載の電子機器の検査システム。
  27.  前記環境発電素子は、光電変換素子である、請求項22から26のいずれか1項に記載の電子機器の検査システム。
PCT/JP2021/010285 2020-05-22 2021-03-15 電子機器、電子機器の検査方法、および電子機器の検査システム WO2021235060A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524900A JP7498272B2 (ja) 2020-05-22 2021-03-15 電子機器、電気機器の検査方法、および電子機器の検査システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-089387 2020-05-22
JP2020089387 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235060A1 true WO2021235060A1 (ja) 2021-11-25

Family

ID=78708457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010285 WO2021235060A1 (ja) 2020-05-22 2021-03-15 電子機器、電子機器の検査方法、および電子機器の検査システム

Country Status (2)

Country Link
JP (1) JP7498272B2 (ja)
WO (1) WO2021235060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023118850A1 (en) * 2021-12-22 2023-06-29 Lightricity Limited Energy harvesting electronic devices with ultra-low power consumption

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131402A (ja) * 2000-10-19 2002-05-09 Shinei Denshi Keisokki Kk 二次電池の検査装置
JP2008098056A (ja) * 2006-10-13 2008-04-24 Sony Corp 電池パック及び電池パックの制御方法
KR20150124716A (ko) * 2014-04-29 2015-11-06 (주) 자스민 자가충전형 스마트 무선충전거치대
JP2017163626A (ja) * 2016-03-07 2017-09-14 富士通株式会社 過電圧保護回路及び過電圧保護制御方法
JP2019103305A (ja) * 2017-12-05 2019-06-24 富士通株式会社 電源装置及び通信装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776764B2 (ja) * 1995-07-13 1998-07-16 日本電気フィールドサービス株式会社 バッテリの寿命判定装置
JP3323406B2 (ja) * 1996-10-07 2002-09-09 古河電池株式会社 直流電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131402A (ja) * 2000-10-19 2002-05-09 Shinei Denshi Keisokki Kk 二次電池の検査装置
JP2008098056A (ja) * 2006-10-13 2008-04-24 Sony Corp 電池パック及び電池パックの制御方法
KR20150124716A (ko) * 2014-04-29 2015-11-06 (주) 자스민 자가충전형 스마트 무선충전거치대
JP2017163626A (ja) * 2016-03-07 2017-09-14 富士通株式会社 過電圧保護回路及び過電圧保護制御方法
JP2019103305A (ja) * 2017-12-05 2019-06-24 富士通株式会社 電源装置及び通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023118850A1 (en) * 2021-12-22 2023-06-29 Lightricity Limited Energy harvesting electronic devices with ultra-low power consumption

Also Published As

Publication number Publication date
JP7498272B2 (ja) 2024-06-11
JPWO2021235060A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
US8648572B2 (en) Protection circuit and battery pack
JP5356315B2 (ja) バッテリパック
CN104166050B (zh) 电池接触点的监控装置和方法
US20070046261A1 (en) Method and apparatus for temperature, conductance and/or impedance testing in remote application of battery monitoring systems
US20080030198A1 (en) Battery monitoring device and batteries
US20120056638A1 (en) Systems and methods for monitoring and diagnostics of photovoltaic solar modules in photovoltaic systems
KR101743908B1 (ko) 태양광 발전장치의 pv 고장 및 불량모듈 바이패스 시스템
CA2369354A1 (en) Consumer battery having a built-in indicator
CN113594562A (zh) 电芯、电池模组、电池包及电动汽车
JP2006314156A (ja) 電源装置
WO2021235060A1 (ja) 電子機器、電子機器の検査方法、および電子機器の検査システム
GB2489514A (en) Lighting device with monitoring of load of external power supply
KR101005851B1 (ko) 직렬 루프에 의한 배터리 멀티 셀 보호회로의 과전류 검사장치
WO2017198644A1 (en) Inverter having a revenue grade meter
US20080211509A1 (en) Battery capacity monitoring system and method of displaying capacity thereof
CN110663172A (zh) 电路和该电路的应用
US20200303952A1 (en) Sensor, corresponding system and operating method
US11424715B2 (en) Solar energy detection module and solar panel
JP2018129896A (ja) 電池管理ユニット
CN215013621U (zh) 电子烟控制电路
Petrov et al. Water-based primary cell for powering of wireless sensors
JP7273973B2 (ja) 太陽電池付電子機器
CN203350328U (zh) 救援电池的电压量测装置
US9742210B2 (en) Self-powered remote control device
JP7163518B2 (ja) 電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809018

Country of ref document: EP

Kind code of ref document: A1