WO2021233314A1 - β-D-(1,4)-甘露糖醛酸寡糖及其中间体的制备方法 - Google Patents

β-D-(1,4)-甘露糖醛酸寡糖及其中间体的制备方法 Download PDF

Info

Publication number
WO2021233314A1
WO2021233314A1 PCT/CN2021/094459 CN2021094459W WO2021233314A1 WO 2021233314 A1 WO2021233314 A1 WO 2021233314A1 CN 2021094459 W CN2021094459 W CN 2021094459W WO 2021233314 A1 WO2021233314 A1 WO 2021233314A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
alkyl
hydroxyl
formula
Prior art date
Application number
PCT/CN2021/094459
Other languages
English (en)
French (fr)
Inventor
傅东林
王世胜
张亚珍
肖中平
张真庆
Original Assignee
绿谷(上海)医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绿谷(上海)医药科技有限公司 filed Critical 绿谷(上海)医药科技有限公司
Publication of WO2021233314A1 publication Critical patent/WO2021233314A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H7/00Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
    • C07H7/02Acyclic radicals
    • C07H7/033Uronic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of organic chemistry synthesis, and relates to a preparation method of ⁇ -D-(1,4)-mannuronic acid oligosaccharides (disaccharides to eicosanose).
  • ⁇ -D-(1,4)-mannuronic acid oligosaccharides are widely present in natural products. They can promote the growth of plant roots, inhibit bacteria, and promote the production of human keratinocytes. It can interact with Toll-like receptors 2 and 4 Combined, it shows the effect of immunomodulation (CN103275133A), ⁇ -D-(1,4)-mannuronic acid oligosaccharide also has a good effect in the treatment of vascular dementia (CN106344593A). On November 2, 2019, the National Food and Drug Administration approved the listing of Manrutner Capsules for the treatment of mild to moderate Alzheimer’s disease, the main ingredient of which is ⁇ -D-(1,4)-mannuronic acid Oligosaccharides and their derivatives.
  • ⁇ -D-(1,4)-mannuronic acid oligosaccharides are mainly obtained by degrading sodium alginate (CN100508985C).
  • the degradation preparation process presents greater challenges to its purity and impurity control. There is an urgent need to develop an efficient, Simple operation and precise control of the preparation process.
  • solid-phase synthesis WO2012138698
  • liquid-phase synthesis Codée, Jeroen DC, van den Bos, Leendert J, de Jong, Ana-Rae, et al.
  • the first aspect of the present invention provides a method for preparing ⁇ -D-(1,4)-mannuronic acid oligosaccharides, which can economically and efficiently prepare high-purity ⁇ -D-(1,4)- Mannouronic acid oligosaccharides.
  • the method includes coupling compound V and compound VII and selectively removing the protecting group R 3 to generate compound VIII;
  • m is selected from an integer of 2-18; n and n'are each independently selected from an integer of 0-8; R 1 is selected from C 1-8 alkyl, optionally substituted by C 1-8 alkyl 6-14 aryl group; R 2 is a hydroxyl protecting group that can be removed by hydrogenation reaction catalyzed by palladium-carbon or oxidation reaction catalyzed by palladium-carbon ; R 3 is hydrogenation reaction catalyzed by palladium-carbon or oxidation reaction catalyzed by palladium-carbon Removed hydroxyl protecting group.
  • the present invention can realize the preparation of intermediate compounds I, II, and 1,2,3,4,6-Penta-O-acetyl-D-mannanose (formula X), which are economically and easily available III; Then the intermediate compounds II and III are coupled to form an oligosaccharide acceptor compound V, and the intermediate compounds I and II are coupled to form an oligosaccharide donor compound VII; then compound V and compound VII are coupled to form an oligosaccharide compound VIII, the protective group is removed to obtain the final product compound IX, which is ⁇ -D-(1,4)-mannuronic acid oligosaccharide.
  • the present invention provides an economical and efficient solution for the synthesis of ⁇ -D-(1,4)-mannuronic acid oligosaccharide compounds with a degree of polymerization of 2 to 20, which is comparable to the process of extracting and preparing oligosaccharide mixtures such as degrading sodium alginate.
  • this scheme can obtain oligosaccharides with a single degree of polymerization and high purity, which lays a solid foundation for further research on the pharmacological and biological activities of oligosaccharides with a single degree of polymerization.
  • the second aspect of the present invention provides the key intermediate compound I, compound II, compound III, compound V, compound VII and compound VIII for the synthesis of ⁇ -D-(1,4)-mannuronic acid oligosaccharides, with structural formula As shown below:
  • R 1 is selected from C 1-8 alkyl, C 6-14 aryl optionally substituted by C 1-8 alkyl; preferably, R 1 is selected from phenyl, o-tolyl, p-methylphenyl, 4-tert-butyl-2-methylphenyl, 2,4-di-tert-butylphenyl, methyl or ethyl;
  • R 2 is a hydroxyl protecting group that can be removed by a hydrogenation reaction catalyzed by palladium on carbon; preferably, R 2 is selected from C 6-14 arylmethyl or allyl, and the C 6-14 arylmethyl optionally Is substituted by C 1-8 alkyl, C 1-8 alkoxy, halogen; more preferably, R 2 is selected from benzyl, p-methoxybenzyl, naphthylmethyl, and allyl; most preferably, R 2 is selected from benzyl;
  • R 3 is a hydroxyl protecting group that cannot be removed by hydrogenation reaction catalyzed by palladium-carbon; preferably, R 3 is selected from C 1-8 alkyl acyl, C 1-8 alkoxy acyl, C 6-14 aryl acyl , Tris (C 1-8 alkyl) silyl, 9-fluorenyl methoxy formyl, tris (C 6-14 aryl) methyl; wherein C 1-8 alkyl acyl and C 1-8 alkane Any carbon atom in the C 1-8 alkyl group in the oxyacyl group may be optionally oxo; more preferably, R 3 is selected from the group consisting of acetyl, levulinyl, trimethylsilyl, tert-butyl di Methylsilyl, benzoyl, 9-fluorenylmethoxyformyl, or trityl; most preferably, R 3 is selected from levulinyl;
  • R 4 is selected from H, C 1-8 alkyl, C 6-14 aryl
  • X is selected from fluorine, chlorine, bromine, and iodine
  • n is selected from an integer of 2-18; preferably, m is selected from 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18;
  • n and n'are each independently selected from an integer of 0-8; preferably, n and n'are each independently selected from 0, 1, 2, 3, 4, 5, 6, 7, or 8.
  • Figure 1 shows the general synthetic route of compound VIII and compound IX.
  • FIG. 1 shows the synthetic route of compound IX-1 and compound IX-2.
  • FIG. 3 shows the synthetic route of compound IX-3 and compound IX-4.
  • FIG. 4 shows the synthetic route of compound IX-5.
  • alkyl can be a linear or branched saturated hydrocarbon group, such as methyl, ethyl, propyl, butyl, octyl, isopropyl, tert-butyl, Sec-pentyl and similar groups.
  • the alkyl group may be unsubstituted or substituted with one or more substituents (for example, halogen, alkoxy, aryl, aralkyl, aralkoxy, and the like).
  • C 1-n alkyl refers to an alkyl group containing 1-n carbon atoms, for example, 1-18 carbon atoms, 1-12 carbon atoms, 1-10 carbon atoms, 1-8 Carbon atoms, 1-6 carbon atoms, 1-4 carbon atoms, etc.
  • aryl refers to a monovalent unsaturated aromatic group having a single ring (such as phenyl) or a condensed ring (such as naphthyl or anthracenyl), optionally halogenated (including fluorine, chlorine, bromine, iodine) , Alkyl, aralkyl, alkoxy, aralkoxy and similar substituents are substituted.
  • the C 6-n aryl group (wherein n is an integer) refers to an aryl group having 6 to n carbon atoms, such as phenyl, naphthyl, anthryl, or an optionally substituted group thereof.
  • the first aspect of the present invention relates to a method for preparing ⁇ -D-(1,4)-mannuronic acid oligosaccharides represented by formula (VIII) or formula (IX),
  • m is selected from an integer of 2-18; n and n'are each independently selected from an integer of 0-8; R 1 is selected from C 1-8 alkyl, optionally substituted by C 1-8 alkyl 6-14 aryl group; R 2 is a hydroxy protecting group that can be removed by hydrogenation catalyzed by palladium on carbon; R 3 is a hydroxy protecting group that cannot be removed by hydrogenation catalyzed by palladium on carbon.
  • the above coupling reaction is carried out in the presence of a large sterically hindered organic base, diphenyl sulfoxide and sulfonic anhydride catalyst; and then the hydroxyl protecting group R 3 at the 4-position and the hydroxyl protecting group R 2 at other positions are successively removed to obtain as shown in IX
  • the sulfonic anhydride catalyst is selected from methanesulfonic anhydride, trifluoromethanesulfonic anhydride or p-toluenesulfonic anhydride.
  • a method for synthesizing compound V including:
  • the organic solvent in the synthesis of compound V is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, anhydrous ether, anhydrous N,N-dimethylformamide, anhydrous N,N-dimethylacetamide, anhydrous toluene or anhydrous dimethylsulfoxide, preferably anhydrous dichloromethane;
  • the sulfonic acid catalyst is selected from: methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid Or trimethylsilyl trifluoromethanesulfonate, preferably trimethylsilyl trifluoromethanesulfonate;
  • the reagent for removing the 4-position hydroxyl protecting group is preferably hydrazine acetate, and the molar equivalent of hydrazine acetate is 3-8eq , Preferably 3-5.5eq, for example 4.3eq.
  • a method for synthesizing compound VII including:
  • the organic solvent in the synthesis of compound VII is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, anhydrous ether, anhydrous N,N-dimethylformamide, anhydrous N,N-dimethylacetamide, anhydrous toluene or anhydrous dimethylsulfoxide, preferably anhydrous dichloromethane;
  • the sulfonic acid catalyst is selected from: methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid Or trimethylsilyl trifluoromethanesulfonate; the sulfonic acid catalyst is preferably trimethylsilyl trifluoromethanesulfonate;
  • the reagent for removing the 4-position hydroxyl protecting group is preferably hydrazine acetate.
  • a method for synthesizing compound IX including:
  • Dissolve compound V and compound VII in a suitable organic solvent add dry molecular sieve, protected by nitrogen or argon, at a suitable temperature, add large hindered organic base, diphenyl sulfoxide and sulfonic anhydride to catalyze the coupling reaction Generate 1,4-glycosidic bonds, and then selectively remove the protective group R 3 of the 4-position hydroxyl group to obtain compound VIII; add palladium on carbon (palladium content 5%-10%) to compound VIII, and remove all R from compound VIII by hydrogenation 2 protecting groups to obtain ⁇ -D-(1,4)-mannuronic acid oligosaccharide compound IX.
  • the molar ratio of compound V and compound VII in the synthesis of compound IX is 1:0.9;
  • the solvent for the coupling reaction is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, Anhydrous ether, anhydrous N,N-dimethylformamide, anhydrous N,N-dimethylacetamide, anhydrous toluene or anhydrous dimethyl sulfoxide, preferably anhydrous dichloromethane;
  • the hindered organic base is selected from: 1,8-diazabicycloundec-7-ene, 2,6-di-tert-butylpyridine or 2,4,6-tri-tert-butylpyrimidine, preferably 2,6- Di-tert-butylpyridine;
  • the sulfonic anhydride catalyst is selected from: methanesulfonic anhydride, trifluoromethanesulfonic anhydride or p-toluenesulfonic
  • the starting compounds of Formula I and Formula II used above can be obtained from the compound of Formula X, respectively.
  • the compound of formula X is 1-5 substituted mannanose, wherein the substituent may be a C 1 -C 6 acyl group, such as formyl, acetyl, and propionyl.
  • An example of a compound of formula X is 1,2,3,4,6-penta-O-acetyl-D-mannanose.
  • 1,2,3,4,6-penta-O-acetyl-D-mannanose (compound represented by formula X), which is a simple and easily available raw material, is taken as an example,
  • the overall reaction route is as follows:
  • R 5 is a C 1-8 acyl group, preferably an acetyl group.
  • a method for synthesizing intermediate compound I including:
  • Step 1 1,2,3,4,6-penta-O-acetyl-D-mannanose reacts with the anomeric carbon protective agent R 1 SH, and then performs an alkaline hydrolysis reaction to obtain compound A;
  • Step 2 Selectively protect the 2 and 3 hydroxyl groups of compound A to obtain compound B;
  • Step 3 Oxidize the hydroxyl group at the 6-position of compound B to a carboxyl group, and then esterify the carboxyl group to obtain compound I.
  • the method includes:
  • Step 1 In a dry organic solvent, using 1,2,3,4,6-penta-O-acetyl-D-mannanose as a raw material, stirring at an appropriate temperature in the presence of an acidic catalyst, Protected by nitrogen or argon, add a suitable anomeric carbon protective agent R 1 SH for reaction, and then conduct alkaline hydrolysis to obtain compound A;
  • Step 2 Under the catalysis of Lewis acid, select an appropriate hydroxyl protecting group to selectively protect the 4 and 6 hydroxyl groups of compound A, then selectively protect the 2 and 3 hydroxyl groups, and finally selectively remove them Protecting groups at positions 4 and 6 give compound B;
  • Step 3 In an organic solvent, add an oxidizing agent to compound B to selectively oxidize the 6-position hydroxyl group of compound B to a carboxyl group, and then react with an alkylating agent to form an ester under alkaline conditions at an appropriate temperature and solvent.
  • Compound I is obtained.
  • the synthesis of the intermediate compound I adopts a one-pot two-step reaction, and the intermediate does not need to be separated and purified.
  • the organic solvent in step 1 is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, anhydrous toluene, anhydrous N,N-dimethylformamide or anhydrous N,N-dimethylacetamide;
  • the appropriate temperature is 0-25°C, preferably 0-5°C
  • the acid catalyst is selected from: boron trifluoride ether, acetyl chloride or hydrogen chloride gas, preferably boron trifluoride ether; moles of boron trifluoride ether
  • the base is selected from: sodium ethoxide, potassium ethoxide, magnesium ethoxide, sodium methoxide, potassium methoxide or magnesium methoxide, preferably sodium methoxide; the molar equivalent of sodium methoxide;
  • the protecting agent used for protecting the 4-position and 6-position of compound A in step 2 is selected from: phthalic acetal, p-methoxy phthalic acetal or 2,2-dimethoxypropane (acetone Fork), preferably phthalic acetal; the molar equivalent of phthalic acetal is preferably 0.9eq;
  • the Lewis acid catalyst is selected from: p-toluenesulfonic acid, trifluoromethanesulfonic acid, aluminum trichloride and trichloride Iron, preferably iron trichloride;
  • the protective agent used to protect the 2-position and 3-position hydroxyl groups of compound A is selected from the group consisting of benzyl bromide, benzyl chloride, p-methoxybenzyl bromide, p-methoxybenzyl chloride or allyl Base bromide, preferably benzyl bromide; the equivalent of benzyl bromide is preferably 1.9 eq.
  • the oxidant in step 3 is selected from: tetramethylpiperidine nitroxide, sodium hypochlorite, potassium bromide, hydrogen peroxide, tert-butyl hydroperoxide or iodobenzene diacetate, preferably tetramethylpiperidine nitroxide or Iodobenzene diacetate; the molar equivalent of tetramethylpiperidine nitrogen oxide is preferably 0.2eq, or the molar equivalent of iodobenzene diacetate is preferably 2.5eq; the organic solvent is selected from: dichloromethane, acetonitrile, water, tetrahydrofuran , N,N-dimethylformamide or any one or more of N,N-dimethylacetamide, preferably selected from: acetonitrile-water mixed solvent (the volume ratio of acetonitrile to water is about 5:1 -1:5), tetrahydrofuran-water mixed solvent (the volume ratio of
  • a method for synthesizing intermediate compound II including:
  • Step 1 Protect the 4-hydroxyl of compound I to obtain compound D;
  • Step 2 Selectively remove the anomeric carbon protecting group -SR 1 of compound D to obtain compound E;
  • the method includes:
  • Step 1 In a dry organic solvent, under alkaline conditions, use a suitable protective agent to protect the 4-hydroxyl of compound I to obtain compound D;
  • Step 2 Selectively remove the anomeric carbon protecting group -SR 1 of compound D to obtain compound E;
  • the synthesis of the intermediate compound II adopts a one-pot three-step reaction, and the intermediate does not need to be separated and purified.
  • the suitable protective agent in step 1 is selected from acetyl chloride, acetic anhydride, trimethylchlorosilane, tert-butyldimethylchlorosilane, benzoyl chloride, 9-fluorenylmethyl chloroformate, triphenyl Methyl chloride, levulinyl chloride or levulinic acid, preferably levulinic acid; the molar equivalent of the protective agent is preferably 1.5eq;
  • the organic solvent is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, anhydrous ethyl acetate, Anhydrous acetonitrile, anhydrous toluene, anhydrous N,N-dimethylformamide or anhydrous N,N-dimethylacetamide, preferably anhydrous dichloromethane,
  • the reagent for removing the protective group of the anomeric carbon in step 2 is selected from N-chlorosuccinimide or N-bromosuccinimide, preferably N-bromosuccinimide ;
  • the reaction temperature is preferably 25°C.
  • the organic solvent in step 3 is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, anhydrous ethyl acetate, anhydrous acetonitrile, anhydrous toluene, anhydrous N,N-dimethylformamide or anhydrous N,N-dimethylacetamide, preferably anhydrous dichloromethane;
  • the reaction temperature is preferably 0°C to 10°C;
  • the base is selected from: anhydrous potassium carbonate, anhydrous sodium carbonate, triethylamine, 1,8 -Diazabicyclo[5.4.0]undec-7-ene, N,N-p-dimethylaminopyridine or pyridine, preferably 1,8-diazabicyclo[5.4.0]undec-7 -En;
  • the molar equivalent of the base is preferably 0.5 eq.
  • a method for synthesizing intermediate compound III including:
  • Step 1 Protect the 4-hydroxyl of compound I to obtain compound D;
  • Step 2 Under alkaline conditions, react compound D with R 2 OH to obtain compound F;
  • Step 3 Selectively remove the protective group R 3 of the 4-hydroxyl group of compound F to obtain compound III.
  • the method includes:
  • Step 1 In a dry organic solvent, under alkaline conditions, use a suitable protective agent to protect the 4-position hydroxyl group of compound I to obtain compound D;
  • Step 2 In a dry organic solvent, in the presence of a large hindered base, R 2 OH, diphenylthiophenol and sulfonic anhydride catalyst are added to compound D to react to obtain compound F;
  • Step 3 Selectively remove the protecting group of the 4-hydroxyl group of compound F in an organic solvent to obtain compound III.
  • the synthesis of intermediate compound III adopts a one-pot three-step method.
  • the suitable protective agent in step 1 is selected from: acetyl chloride, acetic anhydride, trimethylchlorosilane, tert-butyldimethylchlorosilane, 9-fluorenylmethyl chloroformate, benzoyl chloride, trimethylchlorosilane, Phenyl chloride, levulinyl chloride or levulinic acid, preferably levulinic acid; the molar equivalent of the protective agent is preferably 1.5eq;
  • the organic solvent is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, anhydrous ethyl acetate, Anhydrous acetonitrile, anhydrous toluene, anhydrous N,N-dimethylformamide or anhydrous N,N-dimethylacetamide, preferably anhydrous dichloromethane
  • the organic solvent in step 2 is selected from: anhydrous dichloromethane, anhydrous tetrahydrofuran, anhydrous ether, anhydrous N,N-dimethylformamide, anhydrous N,N-dimethylacetamide, Anhydrous toluene or anhydrous dimethyl sulfoxide, preferably anhydrous dichloromethane;
  • the large sterically hindered organic base is selected from: 1,8-diazabicycloundec-7-ene, 2,6-di Tert-butylpyridine or 2,4,6-tri-tert-butylpyrimidine, preferably 2,6-di-tert-butylpyridine;
  • the molar equivalent of the base is preferably 2.2eq;
  • the sulfonic acid anhydride catalyst is selected from: methanesulfonic anhydride, three Chloromethanesulfonic anhydride, tribromomethanesulfonic anhydride, trifluoromethan
  • the reagent is preferably hydrazine acetate, and its equivalent is preferably 4.3 eq.
  • the compound I, compound II and compound III are respectively compounds I-1, II-1 and III-1 represented by the following structural formulas:
  • the method for preparing ⁇ -D-(1,4)-mannuronic acid oligosaccharides (Compound IX) described herein adopts a convergent synthesis strategy.
  • the oligosaccharide donor (Compound VII) and the oligosaccharide acceptor (Compound V) are assembled into the oligosaccharide compound VIII with a higher number of sugar bases, and the protective group R 2 in compound VIII is removed at one time to synthesize ⁇ -D-(1 , 4)-Mannouronic acid oligosaccharide (Compound IX).
  • the preparation method of the present invention is more concise, economical and efficient.
  • the following example section provides the disaccharides (compound IX-1), tetrasaccharides (compound IX-2), trisaccharides (compound IX-3), pentasaccharides of ⁇ -D-(1,4)-mannuronic acid
  • the total synthesis scheme of sugar (compound IX-4) and heptasaccharide (compound IX-5) further illustrates the present invention, but the present invention is not limited thereto.
  • the room temperature in the examples refers to 20-30°C.
  • the normal pressure in the examples refers to 1 atmosphere.
  • the water in the examples refers to deionized water.
  • Step 1 Weigh 1,2,3,4,6-penta-O-acetyl-D-mannanose (19.5g, 50.0mmol) into a 500mL eggplant-shaped bottle, add anhydrous dichloride Methane (150 mL), the solution was colorless and transparent, in an ice bath, p-toluene thiophenol (6.2 g, 50.0 mmol) and boron trifluoride ether solution (12.7 mL, 100 mmol) were added. After stirring for half an hour in an ice bath, stirring was continued for 24 hours at room temperature, and the solution changed from light yellow to pink.
  • anhydrous dichloride Methane 150 mL
  • p-toluene thiophenol 6.2 g, 50.0 mmol
  • boron trifluoride ether solution (12.7 mL, 100 mmol
  • the NMR data is as follows:
  • the first step Weigh VI-1 (500mg, 0.45mmol) and dissolve in 20mL of anhydrous DCM, add TTBP (334.8mg, 1.35mmol, 3eq), diphenyl sulfoxide (109mg, 0.54mmol, 1.2eq) under nitrogen protection , Dry 4 angstrom molecular sieve 500mg), the solution was stirred at -78 °C for 10 minutes. Tf 2 O (141 mg, 0.5 mmol, 1.1 eq) was added. The solution was stirred for 10 minutes, compound IV-1 (500 mg, 0.5 mmol, 1.1 eq) was added, and the reaction was carried out at -78° C. for 1 hour.
  • the NMR data is as follows:
  • the NMR data is as follows:
  • TTBP 238mg, 0.96mmol, 3eq
  • diphenyl sulfoxide 78mg, 0.38mmol, 1.2eq
  • Tf 2 O 100mg, 0.35mmol, 1.1

Abstract

提供了一种经济、高效地制备式IX所示的β-D-(1,4)-甘露糖醛酸寡糖的方法。特别地,以经济易得的1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖(式X)为原料,制备关键中间体化合物I、化合物II和化合物III;将中间体化合物II和III偶联成寡糖受体化合物V,将中间体化合物I和II偶联成寡糖供体化合物VII;将化合物V和化合物VII偶联成寡糖化合物VIII,将寡糖化合物VIII脱除保护基得到β-D-(1,4)-甘露糖醛酸寡糖IX。

Description

β-D-(1,4)-甘露糖醛酸寡糖及其中间体的制备方法 技术领域
本发明属于有机化学合成领域,涉及β-D-(1,4)-甘露糖醛酸寡糖(二糖至二十糖)的制备方法。
背景技术
β-D-(1,4)-甘露糖醛酸寡糖广泛存在于天然产物中,具有促进植物根系生长、抑菌、促进人角质化细胞生成等作用,能够与Toll样受体2和4结合,显示免疫调节的作用(CN103275133A),β-D-(1,4)-甘露糖醛酸寡糖在治疗血管性痴呆方面也具有良好的疗效(CN106344593A)。2019年11月2日,国家药监局批准用于治疗轻至中度阿尔兹海默病的甘露特纳胶囊上市,其主要成分即为β-D-(1,4)-甘露糖醛酸寡糖及其衍生物。
目前,β-D-(1,4)-甘露糖醛酸寡糖主要通过降解海藻酸钠获得(CN100508985C),降解制备工艺对于其纯度及杂质控制存在较大的挑战,急需开发一种高效、操作简洁和能够精确控制的制备工艺。有文献报道运用固相合成法(WO2012138698)或液相合成法(Codée,Jeroen D.C,van den Bos,Leendert J,de Jong,Ana-Rae,et al.The Stereodirecting Effect of the Glycosyl C5-Carboxylate Ester:Stereoselective Synthesis of β-Mannuronic Acid Alginates[J].Journal of Organic Chemistry,74(1):38-47)制备β-D-(1,4)-甘露糖醛酸寡糖的衍生物,其中固相合成法成本高、对设备要求高,不易工业化生产。另外,现有液相合成法存在合成效率低下,脱除保护基比较繁琐等问题,不易工业化生产。因此,开发研究一种新型、高效和过程可控的β-D-(1,4)-甘露糖醛酸寡糖的制备方法,具有重要的应用价值和经济价值。
发明内容
本发明的第一个方面,提供一种β-D-(1,4)-甘露糖醛酸寡糖的制备方 法,可以经济、高效地制备高纯度的β-D-(1,4)-甘露糖醛酸寡糖。该方法包括将化合物V和化合物VII进行偶联反应并选择性脱除保护基R 3生成化合物VIII;
Figure PCTCN2021094459-appb-000001
以及任选地,将化合物VIII一次性脱除保护基R 2生成如式IX所示的β-D-(1,4)-甘露糖醛酸寡糖;
Figure PCTCN2021094459-appb-000002
其中,m选自2-18的整数;n和n’各自独立地选自0-8的整数;R 1选自C 1-8烷基、任选地被C 1-8烷基取代的C 6-14芳基;R 2为通过钯炭催化的氢化反应或钯炭催化的氧化反应可以脱除的羟基保护基;R 3为通过钯炭催化的氢化反应或钯炭催化的氧化反应不可以脱除的羟基保护基。
特别地,本发明可以实现以经济易得的1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖(式X)为原料,制备中间体化合物I、II和III;然后将中间体化合物II和III偶联成寡糖受体化合物V,将中间体化合物I和II偶联成寡糖供体化合物VII;再将化合物V和化合物VII偶联成寡糖化合物VIII,脱除保护基得到最终产物化合物IX,即β-D-(1,4)-甘露糖醛酸寡糖。本发明为合成聚合度为2到20的β-D-(1,4)-甘露糖醛酸寡糖化合物提供了经济高效的解决方案,与降解海藻酸钠等提取制备寡糖混合物的工艺相比较,此方案可获得单一聚合度、高纯度的寡糖,为进一步研究单一聚合度寡糖的药理生物活性奠定了坚实的基础。
本发明的第二个方面,提供了合成β-D-(1,4)-甘露糖醛酸寡糖的关键中间体化合物I、化合物II、化合物III、化合物V、化合物VII和化合物VIII, 结构式如下图所示:
Figure PCTCN2021094459-appb-000003
其中,
R 1选自C 1-8烷基、任选地被C 1-8烷基取代的C 6-14芳基;优选地,R 1选自苯基、邻甲苯基、对甲基苯基、4-叔丁基-2-甲基苯基、2,4-二叔丁基苯基、甲基或乙基;
R 2为通过钯炭催化的氢化反应可以脱除的羟基保护基;优选地,R 2选自C 6-14芳基甲基或烯丙基,所述C 6-14芳基甲基任选地被C 1-8烷基、C 1-8烷氧基、卤素取代;更优选地,R 2选自苄基、对甲氧苄基、萘甲基、烯丙基;最优选地,R 2选自苄基;
R 3为通过钯炭催化的氢化反应不可以脱除的羟基保护基;优选地,R 3选自C 1-8烷基酰基、C 1-8烷氧基酰基、C 6-14芳基酰基、三(C 1-8烷基)甲硅烷基、9-芴基甲氧基甲酰基、三(C 6-14芳基)甲基;其中C 1-8烷基酰基和C 1-8烷氧基酰基中的C 1-8烷基中的任一碳原子可以任选地被氧代;更优选地,R 3选自乙酰基、乙酰丙酰基、三甲基硅基、叔丁基二甲基硅基、苯甲酰基、9-芴基甲氧基甲酰基、或三苯甲基;最优选地,R 3选自乙酰丙酰基;
R 4选自H、C 1-8烷基、C 6-14芳基;
X选自氟、氯、溴、碘;
m选自2-18的整数;优选地,m选自2、3、4、5、6、7、8、9、10、 11、12、13、14、15、16、17或18;
n和n’各自独立地选自0-8的整数;优选地,n和n’各自独立地选自0、1、2、3、4、5、6、7或8。
附图说明
附图1为化合物VIII与化合物IX的通用合成路线。
附图2为化合物IX-1与化合物IX-2的合成路线。
附图3为化合物IX-3与化合物IX-4的合成路线。
附图4为化合物IX-5的合成路线。
具体实施方式
除非另有说明,本文中提到的术语“烷基”可以是直链或支链的饱和烃基,比如甲基,乙基,丙基,丁基,辛基,异丙基,叔丁基,仲戊基和类似基团。烷基可以是未取代或被一个或多个取代基(比如,卤素,烷氧基,芳基,芳烷基,芳烷氧基和类似基团)所取代的。C 1-n烷基(其中n是整数)是指含有1-n个碳原子的烷基,例如1-18个碳原子,1-12个碳原子、1-10个碳原子、1-8个碳原子、1-6个碳原子、1-4个碳原子,等等。
术语“芳基”是指具有单环(比如苯基)或稠环(比如萘基或蒽基)的单价不饱和芳香族基团,可选地被卤素(包括氟、氯、溴、碘),烷基,芳烷基,烷氧基,芳烷氧基和类似基团等取代基取代。C 6-n芳基(其中n是整数)是指具有6至n个碳原子的芳基,例如苯基、萘基、蒽基,或其任选取代的基团。
本发明的第一个方面涉及一种制备如式(VIII)或式(IX)所示的β-D-(1,4)-甘露糖醛酸寡糖的方法,
Figure PCTCN2021094459-appb-000004
包括:
将化合物V和化合物VII进行偶联反应并选择性脱除保护基R 3生成化合物VIII;
Figure PCTCN2021094459-appb-000005
以及任选地,将化合物VIII一次性脱除保护基R 2生成如式IX所示的β-D-(1,4)-甘露糖醛酸寡糖;
其中,m选自2-18的整数;n和n’各自独立地选自0-8的整数;R 1选自C 1-8烷基、任选地被C 1-8烷基取代的C 6-14芳基;R 2为通过钯炭催化的氢化反应可以脱除的羟基保护基;R 3为通过钯炭催化的氢化反应不可以脱除的羟基保护基。
上述偶联反应在大位阻有机碱、二苯基亚砜和磺酸酐催化剂存在下进行;再依次脱除4位的羟基保护基R 3和其它位置的羟基保护基R 2,得到如IX所示的β-D-(1,4)-甘露糖醛酸寡糖化合物。优选地,所述磺酸酐催化剂选自甲磺酸酐、三氟甲磺酸酐或对甲苯磺酸酐。
在本发明的一个实施方案中,提供了合成化合物V的方法,包括:
Figure PCTCN2021094459-appb-000006
将中间体化合物II和中间体化合物III溶解在适当有机溶剂中,加入干燥的分子筛,氮气或氩气保护,适当的温度下,加入磺酸催化剂,偶联反应生成1,4-糖苷键,然后选择性脱除4位羟基保护基,得到化合物IV;将化合物IV与化合物II重复进行上述偶联反应和选择性脱除4位羟基保护基R 3的步骤,任选地再将得到的化合物继续重复进行上述偶联反应和脱保护基的步骤,直至得到化合物V。
在本发明的一个优选实施方案中,化合物V的合成中所述有机溶剂选自:无水二氯甲烷、无水四氢呋喃、无水乙醚、无水N,N-二甲基甲酰胺、无水N,N-二甲基乙酰胺、无水甲苯或无水二甲亚砜,优选无水二氯甲烷;所述磺酸催化剂选自:甲磺酸、三氟甲磺酸、对甲苯磺酸或三氟甲磺酸三甲基硅酯,优选三氟甲磺酸三甲基硅酯;所述用于脱除4位羟基保护基的试剂优选醋酸肼,醋酸肼的摩尔当量为3-8eq,优选为3-5.5eq,例如4.3eq。
在本发明的一个实施方案中,提供了合成化合物VII的方法,包括:
Figure PCTCN2021094459-appb-000007
将化合物I和化合物II溶解在适当有机溶剂中,加入干燥的分子筛,氮气或氩气保护,适当的温度下,加入磺酸催化剂,偶联反应生成1,4-糖苷键,然后选择性地脱除4位羟基保护基R 3,得到化合物VI;将化合物VI与化合物II重复进行上述偶联反应和选择性脱除4位保护基R 3的步骤;任选地再将得到的化合物继续重复进行上述偶联反应和脱保护基的 步骤,直至得到化合物VII。
在本发明的一个优选实施方案中,化合物VII的合成中所述有机溶剂选自:无水二氯甲烷、无水四氢呋喃、无水乙醚、无水N,N-二甲基甲酰胺、无水N,N-二甲基乙酰胺、无水甲苯或无水二甲亚砜,优选无水二氯甲烷;所述磺酸催化剂选自:甲磺酸、三氟甲磺酸、对甲苯磺酸或三氟甲磺酸三甲基硅酯;所述磺酸催化剂优选三氟甲磺酸三甲基硅酯;所述用于脱除4位羟基保护基的试剂优选醋酸肼。
在本发明的一个实施方案中,提供了合成化合物IX的方法,包括:
Figure PCTCN2021094459-appb-000008
将化合物V和化合物VII溶解在适当的有机溶剂中,加入干燥的分子筛,氮气或氩气保护,适当的温度下,加入大位阻有机碱、二苯基亚砜和磺酸酐催化,偶联反应生成1,4-糖苷键,再选择性脱除4位羟基的保护基R 3得化合物VIII;向化合物VIII中加入钯炭(钯含量5%-10%),氢化脱除化合物VIII的所有R 2保护基,得到β-D-(1,4)-甘露糖醛酸寡糖化合物IX。
在本发明的一个优选实施方案中,化合物IX的合成中所述化合物V和化合物VII的摩尔比为1:0.9;所述偶联反应的溶剂选自:无水二氯甲烷、无水四氢呋喃、无水乙醚、无水N,N-二甲基甲酰胺、无水N,N-二甲基乙酰胺、无水甲苯或无水二甲亚砜,优选无水二氯甲烷;所述大位阻有机碱选自:1,8-二氮杂二环十一碳-7-烯、2,6-二叔丁基吡啶或2,4,6-三叔丁基嘧啶,优选2,6-二叔丁基吡啶;所述磺酸酐催化剂选自:甲磺酸酐、三氟甲磺酸酐或对甲苯磺酸酐,优选三氟甲磺酸酐;磺酸酐的摩尔当量优选为0.05eq;反应温度优选为-60℃;用于脱除4位羟基保护基的试剂优选为醋酸肼,其摩尔当量优选为4.3eq;脱除保护基的温度优选为25℃。
上文中所使用的起始化合物式I和式II可以分别从式X化合物获得。
式X化合物为1-5取代的吡喃甘露糖,其中的取代基可以为C 1-C 6酰基,例如甲酰基、乙酰基、丙酰基。式X化合物的一个实例为1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖。
在本发明的一个优选实施方案中,从简单易得的原料1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖(式X所示的化合物)为例,总体的反应路线如下:
Figure PCTCN2021094459-appb-000009
其中R 5为C 1-8的酰基,优选为乙酰基。
在本发明的一个实施方案中,提供了合成中间体化合物I的方法,包括:
Figure PCTCN2021094459-appb-000010
步骤1:1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖与异头碳保护剂R 1SH反应,然后再进行碱性水解反应,得化合物A;
步骤2:选择性地保护化合物A的2位和3位的羟基,得到化合物B;
步骤3:将化合物B的6位的羟基氧化为羧基,然后使该羧基酯化得到化合物I。
在一个优选的实施方案中,该方法包括:
步骤1.在干燥的有机溶剂中,以1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖为原料,在酸性催化剂存在下,在适当的温度下搅拌,氮气或氩气保护,加入适当的异头碳保护剂R 1SH进行反应,然后再进行碱水解,得化合物A;
步骤2.在路易酸催化下,选择适当的羟基保护基,将化合物A的4位和6位的羟基选择性保护,然后再选择性保护2位和3位的羟基,最后再选择性脱除4位和6位的保护基得到化合物B;
步骤3.在有机溶剂中,向化合物B中加入氧化剂,选择性氧化化合物B的6位羟基为羧基,再在碱性条件下,在适当的温度和溶剂中,和烷基化试剂反应成酯得到化合物I。
在一个更优选的实施方案中,中间体化合物I的合成采用一锅两步反应,中间体无需分离纯化。其中,步骤1中所述有机溶剂选自:无水二氯甲烷、无水四氢呋喃、无水甲苯、无水N,N-二甲基甲酰胺或无水N,N-二甲基乙酰胺;所述适当的温度为0-25℃,优选0-5℃;所述酸性催化剂选自:三氟化硼乙醚、乙酰氯或氯化氢气体,优选三氟化硼乙醚;三氟化硼乙醚的摩尔当量优选为0.1eq;所述碱选自:乙醇钠、乙醇钾、乙醇镁、甲醇钠,甲醇钾或甲醇镁,优选甲醇钠;甲醇钠的摩尔当量优选为0.1eq;所述碱水解的溶剂选自:甲醇、乙醇或四氢呋喃,优选甲醇;所述反应中加入的异头碳保护剂选自:苯硫酚、邻甲苯硫酚、对甲基苯硫酚、4-叔丁基-2-甲基苯硫酚、2,4-二叔丁基苯硫酚、甲硫醇或乙硫醇,优选对甲基苯硫酚;异头碳保护剂的摩尔当量优选为1.05eq。
其中,步骤2中所述用于化合物A的4位和6位保护的保护剂选自:苯二甲缩醛,对甲氧基苯二缩醛或2,2-二甲氧基丙烷(丙酮叉),优选苯二甲缩醛;苯二甲缩醛的摩尔当量优选为0.9eq;所述路易酸催化剂选自:对甲苯磺酸、三氟甲磺酸、三氯化铝和三氯化铁,优选三氯化铁;所述用于保护化合物A的2位和3位的羟基的保护剂选自溴苄、氯苄、对甲氧基溴苄、对甲氧基氯苄或烯丙基溴,优选溴苄;溴苄的当量优选为1.9eq。
其中,步骤3中所述氧化剂选自:四甲基哌啶氮氧化物、次氯酸钠、 溴化钾、双氧水、叔丁基过氧化氢或二乙酸碘苯,优选四甲基哌啶氮氧化物或二乙酸碘苯;四甲基哌啶氮氧化物的摩尔当量优选为0.2eq,或者二乙酸碘苯的摩尔当量优选为2.5eq;所述有机溶剂选自:二氯甲烷、乙腈、水、四氢呋喃、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺中的任一种或多种,优选选自:乙腈-水混合溶剂(乙腈与水的体积比为约5:1-1:5)、四氢呋喃-水混合溶剂(四氢呋喃与水的体积比为约5:1-1:5)或二氯甲烷-水混合溶剂(二氯甲烷与水的体积比为约5:1-1:5),更优选二氯甲烷-水混合溶剂(二氯甲烷与水的体积比为约1:2);所述氧化反应的温度为0℃到25℃,优选的温度为25℃;所述碱选自:碳酸钾、碳酸铯、碳酸钠、碳酸钙、碳酸银、三乙胺或二异丙基乙胺,优选碳酸钾或三乙胺;碱的摩尔当量优选为0.5eq至3eq,更优选摩尔当量为1.5eq的碳酸钾或摩尔当量为1eq的三乙胺;所述烷基化试剂选自:溴苄、氯苄、对甲氧基溴苄、对甲氧基氯苄或烯丙基溴,优选溴苄;所述烷基化反应的溶剂选自:四氢呋喃、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙酮或乙腈,优选丙酮;所述烷基化反应的温度为25℃到100℃,优选的温度为30℃。
在本发明的一个实施方案中,提供了合成中间体化合物II的方法,包括:
Figure PCTCN2021094459-appb-000011
步骤1:将化合物I的4位羟基保护得到化合物D;
步骤2:选择性地脱除化合物D的异头碳保护基-SR 1,得到化合物E;
步骤3:在碱性条件下,将化合物E与CX 3CN或CX 3C(=NR 4)X反应得到化合物II。
在一个优选的实施方案中,该方法包括:
步骤1:在干燥的有机溶剂中,在碱性条件下,使用合适的保护剂将化合物I的4位羟基保护得到化合物D;
步骤2:选择性脱除化合物D的异头碳保护基-SR 1,得化合物E;
步骤3:在干燥的有机溶剂中,在碱性条件下,将化合物E与CX 3CN或CX 3C(=NR 4)X(例如,三氯乙腈)反应得到化合物II。
在一个更优选的实施方案中,中间体化合物II的合成采用一锅三步反应,中间体无需分离纯化。其中,步骤1中所述合适的保护剂选自乙酰氯、醋酸酐、三甲基氯硅烷、叔丁基二甲基氯硅烷、苯甲酰氯、氯甲酸-9-芴基甲酯、三苯基氯甲烷、乙酰丙酰氯或乙酰丙酸,优选乙酰丙酸;保护剂的摩尔当量优选为1.5eq;所述有机溶剂选自:无水二氯甲烷、无水四氢呋喃、无水乙酸乙酯、无水乙腈、无水甲苯、无水N,N-二甲基甲酰胺或无水N,N-二甲基乙酰胺,优选无水二氯甲烷;优选的反应温度为25℃;所述碱选自:无水碳酸钾、无水碳酸钠、三乙胺、N,N-对二甲基氨基吡啶或吡啶,优选N,N-对二甲基氨基吡啶;碱的摩尔当量优选为1.5eq。
其中,步骤2中所述用于脱除异头碳保护基的试剂选自N-氯代丁二酰亚胺或N-溴代丁二酰亚胺,优选N-溴代丁二酰亚胺;反应温度优选为25℃。
其中,步骤3中所述有机溶剂选自:无水二氯甲烷、无水四氢呋喃、无水乙酸乙酯、无水乙腈、无水甲苯、无水N,N-二甲基甲酰胺或无水N,N-二甲基乙酰胺,优选无水二氯甲烷;反应温度优选为0℃到10℃;所述碱选自:无水碳酸钾、无水碳酸钠、三乙胺、1,8-二氮杂双环[5.4.0]十一碳-7-烯、N,N-对二甲基氨基吡啶或吡啶,优选1,8-二氮杂双环[5.4.0]十一碳-7-烯;碱的摩尔当量优选为0.5eq。
在本发明的一个实施方案中,提供合成中间体化合物III的方法,包括:
Figure PCTCN2021094459-appb-000012
步骤1:将化合物I的4位羟基保护得到化合物D;
步骤2:在碱性条件下,将化合物D与R 2OH反应,得到化合物F;
步骤3:选择性地脱除化合物F的4位羟基保护基R 3,得到化合物III。
在一个优选的实施方案中,该方法包括:
步骤1.在干燥的有机溶剂中,在碱性条件下,使用合适的保护剂将化合物I的4位羟基保护得到化合物D;
步骤2.在干燥的有机溶剂中,在大位阻碱存在下,向化合物D中加入R 2OH,二苯基硫酚和磺酸酐催化剂,反应得到化合物F;
步骤3.在有机溶剂中选择性地脱除化合物F的4位羟基保护基得化合物III。
在本发明的一个更优选的实施方案中,中间体化合物III的合成采用一锅三步法。其中,步骤1中所述合适的保护剂选自:乙酰氯、醋酸酐、三甲基氯硅烷、叔丁基二甲基氯硅烷、氯甲酸-9-芴基甲酯、苯甲酰氯、三苯基氯甲烷、乙酰丙酰氯或乙酰丙酸,优选乙酰丙酸;保护剂摩尔当量优选为1.5eq;所述有机溶剂选自:无水二氯甲烷、无水四氢呋喃、无水乙酸乙酯、无水乙腈、无水甲苯、无水N,N-二甲基甲酰胺或无水N,N-二甲基乙酰胺,优选无水二氯甲烷;反应温度优选为25℃;所述的碱选自:无水碳酸钾、无水碳酸钠、三乙胺、N,N-对二甲基氨基吡啶或吡啶,优选N,N-对二甲基氨基吡啶;碱的摩尔当量优选为1.5eq。
其中,步骤2中所述有机溶剂选自:无水二氯甲烷、无水四氢呋喃、无水乙醚、无水N,N-二甲基甲酰胺、无水N,N-二甲基乙酰胺、无水甲苯或无水二甲亚砜,优选无水二氯甲烷;所述大位阻有机碱选自:1,8-二氮杂二环十一碳-7-烯、2,6-二叔丁基吡啶或2,4,6-三叔丁基嘧啶,优选2,6-二叔丁基吡啶;碱的摩尔当量优选为2.2eq;所述磺酸酐催化剂选自:甲磺酸酐、三氯甲磺酸酐、三溴甲磺酸酐、三氟甲磺酸酐或甲苯磺酸酐,优选三氟甲磺酸酐;三氟甲磺酸酐的摩尔当量优选为0.05eq;反应温度优选为-60℃。
其中,步骤3中所述有机溶剂为二氯甲烷和/或吡啶,优选二氯甲烷:吡啶=5:1(V/V);用于选择性地脱除化合物F的4位羟基保护基的试剂优选为醋酸肼,其当量优选为4.3eq。
在本发明的一个优选方案中,所述化合物I、化合物II和化合物III分 别为如下结构式所示的化合物I-1、II-1和III-1:
Figure PCTCN2021094459-appb-000013
本发明的优点在于:
本文所述的制备β-D-(1,4)-甘露糖醛酸寡糖(化合物IX)方法采用汇聚式的合成策略,通过全新的寡糖中间体化合物I、化合物II和化合物III,将寡糖供体(化合物VII)和寡糖受体(化合物V)组装成糖基数更高的寡糖化合物VIII,再一次性脱除化合物VIII中的保护基R 2,合成β-D-(1,4)-甘露糖醛酸寡糖(化合物IX)。与现有技术相比,本发明的制备方法更加简洁、经济、高效。
实施例
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
下面的实施例部分提供了β-D-(1,4)-甘露糖醛酸的二糖(化合物IX-1)、四糖(化合物IX-2)、三糖(化合物IX-3)、五糖(化合物IX-4)和七糖(化合物IX-5)的全合成方案进一步说明本发明,但本发明并不受其限制。
实施例中的原料或试剂除特别说明以外,均市售可得。
实施例中的室温指20-30℃。
实施例中的常压指1个大气压。
实施例中的水指去离子水。
缩略语的含义
缩略语 含义
TLC 薄层色谱
EA 乙酸乙酯
Hex 己烷
DCM 二氯甲烷
TEMPO 四甲基哌啶氮氧化物
DIC 二异丙基碳二亚胺
DMAP 二甲氨基吡啶
NBS 溴代琥珀酰亚胺
DBU 1,8-二氮杂二环十一碳-7-烯
TTBP 2,4,6-三叔丁基吡啶
Tf 2O 三氟甲磺酸酐
LevOH 乙酰丙酸
TMSOTf 三氟甲磺酸三甲基硅酯
CNCCl 3 三氯乙腈
min 分钟
mL 毫升
mmol 毫摩尔
实施例1:化合物I-1的合成
第一步:称取1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖(19.5g,50.0mmol)置于500mL的茄型瓶中,加入无水二氯甲烷(150mL),溶液呈无色透明,在冰浴下,加入对甲苯硫酚(6.2g,50.0mmol),三氟化硼乙醚 溶液(12.7mL,100mmol)。冰浴下搅拌半小时后,室温下继续搅拌24小时,溶液由淡黄色变为粉红色。TLC(EA/Hex=1/2)检测原料消失,用饱和NaHCO 3溶液淬灭反应,分液漏斗分离出二氯甲烷层,减压蒸除溶剂,再加入200mL无水甲醇复溶,加入甲醇钠(256mg,4.7mmol),室温搅拌反应12小时,TLC(EA/Hex=1/2)检测原料反应完全,稀盐酸调pH至中性,减压蒸除溶剂,再加入二氯甲烷(100mL)和水(100mL),室温搅拌半小时,分液漏斗分出水层,减压蒸除水,得粗品化合物A-1直接用于下一步无需纯化。
第二步:将粗品化合物A-1(约47.3mmol)溶于200mL无水DMF中,加入PhCH(OMe) 2(7.9g,52.03mmol,1.1eq),对甲苯磺酸(899mg,4.7mmol,0.1eq),反应温度控制在50℃,减压反应2小时,TLC(CH 3OH/DCM=1/9)表明原料反应完全。将反应冷却至室温,冰浴下加入NaH(5.68g,141.9mmol,3.0eq)反应20min后,再加入BnBr(20.2g,118.3mmol,2.5eq),20分钟后撤去冰浴,室温搅拌12小时,TLC(EA/Hex=1/4)表明原料转化完全。在冰浴下用甲醇(10mL)将NaH淬灭,加入乙酸乙酯(200mL)稀释反应液,饱和食盐水(200mL)洗涤三次反应液,减压浓缩除去溶剂,再加入300mL甲醇复溶,加入对甲苯磺酸(899mg,10%),在常温下反应12小时,TLC(EA/Hex=1/9)表明原料反应完全。再用饱和碳酸氢钠溶液调节反应液pH至8,分液漏斗分出有机层,减压除去溶剂,柱层析分离纯化,洗脱液比例(EA/Hex=1/12-CH 3OH/DCM=1/9),旋干有机相,抽真空至恒重,得白色固体化合物B-1(11.8g,25.5mmol)产率51%(以乙酰甘露糖计收率)。核磁数据如下所示:
1H NMR(600MHz,CDCl 3)δ7.37–7.21(m,12H),7.06(d,J=7.9Hz,2H),5.45(d,J=1.3Hz,1H),4.60(d,J=12.2Hz,1H),4.57–4.46(m,3H),4.17–4.00(m,2H),3.94(dd,J=3.0,1.5Hz,1H),3.85–3.73(m,2H),3.68(dd,J=9.1,3.1Hz,1H),3.35(s,1H),2.70(d,J=3.7Hz,1H),2.28(s,3H).
第三步:称取化合物B-1(6.3g,13.6mmol)置于250mL的茄型瓶中,加入水和二氯甲烷(v/v=1/2)混合溶液87mL,呈无色透明,加入 TEMPO(424mg,2.7mmol,0.2eq),溶液变成红褐色,再加入PhI(OAc) 2(10.9g,33.9mmol,2.5eq),在室温下剧烈搅拌3小时,溶液变成棕黄色,TLC(EA/Hex=1/1)表明有原料反应完全。在反应液中加入饱和Na 2S 2O 3水溶液(10mL),用稀盐酸调节pH=3,搅拌10分钟,加入二氯甲烷100mL萃取分液,减压除去溶剂,再加入180mL丙酮复溶,加入BnBr(4.6g,27.2mmol,2eq),K 2CO 3(2.8g,20.4mmol,1.5eq),在氮气保护下,室温搅拌反应3小时,溶液为红褐色,TLC(CH 3OH/DCM=1/9)表明原料完全消失,将反应液用稀盐酸调节pH至中性,用二氯甲烷(100mL)萃取分液,减压浓缩有机相,柱层析纯化(EA/Hex=1/10-1/1),得红褐色油状物化合物I-1(4.3g,7.5mmol),产率55%(以化合物B-1计)。核磁图谱数据如下所示:
1H NMR(600MHz,CDCl 3)δ7.70–7.28(m,17H),6.97(d,J=7.9Hz,2H),5.23(dd,J=44.0,12.3Hz,2H),5.00(d,J=11.4Hz,1H),4.86(d,J=11.4Hz,1H),4.75(q,J=12.0Hz,2H),4.68(d,J=0.9Hz,1H),4.45(td,J=9.5,2.5Hz,1H),4.10(t,J=6.4Hz,1H),3.76(d,J=9.6Hz,1H),3.58–3.41(m,1H),3.08(d,J=2.5Hz,1H),2.30(s,3H).
实施例2:化合物II-1的合成
第一步:称取化合物I-1(15.0g,26.3mmol)置于1000mL茄型瓶中,加入400mL的无水二氯甲烷,溶液呈红褐色,加入LevOH(7.6g,65.8mmol,2.5eq),DIC(8.3g,10.2mL,65.8mmol,2.5eq),及DMAP(8.1g,65.8mmol,2.5eq),室温下搅拌3小时,溶液变为棕黄色浑浊。TLC(EA/Hex=1/2)表明原料转化完全。加入饱和食盐水(500mL),萃取分液,减压浓缩有机相,得粗产物化合物D-1直接用于下一步。
第二步:将粗品化合物D-1溶于320mL丙酮/水(v/v=15/1),呈淡黄色溶液加入NBS(16.8g,4eq),数分钟后变成红褐色,室温搅拌1小时,溶液变淡黄色。TLC(EA/Hex=1/2)表明原料转化完全。用饱和Na 2S 2O 3溶液(10mL)淬灭反应,再加入二氯甲烷(500mL)萃取,饱和食盐水 洗涤有机层一次,减压浓缩除去溶剂,得黄色油状物化合物E-1直接用于下一步反应。
第三步:将上步粗品化合物E-1溶于90mL无水二氯甲烷中,加入CNCCl 3(6.3g,4.3mL,5eq)和DBU(663mg,0.7mL,4.4mmol,0.5eq),溶液呈深褐色,冰浴下搅拌3小时。TLC(EA/Hex=1/2)表明原料转化完全。减压浓缩反应液,柱层析分离纯化,洗脱液比例(EA/Hex=1/6-1/1),得淡黄色油状化合物II-1(13.5g,19.2mmol)收率73%(以化合物I-1计)。核磁数据如下所示:
1H NMR(400MHz,CDCl 3)δ7.43–7.16(m,15H),6.53(d,J=3.3Hz,1H),5.60(t,J=7.5Hz,1H),5.12(t,J=12.9Hz,1H),5.03(d,J=12.2Hz,1H),4.88(d,J=46.7Hz,2H),4.65(ddd,J=34.3,16.0,6.9Hz,1H),4.51(d,J=7.6Hz,1H),4.49–4.38(m,1H),3.89(dd,J=7.8,2.9Hz,1H),3.85–3.76(m,1H),2.72–2.44(m,3H),2.39(d,J=7.2Hz,1H),2.15(d,J=11.7Hz,3H).
实施例3:化合物III-1的合成
称取化合物D-1(300mg,0.45mmol)溶于20mL无水DCM,氮气保护下加入TTBP(334.8mg,1.35mmol,3eq),二苯亚砜(109mg,0.54mmol,1.2eq),干燥的4埃分子筛(500mg),溶液在-78℃下搅拌10分钟。加入Tf 2O(141mg,0.5mmol,1.1eq)。溶液搅拌10分钟,加入苄醇(54mg,0.5mmol,1.1eq),在-78℃反应1小时,TLC(EA/Hex=1/2)表明原料转化完全。加饱和碳酸氢钠调节pH至中性,除去分子筛,减压浓缩有机相得粗品化合物F-1,复溶于20mL的DCM/吡啶(v/v=4/1)中,加入乙酸肼(180mg,1.95mmol,4.33eq),室温下搅拌2小时。TLC(EA/Hex=1/2)表明原料消失。加入丙酮淬灭反应,用二氯甲烷稀释,再加稀盐酸调节pH至中性,再用饱和食盐水洗涤一次,有机相用无水硫酸钠干燥后过滤,浓缩有机相,柱层析纯化,洗脱液比例(EA/Hex=1/4-1/1),得无色油状物化合物III-1(224mg,0.41mmol),产率90%(以化合物D-1计)。核磁数 据如下所示:
1H NMR(600MHz,CDCl 3)δ7.49–7.06(m,20H),5.24(q,J=12.3Hz,2H),5.03(d,J=1.6Hz,1H),4.74(d,J=11.9Hz,1H),4.70–4.54(m,3H),4.50(d,J=11.9Hz,1H),4.35(td,J=9.2,2.4Hz,1H),4.20(d,J=9.3Hz,1H),3.80(dd,J=9.2,3.0Hz,1H),3.78–3.71(m,1H),2.82(d,J=2.4Hz,1H).
实施例4:化合物IV-1的合成
称取化合物II-1(2.0g,2.84mmol)和化合物III-1(1.7g,3.12mmol,1.1eq)溶于80mL的无水DCM中,溶液呈红褐色,加入干燥的4埃分子筛(1.8g),在-40℃下搅拌10min后加入TMSOTf(126mg,0.57mmol,0.2eq),N 2保护下搅拌反应1小时,TLC(EA/Hex=1/2)表明化合物II-1消失。加三乙胺调节pH至中性,除去分子筛,减压浓缩有机相,复溶于20mL的DCM/吡啶(v/v=4/1)中,加入乙酸肼(1130mg,12.3mmol,4.33eq),室温下搅拌5小时。TLC(EA/Hex=1/2)表明原料消失。加入丙酮淬灭反应,用二氯甲烷稀释,再加稀盐酸调节pH至中性,再用饱和食盐水洗涤一次,有机相用无水硫酸钠干燥后过滤,浓缩有机相,柱层析纯化,洗脱液比例(EA/Hex=1/8-1/1),得淡黄色油状物化合物IV-1(1813mg,1.8mmol)产率64%。核磁数据如下所示:
1H NMR(600MHz,CDCl 3)δ7.35–6.92(m,35H),5.19(s,1H),5.08(d,J=12.2Hz,1H),5.00(d,J=12.2Hz,1H),4.94(d,J=12.2Hz,1H),4.80(dd,J=27.2,12.1Hz,2H),4.71(d,J=12.2Hz,1H),4.57(dd,J=12.1,4.8Hz,2H),4.52–4.35(m,8H),4.35–4.28(m,1H),4.18(t,J=9.5Hz,1H),4.03–3.93(m,1H),3.72(t,J=4.2Hz,1H),3.64–3.56(m,2H),3.15(dd,J=9.5,2.8Hz,1H),2.94(s,1H).
实施例5:β-D-(1,4)-甘露糖醛酸二糖(化合物IX-1)的合成
将化合物IV-1(500mg,0.5mmol)溶于22mL的THF/H 2O/t-BuOH(v/v/v=1/1/0.2)中,加入钯炭(钯含量10%)(50mg),在氢气下25℃搅拌反应48小时,TLC(EA/Hex=1/2)表明原料消失,滤除钯炭,用水(50mL*3)洗涤三次钯炭层,合并水相,用EA(100mL)萃取一次,减压浓缩水至10mL,冷冻干燥,得白色固体化合物IX-1(160mg,0.4mmol),收率86%。核磁数据如下所示:
1H NMR(600MHz,D2O)δ5.23–5.12(m,1H),4.75(d,J=9.4Hz,1H),4.67–4.57(m,1H),4.40(t,J=6.8Hz,1H),4.08(dt,J=45.1,20.4Hz,1H),4.02–3.85(m,2H),3.85–3.67(m,2H),3.67–3.48(m,1H).
13C NMR(151MHz,D 2O)δ172.85,172.73,101.35,101.06,99.82,95.47,94.08,93.28,92.97,79.52,77.87,76.14,75.36,75.22,72.32,72.27,71.82,71.16,70.11,69.96,69.84,69.80,69.75,69.64,69.59,69.53,69.43,69.21,69.04,67.91,67.79,67.75,67.66.
实施例6:化合物VI-1的合成
称取化合物II-1(2.0g,2.84mmol)和化合物I-1(1.78g,3.13mmol,1.1eq)溶于80mL的无水DCM中,呈红褐色,加入干燥的4埃分子筛(2.0g),在-40℃下搅拌10min后加入TMSOTf(126mg,0.57mmol,0.2eq),N 2保护下搅拌1小时,TLC(EA/Hex=1/2)表明化合物II-1反应完全。加入饱和碳酸氢钠调节pH至中性,过滤除去分子筛,萃取干燥浓缩,柱层析分离纯化,洗脱液比例(EA/Hex=1/8-1/1),得淡黄色固体化合物VI-1(2.7g,2.42mmol),产率86%。核磁数据如下所示:
1H NMR(600MHz,CDCl 3)δ7.39–7.15(m,34H),6.90(d,J=8.0Hz,2H),5.68(d,J=6.8Hz,1H),5.56–5.46(m,1H),5.13–5.02(m,2H),4.92(dd,J=36.4,12.2Hz,2H),4.75–4.53(m,3H),4.53–4.38(m,7H),4.38–4.26(m,1H),4.16(s,1H),3.83(dt,J=9.6,3.2Hz,2H),3.73(dd,J=8.1,2.7Hz,1H),3.40(dd,J=9.6,2.8Hz,1H),2.57(dt,J=19.8,7.8Hz,1H),2.52–2.37(m,2H),2.36–2.25(m,1H),2.22(s,3H),2.15–2.05(m,3H)
实施例7:β-D-(1,4)-甘露糖醛酸四糖(化合物IX-2)的合成
第一步:称取VI-1(500mg,0.45mmol)溶于20mL无水DCM,氮气保护下加入TTBP(334.8mg,1.35mmol,3eq),二苯亚砜(109mg,0.54mmol,1.2eq),干燥的4埃分子筛500mg),溶液在-78℃下搅拌10分钟。加入Tf 2O(141mg,0.5mmol,1.1eq)。溶液搅拌10分钟,加入化合物IV-1(500mg,0.5mmol,1.1eq),反应在-78℃反应1小时,TLC(EA/Hex=1/2)表明原料转化完全。加饱和碳酸氢钠调节pH至中性,除去分子筛,减压浓缩有机相,复溶于20mL的DCM/吡啶(v/v=4/1)中,加入乙酸肼(180mg,1.95mmol,4.33eq),室温下搅拌2小时。TLC(EA/Hex=1/2)表明原料消失。加入丙酮淬灭反应,用二氯甲烷稀释,再加稀盐酸调节pH至中性,再用饱和食盐水洗涤一次,有机相用无水硫酸钠干燥后过滤,浓缩有机相,柱层析纯化,洗脱液比例(EA/Hex=1/4-1/1),得淡黄色固体化合物VIII-1(766mg,0.405mmol),产率90%(以化合物VI-1计)。
第二步:将化合物VIII-1(766mg,0.405mmol)溶于22mL的THF/H 2O/t-BuOH(v/v/v=1/1/0.2)中,加入钯炭(钯含量10%)(300mg),在氢气下25℃搅拌反应48小时,TLC(EA/Hex=1/2)表明原料消失,滤除钯炭,用水(50mL*3)洗涤三次钯炭层,合并水相,用EA(100mL)萃取一次,减压浓缩水至10mL,冷冻干燥,得白色固体化合物IX-2(263mg,0.365mmol),收率90%。
1H NMR(600MHz,D 2O)δ5.22(d,J=4.4Hz,1H),4.98–4.80(m,2H),4.82–4.76(m,2H),4.46(d,J=6.6Hz,1H),4.17(t,J=6.9Hz,1H),4.13–3.87(m,8H),3.87–3.65(m,3H),3.65–3.48(m,2H).
13C NMR(150MHz,D 2O)δ172.68,172.11,171.66,100.40,100.37,99.86,95.47,93.99,92.93,77.94,77.84,77.66,76.54,75.23,74.38,73.03,72.93,72.31,71.81,71.16,70.97,69.97,69.60,69.53,69.46,69.19,69.04,67.63.
实施例8:β-D-(1,4)-甘露糖醛酸三糖(化合物IX-3)的合成
第一步:称取化合物II-1(2.0g,2.84mmol)和化合物IV-1(3.12g,3.13mmol,1.1eq)溶于100mL的无水DCM中,溶液呈红褐色,加入干燥的4埃分子筛(1.8g),在-40℃下搅拌10min后加入TMSOTf(126mg,0.57mmol,0.2eq),N 2保护下搅拌反应1小时。TLC(EA/Hex=1/2)表明化合物II-1消失。加三乙胺调节pH至中性,除去分子筛,减压浓缩有机相,复溶于50mL的DCM/吡啶(v/v=4/1)中,加入乙酸肼(1130mg,12.3mmol,4.33eq),室温下搅拌5小时。TLC(EA/Hex=1/2)表明原料消失。加入丙酮淬灭反应,用二氯甲烷稀释,再加稀盐酸调节pH至中性,再用饱和食盐水洗涤一次,有机相用无水硫酸钠干燥后过滤,浓缩有机相,柱层析纯化,洗脱液比例(EA/Hex=1/8-1/1),,得淡黄色油状物化合物V-1(2547mg,1.76mmol)产率62%。核磁数据如下所示:
1H NMR(600MHz,CDCl3)δ7.26(ddd,J=48.8,27.9,19.6Hz,50H),5.25(s,1H),5.14–4.97(m,4H),4.88(dd,J=27.9,12.0Hz,3H),4.73(t,J=11.9Hz,2H),4.62(ddd,J=33.3,22.0,11.5Hz,6H),4.54–4.39(m,8H),4.39–4.27(m,2H),4.17(t,J=8.7Hz,1H),4.04(s,1H),3.79(d,J=8.3Hz,1H),3.70(d,J=14.7Hz,3H),3.48(d,J=9.3Hz,1H),3.45–3.34(m,1H),3.11(d,J=8.3Hz,1H),2.82(s,1H).
第二步:将化合物V-1(500mg,0.34mmol)溶于20mL的THF/H 2O/t-BuOH(v/v/v=1/1/0.2)中,加入钯炭(钯含量10%)(50mg),在氢气下25℃搅拌反应48小时,TLC(EA/Hex=1/2)表明原料消失,滤除钯炭,用水(50mL*3)洗涤三次钯炭层,合并水相,用EA(100mL)萃取一次,减压浓缩水至10mL,冷冻干燥,得白色固体化合物IX-3(167mg,0.31mmol),收率90%。核磁数据如下所示:
1H NMR(600MHz,D 2O)δ5.17(d,J=4.3Hz,1H),4.77(s,1H),4.41(d,J=6.6Hz,1H),4.11(d,J=6.7Hz,1H),4.05–3.94(m,3H),3.94–3.89(m,2H),3.88(d,J=9.9Hz,1H),3.82–3.77(m,1H),3.77–3.65(m,3H),3.58(dd,J=9.5,3.0Hz,1H).
13C NMR(151MHz,D2O)δ185.70,172.66,172.09,171.67,100.34,99.85,93.97,92.93,77.93,77.84,77.73,77.64,74.36,73.03,72.30,71.79,71.12,70.95,70.56,70.08,69.98,69.55,69.48,69.18,69.02,67.72,67.61.
实施例9:β-D-(1,4)-甘露糖醛酸五糖(化合物IX-4)的合成
第一步:称取VI-1(500mg,0.45mmol)溶于20mL无水DCM,氮气保护下加入TTBP(334.8mg,1.35mmol,3eq),二苯亚砜(109mg,0.54mmol,1.2eq),干燥的4埃分子筛500mg),溶液在-78℃下搅拌10分钟,加入Tf 2O(141mg,0.5mmol,1.1eq),溶液搅拌10分钟,加入化合物V-1(723mg,0.5mmol,1.1eq),反应在-78℃反应1小时,TLC(EA/Hex=1/2)表明原料转化完全。加饱和碳酸氢钠调节pH至中性,除去分子筛,减压浓缩有机相,复溶于20mL的DCM/吡啶(v/v=4/1)中,加入乙酸肼(180mg,1.95mmol,4.33eq),室温下搅拌2小时。TLC(EA/Hex=1/2)表明原料消失。加入丙酮淬灭反应,用二氯甲烷稀释,再加稀盐酸调节pH至中性,再用饱和食盐水洗涤一次,有机相用无水硫酸钠干燥后过滤,浓缩有机相,柱层析纯化,洗脱液比例(EA/Hex=1/4-1/1),得淡黄色固体化合物VIII-2(935mg,0.40mmol),产率88%(以化合物VI-1计)。
第二步:将化合物VIII-2(935mg,0.40mmol)溶于22mL的THF/H 2O/t-BuOH(v/v/v=1/1/0.2)中,加入钯炭(钯含量10%)(300mg),在氢气下25℃搅拌反应48小时,TLC(EA/Hex=1/2)表明原料消失,滤除钯炭,用水(50mL*3)洗涤三次钯炭层,合并水相,用EA(100mL)萃取一次,减压浓缩水至10mL,冷冻干燥,得白色固体化合物IX-4(323mg,0.36mmol),收率90%。核磁数据如下所示:
1H NMR(600MHz,D 2O)δ5.17(s,1H),4.86(s,1H),4.63–4.51(m,3H),4.29(d,J=5.8Hz,1H),4.05(s,1H),3.97(s,3H),3.91(t,J=10.4Hz,2H),3.84(d,J=9.3Hz,6H),3.76(dd,J=14.9,7.5Hz,2H),3.72(d,J=18.2Hz,3H),3.58(d,J=7.0Hz,1H),3.53(s,1H).
13C NMR(151MHz,D 2O)δ174.35,174.12,173.65,173.37,172.69,100.23,100.15,99.78,97.86,93.81,93.18,78.07,78.00,77.86,77.79,74.50, 72.39,71.24,70.38,70.15,69.80,69.71,69.51,69.01,67.99,67.45,61.48.
实施例10:β-D-(1,4)-甘露糖醛酸七糖(化合物IX-5)的合成
第一步:称取化合物VI-1(500mg,0.45mmol)溶于20mL的DCM/吡啶(v/v=4/1)中,加入乙酸肼(180mg,1.95mmol,4.33eq),室温下搅拌2小时。TLC(EA/Hex=1/2)表明原料消失。加入丙酮淬灭反应,用二氯甲烷稀释,再加稀盐酸调节pH至中性,再用饱和食盐水洗涤一次,有机相用无水硫酸钠干燥后过滤,浓缩有机相,加入干燥的4埃分子筛(2.0g),复溶于20mL无水DCM中,再加入化合物II-1(317m g,0.45mmol),溶液呈红褐色,N 2保护下,温度控制在-40℃以下,搅拌10min后加入TMSOTf(20mg,0.09mmol,0.2eq),搅拌1小时。TLC(EA/Hex=1/2)表明化合物II-1反应完全。加入饱和碳酸氢钠调节pH至中性,过滤除去分子筛,萃取干燥浓缩,拌硅胶过柱分离,洗脱液比例(EA/Hex=1/8-1/1),得淡黄色固体化合物VII-1(560m g,0.36mmol),产率80%(以化合物VI-1计)。
第二步:称取VII-1(500mg,0.32mmol)溶于20mL无水DCM,氮气保护下加入TTBP(238mg,0.96mmol,3eq),二苯亚砜(78mg,0.38mmol,1.2eq),干燥的4埃分子筛(500mg),溶液在-78℃下搅拌10分钟,加入Tf 2O(100mg,0.35mmol,1.1eq),溶液搅拌10分钟,加入化合物VIII-1(663mg,0.35mmol,1.1eq),反应在-78℃反应1小时,TLC(EA/Hex=1/2)表明原料转化完全。加饱和碳酸氢钠调节pH至中性,除去分子筛,减压浓缩有机相,复溶于20mL的DCM/吡啶(v/v=4/1)中,加入乙酸肼(128mg,1.39mmol,4.33eq),室温下搅拌2小时。TLC(EA/Hex=1/2)表明原料消失。加入丙酮淬灭反应,用二氯甲烷稀释,再加稀盐酸调节pH至中性,再用饱和食盐水洗涤一次,有机相用无水硫酸钠干燥后过滤,浓缩有机相,柱层析纯化,洗脱液比例(EA/Hex=1/4-1/1),得淡黄色固体化合物VIII-3(880mg,0.27mmol),产率85%(以化合物VII-1计)。
第三步:将化合物VIII-3(880mg,0.27mmol)溶于22mL的THF/H 2O/t-BuOH(v/v/v=1/1/0.2)中,加入钯炭(钯含量10%)(300mg), 在氢气下25℃搅拌反应48小时,TLC(EA/Hex=1/2)表明原料消失,滤除钯炭,用水(50mL*3)洗涤三次钯炭层,合并水相,用EA(100mL)萃取一次,减压浓缩水至10mL,冷冻干燥,得白色固体化合物IX-5(300mg,0.24mmol),收率89%。核磁数据如下所示:
1H NMR(600MHz,D 2O)δ5.96(d,J=3.9Hz,1H),5.15(s,1H),4.84(s,2H),4.65(d,J=3.9Hz,3H),4.60(s,3H),4.16(s,1H),4.10–4.01(m,1H),3.96(s,3H),3.91(s,2H),3.84(d,J=16.4Hz,5H),3.70(s,6H),3.66(d,J=6.7Hz,4H),3.56(dd,J=12.2,6.7Hz,3H).
13C NMR(151MHz,D 2O)δ174.37,174.05,174.02,174.01,173.94,173.84,173.60,100.23,100.15,99.78,97.86,93.81,93.19,78.08,78.00,77.87,77.79,74.64,72.39,71.25,70.38,70.16,69.80,69.71,69.51,69.01,68.00,67.45,61.49.

Claims (21)

  1. 一种制备如式VIII或式IX所示的β-D-(1,4)-甘露糖醛酸寡糖的方法,
    Figure PCTCN2021094459-appb-100001
    包括:
    将化合物V和化合物VII进行偶联反应并选择性脱除保护基R 3生成化合物VIII;
    Figure PCTCN2021094459-appb-100002
    以及任选地,将化合物VIII一次性脱除保护基R 2生成如式IX所示的β-D-(1,4)-甘露糖醛酸寡糖;
    其中,m选自2-18的整数;n和n’各自独立地选自0-8的整数;R 1选自C 1-8烷基、任选地被C 1-8烷基取代的C 6-14芳基;R 2为通过钯炭催化的氢化反应或钯炭催化的氧化反应可以脱除的羟基保护基;R 3为通过钯炭催化的氢化反应或钯炭催化的氧化反应不可以脱除的羟基保护基。
  2. 如权利要求1所述的方法,其中所述偶联反应在大位阻有机碱、二苯基亚砜和磺酸酐催化剂存在下进行;再依次脱除4位的羟基保护基R 3和其它位置的羟基保护基R 2,得到如IX所示的β-D-(1,4)-甘露糖醛酸寡糖化合物。
  3. 如权利要求2所述的方法,其中所述磺酸酐催化剂选自甲磺酸酐、三氟甲磺酸酐或对甲苯磺酸酐。
  4. 如权利要求1所述的方法,其还包括:
    将化合物II和化合物III进行偶联反应生成1,4-糖苷键,然后选择性脱除4位羟基保护基R 3,得到化合物IV;
    Figure PCTCN2021094459-appb-100003
    之后,将化合物IV与化合物II进行偶联反应生成1,4-糖苷键,然后选择性脱除4位羟基保护基R 3;任选地再将得到的化合物重复进行上述偶联反应和脱保护基R 3的步骤,直至得到化合物V;
    Figure PCTCN2021094459-appb-100004
    其中,n、R 2和R 3如权利要求1中所定义;R 4选自H、C 1-8烷基、C 6-14芳基;X选自氟、氯、溴、碘。
  5. 如权利要求4所述的方法,其中所述偶联反应在磺酸催化剂存在下进行;所述磺酸催化剂选自:甲磺酸、三氟甲磺酸、对甲苯磺酸或三 氟甲磺酸三甲基硅酯。
  6. 如权利要求1所述的方法,其还包括:
    将化合物I和化合物II进行偶联反应生成1,4-糖苷键,然后选择性地脱除4位羟基保护基R 3,得到化合物VI;
    Figure PCTCN2021094459-appb-100005
    将化合物VI与化合物II进行偶联反应生成1,4-糖苷键,然后选择性地脱除4位羟基保护基R 3;任选地再将得到的化合物继续重复进行上述偶联反应和脱保护基R 3的步骤,直至得到化合物VII;
    Figure PCTCN2021094459-appb-100006
    其中,n’、R 1、R 2和R 3如权利要求1中所定义;R 4选自H、C 1-8烷基、C 6-14芳基;X选自氟、氯、溴、碘。
  7. 如权利要求6所述的方法,其中所述偶联反应在磺酸催化剂存在下进行;所述磺酸催化剂选自:甲磺酸、三氟甲磺酸、对甲苯磺酸或三氟甲磺酸三甲基硅酯。
  8. 如权利要求4-7中任一项所述的方法,其中化合物II如下获得:
    Figure PCTCN2021094459-appb-100007
    步骤1:将化合物I的4位羟基保护得到化合物D;
    步骤2:选择性地脱除化合物D的异头碳保护基-SR 1,得到化合物E;
    步骤3:在碱性条件下,将化合物E与CX 3C(=NR 4)X或CX 3CN反应得到化合物II;
    其中R 1、R 2和R 3如权利要求1中所定义;R 4选自H、C 1-8烷基、C 6-14芳基;X选自氟、氯、溴、碘。
  9. 如权利要求4-5中任一项所述的方法,其中化合物III可如下获得:
    Figure PCTCN2021094459-appb-100008
    步骤1:将化合物I的4位羟基保护得到化合物D;
    步骤2:在碱性条件下,将化合物D与R 2OH反应,得到化合物F;
    步骤3:选择性地脱除化合物F的4位羟基保护基R 3,得到化合物III;
    其中R 1、R 2和R 3如权利要求1中所定义。
  10. 如权利要求6-9中任一项所述的方法,还包括:
    Figure PCTCN2021094459-appb-100009
    步骤1:1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖与异头碳保护剂R 1SH反应,然后再进行水解反应,得化合物A;
    步骤2:选择性地保护化合物A的2位和3位的羟基,得到化合物B;
    步骤3:将化合物B的6位的羟基氧化为羧基,然后使该羧基酯化得到化合物I;
    其中R 1和R 2如权利要求1中所定义。
  11. 如权利要求1-10中任一项所述的方法,其中,
    R 2选自C 6-14芳基甲基或烯丙基,所述C 6-14芳基甲基任选地被C 1-8烷基、C 1-8烷氧基、卤素取代;
    R 3选自C 1-8烷基酰基、C 1-8烷氧基酰基、C 6-14芳基酰基、三(C 1-8烷基)甲硅烷基、9-芴基甲氧基甲酰基、三(C 6-14芳基)甲基;其中C 1-8烷基酰基和C 1-8烷氧基酰基中的C 1-8烷基中的任一碳原子可以任选地被氧代。
  12. 如权利要求11所述的方法,其中,
    R 2选自苄基、对甲氧苄基、萘甲基、烯丙基;
    R 3选自乙酰基、乙酰丙酰基、三甲基硅基、叔丁基二甲基硅基、苯甲酰基、9-芴基甲氧基甲酰基、三苯甲基。
  13. 式I化合物:
    Figure PCTCN2021094459-appb-100010
    或其盐,其中,
    R 1选自C 1-8烷基、任选地被C 1-8烷基取代的C 6-14芳基;
    R 2选自C 6-14芳基甲基或烯丙基,所述C 6-14芳基甲基任选地被C 1-8烷基、C 1-8烷氧基、卤素取代。
  14. 如权利要求13所述的式I化合物或其盐,其中,
    R 1选自苯基、邻甲苯基、对甲基苯基、4-叔丁基-2-甲基苯基、2,4-二叔丁基苯基、甲基或乙基;
    R 2选自苄基、对甲氧苄基、萘甲基、烯丙基。
  15. 如权利要求13或14所述式I化合物或其盐的制备方法,包括:
    Figure PCTCN2021094459-appb-100011
    步骤1:1,2,3,4,6-五-O-乙酰基-D-吡喃甘露糖与异头碳保护剂R 1SH反应,然后再进行碱性水解反应,得化合物A;
    步骤2:选择性地保护化合物A的2位和3位的羟基,得到化合物B;
    步骤3:将化合物B的6位的羟基氧化为羧基,然后使该羧基酯化得到化合物I;
    其中R 1和R 2如权利要求13或14中所定义。
  16. 式II化合物:
    Figure PCTCN2021094459-appb-100012
    或其盐,其中,
    R 2选自C 6-14芳基甲基或烯丙基,所述C 6-14芳基甲基任选地被C 1-8烷基、C 1-8烷氧基、卤素取代;
    R 3选自C 1-8烷基酰基、C 1-8烷氧基酰基、C 6-14芳基酰基、三(C 1-8烷基)甲硅烷基、9-芴基甲氧基甲酰基、三(C 6-14芳基)甲基;其中C 1-8烷基酰基和C 1-8烷氧基酰基中的C 1-8烷基中的任一碳原子可以任选地被氧代;
    R 4选自氢、C 1-8烷基、C 6-14芳基;
    X选自氟、氯、溴、碘。
  17. 如权利要求16所述的式II化合物或其盐,其中,
    R 2选自苄基、对甲氧苄基、萘甲基、烯丙基;
    R 3选自乙酰基、乙酰丙酰基、三甲基硅基、叔丁基二甲基硅基、苯甲酰基、9-芴基甲氧基甲酰基、三苯甲基;
    R 4选自氢、C 1-4烷基、C 6-8芳基
    X选自氯或溴。
  18. 如权利要求16或17所述的式II化合物或其盐的制备方法,包括:
    Figure PCTCN2021094459-appb-100013
    步骤1:将化合物I的4位羟基保护得到化合物D;
    步骤2:选择性地脱除化合物D的异头碳保护基-SR 1,得到化合物E;
    步骤3:在碱性条件下,将化合物E与三CX 3C(=NR 4)X或CX 3CN腈反应得到化合物II;
    其中R 1如权利要求1中所定义;R 2、R 3、R 4和X如权利要求16或17中所定义。
  19. 式III化合物:
    Figure PCTCN2021094459-appb-100014
    或其盐,其中,
    R 2选自C 6-14芳基甲基或烯丙基,所述C 6-14芳基甲基任选地被C 1-8烷基、C 1-8烷氧基、卤素取代。
  20. 如权利要求19所述的式III化合物或其盐,其中,
    R 2选自苄基,对甲氧苄基、萘甲基、烯丙基。
  21. 如权利要求19或20所述的式III化合物或其盐的制备方法,包括:
    Figure PCTCN2021094459-appb-100015
    步骤1:将化合物I的4位羟基保护得到化合物D;
    步骤2:在碱性条件下,将化合物D与R 2OH反应,得到化合物F;
    步骤3:选择性地脱除化合物F的4位羟基保护基R 3,得到化合物III;
    其中R 1和R 3如权利要求1中所定义,R 2如权利要求19或20中所定义。
PCT/CN2021/094459 2020-05-19 2021-05-18 β-D-(1,4)-甘露糖醛酸寡糖及其中间体的制备方法 WO2021233314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010426751.5 2020-05-19
CN202010426751.5A CN113683650A (zh) 2020-05-19 2020-05-19 β-D-(1,4)-甘露糖醛酸寡糖及其中间体的制备方法

Publications (1)

Publication Number Publication Date
WO2021233314A1 true WO2021233314A1 (zh) 2021-11-25

Family

ID=78576086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094459 WO2021233314A1 (zh) 2020-05-19 2021-05-18 β-D-(1,4)-甘露糖醛酸寡糖及其中间体的制备方法

Country Status (2)

Country Link
CN (1) CN113683650A (zh)
WO (1) WO2021233314A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138698A1 (en) * 2011-04-08 2012-10-11 Ancora Pharmaceuticals Inc. Synthesis of beta-mannuronic acid oligosaccharides
CN105541933A (zh) * 2016-01-27 2016-05-04 陕西师范大学 一种双三氟甲磺酰亚胺试剂活化糖基化反应提高β-糖苷键立体选择性的方法
WO2020070258A1 (en) * 2018-10-03 2020-04-09 Carmeda Ab Immobilised biological entities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138698A1 (en) * 2011-04-08 2012-10-11 Ancora Pharmaceuticals Inc. Synthesis of beta-mannuronic acid oligosaccharides
CN105541933A (zh) * 2016-01-27 2016-05-04 陕西师范大学 一种双三氟甲磺酰亚胺试剂活化糖基化反应提高β-糖苷键立体选择性的方法
WO2020070258A1 (en) * 2018-10-03 2020-04-09 Carmeda Ab Immobilised biological entities

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CODÉE JEROEN D. C., VAN DEN BOS LEENDERT J., DE JONG ANA-RAE, DINKELAAR JASPER, LODDER GERRIT, OVERKLEEFT HERMAN S., VAN DER MAREL: "The Stereodirecting Effect of the Glycosyl C5-Carboxylate Ester: Stereoselective Synthesis of β-Mannuronic Acid Alginates", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 74, no. 1, 2 January 2009 (2009-01-02), pages 38 - 47, XP055869693, ISSN: 0022-3263, DOI: 10.1021/jo8020192 *
DIMITRIOU ELENI, MILLER GAVIN J.: "Exploring a glycosylation methodology for the synthesis of hydroxamate-modified alginate building blocks", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 17, no. 42, 30 October 2019 (2019-10-30), pages 9321 - 9335, XP055869694, ISSN: 1477-0520, DOI: 10.1039/C9OB02053E *
MAGAUD, D. GRANDJEAN, C. DOUTHEAU, A. ANKER, D. SHEVCHIK, V. COTTE-PATTAT, N. ROBERT-BAUDOUY, J.: "Synthesis of the two monomethyl esters of the disaccharide 4-O-@a-d-galacturonosyl-d-galacturonic acid and of precursors for the preparation of higher oligomers methyl uronated in definite sequences", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 314, no. 3-4, 31 December 1998 (1998-12-31), GB , pages 189 - 199, XP004166154, ISSN: 0008-6215, DOI: 10.1016/S0008-6215(98)00312-7 *
SCHUMANN B., PRAGANI R., ANISH C., PEREIRA C. L., SEEBERGER P. H.: "Synthesis of conjugation-ready zwitterionic oligosaccharides by chemoselective thioglycoside activation", CHEMICAL SCIENCE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 5, no. 5, 1 January 2014 (2014-01-01), United Kingdom , pages 1992 - 2002, XP055869695, ISSN: 2041-6520, DOI: 10.1039/C3SC53362J *
WALVOORT MARTHE T. C., VAN DEN ELST HANS, PLANTE OBADIAH J., KRÖCK LENZ, SEEBERGER PETER H., OVERKLEEFT HERMAN S., VAN DER MAREL G: "Automated Solid-Phase Synthesis of β-Mannuronic Acid Alginates", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, ¬VERLAG CHEMIE| :, vol. 51, no. 18, 27 April 2012 (2012-04-27), pages 4393 - 4396, XP055869698, ISSN: 1433-7851, DOI: 10.1002/anie.201108744 *

Also Published As

Publication number Publication date
CN113683650A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CA2751741C (en) Process for the preparation of (-) -delta 9-tetrahydrocannabinol
KR20060091298A (ko) 스틸벤 유도체의 제조방법
AU2002253386A1 (en) Synthesis of cannabinoids
WO2002096899A1 (en) Synthesis of cannabinoids
CN114524856B (zh) 一种高纯度植物源胆固醇的合成方法
CN114395009B (zh) 一种高纯度胆固醇的合成方法
TW201309662A (zh) 多酚新合成方法
WO2023142460A1 (zh) 一种可见光诱导卤代芳烃与苯酚化合物反应合成芳基酚的方法
WO2021233314A1 (zh) β-D-(1,4)-甘露糖醛酸寡糖及其中间体的制备方法
EP1260517B1 (en) Process for preparing flavonoids
HORIE et al. Studies of the selective O-alkylation and dealkylation of flavonoids. XII.: A new, convenient method for synthesizing 3, 5-dihydroxy-6, 7-dimethoxyflavones from 3, 5, 6, 7-tetramethoxyflavones
CN114957371B (zh) 地屈孕酮及其中间体化合物的制备方法
CN113999164B (zh) 常山酮中间体反式-n-苄氧羰基-(3-羟基-2-哌啶基)-2-丙酮的制备方法
CN103168045A (zh) 用于肝素五糖的二糖的制备方法
WO2010122096A1 (en) Process for obtaining fluorometholone and intermediates therefor
CN114716497A (zh) 一种制备脱氧胆酸的方法
Nakata et al. Synthetic studies of rifamycins. VIII. An improved practical synthesis of the ansa-chain compounds for the rifamycin W synthesis.
CN113234113A (zh) 一种高效构建1,2-顺式-2-硝基-葡萄糖苷和半乳糖糖苷的方法
Toyota et al. Absolute Conformation and Chiroptical Properties. VI. 2, 2', 3, 3'-Tetramethoxy-9, 9'-bitriptycyl: A Stereochemical Analog of 1, 2-Disubstituted Ethane with Identical Substituents.
WO2023035906A1 (zh) 中间体化合物及其制备方法和应用
EP0621866A1 (en) Process for preparing 3-acylestratrienes and acylbenzenes
CN115716813B (zh) 乌药烷倍半萜中间体、由该中间体制备的乌药烷型倍半萜多聚体及制备方法
CN110981933A (zh) 一种高效合成Aramchol的方法
US5212323A (en) Process for producing 6-(3-dimethylaminopropionyl)forskolin
US20030204100A1 (en) Process for preparation of a benzofuran derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809353

Country of ref document: EP

Kind code of ref document: A1